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Abstract: We introduce the partial martingale difference correlation,
a scalar-valued measure of conditional mean dependence of Y given X, ad-
justing for the nonlinear dependence on Z, where X, Y and Z are random
vectors of arbitrary dimensions. At the population level, partial martingale
difference correlation is a natural extension of partial distance correlation
developed recently by Székely and Rizzo [14], which characterizes the de-
pendence of Y and X, after controlling for the nonlinear effect of Z. It
extends the martingale difference correlation first introduced in Shao and
Zhang [10] just as partial distance correlation extends the distance corre-
lation in Székely, Rizzo and Bakirov [13]. Sample partial martingale differ-
ence correlation is also defined building on some new results on equivalent
expressions of sample martingale difference correlation. Numerical results
demonstrate the effectiveness of these new dependence measures in the
context of variable selection and dependence testing.

Keywords and phrases: Distance correlation, nonlinear dependence, par-
tial correlation, variable selection.
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1. Introduction

Measuring and testing (in)dependence and partial (in)dependence is important
in many branches of statistics. To measure the dependence of two random vec-
tors X ∈ Rp and Y ∈ Rq, Székely, Rizzo and Bakirov [13] proposed distance
covariance (dCov) and distance correlation (dCor), which have attracted a lot
of attention lately; see related work by Sźekely and Rizzo [12], Li, Zhong and
Zhu [7], Kong et al. [4], Lyons [8], Sejdinovick et al. [9], Sheng and Yin [11],
Dueck et al. [2], Shao and Zhang [10], and Székely and Rizzo [14] among others
for further extensions and applications of these concepts. In particular, Shao
and Zhang [10] proposed the notion of martingale difference divergence (MDD,
hereafter) and martingale difference correlation (MDC, hereafter) to measure
the conditional mean (in)dependence of Y given X (Y is said to be condition-
ally mean independent of X provided that E(Y |X) = E(Y ) almost surely).
Conditional mean dependence plays an important role in statistics. As Cook
and Li [1] stated, “in many situations regression analysis is mostly concerned
with inferring about the conditional mean of the response given the predictors,

∗We want to thank the referees for their helpful comments.
†Shao would like to acknowledge partial financial support from an NSF grant.

1492

http://projecteuclid.org/ejs
http://dx.doi.org/10.1214/15-EJS1047
mailto:thp2@illinois.edu
mailto:xshao@illinois.edu
mailto:shunyao2@illinois.edu


Partial martingale difference correlation 1493

and less concerned with the other aspects of the conditional distribution”. In
practice, it can occur that Z is a variable that has been known a priori to con-
tribute to the variation of Y , and our main interest is to know if X contributes
to the conditional mean of Y (i.e. if Y is conditional mean dependent on X)
after adjusting for the (possibly nonlinear) effect of Z.

In this paper, our goal is to develop a scalar-valued measure of conditional
mean independence of Y given X, controlling for the third random vector Z,
where X, Y and Z are in arbitrary, not necessarily equal dimensions. Our de-
velopment follows that in Székely and Rizzo [14], where the partial distance
covariance and partial distance correlation coefficient (pdCov and pdCor, here-
after) are developed to measure the dependence of Y and X after removing
their respective dependence on Z ∈ Rr. Owing to this connection, we name
them partial MDD and partial MDC (pMDD and pMDC, hereafter).

The main contribution of this paper is two-fold: (1) We discover an equivalent
expression for MDD at both population and sample levels and an important con-
nection to the distance covariance. The new expression makes it easier to prove
a fundamental representation result concerning the sample MDD. A natural ex-
tension of MDD to allow for random vectors for both Y and X is also presented.
(In Shao and Zhang [10], Y is restricted to be a one-dimensional random vari-
able.) (2) We propose partial MDD and MDC as an extension of partial dCov
and partial dCor at both population and sample levels. Our definition of par-
tial MDD differs from that of partial dCov in that the role of Y and X are
asymmetric in quantifying the conditional mean dependence of Y on X con-
trolling for Z. Furthermore, we provide an unbiased estimator of the squared
MDD using the U-centering idea (Székely and Rizzo [14]) and find equivalent
expressions for partial MDC at both population and sample levels. Numerical
results are provided in Section 5 to show that a permutation-based test of zero
partial MDC has accurate size and respectable power in finite sample. Also a
data illustration is provided to demonstrate the effectiveness of pMDC-based
forward variable selection approach as compared to pdCor-based counterpart.
Section 6 concludes, and technical details are gathered in the Appendix 6.

2. Essentials of dCov and dCor

As proposed by Székely, Rizzo and Bakirov [13], the (population) dCov of two
random vectors X ∈ Rp and Y ∈ Rq with finite first moments is V(X,Y ), the
non-negative square root of

V2(X,Y ) =

∫
Rp+q

|φX,Y (s, t)− φX(s)φY (t)|2
1

cpcq |s|1+p
p |t|1+q

q

dt ds (2.1)

where φX , φY , and φX,Y are the individual and joint characteristic functions of
X and Y , and cp = π(1+p)/2/Γ((1+ p)/2). Throughout the paper, | · |p and | · |q
are the (possibly complex) Euclidean norms defined by, for example,

|x|p =
√

xTx =
√
xHx
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where xH denotes the conjugate transpose of x ∈ Cp. In the special case of C1,
we simply denote the modulus as |x|. The dCov characterizes independence in
the sense that V(X,Y ) = 0 if and only if X and Y are independent.

When X and Y have finite second moments, it can be shown that

V2(X,Y ) = E(|X −X ′|p|Y − Y ′|q) + E(|X −X ′|p)E(|Y − Y ′|q)
− 2E(|X −X ′|p|Y − Y ′′|q)

(2.2)

where (X ′, Y ′) and (X ′′, Y ′′) are iid copies of (X,Y ). (See Székely and Rizzo
[12], Theorems 7 and 8.) The (population) dCor of X and Y is R(X,Y ), defined
as the nonnegative number satisfying

R2(X,Y ) =
V2(X,Y )√

V2(X,X)V2(Y, Y )

provided the denominator is positive, and zero otherwise. Both dCov and dCor
have readily-computable sample analogues, which may be used in general tests
for independence.

3. Some properties of MDD and MDC

Martingale difference divergence (MDD) and martingale difference correlation
(MDC) are intended to measure departure from the relationship

E(Y |X) = E(Y ) almost surely

for Y ∈ Rq and X ∈ Rp. Shao and Zhang [10] proposed these measures in
the case q = 1, by extending the distance covariance and distance correlation
proposed in Székely, Rizzo and Bakirov [13]. The following brief review of MDD
and MDC also generalizes Shao and Zhang [10] by allowing for q > 1.

The martingale difference divergence MDD(Y |X) for real random vectors
X ∈ Rp and Y ∈ Rq is defined to be the nonnegative number satisfying

MDD(Y |X)2 =

∫
Rp

|E(Y ei〈s,X〉) − E(Y )E(ei〈s,X〉)|2q
cp |s|1+p

p

ds.

Compared to the expression of the squared distance covariance in (2.1), the
squared MDD uses the same form of weighting function and thus forms a natural
extension. In Shao and Zhang [10], it has been shown that the MDD and MDC
inherit a number of useful properties of dCov and dCor, including the following:

Proposition 3.1. If E|Y |2q + E|X|2p < ∞, then

1. letting (X ′, Y ′) be an iid copy of (X,Y ),

MDD(Y |X)2 = −E[(Y − E(Y ))T (Y ′ − E(Y ′))|X −X ′|p] (3.1)

2. MDD(Y |X) = 0 if and only if E(Y |X) = E(Y ) almost surely.

In the case q = 1 these follow from Theorem 1 of Shao and Zhang [10], and
extension to the case q > 1 is straightforward.
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The martingale difference correlationMDC(Y |X) is the nonnegative number
satisfying

MDC(Y |X)2 =
MDD(Y |X)2√

E[(Y − E(Y ))T (Y ′ − E(Y ′))]2 V2(X,X)

when the denominator is positive, and zero otherwise. This coincides with the
definition in Shao and Zhang [10] for the case q = 1. Following the same argu-
ment in the proof of Theorem 1 of Shao and Zhang [10], it can be shown that
MDC(Y |X) ∈ [0, 1]. Since there is no additional novelty, we skip the details.

