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Abstract: We provide a novel treatment of the ability of the standard
(wavelet-tensor) and of the hyperbolic (tensor product) wavelet bases to
build nonparametric estimators of multivariate functions. First, we give new
results about the limitations of wavelet estimators based on the standard
wavelet basis regarding their inability to optimally reconstruct functions
with anisotropic smoothness. Next, we provide optimal or near optimal
rates at which both linear and non-linear hyperbolic wavelet estimators
are well-suited to reconstruct functions from anisotropic Besov spaces and
subsequently we characterize the set of all the functions that are well re-
constructed by these methods with respect to these rates. As a first main
result, we furnish novel arguments to understand the primordial role of spar-
sity and thresholding in multivariate contexts, in particular by showing a
stronger exposure of linear methods to the curse of dimensionality. Second,
we propose an adaptation of the well known block thresholding method to
a hyperbolic wavelet basis and show its ability to estimate functions with
anisotropic smoothness at the optimal minimax rate. Therefore, we prove
the pertinence of horizontal information pooling even in high dimensional
settings. Numerical experiments illustrate the finite samples properties of
the studied estimators.
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1. Introduction

In the recent statistical literature many frameworks are dealing with multivari-
ate objects having anisotropic properties. Important examples arise in research
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Fig 1. (a) True image f (x, y, z) = f1 (x)+0.5 sin (2πy)+0.5 sin (2/5πz)+64 (xyz)3 (1− xyz)3;
f1 is the ‘blocks’ function (Donoho and Johnstone, 1994). (b) Noisy image corrupted by
additive Gaussian noise. (c) Hard thresholding: estimate using an isotropic wavelet basis.
(d) Block thresholding: estimate using a hyperbolic wavelet basis.

areas such as compressive sensing (Duarte and Baraniuk, 2012), multifractal
and texture analysis (Abry et al., 2013, 2015), inverse problems (Benhaddou
et al., 2013; Ingster et al., 2014), hypothesis testing (Ingster and Stepanova,
2011; Comminges and Dalalyan, 2013) and function estimation (Lepski, 2014),
to cite a few. Hyperbolic (tensor-product) wavelet bases are sometimes referred
to as anisotropic wavelet bases (see Neumann and von Sachs, 1997). Their prop-
erties have been studied from an approximation theoretic point of view (DeVore
et al., 1998) and in the context of function estimation (Neumann and von Sachs,
1997; Neumann, 2000).

We present in this paper several new theoretical results to contrast the ability
of projection estimators in either standard (also referred to as isotropic here-
after) or hyperbolic wavelet bases to estimate multivariate functions having
anisotropic smoothness. Figure 1 shows in panel (a) a three-dimensional func-
tion f : [0, 1]3 → R. It represents observations in the (x, y) space and three
slices for z. This three-dimensional object has anisotropic smoothness, i.e., the
smoothness properties along the (x, z) space, which are very smooth, and y,
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which is piecewise constant, are quite different. The function is estimated by
using projection estimators using both isotropic (Figure 1(c)) and hyperbolic
wavelet bases (Figure 1(d)). The latter estimator clearly gives a much better
reconstruction. The one based on standard wavelet basis seems to oversmooth
along the x-axis and to undersmooth along the y-axis. In this paper, we explain
that the difference between these two estimators has two causes: (i) the use
of the hyperbolic wavelet basis and (ii) the use of information pooling. In this
particular example, the huge smoothness differences between the coordinates
axis, lead to misleading smoothing amounts over the different directions when
dealing with the standard wavelet basis.

In the univariate setting, wavelet bases have been proved optimal in order to
represent a function as a sparse sequence of wavelet coefficients, meaning that
almost all the information of a function in L2(R) is localized in a few large coef-
ficients (see Donoho, 1993). In presence of such a sparse sequence of coefficients,
the simple hard thresholding estimator, which consists of reconstructing the
function using only the largest empirical (observed/noisy) wavelet coefficients
(larger than a given threshold value), has been proved powerful (see among oth-
ers Donoho and Johnstone, 1994; Donoho et al., 1995). Indeed, it is minimax
near-optimal over Besov spaces: it attains, up to a logarithmic factor in sam-
ple size, the optimal minimax rate of convergence for a large class of functions
of possibly highly inhomogeneous spatial regularity. It is also well-known that
this estimator can be outperformed by exploiting information given by sets of
coefficients lying over some generic geometric structures, such as blocks or trees
(Cai, 1999, 2002, 2008; Autin, 2008b,a; Autin et al., 2011, 2012, 2014b,a). The
aim of this paper is to contribute a deeper understanding of these aspects in the
multivariate setting in the general anisotropic context.

Hereafter we consider two ways to build multivariate wavelet bases. The
first one, is constructed by (isotropic) dilations and translations of multivariate
wavelet functions. It generates a d−dimensional multiresolution analysis. In the
sequel we will denoted it as either as the standard wavelet basis or the isotropic
wavelet basis. In contrast, the hyperbolic or tensor product wavelet basis is built
using multivariate wavelet functions having possibly different dilations along the
different coordinate axes. Describing these two bases in such a way, it appears
obvious that the isotropic is not well adapted to estimate anisotropic functions.
But it is an important question to precisely characterize these differences from
a theoretical point of view and this is the concern of the first part of this paper.

While Neumann (2000) has shown that these bases cannot optimally estimate
multivariate functions having anisotropic smoothness, we adopt a different per-
spective and we compute, first, under more general loss functions which are se-
quential versions of the Lp-risks (p ≥ 2), the maximal functional space (maxiset)
for which the risk of various projection estimators, either on isotropic or hyper-
bolic wavelet bases, reaches a given rate of convergence. The rate of convergence
is chosen prior to the ability of these estimators to reconstruct functions with the
same parameter of smoothness. Second, we propose to adapt the famous block
thresholding estimator to the hyperbolic wavelet basis. This novel estimator
pools information in the coefficient domain from rectangular block structures.
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It has impressive minimax and maxiset properties while it escapes the specific
curse of dimensionality to which a class of hyperbolic tree-structured wavelet
methods introduced by Autin et al. (2014a) was exposed to. An illustration of
the theoretical results and a confirmation of the practical importance of using
hyperbolic wavelets and information pooling is presented via some numerical
experiments.

The paper is organized as follows, after introducing the construction of d-di-
mensional wavelet bases in Section 2 and our theoretical set up in Section 3, we
divide our results into two main parts. In Section 4 we give novel arguments,
based on the maxiset approach, about the inability of any estimator based on
isotropic wavelet bases to optimally estimate functions with anisotropic smooth-
ness, that is, having at least two different regularities among the d directions.
In addition, we state a necessary condition to construct good estimators in the
presence of anisotropy via a projection onto the hyperbolic wavelet basis. In
Section 5 we study two linear and two nonlinear hyperbolic wavelet estimators.
The linear methods are proven to have small maxisets even under complete or
only partial knowledge of directional smoothnesses. On the contrary, nonlinear
methods exhibit large maxisets associated with fast convergence rates. We study
a novel hyperbolic block thresholding procedure, motivated from the excellent
results in the univariate case. We show that the hyperbolic block thresholding
estimator has remarkable maxiset and minimax properties in anisotropic set-
tings. Then, in Section 6 we present numerical experiments for estimating two-
and three-dimensional functions with various smoothness properties. Finally,
Section 7 gives some conclusive remarks.

2. d-variate wavelet bases (d ≥ 2)

There are several ways to construct a d-dimensional wavelet basis of L2

(
Rd

)
from a univariate wavelet basis of L2 (R) for which we use the dilations and
translations of both a scaling function, say φ, and a wavelet function, say ψ.
We present two of them, namely the isotropic wavelet basis and the hyperbolic
wavelet basis.

We detail the construction of these d-dimensional wavelet bases of L2(R
d)

from the following one-dimensional compactly supported wavelet basis

B1 = {φ0,k, ψj,k : j ∈ N, k ∈ Z} .
In such a basis, the functions φ0,k and ψj,k are, respectively, obtained after
translation of a scaling function φ and dilation and translation of a wavelet
function ψ. Precisely, φj,k(.) = 2j/2φ(2j . − k) and ψj,k(.) = 2j/2ψ(2j . − k).
When choosing φ and ψ both having support [−L,L] for some L > 0, for any
pair of indices (j, k) the support of φj,k and ψj,k is

Ij,k =
[
(k − L)2−j , (k + L)2−j

]
.

We refer to Daubechies (1992) or any introductory book on wavelets for exam-
ples of such bases. For any j ∈ N, we denote by Vj the linear span of {φj,k}k
and by Wj the linear span of {ψj,k}k.
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For further use in the paper, we define sets Sj associated with bases of
L2([0, 1]), such that for the scaling functions φ0,k′ we take k′ ∈ S0 = {1 − L,
−L, . . . , L− 1} and for the wavelet functions ψj,k we take j ∈ N and k ∈ Sj =
{1− L,−L, . . . , L+ 2j − 1}.

2.1. d-dimensional isotropic wavelet basis

We first describe the construction of the isotropic wavelet basis Bd. It is the
most widely used construction which generalizes the concept of multiresolution
analysis (MRA) to the d-dimensional setting by taking a tensor product of the
MRA for L2 ([0, 1]) associated with the pair of functions (φ, ψ) (see Meyer,
1990). Such a construction forms a set of 2d kind of functions in d-dimensions,

{ψi
j,k; i ∈ {0, 1}d} that are formed as products of scaling and wavelet functions

with the same parameter of dilation j. The resulting d-dimensional functions,
with k = (k1, . . . , kd) ∈ Sd

j , are supported on the hyper-cube

Cj,k =
[
(k1 − L)2−j , (k1 + L)2−j

]
× · · · ×

[
(kd − L)2−j , (kd + L)2−j

]
.

