Experimental Mathematics, 20(3):288-303, 2011
Copyright © Taylor & Francis Group, LLC

ISSN: 1058-6458 print / 1944-950X online
DOI: 10.1080/10586458.2011.565238

Taylor & Francis
Taylor & Francis Group

Resolving Toric Varieties with Nash Blowups

Atanas Atanasov, Christopher Lopez, Alexander Perry, Nicholas Proudfoot, and

Michael Thaddeus

CONTENTS

1. Introduction

2. Equivalence to a Combinatorial Problem

3. Resolution Trees

4. The 2-Dimensional Case

5. A Method for Enumerating Simplicial Cones
6. Results of Computer Investigations
Acknowledgments

References

2000 AMS Subject Classification: 14M25, 52B20

Keywords: toric varieties, Nash blowups, iteration, resolution of
singularities

288

Itis a long-standing question whether an arbitrary variety is desin-
gularized by finitely many normalized Nash blowups. We con-
sider this question in the case of a toric variety. We interpret the
normalized Nash blowup in polyhedral terms, show how contin-
ued fractions can be used to give an affirmative answer for a toric
surface, and report on a computer investigation in which over a
thousand 3- and 4-dimensional toric varieties were successfully
resolved.

1. INTRODUCTION

Let X be a variety over an algebraically closed field K.
Its Nash blowup is a variety over K with a projective mor-
phism to X, which is an isomorphism over the smooth
locus. Roughly speaking, it parametrizes all limits of tan-
gent planes to X (a precise definition is given in Section
2 below). The Nash blowup of a singular X is not al-
ways smooth but seems, in some sense, to be less singular
than X. Strictly speaking, this is false, for in character-
istic p > 0, as explained in [Nobile 75], the plane curve
P —y? =0 is its own Nash blowup for any ¢ > 0. In
this and other ways, the ordinary Nash blowup proves
intractable.

However, let the mnormalized Nash blowup be the
normalization of the Nash blowup. Then, of course, the
normalized Nash blowup of every curve is smooth. The
normalized Nash blowup of a surface can be singular, but
as shown in [Hironaka 83] and [Gonzalez-Sprinberg 87,
Spivakovsky 90], every surface becomes smooth after
finitely many normalized Nash blowups. Thus we are
drawn to ask the following question.

Question 1.1. Is every variety desingularized by finitely
many normalized Nash blowups?

According to [Spivakovsky 90], Nash asked Hironaka
this question in the early 1960s. An affirmative answer
would give a canonical procedure for desingularizing an



arbitrary variety. The answer to this question is not
known and is surely difficult. In this paper we address
a narrower question.

Question 1.2. Is every toric variety desingularized by
finitely many normalized Nash blowups?

We do not answer this question conclusively either.
But we do exhibit abundant evidence supporting an affir-
mative answer. Using the “toric dictionary,” which trans-
lates every problem in toric geometry into a problem on
convex polyhedra, we convert Question 1.2 into a prob-
lem amenable to computer calculation. Then we carry
out this calculation for thousands of examples. In every
case, finitely many Nash blowups produce a smooth toric
variety.

1.1. Summary of the Paper

In Section 2 we introduce the toric dictionary and, fol-
lowing [Gonzalez-Sprinberg 77b], translate the question
into convex geometry. In Section 3 we summarize the ef-
fect of the iterated Nash blowup in the toric case, using
the notion of a resolution tree. In Section 4 we spell out
what happens in the 2-dimensional toric case in terms of
continued fractions.

In Section 5 we digress briefly on the classification of
quasismooth affine toric varieties, those corresponding to
simplicial cones in the toric dictionary. Then in Section
6 we give an account of our computer investigations.

1.2. Notation and Conventions

We slightly abuse terminology in two ways. First, since
we are concerned with the normalized Nash blowup
throughout, we refer to it simply as the Nash blowup.
Second, since we are concerned with rational polyhedra
and rational polyhedral cones throughout, we refer to
them simply as polyhedra and cones. We denote the nat-
ural numbers, including 0, by Z. , and we likewise denote
the nonnegative rational numbers, including 0, by Q ;.
We denote the span of vy,...,v; with coefficients in S
by S{v1,...,v;). Thus, for example, the first quadrant in
Q? is denoted by Q ; (e1, ez).

2. EQUIVALENCE TO A COMBINATORIAL PROBLEM
2.1.  Nash Blowups

Let X C P" be a quasiprojective variety of dimension d
over an algebraically closed field K. The Gauss map is
the rational map X --» Gr(d + 1,n + 1) taking a smooth
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point to its tangent plane. The Nash blowup of X is de-
fined to be the closure of the graph of the Gauss map.
The normalized Nash blowup of X is the normalization
of the Nash blowup of X. Gonzalez-Sprinberg’s and Spi-
vakovsky’s results are concerned with this variant, as are
ours. Consequently, we shall abuse terminology by re-
ferring to a normalized Nash blowup simply as a Nash
blowup.

Remark 2.1. As defined, the Nash blowup appears to de-
pend on the projective embedding of X, but it can be
reformulated in terms of Ké&hler differentials and hence
depends only on X (and makes sense even if X is not
quasiprojective) [Gonzalez-Sprinberg 87].

Remark 2.2. Since the normalization of a variety over K
is a finite morphism [Hartshorne 77, I 3.9A] and the pull-
back of an ample bundle by a finite morphism is ample
[Lazarsfeld 04, 1.7.7], the normalization is a projective
morphism. Hence the natural morphism from the (nor-
malized) Nash blowup of X to X is projective.

Remark 2.3. Clearly the Nash blowup of a smooth variety
is itself, and the Nash blowup of a product is a product.

Remark 2.4. If X C A? is an affine variety, we may
consider the analogous construction using the Gauss
map X --» Gr(d,n), but this produces exactly the same
thing, since the morphism X x Gr(d,n) — X x Gr(d +
1,n+1) given by (z,V) — (2, K((1 x z)) & (0 x V)) is
a closed embedding.

2.2. Toric Varieties

We review here some standard definitions and facts
about toric varieties. For proofs, we refer the
reader to [Ewald 96, Fulton 93, Miller and Sturmfels 05,
Thaddeus 94].

A polyhedron in Q% is a subset P defined by finitely
many weak affine inequalities, say 27:1 a;jx; > b;. It is
a polyhedral cone if the inequalities are linear, that is, all
b; are zero. For simplicity we refer to polyhedral cones
simply as cones. We also assume that all polyhedra are
rational, meaning that all a;; and all b; are rational. A
polyhedron is proper if it contains no affine linear sub-
space besides a point and is contained in no affine linear
subspace besides Q7.