3.1. Connection between MDD and dCov

In this subsection, we provide an alternative formulation of MDD, using the
Laplace operator, which relates it more closely to the formula for distance co-
variance (Székely, Rizzo and Bakirov [13]). Furthermore, this new formulation
makes it easier to prove a fundamental representation result concerning the
empirical (sample) version of MDD.

Denote the gradient of a (possibly complex) function f of a real vector x ∈
Rp as ∇xf and the Hessian as Hx(f) = ∇2

xf . Define the Laplace operator
(Laplacian) of f to be

Δxf =

p∑
i=1

∂2f

∂x2
i

= trace(Hx(f))

Proposition 3.2. If Y has finite second moments, for any s ∈ Rp,

|E(Y ei〈s,X〉)−E(Y )E(ei〈s,X〉)|2q =
1

2
Δt|φX,Y (s, t)−φX(s)φY (t)|2

∣∣∣
t=0

. (3.2)

The proof of proposition 3.2 is in the appendix. It follows that

MDD(Y |X)2 =

∫
Rp

(1
2
Δt |φX,Y (s, t)− φX(s)φY (t)|2

∣∣∣
t=0

) 1

cp |s|1+p
p

ds

which has a very similar form to the squared distance covariance

V2(X,Y ) =

∫
Rp

(∫
Rq

|φX,Y (s, t)− φX(s)φY (t)|2
1

cq |t|1+q
q

dt

)
1

cp |s|1+p
p

ds

Conceptually, V2(X,Y ) is weighted everywhere in both s and t, whereas
MDD(Y |X)2 is weighted everywhere in s, but depends only on particular be-
havior local to t = 0. This is conceptually sensible, because only first-moment
information about Y is being used in MDD(Y |X)2. Indeed, we can further re-
late this to the ordinary (squared) covariance. For example, when p = q = 1, it
is true that (when X and Y have sufficiently many moments)

(E(Y X) − E(Y )E(X))2 =
1

2
Δs

(1
2
Δt |φX,Y (s, t)− φX(s)φY (t)|2

∣∣∣
t=0

) ∣∣∣
s=0
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The new formulation (3.2) leads to a straightforward proof of a fundamental
representation for sample MDD. Let φn

X,Y (s, t), φ
n
X(s), φn

Y (t), be the empirical
characteristic functions, joint and marginal, based on averaging over a sample
(x1, y1), . . . (xn, yn) of size n:

φn
X,Y (s, t) =

1

n

n∑
k=1

ei〈s,xk〉+i〈t,yk〉

φn
X(s) =

1

n

n∑
k=1

ei〈s,xk〉 φn
Y (t) =

1

n

n∑
k=1

ei〈t,yk〉

Let MDDn(Y |X)2 be the empirical squared martingale difference divergence,
based on these empirical characteristic functions:

MDDn(Y |X)2 =

∫
Rp

(1
2
Δt |φn

X,Y (s, t)− φn
X(s)φn

Y (t)|2
∣∣∣
t=0

) 1

cp |s|1+p
p

ds

This agrees with the definition in Shao & Zhang [10], according to Theorem 2
therein, along with the previous proposition (applied to the empirical charac-
teristic functions).

Proposition 3.3.

MDDn(Y |X)2 =
1

n2

n∑
k=1

n∑
l=1

AklB
◦
kl (3.3)

where A and B◦ are the double centered versions of the matrices that have ele-
ments

akl = |xk − xl|p and b◦kl =
1

2
|yk − yl|2q

respectively, that is Akl = akl − āk· − ā·l + ā··, āk· = n−1
∑n

j=1 akj , ā·l =

n−1
∑n

j=1 ajl, ā·· = n−2
∑n

k,l=1 akl and similarly for B◦
kl.

It is straightforward to show that B◦ can be replaced with a matrix B∗ that
is the double centered version of the matrix with elements b∗kl = −yTk yl, which
compares directly with the definition of MDDn(Y |X) by Shao and Zhang [10].
The advantage of (3.3) is that it can be proven more directly and it shows
MDDn(Y |X)2 depends purely on Euclidean distances.

By expanding and canceling terms and using (3.1), it can be shown that
(assuming finite third moments)

MDD(Y |X)2 = E
(
|X −X ′|p 1

2 |Y − Y ′|2q
)
+ E(|X −X ′|p)E

(
1
2 |Y − Y ′|2q

)
− 2E

(
|X −X ′|p 1

2 |Y − Y ′′|2q
)

(3.4)
where (X ′, Y ′) and (X ′′, Y ′′) are iid copies of (X,Y ). This compares with (2.2),
thus making another connection between MDD and dCov.
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3.2. Unbiased estimation of MDD

In general, MDDn(Y |X)2 is a biased estimator of MDD(Y |X)2. When de-
veloping the partial distance covariance, Székely and Rizzo [14] introduced U-
centering, which seems essential and leads to unbiased estimator of squared
distance covariance.

Let A = (aij) be a symmetric, real valued n × n matrix with zero diagonal,

with n > 3. Define the U-centered matrix Ã as having (i, j)-th entry

Ãij =

{
aij − 1

n−2

∑n

l=1
ail − 1

n−2

∑n

k=1
akj +

1
(n−1)(n−2)

∑n

k,l=1
akl, i �= j

0, i = j

(3.5)

Let Sn denote the linear span of all n×n distance matrices of samples {x1, . . . ,
xn}. Any A ∈ Sn is a real valued, symmetric matrix with zero diagonal. Let

Hn = {Ã|A ∈ Sn}. Following Székely and Rizzo [14], we define the inner product

of Ã and B̃ in Hn as

(Ã · B̃) =
1

n(n− 3)

∑
i �=j

ÃijB̃ij (3.6)

and |Ã| = (Ã · Ã)1/2 as the norm of Ã. Theorem 1 in Székely and Rizzo [14]
shows that the linear span of all matrices in Hn is a Hilbert space with inner
product defined in (3.6).

This inner product is useful because it defines an unbiased estimator of
squared population dCov (see Proposition 1 of Székely and Rizzo [14]). Be-
low we shall introduce an unbiased estimator for MDD2(Y |X), which is crucial
for the development of partial MDD and partial MDC in Section 4.

Given a random sample (x1, y1), . . . , (xn, yn) from the joint distribution of
(X,Y ), where n > 3, define

aij = |xi − xj |p b◦ij =
1

2
|yi − yj |2q b∗ij = −yTi yj

Define Ã, B̃◦, and B̃∗ to be the U-centered matrices based on (aij), (b
◦
ij), and

(b∗ij). (Even though (b∗ij) generally does not have a zero diagonal, the matrix B̃∗

may still be formally defined as in (3.5). Obviously (b◦ij) has a zero diagonal,
so it better fits the context defined by Székely & Rizzo.) Below we assert that

(Ã · B̃◦) is an unbiased estimate of the squared martingale difference divergence
MDD(Y |X)2, for Y and X in arbitrary dimensions.