We introduce the following notations for any j = (j1, . . . , jd) and any k =
(k1, . . . , kd),

ψ
i
j,k(.) = ψi1

j1,k1
(.)× · · · × ψid

jd,kd
(.), (1)

where for i = (i1, . . . , id) ∈ {0, 1}d, and u = 1, . . . , d,

ψiu
ju,ku

(.) =

{
2ju/2φ(2ju .− ku) if iu = 0
2ju/2ψ(2ju .− ku) if iu = 1.

We use the following notation for the commonly used vectors of length d,
0 = (0, . . . , 0) and |j| = j1 + · · ·+ jd, further we define

J =
{
j = (j1, . . . , jd) ∈ N

d : j1 = j2 = · · · = jd
}
,

Kj =
{
k = (k1, . . . , kd) ∈ Z

d : ∀u ∈ {1, . . . , d}, ku ∈ Sju

}
.

From the d-dimensional functions given in (1) the isotropic wavelet basis Bd of

L2([0, 1]
d
) and the set Iso can be defined as follows:

Bd =
{
ψ
i
j, k : (i, j, k) ∈ Iso

}
:=

{
ψ
0
0,k′ , ψ

i
j, k : i ∈ {0, 1}d \ 0, j ∈ J, (k, k′) ∈ Kj ×K0

}
.

By making use of this definition for the isotropic wavelet basis, it is straight-
forward to extend most of the one-dimensional wavelet methods used for esti-
mation to the d-dimensional setting (see for instance Autin et al., 2010). As in a
minimax perspective, wavelet methods that are built from an isotropic wavelet
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basis fail to estimate functions in anisotropic Sobolev spaces in an optimal way
(Neumann and von Sachs, 1997). In Section 4 we provide further results on the
limitations of the isotropic wavelet basis by using the maxiset point of view (see
Propositions 4.1, 4.3 and 4.4). These results stimulate to consider the hyper-
bolic wavelet basis. As we shall prove, such basis functions are from a theoretical
point of view clearly preferred for the estimation of functions with anisotropic
smoothness.

2.2. d-dimensional hyperbolic wavelet basis

Using the d-dimensional functions in (1) we define the hyperbolic wavelet basis

B̃d of L2([0, 1]
d
) and the set Hyp as follows,

B̃d =
{
ψ
i
j, k : (i, j, k) ∈ Hyp

}
:=

{
ψ
0
0,k′ , ψ

i
j, k : i ∈ {0, 1}d \ 0, j ∈ J

i, (k, k′) ∈ Kj ×K0

}
,

where Ji =
{
j = (j1, . . . , jd) : ∀u ∈ {1, . . . , d}, ju = j′uiu, j

′
u ∈ N

}
.

The basis B̃d is again formed by the tensor products of the one-dimensional
scaling and wavelet functions φ and ψ but in contrast to the construction of
the isotropic wavelet basis Bd, the dilations and translations are constructed
separately in each individual coordinate. The resulting d-dimensional functions
ψ
i
j, k are supported on hyper-rectangles, as opposed to cubes,

Rj,k =
[
(k1 − L)2−j1 , (k1 + L)2−j1

]
× · · · ×

[
(kd − L)2−jd , (kd + L)2−jd

]
.

In the sequel, for any (i, j) ∈ {0, 1}d × Nd, we shall denote by W
i
j the linear

span W i1
j1

⊗ · · · ⊗W id
jd
, where, for any u ∈ {1 . . . , d}, see the start of Section 2

for definitions,

W iu
ju

=

{
Vju if iu = 0
Wju if iu = 1.

The hyperbolic wavelet bases are well equipped to approximate or estimate
objects with anisotropy. A first justification of this statement is that the sup-
port of a function ψ

i
j, k can be very localized in one direction and not in any

of the others directions (see among others Neumann and von Sachs, 1997; Neu-
mann, 2000; Temlyakov, 2002; Hochmuth, 2002). A further justification will be
provided in Section 5 through the obtained results on maxisets.

3. Theoretical model and maxiset approach

We embed the multivariate Gaussian white noise model in an asymptotic frame-
work by considering a decreasing standard deviation ε → 0 which equivalently
represents growing information or sampling on a finer grid,

dYε (x) = f (x) dx+ εdW (x) , (2)
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where x = (x1, . . . , xd) ∈ [0, 1]d, f ∈ L2([0, 1]
d) and W (x) is the Brownian sheet.

We observe the following sequence of empirical wavelet coefficients

θ̂
i
j,k = θ

i
j,k + εξ

i
j,k = 〈f, ψi

j,k〉L2 + εξ
i
j,k, (3)

where the error variables ξ
i
j,k are i.i.d. N (0, 1), the noise level ε ∈ ]0, e−1[ and

the index vector (i, j, k) ∈ Iso when choosing the isotropic wavelet basis Bd or

(i, j, k) ∈ Hyp when choosing the hyperbolic wavelet basis B̃d.

We focus on the keep-or-kill -estimators (KK -estimators) f̂ω which take the
following form,

f̂ω =
∑

(i,j,k)

ω
i
j,kθ̂

i
j,kψ

i
j,k. (4)

The weights ω
i
j,k can be random or deterministic and take their values in {0, 1},

with a one representing an empirical wavelet coefficient that is kept, and a zero
for an omitted coefficient. In the above expression (4), as in equation (5) that
will follow, the summation over the index vectors (i, j, k) is done on the set Iso
in the isotropic context and on the set Hyp in the hyperbolic one.

Definition 3.1 (Truncated wavelet estimator). Consider either the isotropic
or the hyperbolic wavelet basis. Let c = (c1, . . . , cd) ∈ ]0,+∞[d and let rε be a
continuous sequence of positive numbers that tends to 0 as ε goes to 0. Denote
by jrε the real number such that 2−jrε = r2ε . A KK -estimator f̂ω of a function
f is said to be (rε, c)-truncated if and only if it satisfies the following property,
for any pair of indices (j, k) and any u in {1, . . . , d}:

ju ≥ cu jrε =⇒ ω
i
j,k = 0.

We study the performance of several examples of KK -estimators in both
isotropic and hyperbolic wavelet bases using the maxiset approach. This theo-
retical approach, initiated in Cohen et al. (2001), consists in determining the
largest functional space G (i.e. the maxiset) over which the ρ-risk of an estimator

f̂ω of multivariate functions f ∈ G converges at the prespecified rate vε,

sup
0<ε<e−1

v−1
ε E

[
ρ(f̂ω, f)

]
< ∞ ⇐⇒ f ∈ G.

In the sequel, we adopt the following notation for the maxiset of an estimator
f̂ω with risk function ρ and rate vε, MS(f̂ω, ρ, vε) = G.

For the loss function ρ we take sequential versions of the Lp-risk (p ≥ 2) that

characterize the Lp-distance between any KK -estimator f̂ω and the function f
to the power p. We also denote

ρ(f̂ω, f) = ‖f̂ω − f‖pp =
∑

(i,j,k)

2|j|(
p
2−1)|ωi

j,kθ̂
i
j,k − θ

i
j,k|p. (5)
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Note that providing the maxiset of an estimator means in some sense exhibit-
ing the shape of functions which are well estimated by the involved method.
Evidently, the size of the maxiset depends on the chosen rate: the slower the
rate the larger the maxiset. In the maxiset setting, for a chosen rate, the larger
the maxiset the better the estimator.

Our choices of rates are mainly motivated by the ones that have been proven
to be the minimax ones for large d-dimensional functional spaces, such as
the Besov spaces (see Neumann, 2000). These spaces are associated with a d-
dimensional parameter of smoothness, say s = (s1, . . . , sd) ∈ ]0,+∞[d. For any
1 ≤ u ≤ d, su characterizes the regularity of the function f in the direction u
and may be different from the regularity of another direction (anisotropy) or not
(isotropy). Besov spaces are contained in sequential spaces, namely the Besov
bodies (Neumann, 2000).

Definition 3.2 (Besov body). Let p ≥ 2 and s ∈ ]0,+∞[d. We say that f ∈
Lp([0, 1]

d) belongs to the Besov body B
s
p,∞ if and only if,

max
i∈{0,1}d

sup
j∈Nd

max
1≤u≤d

2juiusup+|j|( p
2−1)

∑
k∈Kj

|θij,k|p < ∞.

Focusing on the estimation of anisotropic functions with s as parameter of
smoothness, we consider three ways of constructing estimators:

1. Non-adaptive case: using the full knowledge about the anisotropy, i.e.,
using the entire information of the parameter of smoothness s,

2. Semi-adaptive case: using only the knowledge of level of anisotropy de-
scribed through the harmonic sum |s|− := (

∑d
u=1 s

−1
u )−1,

3. Adaptive case: using no extra information. The underlying object’s prop-
erties are completely unknown.

In each of these three cases, we provide KK -estimators which perform well and
we analyze their limitations through computing their corresponding maxisets.

4. Comparing isotropic and hyperbolic estimators

4.1. Limitations of the isotropic wavelet basis

In this section we prove that the isotropic wavelet basis cannot be used for
optimal estimation of multivariate functions with anisotropic smoothness. In the
minimax setting, the isotropic wavelet basis has already been proved unable to
optimally estimate functions in anisotropic Sobolev spaces (Neumann and von
Sachs, 1997). By using the maxiset approach, we perform a more elaborated
study of the limitations of estimators built from an isotropic wavelet basis. To
be more precise, our contribution is threefold: we first prove that isotropic linear
estimators are not able to achieve the optimal rates on Besov bodies B

s
p,∞ with

an anisotropic parameter s (see Proposition 4.1). Second, when considering the
fastest rates to reconstruct Besov bodies, we precisely characterize the maxiset
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performance of linear methods (see Proposition 4.3 and Proposition 4.2). Third
we prove that no isotropic truncated estimator is able to provide a γ-adaptive

maxiset at any rate r
2γp/(1+2γ)
ε (with γ > 0): a maxiset that contains all the

Besov bodies B
s
p,∞ such that |s|− = γ (see Proposition 4.4).