A face F of P is the locus on which equality holds in
some fixed subset of the inequalities above. It is a facet
if its affine linear span has codimension 1 in that of P.
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It is a vertez if it is a point. A proper cone in Q? is
simplicial if it has exactly d facets. For any face F' C P,
the localization Pr is the cone generated, as a semigroup,
by the Minkowski difference P — F'.

For t # 0, let tP = {tv | v € P}; however, for t = 0, by
convention let 0P denote the cone at infinity defined by
the same inequalities as P, except with constant terms
set to zero. The reason for this convention is that {(¢,v) €
Q; x Q%] v €tP}is then a cone in Q4! defined by the
inequalities Z?:I a;;x; > bixzg and g > 0. It is called the
cone over P and denoted by C(P).

A torus is a product of finitely many copies of the
multiplicative group of K. A toric wvariety is a nor-
mal variety on which a torus acts with finitely many
orbits. There is a one-to-one correspondence between
polyhedra with integer vertices and toric varieties that
are projective over an affine variety, equipped with a
lifting of the torus action to O(1). It is given as fol-
lows. For a polyhedron P C Q?, the semigroup algebra
K[C(P) Nz is graded by the zeroth coordinate. Let
X (P) = Proj K[C(P) N Z%1]. This is a quasiprojective
variety acted on by the torus T = Spec K[Z?]. For ex-
ample, if P is already a cone, then C'(P) = Q ;+ x P and
X(P) = Proj K[P N Z%[xy] = Spec K[P N Z%], the affine
toric variety usually associated to a cone. In general,
X (P) is projective over the affine variety X (0P), because
C(P)N (0 x Q%) =0P.

Remark 2.5. A polyhedron P is proper if and only if (a)
the torus action on X (P) is effective, and (b) X (P) is
not a direct product of a toric variety with a torus. So
in light of Remark 2.3, there is no loss of generality, for
the purposes of Nash blowing up, in assuming that P is
proper.

Remark 2.6. Any toric variety has a natural cover by open
affine toric subvarieties. Indeed, X (P) is covered by the
affine varieties X (Pr ), where F' runs over the faces of P.
If P is proper, just the vertices are sufficient.

Remark 2.7. Define two cones to be equivalent if an el-
ement of GL(d,Z) takes one to the other. Then equiva-
lent cones clearly lead to isomorphic toric varieties, with
the torus action adjusted by the appropriate automor-
phism of T'.

Remark 2.8. An affine toric variety X (C), with C proper,
is smooth if and only if it is isomorphic to A ¢, or equiv-
alently, if C' is equivalent to the orthant Q 4 (e1,...,eq).

2.3. Nash Blowups of Toric Varieties

Now let C be a cone in Q7. Let H be the Hilbert basis of
the semigroup C' N Z4, that is, the set of indecomposable
nonzero elements in the semigroup. This is the unique
minimal set of generators of C N Z?. By Gordan’s lemma
[Fulton 93, Section 1.2, Proposition 1], H is a finite set,
say with n elements. Let M be the n x d integer matrix
whose rows are the elements of H.

Let S={h; + -+ + hq | h; € H linearly independent}.
Since S is finite, its convex hull is a compact polyhedron
Hull S. Hence the Minkowski sum C' + Hull S is a poly-
hedron whose cone at infinity is C.

The following result is proved (in the language of fans)
in [Gonzalez-Sprinberg 77b].

Theorem 2.9. The Nash blowup of X(C) is X(C+
Hull S).

Proof. Without loss of generality C' may be assumed
proper. In this case X(C') has a unique T-fixed point q.

Let X = X(C). The Nash blowup of X is plainly a
toric variety, projective over X. It is therefore X (P) for
some polyhedron P with OP = C.

Such a polyhedron is uniquely determined by its cone
at infinity C' and its vertices v;. Indeed, the cone over P
is C(P) =Q (0 x C,1xv;),and P =C(P)N(1xQ%).
So it suffices to show that, at the fixed points of the
torus action on the Nash blowup, the weights of the torus
action on O(1) are exactly the coordinates of the vertices
of C'+ HullS.

Our choice of an embedding X C A" will be the fol-
lowing canonical one. The surjection Z'} — C'N 7% send-
ing the standard basis vectors to the rows of M induces
a surjection of algebras K[Z"] — K[C' N Z]. The corre-
sponding morphism Spec K[C' N Z%] — Spec K[Z" ] is the
desired embedding.

Let p be the base point of X: the point such
that f(p) =1 for every monomial f € K[C' NZ%. The
homomorphisms of algebras

K[7"] - K[CNnZ% — K[72'] - K,

where the last map sends every monomial to 1, corre-
spond to the inclusions of schemes

A" DX DT D {p}.

By Remark 2.4, we may consider the affine version of
the Gauss map for this embedding. This is a rational map
G : X --» Gr(d,n). We claim that G(p) is the span of the
columns of M. Indeed, in terms of variables zy,...,z,



and yi,...,ys, the homomorphism K[Z"] — K|[Z%] is
given by z; — Hj y;n'f. The parametric curve y; =1+
to;; in T therefore maps to ; = (1 4+1¢)™ in A", so its
derivative with respect to ¢t at 0 is (my;,...,my;), the
jth column of M.

The coordinates of the Pliicker embedding Gr(d,n) —
PA?K"™ are indexed by d-element subsets I C {1,...,n}.
This embedding is T-equivariant for the induced linear
action of T on PAYK™. The Ith Pliicker coordinate of
G(p) is the Ith minor of M. Hence G(p) is contained in
the linear subspace of PAYK" spanned by those coordi-
nates I for which the Ith minor of M is nonzero.

Since the T-action on PAYK" is diagonal, the en-
tire closure of the orbit of G(p) must be contained in
this subspace. Hence any fixed point in the closure of
this orbit must be the Ith coordinate axis ey for some
I as above. If I ={i1,...,i4}, then the nonvanishing
of the Ith minor is equivalent to the linear indepen-
dence of h;,,...,h;, € H, and the fiber of O(1) at this
point is acted on with weight h;, + --- 4+ h;,. That is, the
weights at fixed points in this subspace are exactly the
elements of S.

The closure of the graph of the Gauss map is clearly
contained in X x Tp, so its T-fixed points must be of
the form ¢ x ey, where ¢ is the unique fixed point in X,
and ey is as above. The weights of O(1) at these points
must therefore belong to S. The same is true for the
normalization, since O(1) pulls back to an ample bundle
there.

Consequently, P is a polyhedron with OP = C and
with vertices contained in S. Therefore P C C'+ Hull S.