Proposition 3.4.
E
[
(Ã · B̃◦)

]
= MDD(Y |X)2

Perhaps surprisingly, B̃◦ can be replaced with B̃∗, and the result remains
true. Indeed,

Proposition 3.5.
(Ã · B̃∗) = (Ã · B̃◦)
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Based on the U-centering, we introduce the unbiased estimator of
MDD(Y |X)2 as

˜MDDn(Y |X)2 := (Ã · B̃◦) =
1

n(n− 3)

∑
i �=j

ÃijB̃
◦
ij

and the sample MDC is defined by

˜MDCn(Y |X)2 :=
˜MDDn(Y |X)2

|Ã||B̃◦|
=

(Ã · B̃◦)

|Ã||B̃◦|

4. Partial MDD and partial MDC

Following the development in Székely and Rizzo [14], we shall present population
and sample versions of partial MDD and partial MDC below.

4.1. Population pMDD and pMDC

Let CZ = CZ(Z,Z
′) denote the (random) double centered version of c(z, z′) =

|z − z′|r with respect to Z, where

CZ(z, z
′) = c(z, z′)−

∫
Rr

c(z, z′)dFZ(z
′)−

∫
Rr

c(z, z′)dFZ(z)

+

∫
Rr

∫
Rr

c(z, z′)dFZ(z)dFZ(z
′),

provided that the integrals exist. Correspondingly, let AX and BY denote the
double centered version of a(x, x′) = |x−x′|p and b(y, y′) = |y−y′|q, respectively.
Székely and Rizzo [14] define

V2(X,Y ) = E(AXBY )

and indicate that this is equivalent to the original definition (2.1).
Let b◦(y, y′) = 1

2 |y − y′|2q for y, y′ ∈ Rq and its double centered version with
respect to Y by

B◦
Y (y, y

′) = b◦(y, y′)−
∫
Rq

b◦(y, y′)dFY (y
′)−

∫
Rq

b◦(y, y′)dFY (y)

+

∫
Rq

∫
Rq

b◦(y, y′)dFY (y
′)dFY (y)

=
1

2
(y − y′)T (y − y′)− 1

2
EY ′{(y − Y ′)T (y − Y ′)}

−1

2
EY {(Y − y′)T (Y − y′)}+ 1

2
E[(Y − Y ′)T (Y − Y ′)]

= −(y − E(Y ))T (y′ − E(Y ))

after a straightforward calculation. Here EY denotes the expectation with re-
spect to the random vector Y . Let B◦

Y = B◦
Y (Y, Y

′). Note that b◦(y, y′) is a
dissimilarity function.



Partial martingale difference correlation 1499

Then in view of (3.1), it is not hard to show that

MDD(Y |Z)2 = E(B◦
Y CZ)

To define the partial MDD at the population level, consider the usual L2 space
of random variables with finite second moment, having inner product (U ·V ) =
E[UV ]. We assume AX , B◦

Y , and CZ are in this space.

Let β = MDD(Y |Z)2

V2(Z,Z) and β = 0 if V2(Z,Z) = 0. We first define the projection

of B◦
Y onto the orthogonal complement of CZ as P̃Z⊥(Y ) = B◦

Y − βCZ and

P̃Z⊥(Y ) = B◦
Y if V2(Z,Z) = 0. Then it is easy to see that

(P̃Z⊥(Y ) · CZ) = E(P̃Z⊥(Y )CZ) = 0

using the relation V2(Z,Z) = E(C2
Z) (see equation (4.2) of Székely and Rizzo

[14]). Thus in a sense P̃Z⊥(Y ) corresponds to U := Y −E(Y |Z) since E(U |Z) =
E(U) = 0. Next we define W = (XT , ZT )T ∈ Rp+r. One way to measure the
additional contribution of X to the conditional mean of Y controlling for Z, is
to measure E(U |W ).

Definition 4.1. The population partial MDD of Y given X, after controlling
for the effect of Z, i.e., pMDD(Y |X;Z) is defined as

pMDD(Y |X;Z) = (P̃Z⊥(Y ) ·DW ) = E[P̃Z⊥(Y )DW ],

where DW is the random double centered version of d(w,w′) = |w − w′|p+r

with respect to W . The population partial martingale difference correlation is
defined as

pMDC(Y |X;Z) =
(P̃Z⊥(Y ) ·DW )(

(P̃Z⊥(Y ) · P̃Z⊥(Y ))× V2(W,W )
)1/2

If (P̃Z⊥(Y ) · P̃Z⊥(Y ))× V2(W,W ) = 0, then we define pMDC(Y |X;Z) = 0.

From Proposition 3.1, E(U |W ) = E(Y |X,Z) − E(Y |Z) = 0 almost surely
iff MDD(U |W )2 = 0 iff E[B◦

UDW ] = 0. Since there is no random sample
corresponding to U , there is no direct plug-in estimate for B◦

U . Here we use

P̃Z⊥(Y ) as a surrogate. Further note that if β = 0, then P̃Z⊥(Y ) = B◦
Y and

pMDC(Y |X;Z) =
E(B◦

Y DW )(
E(B◦

Y B
◦
Y )× V2(W,W )

)1/2
=

MDD(Y |W )2(
E[(Y − E(Y ))T (Y ′ − E(Y ))]2 × V2(W,W )

)1/2
= MDC(Y |W )2.

Remark 4.1. Alternatively, we could define pMDD(Y |X;Z) as the difference
between MDD(Y |W )2 and MDD(Y |Z)2, where the former measures the re-
lationship E((Y − E(Y ))|W ) = 0 whereas the latter measures the relationship
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E((Y − E(Y ))|Z) = 0. The problem with this definition is that the interpre-
tation is not as intuitive and straightforward as that based on the one defined
above.

Analogous to Theorem 3 in Székely and Rizzo [14], we can also provide an
alternative definition of pMDC(Y |X;Z) below.

Proposition 4.1. The following definition of population partial MDC is equiv-
alent to Definition 4.1.

pMDC(Y |X;Z) =

{
MDC(Y |W )2−MDC(Y |Z)2R2(Z,W )√

1−MDC(Y |Z)4
, MDC(Y |Z) �= 1,

0, MDC(Y |Z) = 1.
(4.1)

Remark 4.2. It has been noted in Section 4.2 of Székely and Rizzo [14] that the
partial distance correlation R∗(X,Y ;Z) = 0 is not equivalent to the conditional
independence between X and Y given Z, although both the conditional depen-
dence measure and partial dependence measure capture overlapping aspects of
dependence. In our setting, a natural notion that corresponds to conditional in-
dependence of X and Y given Z is the so-called conditional mean independence
of Y given X conditioning on Z, i.e.,

E(Y |X,Z) = E(Y |Z), a.s. or equivalently

E((Y − E(Y |Z))|X,Z) = E(U |W ) = 0, a.s.

That is, conditioning on Z, the variable X does not contribute to the (condi-
tional) mean of Y . It can be expected that pMDC(Y |X;Z) = 0 is not equiv-
alent to conditional mean independence of Y given X conditioning on Z. In
particular, we revisit the example given in Section 4.2 of Székely and Rizzo
[14]. Let Z1, Z2, Z3 be iid standard normal random variables, X = Z1 + Z3,
Y = Z2+Z3 and Z = Z3. Then X and Y are conditionally independent given Z,
which implies that Y is conditionally mean independent of X given Z, but
pMDC(Y |X;Z) = 0.04805(0.0004) �= 0 based on numerical simulations with
sample size 1000 and 10000 replications. On the other hand, it is also possible
that pMDD(Y |X;Z) = 0 and yet Y is not conditionally mean independent
of X conditioning on Z. For example, letting X,Y ∼ i .i .d . Bernoulli(0.5) and
Z | X,Y ∼ Bernoulli

(
cmin(X,Y )

)
, it is possible to numerically determine a

zero value of pMDD(Y |X;Z) at c ≈ 0.5857839, for which we have

E(Y |X = 0, Z = 0) = P (Y = 1|X = 0, Z = 0) = 0.5

E(Y |X = 1, Z = 0) = P (Y = 1|X = 1, Z = 0) ≈ 0.2928945

Thus the mean of Y depends on X, even after conditioning on Z.

