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1. Introduction

The purpose of this paper is to quantify the infection of an epidemic in its
different phases (growth and decay) by providing appropriate estimators of the
infection parameter for each of these phases. The epidemic is modeled by a
Markovian process of order d > 1 with Poissonian transitions, which can be
seen as a multitype Bienaymé-Galton-Watson (BGW) branching process with d
types. This model is suitable for any rare transmissible SEIR disease in a large
branching population following a Reed-Frost model for the infection ([11]). The
process corresponds to the incidence of clinical cases (individuals or animals with
clinical symptoms), which are assumed to be the only available observations. An
epidemic phase is here defined as a phase for which the transmission mechanism
of the disease remains unchanged, in particular for which the infection parameter
remains constant. In our setting, this results in an increase or a decrease of the
clinical cases incidence, and we refer to the corresponding phases as growth or
decay phases.

Branching processes are useful models to describe the extinction and growth
of populations, and as such have been applied to many biological problems (see
e.g. [7]). The estimation of a key parameter such as the mean number of offspring
or the Perron’s root (largest eigenvalue of the mean matrix), which determines
the asymptotic average growth rate of the population and whether or not ex-
tinction is certain, is consequently of a very large interest. Since the parameter
quantifying the infection of the epidemic is, in our model, an explicit function
of the Perron’s root (see (3.5)), it is very natural either to build a new estimator
specifically designed for the model, or to investigate the existing results in the
estimation theory of the Perron’s root. As detailed in Section 3, estimators of
the Perron’s root for general multitype branching processes usually require the
knowledge of the whole or partial genealogy of the process (for example indi-
vidual offspring sizes, or parent-offspring type combination counts), which are
data that are mostly non available in the epidemiological context. Asmussen
and Keiding, however, introduced in [1] an explicit estimator based only on the
total generation sizes, corresponding in our model to the incidence of cases at
each time, assumed to be the only available observations. We deduce from this
estimator a first estimator of the infection parameter. Despite the potentially
large order of the Markovian process that we consider, its Poissonian character
ensures many properties which make it easy to derive estimators with inter-
esting characteristics. We thus build two conditional least squares estimators
(CLSE) based either on the chosen process or on the process conditioned on
non-extinction at each time step, and finally compare these three estimators.

After presenting the epidemic model as well as the underlying general mathe-
matical process in Section 2, we provide in Section 3 the three estimators of the
infection parameter, which are all only based on the available observations. We
aim at asymptotic results, either as the size of the initial population tends to
infinity, or as the number of observations tends to infinity. It could be of a great
mathematical interest to study the asymptotic behavior when both the initial
size and the number of observations simultaneously tend to infinity, as it is done
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in [6] for the single-type case, but we choose to focus on asymptotic properties
of an immediate practical interest. We first present in Section 3.1 an explicit es-
timator θ̃ derived from the estimator of the Perron’s root introduced in [1], and

in Section 3.2 a CLSE θ̂, which are both consistent and asymptotically normal
in the supercritical case, on the set of non-extinction, as the number of obser-
vations tends to infinity. These two estimators are thus especially suitable for a
long growth phase of the epidemic. We prove moreover in Section 3.2 that the
CLSE θ̂ is consistent and asymptotically normal, as the initial population size
grows to infinity, no matter the class of criticality. This estimator is thus also
appropriate for any phase of the epidemic, provided that the number of clinical
cases at the beginning of the phase is large. We then focus in Section 3.3 on
a CLSE θ̆ based on the process conditioned on its non-extinction at each time
step, which is consistent and asymptotically normal in the subcritical case, as
the number of observations tends to infinity. This estimator is thus particularly
designed for a long decay phase of the epidemic. We finally proceed in Section 4
to a numerical comparison of these estimators, focusing especially on the com-
parison of θ̃ against θ̂ in a growth phase, and of θ̆ against θ̂ in a decay phase.
We describe the practical interest of each of these estimators, and illustrate on
a simulated multi-phase epidemic which one should be chosen on which type of
data.

2. The epidemic model

Throughout this paper we consider the following Markovian process of order
d > 1, with deterministic initial values X−d+1 = x−d+1, . . . , X0 = x0:

Xn =

d∑

k=1

Xn−k∑

i=1

Yn−k,n,i, n > 1, (2.1)

where the {Yn−k,n,i}i,k are independent given Fn−1 := σ({Xn−k}k>1), and
the {Yn−k,n,i}i are independent and identically distributed (i.i.d.) given Fn−1,
following a Poisson distribution with some parameter Ψk > 0 independent of n.

Denoting by Xn the incidence of infectives at time n, and assuming that
an infective can transmit the disease during one time unit at most, then Xn

also corresponds to the incidence of cases at time n, which are usually the only
available observations. In accordance to the usual terminology for branching
process, we refer to Xn as the size of the generation n. The Markovian process
(2.1) describes in a recursive way how one single infective indirectly generates
new infectives (so-called “secondary cases”) k time units later, for 1 6 k 6 d. In
(2.1), the variable Yn−k,n,i then corresponds to the incidence of secondary cases
produced at time n with a delay k (latent period) by individual i infectious at
time n− k. We refer to [11] for a justification of this modelling in the context
of a rare infectious disease of the SEIR kind.

Let us first point out that in the simple case d = 1, the process is a single-
type BGW branching process with a Poisson offspring distribution. For any
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information on single-type or multitype branching processes, we refer to [2]. Let
d > 1. We easily derive from (2.1) the conditional law of Xn,

Xn|(Xn−1, . . . , Xn−d)
D
= Poisson

(
d∑

k=1

Xn−kΨk

)
,

where
D
= denotes the equality in distribution. Moreover, Xn may be written

as a multitype BGW process. For this purpose, we define the d-dimensional
process Xn := (Xn,1, . . . , Xn,d) such that, for all i = 1 . . . d, Xn,i := Xn−i+1,
namely Xn = (Xn, Xn−1, . . . , Xn−d+1). In particular, the first coordinate of Xn

corresponds to the value of the one-dimensional process (Xn)n at time n. Then
(Xn)n is a d-type BGW process, where the types correspond to the memory of
the one-dimensional process.

Let us denote by f = (f1, . . . , fd) its offspring generating function defined
on [0, 1]d by fi(r) := E[rX1 |X0 = ei], where ei := (0, . . . , 1, . . . , 0) is the ith
basis vector of Rd. Then, for each i = 1 . . . d − 1, fi(r) = e−Ψi(1−r1)ri+1, and
fd(r) = e−Ψd(1−r1). Denoting by M its mean matrix defined by its entries
mij := E[X1,j |X0 = ei], we obtain

M :=




Ψ1 1 0 . . . 0
Ψ2 0 1 . . . 0
...

...
. . .

...
Ψd−1 0 . . . . . . 1
Ψd 0 . . . . . . 0




. (2.2)

The branching process (Xn)n is nonsingular and positive regular. Moreover, it
can be easily shown that it satisfies the X logX assumption, that is for each
i, j = 1 . . . d,

E [X1,j lnX1,j |X0 = ei] < ∞. (2.3)

Let us denote by ρ the Perron’s root of the mean matrix M, and let ξ and η

be the right and left eigenvectors of M for the eigenvalue ρ, with normalization

ξ ·1 = ξ ·η = 1, where u ·v denotes the scalar product
∑d

k=1 ukvk. We compute
that for all i = 1 . . . d,

ξi =
ρi
∑d

j=i Ψjρ
−j

∑d
k=1 ρ

k
∑d

j=k Ψjρ−j
, ηi =

∑d
k=1 ρ

k
∑d

j=k Ψjρ
−j

ρi
∑d

k=1

∑d
j=k Ψjρ−j

.

By the Perron-Frobenius theorem, the Perron’s root ρ provides information
about the asymptotic behavior of the powers of M, and thus about the expected
incidence of cases at time n, for n large. Given the initial values X−d+1, . . . , X0,
the expected number of new cases satisfies

E (Xn)
n→∞∼ ρnη1

d∑

i=1

X1−iξi.



2162 S. Pénisson

The asymptotic growth or decay of the average number of cases thus depends
on the sign of ρ− 1. We call the process (Xn)n critical (resp. subcritical, super-
critical) if ρ = 1 (resp. < 1, > 1). By the theory of multitype positive regular
and nonsingular BGW processes (see e.g. [2], Theorem 5.3.2), the extinction of
the process (Xn)n occurs almost surely if and only if ρ 6 1. In the supercritical
case ρ > 1, there exists a real-valued random variable W such that

lim
n→∞

ρ−nXn
a.s.
= Wη. (2.4)

Moreover, (2.3) implies that P(W > 0) > 0 ([2], Theorem 5.6.1).
As we will see in the next section, the class of criticality of the process can

play a role in the choice of the estimation method. This can be problematic if
the range of ρ, which has no explicit form, is unknown. However, a computation
of det (M− ρI) shows that ρ is solution of the equation

d∑

k=1

Ψkρ
−k = 1, (2.5)

which implies that (Xn)n is critical (resp. subcritical, supercritical) if∑d
k=1 Ψk = 1 (resp. < 1, > 1). If the order of magnitude of the parameters

Ψk is known, we thus obtain an alternative and more handy criticality criteria.

