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Abstract: The lasso is a popular tool for sparse linear regression, espe-
cially for problems in which the number of variables p exceeds the number
of observations n. But when p > n, the lasso criterion is not strictly convex,
and hence it may not have a unique minimizer. An important question is:
when is the lasso solution well-defined (unique)? We review results from
the literature, which show that if the predictor variables are drawn from
a continuous probability distribution, then there is a unique lasso solution
with probability one, regardless of the sizes of n and p. We also show that
this result extends easily to ℓ1 penalized minimization problems over a wide
range of loss functions.

A second important question is: how can we manage the case of non-
uniqueness in lasso solutions? In light of the aforementioned result, this case
really only arises when some of the predictor variables are discrete, or when
some post-processing has been performed on continuous predictor measure-
ments. Though we certainly cannot claim to provide a complete answer to
such a broad question, we do present progress towards understanding some
aspects of non-uniqueness. First, we extend the LARS algorithm for com-
puting the lasso solution path to cover the non-unique case, so that this
path algorithm works for any predictor matrix. Next, we derive a simple
method for computing the component-wise uncertainty in lasso solutions
of any given problem instance, based on linear programming. Finally, we
review results from the literature on some of the unifying properties of
lasso solutions, and also point out particular forms of solutions that have
distinctive properties.
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1. Introduction

We consider ℓ1 penalized linear regression, also known as the lasso problem
(Chen et al., 1998; Tibshirani, 1996). Given a outcome vector y ∈ R

n, a matrix
X ∈ R

n×p of predictor variables, and a tuning parameter λ ≥ 0, the lasso
estimate can be defined as

β̂ ∈ argmin
β∈Rp

1

2
‖y −Xβ‖22 + λ‖β‖1. (1)

The lasso solution is unique when rank(X) = p, because the criterion is strictly
convex. But the criterion is not strictly convex when rank(X) < p, and so there
can be multiple minimizers of the lasso criterion (emphasized by the element
notation in (1)). Note that when the number of variables exceeds the number
of observations, p > n, we must have rank(X) < p.

The lasso is quite a popular tool for estimating the coefficients in a linear
model, especially in the high-dimensional setting, p > n. Depending on the
value of the tuning parameter λ, solutions of the lasso problem will have many
coefficients set exactly to zero, due to the nature of the ℓ1 penalty. We tend to
think of the support set of a lasso solution β̂, written A = supp(β̂) ⊆ {1, . . . p}
and often referred to as the active set, as describing a particular subset of
important variables for the linear model of y on X . Recently, there has been a
lot of interesting work legitimizing this claim by proving desirable properties of
β̂ or its active set A, in terms of estimation error or model recovery. Most of this
work falls into the setting p > n. But such properties are not the focus of the
current paper. Instead, our focus somewhat simpler, and at somewhat more of
a basic level: we investigate issues concerning the uniqueness or non-uniqueness
of lasso solutions.

Let us first take a step back, and consider the usual linear regression estimate
(given by λ = 0 in (1)), as a motivating example. Students of statistics are taught
to distrust the coefficients given by linear regression when p > n. We may ask:



1458 R. J. Tibshirani

why? Arguably, the main reason is that the linear regression solution is not
unique when p > n (or more precisely, when rank(X) < p), and further, this non-
uniqueness occurs in such a way that we can always find a variable i ∈ {1, . . . p}
whose coefficient is positive at one solution and negative at another. (Adding
any element of the null space ofX to one least squares solution produces another
solution.) This makes it generally impossible to interpret the linear regression
estimate when p > n.

Meanwhile, the lasso estimate is also not unique when p > n (or when
rank(X) < p), but it is commonly used in this case, and in practice little atten-
tion is paid to uniqueness. Upon reflection, this seems somewhat surprising, be-
cause non-uniqueness of solutions can cause major problems in terms of interpre-
tation (as demonstrated by the linear regression case). Two basic questions are:

• Do lasso estimates suffer from the same sign inconsistencies as do linear
regression estimates? That is, for a fixed λ, can one lasso solution have a
positive ith coefficient, and another have a negative ith coefficient?

• Must any two lasso solutions, at the same value of λ, necessarily share the
same support, and differ only in their estimates of the nonzero coefficient
values? Or can different lasso solutions exhibit different active sets?

Consider the following example, concerning the second question. Here we let
n = 5 and p = 10. For a particular outcome y ∈ R

5 and predictor matrix
X ∈ R

5×10, and λ = 1, we found two solutions of the lasso problem (1), using
two different algorithms. These are

β̂(1) = (−0.893, 0.620, 0.375, 0.497, . . . , 0)T and

β̂(2) = (−0.893, 0.869, 0.624, 0, . . . , 0)T ,

where we use ellipses to denote all zeros. In other words, the first solution has
support set {1, 2, 3, 4}, and the second has support set {1, 2, 3}. This is not at all
ideal for the purposes of interpretation, because depending on which algorithm
we used to minimize the lasso criterion, we may have considered the 4th variable
to be important or not. Moreover, who knows which variables may have zero
coefficients at other solutions?

In Section 2, we show that if the entries of the predictor matrix X are drawn
from a continuous probability distribution, then we essentially never have to
worry about the latter problem—along with the problem of sign inconsistencies,
and any other issues relating to non-uniqueness—because the lasso solution is
unique with probability one. We emphasize that here uniqueness is ensured
with probability one (over the distribution of X) regardless of the sizes of n and
p. This result has basically appeared in various forms in the literature, but is
perhaps not as well-known as it should be. Section 2 gives a detailed review of
why this fact is true.

Therefore, the two questions raised above only need to be addressed in the
case that X contains discrete predictors, or contains some kind of post-processed
versions of continuously drawn predictor measurements. To put it bluntly (and
save any dramatic tension), the answer to the first question is “no”. In other
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words, no two lasso solutions can attach opposite signed coefficients to the same
variable. We show this using a very simple argument in Section 4. As for the sec-
ond question, the example above already shows that the answer is unfortunately
“yes”. However, the multiplicity of active sets can be dealt with in a principled
manner, as we argue in Section 4. Here we show how to compute lower and
upper bounds on the coefficients of lasso solutions of any particular problem
instance—this reveals exactly which variables are assigned zero coefficients at
some lasso solutions, and which variables have nonzero coefficients at all lasso
solutions.

Apart from addressing these two questions, we also attempt to better under-
stand the non-unique case through other means. In Section 3, we extend the
well-known LARS algorithm for computing the lasso solution path (over the
tuning parameter λ) to cover the non-unique case. Therefore the (newly pro-
posed) LARS algorithm can compute a lasso solution path for any predictor
matrix X . (The existing LARS algorithm cannot, because it assumes that for
any λ the active variables form a linearly independent set, which is not true
in general.) The special lasso solution computed by the LARS algorithm, also
called the LARS lasso solution, possesses several interesting properties in the
non-unique case. We explore these mainly in Section 3, and to a lesser extent
in Section 5. Section 5 contains a few final miscellaneous properties relating to
non-uniqueness, and the work of the previous three sections.

In this paper, we both review existing results from the literature, and es-
tablish new ones, on the topic of uniqueness of lasso solutions. We do our best
to acknowledge existing works in the literature, with citations either immedi-
ately preceeding or succeeding the statements of lemmas. The contents of this
paper were already discussed above, but this was presented out of order, and
hence we give a proper outline here. We begin in Section 2 by examining the
KKT optimality conditions for the lasso problem, and we use these to derive
sufficient conditions for the uniqueness of the lasso solution. This culminates
in a result that says that if the entries of X are continuously distributed, then
the lasso solution is unique with probability one. We also show that this same
result holds for ℓ1 penalized minimization problems over a broad class of loss
functions. Essentially, the rest of the paper focuses on the case of a non-unique
lasso solution. Section 3 presents an extension of the LARS algorithm for the
lasso solution path that works for any predictor matrix X (the original LARS
algorithm really only applies to the case of a unique solution). We then discuss
some special properties of the LARS lasso solution. Section 4 develops a method
for computing component-wise lower and upper bounds on lasso coefficients for
any given problem instance. In Section 5, we finish with some related properties,
concerning the different active sets of lasso solutions, and a necessary condition
for uniqueness. Section 6 contains some discussion.

Finally, our notation in the paper is as follows. For a matrix A, we write
col(A), row(A), and null(A) to denote its column space, row space, and null
space, respectively. We use rank(A) for the rank of A. We use A+ to denote
the Moore-Penrose pseudoinverse of A, and when A is rectangular, this means
A+ = (ATA)+AT . For a linear subspace L, we write PL for the projection
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map onto L. Suppose that A ∈ R
n×p has columns A1, . . . Ap ∈ R

n, written
A = [A1, . . . Ap]. Then for an index set S = {i1, . . . ik} ⊆ {1, . . . p}, we let
AS = [Ai1 , . . . Aik ]; in other words, AS extracts the columns of A in S. Similarly,
for a vector b ∈ R

p, we let bS = (bi1 , . . . bir )
T , or in other words, bS extracts

the components of b in S. We write A−S or b−S to extract the columns or
components not in S.

2. When is the lasso solution unique?

In this section, we review the question: when is the lasso solution unique? In
truth, we only give a partial answer, because we provide sufficient conditions
for a unique minimizer of the lasso criterion. Later, in Section 5, we study the
other direction (a necessary condition for uniqueness).

2.1. Basic facts and the KKT conditions

We begin by recalling a few basic facts about lasso solutions.

Lemma 1. For any y,X, and λ ≥ 0, the lasso problem (1) has the following
properties:

(i) There is either a unique lasso solution or an (uncountably) infinite number
of solutions.

(ii) Every lasso solution β̂ gives the same fitted value Xβ̂.

(iii) If λ > 0, then every lasso solution β̂ has the same ℓ1 norm, ‖β̂‖1.

Proof. (i) The lasso criterion is convex and has no directions of recession (strictly
speaking, when λ = 0 the criterion can have directions of recession, but these are
directions in which the criterion is constant). Therefore it attains its minimum
over Rp (see, for example, Theorem 27.1 of Rockafellar (1970)), that is, the lasso

problem has at least one solution. Suppose now that there are two solutions β̂(1)

and β̂(2), β̂(1) 6= β̂(2). Because the solution set of a convex minimization problem
is convex, we know that αβ̂(1) +(1−α)β̂(2) is also a solution for any 0 < α < 1,
which gives uncountably many lasso solutions as α varies over (0, 1).

