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Abstract: We present a result on short intervals about the moments of the free path length
of the linear trajectory of a billiard in the unit square with small triangular pockets of size ε
removed at the corners, in which the trajectory ends in a specified corner pocket.
Keywords: Billiards, periodic Lorentz gas, free path length, Farey fractions, visible points,
Kloosterman sums.

1. Introduction and statement of results

A variety of ergodic and statistical properties of the periodic Lorentz gas and
billiards have been intensively studied in the last decades by a number of authors
(see for example [8], [9], and [10]). Such systems were introduced by Lorentz [21] in
1905 to investigate the dynamics of electrons in metals. In [4] and [5], a problem on
the length of the linear trajectory of a two-dimensional Euclidean billiard generated
by the free motion of a single billiard ball subject to elastic reflections on the
boundary of the unit square [0, 1]2 ⊂ R2 having vertices (0, 0), (1, 0), (1, 1), and
(0, 1), with small pockets of size ε removed at the four corners, is considered. The
billiard problem has the point mass moving from the origin along a geodesic line
with constant speed and angle θ ∈ [0, π/2], until it collides with the boundary. At a
smooth boundary point, the billiard ball reflects so that the tangential component
of its velocity remains the same, while the normal component changes its sign. The
reflection is specular, and the trajectory between two such reflections is rectilinear.
The motion ends when the billiard ball reaches one of the corner pockets. In [4],
the k th moment of the free path length (also called the first exit time by some
authors) is estimated for any subinterval of the interval [0, π/2]. The purpose of
this paper is to see precisely what can be said about the contribution each corner

2001 Mathematics Subject Classification: Primary 37D50. Secondary 11B57, 11P21,

82C40.
1 Research of the third author is supported by NSF grant number DMS-0456615.



20 Emre Alkan, Andrew H. Ledoan & Alexandru Zaharescu

pocket will make to these moments. Our study is carried out within the framework
of number theory provided in [4] and [5]. We consider separately the moments over
subsets of the trajectories that end in each corner pocket and determine whether
each pocket has asymptotically equivalent contribution to these moments. In order
to differentiate between trajectories that end in the corner pockets, we will need
to consider questions on the distribution of visible points in the coordinate plane,
and hence Farey fractions, with parity constraints. The use of Farey fractions is
strongly influenced by geometric ideas and further links the billiard problem to
the distribution of inverses in residue classes, in which Kloosterman sums play an
important role. For work done in this direction, see [15], [20], [14], [2], [3], [17], and
[18]. For surveys of Farey fractions, see [12], [16], [11], and [7].

We begin by introducing some notations. Let lε(θ) denote the length of
the trajectory of a particle moving with angle θ ∈ [0, π/2] from the origin. For
i, j ∈ {0, 1} , let Ai,j be the set of angles θ for which the trajectory ends at the
corner (i, j). For any k > 1, we write the k th moment of lε(θ) over the interval
[0, π/2] as a sum of four integrals corresponding to the contribution made by each
of the pockets at the corners (i, j), that is,

∫ π
2

0
lkε (θ) dθ =

∑

i,j∈{0,1}

∫

Ai,j

lkε (θ) dθ. (1.1)

According to Theorem 1.2 in [4] (p. 305), the k th moment of lε(θ) over any fixed
subinterval [α, β] ⊆ [0, π/4] is asymptotic to a constant depending on k , α , and
β only, times ε−k . Thus, for any k , α , β , δ > 0,

∫ β

α

lkε (θ) dθ = ckε
−k
∫ β

α

dx

cosk x
+Ok,δ(ε−k+ 1

6 +δ), (1.2)

where the constant ck is proved in Theorem 1.1 from [4] (p. 304) to be

ck =
12
π2

∫ 1
2

0

(
x(xk−1 + (1− x)k−1) +

1− (1− x)k

kx(1− x)
− 1− (1− x)k+1

(k + 1)x(1− x)

)
dx.

We will see that the k th moment of lε(θ) splits up asymptotically into three
equivalent parts for each pocket at the corners (1, 0), (1, 1), and (0, 1), while the
pocket at the corner (0, 0) makes no contribution at all to these moments. More
precisely, we will prove the following result.

