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We describe the theoretical background for a computer pro-
gram that recognizes all closed orientable three-manifolds up
to complexity 8. The program can treat also nonclosed three-
manifolds and manifolds of greater complexity, but without
necessarily succeeding in recognizing them.

INTRODUCTION

Let M be an orientable three-manifold such that
OM is either empty or consists of tori. Then, if
we assume Thurston’s geometrization conjecture
[Scott 1983], M can be decomposed in a unique
way into graph-manifolds and hyperbolic pieces.
A graph-manifold is a three-manifold that can be
obtained by pasting together copies of D? x S and
N? x S', where N? is a disc with two holes, along
homeomorphisms of their boundaries. In particu-
lar, all Seifert manifolds and solv-manifolds can be
obtained in this way.

The classification of graph-manifolds is known
[Waldhausen 1967a; 1967b], and a list of cusped
hyperbolic manifolds up to complexity 7 is con-
tained in [Weeks 1985]. If we possess information
on how the pieces are glued together, we can get
an explicit description of M as a sum of geometric
pieces. Such a presentation is usually sufficient for
understanding the intrinsic structure of M; it al-
lows one to label M with a name that distinguishes
it from all other manifolds.

We describe the theoretical background and out-
line of a computer algorithm that recognizes three-
manifolds, in the following sense: given (by means
of combinatorial description, say) a three-manifold
M whose boundary is empty or consists of tori, the
algorithm attempts to decompose M into geomet-
ric pieces and identify those pieces. The algorithm
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always succeeds if M is closed, orientable and has
complexity at most 8 (all such manifolds are graph-
manifolds; see [Matveev 1990]).

1. SPECIAL AND ALMOST SPECIAL SPINES

Definition. A compact polyhedron P is simple if
the link of each of its points is homeomorphic to
either a circle, a circle with a diameter, or the
one-skeleton of a three-simplex (a circle with three
radii). Points whose link is not a circle are called
singular. (See Figure 1.)

The set of singular points of a simple polyhedron
P is called the singular graph of P. FEach con-
nected component of the complement of the singu-
lar graph of P is a two-manifold without boundary,
and is called a two-component of P.

Definition. A compact polyhedron P is called al-
most special if it can be embedded in a simple poly-
hedron.

There is a close relation between simple and al-
most special polyhedra. For example, the wedge of
any simple polyhedron and any graph is an almost
special polyhedron. The example is very typical,
since any almost special polyhedron can be col-
lapsed onto a polyhedron of the form PUG, where
P is a collection of disjoint simple polyhedra, G is
a graph, and PN G is a finite set of nonvertices in
P.

Definition. A simple polyhedron P is special if it
contains at least one vertex and if all its two-com-
ponents are two-cells.

Note that there are finitely many special polyhedra
with a given number of vertices.

Definition. A subpolyhedron P C M of a compact
three-manifold M with nonempty boundary is said
to be its spine if M collapses to P or, equivalently,
if M \ P is homeomorphic to M x (0,1].

The spine is called almost special or special if it is
a polyhedron of the corresponding type.

We will always assume that an almost special
spine cannot be collapsed onto a proper subpoly-
hedron.

By a spine of a closed manifold M we mean a
spine of M \ D?, where D? is an embedded closed
ball in M. It is known that any compact three-
manifold possesses an almost special (even a spe-
cial) spine. Moreover, one can easily construct a
special spine of M starting from practically any
presentation of M [Matveev 1990]. Special spines
possess an important property that favorably dis-
tinguishes them from simple and almost special
spines: a three-manifold can be uniquely recovered
from its special spine. Note that special spines can
be considered as combinatorial objects and admit
presentations in computer’s memory as strings of
integers that show how two-cells are attached to
singular graphs of spines. To present a manifold
by its almost special spine, additional information
is needed on the way the spine should be thickened
to become the three-manifold.

2. SIMPLIFYING MOVES ON SPINES

In what follows we will consider compact orientable
three-manifolds whose boundaries are either empty
or consist of spheres and tori.