(ii) Suppose that we have two solutions β̂(1) and β̂(2) with Xβ̂(1) 6= Xβ̂(2).

Let c∗ denote the minimum value of the lasso criterion obtained by β̂(1), β̂(2).
For any 0 < α < 1, we have

1

2
‖y−X(αβ̂(1)+(1−α)β̂(2))‖22+λ‖αβ̂(1)+(1−α)β̂(2)‖1 < αc∗+(1−α)c∗ = c∗,

where the strict inequality is due to the strict convexity of the function f(x) =

‖y−x‖22 along with the convexity of f(x) = ‖x‖1. This means that αβ̂(1)+(1−

α)β̂(2) attains a lower criterion value than c∗, a contradiction.

(iii) By (ii), any two solutions must have the same fitted value, and hence
the same squared error loss. But the solutions also attain the same value of the
lasso criterion, and if λ > 0, then they must have the same ℓ1 norm.
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To go beyond the basics, we turn to the Karush-Kuhn-Tucker (KKT) opti-
mality conditions for the lasso problem (1). These conditions can be written
as

XT (y −Xβ̂) = λγ, (2)

γi ∈

{

{sign(β̂i)} if β̂i 6= 0

[−1, 1] if β̂i = 0
, for i = 1, . . . p. (3)

Here γ ∈ R
p is called a subgradient of the function f(x) = ‖x‖1 evaluated at

x = β̂. Therefore β̂ is a solution in (1) if and only if β̂ satisfies (2) and (3) for
some γ.

We now use the KKT conditions to write the lasso fit and solutions in a more
explicit form. In what follows, we assume that λ > 0 for the sake of simplicity
(dealing with the case λ = 0 is not difficult, but some of the definitions and
statements need to be modified, avoided here in order to preserve readibility).
First we define the equicorrelation set E by

E =
{

i ∈ {1, . . . p} : |XT
i (y −Xβ̂)| = λ

}

. (4)

The equicorrelation set E is named as such because when y,X have been stan-
dardized, E contains the variables that have equal (and maximal) absolute cor-
relation with the residual. We define the equicorrelation signs s by

s = sign
(

XT
E (y −Xβ̂)

)

. (5)

Recalling (2), we note that the optimal subgradient γ is unique (by the unique-

ness of the fit Xβ̂), and we can equivalently define E , s in terms of γ, as in

E = {i ∈ {1, . . . p} : |γi| = 1} and s = γE . The uniqueness of Xβ̂ (or the
uniqueness of γ) implies the uniqueness of E , s.

By definition of the subgradient γ in (3), we know that β̂−E = 0 for any lasso

solution β̂. Hence the E block of (2) can be written as

XT
E (y −XE β̂E) = λs. (6)

This means that λs ∈ row(XE), so λs = XT
E (X

T
E )

+λs. Using this fact, and
rearranging (6), we get

XT
E XE β̂E = XT

E

(

y − (XT
E )

+λs
)

.

Therefore the (unique) lasso fit Xβ̂ = XE β̂E is

Xβ̂ = XE(XE)
+
(

y − (XT
E )

+λs
)

, (7)

and any lasso solution β̂ is of the form

β̂−E = 0 and β̂E = (XE)
+
(

y − (XT
E )

+λs
)

+ b, (8)
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where b ∈ null(XE). In particular, any b ∈ null(XE) produces a lasso solution β̂

in (8) provided that β̂ has the correct signs over its nonzero coefficients, that is,

sign(β̂i) = si for all β̂i 6= 0. We can write these conditions together as

b ∈ null(XE) and si ·
(

[

(XE)
+
(

y − (XT
E )

+λs
)]

i
+ bi

)

≥ 0 for i ∈ E , (9)

and hence any b satisfying (9) gives a lasso solution β̂ in (8). In the next section,
using a sequence of straightforward arguments, we prove that the lasso solution
is unique under somewhat general conditions.

2.2. Sufficient conditions for uniqueness

From our work in the previous section, we can see that if null(XE) = {0}, then
the lasso solution is unique and is given by (8) with b = 0. (We note that
b = 0 necessarily satisfies the sign condition in (9), because a lasso solution is
guaranteed to exist by Lemma 1.) Then by rearranging (8), done to emphasize
the rank of XE , we have the following result.

Lemma 2. For any y,X, and λ > 0, if null(XE) = {0}, or equivalently if
rank(XE) = |E|, then the lasso solution is unique, and is given by

β̂−E = 0 and β̂E = (XT
E XE)

−1(XT
E y − λs), (10)

where E and s are the equicorrelation set and signs as defined in (4) and (5).
Note that this solution has at most min{n, p} nonzero components.

This sufficient condition for uniqueness has appeared many times in the lit-
erature. For example, see Osborne et al. (2000b), Fuchs (2005), Wainwright
(2009), Candes and Plan (2009). We will show later in Section 5 that the same
condition is actually also necessary, for all almost every y ∈ R

n.
Note that E depends on the lasso solution at y,X, λ, and hence the condi-

tion null(XE) = {0} is somewhat circular. There are more natural conditions,
depending on X alone, that imply null(XE) = {0}. To see this, suppose that
null(XE) 6= {0}; then for some i ∈ E , we can write

Xi =
∑

j∈E\{i}

cjXj ,

where cj ∈ R, j ∈ E \ {i}. Hence,

siXi =
∑

j∈E\{i}

(sisjcj) · (sjXj).

By definition of the equicorrelation set, XT
j r = sjλ for any j ∈ E , where r =

y−Xβ̂ is the lasso residual. Taking the inner product of both sides above with
r, we get

λ =
∑

j∈E\{i}

(sisjcj)λ,
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or
∑

j∈E\{i}

(sisjcj) = 1,

assuming that λ > 0. Therefore, we have shown that if null(XE) 6= {0}, then for
some i ∈ E ,

siXi =
∑

j∈E\{i}

aj · sjXj ,

with
∑

j∈E\{i} aj = 1, which means that siXi lies in the affine span of sjXj ,

j ∈ E \{i}. Note that we can assume without a loss of generality that E \{i} has
at most n elements, since otherwise we can simply repeat the above arguments
replacing E by any one of its subsets with n+1 elements; hence the affine span
of sjXj , j ∈ E \ {i} is at most n− 1 dimensional.

We say that the matrix X ∈ R
n×p has columns in general position if no

k-dimensional subspace L ⊆ R
n, for k < min{n, p}, contains more than k + 1

elements of the set {±X1, . . . ± Xp}, excluding antipodal pairs. Another way
of saying this: the affine span of any k + 1 points σ1Xi1 , . . . σk+1Xik+1

, for
arbitrary signs σ1, . . . σk+1 ∈ {−1, 1}, does not contain any element of {±Xi :
i 6= i1, . . . ik+1}. From what we have just shown, the predictor matrix X having
columns in general position is enough to ensure uniqueness.

Lemma 3. If the columns of X are in general position, then for any y and
λ > 0, the lasso solution is unique and is given by (10).

This result has also essentially appeared in the literature, taking various forms
when stated for various related problems. For example, Rosset et al. (2004) give
a similar result for general convex loss functions. Dossal (2012) gives a related
result for the noiseless lasso problem (also called basis pursuit). Donoho (2006)
gives results tying togther the uniqueness (and equality) of solutions of the
noiseless lasso problem and the corresponding ℓ0 minimization problem.

Although the definition of general position may seem somewhat technical,
this condition is naturally satisfied when the entries of the predictor matrix
X are drawn from a continuous probability distribution. More precisely, if the
entries of X follow a joint distribution that is absolutely continuous with re-
spect to Lebesgue measure on R

np, then the columns of X are in general posi-
tion with probability one. To see this, first consider the probability P(Xk+2 ∈
aff{X1, . . .Xk+1}), where aff{X1, . . .Xk+1} denotes the affine span ofX1, . . . Xk+1.
Note that, by continuity,

P(Xk+2 ∈ aff{X1, . . . Xk+1} |X1, . . . Xk+1) = 0,

because (for fixed X1, . . . Xk+1) the set aff{X1, . . . Xk+1} ⊆ R
n has Lebesgue

measure zero. Therefore, integrating over X1, . . . Xk+1, we get that P(Xk+2 ∈
aff{X1, . . .Xk+1}) = 0. Taking a union over all subsets of k + 2 columns, all
combinations of k + 2 signs, and all k < n, we conclude that with probability
zero the columns are not in general position. This leads us to our final sufficient
condition for uniqueness of the lasso solution.
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Lemma 4. If the entries of X ∈ R
n×p are drawn from a continuous probability

distribution on R
np, then for any y and λ > 0, the lasso solution is unique and

is given by (10) with probability one.

According to this result, we essentially never have to worry about uniqueness
when the predictor variables come from a continuous distribution, regardless of
the sizes of n and p. Actually, there is nothing really special about ℓ1 penalized
linear regression in particular—we show next that the same uniqueness result
holds for ℓ1 penalized minimization with any differentiable, strictly convex loss
function.

2.3. General convex loss functions

We consider the more general minimization problem

β̂ ∈ argmin
β∈Rp

f(Xβ) + λ‖β‖1, (11)

where the loss function f : Rn → R is differentiable and strictly convex. To
be clear, we mean that f is strictly convex in its argument, so for example the
function f(u) = ‖y − u‖22 is strictly convex, even though f(Xβ) = ‖y −Xβ‖22
may not be strictly convex in β.

The main ideas from Section 2.1 carry over to this more general problem.
The arguments given in the proof of Lemma 1 can be applied (relying on the
strict convexity of f) to show that the same set of basic results hold for problem
(11): (i) there is either a unique solution or uncountably many solutions;1 (ii)

every solution β̂ gives the same fit Xβ̂; (iii) if λ > 0, then every solution β̂ has
the same ℓ1 norm. The KKT conditions for (11) can be expressed as

XT (−∇f)(Xβ̂) = λγ, (12)

γi ∈

{

{sign(β̂i)} if β̂i 6= 0

[−1, 1] if β̂i = 0
, for i = 1, . . . p, (13)

where ∇f : Rn → R
n is the gradient of f , and we can define the equicorrelation

set and signs in the same way as before,

E =
{

i ∈ {1, . . . p} : |XT
i (−∇f)(Xβ̂)| = λ

}

,

and
s = sign

(

XT
E (−∇f)(Xβ̂)

)

.