Recently, conditional distance correlation (Wang et al. [15]) was proposed to
measure the dependence between Y and X conditioning on Z, and its extension
to measure the conditional mean dependence of Y given X conditioning on Z
would be very interesting. It is worth noting that our sample pMDC and pMDD
can be easily calculated without any choice of a bandwidth parameter, whereas
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a scalar-valued metric that quantifies the conditional mean dependence of Y
given X, conditioning on Z, presumably has to involve a bandwidth parameter,
the choice of which can be difficult.

4.2. Sample pMDD and pMDC

Given the sample (xT
i , y

T
i , z

T
i )

n
i=1, we want to define sample partial MDD and

MDC, denoted as pMDDn(Y |X;Z) and pMDCn(Y |X;Z) as sample analogs of
population partial MDD and partial MDC. Let wi = (xT

i , z
T
i )

T , i = 1, . . . , n and
let B◦, C and D be n×n matrices with entries B◦

ij =
1
2 |yi−yj |2q, Cij = |zi−zj |r,

and Dij = |wi − wj |p+r, respectively. We use B̃◦, C̃ and D̃ to denote the U-
centered versions of B◦, C and D, respectively. Then the sample analogs of B◦

Y ,

β and CZ are B̃◦, (B̃◦·C̃)

(C̃·C̃)
, C̃, respectively and the sample counterpart of P̃Z⊥(Y )

is B̃◦ − (B̃◦·C̃)

(C̃·C̃)
C̃.

Definition 4.2. Given a random sample from the joint distribution (XT , Y T ,
ZT ), the sample partial martingale difference divergence of Y given X, control-
ling for the effect of Z, is given by

pMDDn(Y |X;Z) =

((
B̃◦ − (B̃◦ · C̃)

(C̃ · C̃)
C̃

)
· D̃

)

assuming (C̃ · C̃) �= 0 and (B̃◦ · D̃) otherwise. The sample martingale difference
correlation pMDCn(Y |X;Z) is defined as

pMDCn(Y |X;Z) =
pMDDn(Y |X;Z)∣∣∣∣B̃◦ − (B̃◦·C̃)

(C̃·C̃)
C̃

∣∣∣∣ ∣∣∣D̃∣∣∣
if |B̃◦ − (B̃◦·C̃)

(C̃·C̃)
C̃||D̃| �= 0 and otherwise pMDCn(Y |X;Z) = 0.

Proposition 4.2. An equivalent computing formula for pMDCn(Y |X;Z) in
Definition 4.2 is

pMDCn(Y |X;Z) =

⎧⎨⎩
M̃DCn(Y |W )2−M̃DCn(Y |Z)2R̃2

n(Z,W )√
1−M̃DCn(Y |Z)4

, ˜MDCn(Y |Z) �= 1

0, ˜MDCn(Y |Z) = 1

(4.2)

Remark 4.3. In Shao and Zhang [10], the conditional quantile dependence
of univariate Y given X at the τth level has been quantified using MDD and
MDC by noting that Qτ (Y |X) = Qτ (Y ) almost surely if and only if E(Vτ |X) =
E(Vτ ) = 0 almost surely, where Qτ (Y ) and Qτ (Y |X) are the unconditional and
conditional τth quantiles of Y , and Vτ = τ − 1(Y ≤ Qτ (Y )). Similarly, we can
measure the so-called partial τth quantile dependence of Y given X, controlling
for the effect of Z, by using pMDD(Vτ |X;Z) or pMDC(Vτ |X;Z). Their sample
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versions can be defined accordingly, and the details are omitted. It is worth
noting that in a recent paper by Li et al. [6], quantile partial correlation was
introduced to measure the conditional quantile dependence of a random variable
Y given X in a linear way, controlling for the linear effect of Z. In contrast, our
quantile partial MDC measures the nonlinear dependence of Y at τth quantile
level on X after adjusting for the nonlinear effect of Z. Our sample pMDC can
be readily calculated without fitting quantile regression models.

We also notice that both the population and sample pMDD (pMDC) could
be negative, just like the pdCov (pdCor) proposed in Székely and Rizzo [14].
We illustrate this through the following example. Suppose that

X,Y ∼ i .i .d . Bernoulli(0.5), Z = min(X,Y )

Then, after straightforward but laborious computations, it can be shown that
pMDD(Y |X;Z) =

(
4 − 3

√
2
)
/144 ≈ −0.001685. Therefore, the sample coun-

terpart may also be negative, since it is consistent.

5. Numerical studies

In the first three examples, we examine tests of the null hypothesis of zero
pMDD. We compare our test with the partial distance covariance test (pdCov)
by Székely and Rizzo [14] and partial correlation test (pcor), which is imple-
mented as a t test as described in Legendre [5]. Both the pMDD test and pdCov
test are implemented as permutation tests, in which we permute the sample X
in order to approximate the sampling distribution of the test statistic under the
null. Specifically, in each permutation test, we generate R = 999 replicates by
permuting the sample X and calculate the observed test statistic T0 with the
original data and test statistic T (i) corresponding to the i-th permutation. The
estimated p-value is computed as

p̂ =
1 +

∑R
i=1 1(T

(i) ≥ T0)

R+ 1

where 1 is the indicator function. The significance level is α and we reject the
null if p̂ ≤ α. The type I error rate and power are estimated via 10,000 Monte
Carlo replications.

Example 5.1. The settings of this example are adapted from Examples 2–5 in
Székely and Rizzo [14].

1.a: Let X, Y and Z be three independent random variables, each of which
follows a standard normal distribution.

1.b: Replace X in 1.a with an independent standard lognormal random vari-
able.

1.c: X, Y and Z are generated from a multivariate normal distribution with
marginal distributions as standard normal, and the pairwise correlations as
ρ(X,Y ) = ρ(Y, Z) = ρ(Z,X) = 0.5.

1.d: Replace X in 1.c by a standard lognormal random variable such that the
pairwise correlations are ρ(logX,Y ) = ρ(Y, Z) = ρ(Z, logX) = 0.5.
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Table 1

Type I error rate and power at nominal significance level α for Example 5.1

n α pdCov pMDD pcor α pdCov pMDD pcor

1.a

10 0.05 0.0485 0.0502 0.0900 0.01 0.0978 0.1012 0.1432
20 0.05 0.0534 0.0508 0.0659 0.01 0.1051 0.1003 0.1198
30 0.05 0.0517 0.0514 0.0616 0.01 0.1027 0.1052 0.1162
50 0.05 0.0511 0.0525 0.0608 0.01 0.1032 0.1023 0.1122

100 0.05 0.0503 0.0514 0.0532 0.01 0.0990 0.1020 0.1058

1.b

10 0.05 0.0475 0.0481 0.0887 0.01 0.0962 0.0988 0.1438
20 0.05 0.0549 0.0514 0.0688 0.01 0.1014 0.1010 0.1201
30 0.05 0.0516 0.0501 0.0582 0.01 0.1028 0.1011 0.1127
50 0.05 0.0537 0.0536 0.0577 0.01 0.1034 0.1014 0.1082

100 0.05 0.0526 0.0510 0.0540 0.01 0.1000 0.0995 0.1032

1.c

10 0.05 0.2152 0.2002 0.2144 0.01 0.3256 0.3151 0.2995
20 0.05 0.4626 0.4454 0.3390 0.01 0.5890 0.5723 0.4455
30 0.05 0.6569 0.6245 0.4633 0.01 0.7605 0.7353 0.5780
50 0.05 0.8717 0.8471 0.6819 0.01 0.9223 0.9036 0.7814

100 0.05 0.9923 0.9874 0.9309 0.01 0.9962 0.9929 0.9633

1.d

10 0.05 0.2031 0.1823 0.1872 0.01 0.3151 0.2853 0.2622
20 0.05 0.4290 0.3960 0.2434 0.01 0.5526 0.5228 0.3480
30 0.05 0.6090 0.5646 0.3294 0.01 0.7214 0.6760 0.4382
50 0.05 0.8379 0.8044 0.4820 0.01 0.8974 0.8662 0.6097

100 0.05 0.9873 0.9738 0.7467 0.01 0.9930 0.9864 0.8335

Cases 1.a and 1.b demonstrate the size of different tests at nominal level α,
whereas cases 1.c and 1.d show the power. Table 1 shows that partial correlation
test’s size (pcor) is inflated when sample size is relatively small for both normal
and non-normal cases, and the size for pdCov and pMDD are reasonably close
to the nominal level α. This is consistent with the findings in Székely and Rizzo
[14]. For the power comparison in 1.c and 1.d, Table 1 also shows that the pdCov
has the highest power, and pMDD’s power is only slightly lower than pdCov.
Both tests have superior power performance over pcor.