We introduce six types of moves on almost spe-
cial spines, each of which does not increase the
number of vertices of the spine, and quite often
decreases it. We call them simplifying moves. The
moves transform not only spines, but may also
transform the corresponding manifolds. Therefore,
one should keep in memory additional information
sufficient for recovering the original manifolds from
the new ones.

Let P be an almost special spine of a three-man-
ifold M.

Move 1 (Admissible disc replacement). Let P be a sim-
ple polyhedron. Suppose D? is a disc in M such
that D* N P = dD? and that the curve 0D? is in
general position in P. Then D? cuts off M \ P a
ball B®. Let a # D? be a two-component of the
simple polyhedron PUD? such that « separates B?
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FIGURE 1. Each point in a simple polyhedron has a neighborhood that is topologically the cone over a circle
(left), a circle with a diameter (middle), or a circle with three radii (right).

from M \ B?. Removing from « an open two-disc
and collapsing the resulting polyhedron as long as
possible, we get another almost special spine P, of
M. (See Figure 2.) We say that P, is obtained
from P by a disc replacement move.

HoH

FIGURE 2. A disc replacement move.

A disc replacement move is called admissible if the
following conditions hold:

(1) The move does not increase the number v(P) of
vertices of P; that is, v(Py) < v(P).
2)v(PUD?) —uv(P) < 4.

An admissible disc replacement move is monotone
if v(P;) < v(P), and horizontal if v(P;) = v(P).

Remark 2.1. It is easy to see that, applying to a spe-
cial spine admissible disc replacement moves, one
can get only finitely many different special spines.

Remark 2.2. Here is an important particular case
of Move 1. Suppose a two-component @ C P
contains a nontrivial orientation-preserving simple
closed curve [. Then there is a proper annulus
A C M such that AN P = [. Suppose that at

least one of the boundary circles of A bounds a
disc in M. Then there is a disc D? in M such
that D? NP = dD? = [, and we can simplify P by
Move 1.

Move 2 (Cutting of a two-component along a nontriv-
ial circle). Suppose that a two-component @ C P
contains a nontrivial orientation-preserving simple
closed curve [, and let A C M, with ANP =1, be a
transverse proper annulus. Assume the boundary
circles of A are nontrivial in M. Cutting P along
I and collapsing the resulting polyhedron as long
as possible, we get an almost special polyhedron
P CM.

Denote by L the connected component of AUOM
containing A. Let Y? be a regular neighborhood
of L in M such that P, is a spine of M; = M \ Y3.
Then M = M, UY? and M; NY? consists of one
or two tori. Note that, since the boundary circles
of A are nontrivial in M, L fibers onto circles. It
follows that Y is a circle bundle over a surface F.
It is easy to see that x(F) = —1 and OF consists
of two or three circles. Therefore F' is homeomor-
phic either to a twice punctured disc N? or to a
once punctured Mobius band B? (the latter hap-
pens when the coherently oriented boundary cir-
cles of A lie on the same boundary torus of M and
have opposite orientations there). We may con-
clude that Y3 = N? x S' or Y = B? x S*.

Moves 1 and 2 are basic ones. Applying them,
we destroy two-components that contain nontriv-
ial simple closed curves. As a byproduct, we may
obtain almost special spines with one-dimensional
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FIGURE 3. Cutting free arcs.

parts as well as spines of three-manifolds with sev-
eral spherical boundary components. To simplify
them, we use additional moves.

Move 3 (Cutting free arcs). Suppose that P contains
an arc [ such that no two-dimensional sheets are at-
tached to [. Removing the interior of /[ from P and
collapsing the resulting polyhedron as long as pos-
sible, we get an almost special polyhedron P, C P.

To describe the corresponding transformation of
M, denote by D? a proper disc in M such that D?
intersects [ transversely at exactly one point. Then
P, is an almost special spine of a manifold M; that
is obtained from M by cutting along D?. In other
words, M can be obtained from the new manifold
M, by attaching handle of index 1; see Figure 3.
There are three cases.