To establish equality, it suffices to show that every ver-
tex in C' + Hull S is the weight of some fixed point in the
Nash blowup. For every vertex v; of C' + Hull S, there is a
linear functional f on Q¢ whose restriction to C' + Hull S
takes on its minimum only at v;. Hence its restriction to
Hull S takes on its minimum only at vy, and its restriction
to C takes on its minimum only at 0. The correspond-
ing 1-parameter subgroup A(t) : K* — T therefore satis-
fies limy o A(t) - G(p) = er and limy_g A(t) - p = q. Hence
gxer €T (pxG(p)), the closure of the graph of the
Gauss map. A point in the normalization lying over
q % ey is acted on with the same weight. This completes
the proof. O

3. RESOLUTION TREES

We wish to consider whether a toric variety is desingu-
larized by a finite sequence of Nash blowups. The Nash
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blowup is a local construction: that is, the Nash blowups
of an open cover furnish an open cover of the Nash
blowup. Hence it suffices to consider an affine toric vari-
ety X (C). The Nash blowup of X(C) is X(C + Hull S);
by Remark 2.6, an open cover of this consists of the affine
varieties X ((C' + Hull S),, ), where v runs over the vertices
of C'+ Hull S. By Remark 2.8, X (C + Hull S) is smooth
if and only if each localization (C' + Hull §),, is equivalent
to the orthant under the action of GL(d, Z). If not, the
Nash blowup can be repeated by applying the theorem
to each cone (C + Hull S),.

In other words, the process of iterating Nash blowups
of X(C) corresponds, via the toric dictionary, to the fol-
lowing algorithm in convex geometry:

(1) Given the cone C, find the Hilbert basis H of C' N Z¢.
(2) Find
S =A{h1+---+hq | h; € H linearly independent}.

(3) Find the convex hull Hull S (i.e., list its vertices, or
list the inequalities defining it).

(4) Find the Minkowski sum C + Hull S (i.e., list its ver-
tices and cone at infinity, or list the inequalities defin-
ing it).

(5) Find the localization C’ = (C + HullS), of this
Minkowski sum at each vertex v.

(6) Determine whether each such C' is equivalent to the
orthant. If so, stop; if not, apply the entire algo-
rithm to C'.

Because each cone may give rise to several more in
step (5), the algorithm branches. This can be expressed
in terms of a graph as follows. Define the Nash blowup
of a cone C to be the finite set of cones of the form
(C 4+ Hull S),, where S is as in (2), and v runs over the
vertices of C'+ Hull S. Then define the resolution tree
of C or X(C) to be the unique rooted tree, with nodes
labeled by cones in Q¢, whose root is labeled by C, and
where for every node, say labeled by C":

(a) if C' is equivalent to the orthant, there are no edges
beginning at C’ (that is, C’ is a leaf);

(b) otherwise, the edges beginning at C’ connect it to
nodes labeled by the cones (C" 4+ Hull "), appearing
in its Nash blowup.

It is then clear that X (C) is desingularized by a fi-
nite number of Nash blowups if and only if its resolution
tree is finite. It is equally clear that the latter property is
amenable to computer investigation, using the algorithm
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above. We will report on this presently, but first, we ex-
plain how, in the 2-dimensional case, the situation can
be completely understood.

4. THE 2-DIMENSIONAL CASE

Gonzalez-Sprinberg showed [Gonzalez-Sprinberg 77a,
Gonzalez-Sprinberg 77b] that toric surfaces are desin-
gularized by a finite sequence of (normalized) Nash
blowups. This was later extended to arbitrary sur-
[Hironaka 83] and [Gonzalez-Sprinberg 87,

Spivakovsky 90]. In this section, we give an alternative

faces in

proof of Gonzalez-Sprinberg’s original result, emphasiz-
ing the role of Hirzebruch—Jung continued fractions. We
begin by defining them and recalling their basic proper-
ties.

For integers ai, ao, ..., let

[ala"'aai}:alf

a9 —

We assume implicitly throughout that no denominator is
zero; this is the case, for example, when a; > 1 for i > 1.

Set p-1 =0 and ¢y = 0; set pp =1 and ¢; = 1. Then
recursively let

Pi = @ipi—1 —Pi-2, ¢ = @iqi-1 — ¢i—2

for greater values of i.

Proposition 4.1. For p;,q; as above, [ay,...,a;] = p;/q;.
Proof. Using induction on ¢, we will prove the more gen-
eral statement in which the a; are merely rational. The
case ¢ = 1 is trivial. For ¢ > 1, assume that the statement
holds for continued fractions of length 7 — 1, and consider
[ai,...,a;—2,a,-1 — 1/a;]. Let Pj,Q; be the numbers de-
fined as above for this continued fraction. Then P; = p;
and Q; = ¢q; for j <i—1, and

Py
Qi1

[al,...,ai} = [al,...,ai,g,ai,l — 1/a1;] =

ai—16; —1)qi—2 — aiqi3
_ @iPi-1 —Pi-2 _ Pi

a;iqi—1 — qi—2 qi ’

Proposition 4.2. For i > 0, p;_1q; — piqi—1 = 1.

Proof. Again use induction on i. The case ¢ = 1 is trivial.
For ¢ > 1, by the induction hypothesis,

Pi-14i — Pigi—1
= pi—l(aiQi,—l - qz‘—2) - (ai,pi—l _pi—Q)Qi,—l
= —pi-1¢i—2 +Pi—2q;—1 = 1.

Corollary 4.3. The fraction p;/q; is in lowest terms.

Proposition 4.4. For i< j, the denominator of
[@it1,-..,a;] as a fraction in lowest terms is p;q; — D;jq; .

Proof. The case i =j — 1 is covered by the previous
proposition. Now proceed by descending induction on
i. Let [aj41,...,a;] = N;/D; in lowest terms, so that
Dj;_y =1 in particular. Take N; =1, D; = 0 by conven-
tion. Then for all i < j we have

1
[a1’,+17"'5a]’]:a’i+1 - [CL‘+2 (1']
7 PR B ]
. Diy1 aiyiNig1 — Dy
— Wi+1 — - 9
Ni1 Niy1

which is also in lowest terms. Hence D; = N;. 1, and the
D; satisfy the descending recurrence D; = a;,0D;11 —
D, 9 with initial conditions Dy = 0, D; = 1. The same
holds for

Piqj — Pjqi = (@iy2piv1 — Pi+2)q — Pj@itagiv1 — Giv2)
= air2(Pi+19j — PjGi+1) — (Piv2q — PjGi+2),
which completes the proof. O
Proposition 4.5. For any rational z, there exists a unique
finite sequence of integers ay, . ..,ar witha; > 1 fori > 1

such that © = [ay, ..., a;].

Proof. For any such sequence and for any i > 1, we

have [a;, ..., ar] > 1 by descending induction on 4. If z =
[a1,...,a;], then ©=a; —1/[ag,...,a;], so a1 = [z]
is uniquely determined. Then 1/(ay — z) = [ag, ..., ax],

and hence as is uniquely determined too. By induction,
all the a; are uniquely determined.