Theorem 1.1. For any subinterval [α, β] ⊆ [0, π/4] , any k > 1 , any δ > 0 , and
any ε > 0 , we have

∫

Ai,j∩[α,β]
lkε (θ) dθ =

{
0 if (i, j) = (0, 0),
ckε
−k

3

∫ β
α

dx
cosk x +Ok,δ(ε−k+ 1

14−δ) otherwise.
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2. Counting inverses with parity constraints

In this section, we prove some lemmas that will be used in the proof of Theorem
1.1 in Section 3. An important tool employed in [1], [4], [5], and [6], to estimate
sums over primitive lattice points is the Weil-Salié type [22] inequality

|K(m,n; q)| � σ0(q) gcd(m,n, q)
1
2 q

1
2 , (2.1)

proved in [19] and [13], for complete Kloosterman sums

K(m,n; q) =
∑

x (mod q)
gcd(x,q)=1

e

(
mx+ nx̄

q

)

in the presence of an integer albeit not necessarily prime modulus q . Here σ0 is
the “number of divisors” function and x̄ denotes the multiplicative inverse of x
(mod q). The bound (2.1) is used to prove, for a fixed integer q > 2 and any
subintervals I, J ⊂ [0, q), the estimate (see Lemma 1.7 in [1], p. 445)

Nq(I, J) := |{(x, y) ∈ I × J :xy ≡ 1 (mod q)}|

=
ϕ(q)
q2 |I||J |+Oδ(q

1
2 +δ),

(2.2)

where ϕ stands for Euler’s totient function. Thus, the arithmetic problem con-
cerning the number of solutions of the congruence xy ≡ 1 (mod q), where
(x, y) ∈ I × J , is reduced to the estimate of exponential sums.

We remark that the ordinary incomplete Kloosterman sums

KI(m,n; q) =
∑

x∈I
gcd(x,q)=1

e

(
mx+ nx̄

q

)

may be written in terms of the complete Kloosterman sums, so that the inequality
(2.1) gives (see Lemma A2 in [6], p. 1823)

|KI(0, n; q)| �δ gcd(n, q)
1
2 q

1
2 +δ.

This bound is used to prove, for any integer j , the estimate (see Proposition A3
in [6], p. 1823)

Nq,j(I, J) := |{(x, y) ∈ I × J : gcd(x, q) = 1, xy = j (mod q)}|

=
ϕ(q)
q2 |I||J |+Oδ(q

1
2 +δ gcd(j, q)

1
2 ).

(2.3)

Estimates (2.2) and (2.3) allow us to immediately deduce the following key
technical tool.
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Lemma 2.1. Let i, j ∈ {0, 1} and δ > 0 . Assume that q > 1 is an integer such
that q ≡ i (mod 2) and I, J ⊂ [0, q) . Denote by Vq,j(I, J) the number of pairs
of integers (a, b) ∈ I × J for which ab ≡ 1 (mod q) and a ≡ j (mod 2) . Then

Vq,j(I, J) := |{(a, b) ∈ I × J : ab ≡ 1 (mod q), a ≡ j (mod 2)}|

=
ηi,jϕ(q)

2q2 |I||J |+Oδ(q
1
2 +δ),

where

ηi,j =





0 if (i, j) = (0, 0),
1 if (i, j) = (0, 1),
1/2 if (i, j) = (1, 0) or (1, 1).

Proof. It is easily seen that Vq,0(I, J) = 0, if (i, j) = (0, 0). Since

Vq,0(I, J) + Vq,1(I, J) = |{(a, b) ∈ I × J : ab ≡ 1 (mod q)}|,
if (i, j) = (0, 1), then by (2.2)

Vq,1(I, J) =
ϕ(q)
q2 |I||J |+Oδ(q

1
2 +δ).

If (i, j) = (1, 0), then by (2.3)

Vq,0(I, J) = |{(x, y) ∈ I/2× J : gcd(x, q) = 1, xy ≡ 2̄ (mod q)}|

= Nq,2̄(I/2, J) =
ϕ(q)
2q2 |I||J |+Oδ(q

1
2 +δ).

Lastly, if (i, j) = (1, 1), then by (2.2)

Vq,1(I, J) = Nq(I, J)− Vq,0(I, J) =
ϕ(q)
2q2 |I||J |+Oδ(q

1
2 +δ).

This completes the proof of the lemma.

Next, we note some important corollaries of Lemma 2.1. We give a detailed
proof for Lemma 2.2 below, and indicate the modifications needed for Lemma 2.3.
For each subintervals I, J ⊂ R and each C1 function f : I × J → R , we denote

‖f‖∞ = sup
(x,y)∈I×J

|f(x, y)|,

‖Df‖∞ = sup
(x,y)∈I×J

(∣∣∣∣
∂f

∂x
(x, y)

∣∣∣∣+
∣∣∣∣
∂f

∂y
(x, y)

∣∣∣∣
)
.