(A) M = (M, + D?) # (D? x S*), if 9D? does not
separate OM (here “4+D3” means that we fill up
a spherical component of the boundary with a
three-dimensional ball).

(B) M = (M, + D?) # (S* x S'), if D? does not
separate M but dD? separates OM.

(C) M = M| #(M]'+ D?), if D? separates M, where
M, M are the connected components of M.

Move 4 (Delicate piercing). Suppose that M con-
sists of at least two components, and at least one
of them is spherical. Then one can find a proper
arc | C M such that A = [ N P is a nonsingular
point of P and [ joints a spherical component of
OM with another one. Removing from P an open
disc neighborhood of A and collapsing the resulting

polyhedron as long as possible, we get an almost
special spine P, of M, = M + D3*. We call the
piercing delicate since it induces a very mild mod-
ification of M.

Move 5 (Removing isolated points). If P contains iso-
lated points, remove them.

Move 6 (Rough piercing). Let P be a special spine
of a closed manifold M. Choose a two-component
« of P such that after removing & from P and
collapsing the resulting polyhedron, we get an al-
most special polyhedron P, C M with the smallest
possible number of vertices. Then P, is an almost
special spine of a new manifold M; C M such that
OM, is a torus. Clearly, M \ M, is a solid torus;
that is, M is obtained from M; by a Dehn filling.

3. EXPERIMENTAL RESULTS AND CONJECTURES

We recall the following notion, which is naturally
related to practically all the known methods of
presenting manifolds and captures well the infor-
mal idea of complexity of three-manifolds [Matveev
1990].

Definition. A compact three-manifold M has com-
plexity ¢(M) = k if M possesses an almost special
spine with k vertices and admits no almost special
spines with a smaller number of vertices.

The complexity possesses the following properties:

(1) For any integer k, there exist only finitely many
distinct closed irreducible orientable three-man-
ifolds of complexity k.



(2) The complexity of the connected sum of three-
manifolds is equal to the sum of their complex-
ities, and the same is true for boundary con-
nected suins.

(3) Let My be obtained from a three-manifold M
by cutting along a proper incompressible surface
F C M. Then ¢(Mp) < ¢(M).

Remark 3.1. Using Moves 1, 3, 4, and 5, one can
easily prove that any minimal almost special spine
of a closed orientable irreducible three-manifold
M with ¢(M) > 0 is a special one. There are
exactly three closed orientable irreducible three-
manifolds of complexity 0: S, RP?, and the lens
space L(3,1). Their minimal almost special spines
(a point, RP?, and a simple polyhedron without
vertices with exactly one two-component, which is
homeomorphic to the disc) are not special.

Theorem 3.2. All closed orientable three-manifolds
of complexity at most 8 are graph-manifolds.

This was initially proved by computer; later, a
purely theoretical proof was found [Matveev 1990].
We describe the main steps of the computer pro-
gram used in the original proof.

Step 1. The program enumerates all the finitely
many special polyhedra with at most 8 vertices.

Step 2. The program selects spines of closed ori-
entable three-manifolds. (It is easy to decide if a
special polyhedron is a spine of a three-manifold,
and if it is, then the three-manifold is unique.)

Step 3. Then it tries to apply to each spine admissi-
ble disc replacement moves that decrease the num-
ber of vertices. If such a move is possible, then the
corresponding three-manifold M is not interesting
for either it has a smaller complexity (and we have
met it earlier), or it is a connected sum of closed
manifolds of smaller complexities. Otherwise, we
go to the next step.

Step 4. The program applies Move 6 (rough pierc-
ing) and simplifies the new spine by Moves 1-5.
Note that Move 6 is allowed only if the manifold is
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closed or has a spherical boundary, and it produces
a manifold with a torus boundary.