As for existence, this can be established by iterating
three operations: round up, subtract, and invert. That is,
givenzy = xz,let a; = [z1],let by = a1 — 21, and let 2o =
1/b;. Recursively, given z;, let a; = [z;], let b; = a; — x;,
and let x; 11 = 1/b;. If z; = n;/d; is in lowest terms, then
;41 = d;/(a;d; —n;) is also in lowest terms, so n; 41 =



d;. Since z; > 1 for i > 1, the sequence of d; must be
nonnegative and strictly decreasing, so eventually some
d; will be equal to 1 (whereupon z;,1 is undefined and
the sequence ends). It is then easy to verify that = =
[a1,...,a]. O

Corollary 4.6. If a; > 1 for i > 1, then for 1 < i < j, the
denominator of [a;,...,q;] is strictly less than that of

[al,...,aj].

Proof. The sequence of denominators is the strictly de-
creasing sequence d; appearing in the proof of the previ-
ous proposition. O

Proposition 4.7. If a; > 1 for i > 1, then for all i < j,
the demominator of a1, ...,a;] is strictly less than that

of lai,...,qj].

Proof. The denominators are exactly the ¢;, so this is
equivalent to showing that the ¢; are strictly increasing,
which is proved by induction on i: if ¢;_1 — ¢;_o > 0, then

Gi — Gi—1 = QiQi—1 — Gi—2 — i1
= (a; —1)gi—1 + qi-1 — gi—2 > 0.

O

Corollary 4.8. If a; > 1 fori > 1, then foralll < i< j <
k, the denominator of [a;, . .., a;] is strictly less than that
Of [al,...,ak].

Proof. Combine the last two results. O

Now let C be a proper cone in Q2. It can be placed in
a standard form as follows.

Proposition 4.9. There exists an element of SL(2,Z) tak-
ing C to Q4+ ((1,0),(p,q)) with 0 <p<q and p,q co-
prime: that is, a cone in the first quadrant subtending
an angle between 45° and 90°.

Proof. Any proper cone in Q% has two facets or edges.
Let (a,b) € Z®> be the smallest nonzero integer point
along the clockwise edge. Then a is coprime to b, say
ac+bd=1, and (_§?) €SL(2,Z) takes C to a cone
whose clockwise edge is along the positive z-axis and
hence is contained in the first and second quadrants. Let
(e, f) be the smallest nonzero integer point along the
counterclockwise edge. Since f > 0, there exists an in-

teger g such that 0 < e+ gf < f. Then ((1) ‘{) € SL(2,2)
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takes this cone to Q 4 {((1,0), (e + gf, f)), which satisfies
the desired properties. O

In light of the last proposition, we may assume C =
Q +{(1,0), (p,q)) for coprime p,q with 0 < p < g¢q. As in
Section 2, the intersection C'NZ?2 is an additive semi-
group with a finite Hilbert basis H. In this simple case,
the Hilbert basis may be explicitly described.
Proposition 4.10. If p/q=[ai,... then H =
{vo,..., v}, where v; = (pi,q;) € Z2.

sai],

Proof. Since p;_1q; — p;gi—1 = 1, the slopes of the rays
through the v; are strictly increasing, and the lattice
points in Q 4 (v;_1, v;) are all integral linear combinations
of v;_1 and v;. This fan of subcones covers the entire cone,
so any nonzero indecomposable element must be one of
the Vj.

Conversely, since the g; are strictly increasing, if any v;
can be nontrivially expressed as an integral combination
of indecomposable elements, those elements must belong
to {vo,...,v;_1}. But this is absurd, since those elements
subtend a smaller cone that does not contain v;. O

Now, as in Sections 2 and 3, let S = {v; +v; |0 <i <
Jj <k}

Proposition 4.11. If S' = {v; + v;41|0<i <k}, then
C+HullS’ = C + Hull S.

Proof. One inclusion is trivial. For the other, it suffices to
show that v; +v; €e C+HullS" for 0 <i+1<j<k.In
fact, we will show that v; + v; is in the even smaller set
C + Hull{v; + vi4+1,v;_1 + v, }. This is bounded by three
lines, so it suffices to show that v; + v; is on the correct
side of each.

First, consider the line joining v; + v;+1 and v;_; + v;.
To simplify the notation, let ((x,y), (¢/,y')) = zy’ — 2'y,
which is positive if and only if (2, y') is counterclockwise
from (z,y).

By Proposition 4.4, (v;,v;) >0 for ¢<j, and
hence (v; + viy1,v;-1 +v;) > 0 too. For any two points
uy,up € Q7 the affine linear functional f(u) = (up,u) +
(u,ug) — (u1,u2) vanishes on the line joining wu; and
up. Let up =v; +vi41 and ug =vj_1 +v;; then f(0) =
—(v; + Vi11,vj-1 +vj) <0. A brief calculation shows
that

flui+v;) = <Uz‘,®j> — (vi, vig1) — <%’+1,Uj71> - <Uj71»Uj>~
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By Proposition 4.2, (v;,vi41) = (vj_1,v;) =1, and by
Proposition 4.4 and Corollary 4.8,

(vi,vj) > (vit1,v5) > (Vig1,0j-1,)
SO
<’L)7;,’l}]‘> Z <Ui+1,’Uj_1> + 2 and f(’UZ + Uj) Z 0

Therefore v; + v; is on the correct side of the line.

Next, consider the line through v; + v;.1 with slope
vg. For v; +v; to be on the correct side of the line,
we need (v; +v;) — (v; + vig1) = v; — vi41 to be coun-
terclockwise from vy, that is, (vo,v;) > (vo,vi41). Since
j >4+ 1, this follows from Propositions 4.4 and 4.7.

The case of the third line is similar. O

So if ¢ and j are not consecutive, then wv; +v; is
inessential to the shape of C'+ Hull S. However, if they
are consecutive, then the opposite is true, in the following
sense.

Proposition 4.12. The boundary of C +HullS consists
of the line segments joining v;_1 +v; and v; +v;11 for
0 < i < k, together with two rays starting at vy +v1 and
vi—1 + v and pointing in the directions vy and vy, re-
spectively.

Proof. Since vy = (1,0), it suffices to show that the slopes
of these line segments are positive (or possibly +00) and
weakly decreasing, and finally, that the slope of v, is no
greater than the slope of the last line segment.