1To be precise, if λ = 0 then problem (11) may not have a solution for an arbitrary
differentiable, strictly convex function f . This is because f may have directions of recession
that are not directions in which f is constant, and hence it may not attain its minimal value.
For example, the function f(u) = e−u is differentiable and strictly convex on R, but does
not attain its minimum. Therefore, for λ = 0, the statements in this section should all be
interpreted as conditional on the existence of a solution in the first place. For λ > 0, the ℓ1
penalty gets rid of this issue, as the criterion in (11) has no directions of recession, implying
the existence of a solution.
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The subgradient condition (13) implies that β̂−E = 0 for any solution β̂ in (11).

For squared error loss, recall that we then explicitly solved for β̂E as a function
of E and s. This is not possible for a general loss function f ; but given E and s,
we can rewrite the minimization problem (11) over the coordinates in E as

β̂E ∈ argmin
βE∈R|E|

f(XEβE) + λ‖βE‖1. (14)

Now, if null(XE) = {0} (equivalently rank(XE) = |E|), then the criterion in (14)
is strictly convex, as f itself is strictly convex. This implies that there is a unique
solution β̂E in (14), and therefore a unique solution β̂ in (11). Hence, we arrive
at the same conclusions as those made in Section 2.2, that there is a unique
solution in (11) if the columns of X are in general position, and ultimately, the
following result.

Lemma 5. If X ∈ R
n×p has entries drawn from a continuous probability dis-

tribution on R
np, then for any differentiable, strictly convex function f , and for

any λ > 0, the minimization problem (11) has a unique solution with probability
one. This solution has at most min{n, p} nonzero components.

This general result applies to any differentiable, strictly convex loss function
f , which is quite a broad class. For example, it applies to logistic regression loss,

f(u) =

n
∑

i=1

[

− yiui + log
(

1 + exp(ui)
)]

,

where typically (but not necessarily) each yi ∈ {0, 1}, and Poisson regression
loss,

f(u) =

n
∑

i=1

[

− yiui + exp(ui)
]

,

where typically (but again, not necessarily) each yi ∈ N = {0, 1, 2, . . .}.
We shift our focus in the next section, and without assuming any conditions

for uniqueness, we show how to compute a solution path for the lasso problem
(over the regularization parameter λ).

3. The LARS algorithm for the lasso path

The LARS algorithm is a great tool for understanding the behavior of lasso so-
lutions. (To be clear, here and throughout we use the term “LARS algorithm”
to refer to the version of the algorithm that computes the lasso solution path,
and not the version that performs a special kind of forward variable selection.)
The algorithm begins at λ = ∞, where the lasso solution is trivially 0 ∈ R

p.
Then, as the parameter λ decreases, it computes a solution path β̂LARS(λ) that
is piecewise linear and continuous as a function of λ. Each knot in this path cor-
responds to an iteration of the algorithm, in which the path’s linear trajectory is
altered in order to satisfy the KKT optimality conditions. The LARS algorithm
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was proposed (and named) by Efron et al. (2004), though essentially the same
idea appeared earlier in the works of Osborne et al. (2000a) and Osborne et al.
(2000b). It is worth noting that the LARS algorithm (as proposed in any of
these works) assumes that rank(XE) = |E| throughout the lasso path. This is
not necessarily correct when rank(X) < p, and can lead to errors in computing
lasso solutions. (However, from what we showed in Section 2, this “naive” as-
sumption is indeed correct with probability one when the predictors are drawn
from a continuous distribution, and this is likely the reason why such a small
oversight has gone unnoticed since the time of the original publications.)

In this section, we extend the LARS algorithm to cover a generic predictor
matrix X .2 Though the lasso solution is not necessarily unique in this general
case, and we may have rank(XE) < |E| at some points along path, we show that
a piecewise linear and continuous path of solutions still exists, and computing
this path requires only a simple modification to the previously proposed LARS
algorithm. We describe the algorithm and its steps in detail, but delay the proof
of its correctness until Appendix A.1. We also present a few properties of this
algorithm and the solutions along its path.

3.1. Description of the LARS algorithm

We start with an overview of the LARS algorithm to compute the lasso path
(extended to cover an arbitrary predictor matrix X), and then we describe its
steps in detail at a general iteration k. The algorithm presented here is of course
very similar to the original LARS algorithm of Efron et al. (2004). The key
difference is the following: if XT

E XE is singular, then the KKT conditions over
the variables in E no longer have a unique solution, and the current algorithm
uses the solution with the minimum ℓ2 norm, as in (15) and (16). This seemingly
minor detail is the basis for the algorithm’s correctness in the general X case.

Algorithm 1 (The LARS algorithm for the lasso path).

Given y and X.

• Start with the iteration counter k = 0, regularization parameter λ0 = ∞,
equicorrelation set E = ∅, and equicorrelation signs s = ∅.

• While λk > 0:

1. Compute the LARS lasso solution at λk by least squares, as in (15)
(or (16)). Continue in a linear direction from the solution for λ ≤ λk.

2. Compute the next joining time λjoin
k+1, when a variable outside the

equicorrelation set achieves the maximal absolute inner product with
the residual, as in (17) and (18).

3. Compute the next crossing time λcross
k+1 , when the coefficient path of

an equicorrelation variable crosses through zero, as in (19) and (20).

2The description of this algorithm and its proof of correctness previously appeared in
Appendix B of the author’s doctoral dissertation (Tibshirani, 2011).
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4. Set λk+1 = max{λjoin
k+1, λ

cross
k+1 }. If λ

join
k+1 > λcross

k+1 , then add the joining
variable to E and its sign to s; otherwise, remove the crossing variable
from E and its sign from s. Update k = k + 1.

At the start of the kth iteration, the regularization parameter is λ = λk. For
the path’s solution at λk, we set the non-equicorrelation coefficients equal to
zero, β̂LARS

−E (λk) = 0, and we compute the equicorrelation coefficients as

β̂LARS
E (λk) = (XE)

+
(

y − (XT
E )

+λks
)

= c− λkd, (15)

where c = (XE)
+y and d = (XE)

+(XT
E )

+s = (XT
E XE)

+s are defined to help
emphasize that this is a linear function of the regularization parameter. This
estimate can be viewed as the minimum ℓ2 norm solution of a least squares
problem on the variables in E (in which we consider E , s as fixed):

β̂LARS
E (λk) = argmin

{

‖β̂E‖2 : β̂E ∈ argmin
βE∈R|E|

‖y − (XT
E )

+λks−XEβE‖
2
2

}

. (16)

Now we decrease λ, keeping β̂LARS
−E (λ) = 0, and letting

β̂LARS
E (λ) = c− λd,

that is, moving in the linear direction suggested by (15). As λ decreases, we make
two important checks. First, we check when (that is, we compute the value of
λ at which) a variable outside the equicorrelation set E should join E because
it attains the maximal absolute inner product with the residual—we call this
the next joining time λjoin

k+1. Second, we check when a variable in E will have a
coefficient path crossing through zero—we call this the next crossing time λcross

k+1 .
For the first check, for each i /∈ E , we solve the equation

XT
i

(

y −XE(c− λd)
)

= ±λ.

A simple calculation shows that the solution is

tjoini =
XT

i (y −XEc)

±1−XT
i XEd

=
XT

i

(

I −XE(XE)
+
)

y

±1−XT
i (X

T
E )

+s
, (17)

called the joining time of the ith variable. (Although the notation is ambiguous,

the quantity tjoini is uniquely defined, as only one of +1 or −1 above will yield
a value in the interval [0, λk].

3) Hence the next joining time is

λjoin
k+1 = max

i/∈E
tjoini , (18)

and the joining coordinate and its sign are

ijoink+1 = argmax
i/∈E

tjoini and sjoink+1 = sign
(

XT
ijoin
k+1

{

y −Xβ̂LARS(λjoin
k+1)

}

)

.

3If i corresponds to the variable that left the equicorrelation set in the last iteration, then
the value of ±1 here is determined here by the sign opposite to that of its own coefficient.
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As for the second check, note that a variable i ∈ E will have a zero coefficient
when λ = ci/di = [(XE)

+y]i/[(X
T
E XE)

+s]i. Because we are only considering
λ ≤ λk, we define the crossing time of the ith variable as

tcrossi =
[(XE)

+y]i

[(XT
E XE)+s]i

· 1

{

[(XE)
+y]i

[(XT
E XE)+s]i

≤ λk

}

. (19)

The next crossing time is therefore

λcross
k+1 = max

i∈E
tcrossi , (20)

and the crossing coordinate and its sign are

icrossk+1 = argmax
i∈E

tcrossi and scrossk+1 = sicross
k+1

.

Finally, we decrease λ until the next joining time or crossing time—whichever
happens first—by setting λk+1 = max{λjoin

k+1, λ
cross
k+1 }. If λ

join
k+1 > λcross

k+1 , then we

add the joining coordinate ijoink+1 to E and its sign sjoink+1 to s. Otherwise, we delete
the crossing coordinate icrossk+1 from E and its sign scrossk+1 from s.

The proof of correctness for this algorithm shows that computed path β̂LARS(λ)
satisfies the KKT conditions (2) and (3) at each λ, and is hence indeed a lasso
solution path. It also shows that the computed path is continuous at each knot
in the path λk, and hence is globally continuous in λ. The fact that XT

E XE

can be singular makes the proof somewhat complicated (at least more so than
it is for the case rank(X) = p), and hence we delay its presentation until Ap-
pendix A.1. Appendix A.2 contains more details on the joining times and cross-
ing times.

3.2. Properties of the LARS algorithm and its solutions

Two basic properties of the LARS lasso path, as mentioned in the previous
section, are piecewise linearity and continuity with respect to λ. The algorithm
and the solutions along its computed path possess a few other nice properties,
most of them discussed in this section, and some others later in Section 5. We
begin with a property of the LARS algorithm itself.

Lemma 6. For any y,X, the LARS algorithm for the lasso path performs at
most

p
∑

k=0

(

p

k

)

2k = 3p

iterations before termination.