3. Estimation of the infection parameter

From now on we assume that d is fixed, and that the Ψk’s affinely depend on
some unknown parameter θ0, that is for all k = 1 . . . d,

Ψk(θ0) = akθ0 + bk, (3.1)

where ak > 0 and bk > 0 are known. In what follows we will refer to θ0 as
the infection parameter (see Remark 3.1). We shall denote by a, b and Ψ(θ0)
the d-dimensional vectors with coordinates ak, bk and Ψk(θ0) respectively. From
Section 2 it immediately follows that (Xn)n is critical (resp. subcritical, super-
critical) if

θ0 =
1− b · 1
a · 1 (resp. <, >). (3.2)

Remark 3.1. The assumption (3.1) is for instance relevant in the epidemio-
logical context of rare SEIR diseases in large populations. Indeed, in this case
(see [11]), the process of cases incidences (Xn)n is of the form (2.1), where d+1
is the largest survival age in the whole population, and for each k = 1 . . . d,

Ψk(θ0) =
d+1∑

a=k+1

La−k,kSaθ0 + L1,kSk+1p.

The unknown parameter in Ψk would commonly be the horizontal infection pa-
rameter θ0, which is the mean number of individuals infected by an infective
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per time unit by horizontal route. The other parameters involved, that is La,k

(probability for an individual aged a at infection to have a latent period equal
to k, given his survival), Sa (probability to be aged a at the end of the latent
period) and p (vertical infection parameter, representing the maternal trans-
mission probability), can be reasonably assumed to be known from previous
experiences or from the study of a previous phase of the epidemic. However, the
infection parameter θ0 is often unknown and is likely to vary. Indeed, it strongly
depends on the environment which might have been modified by control or san-
itary measures during the course of the epidemic. Estimating this parameter
then not only provides information about the efficiency of the new measures,
but also enables predictions of the future spread of the disease under the same
measures.

Assuming (3.1), our aim is to provide estimators of θ0 based on the obser-
vations (X0, . . . ,Xn), with asymptotic properties corresponding to interesting
characteristics in the epidemiological context. We are thus looking for estimators
suitable in the subcritical and/or supercritical cases, with asymptotic properties,
as the initial population size grows to infinity, or as the number of observations
n tends to infinity. We would thus entirely cover the problem of estimating the
infection parameter in the growth and extinction phases of the epidemic, offer-
ing moreover several alternatives depending on which asymptotic assumption is
suitable regarding the available data.

There are numerous results in the literature dedicated to the estimation the-
ory for general branching processes. In its early paper [8] in 1948, Harris provided
an estimator for the mean value m0 of a single-type BGW process X0, . . . , Xn.
It is a maximum likelihood estimator (MLE) based on observed values of the
individual offspring size for each individual at each time:

m̂MLE =
X1 + · · ·+Xn

X0 + · · ·+Xn−1
, (3.3)

which is consistent as n → ∞ in the supercritical case, on the set of non-
extinction. Note that m̂MLE only involves X0, . . . , Xn. It is actually proved in
[5] that it is also the MLE of m0 based on the observed values of X0, . . . , Xn

only. It is straightforward to show that m̂MLE is also the weighted conditional
least squares estimator (CLSE) based on the process Xk/

√
Xk−1, defined as

follows

m̂CLSE = argmin
m>0

n∑

k=1

(Xk −mXk−1)
2

Xk−1
.

Similar estimation problems are considered in the multitype case. In [1], As-
mussen and Keiding proposed a maximum likelihood estimator of the Perron’s
root ρ0 based on the observations of the whole genealogy of the population (i.e.
each offspring vector produced by every individual). It is proved in [10] that this
estimator is also the maximum likelihood estimator solely based on the obser-
vations at each time of the total number of individuals of type j whose parents
were of type i, for every i, j = 1 . . . d. However in epidemiology this kind of
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variables are generally not observable. For our model this would imply indeed
that, considering the number of cases at a given time, we could say how many
of them were infected exactly k time-units earlier. We are thus more interested
in estimations based on the number of cases at each time, such as the other
estimator presented in [1],

ρ̃ =
|X1|+ · · ·+ |Xn|

|X0|+ · · ·+ |Xn−1|
, (3.4)

where |.| denotes the L1-norm |Xk| := Xk,1 + · · · +Xk,d. For d = 1, ρ̃ clearly
reduces to the Harris estimator defined in (3.3). Note that relation (2.5) implies
that

θ0 =
1−∑d

k=1 bkρ
−k
0∑d

k=1 akρ
−k
0

. (3.5)

Hence an estimation of ρ0 would provide an estimation of θ0 (the opposite is
not true since ρ0 cannot in general be expressed as an explicit function of θ0).
In the supercritical case, the estimator ρ̃ was shown to be consistent, as n → ∞,
on the set of non-extinction, with an explicit asymptotic distribution ([1]).

Due to the Poissonian character of the transitions of the process (Xn)n>0,
it is possible, in our setting, to express the joint probability function of the
observations X0, . . . , Xn, without involving the whole or partial genealogy of
the process. The likelihood function is indeed given by two factors, one of which
is independent of θ0, the logarithm of the other being L (θ0) := −θ0

∑n
k=1 a ·

Xk−1 +
∑n

k=1 Xk ln (Ψ(θ0) ·Xk−1). The MLE of θ0 based on the observations
X0, . . . , Xn is thus a solution of L′ (θ) = 0, where L′ (θ) = −∑n

k=1 a ·Xk−1 +∑n
k=1 Xk (a ·Xk−1) (Ψ(θ) ·Xk−1)

−1. This equation has in general no explicit
solution, except for simple cases such as the one-dimensional case d = 1, for
which the MLE is

θ̂MLE =

∑n
k=1 (Xk − bXk−1)∑n

k=1 aXk−1
,

or the linear case b = 0, for which the MLE is

θ̂MLE =

∑n
k=1 Xk∑n

k=1 a ·Xk−1
. (3.6)

As shown later (see (3.11)), it corresponds in these cases to the CLSE of θ0. It
is however in general not the case, and we choose to focus on the CLSE.

In Section 3.1 we derive from the estimator (3.4) a first estimator of θ0,

θ̃ :=
1−∑d

k=1 bkρ̃
−k

∑d
k=1 akρ̃

−k
,

and deduce from [1] asymptotic properties of θ̃, as n → ∞, in the supercritical
case, on the set of non-extinction. In a second instance, we study in Section 3.2
the weighted CLSE

θ̂ := argmin
θ∈Θ

n∑

k=1

[Xk − Eθ (Xk|Xk−1)]
2

a ·Xk−1
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which has a closed-form expression given by (3.11). We show its asymptotic
properties, on the one hand as n → ∞ in the supercritical case on the set
of non-extinction, and on the other hand as |x0| → ∞ for any class of crit-
icality, where |x0| = x−d+1 + · · · + x0 is the deterministic initial population
size. Finally, since we also aim at finding an estimator with asymptotic proper-
ties, as n → ∞, holding in the subcritical case, we consider in Section 3.3 the
CLSE associated with a Markov chain (Zk)k>0 satisfying P (Zk = j|Zk−1 = i) =
P (Xk = j|Xk−1 = i,Xk 6= 0) (see the detailed definition in Section 3.3):

θ̆ := argmin
θ∈Θ

n∑

k=1

[Zk − Eθ (Zk|Zk−1)]
2

a · Zk−1
.

The practical interest and efficiency of these three estimators will be discussed
and compared in Section 4.

3.1. A closed-form estimator with asymptotic properties, as n → ∞

The aim of this section is to provide an estimator with asymptotic properties,
as the number of observations tends to infinity, in the supercritical case, which
in the epidemiological context would correspond to the growth phase of the
epidemic. For this purpose, we deduce from relation (3.5) the following explicit
estimator of θ0,

θ̃ :=
1−∑d

k=1 bkρ̃
−k

∑d
k=1 akρ̃

−k
. (3.7)

where ρ̃ is the estimator of ρ0 introduced in [1] and given by (3.4). Note
that what follows can be applied to any process of the form (2.1), where the
{Yn−k,n,i}i do not necessarily follow a Poisson distribution, but satisfy the re-
lation Eθ0 (Yn−k,n,i|Fn−1) = Ψk(θ0).