The line segments in question have direction v;;; —
v;_1, o it must be shown that

di+1 — gi—1 > di+2 — 4i
Di+1 —Di-1 ~ Di+2 — Pi
Cross-multiplying and using Proposition 4.2 shows this
to be equivalent to p;_1q;+2 — Pi+2gi—1 > 1, which follows
from Proposition 4.4. For the last part of the claim, it
must be shown that
qr — qk—2 > IE,
Pr — Dk-2 qk
which follows from Proposition 4.4, again after cross-
multiplying. O

We have shown that the vertices of C + Hull S are all
of the form v; + v;;1 (although not all v; + v;;1 need be
vertices: see Figure 1). By Proposition 4.9, the localiza-
tion of C' at any such vertex can be taken by an element
of SL(2,Z) to a cone of the form Q 1 ((1,0), (p',q')) for
p,q coprime and 0 < p' < ¢'.

C —>//<— C + Hull §
|

a

o
©

x\
©

FIGURE 1. The case p/q =4/7: C = Q {(1,0),(4,7)),
H ={x}, S={e,0}, 5" ={o}.

Proposition 4.13. Unless p = q — 1, every localized cone
satisfies ¢ < q.

Proof. There are two cases: the internal case where 0 <
i < k — 1 and the ezternal case where it =0or¢=Fk — 1.

In the internal case, the two edges of the local-
ized cone are along (v;—1 +v;) — (v; +vi41) = Vi1 —
viy1 and (vi11 +vi12) — (v; + vi41) = vi12 — v;. Hence
q = (Vi1 = Vip1,Viga — ;) = (Vi—1,vi12) — 3 by Propo-
sition 4.2. By Proposition 4.4, (v;_1,v;2) is the denomi-
nator of [a;, a;11, a;;2], which by Corollary 4.8 is strictly
less than q.

In the external case, consider first ¢ = 0. The two edges
of the localized cone are along vy and (v; + ve) — (vo +
v1) = vy — g, S0 ¢ = (vg, vy —vy) = (vp,ve), which is
the denominator of [ay,as]. Again by Corollary 4.8, this
is strictly less than ¢ unless p/q = [a1,as], so that k = 2.
If so, the condition 0 < p < ¢ implies a; =1, so p/q =
(ag —1)/ag and p=¢q — 1.

Likewise, when i =k — 1, the two edges of the lo-
calized cone are along vy o —wv; and v, so ¢ =
(Ug—9 — Vg, V) = (Vg—2,v)), which is the denominator of
[ag—1,ar]. Again, this is strictly less than ¢ unless p/q =
[ag—1,ak], so that k = 2. Hence p = ¢ — 1 again. O



We are now in a position to prove Gonzalez-
Sprinberg’s result [Gonzalez-Sprinberg 77a, Gonzalez-
Sprinberg 77b].

Theorem 4.14. Any toric surface is desingularized by a
finite number of Nash blowups.

Proof. The question is local, so it suffices to con-
sider an affine toric surface corresponding to a cone
Q +((1,0), (p,q)), with 0 < p < g and p, ¢ coprime. This
surface is smooth if and only if ¢ = 1, for only then will
the Hilbert basis consist of exactly two elements. The pre-
vious proposition shows that ¢ is strictly decreasing under
Nash blowups except at external vertices for p = ¢ — 1.
In this case, a direct calculation shows that both external
vertices have p'/¢ = (¢ — 2)/q, so the denominator will
strictly decrease at the next step. O

5. A METHOD FOR ENUMERATING SIMPLICIAL
CONES

In dimension greater than 2, we have no general results
on the resolution of toric varieties by Nash blowups. How-
ever, using a computer, we have carried out an extensive
investigation of 3- and 4-dimensional examples. Our pri-
mary focus is on simplicial cones, which correspond in
the toric dictionary to affine toric orbifolds. But, as we
will see, more general cones appear in the Nash blowups
of simplicial cones and must be treated as part of the
recursions.

We shall begin, then, by explaining how the simplicial
cones of a given dimension d, or rather their equivalence
classes under the action of GL(d,Z), can be systemati-
cally enumerated.

Any proper cone C C Q¢ is defined by finitely
many linear inequalities with integer coefficients, say
Z?:l a;jxz; >0 for 1 <i <m. Without loss of general-
ity, assume that (i) no inequality is redundant in that it
follows from the others; and (ii) for each fixed 4, the a;;
are coprime. The m x d integer matrix A = (a;;) is then
called a presentation of C. It is unique modulo the left
action of the group S, of permutation matrices. To clas-
sify cones modulo GL(d, Z), then, is equivalent to clas-
sifying integer matrices A satisfying (i) and (ii) modulo
Sm % GL(d,Z) acting on the left and right. This is ac-
complished in practice using the following invariant.

For a cone C with presentation A, let A C Z? be the
subgroup generated by the rows of A. Define the index
I(C) € Z to be the index of A as a subgroup of Z¢. (This
is the order of the orbifold group at the fixed point of the
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torus action.) Also, if C* = {u € Q" |Vv € C,u-v > 0}
is the dual cone, define the dual index I*(C) to be I(C*).
Clearly I(C') and I*(C) are invariant under the GL(d, Z)-
action.

It is, of course, nettlesome to decide whether a given
matrix satisfies the nonredundancy condition (i). But in
the simplicial case it is easy: a presentation A of a simpli-
cial cone is exactly a nonsingular square integer matrix
satisfying (ii). As such, A can be taken by the right action
of GL(d, Z) into Hermite normal form [Schrijver 86, 4.1].
This means that there exists B € GL(d, Z) such that AB
is lower triangular, with nonnegative entries, and each
row has a unique greatest entry located on the diagonal.
Furthermore, since the entries in any given row of A are
coprime, the same is true of AB. These facts may be
summarized as follows.

Proposition 5.1. Fvery simplicial cone C' is equivalent to
one with a presentation A in Hermite normal form, each
of whose rows has coprime entries.

Corollary 5.2. There are finitely many equivalence classes
of simplicial cones of dimension d and index I.

Proof. In the simplicial case, I(C) = |det A, so if A is in
Hermite normal form, its diagonal entries multiply to I.
Hence there are only finitely many choices for the diag-

onal entries of A, and so for the subdiagonal entries as
well. O

For a fixed value of I, it is now practical to enumerate
the equivalence classes of cones C' using Proposition 5.1.
Indeed, two matrices A and A’ are equivalent if and only
it SAT = A’ for some S € Sy and T € GL(d, Z). Detect-
ing this is a tractable problem for small d, since one can
consider A7LSA’ for all S € S; and see whether any of
them is an integer matrix.