Proof. The idea behind the proof is quite simple, and was first noticed by Os-
borne et al. (2000a) for their homotopy algorithm: any given pair of equicor-
relation set E and sign vector s that appear in one iteration of the algorithm
cannot be revisited in a future iteration, due to the linear nature of the solution
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path. To elaborate, suppose that E , s were the equicorrelation set and signs at
iteration k and also at iteration k′, with k′ > k. Then this would imply that the
constraints

∣

∣XT
i

(

y −XE β̂
LARS
E (λ)

)∣

∣ < λ for each i /∈ E , (21)

si · β̂
LARS
E (λ) > 0 for each i ∈ E , (22)

hold at both λ = λk and λ = λk′ . But β̂LARS
E (λ) = c − λd is a linear function

of λ, and this implies that (21) and (22) also hold at every λ ∈ [λ′
k, λk], contra-

dicting the fact that k′ and k are distinct iterations. Therefore the total number
of iterations performed by the LARS algorithm is bounded by the number of
distinct pairs of subsets E ⊆ {1, . . . p} and sign vectors s ∈ {−1, 1}|E|.

Remark. Mairal and Yu (2012) showed recently that the upper bound for the
number of steps taken by the original LARS algorithm, which assumes that
rank(XE) = |E| throughout the path, can actually be improved to (3p + 1)/2.
Their proof is based on the following observation: if E , s are the equicorrelation
set and signs at one iteration of the algorithm, then E ,−s cannot appear as the
equicorrelation set and signs in a future iteration. Indeed, this same observation
is true for the extended version of LARS presented here, by essentially the
same arguments. Hence the upper bound in Lemma 6 can also be improved to
(3p + 1)/2. Interestingly, Mairal and Yu (2012) further show that this upper
bound is tight: they construct, for any p, a problem instance (y and X) for
which the LARS algorithm takes exactly (3p + 1)/2 steps.

Next, we show that the end of the LARS lasso solution path (λ = 0) is itself
an interesting least squares solution.

Lemma 7. For any y,X, the LARS lasso solution converges to a minimum ℓ1
norm least squares solution as λ → 0+, that is,

lim
λ→0+

β̂LARS(λ) = β̂LS,ℓ1 ,

where β̂LS,ℓ1 ∈ argminβ∈Rp ‖y−Xβ‖22 and achieves the minimum ℓ1 norm over
all such solutions.

Proof. First note that by Lemma 6, the algorithm always takes a finite number
of iterations before terminating, so the limit here is always attained by the algo-
rithm (at its last iteration). Therefore we can write β̂LARS(0) = limλ→0+ β̂LARS(λ).
Now, by construction, the LARS lasso solution satisfies

∣

∣XT
i

(

y −Xβ̂LARS(λ)
)∣

∣ ≤ λ for each i = 1, . . . p,

at each λ ∈ [0,∞]. Hence at λ = 0 we have

XT
i

(

y −Xβ̂LARS(0)
)

= 0 for each i = 1, . . . p,
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implying that β̂LARS(0) is a least squares solution. Suppose that there exists

another least squares solution β̂LS with ‖β̂LS‖1 < ‖β̂LARS(0)‖1. Then by conti-
nuity of the LARS lasso solution path, there exists some λ > 0 such that still
‖β̂LS‖1 < ‖β̂LARS(λ)‖1, so that

1

2
‖y −Xβ̂LS‖22 + λ‖β̂LS‖1 <

1

2
‖y −Xβ̂LARS(λ)‖22 + λ‖β̂LARS(λ)‖1.

This contradicts the fact that β̂LARS(λ) is a lasso solution at λ, and therefore

β̂LARS(0) achieves the minimum ℓ1 norm over all least squares solutions.

We showed in Section 3.1 that the LARS algorithm constructs the lasso
solution

β̂LARS
−E (λ) = 0 and β̂LARS

E (λ) = (XE)
+
(

y − (XT
E )

+λs
)

,

by decreasing λ from ∞, and continually checking whether it needs to include or
exclude variables from the equicorrelation set E . Recall our previous description
(8) of the set of lasso solutions at any given λ. In (8), different lasso solutions
are formed by choosing different vectors b that satisfy the two conditions given
in (9): a null space condition, b ∈ null(XE), and a sign condition,

si ·
(

[

(XE)
+
(

y − (XT
E )

+λs
)]

i
+ bi

)

≥ 0 for i ∈ E .

We see that the LARS lasso solution corresponds to the choice b = 0. When
rank(X) = |E|, b = 0 is the only vector in null(XE), so it satisfies the above sign
condition by necessity (as we know that a lasso solution must exist Lemma 1).
On the other hand, when rank(X) < |E|, it is certainly true that 0 ∈ null(XE),
but it is not at all obvious that the sign condition is satisfied by b = 0. The
LARS algorithm establishes this fact by constructing an entire lasso solution
path with exactly this property (b = 0) over λ ∈ [0,∞]. At the risk of sounding
repetitious, we state this result next in the form of a lemma.

Lemma 8. For any y,X, and λ > 0, a lasso solution is given by

β̂LARS
−E = 0 and β̂LARS

E = (XE)
+
(

y − (XT
E )

+λs
)

, (23)

and this is the solution computed by the LARS lasso path algorithm.

For one, this lemma is perhaps interesting from a computational point of
view: it says that for any y,X , and λ > 0, a lasso solution (indeed, the LARS
lasso solution) can be computed directly from E and s, which themselves can be
computed from the unique lasso fit. Further, for any y,X , we can start with a
lasso solution at λ > 0 and compute a local solution path using the same LARS
steps; see Appendix A.3 for more details. Aside from computational interests,
the explicit form of a lasso solution given by Lemma 8 may be helpful for the
purposes of mathematical analysis; for example, this form is used by Tibshirani
and Taylor (2012) to give a simpler proof of the degrees of freedom of the lasso
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fit, for a general X , in terms of the equicorrelation set. As another example, it
is also used in Section 5 to prove a necessary condition for the uniqueness of the
lasso solution (holding almost everywhere in y).

We show in Section 5 that, for almost every y ∈ R
n, the LARS lasso solution

is supported on all of E and hence has the largest support of any lasso solution
(at the same y,X, λ). As lasso solutions all have the same ℓ1 norm, by Lemma 1,
this means that the LARS lasso solution spreads out the common ℓ1 norm over
the largest number of coefficients. It may not be surprising, then, that the LARS
lasso solution has the smallest ℓ2 norm among lasso solutions, shown next.

Lemma 9. For any y,X, and λ > 0, the LARS lasso solution β̂LARS has the
minimum ℓ2 norm over all lasso solutions.

Proof. From (8), we can see that any lasso solution has squared ℓ2 norm

‖β̂‖22 =
∥

∥(XE)
+
(

y − (XT
E )

+λs
)∥

∥

2

2
+ ‖b‖22,

since b ∈ null(XE). Hence ‖β̂‖22 ≥ ‖β̂LARS‖22, with equality if and only if b=0.

Mixing together the ℓ1 and ℓ2 norms brings to mind the elastic net (Zou and
Hastie, 2005), which penalizes both the ℓ1 norm and the squared ℓ2 norm of the
coefficient vector. The elastic net utilizes two tuning parameters λ1, λ2 ≥ 0 (this
notation should not to be confused with the knots in the LARS lasso path), and
solves the criterion4

β̂EN ∈ argmin
β∈Rp

1

2
‖y −Xβ‖22 + λ1‖β‖1 +

λ2

2
‖β‖22. (24)

For any λ2 > 0, the elastic net solution β̂EN = β̂EN(λ1, λ2) is unique, since the
criterion is strictly convex.

Note that if λ2 = 0, then (24) is just the lasso problem. On the other hand,
if λ1 = 0, then (24) reduces to ridge regression. It is well-known that the ridge

regression solution β̂ridge(λ2) = β̂EN(0, λ2) converges to the minimum ℓ2 norm
least squares solution as λ2 → 0+. Our next result is analogous to this fact: it
says that for any fixed λ1 > 0, the elastic net solution converges to the minimum
ℓ2 norm lasso solution—that is, the LARS lasso solution—as λ2 → 0+,

Lemma 10. Fix any X and λ1 > 0. For almost every y ∈ R
n, the elastic net

solution converges to the LARS lasso solution as λ2 → 0+, that is,

lim
λ2→0+

β̂EN(λ1, λ2) = β̂LARS(λ1).

4This is actually what Zou and Hastie (2005) call the “naive” elastic net solution, and the

modification (1 + λ2)β̂EN is what the authors refer to as the elastic net estimate. But in the
limit as λ2 → 0+, these two estimates are equivalent, so our result in Lemma 10 holds for this
modified estimate as well.
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Proof. By Lemma 13, we know that for any y /∈ N , where N ⊆ R
n is a set of

measure zero, the LARS lasso at λ1 satisfies β̂LARS(λ1)i 6= 0 for all i ∈ E . Hence
fix y /∈ N . First note that we can rewrite the LARS lasso solution as

β̂LARS
−E (λ1) = 0 and β̂LARS

E (λ1) = (XT
E XE)

+(XT
E y − λ1s).

Define the function

f(λ2) = (XT
E XE + λ2I)

−1(XT
E y − λ1s) for λ2 > 0,

f(0) = (XT
E XE)

+(XT
E y − λ1s).

For fixed E , s, the function f is continuous on [0,∞) (continuity at 0 can be
verified, for example, by looking at the singular value decomposition of (XT

E XE+
λ2I)

−1.) Hence it suffices to show that for small enough λ2 > 0, the elastic net
solution at λ1, λ2 is given by

β̂EN
−E (λ1, λ2) = 0 and β̂EN

E (λ1, λ2) = f(λ2).

To this end, we show that the above proposed solution satisfies the KKT
conditions for small enough λ2. The KKT conditions for the elastic net problem
are

XT (y −Xβ̂EN)− λ2β̂
EN = λ1γ, (25)

γi ∈

{

{sign(β̂EN
i )} if β̂EN

i 6= 0

[−1, 1] if β̂EN
i = 0

, for i = 1, . . . p. (26)

Recall that f(0) = β̂LARS
E (λ1) are the equicorrelation coefficients of the LARS

lasso solution at λ1. As y /∈ N , we have f(0)i 6= 0 for each i ∈ E , and further,
sign(f(0)i) = si for all i ∈ E . Therefore the continuity of f implies that for small
enough λ2, f(λ2)i 6= 0 and sign(f(λ2)i) = si for all i ∈ E . Also, we know that
‖XT

−E(y−XEf(0))‖∞ < λ1 by definition of the equicorrelation set E , and again,
the continuity of f implies that for small enough λ2, ‖XT

−E(y −XEf(λ2))‖∞ <
λ1. Finally, direct calculcation shows that

XT
E

(

y −XEf(λ2)
)

− λ2f(λ2) = XT
E y − (XT

E XE + λ2I)(X
T
E XE + λ2I)

−1XT
E y

+ (XT
E XE + λ2I)(X

T
E XE + λ2I)

−1λ1s

= λ1s.

