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1. Introduction

Model selection has always been an integral part of statistical analysis. Well-
known criteria for model selection include the AIC [1], Mallows’ Cp [29], Cross
Validation [32], BIC [31], Generalized Cross Validation [8], RIC [13], FIC [5],
among others. The search for the “best” model recognizes the existence of more
than one plausible model structure, implying a level of uncertainty associated
with the choice of model. However, this uncertainty is usually ignored when it
comes to making an inference contingent on the chosen best model, and this
results in an overconfident inference about the unknowns [20, 9, 6, 27]. It is also
well-known that many model selection techniques can be highly influenced by
slight variations in data.

One method for incorporating model uncertainty in statistical analysis is
model averaging; instead of selecting a single model, model averaging compro-
mises across the set of plausible models, weighted by some criteria that reflect
the degree to which each model is trusted. Bayesian model averaging (BMA) has
been promoted in a range of disciplines as a means of incorporating model uncer-
tainty. Excellent surveys of the vast BMA literature can be found in [10, 30, 22],
and [7]. A key component of BMA is the use of prior distributions of the un-
knowns and models. While this provides a formal framework for incorporating
prior knowledge of the process being modeled, any poor handling of prior dis-
tributions can lead to undesirable behavior of the posterior distributions and
model average estimator. Frequentist model averaging (FMA), on the other
hand, precludes the need to specify any prior distribution, although how to de-
termine an optimal weight choice by a data-driven approach is arguably the
biggest challenge for the frequentist formulation.

Compared to the immense amount of BMA literature, the literature on FMA
is more recent, nonetheless a great deal of work has been invested in develop-
ing model weighting schemes for FMA estimators and the investigation of their
properties. The early work of [2] described an approach that uses the exponent
of the negative of the AIC value as the weight for an individual model. [36] and
[38] developed an adaptive regression by mixing (ARM) algorithm, while [25]
proposed a weight choice criterion based on risk minimization. More recently,
[14, 15] and [33] developed an FMA based on the Mallows’ criterion. Of par-
ticular relevance to the current study is the work of [20], who developed an
asymptotic theory for frequentist model averaging in parametric models based
on a local mis-specification framework, which shows that FMA generally results
in an estimator with a non-normal asymptotic distribution. They also suggested
a simple method for confidence interval construction of the unknown parame-
ters. Hjort and Claeskens’ (2003) analysis has been extended to several other
models including the Cox’s hazard model [21], general semi-parametric models
[4], the generalized additive partial linear model advanced by [40], and the cen-
sored regression model [41]. A summary of these recent developments can be
found in [34].

The current paper extends Hjort and Claeskens’ (2003) investigation to the
varying-coefficient partially linear measurement error (VCPLE) model. The
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varying-coefficient partially linear (VCPL) model [39, 12] allows the different
covariates in the model to interact in a flexible way and has been an important
development in the semi-parametric literature in recent years. It also covers
many other semi-parametric models including the varying-coefficient model [18]
and the partially linear model [11] as special cases. The VCPLE model con-
sidered in this paper is a version of the VCPL model where the covariates in
the parametric component of the model are measured with additive errors. The
VCPLE model was previously considered by [37], who suggested an alternative
estimation procedure that leads to consistent estimators of the parametric and
non-parametric components of the model. In this paper we are concerned with
model averaging within the VCPLE framework; in particular, we focus on the
derivation of the model average estimator’s asymptotic distribution, and de-
velop a method for constructing confidence intervals of the unknowns along the
lines of [20]. We demonstrate that these confidence intervals have a coverage
probability that tends toward the nominal level in large samples. We also prove
that the FMA-based confidence intervals are asymptotically the same as the
confidence intervals based on the full model.

The remainder of the paper is organized as follows. Section 2 presents the
model setup and discusses the estimation method of the unknowns in each can-
didate model. Section 3 describes the model averaging scheme and presents
the main theoretical results. Section 4 reports the results of a simulation study
that examines the finite sample performance of the model average estimator.
Section 5 applies the proposed method to a real data set on dietary intake mea-
surements. Section 6 presents the conclusion. The appendix contains the proofs
of lemmas and theorems.