In this manner, the numbers Ty(I) of equivalence
classes of d-dimensional cones of index I were determined
with a computer for small values of I. These numbers are
presented in Table 1 for d = 3 and in Table 2 for d = 4.
A list of explicit representatives for each of these equiv-
alence classes, for the first few values of I, is given in
Table 3 for d = 3 and in Table 4 for d = 4. Many cones
are reducible to a direct sum of cones of lower dimension;
in such cases, the direct sum in question is shown in the
right-hand column of Tables 3 and 4. By Remark 2.3,
the Nash blowup of a direct sum of cones is the direct
sum of their Nash blowups, so only irreducible cones are
interesting for our purposes.
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I T I Ty I Ty I Ty I Ty() I Ty I Ty(I)
11 31 182 61 662 91 1679 121 2705 151 3902 181 5582
2 2 32 227 62 693 92 1643 122 2583 152 4591 182 6595
3 4 33 241 63 898 93 1715 123 2951 153 4872 183 6425
4 7 34 221 64 838 94 1551 124 2919 154 4777 184 6633
5 8 35 277 65 883 95 1825 125 3072 155 4717 185 6667
6 11 36 311 66 915 96 2051 126 3484 156 5298 186 6729
7 14 37 254 67 794 97 1634 127 2774 157 4214 187 6695
8 21 38 273 68 925 98 1846 128 3211 158 4293 188 6555
9 23 39 329 69 965 99 2110 129 3239 159 4875 189 7872
10 25 40 381 70 1057 100 2135 130 3445 160 5555 190 7177
11 28 41 308 71 888 101 1768 131 2948 161 5047 191 6208
12 43 42 393 721206 102 2099 132 3852 162 5283 192 7942
13 38 43 338 73 938 103 1838 133 3485 163 4538 193 6338
14 45 44 411 74 975 104 2227 134 3105 164 5021 194 6435
15 59 45 476 75 1254 105 2617 135 4114 165 6211 195 8569
16 66 46 391 76 1143 106 1961 136 3709 166 4731 196 7799
17 60 A7 400 77 1219 107 1980 137 3220 167 4760 197 6600
18 76 48 546 78 1257 108 2561 138 3763 168 6589 198 8292
19 74 49 477 79 1094 109 2054 139 3314 169 5187 199 6734
20 101 50 508 80 1434 110 2499 140 4454 170 5783 200 8624
21 107 51 543 81 1350 111 2417 141 3853 171 6046 201 7727
22 99 52 561 82 1189 112 2702 142 3479 172 5511 202 6969
23 104 53 504 83 1204 113 2204 143 3985 173 5104 203 7933
24 153 54 610 84 1644 114 2601 144 4668 174 5907 204 8866
25 135 55 643 85 1473 115 2639 145 4141 175 6566 205 8153
26 135 56 703 86 1305 116 2565 146 3675 176 6370 206 7245
27 163 57 671 87 1507 117 2908 147 4584 177 6017 207 8762
28 183 58 609 88 1625 118 2419 148 4113 178 5429 208 8774
29 160 59 620 89 1380 119 2809 149 3800 179 5460 209 8311
30 211 60 878 90 1828 120 3483 150 4894 180 7712 210 10273

TABLE 1. Number of GL(3, Z)-equivalence classes of simplicial cones in three dimensions.

6. RESULTS OF COMPUTER INVESTIGATIONS

We are now in a position to describe the empirical data
obtained with a computer. Our program, resolve, was
written in the language C++ and relies heavily on the
Boost open-source software libraries for C4++, especially
the linear algebra library uBLAS of Joerg Walter and
Mathias Koch.!

One function of the program is to enumerate the sim-
plicial cones of a given dimension and index, as described
in the previous section. However, the primary function
of resolve is to implement the algorithm of Section 3
for carrying out the Nash blowup and to perform it it-

'Boost C++ software library available at http://www.boost.org/
doc/libs. Our source code, as well as extensive tables of output,
are available at http://www.math.columbia.edu/~thaddeus/nash.
html.

eratively. The C++ program often invokes the external
programs 4ti2,%> 1rs,® and ghull, which perform iso-
lated parts of the computation. Specifically, 4ti2 is used
in Step 1 to find the Hilbert basis of C'NZ", while 1rs
is used in Steps 3 and 4 to determine the vertices of
the polyhedron C' + Hull S, and the localization at each
vertex; ghull is also used in Step 3 to simplify the de-
termination of the convex hull. Because of the intensive
nature of the latter computation, Step 3 requires by far
the most computing time.

We used resolve to find Nash resolutions (that is,
finite resolution trees of Nash blowups) for all 1602 3-
dimensional simplicial cones with I <27 and all 201

2 Available at http://www.4ti2.de.
3Software available at http://jeff.cs.mcgill.ca/~avis/C /Irs.html.
4Software available at http://www.qhull.org/.
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I Ty(I) I Ty) I Ty(I) I T, I Ty(I)
1 1 11 101 21 788 31 1550 41 3399
2 3 12 262 22 851 32 3083 42 7441
3 7 13 154 23 682 33 2622 43 3891
4 16 14 264 24 1778 34 2799 44 T172
5 18 15 337 25 1037 35 2969 45 7652
6 37 16 476 26 1338 36 5403 46 6552
7 36 17 305 27 1530 37 2544 47 5012
8 83 18 657 28 2123 38 3821 48 12605
9 85 19 409 29 1288 39 4155 49 6512
10 116 20 894 30 3006 40 6591 50 10047
TABLE 2. Number of GL(4, Z)-equivalence classes of simplicial cones in four dimensions.
Name [ I* Presentation Reducibility Name [ I* Presentation Reducibility
Cia 1 1 (e1, e, e3) AGAP A Cs 4 5 25 (er, e, (1,1,5))
Cy 4 2 2 (e1, ea, (0,1,2)) By1® A Cs 5 5 25 (e, e, (1,2,5))
Cs 2 4 (e1, e, (1,1,2)) Cs.6 5 25 (e1, e, (2,2,5)
Cs 4 3 3 (e1, e, (0,1,3)) B;1® A Cs7 5 25 (e, e, (2,4,5)
Cs 9 3 3 (e1, e, (0,2,3)) B3 d A Css 5 25 (e1, e, (4,4,5))
Cs3 3 9 (e1, e, (1,1,3)) Co 1 6 6 (e1, ez, (0,1,6)) Bg1® A
Cs 4 3 9 (e1, e, (2,2,3)) Cs 2 6 6 (e1, es, (0,5,6)) DBsor®A
Cya 4 4 (e1, e, (0,1,4)) By1® A Cs.3 6 36 (e1, es, (1,1,6))
C4A2 4 4 (617 €9, (0,3,4)) B42 @A C()4 6 18 (61, €2, (1,2,6))
Cy 3 4 16 (e1, e, (1,1,4)) Cs.5 6 12 (e1, e, (1,3,6))
Cya 4 8 (e1, e, (1,2,4)) Ce.6 6 6 (e1, e, (2,3,6))
Cys 4 8 (e1, e, (2,3,4)) Cs,7 6 18 (er, e, (2,5,6))
Cys 4 16 (er, e, (3,3,4)) Cs s 6 6 (e1, e, (3,4,6))
Cyr 4 2 (er, (1,2,0), (1,0,2)) Cs.9 6 12 (e1, e, (3,5,6))
Cs 1 5 5 (e1, e, (0,1,5)) Bs1 @ A Cs10 6 18 (e, es, (4,5,6))
Cs.0 5 5 (e1, e, (0,2,5)) B;.® A Cs11 6 36 (e1, ea, (5,56))
Cs.3 5 5 (e1, e, (0,4,5)) Bs3® A

TABLE 3. Classification of simplicial cones in three dimensions.