Proposition 4.1. Consider the isotropic wavelet basis B̄d. Let p ≥ 2, s ∈
]0,+∞[d be a parameter of smoothness and put s = min1≤u≤d su. Then, for any
j ∈ N and any δ > s

d+2s , the maxiset of the j-linear isotropic estimator

f̂ l,j =
∑

k′∈K0

θ̂
0
0,k′ψ

0
0,k′ +

∑
i�=0

∑
j∈J: |j|<dj

∑
k∈Kj

θ̂
i
j,kψ

i
j,k, (6)

for the rate ε2δp is such that MS(f̂ l,j , ‖.‖pp, ε2δp) �⊃ B
s
p,∞.

Remark 4.1. When considering the case where the parameter of smoothness
s is anisotropic, that is |s|− > sd−1 and when choosing δ = γ

2γ+1 with γ = |s|− ,
Proposition 4.1 shows that j-linear isotropic estimators are unable to achieve
the minimax rate over anisotropic Besov bodies.

Definition 4.1 (I-body). Let p ≥ 2 and s ∈ ]0,+∞[ . We say that f ∈
Lp([0, 1]

d) belongs to the I-body Is,p if and only if,

sup
i�=0

sup
J∈N

∑
j∈J:|j|≥Jd

2Jsp+|j|( p
2−1)

∑
k∈Kj

|θij,k|p < ∞. (7)

Proposition 4.2. For any p ≥ 2 and any s ∈ ]0,+∞[ ,

Is,p ⊃
⋃

s: su≥s ∀u
Bs

p,∞.

In the following proposition, we provide the maxiset of isotropic j-linear
estimators associated with a slower rate that is the fastest rate which is required
to estimate anisotropic or isotropic Besov bodies according to Proposition 4.1.

Proposition 4.3. Consider the isotropic wavelet basis B̄d. Let p ≥ 2, s ∈
]0,+∞[ and consider the js,ε-linear isotropic estimator f̂ l,js,ε such that 2−js,ε ≤
ε

2
d+2s < 21−js,ε . Then,

MS
(
f̂ l,js,ε , ‖.‖p

p
, ε

2sp
d+2s

)
= Is,p. (8)

Judging from the embedding properties of Besov spaces, isotropic linear
wavelet methods reconstruct the sequence space B

s
p,∞ at a rate which is in

the same order of the minimax rate of the thinnest isotropic sequence space

B
s′

p,∞ (with s′ = (s, . . . , s) and s > d
p ) that contains it. Thus linear isotropic

wavelet methods do not take advantage of information on the anisotropy of an
object. The following proposition highlights that it is the choice of the isotropic
wavelet basis that leads to the poor performance of KK -estimators for estimat-
ing function with anisotropic smoothness.
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Proposition 4.4. Consider the isotropic wavelet basis B̄d and a continuous
sequence rε of positive numbers that tends to 0 as ε goes to 0. Let c = (c, . . . , c)

with c > 0 and a (rε, c)-truncated wavelet estimator f̂ (see Definition 3.1) built
from the isotropic wavelet basis. Then, for any p ≥ 2,

MS
(
f̂ , ‖.‖pp, r

2γp
1+2γ
ε

)
�⊃ Bs

p,∞,

for any parameter s that satisfies |s|− = γ and min1≤u≤d su < γ/{c(1+2γ)}.
Proposition 4.4 shows in particular that the isotropic wavelet basis is not able

to provide linear or nonlinear estimators which are able to reconstruct with the
optimal rate rε = ε or near optimal rate rε = ε(log ε−1)α, with α > 0 all the
functions belonging to Besov bodies B

s
p,∞ with the same harmonic sum.

The results of Propositions 4.1, 4.3 and 4.4 strengthen the results obtained by
Neumann and von Sachs (1997). In Section 5, for some judicious choices of c and
of rε, we provide (rε, c)-truncated estimators using the hyperbolic wavelet basis
for which the maxisets at the prespecified rate contain the intended anisotropic
Besov bodies.

4.2. On the maximal resolution levels

The hyperbolic wavelet basis forms a non-redundant system that contains all
possible anisotropies (Abry et al., 2015). Nevertheless, this does not necessar-
ily imply that this basis has the potential to furnish “good” estimators for a
sample of observations at hand. The contraposition of Proposition 4.5 is a nec-
essary condition to ensure that estimators constructed by projection onto the
hyperbolic wavelet basis can deal with any level of anisotropy. Proposition 4.5
is concerned with an important property of any asymptotic approach that per-
forms nonparametric estimation in sequence spaces by truncating the empirical
wavelet coefficients in (3). The act of truncating leads for growing sample size
to an increasing number of available data or coefficients that are actively used
by a given estimation procedure (e.g. thresholding rule). In practice the sample
size is naturally given by the total number of observations while in theory it is
often chosen as a way to balance between the approximation bias and the vari-
ance. This truncation can be made dependent on additional information such as
the directional smoothness or the anisotropy. Hereafter, several truncations are
presented and used in the next section to construct estimators. The following
proposition shows more specifically that any estimator constructed using the
hyperbolic wavelet basis must truncate the coefficient sequence far enough in
each direction u in {1, . . . , d} to ensure that the corresponding maxisets contain
anisotropic Besov bodies. In Section 5 we show that such requirements in the
context of estimation can lead to a deterioration of the maxisets and of the
convergence rates.

Proposition 4.5. Consider the hyperbolic wavelet basis B̃d and a continuous
sequence rε of positive numbers that tends to 0 as ε goes to 0. Let p ≥ 2, s ∈
]0,+∞[d and put γ = |s|− . Then, the maxiset of any (rε, c)-truncated estimator
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f̃ with, for some 1 ≤ u ≤ d, cu < γ
(1+2γ)su

, is such that

MS
(
f̃ , ‖.‖pp, r

2γp
1+2γ
ε

)
�⊃ Bs

p,∞.

Proposition 4.5 imposes to choose a maximal resolution level large enough in
each direction to hope for a (rε, c)-truncated estimator:

(i) for which the maxiset with rate r
2γp
1+2γ
ε contains the Besov body B

s
p,∞,

(ii) which is minimax (rε = ε) or near minimax (rε = ε(log ε−1)α with α > 0)
for the Besov body B

s
p,∞.

According to Proposition 4.5, killing any empirical coefficient with resolution
level ju in direction u smaller than jrε,u = γs−1

u (1+2γ)−1jrε for some direction
u (1 ≤ u ≤ d) would be a bad choice from the maxiset point of view. Note that
these resolution levels jrε,u (1 ≤ u ≤ d) depend on s and that jrε,1+ · · ·+jrε,d =

1
1+2γ jrε . A better strategy is to build the thresholding or keep-or-kill rule at

least on the empirical wavelet coefficients θ̂
i
j,k such that

(i) |j| ≤ 1
1+2γ jrε if the harmonic sum of s, through γ, is known (semi adaptive

case),
(ii) |j| ≤ jrε if the harmonic sum of s, through γ, is unknown (adaptive case).

5. Maxisets of hyperbolic wavelet estimators

We learn from the previous section that whether or not there is anisotropy, it
is preferable to use the hyperbolic wavelet basis. Hence, from now on we focus
on the study of hyperbolic wavelet estimators. More particularly, we study four
different estimators (linear and nonlinear) using the maxiset approach, i.e., we
will associate to each of them specific sequences spaces which we all define
hereafter.

5.1. Sequence spaces

The Besov body B
s
p,∞, the H-body H

s
p and the (p, q)-truncation space Aq,p give

decay conditions of the magnitudes of the hyperbolic wavelet coefficients over
the scales, in other words, they provide a control on the approximation bias.

Definition 5.1 (H-body). Let p ≥ 2 and s ∈ ]0,+∞[d. We say that f ∈
Lp([0, 1]

d) belongs to the H-body H
s
p if and only if,

sup
i�=0

sup
J∈N

∑
j∈Ji: max

1≤u≤d
jusu ≥ J

2Jp+|j|( p
2−1)

∑
k∈Kj

|θij,k|p < ∞.

Remark 5.1. The H-body H
s
p can be related to the Besov body B

s
p,∞. Indeed,

it is clear that the magnitudes of the hyperbolic coefficients of any function in
H

s
p decrease as the ones of any function in B

s
p,∞ at worst up to logarithmic

term.
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Definition 5.2 ((p, q)-truncation space). Let p ≥ 2 and q > 0. We say that
f ∈ Lp([0, 1]

d) belongs to the (p, q)-truncation space Aq,p if and only if,

sup
i�=0

sup
J∈N

∑
j∈Ji: |j|≥J

2Jpq+|j|( p
2−1)

∑
k∈Kj

|θij,k|p < ∞.

Definitions 5.3 and 5.4 introduce two sequence spaces closely related to idea
of sparsity. Indeed, they control the magnitude of the small - individually or by
blocks - wavelet coefficients.

Definition 5.3 (Weak Besov body). Let 0 < r < p. We say that f belongs to

the weak Besov body W
H

r,p if and only if,

sup
0<λ<1

λr−p
∑
i �=0

∑
j∈Ji

2|j|(
p
2−1)

∑
k∈Kj

|θij,k|p1
{
|θij,k| ≤ λ

}
< ∞,

which is equivalent to

sup
0<λ<1

λr
∑
i �=0

∑
j∈Ji

2|j|(
p
2−1)

∑
k∈Kj

1
{
|θij,k| > λ

}
< ∞.

Definition 5.4 (Block Besov body). Let 0 < r < p and m > 0. We say that f

belongs to the block Besov body W
B

r,p,m if and only if,

sup
0<λ<1

λr−p
∑
i�=0

∑
j∈Ji:|j|≥|jo,iλ |

2|j|(p/2−1)
∑
k∈Kj

|θijk|p 1
{
‖θ /Bi

jk(λ)‖�2
≤ mλ

2

}
< ∞,

where jo,i
λ

and the 2-mean norm of the block of wavelet coefficients of f ,

‖θ/Bi
jk(λ)‖�2

, are defined as in Section 5.3.2.