The main observation resulting from the computer
experiment is that if we start with a special spine
of a closed orientable manifold M with at most
8 vertices, then after Moves 1-6 we always get the
empty set. This means that M is a graph-manifold.

Theorem 3.2 is sharp in the sense that there exist
closed orientable three-manifolds of complexity 9
that are hyperbolic and therefore are not graph-
manifolds. One of them has volume 0.94. . .; this is
the smallest known value for the volume of a closed
orientable hyperbolic three-manifold [Weeks 1985;
Matveev and Fomenko 1988].

We say that an almost special spine of a three-
manifold M is minimal if it has the smallest pos-
sible number of vertices.

Theorem 3.3. If a special spine of a closed orientable
three-manifold M contains less than 8 vertices and
18 not minimal, then it can be simplified by a mono-
tone admissible disc replacement move. Any two
minimal special spines of M are related by hori-
zontal admassible disc replacement mowves.

This theorem is an experimental fact; it has been
verified by a computer program.

The following conjectures have been motivated
by the experimental results stated above, as well
as by other observations.

Conjecture 3.4. If a special spine of a compact three-
manifold is not minimal, then the number of its
vertices can be decreased by admaissible disc replace-
ment moves.

If the conjecture is true, one can get a simple al-
gorithm for recognition of the unknot, as follows.
Apply to a spine of the knot complement admissi-
ble disc replacement moves as long as possible. The
knot is trivial if and only if one eventually gets a
circle. In the same way one would have a simple
algorithm for recognition of the three-sphere.
Conjecture 3.4 may be too strong to be true,
although vast computer experiments to find out
a counterexample have been unsuccessful. This
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shows that, if exceptions exist, they are rare, and
the above algorithms should give the circle or the
point for a typical spine of the solid torus or the
ball, respectively. Therefore, we have good prac-
tical partial procedures for recognizing the unknot
and the sphere.

Conjecture 3.5. If a special spine of a closed graph-
manifold is minimal, then any rough piercing move
(Move 6) transforms it into an almost special spine
of a graph-manifold.

The conjecture is true for all graph-manifolds up
to complexity 8. It allows one to reduce the recog-
nition problem for closed graph-manifolds to that
for manifolds with boundaries.

4. SPINES OF MANIFOLDS WITH ESSENTIAL ANNULI

It is known [Matveev 1990] that if a three-manifold
is reducible or boundary reducible, then its mini-
mal almost special spine is not special. It turns
out that the same is true for manifolds contain-
ing essential (that is, incompressible and bound-
ary incompressible) annuli. This observation is es-
pecially important for the investigation of graph-
manifolds with nonempty boundary, since all of
them are reducible or boundary reducible or con-
tain essential annuli.

Theorem 4.1. If a compact three-manifold M con-
tains an essential annulus, no minimal almost spe-
cial spine of M 1is special.

Remark 4.2. If an almost special spine is not special
and has at least one vertex, it contains either a
two-component not homeomorphic to the disc or
one-dimensional part. Hence we can apply either
Moves 1 and 2 or Move 3.

Before proving Theorem 4.1, we recall some no-
tions of normal surface theory [Haken 1961]. Let
¢ be a handle decomposition of a three-manifold
M with nonempty boundary. It consists of han-
dles of index 0, 1, and 2, called balls, beams, and
plates, respectively. Connected components in the
intersection of balls and beams are called islands;

connected components in the intersection of balls
and plates are called bridges. The boundaries of
balls meet OM along lakes. Any normal surface
F C M should intersect balls, beams and plates
in a very specific way [Haken 1961]. In particular,
the intersection of F' with balls should consist of
elementary discs. The boundary curve OF of each
elementary disc £ should satisfy these conditions:

(1) The intersection of 0F with any bridge and any
lake consists of no more than one segment.

(2) If [ is an arc in the intersection of OF with a lake
L then the end points of [ should lie in different
connected components of the intersection of L
with islands.

(3) If a lake and a bridge are adjacent then OF in-
tersects no more than one of them.