4-dimensional simplicial cones with I < 8, following the
classification. A few higher-dimensional cones were also
resolved, but these required considerably more time. To
improve efficiency, resolve ceases searching deeper in a
resolution tree whenever it reaches a simplicial cone with
I strictly less than the initial value, since this has been
resolved already. However, many nonsimplicial cones are
encountered in the process of resolving simplicial cones,
as are simplicial cones with equal or greater values of I.

Table 5 presents the Nash resolutions of all irreducible
3-dimensional simplicial cones of index I < 4. Likewise,
Table 6 presents the Nash resolutions of all irreducible
4-dimensional simplicial cones of index I < 4. In both
tables, each line displays the rows of a presentation of a

single cone. The index I and dual index I* are shown in
brackets at the right. The first line in each block of text
represents the original cone being resolved. The singly
indented lines below it show the cones appearing in the
Nash blowup of that cone. Subsequent to each of those,
the doubly indented lines show the cones appearing in
the Nash blowups of those cones.

Figure 2 depicts the resolution trees of all 3-
dimensional irreducible simplicial cones of index I < 6.
Likewise, Figure 3 depicts the resolution trees of all but
one of the 4-dimensional irreducible simplicial cones of
index I <5. (One cone of index 5, namely Ds 14, has
an enormous resolution tree and has been omitted.) To
avoid redundancy, each tree has been pruned of subtrees
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FIGURE 2. Resolution trees of irreducible simplicial cones in three dimensions.
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FIGURE 3. Resolution trees of irreducible simplicial cones in four dimensions.
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Name [ [I* Presentation Reducibility
Dy, 1 1 ey, es3, ey) 4A

D2,1 2 2 €9, €3, (0707172)) BZAl @214.
Dy, 2 4 €y, e3, (0,1,1,2)) Cy1® A
D; 5 2 8 ey, €3, (1,1,1,2))

Ds 3 3 e, €3, (0,0,1,3)) B;1®24
Ds 3 3 ey, e3, (0,0,2,3)) B3, ®24
Ds 5 3 9 ey, €3, (0,1,1,3)) C335® A
D3,4 3 9 €9, €3, (0,27273)) CgA @A
Ds 5 3 27 er, e3, (1,1,1,3))

Ds 3 27 ey, €3, (1,1,2,3))

D3 7 3 27 ey, €3, (2,2,2,3))

Dy 4 4 ey, €3, (0,0,1,4)) B, ®24
Dy 4 4 ey, €3, (0,0,3,4)) By ®24
Dy 5 4 16 ey, €3, (0,1,1,4)) Cy30 A
D4,4 4 8 €9, €3, (0717274)) C4)4 @A
Dy 4 8 ey, es3, (0,2,3,4)) Cysa® A
Dy 4 16 ey, €3, (0,3,3,4)) Cys® A
Dy 7 4 64 ey, €3, (1,1,1,4))

Dy s 4 32 ey, €3, (1,1,2,4))

Dy 4 64 ey, €3, (1,1,3,4))

Dy 4 16 ey, ez, (1,2,2,4))

Dy 4 16 ey, €3, (2,2,3,4))

Dy s 4 32 ey, €3, (2,3,3,4))

Dy13 4 64 ey, €3, (3,3,3,4))

Dy14 4 2 e, (0,1,2,0), (0,1,0,2)) Cy:dA
Dy s 4 4 e, (0,1,2,0), (1,0,0,2)) 2By,

Dy 16 4 4 e, (0,1,2,0), (1,1,0,2))

Dg,,l 5 5 €9, €3, (0,07175)) B';l @2A
D5, 5 5 ey, e3, (0,0,2,5)) Bs,®24
Ds 5 5 5 e, €3, (0,0,4,5)) Bs3;®24
Ds 4 5 25 ey, €3, (0,1,1,5)) Cs4 @A
Ds 5 5 25 ey, €3, (0,1,2,5)) Cs5d A
Ds 6 5 25 ey, €3, (0,2,2,5)) Cs6® A
D; ¢ 5 25 ey, €3, (0,2,4,5)) Cs:® A
D; 5 5 25 ey, €3, (0,4,4,5)) Css® A
Ds 5 125 ey, €3, (1,1,1,5))

D5 19 5 125 ey, €3, (1,1,2,5))

D5 11 5 125 ey, €3, (1,1,3,5))

Ds 19 5 125 ey, €3, (1,1,4,5))

D53 5 125 ey, es3, (1,2,2,5))

D5 14 5 125 ey, e3, (1,2,3,5))

D5 15 5 125 es, e3, (2,2,2,5))

Ds 16 5 125 ey, €3, (2,2,4,5))

D5 17 5 125 ey, €3, (2,4,4,5))

D5 15 5 125 ey, €3, (4,4,4,5))

TABLE 4. Classification of simplicial cones in four dimensions.

sprouting from simplicial cones that appear elsewhere

on the page. Also, identical subtrees sprouting from the

same node have been shown only once, but with the mul-
tiplicity appearing as a coefficient of the first cone on the

subtree.

Furthermore, a multiple branch of the form kC) ; or
kD7 1 (k copies of the orthant) is denoted even more con-
cisely by the number £ inside a circle. Thus, for example,
the notation for Cs 4 is meant to convey that a single
Nash blowup produces the five cones Cs¢, C32, Cs 2,
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02122

(17070)’(07170)7(1’1’2) [274]
(1,1,2),(1,0,0),(1,1,1) [1,1
(0’170)’(1’070)7(17171) 171
(0,1,0),(1,1,2),(1,1,1) [1,1

Cs 3:

(17070)’(07170)7(171’3) [379]
(1,0,0),(2,2,3),(1,1,2) [1,1
(07170)7(2’273)7(17172) 171
(1,1,3),(1,0,0),(1,1,2) [1,1
(07170)7(1’173)7(17172) 171
(0,1,0),(1,0,0),(2,2,3) 3,9

(17070)7(071’0)7 17171) [1’1}
(27273)7(07170)7(11171) [171}
(27273)7(1’0’0)7(17171) [1’1}