The following embeddings exist between the sequence spaces that have just
been defined. The proofs of (9) and (10) are omitted since they are straight-
forward. Ideas of proofs can be found in Autin et al. (2014a). We list these
embeddings here for further use.

Proposition 5.1. For m > 0, γ > 0, p ≥ 2, q = γ/(1+2γ) and r = p/(1+2γ),

⋃
s, |s|−=γ

Hs
p ⊂ Aγ,p, (9)

⋃
s, |s|−=γ

Bs
p,∞ ⊂ Aq,p ∩Xr,p, (10)

where Xr,p is either W
H

r,p or W
B

r,p,m, for any fixed m > 0.
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5.2. Maxisets for linear estimators

In this section we provide the maxiset of hyperbolic linear estimators. The cho-
sen rates are obtained from the minimax approach when dealing with the Besov
bodies. We distinguish two cases: the first case is non-adaptive and deals with
the maxiset of a linear estimator for the minimax rate over the Besov body
B

s
p,∞ and that uses the knowledge of the regularity s. The second case is semi-

adaptive and deals with the maxiset of the linear estimator for a near minimax
rate over all the H-bodies H

s
p and also the Besov bodies B

s
p,∞ with the same

value of the harmonic sum of s.

5.2.1. Non-adaptive case

Definition 5.5. Let s ∈ ]0,+∞[d, γ = |s|− = (
∑d

u=1 s
−1
u )−1 and j

ε,s
=

(jε,1, . . . , jε,d) ∈ Rd be such that, for any u ∈ {1, . . . , d}, 2−jε,u = ε2γ/{(1+2γ)su}.

Define the hyperbolic linear estimator f̃L,γ,s as

f̃L,γ,s =
∑

k′∈K0

θ̂
0
0,k′ψ

0
0,k′ +

∑
i�=0

∑
j∈Ji: ju<jε,u,∀u

∑
k∈Kj

θ̂
i
j,kψ

i
j,k. (11)

Note that the only empirical wavelet coefficients used by the estimator f̃L,γ,s

are exactly those corresponding to the noisy projection of the function that is
to be estimated on the space W

0
j
ε,s

. Moreover
∣∣j

ε,s

∣∣ = 1
1+2γ jrε , with rε = ε.

Theorem 5.1 (Maxiset of f̃L,γ,s). Fix p ≥ 2 and consider the hyperbolic linear

estimator f̂L,γ,s defined from a parameter s ∈ ]0,+∞[d as in (11). The maxiset

of f̃L,γ,s for the rate ε
2γp
1+2γ , where γ = |s|− , is

MS
(
f̃L,γ,s, ‖.‖pp, ε

2γp
1+2γ

)
= Hs

p .

Following Remark 5.1, Proposition 4.1 and Proposition 4.4, Theorem 5.1
proves that the functions having an anisotropic parameter of smoothness s are
better estimated by the hyperbolic linear estimator f̂L,γ,s when comparing to
any isotropic estimator.

5.2.2. Semi-adaptive case

Definition 5.6. Let p ≥ 2, s ∈ ]0,+∞[d, γ = |s|− = (
∑d

u=1 s
−1
u )−1 and

jε,p,γ ∈ R be such that

2−jε,p,γ = (ε(log ε−1)
d−1
p )

2
1+2γ .

Define the hyperbolic estimator f̃L,γ as

f̃L,γ =
∑

k′∈K0

θ̂
0
0,k′ψ

0
0,k′ +

∑
i �=0

∑
j∈Ji:|j|<jε,p,γ

∑
k∈Kj

θ̂
i
j,kψ

i
j,k. (12)
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Note that the only empirical coefficients used by the estimator f̃L,γ are those
corresponding to projection of the function to be estimated on the space⊕

i∈{0,1}d

⊕
j∈Ji, |j|<jε,p,γ

W
i
j .

In other words, the empirical wavelet coefficients θ̂
i
j,k which are kept by the

estimator are those such that
∑d

u=1 juiu < jε,p,γ .

Theorem 5.2 (Maxiset of f̃L,γ). Fix γ > 0, p ≥ 2 and consider the hyper-
bolic linear estimator f̃L,γ defined as in (12). The maxiset of f̃L,γ for the rate

(ε(log ε−1)
d−1
p )

2γp
1+2γ is

MS
(
f̃L,γ , ‖.‖pp, (ε(log ε−1)

d−1
p )

2γp
1+2γ

)
= Aγ,p.

An interesting minimax fact to be noticed is the following: although there is
a logarithmic price to pay for the loss of information about s – that increases as
d grows – the estimator f̃L,γ compensates by offering a maxiset that contains
the union of all H

s
p-bodies with parameters s having same harmonic sum.

A natural question arises. Dealing with nonlinear hyperbolic estimators, do
there exist ones which could estimate the union of all Besov bodies with pa-
rameters s having same harmonic sum with optimal or near optimal rates? The
answer is affirmative. Examples of such estimators are given in Section 5.3.

5.3. Maxisets for nonlinear estimators

The hyperbolic wavelet basis forms an unconditional basis of Lp. This suggests
that functions can be sparsely described in the coefficient domain and that
a thresholding rule can be used for denoising purposes for which we expect
that it outperforms linear estimation. Hereafter we provide the maxiset of the
hyperbolic hard thresholding estimator. While Neumann (2000) shows the near
minimax optimality of this procedure over the Besov spaces, we prove first that,
when choosing the same rates, this estimator is able to reconstruct functions
that are less regular (see Theorem 5.3). Second, we emphasize that even in such
high dimensional setting, considering the coefficients by blocks, yields a better
estimation procedure than the hyperbolic hard thresholding one in the sense
that, although it is adaptive, the hyperbolic block thresholding procedure is
minimax (without a logarithmic term) over the Besov spaces, as consequence of
Theorem 5.4.

In the sequel, for anym > 0 and any 0 < ε < e−1, we put tε = ε
√

log ε−1, and

define J
i
mtε =

{
j ∈ Ji : |j| < jmtε

}
where jmtε is such that 2−jmtε = (mtε)

2
.

5.3.1. Maxiset of the hyperbolic hard thresholding estimator

In this section, we study the maxiset performance of the hyperbolic hard thresh-
olding estimators which are built on the following rule: use only the empirical
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wavelet coefficients with a magnitude that is larger than a specific threshold for
the reconstruction of the function.

Definition 5.7. Let 0 < ε < e−1 and a given m > 0. The hyperbolic hard
thresholding estimator f̃H is defined by

f̃H =
∑

k′∈K0

θ̂
0
0,k′ψ

0
0,k′ +

∑
i�=0

∑
j∈J

i
mtε

∑
k∈Kj

θ̂
i
j,k1

{
|θ̂ij,k| > mtε

}
ψ
i
j,k. (13)

The following theorem is a particular case of the one given in Autin et al.
(2014a). Since the authors have omitted the proof in the general case, we propose
the one in our specific case in the Appendix.

Theorem 5.3 (Maxiset of f̃H). Fix γ > 0, p ≥ 2, m ≥ 4
√
p and con-

sider the estimator f̃H defined in (13). Then, the maxiset of f̃H for the rate

(ε
√

log ε−1)
2γp
1+2γ is

MS
(
f̃H , ‖.‖pp, (ε

√
log ε−1)

2γp
1+2γ

)
= A γ

1+2γ ,p ∩W
H

p
1+2γ ,p.

Using Proposition 5.1, we learn that in terms of sequence spaces, the maxiset
of the hyperbolic hard thresholding estimator contains at least the union of
the Besov bodies for which the parameter s has its harmonic sum equal to γ,

provided that the rate is slower than or of the same order as (ε
√

log ε−1)
2γp
1+2γ .

Moreover, when comparing to the linear estimator f̃L,γ , note that for the hyper-
bolic hard thresholding estimator we provide a strictly better rate to reconstruct
the union of the Besov bodies under interest for high dimensional settings with
d > p

2 + 1.

5.3.2. Maxiset of hyperbolic block thresholding estimator

Block estimators have been proved interesting in univariate settings with good
theoretical and practical properties. Block methods choose the wavelet coeffi-
cients to keep or kill in such a way that not only the information of their individ-
ual magnitudes is used, but also, the information within a set of well-specified
neighboring coefficients. Horizontal block thresholding methods are popular ex-
amples (Cai, 1999, 2002; Cai and Zhou, 2009). Among them, the BlockShrink
estimator has been proved to outperform the hyperbolic hard thresholding es-
timator from a maxiset point of view (Autin, 2008a; Autin et al., 2014b). This
approach consists of partitioning each scale into non-overlapping blocks of neigh-
boring coefficients and to decide to keep or kill the entire block according to the
average magnitudes of the coefficients contained in that block.

Hereafter, we give new maxiset results for our novel generalization: the hy-
perbolic BlockShrink estimator which is built on the following rule: use only the
empirical wavelet coefficients in blocks with a magnitude that is in mean larger
than a specific threshold for the reconstruction of the function.

Without loss of generality, we will consider in what follows a hyperbolic 1-
periodized wavelet basis. To define the BlockShrink, we first set the primary
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resolution scale in direction i and the length of the blocks. We denote by jo,i
ε

=

(j
o,i
ε,1, . . . , j

o,i
ε,d) the primary resolution scale in the direction i where, for any

u ∈ {1, . . . , d}, jo,iε,u is the smallest integer such that 2j
o,i
ε,u > (log ε−1)

iu
|i| . We

denote by ε,d = 2|j
o,i

ε
| the length of the blocks that is the number of empirical

wavelet coefficients they contain. Note that the length of the involved blocks is
the same whatever the direction i. We put, for any 0 < ε < e−1,

J
o,i
ε =

{
j ∈ J

i : |j| < |jo,i
ε
|
}

and L
i
mε =

{
j ∈ J

i : |jo,i
ε
| ≤ |j| < jmε

}
,

where jmε is the integer such that 2−jmε ≤ (mε)2 < 21−jmε .
In the univariate setting, it has been proven pertinent from both a minimax

(Cai, 1999, 2002) and a maxiset (Autin, 2008a) point of view to choose a block
of neighboring coefficients of a size proportional to log ε−1. Autin et al. (2014a)
give a precise specification for the length of the blocks in order to avoid situations
where the number of blocks at a scale j may not divide 2j in an integer number.
We extend that idea to the context of hyperbolic wavelet estimators that requires
to calibrate the length of the block l

i
ε within each orientation {i, i �= 0} w.r.t the

primary resolution scales.
Let us now define the hyperbolic version of the BlockShrink estimator f̃B.