Lemma 2.2. Let i, j ∈ {0, 1} and δ > 0 . Let ηi,j be as in Lemma 2.1. Assume
that q, T > 1 are integers , q ≡ i (mod 2), and f : I × J → R is a C1 function
with I, J ⊂ [0, q) . Then

∑

(a,b)∈I×J
ab≡1 (mod q)
a≡j (mod 2)

f(a, b) =
ηi,jϕ(q)

2q2

∫∫

I×J

f + Eq,I,J,f,T ,

where

Eq,I,J,f,T �δ T
2q

1
2 +δ‖f‖∞ + T‖Df‖∞

(
q

3
2 +δ +

|I||J |
T 2

)
.
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Proof. With the proof of Lemma 2.2 from [4] (pp. 309–310) as a guide, we observe
on the one hand that if T > q , the error is larger than the sum to estimate. Hence,
there is nothing to prove.

On the other hand, if T < q , we approximate the function f(x, y) by a
constant whenever (x, y) ∈ Ir × Js by partitioning the intervals I and J , respec-
tively, into T intervals, I1, . . . , IT and J1, . . . , JT , of equal size |Ir| = |I|/T and
|Js| = |J |/T . For each pair of indices (r, s), we choose a point (xrs, yrs) ∈ Ir × Js
for which ∫∫

Ir×Js

f = |Ir||Js|f(xrs, yrs). (2.4)

Now for (x, y) ∈ Ir × Js , the mean-value theorem gives

f(x, y) = f(xrs, yrs) +O((|Ir|+ |Js|)‖Df‖∞) = f(xrs, yrs) +O

(
q

T
‖Df‖∞

)
,

from which follows

∑

(a,b)∈I×J
ab≡1 (mod q)
a≡j (mod 2)

f(a, b) =
T∑

r,s=1

∑

(x,y)∈Ir×Js
xy≡1 (mod q)
x≡j (mod 2)

f(x, y)

=
T∑

r,s=1

Vq,j(Ir, Js)

[
f(xrs, yrs) +O

(
q‖Df‖∞

T

)]
. (2.5)

Since Ir, Js ⊂ [0, q), Lemma 2.1 applies “infinitesimally” and produces

Vq,j(Ir, Js) =
ηi,jϕ(q)

2q2 |Ir||Js|+Oδ(q
1
2 +δ).

In view of (2.4), the main term on the right side of (2.5) becomes

ηi,jϕ(q)
2q2

T∑
r,s=1

|Ir||Js|f(xrs, yrs) +Oδ(T 2q
1
2 +δ‖f‖∞)

=
ηi,jϕ(q)

2q2

∫∫

I×J

f +Oδ(T 2q
1
2 +δ‖f‖∞),

whereas the error term there will be

� q‖Df‖∞
T

(
T 2q

1
2 +δ +

ϕ(q)
q2 |I||J |

)
� T‖Df‖∞

(
q

3
2 +δ +

|I||J |
T 2

)
.

Piecing this together gives the required result.
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Lemma 2.3. Let i, j ∈ {0, 1} and δ > 0 . Let ηi,j be as in Lemma 2.1. Assume
that q, T1, T2 > 1 are integers , q ≡ i (mod 2), and f : I×J → R is a C1 function
with I, J ⊂ [0, q) . Then

∑

(a,b)∈I×J
ab≡1 (mod q)
a≡j (mod 2)

f(a, b) =
ηi,jϕ(q)

2q2

∫∫

I×J

f + Eq,I,J,f,T ,

where

Eq,I,J,f,T �δ T1T2q
1
2 +δ‖f‖∞ + (T2‖Dxf‖∞ + T1‖Dyf‖∞)

(
q

3
2 +δ +

|I||J |
T1T2

)
.

Proof. Only the case T < q is interesting. We approximate the function f(x, y)
by a constant whenever (x, y) ∈ Ir × Js by partitioning the intervals I and J ,
respectively, into T1 intervals I1, . . . , IT1 and T2 intervals J1, . . . , JT2 of equal size
|Ir| = |I|/T1 and |Js| = |J |/T2 . For (x, y) ∈ Ir × Js , by the mean-value theorem

∑

(a,b)∈I×J
ab≡1 (mod q)
a≡j (mod 2)

f(a, b) =
T1∑
r=1

T2∑
s=1

∑

(x,y)∈Ir×Js
xy≡1 (mod q)
x≡j (mod 2)

f(x, y)

=
T1∑
r=1

T2∑
s=1

Vq,j(Ir, Js)

[
f(xrs, yrs) +O

((
1
T1

+
1
T2

)
q‖Df‖∞

)]
.

By virtue of Lemma 2.1, the main term is

ηi,jϕ(q)
2q2

T1∑
r=1

T2∑
s=1

|Ir||Js|f(xrs, yrs) +Oδ(T1T2q
1
2 +δ‖f‖∞)

=
ηi,jϕ(q)

2q2

∫∫

I×J

f +Oδ(T1T2q
1
2 +δ‖f‖∞),

while the error term is

� q‖Df‖∞
(

1
T1

+
1
T2

)(
T1T2q

1
2 +δ +

ϕ(q)
q2 |I||J |

)

� (T2‖Dxf‖∞ + T1‖Dyf‖∞)
(
q

3
2 +δ +

|I||J |
T1T2

)
.

