Abstract
We study the minimal degree d(m) of a polynomial with all coefficients in $\{-1,0,1\}$ and a zero of order m at 1. We determine d(m) for $m\leq10$ and compute all the extremal polynomials. We also determine the minimal degree for $m=11$ and $m=12$ among certain symmetric polynomials, and we find explicit examples with small degree for $m\leq21$. Each of the extremal examples is a pure product polynomial. The method uses algebraic number theory and combinatorial computations and relies on showing that a polynomial with bounded degree, restricted coefficients, and a zero of high order at 1 automatically vanishes at several roots of unity.
Citation
Peter Borwein. Michael J. Mossinghoff. "Polynomials with height 1 and prescribed vanishing at 1." Experiment. Math. 9 (3) 425 - 433, 2000.
Information