Let us denote by W0 the limiting random variable introduced in (2.4). First,
as pointed out by Becker in [3], the estimator ρ̃ is strongly consistent on the
set of non-extinction {W0 > 0}. Second, as proven by Asmussen and Keiding
in [1], once adequately normalized, ρ̃ − ρ0 is asymptotically normal. However,
the asymptotic behavior of ρ̃ − ρ0 depends qualitatively on the relative sizes
of ρ0 and λ2, where λ is the modulus of a certain eigenvalue of M(θ0). For
the sake of clarity, we need to recall the constants introduced in [1] to study

the asymptotic properties of ρ̃, which play a role in the study of θ̃ as well. Let
{λi}i=1...s be the spectrum of M(θ0), and for each i = 1 . . . s, let ri be the
algebraic multiplicity of λi. We denote by B = {ui,j , i = 1 . . . s, j = 1 . . . ri} the
base of the Jordan canonical decomposition of M(θ0). Let us define the vector
ζ := 1− |η0|ξ0, where ξ0 is the eigenvector of M(θ0) defined in Section 2. We
denote (ζi,j)i=1...s,j=1...ri

its coordinates in B. Then λ is defined as follows,

λ = λ(ζ) := max
i=1...s

{|λi| : ∃j = 1 . . . ri such that ζi,j 6= 0},
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and
γ = γ(ζ) := max

i=1...s:
|λi|=λ

{j = 1 . . . ri : ζi,j 6= 0}.

We similarly define λ(x) and γ(x) for any complex vector x ∈ Cd. As detailed

in [1], ρ̃− ρ0 = (Sn + Tn) (|X0|+ · · ·+ |Xn−1|)−1, where (to avoid heavy nota-
tion, when no confusion is possible, we do not write differently column and row
vectors when multiplied by a matrix)

Sn :=
n−1∑

k=0

(Xk+1 −XkM(θ0)) · 1, Tn :=
n−1∑

k=0

Xk · κ, κ := (M(θ0)− ρ0I) 1.

It appears that Sn and Tn are of the same order of magnitude when λ2 < ρ0,
while Tn dominates Sn if λ2 > ρ0. For each i = 1 . . . d and n ∈ N, we define the
covariance matrix Vi

n(θ0) with entries

[
Vi

n(θ0)
]
jk

:= Eθ0 (Xn,jXn,k|X0 = ei)−Eθ0 (Xn,j |X0 = ei)Eθ0 (Xn,k|X0 = ei) .

In particular, [Vi
1]jk = Ψi(θ0) if j = k = 1, and is null otherwise. In order to

deal with the case λ2 < ρ0, we define for all n ∈ N, νn := 1+
∑n−1

k=0 M(θ0)
kκ,

and

C1 := (ρ0 − 1)

∞∑

n=1

ρ−n
0

d∑

i=1

ηi,0Ψi(θ0)ν
2
n,1.

If λ2 > ρ0, then there exist vectors ζ1 and ζ2 such that (M(θ0)− ρ0I) ζ =
(M(θ0)− I) ζ1 + ζ2, with λ(ζ1) = λ, γ(ζ1) = γ and λ(ζ2) 6 1. If λ2 = ρ0, we
set moreover

C2 :=

(
1− 1

ρ0

)
lim
n→∞

∑d
i=1 ηi,0ζ

1
Vi

n(θ0)ζ
1

ρn0n
2γ−1

.

We finally define the constant

C0 :=




∑d
k=1 ρ

−k
0

(
kak + ak

∑d
i=1 ibiρ

−i
0 − bk

∑d
i=1 iaiρ

−i
0

)

ρ0

(∑d
k=1 akρ

−k
0

)2




2

.

We recall that (2.3) implies Pθ0(W0 > 0) > 0. For notational convenience, it
is assumed in this section just as in [1] that Pθ0(W0 = 0) = 0. The following
results are thus valid on the set of non-extinction. The proof of Theorem 3.2 is
postponed in Appendix A.

Theorem 3.2. Let us assume that the process (Xk)k>0 is supercritical. Then,

on the set of non-extinction, the estimator θ̃ is strongly consistent:

lim
n→∞

θ̃
a.s.
= θ0,
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and has the following asymptotic distribution.

If λ2 < ρ0,

lim
n→∞

√
W0

(
1 + · · ·+ ρn−1

0

)

C1C0

(
θ̃ − θ0

)
D
= N (0, 1) . (3.8)

If λ2 = ρ0 and C2 > 0,

lim
n→∞

√
W0

(
1 + · · ·+ ρn−1

0

)

n2γ−1C2C0

(
θ̃ − θ0

)
D
= N (0, 1) . (3.9)

If λ2 > ρ0, there exist random variables Hn with lim |Hn| < ∞, such that

lim
n→∞

[
W0

(
1 + · · ·+ ρn−1

0

)

λn−1(n− 1)γ−1

(
θ̃ − θ0

)
−Hn−1

]
a.s.
= 0. (3.10)

Remark 3.3. Unlike the strong consistency, the second part of the theorem is
seldom of direct practical applicability, in particular because of the differentia-
tion between the three cases λ2 < ρ0, λ

2 = ρ0 and λ2 > ρ0. We cannot provide
here an asymptotic confidence interval solely based on the observations, as we
can do for the estimators θ̂ and θ̆ (see Theorem 3.6 and Theorem 3.8).

Remark 3.4. If d > 1, the estimator θ̃ seems to have no interesting asymptotic
properties as |x0| → ∞, for n fixed, unless we assume that for all i = 1 . . . d,
lim|x0| x0,i|x0|−1 = η0,i|η|−1. If this holds, then for any class of criticality,

lim|x0| θ̃ = θ0 almost surely. This assumption is however very restrictive. Nev-

ertheless, if d = 1 then θ̃ reduces to the CLSE θ̂ studied in Section 3.2 with
asymptotic properties as |x0| → ∞.

3.2. A closed-form CLSE with asymptotic properties, as n → ∞
and as |x0| → ∞

In this section, we provide an estimator with asymptotic properties as the num-
ber of observations n or as the initial (deterministic) population size |x0| tends
to infinity. Note that this estimator was already introduced in [11], but only the
limit in |x0| was investigated. We recall these known results in Theorem 3.6,
and present the additional limit results as n tends to infinity in Theorem 3.5,
whose proof is postponed in Appendix B. Please observe that the latter the-
orem is only valid in the supercritical case, while Theorem 3.6 holds for any
class of criticality. We thus present here an estimator which is on the one hand
suitable for a long growth phase of an epidemic (Theorem 3.5), just as θ̃, and
is on the other hand suitable for any phase with a large initial population size
(Theorem 3.6).

We consider the weighted CLSE based on the process Yk := Xk/
√
a ·Xk−1,

θ̂ := argmin
θ∈Θ

n∑

k=1

(Yk − Eθ (Yk|Xk−1))
2 = argmin

θ∈Θ

n∑

k=1

(Xk −Ψ(θ) ·Xk−1)
2

a ·Xk−1
,
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where Θ := ]θmin, θmax[ with θmax > θmin > 0. We easily derive the following
explicit form

θ̂ =

∑n
k=1 (Xk − b ·Xk−1)∑n

k=1 a ·Xk−1
. (3.11)

Note that the normalization of the processXk by
√
a ·Xk−1 generalizes the nor-

malizationXk/
√
aXk−1 in the monotype case, leading to the Harris estimator of

m0 = aθ0+b. Moreover, θ̂ also corresponds to the MLE of θ0 if b = 0 (see (3.6)).
In addition, the conditional variance of the error term in the stochastic regression
equation for the normalized process Yk = Eθ0 (Yk|Xk−1)+Yk−Eθ0 (Yk|Xk−1) is
invariant under multiplication of the whole process, and bounded respectively
to (Xk)k>0.

Theorem 3.5. Let us assume that the process (Xk)k>0 is supercritical. Then,

on the set of non-extinction, the estimator θ̂ is strongly consistent:

lim
n→∞

θ̂
a.s.
= θ0,

and is asymptotically normally distributed:

lim
n→∞

√
(a · η0)

2 W0

(
1 + · · ·+ ρn−1

0

)

ρ0η0,1

(
θ̂ − θ0

)
D
= N (0, 1) .

Theorem 3.6. Let us assume that there exist some αi ∈ [0, 1], i = 1 . . . d,

such that, for all i = 1 . . . d, lim|x0|→∞ x0,i|x0|−1 = αi. Then the estimator θ̂ is

strongly consistent:

lim
|x0|→∞

θ̂
a.s.
= θ0,

and is asymptotically normally distributed:

lim
|x0|→∞

√∑n
k=1 a ·Xk−1

σ2(θ̂)

(
θ̂ − θ0

)
D
= N (0, 1) ,

where

σ2 (θ) := θ +

∑n
k=1

∑d
i,j=1 αjbim

(k−1)
ji (θ)

∑n
k=1

∑d
i,j=1 αjaim

(k−1)
ji (θ)

.

and for every i, j = 1 . . . d, k > 1, m
(k)
ij (θ) denotes the (i, j)-th entry in the k-th

power of the matrix M(θ) given by (2.2).