For any sequence of hyperbolic wavelet coefficients θ (resp. empirical hyperbolic

wavelet coefficients θ̂ associated with θ by (3)), we consider for any i �= 0
non overlapping and consecutive blocks of hyperbolic wavelet coefficients (resp.

empirical hyperbolic wavelet coefficients) with same parameter j ∈ L
i
mε with

common length ε,d and we denote by θ / B
i
j,k(ε) (resp. θ̂ / B

i
j,k(ε)) the block

that contains θ
i
j,k (resp. θ̂

i
j,k).

Definition 5.8. Let 0 < ε < e−1 and a givenm > 0. The BlockShrink estimator
f̃B is defined by

f̃B =
∑

i∈{0,1}d

∑
j∈J

o,i
ε

∑
k∈Kj

θ̂
i
j,kψ

i
j,k +

∑
i �=0

∑
j∈L

i
mε

∑
k∈Kj

θ̂
i
j,k1

{
‖θ̂/Bi

j,k(ε)‖�2
> mε

}
ψ
i
j,k,

(14)

where ‖θ̂/Bi
j,k(ε)‖�2

=
(
−1
ε,d

∑
k′∈B

i
j,k(ε)

|θ̂ij,k′ |2
)1/2

.

Theorem 5.4 (Maxiset of f̃B). Fix γ > 0, p ≥ 2, m ≥ 2
√
cp where cp is such

that c2p − 2 log cp = 4p+ 1 and consider the estimator f̃B defined in (14). Then

the maxiset of f̃B for the rate ε
2γp
1+2γ is

MS
(
f̃B , ‖.‖pp, ε

2γp
1+2γ

)
= A γ

1+2γ ,p ∩W
B

r,p,m.

Using proposition 5.1, we deduce that the hyperbolic BlockShrink estimator
is able to reconstruct a larger set of functions than the anisotropic Besov space
at the optimal minimax rate.
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Table 1

Overview of the maxiset results for the linear non-adaptive, the linear semi-adaptive and the
two non-linear estimators, the hard thresholding estimator and the hyperbolic block

thresholding estimator. We refer to the theorems for the precise definitions

Estimator rate maxiset Theorem

f̃L,γ,s ε2γp/(1+2γ) H
s
p Th. 5.1

f̃L,γ (ε(log ε−1)
d−1
p )2γp/(1+2γ) Aγ,p ⊃

⋃
s, |s|−=γ H

s
p Th. 5.2

f̃H (ε
√

log ε−1)2γp/(1+2γ) A γ
1+2γ

,p ∩W
H

p
1+2γ

,p
⊃

⋃
s, |s|−=γ B

s
p,∞ Th. 5.3

f̃B ε2γp/(1+2γ) A γ
1+2γ

,p ∩W
B

r,p,m ⊃
⋃

s, |s|−=γ B
s
p,∞ Th. 5.4

5.4. Comparison of the maxiset results

To facilitate the understanding of the above results, Table 1 provides an overview.
In the linear non-adaptive case, there is a full knowledge of the smoothness vec-
tor s. This results in an optimal rate for estimating functions with this precise
smoothness vector s. When only using the knowledge about its harmonic sum
γ = |s|− for the semi-adaptive estimator, the rate gets a bit slower, and seem-
ingly the dimensionality plays a role, see the power (d − 1)/p, though the real
curse of the dimension is counteracted by this estimator having a larger maxiset.
Indeed, instead of the maxiset being H

s
p , using Proposition 5.1, the maxiset

contains the union of all such sets H
s
p for which s is such that its harmonic

sum is equal to the specified γ. For both nonlinear thresholding estimators, the
rate does not contain the dimensionality information except in the parameter γ.
While Proposition 5.1 shows that both maxisets contain the same union of Besov
bodies, the here proposed hyperbolic block thresholding estimator attains this
maxiset using the same rate as in the linear non-adaptive case. The rate for the
hard thresholding estimator is slower by a logarithmic factor.

6. Numerical experiments

We check our theoretical findings in a numerical experiment. We consider the
multivariate nonparametric regression model of (15) which is asymptotically
equivalent in Le Cam’s sense to the Gaussian white noise model given by (2) as
the number of observations tends to infinity (Reiss, 2008) under the appropriate

calibration of the noise level ε = σ/
√
Nd. Let ζl1,...,ld be i.i.d. N (0, 1),

Yl1,...,ld = f

(
l1
N

, . . . ,
ld
N

)
+ σζl1,...,ld , 1 ≤ lu ≤ N, 1 ≤ u ≤ d. (15)

6.1. Construction of data driven analogs to the non/semi adaptive
procedures

The non- and semi- adaptive procedures studied previously consider wavelet
coefficients up to certain scales that are calibrated based on the knowledge of
the unknown smoothness of the estimand. In this section we propose a simple
methodology based on ideas of Sieve estimators (see Massart, 2007) to calibrate
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them in a practical setting when we do not know the underlying smoothness.
Let us consider the sets of all possible non adaptive models FMNA

N
and semi

adaptive models FMSA
N

based on Nd observations,

FM∗A
N

=
{
f̂m∗A =

∑
k′∈K0

θ̂
0
0,k′ψ

0
0,k′ +

∑
i�=0

∑
(j,k)∈m∗A

i

θ̂
i
j,kψ

i
j,k;

m∗A
i ∈ M∗A

N,i, m∗A := {m∗A
i ; i �= 0}

}
,

where *A corresponds to either NA or SA and

MNA
N,i :=

{
mi,J :=

{
(j, k) ∈ J

i ×Kj ; ju ≤ Ju, ∀u
}
; J = (J1, . . . , Jd) ∈

{0, . . . , log2(N)}d
}
,

MSA
N,i :=

{
m′

i,J :=
{
(j, k) ∈ J

i ×Kj ; |j| ≤ J ; ju ≤ log2(N), ∀u
}
;

J ≤ |i| log2(N)
}
.

An oracle choice of the nuisance parameters leads to the following optimization
problem

f̂m∗A
o

= arg min
f̂m∗A∈FM∗A

N

E‖f̂m∗A − f‖22

= arg min
f̂m∗A∈FM∗A

N

{−
∑

(i,j,k)∈m∗A

[θ
i
j,k]

2 + |m∗A|σ2/Nd}.

The solution is found by solving the following problem for every i ∈ {0, 1}d\{0},

m∗A
i,o = arg min

m∗A
i ∈M∗A

N,i

{−
∑

(j,k)∈m∗A
i

[θ
i
j,k]

2 + |m∗A
i |σ2/Nd}.

In practice, we plug in empirical quantities and adjust for the variability in the
data. We also propose the estimator f̂m̂∗A

o
, where

m̂∗A
i,o = arg min

m∗A
i ∈M∗A

N,i

{
−

∑
(j,k)∈m∗A

i

[θ̂
i
j,k]

2 + |m∗A
i |λ̂2}, (16)

and where λ̂ = σ̂
√
2dN−d logN is the universal threshold,

6.2. Practical settings

For the generation of the multivariate test functions we use the Sobol decom-
position of a d-variate function f ∈ L2[0, 1]

d into 2d orthogonal summands of
growing dimensions,

f(x1, . . . , xd) =
d∑

u=1

∑
i1<···<iu

fi1...iu(xi1 , . . . , xiu). (17)

In some cases, the ‘interaction’ terms can be taken just as products of univariate
functions. Hereafter we list the test functions used in the numerical experiments,
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most of them are standard test functions for univariate function estimation
in the wavelet literature (Antoniadis et al., 2001). When a full interaction is
specified, it is basically a full tensor product model, i.e., the interactions are
obtained as a weighted product of the univariate, marginal, functions.

A: 2d we consider two standard images. The first one is a picture of John
Lennon furnished in R package Wavethresh (Nason, 2013), the second
one is an image of a house, exhibiting stronger contours, furnished in the
Matlab package Threshlab (Jansen, 2015),

B: 3d full interactions: f1: ‘parabolas’, f2: ‘wave’, f3: ‘bumps’,
C: 3d full interactions: f1: ‘blip’, f2: ‘wave’, f3: ‘step’,
D: 3d f (x1, x2, x3) := f1 (x1) + f2 (x2) + f3 (x3) + f123 (x1, x2, x3),

f1 : ‘blocks’, f2 (x2) = 0.5 sin (2πx2), f3 (x3) = 0.5 sin (2πx3/5),

f123 (x1x,2 , x3) = 64 (x1x2x3)
3
(1− x1x2x3)

3
.

We generate noisy functions with various sample sizes N = {32, 64, 128} and
various signal to noise ratios SNR ∈ {2, 5, 10, 15} defined as the ratio of the stan-
dard deviation of the function values to the standard deviation of the noise. We
use Daubechies’ least asymmetric wavelets with eight vanishing moments. We
used the universal threshold, i.e., λ̂ = σ̂

√
2dN−d logN . We follow a standard ap-

proach to estimate σ from the data by computing the median absolute deviation
(MAD) divided by 0.6745 over the wavelet coefficients at the finest wavelet scale

(Vidakovic, 1999), i.e., {θ̂1J k}. We compute the integrated squared error of the

estimators f̂m̂∗A
o

at the a-th Monte Carlo replication ISE(a)(f̂m̂∗A
o
), 1 ≤ a ≤ M ,

as follows:

ISE(a)(f̂m̂∗A
o
) =

1

Nd

N∑
l1=1

. . .

