Translator Disclaimer
1992 The Kobayashi metric of a complex ellipsoid in {${\bf C}\sp 2$}
Brian E. Blank, Da Shan Fan, David Klein, Steven G. Krantz, Daowei Ma, Myung-Yull Pang
Experiment. Math. 1(1): 47-55 (1992).

Abstract

The infinitesimal Kobayashi metric of an ellipsoid of the form $$ E_m=\{(z_1,z_2)\in \C^2:|z_1|^2+|z_2|^{2m}<1\} $$ is calculated explicitly, modulo a parameter that is determined by solving a transcendental equation. Using this result, we show that the metric is $C^1$ on the tangent bundle away from the zero section. We also describe software that will calculate, using a Monte Carlo method, the infinitesimal Kobayashi metric on a domain of the form $$ \Omega_\rho=\{(z_1,z_2)\in\C^2:\rho(z_1,z_2)<0\}, $$ where $\rho$ is a real-valued polynomial. We compare results of computer calculations with those obtained from the explicit formula for the Kobayashi metric.

Citation

Download Citation

Brian E. Blank. Da Shan Fan. David Klein. Steven G. Krantz. Daowei Ma. Myung-Yull Pang. "The Kobayashi metric of a complex ellipsoid in {${\bf C}\sp 2$}." Experiment. Math. 1 (1) 47 - 55, 1992.

Information

Published: 1992
First available in Project Euclid: 26 March 2003

zbMATH: 0783.32012
MathSciNet: MR93H:32032

Subjects:
Primary: 32H15

Rights: Copyright © 1992 A K Peters, Ltd.

JOURNAL ARTICLE
9 PAGES


SHARE
Vol.1 • No. 1 • 1992
Back to Top