2. Model setup and estimation methods

Consider the i.i.d. samples (Yi,Wi, Zi, Ti), i = 1, . . . , n, and the following VC-
PLE model: {

Yi = X⊤
i θ + Z⊤

i α(Ti) + εi,

Wi = Xi + Ui,
(1)

where Yi is the response variable, (Xi, Zi, Ti) are covariates, θ = (β⊤, γ⊤)⊤

with β and γ being p and q dimensional coefficient vectors respectively, α(·) =
{α1(·), . . . , αr(·)}⊤ is an r dimensional unknown coefficient function, and εi is a
random error with mean 0 and variance σ2, and independent of (Xi, Zi, Ti). As
in [12] and [37], we assume that the dimension of Ti is one. Here, it is assumed
that Xi cannot be observed, but instead its surrogate Wi is observed, with Ui

being a vector of random errors with mean 0 and covariance matrix Σu; further,
Ui is independent of (Xi, Zi, Ti) and εi. For analytical convenience we assume
throughout our theoretical analysis that Σu is known. This last assumption does
not give rise to any loss of generality because all results continue to hold if Σu

is replaced by a consistent estimator when Σu is unknown.
Clearly, when Ui ≡ 0, the VCPLE model reduces to the VCPL model which

contains many common models as special cases. For example, when θ ≡ 0, it
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reduces to the varying-coefficient model; when r = 1 and Zi ≡ 1, it becomes
the partially linear model. Write Y = (Y1, . . . , Yn)

⊤, X = (X1, . . . , Xn)
⊤, W =

(W1, . . . ,Wn)
⊤, U = (U1, . . . , Un)

⊤, Z = (Z1, . . . , Zn)
⊤, T = (T1, . . . , Tn)

⊤,
ε = (ε1, . . . , εn)

⊤ and M = {Z⊤
1 α(T1), . . . , Z

⊤
n α(Tn)}⊤, then model (1) can be

expressed as {
Y = Xθ +M + ε,

W = X+U.
(2)

When there are no measurement errors, the profile least-squares method de-
scribed in [12] can be used to estimate θ. To estimate αj(t), write, for any given θ,
Y ∗
i = Yi−X⊤

i θ. Then model (1) becomes the general varying-coefficient model,
and the following local linear approximation can be used to estimate αj(t):

αj(t0) + α′
j(t0)(t− t0) ≡ aj + bj(t− t0), j = 1, 2, . . . , r,

for any t in the neighborhood of t0.
Denote a = (a1, . . . , ar)

⊤ and b = (b1, . . . , br)
⊤. Then a and b can be esti-

mated by the local weighted least-squares method based on the criterion

min
a,b

n∑

i=1

[
Y ∗
i − Z⊤

i {a+ b(Ti − t0)}
]2

Kh(Ti − t0),

where Kh(·) = K(·/h)/h, K(·) is a kernel function, and h is a bandwidth. Write
the solution to this minimization problem as

{
â1(t), . . . , âr(t), hb̂1(t), . . . , hb̂r(t)

}⊤
= (D⊤

t ΩtDt)
−1D⊤

t Ωt(Y −Xθ),

where Ωt = diag {Kh(T1 − t), . . . ,Kh(Tn − t)} and

Dt =



Z⊤
1

T1−t
h Z⊤

1
...

...

Z⊤
n

Tn−t
h Z⊤

n




n×2r

.

Substituting {α̂1(t), . . . , α̂r(t)}⊤ in model (2), we obtain

Y − Ŷ = (X− X̂)θ + ε, (3)

where Ŷ = SY, X̂ = SX, and

S =




(Z⊤
1 0)(D⊤

t1Ωt1Dt1)
−1D⊤

t1Ωt1
...

(Z⊤
n 0)(D⊤

tnΩtnDtn)
−1D⊤

tnΩtn




n×n

.

Denote Ỹ = (In−S)Y and X̃ = (In−S)X, where In is an n×n identity matrix.