Remark 3.7. We point out that in the proofs of Theorem 3.5 and Theorem
3.6 we do not use the Poissonian character of the transitions of the process
(2.1) to derive the properties of θ̂, but we simply need its first and second order
moments. The results of these theorems can thus be applied to any process
of the form (2.1), where the {Yn−k,n,i}i do not necessarily follow a Poisson
distribution, but satisfy Eθ0 (Yn−k,n,i|Fn−1) = Ψk(θ0). For Theorem 3.6, the
variance should be either known, or previously estimated, and the process should
be normalized accordingly such that the error term in the stochastic regression
equation remains bounded.
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3.3. A CLSE with asymptotic properties, as n → ∞

In this section we study a CLSE associated with a conditioned process, and
obtain asymptotic properties as the number of observations n tends to infinity
in the subcritical case, despite the almost sure extinction of the original process
(Xk)k>0. We point out that this estimator is particularly adapted for the study
of the extinction phase of an epidemic, and does not require a large initial
number of cases.

For this purpose, let us consider instead of (Xk)k>0 the associated process
conditioned on non-extinction at each time-step. By this we mean the homoge-
neous Markov chain (Zk)k>0 with deterministic initial value Z0 = x0 and with
the following transition probabilities

Q(i, j) := Pθ0 (Zk = j|Zk−1 = i) = Pθ0 (Xk = j|Xk−1 = i,Xk 6= 0) , i, j 6= 0.

Denoting by P (i, j) the transition probabilities of the process (Xk)k>0, we thus
have

Q(i, j) =
P (i, j)

1− P (i,0)
, i, j 6= 0.

By definition of (Xk)k>0, P (i, j) = 0 as soon as (j2, . . . , jd) 6= (i1, . . . , id−1),
hence the process (Zk)k>0 satisfies for all i = 2 . . . d and k > 0, Zk,i = Zk−1,i−1.
We also define the one-dimensional d-Markovian process (Zk)k>0 corresponding
to the first coordinate: for all n > 0, Zk := Zk,1.

For all d-dimensional vector u, we define the truncated sum ⌈u⌉ := u1+ · · ·+
ud−1. By definition,

Pθ0 (Zk = j|Zk−1) =
(Ψ(θ0) · Zk−1)

j
e−Ψ(θ0)·Zk−1

j!
(
1− 1{⌈Zk−1⌉=0}e−Ψd(θ0)Zk−d

) .

We consider the CLSE corresponding to the normalized process Zk/
√
a · Zk−1,

θ̆ := argmin
θ∈Θ

Sn(θ), Sn(θ) :=

n∑

k=1

(
Zk√

a · Zk−1

− f(θ,Zk−1)

)2

, (3.12)

where Θ := ]θmin, θmax[ with θmax > θmin > 0, and

f(θ,Zk−1) := Eθ

(
Zk√

a · Zk−1

∣∣∣Zk−1

)

=
Ψ(θ) · Zk−1√

a · Zk−1

(
1− 1{⌈Zk−1⌉=0}e−Ψd(θ)Zk−d

) . (3.13)

This estimator has no closed expression, but the continuity of Sn on Θ ensures
the existence of a least-squares estimate, which can be numerically approximated
by minimization of Sn on a suitable lattice embedded into Θ as described in
Remark 3.11.
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Denoting by f ′ the derivative of f with respect to θ, we thus have, for all
θ ∈ Θ and all j ∈ Nd, j 6= 0,

f ′(θ, j) =





√
adjd

1−(1+Ψd(θ)jd)e
−Ψd(θ)jd

(1−e−Ψd(θ)jd)2
if ⌈j⌉ = 0,

√
a · j otherwise.

(3.14)

We finally define εk := Zk/
√
a · Zk−1 − f(θ0,Zk−1), which implies that

Eθ0

(
ε2k|Zk−1

)
=

Ψ(θ0) · Zk−1

a · Zk−1

(
1− 1{⌈Zk−1⌉=0}e−Ψd(θ0)Zk−d

) ,

and the conditional variance of the error term εk in the stochastic regression
equation is consequently bounded. Indeed, defining for any vector u, u :=
mini ui and u := maxi ui, we have

θ0 +
b

a
6 Eθ0

(
ε2k|Zk−1

)
6

(
1− e−Ψd(θ0)

)−1
(
θ0 +

b

a

)
. (3.15)

Theorem 3.8. The estimator θ̆ is strongly consistent:

lim
n→∞

θ̆
a.s.
= θ0.

Moreover, if the process (Xk)k>0 is subcritical, then the estimator θ̆ is asymp-

totically normally distributed:

lim
n→∞

∑n
k=0

(
f ′
(
θ̆,Zk

))2

√
∑n

k=0

(
f ′
(
θ̆,Zk

))2
f
(
θ̆,Zk

)
(a · Zk)

−1/2

(
θ̆ − θ0

)
D
= N (0, 1) .

The proof of this theorem can be found in Appendix C.

Remark 3.9. For many observations, the estimations of θ0 provided by θ̂
and θ̆ are by construction equal. More precisely, for any Nd-valued sequence
(x0, . . . ,xn) such that for all k 6 n, xk,i = xk−1,i−1 and such that xk /∈ S,
where S is the subset of Nd defined by

S := {(0, . . . , 0, x) , x ∈ N, x 6= 0}, (3.16)

then θ̂ (x0, . . . ,xn) = θ̆ (x0, . . . ,xn) . In other words, if there is no sequence
of d − 1 successive null values in the observation (x−d+1, . . . , xn), then both
estimations are equal.

Remark 3.10. Defining TX := inf{k > 1,Xk ∈ S} and TZ := inf{k > 1,
Zk ∈ S}, we have

lim
|x0|→∞
x0 /∈S

P
(
TZ

6 n|Z0 = x0

)
= lim

|x0|→∞
x0 /∈S

P
(
TX

6 n|X0 = x0

)
= 0,
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and we can deduce from Theorem 3.6 (we omit here the detailed proof) that,
for any n ∈ N fixed,

lim
|x0|→∞

θ̆
a.s.
= θ0, and lim

|x0|→∞

√∑n
k=1 a · Zk−1

σ2(θ̆)

(
θ̆ − θ0

)
D
= N (0, 1) .

Remark 3.11. Since the estimator θ̆ defined by (3.12) has no closed expression,
we provide a simple algorithm for its calculation, whose pseudo-code is written
below. The algorithm consists in computing the value of Sn(θ) for each θ on a
finite lattice embedded into Θ, and in returning one value of the lattice for which
Sn reaches its minimum. The input arguments of the algorithm are the vectors
a, b (denoted a and b in the pseudo-code), the vector Z = (Z−d+1, . . . , Zn), the
bounds θmin, θmax of the open set Θ, and the step length of the lattice chosen
by the user.

function S(a, b, Z, θ) ⊲ definition of the function Sn(θ)
Ψ← aθ + b
i← 0
d← length(a)
n← length(Z)−d
s← 0
for k ← 1, n do

if (Zk−d+1, . . . , Zk−1) = (0, . . . , 0) then

s← s+
(Zk−ΨdZk−d)

2

adZk−d

(

1−e
−ΨdZk−d

)2

else

s← s+
(Zk−Ψ·(Zk−d,...,Zk−1))

2

a·(Zk−d,...,Zk−1)

end if

end for

return s
end function

function CLSE(a, b, Z, θmin, θmax, step) ⊲ computation of a least square estimate
currentargmin ← θmin + step
currentmin ← S(a, b, Z, θmin + step)
if (θmax − θmin) /step is an integer then

m← (θmax − θmin) /step − 1
else

m← floor ((θmax − θmin) /step)
end if

for k ← 2, m do

if S(a, b, Z, θmin + k ∗ step) < currentmin then

currentargmin ← θmin + k ∗ step
currentmin ← S(a, b, Z, currentargmin)

end if

end for

return currentargmin
end function

The accuracy of the result provided by this algorithm then obviously depends
on the choice of the step. We can see on examples (e.g. Table 1) that this is en-
tirely satisfying. Indeed, for any observation (x−d+1, . . . , xn) which does not con-
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tain d− 1 successive null values, hence for which θ̆(x0, . . . ,xn) = θ̂(x0, . . . ,xn),
the previous algorithm provides the rounded value (according to the step length

of the lattice) of the estimation given by the closed-form estimator θ̂.