Hence, the required result follows obviously.

We will need one other key summation formula.

Lemma 2.4. Let i ∈ {0, 1} . Assume that 0 < a < b are real numbers and f is a
continuous piecewise C1 function on the interval [a, b] . Then

∑

a<k6b
k≡i (mod 2)

ϕ(k)
k

f(k) =
%i
ζ(2)

∫ b

a

f +O

(
log(2 + b)

(
‖f‖∞ +

∫ b

a

|f ′|
))

,

where %i = (i+ 1)/3 .



On the free path length of a billiard in the unit square 25

Proof. Let i = 0. We use the Möbius function and rearrange summations to see
that

∑
a<k6b
k even

ϕ(k)
k

f(k) =
∑

16d6b

µ(d)
d

∑

a<k6b
k even
d|k

f(k)

=
∑

16d6b
d even

µ(d)
d

∑

a<k6b
d|k

f(k) +
∑

16d6b
d odd

µ(d)
d

∑

a<k6b
2d|k

f(k)

=
∑

16d6b
d even

µ(d)
d

∑

a/d<m6b/d
fd(m) +

∑

16d6b
d odd

µ(d)
d

∑

a/2d<m6b/2d
f2d(m),

where fd(x) = f(dx). By Lemma 2.2 from [1] (p. 448) and using the fact that

∑

d>1
(d,2)=1

µ(d)
d2 =

4
3ζ(2)

,

the right side above equals


∞∑

d=1

µ(d)
d2 −

1
2

∞∑

d=1
d odd

µ(d)
d2



∫ b

a

f +O

(
log(2 + b)

(
‖f‖∞ +

∫ b

a

|f ′|
))

=
1

3ζ(2)

∫ b

a

f +O

(
log(2 + b)

(
‖f‖∞ +

∫ b

a

|f ′|
))

.

Now let i = 1. By Lemma 2.3 from [1] (p. 449), we have

∑

a<k6b
k odd

ϕ(k)
k

f(k) =
∑

a<k6b

ϕ(k)
k

f(k)−
∑

a<k6b
k even

ϕ(k)
k

f(k)

=
2

3ζ(2)

∫ b

a

f +O

(
log(2 + b)

(
‖f‖∞ +

∫ b

a

|f ′|
))

.

This completes the proof of the lemma.

3. Proof of Theorem 1.1

As in [4] and [5], we work with the equivalent formulation of the billiard problem
in the plane. We pave the unit lattice by placing around each integer point (n,m)
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the square with vertices (n + ε,m), (n,m + ε), (n − ε,m), and (n,m − ε). For
each angle θ ∈ [0, π/2], we consider the trajectory that starts from the origin and
ends at one of these squares. The length of this trajectory equals the length of the
trajectory in the original billiard problem. Further, this trajectory never ends at a
square around a point (n,m) that is not visible from the origin. We remark that
a necessary and sufficient condition for the point (n,m) to be visible is that the
integers m and n be relatively prime. Thus, no trajectory in the plane can end
at the square around an integer point with both coordinates being even. Hence,
the set A0,0 is empty and the pocket at the corner (0, 0) makes no contribution
to the k th moments of lε(θ).

Let [x] be the integer part of a real number x . It is proved in Lemma 3.1 from
[4] (p. 311), for Q = [1/ε] with 0 < ε < 1/2 fixed, that for any angle θ ∈ [0, π/4]
the corresponding trajectory always ends on the square around a visible point that
lies inside or on the sides of the triangle with vertices (0, 0), (Q, 0), and (Q,Q).
The slopes of the straight lines from the origin through these visible points are
Farey fractions a/q ∈ (0, 1] with 1 6 a 6 q 6 Q and gcd(a, q) = 1 in the Farey
sequence FQ of order Q . We remark that, given an arbitrary angle θ ∈ [0, π/4],
the slope tan θ ∈ [0, 1] will lie between two consecutive Farey fractions. Thus,
the trajectory from the origin at angle θ will end at the boundary of the square
around one of the corresponding visible points.

Now let a′′/q′′ < a/q < a′/q′ be three consecutive fractions in FQ . Using
Lemmas 2.2 and 2.3 from [5] (pp. 60–61), we distinguish between the following
four cases. For brevity’s sake, we will let

Jq,a,ε =





[
arctan a−ε

q , arctan a+ε
q

]
if q < min(q′, q′′),

[
arctan a′′+ε

q′′ , arctan a′−ε
q′

]
if q > max(q′, q′′),

[
arctan a−ε

q , arctan a′−ε
q′

]
if q′ < q < q′′,

[
arctan a−ε

q , arctan a′′−ε
q′′

]
if q′′ < q < q′.