This verifies the KKT conditions for small enough λ2, and completes the proof.

In Section 5, we discuss a few more properties of LARS lasso solutions, in
the context of studying the various support sets of lasso solutions. In the next
section, we present a simple method for computing lower and upper bounds on
the coefficients of lasso solutions, useful when the solution is not unique.



The lasso problem and uniqueness 1473

4. Lasso coefficient bounds

Here we again consider a general predictor matrix X (not necessarily having
columns in general position), so that the lasso solution is not necessarily unique.
We show that it is possible to compute lower and upper bounds on the coeffi-
cients of lasso solutions, for any given problem instance, using linear program-
ming. We begin by revisiting the KKT conditions.

4.1. Back to the KKT conditions

The KKT conditions for the lasso problem were given in (2) and (3). Recall that

the lasso fit Xβ̂ is always unique, by Lemma 1. Note that when λ > 0, we can
rewrite (2) as

γ =
1

λ
XT (y −Xβ̂),

implying that the optimal subgradient γ is itself unique. According to its defini-
tion (3), the components of γ give the signs of nonzero coefficients of any lasso
solution, and therefore the uniqueness of γ immediately implies the following
result.

Lemma 11. For any y,X, and λ > 0, any two lasso solutions β̂(1) and β̂(2)

must satisfy β̂
(1)
i ·β̂

(2)
i ≥ 0 for i = 1, . . . p. In other words, any two lasso solutions

must have the same signs over their common support.

In a sense, this result is reassuring—it says that even when the lasso solu-
tion is not necessarily unique, lasso coefficients must maintain consistent signs.
Note that the same is certainly not true of least squares solutions (correspond-
ing to λ = 0), which causes problems for interpretation, as mentioned in the
introduction. Lemma 11 will be helpful when we derive lasso coefficient bounds
shortly.

We also saw in the introduction that different lasso solutions (at the same
y,X, λ) can have different supports, or active sets. The previously derived char-
acterization of lasso solutions, given in (8) and (9), provides an understanding
of how this is possible. It helps to rewrite (8) and (9) as

β̂−E = 0 and β̂E = β̂LARS
E + b, (27)

where b is subject to

b ∈ null(XE) and si · (β̂
LARS
i + bi) ≥ 0, i ∈ E , (28)

and β̂LARS is the fundamental solution traced by the LARS algorithm, as given
in (23). Hence for for a lasso solution β̂ to have an active set A = supp(β̂), we

can see that we must have A ⊆ E and β̂E = β̂LARS
E + b, where b satisfies (28)

and also

bi = −β̂LARS
i for i /∈ E \ A,

bi 6= −β̂LARS
i for i ∈ E \ A.
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As we discussed in the introduction, the fact that there may be different active
sets corresponding to different lasso solutions (at the same y,X, λ) is perhaps
concerning, because different active sets provide different “stories” regarding
which predictor variables are important. One might ask: given a specific vari-
able of interest i ∈ E (recalling that all variables outside of E necessarily have
zero coefficients), is it possible for the ith coefficient to be nonzero at one lasso
solution but zero at another? The answer to this question depends on the in-
terplay between the constraints in (28), and as we show next, it is achieved by
solving a simple linear program.

4.2. The polytope of solutions and lasso coefficient bounds

The key observation here is that the set of lasso solutions defined by (27) and
(28) forms a convex polytope. Consider writing the set of lasso solutions as

β̂−E = 0 and β̂E ∈ K = {x ∈ R
|E| : Px = β̂LARS

E , Sx ≥ 0}, (29)

where P = Prow(XE ) and S = diag(s). That (29) is equivalent to (27) and (28)

follows from the fact that β̂LARS
E ∈ row(XE), hence Px = β̂LARS

E if and only if

x = β̂LARS
E + b for some b ∈ null(XE).

The set K ⊆ R
|E| is a polyhedron, since it is defined by linear equalities and

inequalities, and furthermore it is bounded, as all lasso solutions have the same
ℓ1 norm by Lemma 1, making it a polytope. The component-wise extrema of K
can be easily computed via linear programming. In other words, for i ∈ E , we
can solve the following two linear programs:

β̂lower
i = min

x∈R|E|
xi subject to Px = β̂LARS

E , Sx ≥ 0, (30)

β̂upper
i = max

x∈R|E|
xi subject to Px = β̂LARS

E , Sx ≥ 0, (31)

and then we know that the ith component of any lasso solution satisfies β̂i ∈
[β̂lower

i , β̂upper
i ]. These bounds are tight, in the sense that each is achieved by the

ith component of some lasso solution (in fact, this solution is just the minimizer
of (30), or the maximizer of (31)). By the convexity of K, every value between

β̂lower
i and β̂upper

i is also achieved by the ith component of some lasso solution.
Most importantly, the linear programs (30) and (31) can actually be solved
in practice. Aside from the obvious dependence on y,X , and λ, the relevant
quantities P, S, and β̂LARS

E only depend on the equicorrelation set E and signs s,
which in turn only depend on the unique lasso fit. Therefore, one could compute
any lasso solution (at y,X, λ) in order to define E , s, and subsequently P, S and

β̂LARS
E , all that is needed in order to solve (30) and (31). We summarize this

idea below.

Algorithm 2 (Lasso coefficient bounds).

Given y,X, and λ > 0.

1. Compute any solution β̂ of the lasso problem (at y,X, λ), to obtain the

unique lasso fit Xβ̂.
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2. Define the equicorrelation set E and signs s, as in (4) and (5), respectively.

3. Define P = Prow(XE), S = diag(s), and β̂LARS
E according to (23).

4. For each i ∈ E, compute the coefficient bounds β̂lower
i and β̂upper

i by solving
the linear programs (30) and (31), respectively.

Lemma 11 implies a valuable property of the bounding interval [β̂lower
i , β̂upper

i ],
namely, that this interval cannot contain zero in its interior. Otherwise, there
would be a pair of lasso solutions with opposite signs over the ith component,
contradicting the lemma. Also, we know from Lemma 1 that all lasso solutions
have the same ℓ1 norm L, and this means that |β̂lower

i |, |β̂upper
i | ≤ L. Combining

these two properties gives the next lemma.

Lemma 12. Fix any y,X, and λ > 0. Let L be the common ℓ1 norm of lasso
solutions at y,X, λ. Then for any i ∈ E, the coefficient bounds β̂lower

i and β̂upper
i

defined in (30) and (31) satisfy

[β̂lower
i , β̂upper

i ] ⊆ [0, L] if si > 0,

[β̂lower
i , β̂upper

i ] ⊆ [−L, 0] if si < 0.

Using Algorithm 2, we can identify all variables i ∈ E with one of two cate-
gories, based on their bounding intervals:

(i) If 0 ∈ [β̂lower
i , β̂upper

i ], then variable i is called dispensable (to the lasso
model at y,X, λ), because there is a solution that does not include this

variable in its active set. By Lemma 12, this can only happen if β̂lower
i = 0

or β̂upper
i = 0.

(ii) If 0 /∈ [β̂lower
i , β̂upper

i ], then variable i is called indispensable (to the lasso
model at y,X, λ), because every solution includes this variable in its active

set. By Lemma 12, this can only happen if β̂lower
i > 0 or β̂upper

i < 0.

It is helpful to return to the example discussed in the introduction. Recall
that in this example we took n = 5 and p = 10, and for a given y,X , and λ = 1,
we found two lasso solutions: one supported on variables {1, 2, 3, 4}, and another
supported on variables {1, 2, 3}. In the introduction, we purposely did not reveal
the structure of the predictor matrix X ; given what we showed in Section 2
(that X having columns in general position implies a unique lasso solution),
it should not be surprising to find out that here we have X4 = (X2 + X3)/2.
A complete description of our construction of X and y is as follows: we first
drew the components of the columns X1, X2, X3 independently from a standard
normal distribution, and then defined X4 = (X2 + X3)/2. We also drew the
components of X5, . . .X10 independently from a standard normal distribution,
and then orthogonalizedX5, . . .X10 with respect to the linear subspace spanned
by X1, . . . , X4. Finally, we defined y = −X1 + X2 + X3. The purpose of this
construction was to make it easy to detect the relevant variables X1, . . .X4 for
the linear model of y on X .

According to the terminology defined above, variable 4 is dispensable to the
lasso model when λ = 1, because it has a nonzero coefficient at one solution



1476 R. J. Tibshirani

Table 1

The results of Algorithm 2 for the small example from the introduction, with n = 5,

p = 8. Shown are the lasso coefficient bounds over the equicorrelation set

E = {1, 2, 3, 4}

i β̂lower
i

β̂LARS
i

β̂
upper
i

1 −0.8928 −0.8928 −0.8928

2 0.2455 0.6201 0.8687

3 0 0.3746 0.6232

4 0 0.4973 1.2465

but a zero coefficient at another. This is perhaps not surprising, as X2, X3, X4

are linearly dependent. How about the other variables? We ran Algorithm 2 to
answer this question. The results are displayed in Table 1.

For the given y,X , and λ = 1, the equicorrelation set is E = {1, 2, 3, 4}, and
the sign vector is s = (−1, 1, 1, 1)T (these are given by running Steps 1 and 2
of Algorithm 2). Therefore we know that any lasso solution has zero coefficients
for variables 5, . . . 10, has a nonpositive first coefficient, and has nonnegative
coefficients for variables 2, 3, 4. The third column of Table 1 shows the LARS
lasso solution over the equicorrelation variables. The second and fourth columns
show the component-wise coefficient bounds β̂lower

i and β̂upper
i , respectively, for

i ∈ E . We see that variable 3 is dispensable, because it has a lower bound of
zero, meaning that there exists a lasso solution that excludes the third variable
from its active set (and this solution is actually computed by Algorithm 2, as
it is the minimizer of the linear program (30) with i = 3). The same conclusion
holds for variable 4. On the other hand, variables 1 and 2 are indispensable,
because their bounding intervals do not contain zero.