0314

(1,0,0),(0,1,0),(2,2,3) [3,9]
(0,1,0),(1,1,1),(1,0,0) [1,1
(2,2,3),(1,1,1),(1,0,0) [1,1
(2,2,3),(0,1,0),(1,1,1) [1,1

04132

(1,0,0),(0,1,0),(1,1,4) [4,16]
(17070)7(1’172)7(17173) 171
(0,1,0),(1,1,2),(1,1,3) [1,1
(1,1,4),(1,0,0),(1,1,3) [1,1
(0,1,0),(1,1,4),(1,1,3) [1,1
(07170)7(17070)7(17172) 274

(1,1,2),(1,0,0),(1,1,1) [1,1]
(0,1,0),(1,0,0),(1,1,1) [1,1]
(0,1,0),(1,1,2),(1,1,1) [1,1]

C’4,4
(1’0’0)7(07170)’(1’274) [478]
(0,1,0),(1,2,2),(1,0,0) [2,2]
(07170)’(17272)7(17171) 171
(0,1,0),(1,0,0),(1,1,1) [1,1
(1,1,2),(1,2,2),(1,0,0) [2,2]
(1,1,2),(1,1,1),(1,2,2) [1,1
(17070)’(1’172)7(17171) 171
(17172)7(172>4)7(17272) [272]
(1,1,2),(1,2,4),(1,2,3) [1,1
(1,1,2),(1,2,2),(1,2,3) [1,1
(1,2,4),(0,1,0),(1,2,2) [2,2]
(0,1,0),(1,2,4),(1,2,3) [1,1
(07170)7(17272)7(17273) 171
04'52
(1,0,0),(0,1,0),(2,3,4) [4,8]
(07170)’(17070)7(17171) [171]
(2,3,4),(1,0,0),(1,1,1) [1,1]
(07170)’(17272)7(171’1) [171]
(2,3.4),(1,2,2),(1,1,1) [1,1]
Cy
(170’0)7(0’170)7(373’4) [4716]
(0,1,0),(1,1,1),(1,0,0) [1,1
(3,3,4),(1,1,1),(1,0,0) [1,1
(3,3,4),(0,1,0),(1,1,1) [1,1
04,72
(17070)7(17270)7(17072) [472]
(1,0,1),(1,1,0),(1,0,0) [1,1
(1,0,1),(1,1,0),(1,1,1) [1,1
(1,0,2),(1,0,1),(1,1,1) [1,1
(17270)7(1’170)7(17171) ]‘7]‘

TABLE 5. Nash resolutions of irreducible simplicial cones in three dimensions.

Ci,1, and C} ;. By definition, all leaves of a resolution
tree are orthants, but this is not immediately apparent
from the diagram because of the pruning convention just
mentioned.

The cones appearing in double-outlined boxes are non-
simplicial cones, with the number of facets in parenthe-
ses. We did not classify these cones, so we continue their
resolution trees until they reach simplicial cones encoun-
tered before. Evidently, nonsimplicial cones are ubiqui-
tous even in the resolution of simplicial cones. (A note
about the grouping of cones by multiplicity in the figures:
simplicial cones have been grouped if and only if they
are equivalent, whereas nonsimplicial cones are grouped
if and only if they have identical resolution trees. This
is a weaker condition; in some cases, such as the 4C(4)
in the resolution tree of Cj5 5, we know that the cones in
question are not equivalent.)

What patterns can be observed in the data? Most ob-
viously, all of the thousands of cones we have studied
are eventually resolved by Nash blowups. This strongly
supports an affirmative answer to Question 1.2.

However, although the resolution seems always to ex-
ist, it also seems to obey neither rhyme nor reason. Al-
most every straightforward conjecture one might make
about patterns in the Nash resolution seems to be false.
We have already seen, for example, that the resolution
of a simplicial cone may involve nonsimplicial cones. One
might hope that the number of facets in the cone remains
within some reasonable bound, but the resolutions of 4-
dimensional simplicial cones can require cones with as
many as ten facets, with no end in sight.

The behavior of the indices I and I* is equally
perplexing. A 2-dimensional cone Q 1 ((1,0), (p,q)) with
p coprime to ¢ has I(C)=1I*(C)=gq. As we saw
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TABLE 6. Nash resolutions of irreducible simplicial cones in four dimensions.
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in Proposition 4.13, this is nonincreasing under Nash
blowup (indeed, decreasing except for p odd and ¢ = p —
1). But I and I* can increase under Nash blowups, even in
dimension 3 and even when the cones involved are simpli-
cial. For example, Cs5 = Q4((1,0,0),(0,1,0),(1,3,6))
with I =6 gives rise, after a single Nash blowup,
to Q+((1,3,6),(1,3,3),(2,3,6)) = Cg a3 with I =9. A
glimmer of hope is offered by I*. For among the thou-
sands of cones we have examined, there appears not one
example of a simplicial cone giving rise, after a single
Nash blowup, to another simplicial cone with greater
I*. However, there are rare cases in which, after two
Nash blowups, one obtains a simplicial cone with greater
I*. For example, Cyq2 = Q1((1,0,0),(1,3,0),(1,0,3))
with [* =3 gives rise, after two Nash blowups, to
Q+((1,1,0),(1,0,1),(4,3,3)) and two other cones all
with I* = 4. Moreover, there are many cases in which
I* increases when one of the cones is not simpli-
cial. This can be seen, for example, in the resolution
tree of C7 ¢, where Q 4+((1,0,0),(0,1,0),(2,4,7),(1,1,2))
with I =1 gives rise, after a single Nash blowup, to
Q+((1,0,0),(0,1,0),(1,2,2)) = Cy 1 with I'* = 2.

The question is reminiscent of other famous itera-
tive problems such as the notorious Collatz conjecture
[Lagarias 85], but in some ways it is even worse behaved.
A striking empirical feature is the existence of simpli-
cial cones whose Nash resolution is vastly larger than
those of other simplicial cones with the same index. In
dimension 4, for example, the seemingly innocent D5 14 =
Q 4 {e1,e9,e3,(1,2,3,5)), with I = 5, has a resolution tree
with depth 8 and 14,253 cones, while no other simpli-
cial cone with I =5 needs more than depth 3 and 108
cones. Likewise, D724 = Q 4 (€1,€2,¢€3,(1,2,5,7)), with
I =7, has a resolution tree with depth 11 and 35,299
cones, while no other simplicial cone with I =7 needs
more than depth 7 and 5061 cones, and only one other
needs more than depth 5 and 804 cones.

In conclusion, Question 1.2 remains wide open, but we
have amassed considerable empirical evidence supporting
an affirmative answer. In light of the 2-dimensional case,
one might hope for a proof involving some kind of higher-
dimensional analogue of continued fractions.
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