Here we note that |Jq,a,ε| equals





2εq
q2+a2 +O

(
ε2

q2+a2

)
if q < min(q′, q′′),

(
1
qq′ + 1

qq′′ − ε
q′ − ε

q′′

)
q2

q2+a2 +O

(
ε2 max

(
1
q′ ,

1
q′′

))
if q > max(q′, q′′),

(
1
qq′ − ε

q′ + ε
q

)
q2

q2+a2 +O

(
ε2 max

(
1
q ,

1
q′

))
if q′ < q < q′′,

(
1
qq′′ − ε

q′′ + ε
q

)
q2

q2+a2 +O

(
ε2 max

(
1
q ,

1
q′′

))
if q′′ < q < q′.
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We remark that every slope tan θ ∈ [0, 1] through the origin will necessarily
intersect the sets Ai,j . If we put

Ai,j =
⋃

a/q∈FQ
(q,a)≡(i,j) (mod 2)

Jq,a,ε,

where Jq,a,ε is the set of angles θ ∈ [0, π/4] for which the trajectory starts at angle
θ from the origin and ends at the square around the point (q, a) with a/q ∈ FQ ,
then

∫

Ai,j∩[α,β]
lkε (θ) dθ =

∑

a/q∈FQ
tanα6a/q6tan β

(q,a)≡(i,j) (mod 2)

∫

Jq,a,ε

lkε (θ) dθ.

For any angle θ ∈ Jq,a,ε , we have

lε(θ) = (q2 + a2)
1
2

[
1 +O

(
ε

(q2 + a2)
1
2

)]
,

so that

lkε (θ) = (q2 + a2)
k
2 +Ok(Qk−2).

Using this and the fact that (q2 + a2)
k
2 |Jq,a,ε| equals





2εq(q2 + a2)
k
2−1 +O(Qk−4) if q < min(q′, q′′),(

1
qq′ + 1

qq′′ − ε
q′ − ε

q′′

)
q2(q2 + a2)

k
2−1

+O

(
Qk−2 max

(
1
q′ ,

1
q′′

))
if q > max(q′, q′′),

(
1
qq′ − ε

q′ + ε
q

)
q2(q2 + a2)

k
2−1 +O

(
Qk−2

q′

)
if q′ < q < q′′,

(
1
qq′′ − ε

q′′ + ε
q

)
q2(q2 + a2)

k
2−1 +O

(
Qk−2

q′′

)
if q′′ < q < q′,

and recognizing that the cardinality Φ(Q) = φ(1) + . . . + φ(Q) of FQ grows
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quadratically in Q (see Theorem 330, p. 268 in [16]), we have
∫

Ai,j∩[α,β]
lkε (θ) dθ

=
∑

a/q∈FQ
tanα6a/q6tan β

(q,a)≡(i,j) (mod 2)

∫

Jq,a,ε

((q2 + a2)
k
2 +Ok(Qk−2)) dθ

=
∑

a/q∈FQ
tanα6a/q6tan β

(q,a)≡(i,j) (mod 2)

(∫

Jq,a,ε

(q2 + a2)
k
2 dθ +Ok(Qk−2|Jq,a,ε|)

)

=
∑

a/q∈FQ
tanα6a/q6tan β

(q,a)≡(i,j) (mod 2)

(q2 + a2)
k
2 |Jq,a,ε|+Ok


Qk−2

∑

a/q∈FQ

|Jq,a,ε|



= Si,j,1 + Si,j,2 + Si,j,3 + Si,j,4 +Ok(Qk−1),

(3.1)

where

Si,j,1 =
∑

a/q∈FQ
tanα6a/q6tan β

(q,a)≡(i,j) (mod 2)
q<min(q′,q′′)

2εq(q2 + a2)
k
2−1,

Si,j,2 =
∑

a/q∈FQ
tanα6a/q6tan β

(q,a)≡(i,j) (mod 2)
q>max(q′,q′′)

(
1
qq′

+
1
qq′′
− ε

q′
− ε

q′′

)
q2(q2 + a2)

k
2−1,

Si,j,3 =
∑

a/q∈FQ
tanα6a/q6tan β

(q,a)≡(i,j) (mod 2)
q′<q<q′′

(
1
qq′
− ε

q′
+
ε

q

)
q2(q2 + a2)

k
2−1,

Si,j,4 =
∑

a/q∈FQ
tanα6a/q6tan β

(q,a)≡(i,j) (mod 2)
q′′<q<q′

(
1
qq′′
− ε

q′′
+
ε

q

)
q2(q2 + a2)

k
2−1.