Like variables 3 and 4, variable 2 is linearly dependent on the other variables
(in the equicorrelation set), but unlike variables 3 and 4, it is indispensable and
hence assigned a nonzero coefficient in every lasso solution. This is the first
of a few interesting points about dispensability and indispensability, which we
discuss below.

• Linear dependence does not imply dispensability. In the example, variable
2 is indispensable, as its coefficient has a lower bound of 0.2455 > 0, even
though variable 2 is a linear function of variables 3 and 4. Note that in
order for the 2nd variable to be dispensable, we need to be able to use the
others (variables 1, 3, and 4) to achieve both the same fit and the same ℓ1
norm of the coefficient vector. The fact that variable 2 can be written as a
linear function of variables 3 and 4 implies that we can preserve the fit, but
not necessarily the ℓ1 norm, with zero weight on variable 2. Table 1 says
that we can make the weight on variable 2 as small as 0.2455 while keeping
the fit and the ℓ1 norm unchanged, but that moving it below 0.2455 (and
maintaining the same fit) inflates the ℓ1 norm.

• Linear independence implies indispensability (almost everywhere). In the
next section we show that, given any X and λ, and almost every y ∈ R

n,
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the quantity col(XA) is invariant over all active sets coming from lasso
solutions at y,X, λ. Therefore, almost everywhere in y, if variable i ∈ E is
linearly independent of all j /∈ E (meaning that Xi cannot be expressed
as a linear function of Xj , j /∈ E), then variable i must be indispensable—
otherwise the span of the active variables would be different for different
active sets.

• Individual dispensability does not imply pairwise dispensability. Back to
the above example, variables 3 and 4 are both dispensable, but this does
not necessarily mean that there exists a lasso solution that exludes both
3 and 4 simultaneously from the active set. Note that the computed solu-
tion that achieves a value of zero for its 3rd coefficient (the minimizer of
(30) for i = 3) has a nonzero 4th coefficient, and the computed solution
that achieves zero for its 4th coefficient (the minimizer of (30) for i = 4)
has a nonzero 3rd coefficient. While this suggests that variables 3 and 4
cannot simultaneously be zero for the current problem, it does not serve
as definitive proof of such a claim. However, we can check this claim by
solving (30), with i = 4, subject to the additional constraint that x3 = 0.
This does in fact yield a positive lower bound, proving that variables 3
and 4 cannot both be zero at a solution. Furthermore, moving beyond
pairwise interactions, we can actually enumerate all possible active sets of
lasso solutions, by recognizing that there is a one-to-one correspondence
between active sets and faces of the polytope K; see Appendix A.4.

Next, we cover some properties of lasso solutions that relate to our work in
this section and in the previous two sections, on uniqueness and non-uniqueness.

5. Related properties

We present more properties of lasso solutions, relating to issues of uniqueness
and non-uniqueness. The first three sections examine the active sets generated
by lasso solutions of a given problem instance, when X is a general predictor
matrix. The results in these three sections are reviewed from the literature. In
the last section, we give a necessary condition for the uniqueness of the lasso
solution.

5.1. The largest active set

For an arbitrary X , recall from Section 4 that the active set A of any lasso
solution is necessarily contained in the equicorrelation set E . We show that the
LARS lasso solution has support on all of E , making it the lasso solution with
the largest support, for almost every y ∈ R

n. This result appeared in Tibshirani
and Taylor (2012).

Lemma 13. Fix any X and λ > 0. For almost every y ∈ R
n, the LARS

lasso solution β̂LARS has an active set A equal to the equicorrelation set E, and
therefore achieves the largest active set of any lasso solution.
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Proof. For a matrix A, let A[i] denote its ith row. Define the set

N =
⋃

E,s

⋃

i∈E

{

z ∈ R
n :

(

(XE)
+
)

[i]

(

z − (XT
E )

+λs
)

= 0
}

. (32)

The first union above is taken over all subsets E ⊆ {1, . . . p} and sign vectors
s ∈ {−1, 1}|E|, but implicitly we exclude sets E such that (XE)

+ has a row that
is entirely zero. Then N has measure zero, because it is a finite union of affine
subspaces of dimension n− 1.

Now let y /∈ N . We know that no row of (XE)
+ can be entirely zero (otherwise,

this means that XE has a zero column, implying that λ = 0 by definition of
the equicorrelation set, contradicting the assumption in the lemma). Then by

construction we have that β̂LARS
i 6= 0 for all i ∈ E .

Remark 1. In the case that the lasso solution is unique, this result says that the
active set is equal to the equicorrelation set, almost everywhere.

Remark 2. Note that the equicorrelation set E (and hence the active set of a
lasso solution, almost everywhere) can have size |E| = p in the worst case, even
when p > n. As a trivial example, consider the case when X ∈ R

n×p has p
duplicate columns, with p > n.

5.2. The smallest active set

We have shown that the LARS lasso solution attains the largest possible active
set, and so a natural question is: what is the smallest possible active set? The
next result is from Osborne et al. (2000b) and Rosset et al. (2004).

Lemma 14. For any y,X, and λ > 0, there exists a lasso solution whose set
of active variables is linearly independent. In particular, this means that there
exists a solution whose active set A has size |A| ≤ min{n, p}.

Proof. We follow the proof of Rosset et al. (2004) closely. Let β̂ be a lasso

solution, let A = supp(β̂) be its active set, and suppose that rank(XA) < |A|.
Then by the same arguments as those given in Section 2, we can write, for some
i ∈ A,

siXi =
∑

j∈A\{i}

ajsjXj, where
∑

j∈A\{i}

aj = 1. (33)

Now define
θi = −si and θj = ajsj for j ∈ A \ {i}.

Starting at β̂, we move in the direction of θ until a coefficient hits zero; that is,
we define

β̃−A = 0 and β̃A = β̂A + δθ,

where

δ = min{ρ ≥ 0 : β̂j + ρθj = 0 for some j ∈ A}.
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Notice that δ is guaranteed to be finite, as δ ≤ |β̂i|. Furthermore, we have

Xβ̃ = Xβ̂ because θ ∈ null(XA), and also

‖β̃‖1 = |β̃i|+
∑

j∈A\{i}

|β̃j |

= |β̂i| − δ +
∑

j∈A\{i}

(|β̂j |+ δaj)

= ‖β̂‖1.

Hence we have shown that β̃ achieves the same fit and the same ℓ1 norm as β̂, so
it is indeed also lasso solution, and it has one fewer nonzero coefficient than β̂.
We can now repeat this procedure until we obtain a lasso solution whose active
set A satisfies rank(XA) = |A|.

Remark 1. This result shows that, for any problem instance, there exists a
lasso solution supported on ≤ min{n, p} variables; some works in the literature
have misquoted this result by claiming that every lasso solution is supported
on ≤ min{n, p} variables, which is clearly incorrect. When the lasso solution is
unique, however, Lemma 14 implies that its active set has size ≤ min{n, p}.

Remark 2. In principle, one could start with any lasso solution, and follow the
proof of Lemma 14 to construct a solution whose active set A is such that
rank(XA) = |A|. But from a practical perspective, this could be computation-
ally quite difficult, as computing the constants aj in (33) requires finding a
nonzero vector in null(XA)—a nontrivial task that would need to be repeated
each time a variable is eliminated from the active set. To the best of our knowl-
edge, the standard optimization algorithms for the lasso problem (such as co-
ordinate descent, first-order methods, quadratic programming approaches) do
not consistently produce lasso solutions with the property that rank(XA) = |A|
over the active set A. This is in contrast to the solution with largest active set,
which is computed by the LARS algorithm.

Remark 3. The proof of Lemma 14 does not actually depend on the lasso prob-
lem in particular, and the arguments can be extended to cover the general ℓ1
penalized minimization problem (11), with f differentiable and strictly convex.
(This is in the same spirit as our extension of lasso uniqueness results to this
general problem in Section 2.) Hence, to put it explicitly, for any differentiable,
strictly convex f , any X , and λ > 0, there exists a solution of (11) whose active
set A is such that rank(XA) = |A|.

The title “smallest” active set is justified, because in the next section we
show that the subspace col(XA) is invariant under all choices of active sets A,
for almost every y ∈ R

n. Therefore, for such y, if A is an active set satisfying
rank(XA) = |A|, then one cannot possibly find a solution whose active set has
size < |A|, as this would necessarily change the span of the active variables.
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5.3. Equivalence of active subspaces

With the multiplicity of active sets (corresponding to lasso solutions of a given
problem instance), there may be difficulty in identifying and interpreting impor-
tant variables, as discussed in the introduction and in Section 4. Fortunately, it
turns out that for almost every y, the span of the active variables does not de-
pend on the choice of lasso solution, as shown in Tibshirani and Taylor (2012).
Therefore, even though the linear models (given by lasso solutions) may report
differences in individual variables, they are more or less equivalent in terms of
their scope, almost everywhere in y.

Lemma 15. Fix any X and λ > 0. For almost every y ∈ R
n, the linear subspace

col(XA) is exactly the same for any active set A coming from a lasso solution.

Due to the length and technical nature of the proof, we only give a sketch
here, and refer the reader to Tibshirani and Taylor (2012) for full details. First,
we define a set N ⊆ R

n—somewhat like the set defined in (32) in the proof
of Lemma 13—to be a union of affine subspaces of dimension ≤ n − 1, and
hence N has measure zero. Then, for any y except in this exceptional set N ,
we consider any lasso solution at y and examine its active set A. Based on the
careful construction ofN , we can prove the existence of an open set U containing
y such that any y′ ∈ U admits a lasso solution that has an active set A. In other
words, this is a result on the local stability of lasso active sets. Next, over U ,
the lasso fit can be expressed in terms of the projection map onto col(XA). The
uniqueness of the lasso fit finally implies that col(XA) is the same for any choice
of active set A coming from a lasso solution at y.

5.4. A necessary condition for uniqueness (almost everywhere)

We now give a necessary condition for uniqueness of the lasso solution, that
holds for almost every y ∈ R

n (considering X and λ fixed but arbitrary). This
is in fact the same as the sufficient condition given in Lemma 2, and hence, for
almost every y, we have characterized uniqueness completely.