Then model (3) reduces to Ỹ = X̃θ + ε, a standard linear regression model for
which the ordinary least squares method can be used to estimate θ.
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Now, when Xi’s are measured with errors, [37] suggested the modified profile
least squares estimator

θ̂ =
(
W̃⊤W̃ − nΣu

)−1

W̃⊤Ỹ, (4)

which is the solution to θ that minimizes

∥∥Ỹ − W̃θ
∥∥2 − nθ⊤Σuθ,

where W̃ = (In − S)W.

3. Estimation and inference based on model averaging

Unlike [37], who concentrated on the estimation of the coefficients in the linear
component of the model based on a single candidate model, we consider esti-
mation based on model averaging. We follow the local mis-specification frame-
work suggested by [20] by setting the true value of θ to θtrue = (β⊤, γ⊤

true
)⊤ =

(β⊤, δ⊤/
√
n)⊤, where the parameter vector δ = (δ1, . . . , δq)

⊤ represents the de-
gree of a model’s departure from the narrow model in which θ=θ0=(β⊤, 0⊤)⊤.
Local parameterization was first introduced by [24], and has been a useful tool
for asymptotic analysis.

The results in this section depend on the the following technical conditions,
which are also used in [12] and [37].

(C1) The random variable T has bounded support Ω, and its density f is Lip-
schitz continuous and bounded away from 0 on its support.

(C2) For each T ∈ Ω, the r×r matrixE(ZZ⊤|T ) is non-singular, andE(ZZ⊤|T ),
E(XX⊤|T ) and E(ZX⊤|T ) are all Lipschitz continuous.

(C3) There exists some t > 2 s.t. E‖X‖2t < ∞, E‖Z‖2t < ∞, E‖U‖2t < ∞
and E‖ε‖2t < ∞, and ρ < 2− t−1 s.t. nh2ρ−1 → ∞.

(C4) αj(T ), j = 1, . . . , r, is twice continuously differentiable in T ∈ Ω.
(C5) K(·) is a symmetric density with compact support.
(C6) The conditions nh8 → 0 and nh2/{log(n)}2 → ∞ are satisfied for the

bandwidth h.

Conditions (C1), (C2) and (C4) are related to the degrees of smoothness of
the models. Condition (C5) is for the estimator of the unknown function vector
to have a closed form expression. Condition (C3) places restrictions on the
moments of covariates and bandwidth to guarantee uniform consistency of the
kernel estimators. This condition is generally satisfied in practice. For instance,
consider t = 3, ρ = 4/3 and h = O(n−1/5). Since nh2ρ−1 = O(n2/3) → ∞, all the
requirements of condition (C3) are fulfilled. The same bandwidth also satisfies
condition (C6) that guarantees the optimal convergence rate of the estimator of
the linear component of the model.
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3.1. Estimation of coefficients under the full and partially restricted

models

When n → ∞, by Lemma A.3 of [37], we have n−1W̃⊤W̃
p−→ Σu + B, where

B = E(X1X
⊤
1 ) − E

[
E(X1Z

⊤
1 |T1){E(Z1Z

⊤
1 |T1)}−1E(Z1X

⊤
1 |T1)

]
, and

p−→ de-
notes convergence in probability. Accordingly, a consistent estimator of B is

B̂n =
1

n
W̃⊤W̃ − Σu.

PartitionB, Σu, W̃, Ũ = (In−S)U and X̃ conformably with the dimensions of β

and γ as B =
(

B11 B12

B21 B22

)

, Σu =
(

Σu11 Σu12

Σu21 Σu22

)

, W̃ = (W̃1|W̃2), Ũ = (Ũ1|Ũ2)

and X̃ = (X̃1|X̃2) respectively. Then we can write

(
β̂full

γ̂full

)
=

(
W̃⊤

1 W̃1 − nΣu11 W̃⊤
1 W̃2 − nΣu12

W̃⊤
2 W̃1 − nΣu21 W̃⊤

2 W̃2 − nΣu22

)−1(
W̃⊤

1 Ỹ

W̃⊤
2 Ỹ

)
.