N∑
ld=1

[
f̂
(a)
m̂∗A

o

( l1
N

, . . . ,
ld
N

)
− f

( l1
N

, . . . ,
ld
N

)]2
. (18)

The mean ISE is MISE(f̂m̂∗A
o
) = M−1

∑M
a=1 ISE

(a)(f̂m̂∗A
o
).

6.3. Results

We first consider setup A, for which the MISE results are reported in Table 2.
First, the non-adaptive estimator performs better than the semi-adaptive one.

Table 2

MISE (10−5) for various SNR (100 Monte Carlo replications)

Lennon House
�����������
Method

SNR

2 5 10 15 2 5 10 15

Hyperbolic Hard 2.22 1.45 1.03 0.83 11.50 8.00 5.82 4.79
Hyperbolic Block 5.12 2.34 1.31 0.96 16.15 7.76 4.43 3.16

Non-adaptive 2.67 1.49 1.43 1.40 15.27 12.19 9.01 8.92
Semi-adaptive 3.61 2.26 1.60 1.38 16.45 15.15 11.26 10.30
Standard Hard 2.39 1.59 1.14 0.94 11.83 8.44 6.28 5.25
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Nevertheless, the best results in term of MISE are achieved by thresholding in
the hyperbolic wavelet basis. Information pooling yields better results only for
‘house’ when the SNR is not too low. Else the hyperbolic hard thresholding
performs well, in particular for ‘Lennon’. Hard thresholding in the standard
wavelet basis exhibits good performances, almost always better than the non-
adaptive procedures but thresholding in a hyperbolic wavelet basis, even in the
case of such images, always yields better MISE results.

The results of estimating the 3-d functions, corresponding to settings B, C, D
are reported in Table 3. We first remark quite significant differences in the per-
formance of the estimator constructed by projection onto the standard wavelet
basis as compared to the hyperbolic one. The former has deteriorated perfor-
mances in term of MISE. It is also clear that hyperbolic hard thresholding per-
forms very well over the various SNR and sample sizes tested. In contrast with
the 2-d setting, the semi-adaptive procedure performs often better than the non-
adaptive one, in particular when the SNR and the sample size are large enough.
Finally, it appears that the hyperbolic block thresholding estimator requires a
large enough sample size to start to outperform the hard thresholding estimator.

7. Discussion

In this paper, we compared via the maxiset approach the ability of multivari-
ate wavelet bases, namely the standard and the hyperbolic wavelet bases, to
estimate functions with possibly anisotropic smoothness under the sequential
Gaussian white noise model. Our results give new insights on how the standard
wavelet basis cannot achieve optimal estimation whenever the estimand has
anisotropic smoothness. In addition, we derive the maxisets of several methods
in hyperbolic bases and show their optimal or near-optimal performance. In par-
ticular, among nonlinear methods, increasing the precision of the choice of the
coefficients to keep or kill by pooling information from blocks of neighboring
coefficients, allows to enlarge the maxiset. The hyperbolic block thresholding
estimator is able to reconstruct functions from anisotropic Besov spaces at the
optimal rate of convergence. Within our numerical experiments we confirm that
combining hyperbolic wavelets and information pooling is an efficient strategy,
provided that the size of the sample under study is large enough.

Appendix

In the proofs we denote by C a positive constant that does not depend on ε and
that may be different from one line to another.

A.1. Proof of results given in Section 4

A.1.1. Proof of Proposition 4.1

Proof. Fix p ≥ 2, s ∈ ]0,+∞[d and choose the isotropic wavelet basis B̄d. For
any j ∈ N consider the isotropic j-linear isotropic estimator as defined in (6).
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Table 3. MISE(10−8) for estimation in setups B, C, D for various SNR and sample sizes

N 32 64 128
�����������
Method

SNR 2 5 10 15 2 5 10 15 2 5 10 15

B Hyperbolic Hard 291.64 147.07 83.62 64.60 27.49 15.71 10.11 7.64 2.68 1.48 0.90 0.67
Hyperbolic Block 310.84 154.96 90.77 66.92 41.58 19.70 10.84 7.78 2.62 1.15 0.70 0.50

Hyperbolic non-adaptive 257.79 168.00 105.85 94.17 67.11 52.45 14.72 12.60 10.50 9.52 7.99 1.45
Hyperbolic semi-adaptive 274.01 217.18 190.39 102.53 51.11 31.05 24.06 20.76 4.76 4.14 2.22 2.16

Standard Hard 2348.25 2050.93 1740.96 1530.27 555.12 296.51 175.10 130.52 74.80 45.28 28.94 21.80

C Hyperbolic Hard 409.61 231.94 149.17 113.83 36.19 19.29 12.44 9.43 3.01 1.66 0.99 0.74
Hyperbolic Block 469.61 233.62 136.73 103.70 52.39 24.89 13.93 10.17 3.52 1.63 0.91 0.66

Hyperbolic non-adaptive 442.06 350.70 249.46 224.29 59.71 36.83 31.85 23.05 6.83 5.13 4.03 3.98
Hyperbolic semi-adaptive 451.48 357.55 253.81 238.37 48.80 33.27 25.28 21.21 4.72 3.54 2.25 2.18

Standard Hard 2777.78 2122.90 1697.68 1427.57 394.13 257.58 170.99 123.02 49.98 31.75 22.53 18.09

D Hyperbolic Hard 475.69 227.57 144.15 117.51 30.40 17.87 11.34 8.19 4.52 2.34 1.42 1.04
Hyperbolic Block 545.81 243.96 142.37 108.18 48.88 25.20 14.40 9.98 4.57 2.04 1.15 0.79

Hyperbolic non-adaptive 842.12 680.11 498.26 485.31 115.09 94.81 87.10 65.97 19.59 14.42 14.14 10.05
Hyperbolic semi-adaptive 739.12 478.47 309.59 288.18 90.84 47.82 44.80 30.73 9.05 5.89 3.45 3.33

Standard Hard 1660.46 1213.78 847.78 679.76 290.39 218.98 158.79 125.84 52.66 37.85 26.56 20.70
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For any 0 < ε < e−1, the risk of such an estimator can be decomposed as follows:

E‖f̂ l,j − f‖pp = εp
(
(2L+ 1)d +

∑
i �=0

∑
j∈J:|j|<dj

2|j|(
p
2−1)(2

|j|
d + 2L− 1)d

)

+
∑
i �=0

∑
j∈J:|j|≥dj

2|j|(
p
2−1)

∑
k∈Kj

|θij,k|p. (19)

Put s = min1≤u≤d su and let δ > s/(d + 2s). For a chosen K > 0, con-
sider the Besov body of radius K, B

s
p,∞(K). Then, when considering js,ε as in

Proposition 4.3, for some C = C(K,L) > 0,

inf
j∈N

sup
f∈B

s
p,∞(K)

ε−2δp
E‖f̂ l,j − f‖pp ≥ C sup

f∈B
s
p,∞(K)

ε−2δp
E‖f̂ l,js,ε − f‖pp

≥ C ε−2δp εp 2js,ε
dp
2 ≥ C ε−2(δ− s

d+2s )p.

Clearly the right hand-side term tends to +∞ when ε goes to 0. We also
conclude that for any j ∈ N, MS(f̂ l,j , ‖.‖pp, ε2δp) �⊃ B

s
p,∞.

A.1.2. Proof of proposition 4.2

Proof. Fix p ≥ 2 and s ∈ ]0,+∞[ . Let f ∈ B
s
p,∞ where s is such that

min1≤u≤d su = s. Since for any i �= 0 and any j ∈ J,

2|j|(
p
2−1)

∑
k∈Kj

|θij,k|p ≤ C2−
sp
d |j|,

we immediately deduce that f belongs to Is,p and also that B
s
p,∞ ⊂ Is,p. Because

of the arbitrary choice of s such that min1≤u≤d su we conclude that

Is,p ⊃
⋃

s, su≥s ∀u
Bs

p,∞.

A.1.3. Proof of Proposition 4.3

Proof. Choose the isotropic wavelet basis B̄d. Let us prove the maxiset result
given in (8). Let p ≥ 2 and s ∈ ]0,+∞[ .

⇐
Fix 0 < ε < e−1 and consider f ∈ Is,p. Then, following (19),

E

∥∥∥f̂ l,js,ε − f
∥∥∥p
p

≤ Cεp2
dp
2 js,ε +

∑
i �=0

∑
j∈J:|j|≥djs,ε

2|j|(
p
2−1)

∑
k∈Kj

|θij,k|p

≤ C
(
ε

2sp
d+2s + 2−sjs,εp

)
≤ C ε

2sp
d+2s .

Therefore f ∈ MS(f̂ l,js,ε , ‖.‖p
p
, ε

2sp
d+2s ).
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⇒

To prove the other set inclusion, let f ∈ MS(f̂ l,js,ε , ‖.‖p
p
, ε

2sp
d+2s ). Then, for

any 0 < ε < e−1, any i �= 0,

2js,ε(
p
2−1)d

∑
k∈Kj

|θij,k|p ≤ E‖f̂ l,js,ε − f‖pp ≤ C ε
2sp

d+2s ≤ C2−sjs,εp.

Hence we deduce that f necessarily belongs to Is,p.

A.1.4. Proof of proposition 4.4

Proof. Consider the d-vector c = (c, . . . , c) with c > 0, p ≥ 2 and a parameter
s = (s1, . . . , sd) such that

smin = min
1≤u≤d

su =
γβ

c(1 + 2γ)

for some 0 < β < 1 and γ = |s|− . Let f be the function which is defined as
follows,

f =
∑
i �=0

∑
j∈J

min
1≤u≤d

2−(juiusu+
|j|
2 )

∑
k∈Kj

ψ
i
j,k.