We now focus our attention on the sum Si,j,1 . First, we use the definition and
properties of consecutive Farey fractions to express the condition q < min(q′, q′′)
in terms of a and q only. Recall that if a/q < a′/q′ are two consecutive fractions in
FQ , then a′q−aq′ = 1 and q+q′ > Q . Conversely, if q, q′ ∈ [1, Q] and q+q′ > Q ,



On the free path length of a billiard in the unit square 29

then there are integers a ∈ [1, q− 1] and a′ ∈ [1, q′ − 1] such that a/q < a′/q′ are
consecutive fractions in FQ (see Theorems 28 and 29, p. 24 in [16]). Thus, we have
a′ = (aq′ + 1)/q since a′q − aq′ = 1. Since q + q′ > Q , there are q consecutive
integers in the interval Q − q < q′ 6 Q . The fact that a′q − aq′ = 1 implies
−aq′ ≡ 1 (mod q). In addition, since gcd(a, q) = 1 we have q′ ≡ −ā (mod q),
where ā is the multiplicative inverse of a (mod q). This residue class is uniquely
determined and exactly one integer in the interval Q − q < q′ 6 Q satisfies this
congruence. Now, Q− q + ā < q′ + ā 6 Q+ ā and we have

Q+ ā

q
− 1 <

q′ + ā

q
6 Q+ ā

q
.

Because q | (q′ + ā), we have (q′ + ā)/q = [(Q+ ā)/q] . Hence,

q′ =
[
Q+ ā

q

]
q − ā.

By the same argument as above, we get

q′′ =
[
Q− ā
q

]
q + ā.

Let us observe that

q < min(q′, q′′) ⇐⇒ q <

[
Q+ā
q

]
q − ā and q <

[
Q−ā
q

]
q + ā

⇐⇒
[
Q+ā
q

]
> 2 and

[
Q−ā
q

]
> 1

⇐⇒ Q+ ā > 2q and Q− ā > q

⇐⇒ ā ∈ [max(2q −Q, 0),min(Q− q, q)] with q 6 2Q/3,

and denote

Jq,1 =





[0, Q− q] ∩ [0, q] = [0, q] if 1 6 q 6 Q/2,
[2q −Q,Q− q] if Q/2 6 q < 2Q/3,
∅ if q > 2Q/3.

We write
Si,j,1 = 2ε

∑

16q62Q/3
q≡i (mod 2)

q
∑

q tanα6a6q tan β
gcd(a,q)=1

a≡j (mod 2)
ā∈Jq,1

(q2 + a2)
k
2−1

=
2
Q

∑

16q62Q/3
q≡i (mod 2)

qBj,1,
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where

Bj,1 =
∑

(a,ā)∈Iq×Jq,1
a≡j (mod 2)

fq,1(a, ā) and fq,1(x, y) = (q2 + x2)
k
2−1,

with (x, y) ∈ Iq×Jq,1 = qI0×[max(2q−Q, 0),min(Q−q, q)] and I0 = [tanα, tanβ] ⊆
[0, 1] fixed. We take R = [Qa] and S = [Qb] , with 0 < a, b < 1 to be precisely
chosen later. The trivial estimate

qBj,1 � q2Qk−2 6 Qk

gives

Si,j,1 =
2
Q

∑

16q62Q/3−R
q≡i (mod 2)

qBj,1 +O(Qk−1+a). (3.2)

In the range of summation for q from (3.2), we have
∂fq,1
∂x

= x(k − 2)(q2 + x2)
k
2−2 and

∂fq,1
∂y

= 0,

so that
‖fq,1‖∞ � Qk−2, ‖Dfq,1‖∞ � Qk−3.

According to Lemma 2.2 and to (3.2), this gives

Si,j,1 = Ti,j,1 +Rδ,1, (3.3)

where, taking a = 5/6 and b = 1/6,

Rδ,1 �δ Q
k−1R+Q

[
S2Q

1
2 +δ ·Qk−2 + S ·Qk−3

(
Q

3
2 +δ +

Q2

S2

)]

�δ Q
k−1+δ+max(a, 12 +2b,1−b) �δ Q

k− 1
6 +δ

and

Ti,j,1 =
2
Q

∑

16q6Q/2
q≡i (mod 2)

q · ηi,jϕ(q)
2q2

∫

qI0

(q2 + x2)
k
2−1 dx

∫ q

0
dy

+
2
Q

∑

Q/26q62Q/3−R
q≡i (mod 2)

q · ηi,jϕ(q)
2q2

∫

qI0

(q2 + x2)
k
2−1 dx

∫ Q−q

2q−Q
dy

=
1
Q

∑

16q6Q/2
q≡i (mod 2)

ηi,jϕ(q)
q

· qk−1
∫

I0

(1 + u2)
k
2−1 du · q

+
1
Q

∑

Q/26q62Q/3−R
q≡i (mod 2)

ηi,jϕ(q)
q

· qk−1
∫

I0

(1 + u2)
k
2−1 du · (2Q− 3q)

= ηi,jbk
∑

16q6Q/2
q≡i (mod 2)

ϕ(q)qk−1 1
Q

+ ηi,jbk
∑

Q/26q62Q/3−R
q≡i (mod 2)

ϕ(q)qk−2
(

2− 3q
Q

)
,
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where

bk =
∫ β

α

dx

cosk x
.