Example 5.2. This example examines the case of negative correlation.

2.a: X, Y and Z are generated from a multivariate normal distribution
with marginal distributions as standard normal and the pairwise correlations
as ρ(X,Y ) = ρ(Y, Z) = ρ(Z,X) = −0.48.

2.b: Replace X in 2.a with a standard lognormal random variable such that
the pairwise correlations are ρ(logX,Y ) = ρ(Y, Z) = ρ(Z, logX) = −0.48.

2.c:X, Y and Z are generated from a multivariate t distribution with marginal
distributions as student-t with degree of freedom three and the pairwise corre-
lations as ρ(X,Y ) = ρ(Y, Z) = ρ(Z,X) = −0.48.

From Table 2 we observe that overall pcor has the highest power; pMDD
consistently outperform pdCov in all configurations and it is comparable to
pcor when sample size is large.

Example 5.3. Generate X = Z2 + ε1 and Y = 2Z + ε2X, where Z, ε1 and ε2
are iid standard normals.
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Table 2

Power at nominal significance level α for Example 5.2

case n α pdCov pMDD pcor α pdCov pMDD pcor

2.a

10 0.05 0.279 0.406 0.993 0.10 0.394 0.544 0.996
20 0.05 0.504 0.738 1.000 0.10 0.608 0.815 1.000
30 0.05 0.644 0.874 1.000 0.10 0.723 0.914 1.000
50 0.05 0.801 0.973 1.000 0.10 0.852 0.982 1.000

100 0.05 0.949 0.999 1.000 0.10 0.962 0.999 1.000

2.b

10 0.05 0.266 0.366 0.938 0.10 0.376 0.508 0.966
20 0.05 0.471 0.661 0.996 0.10 0.580 0.760 0.998
30 0.05 0.611 0.805 1.000 0.10 0.695 0.866 1.000
50 0.05 0.777 0.935 1.000 0.10 0.828 0.956 1.000

100 0.05 0.934 0.995 1.000 0.10 0.951 0.996 1.000

2.c

10 0.05 0.290 0.400 0.979 0.10 0.400 0.519 0.987
20 0.05 0.502 0.666 0.998 0.10 0.589 0.732 0.999
30 0.05 0.629 0.785 1.000 0.10 0.698 0.828 1.000
50 0.05 0.778 0.889 1.000 0.10 0.820 0.908 1.000

100 0.05 0.926 0.969 1.000 0.10 0.940 0.975 1.000

Table 3

Probability of rejection for Example 5.3 (Negative partial MDD, zero partial correlation,
positive partial distance correlation)

n α pdCov pMDD pcor α pdCov pMDD pcor
10 0.05 0.1052 0.0896 0.3026 0.10 0.1720 0.1377 0.3771
20 0.05 0.1662 0.0924 0.3445 0.10 0.2388 0.1284 0.4209
30 0.05 0.2016 0.0773 0.3585 0.10 0.2818 0.1034 0.4386
50 0.05 0.2774 0.0585 0.3892 0.10 0.3616 0.0743 0.4655
100 0.05 0.4239 0.0271 0.4126 0.10 0.4986 0.0332 0.4933

Numerical approximations based on n = 1000 and 10000 replications are
0.0253 (0.00014) for pdCor, −0.057 (0.0001) for pMDC, which indicated that
after controlling the effect of Z, Y and X are still dependent with positive
pdCor but pMDC is negative. It can be seen from Table 3 that for n = 100,
the pdCov shows a substantial amount of rejections, whereas the rejection rate
of pMDD is below the nominal level, which is consistent with the fact that
pMDC(Y |X;Z) < 0 but pdCor(Y,X|Z) > 0. The population partial correla-
tion can be easily calculated, that is, pcor(Y,X|Z) = 0. From Table 3, however,
we see a big size distortion for pcor-based test. This is presumably because the
joint distribution of (X,Y, Z) is not Gaussian.

Example 5.4. We consider the same prostate cancer data example used in
Székely and Rizzo [14]. The response variable, lpsa, is log of the level of prostate
specific antigen. Our goal is to predict the response based on one or more pre-
dictors from a total of eight predictor variables. For comparison purposes, we
standardize each variable first as in Székely and Rizzo [14] and Hastie et al.
[3] and use the 67 training data for variable selection. Then prediction error is
further reported using the 30 testing data.

The pMDC-based variable selection is implemented as a simple forward se-
lection style combining both partial MDC and MDC as described in Székely
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Fig 1. Scatter plot of lpsa and pgg45 with loess smoother.

and Rizzo [14] for pdCor. In the first step, we calculate the MDC(y|xi) and
select xj that has the largest martingale difference correlation. Then we com-
pute pMDC(y|xi;xj) for all the variables xi �= xj and also select the xi for
which pMDC(y|xi;xj) is the largest. Define the vector w to be the variables
that have already been included in the model through previous steps. We con-
tinue the procedure by selecting the next variable to be the one that has the
largest pMDC(y|xi;w). The stopping rule for the variable selection procedure
is at 5% significance level implemented as a permutation test. The models se-
lected by pMDC, pdCor, best subset method (BIC-based) and lasso are listed
below:

pMDC: lpsa ∼ lcavol + lweight + pgg45 + svi + lbph;

pdCor: lpsa ∼ lcavol + lweight + svi + gleason + lbph;

best subsets: lpsa ∼ lcavol + lweight;

lasso: lpsa ∼ lcavol + lweight + svi + lbph + pgg45;

The order for the forward selection with Mallow’s Cp is lcavol, lweight, svi,
lbph, pgg45, age, lcp, gleason. We can see that the selection results are to some
extent similar for all the methods listed above, as all select the same top two
variables. The top five variables selected by pMDC are the same as those selected
from both LASSO and forward selection with Cp, except that pgg45 comes third
for pMDC while it comes fifth for LASSO and forward selection. Note that pgg45
is the percent of gleason scores 4 or 5, which is highly correlated with variable
gleason, the gleason score. The latter is selected to enter the model by pdCor.
Also from the scatter plot (Figure 1) we can see a strong non-linear relationship
between lpsa and pgg45, which could contribute to the mean of the response in
a non-linear way.
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Table 4

Prediction Errors

Error Metric pMDC pdCor Best Subsets LASSO
MSE 0.544 0.512 0.529 0.544
MAE 0.518 0.532 0.545 0.518

After selecting the variables, we fit a generalized additive model to evaluate
and compare different model fits using the package mgcv in R. The adjusted
R2s from GAM models are:

pMDC: 69.8%;

pdCor: 69.3%;

best subsets: 65.9%;

lasso: 69.8%;

The above results suggest that the additional variable pgg45 can contribute to
the conditional mean of the response in a non-linear way, which may not be de-
tected by LASSO under linear model assumptions. In general, the pdCor selects
the variable that has the strongest dependence after controlling for the effect of
the previously selected variables, while this overall dependence is different from
the conditional mean dependence. The variable that has the largest pdCor may
not be the one that contributes the most to the conditional mean of Y . There-
fore, it may obscure the variable which has the largest additional contribution
to the conditional mean but with less overall dependence. The ranking of the
variables delivered by pMDC seems to make more intuitive sense.