Note that f belongs to B
s
p,∞ because its wavelet coefficients are such that for

any i �= 0 and any j ∈ J,

2|j|(
p
2−1)

∑
k∈Kj

|θij,k|p = min
1≤u≤d

2−(juiusup+|j|)
d∏

v=1

(2jv + 2L− 1)

≤ (2L)d min
1≤u≤d

2−juiusup.

For any i �= 0, consider j
c,ε

= (�cjrε�, . . . , �cjrε�) ∈ J. The risk of any (rε, c)-

truncated estimator f̂ is such that

r
− 2γp

1+2γ
ε E‖f̂ − f‖pp ≥ r

− 2γp
1+2γ

ε

∑
i �=0

2
|j

c,ε
|( p

2−1)
∑

k∈Kj
c,ε

|θij
c,ε

,k|p

≥ C r
− 2γp

1+2γ
ε 2−cjrεsmin

p ≥ C r
2(β−1)γp

1+2γ
ε .

Since β < 1, the right hand-side term tends to +∞ when ε goes to 0. We also

conclude that f does not belong to the maxiset of f̂ for the rate r
2γp
1+2γ
ε with

γ = |s|− . Hence,
MS

(
f̂ , ‖.‖pp, r

2γp
1+2γ
ε

)
�⊃ Bs

p,∞.

A.1.5. Proof of Proposition 4.5

Proof. Fix p ≥ 2, s ∈ ]0,+∞[d and choose the hyperbolic wavelet basis. Consider
a (rε, c)-truncated estimator f̃ with, for some 1 ≤ u ≤ d, cu < γ

(1+2γ)su
, where
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γ = |s|− . Define

f =
∑

j∈J
i
min

∑
k∈Kj

min
1≤u≤d

2−(juiusu+
|j|
2 ) ψ

i
min

j,k ,

where i
min

has just one non zero coordinate localized in direction
v = argmin1≤u≤d cusu. Clearly f ∈ B

s
p,∞. Moreover, for c = (c1, . . . , cd) and

j
c,ε

= (�c1jrε�, . . . , �cdjrε�),

r
− 2γp

1+2γ
ε E‖f̃ − f‖pp ≥ r

− 2γp
1+2γ

ε

∑
k∈Kj

c,ε

2
|j

c,ε
|( p

2−1)|θimin

j
c,ε

,k|p

≥ C r
− 2γp

1+2γ
ε 2−cvsvjrεp ≥ C r

−( 2γ
1+2γ −cvsv)p

ε .

Since the right-hand side of the last inequality tends to +∞ when ε goes to 0, we

conclude that f /∈ MS(f̃ , ‖.‖pp, r
2γp
1+2γ
ε ). Hence, B

s
p,∞ �⊂ MS(f̃ , ‖.‖pp, r

2γp
1+2γ
ε ).

A.2. Proofs of results given in Section 5

A.2.1. Proof of Theorem 5.1

Proof. ⇒
First we show that the maxiset is part of B

s
p,∞. Suppose that for any 0 <

ε < e−1 there exists C > 0 such that

E‖f̃L,γ,s − f‖pp ≤ C ε
2γp
1+2γ ,

then, for any 0 < ε < e−1, any i �= 0 and any j = (j1, . . . , jd) ∈ Ji such that, for
some 1 ≤ v ≤ d, max1≤u≤d jusu = jε,vsv,

2|j|(
p
2−1)

∑
k∈Kj

|θij,k|p ≤ E‖f̃L,γ,s − f‖pp ≤ C ε
2γp
1+2γ ≤ C 2−jε,vsvp.

Hence, the function f necessarily belongs to H
s
p .

⇐

For any 0 < ε < e−1 and any f ∈ H
s
p , the risk of the estimator f̃L,γ,s is such

that

E‖f̃L,γ,s − f‖pp ≤ Cεp2
|j

ε,s
| p2 +

∑
i �=0

∑
j∈Ji:ju≥jε,u,for some u

2|j|(
p
2−1)

∑
k∈Kj

|θij,k|p

≤ C
(
εp2

|j
ε,s

| p2 + 2
−|j

ε,s
|γp

)
≤ Cε

2γp
1+2γ .

Hence, for any f ∈ H
s
p ,

sup
0<ε<e−1

ε−
2γp
1+2γ E‖f̃L,γ,s − f‖pp < ∞,

meaning that f ∈ MS(f̃L,γ,s, ‖.‖pp, ε
2γp
1+2γ ).
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A.2.2. Proof of Theorem 5.2

Proof. ⇒
Suppose that for any 0 < ε < e−1 there exists C > 0 such that

E‖f̃L,γ − f‖pp ≤ C
(
ε(log ε−1)

d−1
p

) 2γp
1+2γ

.

For any 0 < ε < e−1,

sup
i �=0

∑
j∈Ji; |j|≥jε,p,γ

2|j|(
p
2−1)

∑
k∈Kj

|θij,k|p ≤ E‖f̃L,γ − f‖pp

≤ C
(
ε(log ε−1)

d−1
p

) 2γp
1+2γ ≤ C2−jε,p,γγp.

Therefore, f ∈ Aγ,p.

⇐

For any 0 < ε < e−1 and any f ∈ Aγ,p, the risk of the estimator f̃L,γ is such
that

E‖f̃L,γ − f‖pp ≤ C εp 2jε,p,γ
p
2

∑
i∈{0,1}d

{
j ∈ J

i : |j| < jε,p,γ
}

+
∑
i �=0

∑
j∈Ji; |j|≥jε,p,γ

2|j|(
p
2−1)

∑
k∈Kj

|θij,k|p

≤ C
(
(jε,p,γ)

d−1εp 2jε,p,γ
p
2 + 2−jε,p,γγp

)
≤ C (ε(log(ε−1)

d−1
p )

2γp
1+2γ .

Hence, for any f ∈ Aγ,p,

sup
0<ε<e−1

(ε(log(ε−1)
d−1
p )−

2γp
1+2γ E‖f̃L,γ − f‖pp < ∞.

Therefore f ∈ MS(f̃L,γ , ‖.‖pp, (ε(log(ε−1)
d−1
p )

2γp
1+2γ ).

A.2.3. Proof of Theorem 5.3

Proof. Choose γ > 0, m > 4
√
p with p ≥ 2.

⇒

Suppose that there exists C > 0 such that, for any 0 < ε < e−1, E‖f̃H−f‖pp ≤
C t

2γp
1+2γ
ε . Then, for any i �= 0 and any 0 < ε < e−1,

∑
j /∈J

i
mtε

2|j|(
p
2−1)

∑
k∈Kj

|θij,k|p ≤ E‖f̃H − f‖pp ≤ C t
2γp
1+2γ
ε ≤ C 2−

γp
1+2γ jmtε .
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We deduce that f belongs to A γ
1+2γ ,p. Denote, for any 0 < ε < e−1,

E := t
− 2γp

1+2γ
ε

∑
i �=0

∑
j∈Ji

2|j|(
p
2−1)

∑
k∈Kj

|θij,k|p1
{
|θij,k| ≤

mtε
2

}
:= E1 + E2 + E3.

E1 := t
− 2γp

1+2γ
ε E

[∑
i�=0

∑
j∈J

i
mtε

2|j|(
p
2−1)

∑
k∈Kj

|θij,k|p1
{
|θij,k| ≤

mtε
2

}
1
{
|θ̂ij,k| ≤ mtε

}]

≤ t
− 2γp

1+2γ
ε E

[∑
i �=0

∑
j∈J

i
mtε

2|j|(
p
2−1)

∑
k∈Kj

|θij,k|p1
{
|θ̂ij,k| ≤ mtε

}]

≤ t
− 2γp

1+2γ
ε E‖f̃H − f‖pp ≤ C.

E2 := t
− 2γp

1+2γ
ε E

[∑
i�=0

∑
j∈J

i
mtε

2|j|(
p
2−1)

∑
k∈Kj

|θij,k|p1
{
|θij,k| ≤

mtε
2

}
1
{
|θ̂ij,k| > mtε

}]

≤ t
− 2γp

1+2γ
ε

∑
i�=0

∑
j∈J

i
mtε

2|j|(
p
2−1)

∑
k∈Kj

|θij,k|pP
[
|θ̂ij,k − θ

i
j,k| >

mtε
2

]

≤ C t
− 2γp

1+2γ
ε ε

m2

8 ≤ C.

Because we have already proven that f belongs to A γ
1+2γ ,p,

E3 := t
− 2γp

1+2γ
ε

∑
i �=0

∑
j /∈J

i
mtε

2|j|(
p
2−1)

∑
k∈Kj

|θij,k|p1
{
|θij,k| ≤

mtε
2

}

≤ t
− 2γp

1+2γ
ε

∑
i�=0

∑
j /∈J

i
mtε

2|j|(
p
2−1)

∑
k∈Kj

|θij,k|p ≤ C t
− 2γp

1+2γ
ε 2−

γp
1+2γ jmtε ≤ C.

Combining the bounds of E1, E2, E3, we deduce that f belongs to W
H

p
1+2γ ,p.

⇐

Let f ∈ A γ
1+2γ ,p ∩W

H

p
1+2γ ,p. E‖f̃H − f‖pp := F1 + F2 + F3.