4. Comparison and choice of the estimators

The goal of this section is to investigate and compare the performances of the
three estimators θ̃, θ̂ and θ̆ discussed in this paper. Due to the many unknown
variables and constants involved in the asymptotic results of Theorems 3.2, 3.5,
3.6 and 3.8, and because of the numerous cases and different asymptotic limits
which are studied, a unified theorem about the asymptotic relative efficiencies,
which could be applicable in practice, does not seem conceivable. We conse-
quently choose to compare numerically the efficiencies in Section 4.1. We then
deduce in Section 4.2 which estimator should be chosen in practice for a given
scenario, which we illustrate on a simulated multi-phase epidemic.

4.1. Comparison of the estimators

In order to compare the performance of the estimators presented above, we per-
form a large number of simulations and examine the efficiencies of the estimators
for finite sample sizes. More precisely, for a given infection parameter θ0 and
sample size (|x0|, n), we define the average squared error of an estimator T of
θ0 as follows:

1

1000

1000∑

i=1

(
T
(
x(i)

)
− θ0

)2
, (4.1)

and the approximated relative efficiency of two estimators T1 and T2:

eθ0(T1, T2) :=

∑1000
i=1

(
T2

(
x(i)

)
− θ0

)2
∑1000

i=1

(
T1

(
x(i)

)
− θ0

)2 , (4.2)

where for each i = 1 . . . 1000, x(i) is a simulation of length n of the branching

process (2.1) with infection parameter θ0, such that |x(i)
0 | = |x0| and x

(i)
n 6= 0.

For the sake of simplicity we omit in the notation of eθ0(T1, T2) the dependence
in (|x0|, n). The large number of replications ensures that the average squared
error (4.1) is an accurate approximation of the mean squared error Eθ0 [(T−θ0)

2].
In what follows, we say that for a given θ0 and a given sample size (|x0|, n), an
estimator T1 is more efficient than T2 if eθ0(T1, T2) > 1.

All simulations are performed using the branching process (2.1) with param-
eters d = 2, a = (0.01, 0.08) and b = (0.05, 0.05). The criticality threshold of
such a process is then θ0 = 10 (see (3.2)). Note that in this simple 2-dimensional
case, we are able to determine the value of λ2, which plays a major role in the
asymptotic limit distribution of θ̃ (see Theorem 3.2). We compute here that
λ2 < ρ0, except for very large values of θ0 (θ0 > 23) which will not be taken
account. As a consequence we are in this example only considering the case (3.8)
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of Theorem 3.2, for which the convergence rates in n of θ̃− θ0 and θ̂− θ0 to the
normal distribution are equal up to a multiplicative constant. If λ2 > ρ0, the
convergence rate of θ̃− θ0 to its limiting distribution is smaller than for θ̂− θ0,
hence we do not investigate this case.

We first plot in Figure 1 the average squared errors of the estimators against
the initial population size |x0|, for θ0 ∈ {9, 10, 11} and for a number of obser-
vations fixed at n = 10. The average errors are computed over the same 1000
simulations for each of the three estimators. Keeping in mind Remark 3.9, this
explains why the plots for θ̂ and θ̆ are indistinguishable. We observe that the
average squared error for θ̃ is also extremely close and decreases as rapidly as
for θ̂. We then plot in Figure 2 the average squared errors against the number
of observations n, for θ0 ∈ {9, 11} and for an initial population size fixed at
|x0| = 100. For θ0 = 10 and θ0 = 11 (critical and supercritical cases), the av-
erage squared errors for the three estimators are again indistinguishable at this
scale. For θ0 = 9, we observe that the average errors are increasing as n becomes
very large. This is due to the fact that, if n is large compared to |x0| = 100, the
probability that Xn 6= 0 is low in the subcritical case. Hence the 1000 simula-
tions correspond to rare events and are not typical. As we will see in Figure 4,
the estimator θ̆ is in this case the most appropriate, intuitively because it takes
into account the additional information that the simulated data have still not
become extinct at time n.

Finally, in order to differentiate more precisely the performances of the esti-
mators, we focus on estimators which have asymptotic properties for the same
class of criticality and study their approximated relative efficiency defined by
(4.2). We thus compare θ̃ against θ̂ by plotting eθ0(θ̃, θ̂) in Figure 3, and θ̆

against θ̂ by plotting eθ0(θ̆, θ̂) in Figure 4, for θ0 ∈ [8, 12]. We consider two sam-
ple sizes for |x0| (|x0| = 10 and |x0| = 1000) and for n (n = 10 and n = 100).

What appears from these results is that θ̂ is here the most efficient estimator
when |x0| = 10 and n = 10, no matter the class of criticality. It appears also

that in the supercritical case, θ̃ and θ̂ perform equivalently well and better than
θ̆, no matter the sample sizes. Finally, θ̆ is here the most efficient estimator in
the subcritical case, for |x0| = 10 and n = 100.

4.2. Choice of the estimator in practice and illustration with a

simulated multi-phase epidemic

Let us deduce from the above simulated results and from the theoretical study
of Section 3 how to choose the appropriate estimator, given epidemic data, and
illustrate our method on an example plotted in Figure 5.

Our example mimics the evolution of an epidemic during which three control
measures are taken, at time 50, 60 and 70. It is obtained by simulation of the
branching process (2.1) with parameters d = 2, a = (0.01, 0.08), b = (0.05, 0.05)
and initial value x0 = (1, 1). First we choose a supercritical infection parameter
θ0 = 13 and simulate over 50 time steps, and then simulate three phases with
respective infection parameter θ0 = 11, θ0 = 9.5, θ0 = 7, over, respectively, 10,
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Fig 1. Average squared error (4.1) over 1000 simulations of (2.1) with parameters d = 2,
a = (0.01, 0.08), b = (0.05, 0.05) and n = 10 observations, against the initial population
size |x0|.
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Fig 2. Average squared error (4.1) over 1000 simulations of (2.1) with parameters d = 2,
a = (0.01, 0.08), b = (0.05, 0.05) and initial population size |x0| = 100, against the number
of observations n.
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Fig 3. Approximated relative efficiency eθ0(θ̃, θ̂) defined by (4.2), based on 1000 simulations
of (2.1) with parameters d = 2, a = (0.01, 0.08) and b = (0.05, 0.05), against the infection
parameter θ0 in the supercritical case, for different sample sizes (|x0|, n).
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Fig 4. Approximated relative efficiency eθ0(θ̆, θ̂) defined by (4.2), based on 1000 simulations
of (2.1) with parameters d = 2, a = (0.01, 0.08) and b = (0.05, 0.05), against the infection
parameter θ0 in the subcritical case, for different sample sizes (|x0|, n).
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Fig 5. Simulated branching process of the form (2.1) with d = 2, a = (0.01, 0.08), b =
(0.05, 0.05), and initial value x0 = (1, 1). The infection parameter θ0 is modified at time 50,
60 and 70.

Table 1

Estimations of θ0 and 95% confidence intervals based on the data set (x0, , . . . ,x120) plotted
in Figure 5, for different phases corresponding to different data subsets. The first line

corresponds to the estimations based on the whole data set

data θ0 est. with θ̃Xn
est. with θ̂, est. with θ̂Zn ,

95% conf. interval %95 conf. interval

(x0, . . . ,x120) – 9.99987
9.99988 9.99973

[9.92236; 10.0774] [9.92182; 10.0776]

(x0, . . . ,x50) 13 13.0548
13.0514 13.0512

[12.8334; 13.2694] [12.8464; 13.2561]

(x50, . . . ,x60) 11 11.1501
11.0087 11.0087

[10.8585; 11.1590] [10.8666; 11.1508]

(x60, . . . ,x70) 9.5 9.59054
9.44354 9.44354

[9.3142; 9.57289] [9.31881; 9.56827]

(x70, . . . ,x120) 7 7.45274
7.11740 7.11660

[6.97098; 7.26381] [6.96973; 7.26346]

(x90, . . . ,x120) 7 7.39712
7.36783 7.34980

[6.6480; 8.08765] [6.62794;8.07166]

10 and 50 time steps. We thus obtain the data (x0, . . . ,x120). The estimations
provided by the three estimators on distinct phases are listed in Table 1, as well
as the 95% confidence intervals stemming from Theorem 3.6 and Theorem 3.8.
On the first line of Table 1, we report the estimations based on the whole data
(x0, . . . ,x120), which thus entails the different phases and does not correspond
to a process with constant infection parameter.
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Since each of the three estimators discussed in this paper is relevant for a
branching process of the form (2.1) with a constant offspring distribution over
time, it is necessary to work with data for which the infection parameter is known
or assumed to remain unchanged. If the latter has been potentially modified
during the course of the epidemic, for instance because of control or sanitary
measures, then the corresponding phases of the epidemic must be isolated (as
illustrated with our example in Figure 5). For each phase, the unknown infection
parameter might then be estimated with the most suitable estimator.