In addition, we notice both pdCor and LASSO select svi as the third variable
to enter the model, whereas pMDC selects pgg45. To demonstrate the impor-
tance of the selected order, we fit the GAM model again with only the first three
variables selected by different methods and report the adjusted R2s as follows:

pMDC: lpsa ∼ lcavol + lweight + pgg45 (R2 = 68.2%)

pdCor & lasso : lpsa ∼ lcavol + lweight + svi (R2 = 67%)

Again, partial MDC based variable selection seems to deliver a more sensible
order than its pdCor based counterpart. As all the models under consideration
are for the conditional mean, pMDC can be more efficient to select the variables
that enter into a conditional mean model.

Furthermore, we use the fitted GAM models mentioned above to forecast for
the 30 testing data and report the mean square error (MSE) and mean absolute
error (MAE) for the predictions in Table 4. From the results we can see, pdCor
has the least MSE while pMDC and LASSO have the least MAE.

In the sequel, we further look into the variables that contribute to the con-
ditional quantile of the response variable. This is based on the quantile pMDC
variable selection, which is the same as pMDC variable selection except for the
fact that we first apply a transformation to Y , i.e., Ui = τ −1(Yi− Q̂τ (Y ) ≤ 0),
where Q̂τ (Y ) is the τ -th sample quantile of the response and τ = (0.25, 0.5, 0.75);
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see Remark 4.3. The models selected by pMDC and τ -th quantile pMDC are as
follows:

pMDC: lpsa ∼ lcavol + lweight + pgg45 + svi + lbph;

0.25-pMDC: lpsa ∼ lcavol + lweight + pgg45 + lbph + gleason;

0.5-pMDC: lpsa ∼ lweight + lcavol + pgg45 + svi;

0.75-pMDC: lpsa ∼ lcavol + svi;

It can be seen that different variables are selected for the conditional mean model
and conditional quantile models at different quantile levels. The conditional
quantile of Y seems to depend on different sets of covariates at different quantile
levels.

6. Discussion

In this paper, we propose an extension of the martingale difference correlation
introduced in Shao and Zhang [10] to partial martingale difference correlation
following the Hilbert-space approach of Székely and Rizzo [14]. In the course
of this extension, we provide an equivalent expression for MDD at population
and sample levels, which facilitates our definition of partial martingale differ-
ence correlation. Although the definition is not unique, the proposed partial
MDC has a natural interpretation, admits a neat equivalent expression, and
can be easily estimated using existing U-centering-based unbiased estimates of
MDD and distance covariance. Our numerical simulation shows that the test
of zero partial MDD has comparable power to the test of zero partial distance
covariance. A data illustration demonstrates that it can be more effective to
select variables that enter into the conditional mean model using pMDC-based
forward selection approach than the pdCor-based counterpart.

Appendix

A.1. Properties of U-centering and the distance inner product

We first generalize Definition 2 of Székely & Rizzo [14] to any n×n real matrix

A = (aij). That is, let Ã have

Ãij =

{
aij − 1

n−2

∑n

�=1
ai� − 1

n−2

∑n

k=1
akj +

1
(n−1)(n−2)

∑n

k=1

∑n

�=1
ak� i �= j

0 i = j

For n× n real matrix A define

Ȧ = A− 1

n− 2
AJ − 1

n− 2
JA+

1

(n− 1)(n− 2)
JAJ

where J = 11T is the n× n matrix of ones. It is straightforward to verify that
Ã is just Ȧ with the diagonal replaced by zeros.
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Similarly, generalize the expression for the distance inner product

(Ã · B̃) :=
1

n(n− 3)

∑
i �=j

ÃijB̃ij

to apply to all matrices A and B (though, of course, it is not a true inner product
on the space of all matrices).

Let vec(A) be the usual vectorization of matrix A formed by stacking its
columns.

Lemma A.1.

1. If A is an n × n real matrix with all zeros on its diagonal, and B is any
n× n real matrix, then

n(n− 3)(Ã · B̃) = vec(A)T vec
(˜̃
B
)

2. If D is any diagonal matrix, ˜̃
D = 0

3. For any n× 1 vector a, if

Ha = a1T + 1aT

then ˜̃
Ha = 0

To prove (i): Clearly vec(Ḃ) is a linear transformation of vec(B). Let S be
the matrix of this transformation:

vec(Ḃ) = S vec(B)

An explicit form for S is

S = I ⊗ I − 1

n− 2
J ⊗ I − 1

n− 2
I ⊗ J +

1

(n− 1)(n− 2)
J ⊗ J

from which it is clear that S is symmetric.
Also, let F denote the matrix of the (linear) operator that sets the diagonal

of a matrix to zero. That is,

vec(B−D) = F vec(B)

where B−D is B with its diagonal set equal to zero. It is obvious that F is
a diagonal matrix with ones and zeros on the diagonal, hence symmetric and
idempotent.

It follows that
vec(B̃) = FS vec(B)

Then the distance inner product may be written

(Ã · B̃) =
1

n(n− 3)
vec(Ã)TF vec(B̃)
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and thus

n(n− 3)(Ã · B̃) = vec(Ã)TF vec(B̃) = vec(A)TSFFFS vec(B)

= vec(A)TSFS vec(B) = vec(A)TFSFS vec(B)

= vec(A)T vec
(˜̃
B
)

because A already has a zero diagonal (so F vec(A) = vec(A)), and using the
symmetry of S and F .

To prove (ii): By linearity, it suffices to prove the proposition for the matrices

Ei = eie
T
i

which are all zero except for a one in the ith diagonal position. Now,

Ėi = Ei −
1

n− 2
EiJ − 1

n− 2
JEi +

1

(n− 1)(n− 2)
JEiJ

= Ei −
1

n− 2
(ei1

T + 1eTi ) +
1

(n− 1)(n− 2)
J

Then (removing the diagonal)

Ẽi = 0− 1

n− 2
(ei1

T + 1eTi − 2eie
T
i ) +

1

(n− 1)(n− 2)
(J − I) (A.1)

Now

Ẽi1 = − 1

n− 2
(nei + 1− 2ei) +

1

(n− 1)(n− 2)
(n1− 1) = −ei

and similarly
1T Ẽi = −eTi

It follows that

˙̃
Ei = Ẽi −

1

n− 2
(−ei)1

T − 1

n− 2
1(−eTi ) +

1

(n− 1)(n− 2)
1(−1)1T

= Ẽi +
1

n− 2
(ei1

T + 1eTi )−
1

(n− 1)(n− 2)
J

Using (A.1), this becomes

˙̃
Ei =

2

n− 2
eie

T
i − 1

(n− 1)(n− 2)
I

and this is clearly a diagonal matrix, so (removing the diagonal)˜̃
Ei = 0

and the proof is complete.
To prove (iii): Since

Ha =
n∑

i=1

ai(ei1
T + 1eTi )
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it suffices by linearity to prove the proposition for the matrices

Hi = ei1
T + 1eTi

For such matrices,

HiJ = nei1
T + J and JHi = J + n1eTi

and so

Ḣi = Hi −
1

n− 2
HiJ − 1

n− 2
JHi +

1

(n− 1)(n− 2)
JHiJ

= Hi −
1

n− 2
(nHi + 2J) +

1

(n− 1)(n− 2)
2nJ

= − 2

n− 2
Hi +

2

(n− 1)(n− 2)
J

and setting the diagonal to zero gives

H̃i = − 2

n− 2
(Hi − 2eie

T
i ) +

2

(n− 1)(n− 2)
(J − I) = 2Ẽi

according to equation (A.1). It then follows that

˜̃
Hi = 2

˜̃
Ei = 0

according to (ii), and the proof is complete.