Lemma 16. Fix any X and λ > 0. For almost every y ∈ R
n, if the lasso

solution is unique, then null(XE) = {0}.

Proof. Let N be as defined in (32). Then for y /∈ N , the LARS lasso solution

β̂LARS has active set equal to E . If the lasso solution is unique, then it must
be the LARS lasso solution. Now suppose that null(XE) 6= {0}, and take any
b ∈ null(XE), b 6= 0. As the LARS lasso solution is supported on all of E , we
know that

si · β̂
LARS
i > 0 for all i ∈ E .

For δ > 0, define
β̂−E = 0 and β̂E = β̂LARS

E + δb.

Then we know that

δb ∈ null(XE) and si · (β̂
LARS
i + δbi) > 0, i ∈ E ,



The lasso problem and uniqueness 1481

the above inequality holding for small enough δ > 0, by continuity. There-
fore β̂ 6= β̂LARS is also a solution, contradicting uniqueness, which means that
null(XE) = {0}.

6. Discussion

We studied the lasso problem, covering conditions for uniqueness, as well as
results aimed at better understanding the behavior of lasso solutions in the non-
unique case. Some of the results presented in this paper were already known in
the literature, and others were novel. We give a summary here.

Section 2 showed that any one of the following three conditions is sufficient
for uniqueness of the lasso solution: (i) null(XE) = {0}, where E is the unique
equicorrelation set; (ii) X has columns in general position; (iii) X has entries
drawn from a continuous probability distribution (the implication now being
uniqueness with probability one). These results can all be found in the literature,
in one form or another. They also apply to a more general ℓ1 penalized mini-
mization problem, provided that the loss function is differentiable and strictly
convex when considered a function of Xβ (this covers, for example, ℓ1 penalized
logistic regression and ℓ1 penalized Poisson regression). Section 5 showed that
for the lasso problem, the condition null(XE) = {0} is also necessary for unique-
ness of the solution, almost everywhere in y. To the best of our knowledge, this
is a new result.

Sections 3 and 4 contained novel work on extending the LARS path algorithm
to the non-unique case, and on bounding the coefficients of lasso solutions in
the non-unique case, respectively. The newly proposed LARS algorithm works
for any predictor matrix X , whereas the original LARS algorithm only works
when the lasso solution path is unique. Although our extension may super-
ficially appear to be quite minor, its proof of correctness is somewhat more
involved. In Section 3 we also discussed some interesting properties of LARS
lasso solutions in the non-unique case. Section 4 derived a simple method for
computing marginal lower and upper bounds for the coefficients of lasso solu-
tions of any given problem instance. It is also in this section that we showed
that no two lasso solutions can exhibit different signs for a common active vari-
able, implying that the bounding intervals cannot contain zero in their interiors.
These intervals allowed us to categorize each equicorrelation variable as either
“dispensable”—meaning that some lasso solution excludes this variable from
active set, or “indispensable”—meaning that every lasso solution includes this
variable in its active set. We hope that this represents progress towards inter-
pretation in the non-unique case.

The remainder of Section 5 reviewed existing results from the literature on the
active sets of lasso solutions in the non-unique case. The first was the fact that
the LARS lasso solution is supported on E , and hence attains the largest active
set, almost everywhere in y. Next, there always exists a lasso solution whose
active set A satisfies rank(XA) = |A|, and therefore has size |A| ≤ min{n, p}.
The last result gave an equivalence between all active sets of lasso solutions of
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a given problem instance: for almost every y, the subspace col(XA) is the same
for any active set A of a lasso solution.

While this paper was under revision, the referees raised an interesting ques-
tion: how does current lasso theory deal with issues of non-uniqueness? Before
addressing this question, it is worth pointing out that such theoretical results
typically assume a linear generative model for the outcome y as a function of
the predictors X , with true coefficients β∗, whereas the current paper consid-
ers the issues of uniqueness and computation of lasso solutions and makes no
assumptions about the true underlying model. Having mentioned this, we can
now address the above question in parts, based on the type of theoretical result
sought.

First, for results on bounding the difference in the lasso fit and the true mean,
‖Xβ̂−Xβ∗‖2, note that it does not matter whether or not the lasso solution is
unique, because the fitted value itself is always unique (recall Lemma 1).

Second, for results on bounding ‖β̂ − β∗‖2, issues of uniqueness of β̂ must
clearly be considered. A common assumption used to derive sharp bounds for
this quantity is the restricted eigenvalue condition onX (see, for example, Bickel
et al. (2009), Koltchinskii (2009a), Koltchinskii (2009b); see also van de Geer and
Buhlmann (2009) for an extension discussion of this condition and its relation
to other common conditions in the literature). With this assumption in place

(and some others), one can prove a fast convergence rate for ‖β̂ − β∗‖2, when

β̂ is any solution of the lasso problem at a specific value of λ—in other words,
in the non-unique case, any one of the infinite number of lasso solutions will do
(for example, Negahban et al. (2012) are careful about stating this explicitly).
Generally speaking, there is no known prescription for building deterministic
(and high-dimensional) matrices X that satisfy the restricted eigenvalue condi-
tion; hence, to make this convergence result more concrete, many authors study
random matrices X that satisfy the restricted eigenvalue condition with high
probability. It is worth mentioning that typical examples of random matrices X
with this property use continuous probability distributions (the most common
example being X with i.i.d. Gaussian entries), in which case the lasso solution is

unique almost surely (recall Lemma 4), and so the derived bounds on ‖β̂−β∗‖2
really only apply to the single unique solution β̂. Furthermore, we suspect that
even those random matrices X known to satisfy the restricted eigenvalue con-
dition with high probability, but are not continuously distributed (for example,
X with i.i.d. Bernoulli entries), can still be shown to have columns in general
position with high probability, guaranteeing the uniqueness of the lasso solution
(recall Lemma 3) with high probability.

Third, and lastly, for results on recovering the true underlying support set,
supp(β̂) = supp(β∗), with high probability, one requires a stronger assumption
than the restricted eigenvalue condition, namely, that of mutual incoherence or
irrepresentability (see, for example, Wainwright (2009), Zhao and Yu (2006)).
Assuming this condition, a common approach to proving exact support recov-
ery is to use the primal-dual witness method, which (with strict dual feasibility)
implies the existence of a lasso solution whose equicorrelation set is E = A∗,
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where A∗ = supp(β∗) is the true active set (see Wainwright (2009)). But mu-
tual incoherence (trivially) implies that rank(XA∗) = |A∗|, so the constructed
lasso solution has an equicorrelation set with rank(XE) = |E|, which implies
uniqueness (recall Lemma 2).
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Appendix A: Appendix

A.1. Proof of correctness of the LARS algorithm

We prove that for a general X , the LARS algorithm (Algorithm 1) computes
a lasso solution path, by induction on k, the iteration counter. The key result
is Lemma 17, which shows that the LARS lasso solution is continuous at each
knot λk in the path, as we change the equicorrelation set and signs from one
iteration to the next. We delay the presentation and proof of Lemma 17 until
we discuss the proof of correctness, for the sake of clarity.

The base case k = 0 is straightforward, hence assume that the computed path
is a solution path through iteration k − 1, that is, for all λ ≥ λk. Consider the
kth iteration, and let E and s denote the current equicorrelation set and signs.
First we note that the LARS lasso solution, as defined in terms of the current
E , s, satisfies the KKT conditions at λk. This is implied by Lemma 17, and the
fact that the KKT conditions were satisfied at λk with the old equicorrelation
set and signs. To be more explicit, Lemma 17 and the inductive hypothesis
together imply that

∥

∥XT
−E

(

y −Xβ̂LARS(λk)
)

‖∞ < λk, XT
E

(

y −Xβ̂LARS(λk)
)

= λks,

and s = sign(β̂LARS
E (λk)), which verifies the KKT conditions at λk. Now note

that for any λ ≤ λk (recalling the definition of β̂LARS(λ)), we have

XT
E

(

y −Xβ̂LARS(λ)
)

= XT
E y −XT

E XE(XE)
+y +XT

E (X
T
E )

+λs

= XT
E (X

T
E )

+λs

= λs,

where the last equality holds as s ∈ row(XE). Therefore, as λ decreases, only

one of the following two conditions can break: ‖XT
−E(y − Xβ̂LARS(λ)‖∞ < λ,

or s = sign(β̂LARS
E (λ)). The first breaks at the next joining time λjoin

k+1, and
the second breaks at the next crossing time λcross

k+1 . Since we only decrease λ
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to λk+1 = max{λjoin
k+1, λ

cross
k+1 }, we have hence verified the KKT conditions for

λ ≥ λk+1, completing the proof.
Now we present Lemma 17, which shows that β̂LARS(λ) is continuous (con-

sidered as a function of λ) at every knot λk. This means that the constructed
solution path is also globally continuous, as it is simply a linear function between
knots. We note that Tibshirani and Taylor (2011) proved a parallel lemma (of
the same name) for their dual path algorithm for the generalized lasso.

Lemma 17 (The insertion-deletion lemma). At the kth iteration of the
LARS algorithm, let E and s denote the equicorrelation set and signs, and let
E∗ and s∗ denote the same quantities at the beginning of the next iteration. The
two possibilities are:

1. (Insertion) If a variable joins the equicorrelation set at λk+1, that is, E∗

and s∗ are formed by adding elements to E and s, then:

[

(XE)
+
(

y − (XT
E )

+λk+1s
)

0

]

=









[

(XE∗)+
(

y − (XT
E∗)+λk+1s

∗
)

]

−ijoin
k+1

[

(XE∗)+
(

y − (XT
E∗)+λk+1s

∗
)

]

ijoin
k+1









.

(34)
2. (Deletion) If a variable leaves the equicorrelation set at λk+1, that is, E∗

and s∗ are formed by deleting elements from E and s, then:








[

(XE)
+
(

y − (XT
E )

+λk+1s
)

]

−icross
k+1

[

(XE)
+
(

y − (XT
E )

+λk+1s
)

]

icross
k+1









=

[

(XE∗)+
(

y − (XT
E∗)+λk+1s

)

0

]

.

(35)

Proof. We prove each case separately. The deletion case is actually easier so we
start with this first.