Direct calculations lead to

β̂full =
(
W̃⊤

1 W̃1 − nΣu11

)−1 {
W̃⊤

1 Ỹ − (W̃⊤
1 W̃2 − nΣu12)γ̂full

}
(5)

and

γ̂full = A−1
n

{
W̃⊤

2 −
(
W̃⊤

2 W̃1 − nΣu21

)(
W̃⊤

1 W̃1 − nΣu11

)−1

W̃⊤
1

}
Ỹ, (6)

where

An = W̃⊤
2 W̃2 − nΣu22

−
(
W̃⊤

2 W̃1 − nΣu21

)(
W̃⊤

1 W̃1 − nΣu11

)−1 (
W̃⊤

1 W̃2 − nΣu12

)
.

Altogether there are 2q partially restricted models, one for each subset S of
{1, . . . , q}; that is, while the partially restricted model includes every element
of β, it contains only certain elements of γtrue. The full model corresponds to
S = {1, . . . , q}, while the narrow model corresponds to S = φ. Denote the co-
efficients of the partially restricted model in S by βS and γS. We then have
βS = β and γS = Π⊤

S
γtrue, where Π⊤

S
is an |S| × q selection matrix with the

element matching γS in any given row taking on the value of unity, and zero
otherwise, and |S| is the number of components of γtrue in the partially re-

stricted model. Similarly, we let XS, W̃S and Σus denote matrices in the par-
tially restricted model S with definitions analogous to the corresponding ma-
trices in the full model. Further, partition these matrices conformably with βS

and γS, and obtain XS = (X1|X2s) = (X1|X2ΠS), W̃S = (W̃1|W̃2ΠS), and

Σus =
(

Σu11 Σu12ΠS

Π⊤
S Σu21 Π⊤

S Σu22ΠS

)

. These manipulations enable the derivation of the

following regression coefficient estimators of the partially restricted model in S:

β̂S =
(
W̃⊤

1 W̃1 − nΣu11

)−1 {
W̃⊤

1 Ỹ −
(
W̃⊤

1 W̃2 − nΣu12

)
ΠSγ̂S

}
(7)
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and

γ̂S =
(
Π⊤

S AnΠS

)−1

Π⊤
S

{
W̃

⊤
2 −

(
W̃

⊤
2 W̃1 − nΣu21

)(
W̃

⊤
1 W̃1 − nΣu11

)−1

W̃
⊤
1

}
Ỹ.

(8)

From equations (5)–(8), we obtain the following set of equations characteriz-
ing the relationship between estimators under the full and partially restricted
models:

(
β̂S

γ̂S

)
=

(
Ip Cns

0|S|×p (Π⊤
S
AnΠS)

−1Π⊤
S
An

)(
β̂full

γ̂full

)
≡ Gns

(
β̂full

γ̂full

)
, (9)

where Cns = (W̃⊤
1 W̃1 − nΣu11)

−1(W̃⊤
1 W̃2 − nΣu12)(Iq −A

−1/2
n HnsA

1/2
n ), and

Hns = A
1/2
n ΠS

(
Π⊤

S
AnΠS

)−1
Π⊤

S
A

1/2
n .

The following lemma illustrates the asymptotic properties of estimators under
the full and restricted models.

Lemma 1. If conditions (C1)-(C6) hold, and Ui, εi and (Xi, Zi, Ti) are mutu-
ally independent, then we have the following convergence result when n → ∞:

√
n

(
β̂S − β
γ̂S

)
d−→ N

{(
CSδ

(Π⊤
S
AΠS)

−1Π⊤
S
Aδ

)
, GSPG⊤

S

}
;

in particular,

√
n

(
β̂full − β
γ̂full

)
≡
(
Mn

δ̂

)
d−→
(
M
D

)
∼ N

{(
0
δ

)
, P

}
,

where
d−→ denotes convergence in distribution, A = B22 −B21B

−1
11 B12, CS and

GS are limits of An Cns and Gns respectively, P = B−1FB−1,

F = E
([

Wi −E
(
XiZ

⊤
i |Ti

) {
E
(
ZiZ

⊤
i |Ti

)}−1
Zi

] (
εi − U⊤

i θ0
)
+Σuθ0

)⊗2

,

and R⊗2 = RR⊤ for any matrix R.