Due to its numerous properties (Theorem 3.5 and Theorem 3.6), θ̂ appears
to be suitable in most cases, namely for any phase with large initial population
size (such as the three last phases in Figure 5) or for a long growth phase (such

as the first phase in Figure 5). Thanks to Theorem 3.6, θ̂ provides in addition an
explicit confidence interval, for |x0| large enough, which is of a great practical

interest. By contrast, the rate of convergence of θ̃ to its limiting distribution
is in practice unknown (Theorem 3.2). For these different reasons, we prefer θ̂

over θ̃, even though θ̃ might in some cases perform slightly better than θ̂ (see
Figure 3).

Similarly, we prefer in most cases θ̂ over θ̆. We recall that the estimations
provided by these two estimators only differ from each other if the data set
contains some sequences of d−1 consecutive null values. However, for long decay
phases with small initial population size (such as (x90, . . . ,x120) in Figure 5,

for which |x90| = 176), then θ̆ appears to be more relevant (see Figure 4 for

n = 100 and |x0| = 10 in the subcritical case) and would be chosen over θ̂.

Appendix A: Proofs related to Section 3.1

Proof of Theorem 3.2. We deduce Theorem 3.2 from Theorems 6.1–6.3 of [1],
which state that if the process (Xk)k>0 is supercritical, then, on the set of
non-extinction, the estimator ρ̃ is strongly consistent:

lim
n→∞

ρ̃
a.s.
= ρ0, (A.1)

and has the following asymptotic distribution: if λ2 < ρ0,

lim
n→∞

√
W0

(
1 + · · ·+ ρn−1

0

)
(ρ̃− ρ0)

D
= N (0, C1) ; (A.2)

if λ2 = ρ0 and C2 > 0,

lim
n→∞

√
W0

(
1 + · · ·+ ρn−1

0

)

n2γ−1
(ρ̃− ρ0)

D
= N (0, C2) ; (A.3)

if λ2 > ρ0, there exist random variables Hn with lim |Hn| < ∞, such that

lim
n→∞

[
W0

(
1 + · · ·+ ρn−1

0

)

λn−1(n− 1)γ−1
(ρ̃− ρ0)−Hn−1

]
a.s.
= 0. (A.4)
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The strong consistency in Theorem 3.2 is immediate from (3.5) and (A.1). We

then express θ̃ − θ0 as a function of ρ̃ − ρ0, in order to deduce its asymptotic
distribution from (A.2)–(A.4). We write

θ̃ − θ0 =
( d∑

k=1

akρ̃
−k

d∑

k=1

akρ
−k
0

)−1
[

d∑

k=1

ak
(
ρ−k
0 − ρ̃−k

)

+

d∑

k=1

akρ
−k
0

d∑

k=1

bk
(
ρ−k
0 − ρ̃−k

)
−

d∑

k=1

bkρ
−k
0

d∑

k=1

ak
(
ρ−k
0 − ρ̃−k

)
]

and use the fact that, for all k = 1 . . . d,

ρ−k
0 − ρ̃−k = (ρ̃− ρ0)

∑k
l=1 ρ

l−k
0 ρ̃−l

ρ0
,

in order to obtain

θ̃ − θ0 = (ρ̃− ρ0)

[(
ρ0

d∑

k=1

akρ̃
−k

d∑

k=1

akρ
−k
0

)−1( d∑

k=1

ak

k∑

l=1

ρl−k
0 ρ̃−l

+

d∑

k=1

akρ
−k
0

d∑

k=1

bk

k∑

l=1

ρl−k
0 ρ̃−l −

d∑

k=1

bkρ
−k
0

d∑

k=1

ak

k∑

l=1

ρl−k
0 ρ̃−l

)]
. (A.5)

By (A.1), the square bracket of (A.5) almost surely converges to
√
C0, and

(3.8)–(3.10) are immediately deduced from (A.2)–(A.4).

Appendix B: Proofs related to Section 3.2

Proof of Theorem 3.5. We deduce from the basic limit result in the supercritical
case that for any vector u ∈ Rd, limn→∞ ρ−n

0 Xn
a.s.
= W0u · η0. The Toeplitz

Lemma applied to the Toeplitz array an,k = ρk0
[∑n

k=0 ρ
k
0

]−1
1k6n thus implies

that

lim
n→∞

+∞∑

k=0

an,kρ
−k
0 u ·Xk

a.s.
= W0u · η0,

which immediately leads to

lim
n→∞

ρ−n
0

n∑

k=0

u ·Xk
a.s.
= W0

ρ0
ρ0 − 1

u · η0. (B.1)

As a consequence, on the set of non-extinction {W0 > 0},

lim
n→∞

θ̂ = lim
n→∞

∑n
k=1 e1 ·Xk −

∑n−1
k=0 b ·Xk∑n−1

k=0 a ·Xk

a.s.
=

ρ0e1 · η0 − b · η0

a · η0

= θ0.

The last equality comes from the fact that by definition η0M (θ0) = ρ0η0, which
implies in particular Ψ (θ0) · η0 = ρ0η0,1.
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Note that we have the identity

θ̂ − θ0 =

∑n
k=1 [Xk −Xk−1M (θ0)] · e1∑n−1

k=0 a ·Xk

. (B.2)

We deduce from the martingale central limit theorem given by Theorem 2.2
in [1] (applied to the vectors denoted in [1] as an = e1 and to the real constants
γn = 1) that

lim
n→∞

1√
W0η0,1ρ0

(
1 + · · ·+ ρn−1

0

)
n∑

k=1

[Xk −Xk−1M (θ0)] · e1 D
= N (0, 1) ,

which combined with (B.1) leads to the desired asymptotic normality.

The proof of Theorem 3.6 can be found in [11].

Appendix C: Proofs related to Section 3.3

Proof of the strong consistency of θ̆ in Theorem 3.8. According to Proposition
3.1 in [9], sufficient conditions for the strong consistency of θ̆ are that f(.,Zk−1)
is Lipschitz, in the sense that there exists a nonnegative σ(Z0, . . . ,Zk−1)- mea-
surable function Ck satisfying for all θ1, θ2 ∈ Θ,

|f(θ1,Zk−1)− f(θ2,Zk−1)|
a.s.
6 Ck |θ1 − θ2| ,

that limk→∞Eθ0

(
ε2k|Zk−1

) a.s.
< ∞, and that for any δ > 0,

lim
n→∞

inf
|θ−θ0|>δ

n∑

k=1

(f(θ0,Zk−1)− f(θ,Zk−1))
2 a.s.
= ∞. (C.1)

The Lipschitz condition is satisfied thanks to (3.14), which shows that f ′(.,Zk−1)
is bounded on Θ. The second condition follows from (3.15). Let δ > 0 and
θ ∈ Θ such that |θ − θ0| > δ. We assume for convenience that θ0 > θ.
In order to prove (C.1), we apply the mean value theorem to the function
f(.,Zk−1), and obtain that there exists some tk ∈]θ, θ0[ such that f ′(tk,Zk−1) =

(f(θ0,Zk−1)− f(θ,Zk−1)) (θ0 − θ)
−1

. Consequently,

n∑

k=1

(f(θ0,Zk−1)− f(θ,Zk−1))
2 = (θ0 − θ)2

n∑

k=1

(f ′(tk,Zk−1))
2

= (θ0 − θ)
2

n∑

k=1

a · Zk−1

(
1− 1{⌈Zk−1⌉=0} (1 + Ψd(tk)Zk−d) e

−Ψd(tk)Zk−d
)2

(
1− 1{⌈Zk−1⌉=0}e−Ψd(tk)Zk−d

)4

> (θ0 − θ)
2
(
1− (1 + Ψd (θ1)) e

−Ψd(θ1)
)2 n∑

k=1

a · Zk−1

> δ2
(
1− (1 + Ψd (θ1)) e

−Ψd(θ1)
)2

an,

which implies (C.1).
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In order to provide the asymptotic distribution of θ̆ − θ0 in Theorem 3.8,
we shall state the positive recurrence of the Markov chain (Zk)k>0, and the
finiteness of the first and second-order moments of its stationary distribution.