Since the function

gk,1(t) = tk−1 ×
{

1 if t ∈ [0, 1/2],
2− 3t if t ∈ [1/2, 2/3),

is bounded, and since ∫ 2
3

0
|g′k,1(t)| dt <∞,

Lemma 2.4 applies and yields

Ti,j,1 =
ηi,j%ibkQ

k

ζ(2)

∫ 2
3−RQ

1
Q

gk,1(t) dt+Ok(Qk−1 logQ).

Inserting this into (3.3), we obtain

Si,j,1 =
ηi,j%ibkck,1Q

k

ζ(2)
+Oδ(Qk−

1
6 +δ), ck,1 =

∫ 2
3

0
gk,1(t) dt.

The analysis of the sum Si,j,2 is slightly more intricate. We have

q > max(q′, q′′) ⇐⇒
[
Q+ā
q

]
6 1 and

[
Q−ā
q

]
= 0

⇐⇒ Q+ ā < 2q and Q− ā < q

⇐⇒ ā ∈ (Q− q, 2q −Q) with q > 2Q/3.
Let

Jq,2 =
{

(Q− q, 2q −Q) if q > 2Q/3,
∅ if q 6 2Q/3,

and observe that

(i) q′′ < q ⇐⇒
[
Q− ā
q

]
= 0, so that q′′ = ā ;

(ii) q′ < q ⇐⇒
[
Q+ ā

q

]
= 1, so that q′ = q − ā .

Thus, we have

Si,j,2 =
∑

2Q/3<q6Q
q≡i (mod 2)

q2
∑

q tanα6a6q tan β
gcd(a,q)=1

a≡j (mod 2)
ā∈Jq,2

(
1

q(q − ā)
+

1
qā
− ε

q − ā −
ε

ā

)
(q2 + a2)

k
2−1

=
∑

2Q/3<q6Q
q≡i (mod 2)

q(1− qε)
∑

q tanα6a6q tan β
gcd(a,q)=1

a≡j (mod 2)
ā∈Jq,2

(
1
ā

+
1

q − ā
)

(q2 + a2)
k
2−1

=
∑

2Q/3<q6Q
q≡i (mod 2)

q

(
1− q

Q

)
Bj,2,
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where

Bj,2 =
∑

(a,ā)∈Iq×Jq,2
a≡j (mod 2)

fq,2(a, ā), fq,2(x, y) = (q2 + x2)
k
2−1
(

1
y

+
1

q − y
)
,

with (x, y) ∈ Iq × Jq,2 = qI0 × (Q− q, 2q −Q). Putting R = [Qa] , S = [Qb] , and
T = [Qc] , with 0 < a, b, c < 1 to be precisely chosen later, we see that the trivial
estimate

q

(
1− q

Q

)
Bj,2 � qQk−2 log q 6 Qk−1 logQ

gives

Si,j,2 =
∑

2Q/3<q6Q−R
q≡i (mod 2)

q

(
1− q

Q

)
Bj,2 +Oδ(Qk−1+a+δ). (3.4)

In the range of summation for q from (3.4), we have

∂fq,2
∂x

= x(k − 2)(q2 + x2)
k
2−2
(

1
y

+
1

q − y
)
,

∂fq,2
∂y

= (q2 + x2)
k
2−1
(
− 1
y2 +

1
(q − y)2

)
,

so that

‖fq,2‖∞ � Qk−2

Q− q 6 Qk−2

R
� Qk−2−a,

‖Dxfq,2‖∞ � Qk−3

Q− q 6 Qk−3

R
� Qk−3−a,

‖Dyfq,2‖∞ � Qk−2

(Q− q)2 6 Qk−2

R2 � Qk−2−2a.