From the proof of results in the appendix, a consistent estimator of F is

F̂n =
1

n

n∑

i=1

[(
Wi − Ŵi

){(
Yi − Ŷi

)
−
(
Wi − Ŵi

)⊤
θ̂full

}
+Σuθ̂full

]⊗2

,

where θ̂full = (β⊤
full

, γ⊤
full

)⊤. Hence a consistent estimator of the asymptotic vari-
ance GSPG⊤

S
is GnsP̂nG

⊤
ns, where P̂n = B̂−1

n F̂nB̂
−1
n . The bias vector can be

estimated by replacing A, CS and δ by An, Cns and δ̂ respectively.

3.2. Estimation by model averaging

In this subsection, we consider the estimation of the parameter µtrue = µ(β, γtrue)
by model averaging.We assume that the parameter of interest µ does not depend
on the non-parametric component because the estimator of this component is
not

√
n-consistent. Let the estimator based on the partially restricted model in

S be µ̂S = µ(β̂S, γ̂S). The following theorem can be obtained.
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Theorem 1. Assume that µ is differentiable at θ0 = (β⊤, 0⊤)⊤. If conditions
(C1)–(C6) are satisfied, and Ui, εi and (Xi, Zi, Ti) are mutually independent,
then we have
√
n(µ̂S − µtrue)

d−→ ΛS = µ⊤
β

{
M +B−1

11 B12(D − δ)
}

+ ω⊤
(
δ −A−1/2HSA

1/2D
)
,

(10)

where ω = B21B
−1
11 µβ − µγ , µβ = ∂µ(β,0)

∂β , µγ = ∂µ(β,0)
∂γ , and HS has the same

form as Hns except that An in Hns is replaced by A in HS.

The asymptotic bias and variance of µ̂ areEΛS = ω⊤(Iq−A−1/2HSA
1/2)δ and

Var(ΛS) = (µ⊤
β , µ

⊤
γ ΠS)GSPG⊤

S
(µ⊤

β , µ
⊤
γ ΠS)

⊤ respectively. Note that Var(ΛS)

can be estimated consistently by using θ̂full in µβ and µγ , and replacing GS and

P by Ĝn and P̂n respectively.
With each partially restricted estimator being a submodel estimator, the

model average estimator has the form

µ̂avg =
∑

S

c(S|δ̂)µ̂S, (11)

where c(S|δ̂)’s are weight functions that sum to one. Theorem 2 depicts the
asymptotic properties of the estimator µ̂avg.

Theorem 2. Assume that µ is differentiable at θ0, and the weight functions
c(S|d) are continuous almost everywhere. If conditions (C1)–(C6) hold, and Ui,
εi and (Xi, Zi, Ti) are mutually independent, then we have

√
n(µ̂avg − µtrue)

d−→ Λ = µ⊤
β

{
M +B−1

11 B12(D − δ)
}
+ ω⊤ {δ −Q(D)D} ,

EΛ = ω⊤ [δ −E{Q(D)D}] , and

Var(Λ) = µ⊤
β (I, B

−1
11 B12)P (I, B−1

11 B12)
⊤µβ + ω⊤Var {Q(D)D}ω

− 2µ⊤
β (I, B

−1
11 B12)Cov

{
(M⊤, D⊤)⊤, Q(D)D

}
ω,

where Q(D) = A−1/2 {∑
S
c(S|D)HS}A1/2. If X were observed without errors,

then M +B−1
11 B12(D− δ) and D would be independent, and the variance would

simplify to

Var(Λ) = µ⊤
β B

−1
11 µβ + ω⊤Var {Q(D)D}ω.

This theorem reveals that when there are no measurement errors, the model
average estimator under the VCPL model framework has asymptotic mean and
variance expressions similar to those of the model average estimators discussed
in [20, 21] and [4].

3.3. Interval estimation based on model averaging

Note from Theorem 2 that the asymptotic distribution of the model average esti-
mator is non-normal. This concurs with the observation under parametric mod-
els in [20]. Here, we follow Hjort and Claeskens’ (2003) approach of constructing



Model averaging for measurement error models 1025

confidence interval based on the model average estimator. We demonstrate that
the actual coverage probability of the interval converges to the intended level
in large samples; as well, we prove that such a confidence interval based on the
model average estimator is asymptotically equivalent to that constructed based
on the full model estimator that follows an asymptotically normal distribution.
The latter result concurs with the findings of [23] under a parametric set-up.