Proposition C.1. Let us assume that the process (Xk)k>0 is subcritical. Then

the homogeneous Markov chain (Zk)k>0 is irreducible positive recurrent, and its

stationary distribution νθ0 satisfies for all i, j = 1 . . . d,
∑

k∈Nd

kiνθ0(k) < ∞,
∑

k∈Nd

kikjνθ0(k) < ∞. (C.2)

Proof of Proposition C.1. Clearly, the chain is irreducible: due to the Poisson
random variables coming in play, any nonzero state is attainable from any other
nonzero state in a finite time. The positive recurrence then follows from a crite-
rion given e.g. in [14], Theorem 3.1: positive recurrence is implied if there exists
a finite set A ⊂ Nd\{0} and a non-negative function g on Nd\{0} such that

∑

j∈Nd\{0}

Q(i, j)g(j) 6 g(i)− 1, i /∈ A. (C.3)

Let g(i) = i · ξ, where ξ is the eigenvector defined in Section 2. Then, for all
i ∈ Nd\{0},

g(i)−
∑

j∈Nd\{0}

Q(i, j)g(j) = i · ξ − 1

1− P (i,0)

∑

j∈Nd\{0}

P (i, j)j · ξ

= i · ξ − 1

1− P (i,0)
Eθ0 (X1 · ξ|X0 = i)

= i · ξ
(
1− ρ0

1− P (i,0)

)
.

Since ρ0 < 1, the right term tends to +∞ as |i| → ∞. Consequently there exists
some finite set A satisfying (C.3), and the chain is positive recurrent.

Let us now prove that its stationary measure νθ0 admits finite first-order
moments. First, we point out that by definition of Zn, we have for all i = 1 . . . d,
∑

k∈Nd

kiνθ0(k) = Eθ0( lim
n→∞

Zn,i) = Eθ0( lim
n→∞

Zn−i+1,1) =
∑

k∈Nd

k1νθ0(k) =: mνθ0 .

(C.4)

It is thus enough to demonstrate (C.2) for i = 1. According to [15], Theorem 1,
in order that

∑
i∈Nd\{0} i1νθ0(i) < ∞, it suffices that for some non-empty finite

set B and some function h with h(i) > i1, i /∈ B,
∑

j∈Nd\{0}

Q(i, j)h(j) 6 h(i)− i1, i /∈ B. (C.5)

Taking h(i) :=
∑

k=1 bkik with

b1 =
2

1− (Ψ1(θ0) + · · ·+Ψd(θ0))
, bk = b1 (Ψk(θ0) + · · ·+Ψd(θ0)) , k = 2 . . . d,
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we have for all i 6= 0, h(i) > i1, and

h(i)− i1 −
∑

j∈Nd\{0}

Q(i, j)h(j) ∼|i|→∞
1

1− (Ψ1(θ0) + · · ·+Ψd(θ0))
i1,

which ensures the existence of some finite set B satisfying (C.5).
Consequently,

∑
j∈Nd\{0} j1νθ0(j) < ∞, and the quantity mνθ0 defined in

(C.4) is finite. Due to the specific properties of the process (Zk)k>0, it is possi-
ble to deduce from this that the second-order moments of the stationary mea-
sure νθ0 are finite as well. Indeed, for all i = 1 . . . d − 1, using the inequality

x (1− e−x)
−1

6 1 + x, x > 0,

Eθ0 (ZnZn−i) = Eθ0

[
Zn−i

Ψ(θ0) · Zn−1

1− 1{⌈Zn−1⌉=0}e−Ψd(θ0)Zn−d

]

6 Eθ0

[
Zn−i

(
1 +Ψ(θ0) · Zn−1

)]
,

hence

limEθ0 (ZnZn−i) 6 mνθ0 + max
k=0...d−1

limEθ0 (ZnZn−k)
d∑

j=1

Ψj(θ0). (C.6)

Similarly,

Eθ0

(
Z2
n

)

= Eθ0

[
Ψ(θ0) · Zn−1

1− 1{⌈Zn−1⌉=0}e−Ψd(θ0)Zn−d

(
1 +

Ψ(θ0) · Zn−1

1− 1{⌈Zn−1⌉=0}e−Ψd(θ0)Zn−d

)]

6 Eθ0

[(
2 +Ψ(θ0) · Zn−1

)2]

= 4 + 4

d∑

j=1

Ψj(θ0)Eθ0 (Zn−j) +

d∑

j=1

d∑

l=1

Ψj(θ0)Ψl(θ0)Eθ0 (Zn−jZn−l) ,

which by Fatou’s lemma and (C.4) leads to (using the fact that
∑d

j=1 Ψj(θ0) < 1)

limEθ0

(
Z2
n

)
6 4 + 4mνθ0 + max

k=0...d−1
limEθ0 (ZnZn−k)

d∑

j=1

Ψj(θ0).

Together with (C.6) this implies that

max
k=0...d−1

limEθ0 (ZnZn−k)

6 4 + 4mνθ0 + max
k=0...d−1

limEθ0 (ZnZn−k)
d∑

j=1

Ψj(θ0),
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and thus

max
k=0...d−1

limEθ0 (ZnZn−k) 6
4 + 4mνθ0

1−∑d
j=1 Ψj(θ0)

< ∞.

We then obtain by means of Fatou’s lemma that for every i, j = 1 . . . d,

∑

k∈Nd

kikjνθ0(k) = Eθ0

(
lim
n→∞

Zn,iZn,j

)
= Eθ0

(
lim
n→∞

ZnZn−|i−j|

)

6 limEθ0

(
ZnZn−|i−j|

)
6 max

k=0...d−1
limEθ0 (ZnZn−k) < ∞.

The asymptotic normality of θ̆ − θ0 in Theorem 3.8 is a consequence of the
following result.

Proposition C.2. Let us assume that the process (Xk)k>0 is subcritical. Then

the estimator θ̆ is asymptotically normally distributed:

lim
n→∞

√√√√√n

(∑
j∈Nd (f ′(θ0, j))

2
νθ0(j)

)2

∑
j∈Nd (f ′(θ0, j))

2
f(θ0, j) (a · j)−1/2

νθ0(j)

(
θ̆ − θ0

)
D
= N (0, 1) ,

where f is given by (3.13).

Proof of Proposition C.2. Let us first quote from [4], Theorem 1.1 and 1.3, the
following strong law of large numbers for homogeneous irreducible positive re-
current Markov chains which can be applied here thanks to Proposition C.1: for
every νθ0-integrable function g : Nd\{0} → R,

lim
n→∞

1

n

n−1∑

k=0

g(Zk)
a.s.
=
∑

j∈Nd

g(j)νθ0(j). (C.7)

In order to prove Theorem C.2, we follow the steps of the proof of Proposition
6.1 in [9]. Writing the Taylor expansion of S′

n(θ̆) in the neighborhood of θ0, we

obtain that for some θ̃n = θ0 + tn(θ̆ − θ0), with tn ∈ ]0, 1[,

√
n
(
θ̆ − θ0

)
= −√

n
S′
n(θ0)

S′′
n(θ̃n)

=
√
n
2
∑n

k=1 εkf
′(θ0,Zk−1)

S′′
n(θ̃n)

=

∑n
k=1 εkf

′(θ0,Zk−1)√
n

(
Fn

n

)−1
(
1

2

S′′
n(θ̃n)

Fn

)−1

, (C.8)

where Fn :=
∑n

k=1 (f
′(θ0,Zk−1))

2. By (3.14), for all j ∈ Nd, j 6= 0, 0 6

f ′(θ0, j) 6
√
a · j(1− e−Ψd(θ0))−2, hence we deduce by means of (C.7) and (C.2)

that

lim
n→∞

Fn

n

a.s.
=
∑

j∈Nd

(f ′(θ0, j))
2
νθ0(j). (C.9)
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Let us now prove that

lim
n→∞

S′′
n(θ̃n)

Fn

a.s.
= 2. (C.10)

Since Sn(θ) =
∑n

k=1 (εk + f(θ0,Zk−1)− f(θ,Zk−1))
2
, it appears that (C.10) is

true, as soon as the following holds:

lim
n→∞

sup
θ∈Θ

∣∣∣
∑n

k=1 εk f
′′(θ,Zk−1)

∣∣∣
Fn

a.s.
= 0, (C.11)

lim
n→∞

∑n
k=1

(
f ′(θ̃n,Zk−1)

)2

Fn

a.s.
= 1, (C.12)

and

lim
n→∞

∑n
k=1

(
f(θ0,Zk−1)− f(θ̃n,Zk−1)

)
f ′′(θ̃n,Zk−1)

Fn

a.s.
= 0. (C.13)

Let us prove (C.11)–(C.13). Note that, for every j 6= 0, f ′′(θ, j) = 0 if ⌈j⌉ 6= 0,
and

f ′′(θ, j) =
(adjd)

3/2
e−Ψd(θ)jd

[
e−Ψd(θ)jd (Ψd (θ) jd + 2) + Ψd (θ) jd − 2

]
(
1− e−Ψd(θ)jd

)3

otherwise. First, (C.11) is given by a strong law of large numbers proved in [9],
Proposition 5.1. The latter can be indeed applied since f ′′(.,Zk−1) fulfils the

required Lipschitz condition, and limn Fn
a.s.
= ∞ (as an immediate consequence

of the stronger result (C.9)). In view of (C.12) we consider the function (f ′(θ, j))
2

and its derivative 2f ′(θ, j)f ′′(θ, j). For all θ ∈ Θ and all j 6= 0 with ⌈j⌉ = 0,

|2f ′(θ, j)f ′′(θ, j)| 6 4
(adjd)

2
e−Ψd(θ)jd (Ψd (θ) jd + 2)
(
1− e−Ψd(θ)jd

)5

6
4maxx>0 (x+ 2)

3
e−x

(
1− e−Ψd(θmin)

)5 =: c1.