A.2. Proofs of propositions

Proof of Proposition 3.2. For any fixed s ∈ Rq, let

h(t) = |φU,V (s, t)− φU (s)φV (t)|2

= (φU,V (s, t)− φU (s)φV (t)) (φU,V (s, t)− φU (s)φV (t))

which is at least twice differentiable under the assumption that V has finite
second moments. Then

∇th(t) = (∇tφU,V (s, t)− φU (s)∇tφV (t)) (φU,V (s, t)− φU (s)φV (t))

+ (φU,V (s, t)− φU (s)φV (t)) (∇tφU,V (s, t)− φU (s)∇tφV (t))

and

Ht(h)(t) = ∇2
th(t)

= (∇2
tφU,V (s, t)− φU (s)∇2

tφV (t)) (φU,V (s, t)− φU (s)φV (t))

+ (∇tφU,V (s, t)− φU (s)∇tφV (t)) (∇tφU,V (s, t)− φU (s)∇tφV (t))
T
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+ (∇tφU,V (s, t)− φU (s)∇tφV (t)) (∇tφU,V (s, t)− φU (s)∇tφV (t))T

+ (φU,V (s, t)− φU (s)φV (t)) (∇2
tφU,V (s, t)− φU (s)∇2

tφV (t))

Since φU,V (s, 0)− φU (s)φV (0) = E(ei〈s,U〉)− φU (s) · 1 = 0, we have

Ht(h)(0) = z zT + z zT = z zH + z zH

where zH is the conjugate transpose of z, and

z = ∇tφU,V (s, 0)− φU (s)∇tφV (0) = E(ei〈s,U〉 iV )− φU (s)E(iV )

= i
(
E(V ei〈s,U〉)− E(V )φU (s)

)
since the derivatives may be taken under the expectation. Thus

Δth(0) = trace(Ht(h)(0)) = trace(z zH) + trace(z zH)

= zHz + zHz = 2zHz

= 2 |E(V ei〈s,U〉) − E(V )E(ei〈s,U〉)|2r
and the result follows.

Proof of Proposition 3.3.

|φn
U,V (s, t)− φn

U (s)φ
n
V (t)|2

= (φn
U,V (s, t)− φn

U (s)φ
n
V (t))(φ

n
U,V (s, t)− φn

U (s)φ
n
V (t))

= φn
U,V (s, t)φ

n
U,V (s, t) + φn

U (s)φ
n
V (t)φ

n
U (s)φ

n
V (t)

− φn
U,V (s, t)φ

n
U (s)φ

n
V (t) − φn

U,V (s, t)φ
n
U (s)φ

n
V (t)

(A.2)

Define

αkl = 1− ei〈s, Uk−Ul〉 βkl = 1− ei〈t, Vk−Vl〉

Then, in this notation, the first term of (A.2) becomes

φn
U,V (s, t)φ

n
U,V (s, t) =

1

n2

n∑
k=1

n∑
l=1

(1− αkl)(1− βkl)

= 1 − α··
n2

− β··
n2

+
1

n2

n∑
k=1

n∑
l=1

αklβkl

(where a dotted subscript represents summation over the associated index, as
usual). The second term of (A.2) becomes

φn
U (s)φ

n
V (t)φ

n
U (s)φ

n
V (t) =

1

n2

n∑
k=1

n∑
l=1

(1− αkl) · 1

n2

n∑
k=1

n∑
l=1

(1− βkl)

=

(
1− α··

n2

)(
1− β··

n2

)
= 1 − α··

n2
− β··

n2
+

α··
n2

β··
n2

For the third term of (A.2),
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φn
U,V (s, t)φ

n
U (s)φ

n
V (t) =

1

n3

n∑
k=1

n∑
l=1

n∑
m=1

(1− αkl)(1− βkm)

= 1 − α··
n2

− β··
n2

+
1

n3

n∑
k=1

n∑
l=1

n∑
m=1

αklβkm

For the fourth term, because the conjugates of αkl and βkm are

αkl = αlk and βkl = βlk

we have

φn
U,V (s, t)φ

n
U (s)φ

n
V (t) = φn

U,V (s, t)φ
n
U (s)φ

n
V (t)

= 1 − α··
n2

− β··
n2

+
1

n3

n∑
k=1

n∑
l=1

n∑
m=1

αlkβmk

Substituting all of these into (A.2) and canceling terms gives

|φn
U,V (s, t)− φn

U (s)φ
n
V (t)|2

=
1

n2

n∑
k=1

n∑
l=1

αklβkl +
α··
n2

β··
n2

− 1

n3

n∑
k=1

n∑
l=1

n∑
m=1

(αklβkm + αlkβmk)

(A.3)
Now, from the fundamental Lemma of Székely, Rizzo, and Bakirov [13],∫

Rq

αkl

cq|s|1+q
q

ds = |Uk − Ul|q = akl

Also,

1

2
Δtβkl

∣∣∣
t=0

= −1

2

r∑
i=1

(
i(Vki − Vli)

)2
ei〈t, Vk−Vl〉

∣∣∣
t=0

=
1

2

r∑
i=1

(Vki − Vli)
2 =

1

2
|Vk − Vl|2r = b◦kl

Applying both of these operations (the integral and the Laplacian) to (A.3),
and using their linearity, gives∫

Rq

(1
2
Δt |φn

U,V (s, t)− φn
U (s)φ

n
V (t)|2

∣∣∣
t=0

) 1

cq |s|1+q
q

ds

=
1

n2

n∑
k=1

n∑
l=1

aklb
◦
kl +

a··
n2

b◦··
n2

− 1

n3

n∑
k=1

n∑
l=1

n∑
m=1

(aklb
◦
km + alkb

◦
mk)

=
1

n2

n∑
k=1

n∑
l=1

aklb
◦
kl +

a··
n2

b◦··
n2

− 2
1

n3

n∑
k=1

n∑
l=1

n∑
m=1

aklb
◦
km

= S1 + S2 − 2S3
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using the fact that alk = akl and b◦lk = b◦kl. The rest follows from the identity

1

n2

n∑
k=1

n∑
l=1

AklB
◦
kl = S1 + S2 − 2S3

which follows in precisely the same way as in Theorem 1 of Székely, Rizzo, and
Bakirov [13].

Incidentally, the proof above could be adapted as an alternative to the proof
of Theorem 1 of Székely, Rizzo, and Bakirov [13].

Proof of Proposition 3.4. The proof follows Appendix A.1 of Székely and Rizzo
[14]. Letting (X,Y ), (X ′, Y ′) and (X ′′, Y ′′) be iid from the population distribu-
tion, define

α := E(akl) = E(|X −X ′|p) β := E(b◦kl) = E
(
1
2 |Y − Y ′|2q

)
k �= l

δ := E(aklb
◦
kj) = E

(
|X −X ′|p 1

2 |Y − Y ′′|2q
)

j, k, l distinct

γ := E(aklb
◦
kl) = E

(
|X −X ′|p 1

2 |Y − Y ′|2q
)

k �= l

Then, according to (3.4),

MDD(Y |X)2 = γ + αβ − 2δ

By the very same derivation as in Appendix A.1 of Székely and Rizzo [14], it
follows that

E
[
(Ã · B̃◦)

]
= γ + αβ − 2δ

(Indeed, their derivation uses only the symmetry of the matrices A = (akl) and
B = (bkl) and the fact that they have zero diagonals, so B may be replaced
with B◦ = (b◦kl).) The result follows immediately.