Assume that the conditions for Theorem 2 hold. Consider the confidence
limits {

lowavg = µ̂avg − ω̂⊤
{
δ̂ −Qn(δ̂)δ̂

}
/
√
n− zκ̂/

√
n

up
avg

= µ̂avg − ω̂⊤
{
δ̂ −Qn(δ̂)δ̂

}
/
√
n+ zκ̂/

√
n,

(12)

where z is a standard normal quantile, ω̂ and κ̂ are consistent estimators of ω and

κ =
√

(µ⊤
β , µ

⊤
γ )P (µ⊤

β , µ
⊤
γ )⊤ respectively, andQn(δ̂) = A

−1/2
n {∑

S
c(S|δ̂)HnS}A1/2

n .

Then Pr
{
µtrue ∈ (lowavg, upavg

)
}
=Pr{−z ≤ Tn ≤ z} is the probability of the

confidence interval containing the true parameter µtrue, where

Tn =

√
n(µ̂avg − µtrue)− ω̂⊤

{
δ̂ −Qn(δ̂)δ̂

}

κ̂
.

As
√
n(µ̂avg − µtrue) is an almost surely continuous function of Mn and δ̂, from

the Continuous Mapping Theorem and Slutsky Theorem, we have

(√
n{µ̂avg − µtrue}, δ̂

) d−→
[
Λ0 + ω⊤{δ −Q(D)D}, D

]
,

where Λ0 = µ⊤
β

{
M +B−1

11 B12(D − δ)
}
andQ(D) = A−1/2 {∑

S
c(S|D)HS}A1/2.

It follows that

Tn
d−→ Λ0 + ω⊤(δ −D)

κ
=

µ⊤
β M + µ⊤

γ (D − δ)

κ
.

The limiting variable on the right-hand side of the above equation follows a
standard normal distribution. Hence we have Pr{−z ≤ Tn ≤ z} → 2Φ(z)− 1,
where Φ is the standard normal distribution function.

If we denote µ̂full as the estimator of µ under the full model, then by formula
(10) in Theorem 1, we obtain the following result:

√
n(µ̂full − µtrue)

d−→ µ⊤
β

{
M +B−1

11 B12(D − δ)
}
+ ω⊤(δ −D)

= µ⊤
β M + µ⊤

γ (D − δ),

where the limiting variable µ⊤
β M + µ⊤

γ (D − δ) ∼ N(0, κ2). Accordingly, the
confidence limits of µtrue based on µ̂full are

{
lowfull = µ̂full − zκ̂/

√
n

up
full

= µ̂full + zκ̂/
√
n.

(13)
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From the definition of µ̂avg and equation (9), and by using the Taylor series
expansion, we obtain

µ̂avg = µ(β, 0) +
∑

S

c(S|δ̂)
(

µβ

Π⊤
S
µγ

)⊤(
β̂S − β
γ̂S

)
+ oP (1/

√
n)

= µ(β, 0) + µ⊤
β (β̂full − β) +

∑

S

c(S|δ̂)
(
µ⊤
β Cnsγ̂full + µ⊤

γ A
−1/2
n HnsA

1/2
n γ̂full

)

+ oP (1
√
n)

= µ(β, 0) + µ⊤
β (β̂full − β)

+
∑

S

c(S|δ̂)
{
(ω⊤ + µ⊤

γ )(Iq −A−1/2
n HnsA

1/2
n ) + µ⊤

γ A
−1/2
n HnsA

1/2
n

}
δ̂/
√
n

+ oP (1/
√
n)

= µ(β, 0) + µ⊤
β (β̂full − β) + µ⊤

γ γ̂full + ω⊤{δ̂ −Qn(δ̂)δ̂}/
√
n+ oP (1/

√
n).