Consequently,

∣∣∣
∑n

k=1 f
′(θ̃n,Zk−1)

2 − f ′(θ0,Zk−1)
2
∣∣∣

Fn
6 c1

∣∣∣θ̆ − θ0

∣∣∣
(
Fn

n

)−1

,

which by (C.9) and the strong consistency of θ̆ almost surely tends to 0. Writing

∑n
k=1 f

′(θ̃n,Zk−1)
2

Fn
= 1 +

∑n
k=1

(
f ′(θ̃n,Zk−1)

2 − f ′(θ0,Zk−1)
2
)

Fn
,
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this implies (C.12). It now remains to prove (C.13). With similar computations
as above, one shows that there exists a deterministic constant c2 > 0 such that

∣∣∣
∑n

k=1

(
f(θ0,Zk−1)− f(θ̃n,Zk−1)

)
f ′′(θ̃n,Zk−1)

∣∣∣
Fn

6 c2|θ̆ − θ0|
(
Fn

n

)−1

,

which thanks to (C.9) and the strong consistency of θ̆ implies (C.13).

In view of (C.8), we finally want to prove that
∑n

k=1 εkf
′(θ0,Zk−1)/

√
n con-

verges in distribution. For this purpose, we define for every 1 6 k 6 n, M
(n)
k :=∑k

l=1 εlf
′(θ0,Zl−1)/

√
n. First, for every k 6 n, Eθ0 (εkf

′(θ0,Zk−1)/
√
n|Zk−1) =

0. Second,

Eθ0

((
εkf

′(θ0,Zk−1)√
n

)2 ∣∣∣Zk−1

)
=

(f ′(θ0,Zk−1))
2
f (θ0,Zk−1)

n
√
a · Zk−1

.

Hence for each n > 1, (M
(n)
k )16k6n is a sequence of square integrable martin-

gales. Let us denote by (〈M〉(n)k )16k6n the associated Meyer process. By (C.2),

∑

j∈Nd

(f ′ (θ0, j))
2
f (θ0, j)√

a · j νθ0(j) 6
1

(
1− e−Ψd(θ0)

)5
∑

j∈Nd

Ψ(θ0) · jνθ0(j) < ∞,

(C.14)

so by means of (C.7),

lim
n→∞

〈Mn〉(n) = lim
n→∞

n∑

k=1

Eθ0

((
εkf

′(θ0,Zk−1)√
n

)2 ∣∣∣Zk−1

)

a.s.
=
∑

j∈Nd

(f ′ (θ0, j))
2
f (θ0, j)√

a · j νθ0(j) := c2. (C.15)

Third, using Cauchy-Schwarz and Bienaymé-Chebyshev inequalities,

n∑

k=1

E

[∣∣∣M (n)
k −M

(n)
k−1

∣∣∣
2

1
{|M

(n)
k

−M
(n)
k−1|>ε}

∣∣∣Zk−1

]

=

n∑

k=1

Eθ0

[∣∣∣∣
εkf

′(θ0,Zk−1)√
n

∣∣∣∣
2

1
{|

εkf′(θ0,Zk−1)
√

n
|>ε}

∣∣∣Zk−1

]

6

n∑

k=1

(
Eθ0

[∣∣∣∣
εkf

′(θ0,Zk−1)√
n

∣∣∣∣
4 ∣∣∣Zk−1

]) 1
2 (

Pθ0

[∣∣∣∣
εkf

′(θ0,Zk−1)√
n

∣∣∣∣ > ε
∣∣∣Zk−1

]) 1
2

6
1

n
3
2 ε

n∑

k=1

|f ′(θ0,Zk−1)|3
(
Eθ0

[
ε4k|Zk−1

]) 1
2
(
Eθ0

[
ε2k|Zk−1

]) 1
2 . (C.16)
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We have

|f ′(θ0,Zk−1)| 6
√
a · Zk−1(

1− e−Ψd(θ0)
)2 , Eθ0

(
ε2k|Zk−1

)
6

Ψ(θ0) · Zk−1

a · Zk−1

(
1− e−Ψd(θ0)

) ,

and

Eθ0

(
ε4k|Zk−1

)
=

Ψ(θ0) · Zk−1 (1 + 3Ψ(θ0) · Zk−1)

(a · Zk−1)
2 (1− e−Ψd(θ0)

) ,

hence

|f ′(θ0,Zk−1)|3
(
Eθ0

[
ε4k|Zk−1

]) 1
2
(
Eθ0

[
ε2k|Zk−1

]) 1
2

6
Ψ(θ0) · Zk−1 (1 + 3Ψ(θ0) · Zk−1)

1
2

(
1− e−Ψd(θ0)

)7

6
Ψ(θ0) · Zk−1 +

√
3 (Ψ(θ0) · Zk−1)

3
2

(
1− e−Ψd(θ0)

)7 . (C.17)

by Proposition C.1 the stationary distribution νθ0 has finite second-order mo-
ments, we deduce from (C.16) and (C.17) by virtue of (C.7) that

lim
n→∞

n∑

k=1

E

[∣∣∣M (n)
k −M

(n)
k−1

∣∣∣
2

1
{|M

(n)
k

−M
(n)
k−1|>ε}

∣∣∣Zk−1

]
a.s.
= 0.

This convergence result together with (C.15) enables us to use a central limit
theorem for sequences of martingales (see e.g. [13, 12]), leading to the fact that

limn→∞ M
(n)
n

D
= N (0, c2), i.e.

lim
n→∞

∑n
k=1 εkf

′(θ0,Zk−1)√
n

D
= N


0,

∑

j∈Nd

(f ′ (θ0, j))
2
f (θ0, j)√

a · j νθ0(j)


 . (C.18)

Finally, (C.8) together with (C.9), (C.10), (C.18) and Slutsky’s theorem imply
that

lim
n→∞

√
n
(
θ̆ − θ0

)
D
= N


0,

∑
j∈Nd (f ′ (θ0, j))

2
f (θ0, j) (a · j)−1/2

νθ0(j)(∑
j∈Nd (f ′ (θ0, j))

2 νθ0(j)
)2


 .

Proof of the asymptotic normality of θ̆ − θ0 in Theorem 3.8. The result is im-
mediately deduced from Proposition C.2 as soon as we prove that

lim
n→∞

1

n+ 1

n∑

k=0

(
f ′
(
θ̆,Zk

))2
f
(
θ̆,Zk

)

√
a · Zk

a.s.
=
∑

j∈Nd

(f ′ (θ0, j))
2
f (θ0, j)√

a · j νθ0 (j) ,

(C.19)
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as well as the equivalent result for the numerator. For this purpose, we write

n∑

k=0

(
f ′
(
θ̆,Zk

))2
f
(
θ̆,Zk

)

√
a · Zk

=

n∑

k=0

(f ′ (θ0,Zk))
2
f (θ0,Zk)√

a · Zk

+

n∑

k=0




(
f ′
(
θ̆,Zk

))2
f
(
θ̆,Zk

)

√
a · Zk

− (f ′ (θ0,Zk))
2
f (θ0,Zk)√

a · Zk


 , (C.20)

and show that (f ′ (., j))
2
f (., j) (a · j)−1/2 has a bounded derivative and is thus

Lipschitz:
∣∣∣∣
2f ′′(θ, j)f ′(θ, j)f(θ, j) + (f ′(θ, j))3√

a · j

∣∣∣∣ 6 2c1
Ψ(θmax) · j(

1− e−Ψd(θmin)
)3 ,

which enables to write

1

n+ 1

n∑

k=0

∣∣∣∣∣∣∣

(
f ′
(
θ̆,Zk

))2
f
(
θ̆,Zk

)

√
a · Zk

− (f ′ (θ0,Zk))
2
f (θ0,Zk)√

a · Zk

∣∣∣∣∣∣∣

6

∣∣∣θ̆ − θ0

∣∣∣ 2c1(
1− e−Ψd(θmin)

)3
1

n+ 1

n∑

k=0

Ψ(θmax) · Zk. (C.21)

By the strong consistency of θ̆ together with (C.7) and (C.2), (C.21) almost
surely tends to zero. Combined with (C.7) and (C.14) in (C.20), this
implies (C.19).
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