Proof of Proposition 3.5. Since

(yi − yj)
T (yi − yj) = |yi|2q + |yj |2q − 2yTi yj

we can write

B◦ = Ha +B∗

where

Ha = ((Ha)ij), (Ha)ij =
1

2
|yi|2q +

1

2
|yj |2q

Note that

Ha = a1T + 1aT

where a is the n× 1 vector whose ith element is 1
2 |yi|2q.

By the linearity of U-centering, and from Lemma A.1, we have

˜̃
B◦ =

˜̃
Ha +

˜̃
B∗ =

˜̃
B∗
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Then, using Lemma A.1,

n(n− 3)(Ã · B̃∗) = vec(A)T vec
(˜̃
B∗

)
= vec(A)T vec

(˜̃
B◦

)
= n(n− 3)(Ã · B̃◦)

and the proof is complete.

Proof of Proposition 4.1. We consider the following cases:

• Case 1: If Z is constant a.s. then P̃Z⊥(Y ) = B◦
Y − βCZ = B◦

Y .

pMDC(Y |X;Z) =
(B◦

Y ·DW )

((B◦
Y ·B◦

Y ) · V2(W,W ))1/2
= MDC(Y |W )2

and (4.1) = MDC(Y |W )2 as well, since MDC(Y |Z)2 = 0 by definition.
• Case 2: If Y is constant almost surely and Z is not almost surely constant,

then MDC(Y |W )2 = 0 and MDC(Y |Z)2 = 0 by definition, so (4.1) = 0.

We also have β = MDD(Y |Z)2

V2(Z,Z) = 0, P̃Z⊥(Y ) = B◦
Y . So pMDC(Y |X;Z) =

0 by Definition 4.1.
• Case 3: If Z and Y are not almost surely constant, but |P̃Z⊥(Y )| = 0.

(P̃Z⊥(Y ) · P̃Z⊥(Y )) = E(B◦
Y B

◦
Y ) +

MDD(Y |Z)4

V4(Z,Z)
E(CZCZ)

− 2
MDD(Y |Z)4

V2(Z,Z)

= E(B◦
Y B

◦
Y )−

MDD(Y |Z)4

V2(Z,Z)

If |P̃Z⊥(Y )| = 0, MDD(Y |Z)2 =
√

E(B◦
Y B

◦
Y )V2(Z,Z), MDC(Y |Z)2 =

1. Then both (4.1) and pMDC(Y |X;Z) are zero.

• Case 4: If Z and Y are not almost surely constants, and |P̃Z⊥(Y )| > 0.
Then

E(P̃Z⊥(Y )DW ) = E(B◦
Y DW )− MDD(Y |Z)2

V2(Z,Z)
E(CZDW )

And also

(P̃Z⊥(Y ) · P̃Z⊥(Y )) = E(B◦
Y B

◦
Y )−

MDD(Y |Z)4

V2(Z,Z)

= E(B◦
Y B

◦
Y )(1−

MDD(Y |Z)4

E(B◦
Y B

◦
Y )V2(Z,Z)

)

= E(B◦
Y B

◦
Y )(1−MDC(Y |Z)4)

Hence we have

pMDC(Y |X;Z) =
(P̃Z⊥(Y ) ·DW )

((P̃Z⊥(Y ) · P̃Z⊥(Y )) · V2(W,W ))1/2
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=
E(B◦

Y DW )− MDD(Y |Z)2

V2(Z,Z) E(CZDW )√
E(B◦

Y B
◦
Y )V2(W,W )

√
1−MDC(Y |Z)4

=

E(B◦
Y DW )√

E(B◦
Y
B◦

Y
)V2(W,W )√

1−MDC(Y |Z)4

−
MDD(Y |Z)2√

E(B◦
Y
B◦

Y
)V2(Z,Z)

E(CZDW )√
V2(Z,Z)V2(W,W )√

1−MDC(Y |Z)4

=
MDC(Y |W )2 −MDC(Y |Z)2R2(Z,W )√

1−MDC(Y |Z)4

Thus, in all cases Definition 4.1 and (4.1) coincide.

Proof of Proposition 4.2. We consider the following cases:

• Case 1: If (zi)
n
i=1 are all equal, then Cij = |zi − zj |r = 0. Therefore

βn = (B̃◦·C̃)

(C̃·C̃)
= 0 and B̃◦ − (B̃◦·C̃)

(C̃·C̃)
C̃ = B̃◦.

pMDCn(Y |X;Z) =
(B̃◦ · D̃)

|B̃◦||D̃|
= ˜MDCn(Y |W )2

Since |C̃| = 0, we also have ˜MDCn(Y |Z)2 = 0 by definition. So (4.2) =˜MDCn(Y |W )2

• Case 2: If (yi)
n
i=1 are all equal and (zi)

n
i=1 are not, then we have B◦

ij =

1
2 |yi − yj |2q = 0 and |B̃◦ − (B̃◦·C̃)

(C̃·C̃)
C̃| = 0. So pMDCn(Y |X;Z) = 0 by

definition. Also since |B̃◦| = 0, ˜MDCn(Y |W )2 = 0 and ˜MDCn(Y |Z)2 =
0, so (4.2) = 0 by definition.

• Case 3: If (zi)
n
i=1 and (yi)

n
i=1 are not all equal, but |B̃◦ − (B̃◦·C̃)

(C̃·C̃)
C̃| = 0.

(B̃◦ − (B̃◦ · C̃)

(C̃ · C̃)
C̃ · B̃◦ − (B̃◦ · C̃)

(C̃ · C̃)
C̃) = (B̃◦ · B̃◦) +

(B̃◦ · C̃)2

(C̃ · C̃)
− 2

(B̃◦ · C̃)2

(C̃ · C̃)

= (B̃◦ · B̃◦)− M̃DDn(Y |Z)4

(C̃ · C̃)

If |B̃◦ − (B̃◦·C̃)

(C̃·C̃)
C̃| = 0, then M̃DDn(Y |Z)2 = |B̃◦||C̃|, which implies that˜MDCn(Y |Z)2 = 1. Then both (4.2) and pMDCn(Y |X;Z) are zero.

• Case 4: If (zi)
n
i=1 and (yi)

n
i=1 are not constants, and |B̃◦ − (B̃◦·C̃)

(C̃·C̃)
C̃| > 0.

Then

pMDDn(Y |X;Z) = (B̃◦ · D̃)− (B̃◦ · C̃)

(C̃ · C̃)
(C̃ · D̃)
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= M̃DDn(Y |W )2 − M̃DDn(Y |Z)2

(C̃ · C̃)
(C̃ · D̃)

And also(
B̃◦ − (B̃◦ · C̃)

(C̃ · C̃)
C̃ · B̃◦ − (B̃◦ · C̃)

(C̃ · C̃)
C̃

)
= (B̃◦ · B̃◦)− M̃DDn(Y |Z)4

(C̃ · C̃)

= (B̃◦ · B̃◦)

[
1− M̃DDn(Y |Z)4

(B̃◦ · B̃◦)(C̃ · C̃)

]
= (B̃◦ · B̃◦)(1− ˜MDCn(Y |Z)4)

Hence we have

pMDCn(Y |X;Z) =
pMDDn(Y |X;Z)

|B̃◦ − (B̃◦·C̃)

(C̃·C̃)
C̃||D̃|

=
M̃DDn(Y |W )2 − M̃DDn(Y |Z)2

(C̃·C̃)
(C̃ · D̃)

|B̃◦||D̃|
√
1− ˜MDCn(Y |Z)4

=

M̃DDn(Y |W )2

|B̃◦||D̃|
− M̃DDn(Y |Z)2

|B̃◦||C̃|
(C̃·D̃)

|C̃||D̃|√
1− ˜MDCn(Y |Z)4

=
˜MDCn(Y |W )2 − ˜MDCn(Y |Z)2R̃2

n(Z,W )√
1− ˜MDCn(Y |Z)4

Thus, in all cases Definition 4.2 and (4.2) coincide.
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