By the Taylor series expansion,

µ̂full = µ(β, 0) + µ⊤
β (β̂full − β) + µ⊤

γ γ̂full + oP (1/
√
n). (14)

Therefore,
µ̂full = µ̂avg − ω⊤{δ̂ −Qn(δ̂)δ̂}/

√
n+ oP (1/

√
n). (15)

Comparing equations (12), (13) and (15), we see that lowavg = lowfull+oP (1/
√
n)

and up
avg

= up
full

+ oP (1/
√
n). Thus, the two confidence intervals, based on the

model average estimator and the full model estimator respectively, are asymp-
totically identical.

More specifically, if µ is a linear combination of β and γ, then the remainder
in (14) varnishes. Furthermore, as κ and ω are quantities relevant to the full
model only, the estimators κ̂ and ω̂ are the same for the full model as for the
model average. This means if the parameter of interest is a linear combination
of regression coefficients, the confidence interval developed based on the model
average (i.e., equation (12)) will be exactly identical to that obtained from
the full model (i.e., equation (13)). Thus, if the investigator’s main concern
is interval estimation rather than point estimation, then the confidence interval
based on the full model already serves the purpose and model averaging provides
no additional useful information. The interval constructed under the full model
also has the advantage of being computationally simple.

3.4. Relationship between FMA and model selection estimators

This subsection studies the relationship between the traditional model selection
estimators based on information criteria and FMA under the setup of the VC-
PLE model. Along the lines of [26], we define the AIC, BIC, and RIC under the
VCPLE framework as

AICns = ‖Ỹ − W̃Sθ̂S‖2 − nθ̂⊤
S
Σusθ̂S + 2σ2|S|,

BICns = ‖Ỹ − W̃Sθ̂S‖2 − nθ̂⊤
S
Σusθ̂S + σ2 log(n)|S|,
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and

RICns = ‖Ỹ − W̃Sθ̂S‖2 − nθ̂⊤
S
Σusθ̂S + 2σ2 log(|S|)|S|,

respectively, where θ̂S represents the estimator of regression coefficient in the
reduced model. Note that

‖Ỹ − W̃Sθ̂S‖2 − nθ̂⊤
S
Σusθ̂S − Ỹ⊤Ỹ

= −θ̂⊤
S
(W̃⊤

S
W̃S − nΣus)θ̂S

= −
(
β̂full

γ̂full

)⊤

G⊤
ns

(
I 0
0 Π⊤

S

)(
W̃⊤

1 W̃1 − nΣu11 W̃⊤
1 W̃2 − nΣu12

W̃⊤
2 W̃1 − nΣu21 W̃⊤

2 W̃2 − nΣu22

)

×
(
I 0
0 ΠS

)
Gns

(
β̂full

γ̂full

)

= −
(
β̂full

γ̂full

)⊤
(
W̃⊤

1 W̃1 − nΣu11 W̃⊤
1 W̃2 − nΣu12

W̃⊤
2 W̃1 − nΣu21 L

)(
β̂full

γ̂full

)
,

where L = −An+AnΠS(Π
⊤
S
AnΠS)

−1Π⊤
S
An+W̃⊤

2 W̃2−nΣu22. Note that in the

last equality, only AnΠS(Π
⊤
S
AnΠS)

−1Π⊤
S
An depends on S. In addition, An/n

p→
A as n→∞. Hence, we have

{
‖Ỹ − W̃Sθ̂S‖2 − nθ̂⊤

S
Σusθ̂S

}
−
{
‖Ỹ − W̃φθ̂φ‖2 − nθ̂⊤φ Σuφθ̂φ

}

= −
(
β̂full

γ̂full

)⊤(
0 0
0 AnΠS(Π

⊤
S
AnΠS)

−1Π⊤
S
An

)(
β̂full

γ̂full

)

= −γ̂⊤AnΠS(Π
⊤
S
AnΠS)

−1Π⊤
S
Anγ̂

= −δ̂⊤AΠS(Π
⊤
S
AΠS)

−1Π⊤
S
Aδ̂ + oP (1).