Case 2: Deletion. Let

[

x1

x2

]

=









[

(XE)
+
(

y − (XT
E )

+λk+1s
)

]

−icross
k+1

[

(XE)
+
(

y − (XT
E )

+λk+1s
)

]

icross
k+1









,

the left-hand side of (35). By definition, we have x2 = 0 because variable icrossk+1

crosses through zero at λk+1. Now we consider x1. Assume without a loss of
generality that icrossk+1 is the last of the equicorrelation variables, so that we can
write

[

x1

x2

]

= (XE)
+
(

y − (XT
E )

+λk+1s
)

.

The point (x1, x2)
T is the minimum ℓ2 norm solution of the linear equation:

XT
E XE

[

x1

x2

]

= XT
E y − λk+1s.
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Decomposing this into blocks,




XT
E∗XE∗ XT

E∗Xicross
k+1

XT
icross
k+1

XE∗ XT
icross
k+1

Xicross
k+1





[

x1

x2

]

=

[

XT
E∗

XT
icross
k+1

]

y − λk+1

[

s∗

scrossk+1

]

.

Solving this for x1 gives

x1 = (XT
E∗XE∗)+

[

XT
E∗y − λk+1s

∗ −XT
E∗Xicross

k+1
x2

]

+ b

= (XE∗)+
(

y − (XT
E∗)+λk+1s

∗
)

+ b,

where b ∈ null(XE∗). Recalling that x1 must have minimal ℓ2 norm, we compute

‖x1‖
2
2 =

∥

∥

∥
(XE∗)+

(

y − (XT
E∗)+λk+1s

∗
)

∥

∥

∥

2

2
+ ‖b‖22,

which is smallest when b = 0. This completes the proof.

Case 1: Insertion. This proof is similar, but only a little more complicated. Now
we let

[

x1

x2

]

=









[

(XE∗)+
(

y − (XT
E∗)+λk+1s

∗
)

]

−ijoin
k+1

[

(XE∗)+
(

y − (XT
E∗)+λk+1s

∗
)

]

ijoin
k+1









,

the right-hand side of (34). Assuming without a loss of generality that ijoink+1 is

the largest of the equicorrelation variables, the point (x1, x2)
T is the minimum

ℓ2 norm solution to the linear equation:

XT
E∗XE∗

[

x1

x2

]

= XT
E∗y − λk+1s

∗.

If we now decompose this into blocks, we get




XT
E XE XT

E Xijoin
k+1

XT
ijoin
k+1

XE XT
ijoin
k+1

Xijoin
k+1





[

x1

x2

]

=





XT
E

XT
ijoin
k+1



 y − λk+1

[

s

sjoink+1

]

.

Solving this system for x1 in terms of x2 gives

x1 = (XT
E XE)

+
[

XT
E y − λk+1s−XT

E Xijoin
k+1

x2

]

+ b

= (XE)
+
[

y − (XT
E )

+λk+1s−XT
E Xijoin

k+1

x2

]

+ b,

where b ∈ null(XE), and as we argued in the deletion case, we know that b = 0
in order for x1 to have minimal ℓ2 norm. Therefore we only need to show that
x2 = 0. To do this, we solve for x2 in the above block system, plug in what we
know about x1, and after a bit of calculation we get

x2 =
[

XT
ijoin
k+1

(I − P )Xijoin
k+1

]−1(

XT
ijoin
k+1

[

(I − P )y + (XT
E )

+λk+1s
]

− λsjoink+1

)

,
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where we have abbreviated P = Pcol(XE). But the expression inside the paren-
theses above is exactly

XT
ijoin
k+1

(

y −Xβ̂LARS(λk+1)
)

− λsjoink+1 = 0,

by definition of the joining time. Hence we conclude that x2 = 0, as desired,
and this completes the proof.

A.2. Alternate expressions for the joining and crossing times

As remarked in Section 3.1, the joining times in (17) are well-defined in that,
for each variable i, only one of +1 or −1 gives rise to a joining time in the
interval [0, λk]. It may be helpful to see these defined these more precisely; we
now give two alternative representations for joining times, as well as a related
representation for crossing times.

• Max form of the joining times. We can express the ith joining time as
the maximum over the possibilites for the sign si (of the inner product of
the ith variable with the current residual). Define Si = {−1, 1}, with the

exception that Si = {−sign(β̂LARS
i (λk))} if i corresponds to the variable

that left the equicorrelation set in the last iteration; then

tjoini = max
si∈Si

XT
i

(

I −XE(XE)
+
)

y

si −XT
i (X

T
E )

+s
· 1

{

XT
i

(

I −XE(XE)
+
)

y

si −XT
i (X

T
E )

+s
≤ λk

}

.

• Intercept form of the joining times. The ith joining time is defined as the
value of λ that solves the equation ai − biλ = ±λ, subject to this value
lying in [0, λk]. By construction, we know that |ai − biλk| < λk. It is not
hard to see, then, that λ in fact solves ai− biλ = siλ, where si = sign(ai),
the sign of the intercept of the line ai − biλ. Hence we can write the ith
joining time as

tjoini =
XT

i

(

I −XE(XE)
+
)

y

si −XT
i (X

T
E )

+s
where si = sign

(

XT
i

(

I −XE(XE)
+
)

y
)

.

• Parallel form of the crossing times. For the case rank(XE) = |E|, Jonathan
Taylor pointed out an interesting parallel between the crossing times in
(19) and the joining times. In particular, the crossing time of the ith
variable can be written as

tcrossi =
XT

i

(

I−XE\{i}(XE\{i})
+
)

y

si −XT
i (X

T
E\{i})

+s−i
·1

{

XT
i

(

I−XE\{i}(XE\{i})
+
)

y

si −XT
i (X

T
E\{i})

+s−i
≤ λk

}

,

(36)
where si is the ith component of the sign vector s (the sign of the ith coef-
ficient), and s−i is the sign vector s with ith component removed. This has
the form of the joining time of the ith variable, had the equicorrelation E
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set not included i. To see the equivalence between (19) and (36), first note
that by the well-known formula for the ith partial regression coefficient,

[(XE)
+y]i =

XT
i (I − PE\{i})y

‖(I − PE\{i})Xi‖22
,

where PE\{i} = XE\{i}(XE\{i})
+ is the projection matrix onto the column

space of XE\{i}. Furthermore, writing ei ∈ R
n as the ith basis vector,

[(XT
E XE)

−1s]i = eTi (X
T
E XE)

−1s =
XT

i (I − PE\{i})XE

‖(I − PE\{i})Xi‖22
(XT

E XE)
−1s.

The term XT
i (I − PE\{i})XE(X

T
E XE)

−1s above can be rewritten as

sT (XE)
+(I − PE\{i})Xi = si − sT−i(XE\{i})

+Xi,

and therefore we have shown that

[(XE)
+y]i

[(XT
E XE)+s]i

=
XT

i (I − PE\{i})y

si −XT
i (X

T
E\{i})

+s−i
,

completing the equivalence proof.

A.3. Local LARS algorithm for the lasso path

We argue that there is nothing special about starting the LARS path algorithm
at λ = ∞. Given any solution the lasso problem at y,X , and λ∗ > 0, we
can define the unique equicorrelation set E and signs s, as in (4) and (5). The
LARS lasso solution at λ∗ can then be explicitly constructed as in (23), and by
following the same steps as those outlined in Section 3.1, we can compute the
LARS lasso solution path beginning at λ∗, for decreasing values of the tuning
parameter; that is, over λ ∈ [0, λ∗].

In fact, the LARS lasso path can also be computed in the reverse direction,
for increasing values of the tuning parameter. Beginning with the LARS lasso
solution at λ∗, it is not hard to see that in this direction (increasing λ) a variable
enters the equicorrelation set at the next crossing time—the minimal crossing
time larger than λ∗, and a variable leaves the equicorrelation set at the next
joining time—the minimal joining time larger than λ∗. This is of course the
opposite of the behavior of joining and crossing times in the usual direction
(decreasing λ). Hence, in this manner, we can compute the LARS lasso path
over λ ∈ [λ∗,∞].

This could be useful in studying a large lasso problem: if we knew a tuning
parameter value λ∗ of interest (even approximate interest), then we could com-
pute a lasso solution at λ∗ using one of the many efficient techniques from convex
optimization (such as coordinate descent, or accelerated first-order methods),
and subsequently compute a local solution path around λ∗ to investigate the



1488 R. J. Tibshirani

behavior of nearby lasso solutions. This can be achieved by finding the knots to
the left and right of λ∗ (performing one LARS iteration in the usual direction
and one iteration in the reverse direction), and repeating this, until a desired
range λ ∈ [λ∗ − δL, λ

∗ + δR] is achieved.

A.4. Enumerating all active sets of lasso solutions

We show that the facial structure of the polytope K in (29) describes the col-
lection of active sets of lasso solutions, almost everywhere in y.

Lemma 18. Fix any X and λ > 0. For almost every y ∈ R
n, there is a one-to-

one correspondence between active sets of lasso solutions and nonempty faces of
the polyhedron K defined in (29).

Proof. Nonnempty faces of K are sets F of the form F = K ∩H 6= ∅, where H
is a supporting hyperplane to K. If A is an active set of a lasso solution, then
there exists an x ∈ K such that xE\A = 0. Hence, recalling the sign condition

in (28), the hyperplane HE\A = {x ∈ R
|E| : uTx = 0}, where

ui =

{

si if i ∈ E \ A

0 if i ∈ A,

supports K. Furthermore, we have F = K ∩H = {x ∈ K :
∑

i∈E\A sixi = 0} =

{x ∈ K : xE\A = 0}. Therefore every active set A corresponds to a nonempty
face F of K.

Now we show the converse statement holds, for almost every y. Well, the
facets of K are sets of the form Fi = K ∩ {x ∈ R

|E| : xi = 0} for some
i ∈ E .5 Each nonempty proper face F can be written as an intersection of
facets: F = ∩i∈IFi = {x ∈ K : xI = 0}, and hence F corresponds to the active
set A = E \ I. The face F = K corresponds to the equicorrelation set E , which
itself is an active set for almost every y ∈ R

n by Lemma 13.

Note that this means that we can enumerate all possible active sets of lasso
solutions, at a given y,X, λ, by enumerating the faces of the polytope K. This
is a well-studied problem in computational geometry; see, for example, Fukuda
et al. (1997) and the references therein. It is worth mentioning that this could
be computationally intensive, as the number of faces can grow very large, even
for a polytope of moderate dimensions.
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