According to Lemma 2.3 and to (3.4), this gives

Si,j,2 = Ti,j,2 +Rδ,2, (3.5)

where Rδ,2 is

�δ Q
k−1+δR+Q2

[
STQ

1
2 +δ · Q

k−2

R
+
(
T · Q

k−3

R
+ S · Q

k−2

R2

)(
Q

3
2 +δ +

Q2

ST

)]

�δ Q
k−1+δ+max(a, 32 +b+c−a, 52 +b−2a,2−a−b,3−c−2a) �δ Q

k− 1
14 +δ,
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by taking a = 13/14, b = 1/7, and c = 3/14, and Ti,j,2 equals

∑

2Q/3<q6Q−R
q≡i (mod 2)

q

(
1− q

Q

)
ηi,jϕ(q)

2q2

∫

qI0

(q2 + x2)
k
2−1 dx

∫ 2q−Q

Q−q

(
1
y

+
1

q − y
)
dy

= ηi,j
∑

2Q/3<q6Q−R
q≡i (mod 2)

q

(
1− q

Q

)
ϕ(q)
2q2 · qk−1

∫

I0

(1 + u2)
k
2−1 du · 2 log

2q −Q
Q− q

= ηi,jbk
∑

2Q/3<q6Q−R
q≡i (mod 2)

ϕ(q)qk−2
(

1− q

Q

)
log

2q −Q
Q− q .

The function

gk,2(t) = tk−1(1− t) log
2t− 1
1− t , t ∈ [2/3, 1),

is bounded and ∫ 1

2
3

|g′k,2(t)| dt <∞.

Thus, Lemma 2.4 applies and yields

Ti,j,2 =
ηi,j%ibkQ

k

ζ(2)

∫ 1−RQ

2
3

gk,2(t) dt+Ok(Qk−1 logQ). (3.6)

In view of (3.5), (3.6), and the estimate
∫ ξ

0
u| log u| du� ξ,

we conclude that

Si,j,2 =
ηi,j%ibkck,2Q

k

ζ(2)
+Ok,δ(Qk−

1
14 +δ), ck,2 =

∫ 1

2
3

gk,2(t) dt.

By an analysis similar to the one used above (with q′ = ā , q′′ = q − ā , and
q > Q/2), we have

Si,j,3 =
∑

Q/26q6Q
q≡i (mod 2)

q
∑

q tanα6a6q tan β
gcd(a,q)=1

a≡j (mod 2)
ā∈[max(2q−Q,Q−q),q]

[
1
ā

(
1− q

Q

)
+

1
Q

]
(q2 + a2)

k
2−1

=
ηi,jbk

2

∑

Q/26q62Q/3
q≡i (mod 2)

ϕ(q)qk−2

[(
1− q

Q

)
log

q

Q− q +
2q
Q
− 1

]

+
ηi,jbk

2

∑

2Q/36q6Q−R
q≡i (mod 2)

ϕ(q)qk−2

[(
1− q

Q

)
log

q

2q −Q −
q

Q
+ 1

]
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and

Si,j,4 =
∑

Q/26q6Q
q≡i (mod 2)

q
∑

q tanα6a6q tan β
gcd(a,q)=1

a≡j (mod 2)
ā∈[0,min(2q−Q,Q−q)]

Q− ā
Q(q − ā)

(q2 + a2)
k
2−1

=
ηi,jbk

2

∑

Q/26q62Q/3
q≡i (mod 2)

ϕ(q)qk−2

{
q

Q
−
(

1− q

Q

)[
1 + log

(
Q

q
− 1
)]}

+
ηi,jbk

2

∑

2Q/36q6Q−R
q≡i (mod 2)

ϕ(q)qk−2
(

1− q

Q

)[
1− log

(
2− Q

q

)]
.

Therefore,

Si,j,h =
ηi,j%ibkck,hQ

k

2ζ(2)
+Ok,δ(Qk−

1
14 +δ), ck,h =

∫ 1

1
2

gk,h(t) dt, h = 3, 4,

where

gk,3(t) = tk−1 ×
{

(1− t) log t
1−t + 2t− 1 if t ∈ [1/2, 2/3],

(1− t) log t
2t−1 − t+ 1 if t ∈ [2/3, 1),

and

gk,4(t) = tk−1 ×





t− (1− t)
(

1− log t
1−t

)
if t ∈ [1/2, 2/3],

(1− t)
(

1 + log t
2t−1

)
if t ∈ [2/3, 1).

Collecting all estimates in (3.1), we record

∫

Ai,j∩[α,β]
lkε (θ) dθ = ηi,j%ibkdkQ

k +Ok,δ(Qk−
1
14 +δ),

where

dk =
2ck,1 + 2ck,2 + ck,3 + ck,4

2ζ(2)
.

Since ηi,j%i = 0 if (i, j) = (0, 0) and ηi,j%i = 1/3 otherwise, and since the sum of
all four moments equals bkckQk+Ok,δ(Qk−

1
6 +δ) by (1.1) and (1.2), it follows that

each of the three moments with (i, j) 6= (0, 0) satisfies the asymptotic formula
given in the theorem. Thus our theorem is completely proved.
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