We say that an elementary disc E has type (m,n)
if the circle OF intersects m bridges and n lakes.

Any special spine P of M generates a handle
decomposition {p of M. Balls, beams, and plates
of the decomposition correspond respectively to
vertices, edges, and two-components of P. The
boundary of each ball contains exactly four islands,
and any two of them are joined by exactly one
bridge. See Figure 4.

FIGURE 4. Boundary of a ball in a handle decom-
position ép.

It is not hard to see that any elementary disc
for £p has one of the following types: (4,0), (3,0),
(2,1), (1,2), (0,2), (0,3), (0,4). Each type de-
termines the corresponding elementary disc in a



unique way (up to homeomorphisms of the ball
taking islands to islands, bridges to bridges, and
lakes to lakes), except the type (0, 3), which deter-
mines two elementary discs.

For any beam D?x I (with D?*x{0} and D*x {1}
being islands), the disc D? x {1/2} is called the
transverse disc of the beam.

Definition. Let A be a proper annulus in a three-
manifold M with a special spine P such that A is
normal with respect to £ép. We say that A has a
tail if the intersection of A with the transverse disc
of a beam contains a proper arc [ such that the end
points of [ lie in the same circle of dA. The arc [
cuts off A a disc D;. We call D, a tail of A.

Lemma 4.3. If the handle decomposition Ep gener-
ated by a special spine P of a three-manifold M
contains a normal annulus A with a tail D, then
P 1s not minimal.

Proof. Denote by M, the three-manifold obtained
from M by cutting along D,. Evidently, Mp, is
homeomorphic with M. The tail decomposes the
balls of £p into balls, plates into plates, and beams
into beams except the beam By containing [. Co-
herently collapsing new balls, beams, and plates
onto two-dimensional subsets, we get an almost
special spine P’ of Mp,. Since each ball of ¢p
contains no more than one vertex of P’, we have
v(P") < v(P), where v(P) denotes the number of
vertices. Note that P’ has a free edge arising from
cutting and collapsing the beam By; see Figure 5.
After collapsing P’ through this free edge, we get
an almost special spine of Mp, with a smaller num-
ber of vertices. 0

Proof of Theorem 4.1. Let P be a special spine of a
three-manifold M with an essential annulus. Since
the annulus is incompressible and boundary incom-
pressible, one can replace it by an annulus A that
is normal with respect to the handle decomposi-
tion £p of M generated by P. If A has a tail, then
we apply Lemma 4.3 to find a simpler spine of M.
Assume that A has no tails. Since each elementary
disc of type (0,3) or (0,4) in A would determine at
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FIGURE 5. Result of cutting and collapsing of beam
(see proof of Lemma 4.3).

least one tail, only types (4,0), (3,0), (2,1), (1,2),
(0,2) for elementary discs in A are possible. More-
over, if E is an elementary disc of type (1,2) or
(0,2), then two arcs in OE' N M must lie in differ-
ent components of 0A.

Now cut M along A so that one component S of
0A is preserved. In other words, we remove from
M the subset S* x (0,1] x I, where A = §* x [0, 1]
and A x I is a thin regular neighborhood of A in
M. As above, coherently collapsing the new balls,
beams, and plates onto 2-dimensional subsets, we
get an almost special spine P' of M with v(P’) <
v(P). Moreover, if at least one elementary disc of
type (1,2) is present, then v(P") < v(P). This
is because each type (1,2) elementary disc in the
intersection of A with a ball of £p annihilates the
corresponding vertex of P; see Figure 6.

We conclude the proof with the following re-
mark: if there are no type (1, 2) elementary discs in
A, then all elementary discs in A have type (0, 2).
In this case the core circle of A can be shifted into
a two-component of P. Since all two-components
of P are two-cells, it implies that the core circle
is contractible, which contradicts the assumption
that A is incompressible. O

5. THE ALGORITHM

Let M be a compact three-manifold such that M
is either empty or consists of tori. Our goal is to
decompose M into geometric pieces: in particular,
to determine whether M is a graph-manifold.