Using the fact that f ∈ W
H

p
1+2γ ,p and the Cauchy-Schwarz inequality,

F1 := E

[∑
i �=0

∑
j∈J

i
mtε

2|j|(
p
2−1)

∑
k∈Kj

|θ̂ij,k − θ
i
j,k|p1

{
|θ̂ij,k| > mtε

}]

≤
∑
i�=0

∑
j∈J

i
mtε

2|j|(
p
2−1)

∑
k∈Kj

E(|θ̂ij,k − θ
i
j,k|p)1{|θ

i
j,k| >

mtε
2

}

+
∑
i �=0

∑
j∈J

i
mtε

2|j|(
p
2−1)

∑
k∈Kj

E
(
|θ̂ij,k − θ

i
j,k|p1{|θ̂

i
j,k − θ

i
j,k| >

mtε
2

}
)

≤ C
(
εp t

− p
1+2γ

ε + ε
m2

16 (log(ε−1))d−1−p/2
)
≤ C t

2γp
1+2γ
ε .
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With analogous arguments,

F2 := E

[∑
i �=0

∑
j∈J

i
mtε

2|j|(
p
2−1)

∑
k∈Kj

|θij,k|p1
{
|θ̂ij,k| ≤ mtε

}]

≤
∑
i�=0

∑
j∈J

i
mtε

2|j|(
p
2−1)

∑
k∈Kj

|θij,k|p1
{
|θij,k| ≤ 2mtε

}

+
∑
i �=0

∑
j∈J

i
mtε

2|j|(
p
2−1)

∑
k∈Kj

|θij,k|pP
(
|θ̂ij,k − θ

i
j,k| > mtε

)

≤ C
(
t

2γp
1+2γ
ε + ε

m2

2

)
≤ C t

2γp
1+2γ
ε .

Since f belongs to A γ
1+2γ ,p,

F3 := C εp +
∑
i �=0

∑
j /∈J

i
mtε

2|j|(
p
2−1)

∑
k∈Kj

|θij,k|p

≤ C εp + C 2−
γp

1+2γ jmtε ≤ C
(
εp + t

2γp
1+2γ
ε

)
≤ C t

2γp
1+2γ
ε .

Combining the bounds of F1, F2 and F3, we conclude that

sup
0<ε<e−1

t
− 2γp

1+2γ
ε E‖f̃H − f‖pp < ∞.

Therefore f ∈ MS
(
f̃H , ‖.‖pp, t

2γp
1+2γ
ε

)
.

A.2.4. Proof of Theorem 5.4

Proof. Choose γ > 0, p ≥ 2 and m ≥ 2
√
cp where cp is such that c2p − 2 log cp =

4p+ 1.

⇒

Suppose that there exists C > 0 such that, for any 0 < ε < e−1, E‖f̃B−f‖pp ≤
C ε

2γp
1+2γ . Then, for any i �= 0 and any 0 < ε < e−1,∑

j /∈ Ji\(Jo,iε

⋃
L
i
mε)

2|j|(
p
2−1)

∑
k∈Kj

|θij,k|p ≤ E‖f̃B − f‖pp ≤ C ε
2γp
1+2γ ≤ C2−

γp
1+2γ jmε .

We deduce that f belongs to A γ
1+2γ ,p. Denote, for any 0 < ε < e−1,

G := ε−
2γp
1+2γ

∑
i �=0

∑
j∈L

i
mε

2|j|(p/2−1)
∑
k∈Kj

|θij,k|p 1
{
‖θ / B

i
j,k(ε)‖�2

≤ mε

2

}

:= G1 +G2 +G3.
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G1 := ε−
2γp
1+2γ E

[∑
i�=0

∑
j∈L

i
mε

2|j|(p/2−1)
∑
k∈Kj

|θij,k|p

× 1
{
‖θ̂ / B

i
j,k(ε)‖2 ≤ mε

}
1
{
‖θ / B

i
j,k(ε)‖�2

≤ mε

2

}]
≤ ε−

2γp
1+2γ E

[∑
i�=0

∑
j∈L

i
mε

2|j|(
p
2−1)

∑
k∈Kj

|θij,k|p1
{
‖θ̂ / B

i
j,k(ε)‖�2 ≤ mε

}]

≤ ε−
2γp
1+2γ E‖f̃B − f‖pp ≤ C.

G2 := ε−
2γp
1+2γ E

[∑
i�=0

∑
j∈L

i
mε

2|j|(
p
2−1)

∑
k∈Kj

|θij,k|p

× 1
{
‖θ̂ / B

i
j,k(ε)‖2 > mε

}
1
{
‖θ / B

i
j,k(ε)‖�2

≤ mε

2

}]
≤ ε−

2γp
1+2γ E

[∑
i�=0

∑
j∈L

i
mε

2|j|(
p
2−1)

∑
k∈Kj

|θij,k|p1
{
‖θ̂ − θ / B

i
j,k(ε)‖�2

>
mε

2

}]

≤ ε−
2γp
1+2γ

[∑
i�=0

∑
j∈L

i
mε

2|j|(
p
2−1)

∑
k∈Kj

|θij,k|pP[Z(ε) >
m2ε,d

4
]
]

≤ C ε2p−
2γp
1+2γ ≤ C,

where Z(ε) is a chi-squared random variable with oε degrees of freedom. Indeed,
following Cai (1999),

sup
0<ε<e−1

ε−2p
P[Z(ε) > cp ε,d] < ∞. (20)

Because we have already prove that f belongs to A γ
1+2γ ,p,

G3 := ε−
2γp
1+2γ

[∑
i �=0

∑
j /∈ Ji\

(
J
o,i
ε

⋃
L
i
mε

)2|j|( p
2−1)

∑
k∈Kj

|θij,k|p1
{
‖θ/Bi

j,k(ε)‖2 ≤ mε

2

}]

≤ ε−
2γp
1+2γ

∑
i �=0

∑
j /∈ Ji\

(
J
o,i
ε

⋃
L
i
mε

)2|j|( p
2−1)

∑
k∈Kj

|θij,k|p ≤C ε−
2γp
1+2γ 2−

γp
1+2γ jmε ≤C.

Combining the bounds of G1, G2, G3, we deduce that f belongs to W
B

p
1+2γ ,p,m.

⇐

Let f ∈ A γ
1+2γ ,p ∩W

B

p
1+2γ ,p,m. E‖f̃B − f‖pp := H1 +H2 +H3.

H1 := E

[∑
i�=0

∑
j∈L

i
mε

2|j|(
p
2−1)

∑
k∈Kj

|θ̂ij,k − θ
i
j,k|p1

{
‖θ̂ / B

i
j,k(ε)‖�2

> mε
}]

≤
∑
i�=0

∑
j∈L

i
mε

2|j|(
p
2−1)

∑
k∈Kj

E
(
|θ̂ij,k − θ

i
j,k|p

)
1
{
‖θ / B

i
j,k(ε)‖�2

>
mε

2

}
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+
∑
i �=0

∑
j∈L

i
mε

2|j|(
p
2−1)

∑
k∈Kj

E
[
|θ̂ij,k − θ

i
j,k|p1

{
‖θ̂ − θ/B

i
j,k(ε)‖�2

>
mε

2

}]

:= H11 +H12.

Since f ∈ W
B

p
1+2γ ,p,m,

H11 := C εp
∑
i �=0

∑
j∈L

i
mε

2|j|(
p
2−1)

∑
k∈Kj

1
{
‖θ / B

i
j,k(ε)‖�2

>
mε

2

}

= Cεp
∑
n∈N

∑
i�=0

∑
j∈L

i
mε

2|j|(
p
2−1)

∑
k∈Kj

1
{
mε2n−1 < ‖θ / B

i
j,k(ε)‖�2

≤ mε2n
}

≤ C
∑
n∈N

2−np
∑
i �=0

∑
j∈Ji:|j|≥|jo,i

ε2n+1 |

2|j|(
p
2−1)

∑
k∈Kj

|θij,k|p

× 1
{
‖θ/Bi

j,k(ε2
n+1)‖

�2
≤ mε2n

}
≤ C ε

2γp
1+2γ .

Using the Cauchy-Schwarz inequality and the inequality given in (20),

H12 :=
∑
i �=0

∑
j∈L

i
mε

2|j|(
p
2−1)

∑
k∈Kj

E
[
|θ̂ij,k − θ

i
j,k|p1

{
‖θ̂ − θ / B

i
j,k(ε)‖�2

>
mε

2

}]

≤ C εp
∑
i �=0

∑
j∈L

i
mε

2|j|(
p
2−1)

∑
k∈Kj

P
1
2 [Z(ε) >

m2ε,d
4

]

≤ Cεp(log ε−1)d−1 ≤ C ε
2γp
1+2γ .

Combining both H11 and H12, we deduce that H1 ≤ C ε
2γp
1+2γ .

With analogous arguments,

H2 := E

[∑
i�=0

∑
j∈L

i
mε

2|j|(
p
2−1)

∑
k∈Kj

|θij,k|p1
{
‖θ̂ / B

i
j,k(ε)‖�2

≤ mε
}]

≤
∑
i�=0

∑
j∈L

i
mε

2|j|(
p
2−1)

∑
k∈Kj

|θij,k|p1
{
‖θ / B

i
j,k(4ε)‖�2

≤ 2mε
}

+
∑
i�=0

∑
j∈L

i
mε

2|j|(
p
2−1)

∑
k∈Kj

|θij,k|pP
(
Z (ε) > m2ε,d

)

≤ C
(
ε

2γp
1+2γ + ε2p

)
≤ C ε

2γp
1+2γ .

Finally, since f belongs to A γ
1+2γ ,p,

H3 :=
∑

i∈{0,1}d

∑
j∈J

o,i
ε

2|j|(
p
2−1)

∑
k∈Kj

E
[
|θ̂ij,k − θ

i
j,k|p

]
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+
∑
i�=0

∑
j /∈ Ji\(Jo,iε ∪L

i
mε)

2|j|(
p
2−1)

∑
k∈Kj

|θij,k|p

≤ C εp(jo,i
ε
)d−12|j

o,i

ε
| p2 + C 2−

γp
1+2γ jmε

≤ C εp(log ε−1)
p
2 (log log ε−1)d−1 + C 2−

γp
1+2γ jmε

≤ C
(
εp(log ε−1)

p
2 (log log ε−1)d−1 + εp

)
≤ C ε

2γp
1+2γ .

Combining the bounds of H1, H2 and H3, we conclude that:

sup
0<ε<e−1

ε−
2γp
1+2γ E‖f̃B − f‖pp < ∞.

Therefore f ∈ MS(f̃B , ‖.‖pp, ε
2γp
1+2γ ).
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