Step 1. Construct a special spine P of M.
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FIGURE 6. If an elementary disc of type (1,2) is
present, the number of vertices decreases (see proof
of Theorem 4.1).

Step 2. Apply Moves 1-5 to P as long as possible.
In the case of Move 2 when N? x S* or B2 x S* is
cut off we store the information on how this piece
is attached to the remaining part of M. This can
be done by selecting meridian-longitude pairs on
boundary tori and controlling their behavior under
further moves.

Step 3. In general, we get a collection of special
spines. Then apply Move 6 to those of them that
are spines of closed manifolds.

Step 4. Iterate Steps 2-3 as long as possible.

We get a collection % of special spines of mani-
folds such that the boundary of every manifold is
nonempty and consists of tori.

Case 1: € is empty. This means that M is a graph-
manifold. We use the stored information to find
out the canonical presentation of M as a union
of Seifert manifolds with explicitly given parame-
ters and gluing matrices. The presentation distin-

guishes the manifold from all other manifolds and
can be considered as its name.

Case 2: ¥ is a nonempty set of special spines.
Then we get a decomposition of M onto Seifert
manifolds and unknown pieces that correspond to
spines. Other methods should then be used to in-
vestigate the unknown manifolds; this is the reason
why our algorithm is only a partial one. For exam-
ple, one may test the manifolds for hyperbolicity
by comparing with Jeff Weeks’ table.

Remark 5.1. Recall that if M is closed and its special
spine P contains at most 8 vertices, we always get
Case 1.

Remark 5.2. If Conjectures 3.4 and 3.5 are true,
then by Theorem 4.1 we get Case 1 if and only if
M is a graph-manifold.

ACKNOWLEDGMENTS

The paper is based on a talk at MSRI workshop on
computational and algorithmic methods in three-
dimensional topology (March 10-14, 1997). The
author wishes to thank MSRI for a friendly at-
mosphere and good conditions of work, and the
referees for corrections and suggestions that have
considerably improved a preliminary version of this

paper.

REFERENCES

[Haken 1961] W. Haken, “Theorie der Normalflichen:
Ein Isotopiekriterium fiir der Kreisknoten”, Acta
Math. 105 (1961), 245-375.

[Matveev 1990] S. V. Matveev, “Complexity theory of
three-dimensional manifolds”, Acta Appl. Math. 19:2
(1990), 101-130.

[Matveev and Fomenko 1988] S. V. Matveev and A. T.
Fomenko, “Isoenergetic surfaces of Hamiltonian sys-
tems, the enumeration of three-dimensional mani-
folds in order of growth of their complexity, and the
calculation of the volumes of closed hyperbolic man-
ifolds”, Uspekhi Mat. Nauk 43:1(259) (1988), 5-22,
247. In Russian; translation in Russian Math. Sur-
veys 43:1 (1988), 3-24.



Matveev: Computer Recognition of Three-Manifolds 161

[Scott 1983] P. Scott, “The geometries of 3-manifolds”, [Waldhausen 1967b] F. Waldhausen, “Eine Klasse
Bull. London Math. Soc. 15:5 (1983), 401-487. von 3-dimensionalen Mannigfaltigkeiten, II”, Invent.
[Waldhausen 1967a] F. Waldhausen, “Eine Klasse Math. 4 (1967), 87-117.
von 3-dimensionalen Mannigfaltigkeiten, I”, Invent. [Weeks 1985] J. R. Weeks, Hyperbolic structures on 3-
Math. 3 (1967), 308-333. manifolds, Ph.D. thesis, Princeton University, 1985.

Sergei V. Matveev, Chelyabinsk State University, Kashirin Brothers Street, 129, Chelyabinsk, 454136, Russia
(matveev@cgu.chel.su, matveev@csu.ac.ru)

Received March 31, 1997; accepted in revised form December 14, 1997