This implies that given the estimator γ̂ under the full model, the relative
magnitudes of an information criterion (say, the AIC) across different submod-
els are determined by the selection matrix which is a function of the set S.
Therefore, asymptotically, the AIC model selection estimator can be viewed as
a model average estimator in the form of equation (11) with indicator functions
as its weights. For example, assuming that there are no ties among the AIC
values, the AIC model selection estimator can be written as

µ̂AIC =
∑

S

I{AICS is the smallest}µ̂S

=
∑

S

I{−δ̂⊤AΠS(Π⊤

S
AΠS)−1Π⊤

S
Aδ̂+2σ2|S| is the smallest}µ̂S, for a large n

≡
∑

S

c(S|δ̂)µ̂S.

The same result holds for the BIC and RIC model selection criteria. Evidently,
the variance of µ̂AIC differs from the variance of µ̂S for each set S because the
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indicator function is also random. However, typically, the investigator uses the
variance of the estimator from the chosen model (i.e.,Var(µ̂S) =Var(µ̂AIC|AICS

is the smallest)). We call this approach the naive approach to distinguish it from
the post selection approach of [20], by which the variation of the indicator func-
tion is also taken into account1.

4. Finite sample analysis by simulations

In this section, we evaluate the finite sample performance of the FMA estimator
through simulations. The implementation of our method requires the selection
of bandwidth for the non-parametric component of the model. This is an im-
portant yet unsolved problem for semi-parametric modeling [12]. We will not
elaborate upon this problem here, because we focus primarily on the estimation
of parameters in the linear component of the model, which is insensitive to the
choice of the bandwidth. In our simulations we use a cross-validation method
to choose the bandwidth parameter.

Our simulation study is based on the model

Y =X⊤θ + Z1 sin(2πT ) + Z2 sin(6πT ) + ε,

W =X + U
(16)

where X = (X1, X2, X3, X4, X5)
⊤, θ = {β⊤, γ⊤}⊤ = {(1.5, 2), δ⊤/√n}⊤, X1,

. . . , X5, Z1, and Z2 are covariates, each having a standard normal distribu-
tion with ρ being the correlation coefficient of each pair of covariates, T ∼
Uniform(0, 1), U ∼ N(0, σ2

uI), ε ∼ N(0, 1), σu = 0.1, 0.5, and we let δ be
δ(1) = (0, 0, 0)⊤, δ(2) = (1, 0, 1)⊤ and δ(3) = (1, 1, 1)⊤. We focus our interest on
the following three estimands: µ1 = β1 − β2 + γ3, µ2 = β1 + β2 + γ1 + γ2 + γ3,
and µ3 = 5β2/(β1 + β2 + γ1 + γ2 + γ3). These estimands are reflective of com-
mon situations in practice where interest often centers on linear and non-linear
combinations of parameters. For example, in economics, the estimate of returns
to scale in a Cobb-Douglas production function is provided by the sum of the
coefficient estimates; also, in demand analysis, long-run elasticities of dynamic
models can be defined as a non-linear function of the estimated parameters [19].

In constructing the model average, we follow Buckland et al.’s (1997) sug-
gestion of assigning the weights based on smoothed AIC (S-AIC) and smoothed

BIC (S-BIC) values, represented by
exp(− 1

2
AICns)∑

S
exp(− 1

2
AICns)

and
exp(− 1

2
BICns)∑

S
exp(− 1

2
BICns)

re-

spectively. We compare the FMA estimator with estimators from the full model
along with AIC- and BIC-based model selection, and the performance of estima-
tors is evaluated in terms of MSE. In each case we draw R = 1000 independent
samples of size n, and the MSE of the estimator of µi is calculated based on the

formula MSE = R−1
∑R

r=1(µ̂
(r)
i − µi)

2, i = 1, 2, 3, where µ̂
(r)
i is the estimate of

µi obtained from the r-th run.
We refer to the ratio of the MSE for a given method to the MSE of the full

model estimator as relative MSE (RMSE). Thus, a RMSE smaller than unity

1The point estimates are the same under both approaches.
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Table 1

RMSE of estimators when ρ = 0.5

δ(1) δ(2) δ(3)

σu = 0.1 0.5 0.1 0.5 0.1 0.5
n=100
µ1 S-AIC averaging 0.854 0.947 0.912 0.956 0.913 0.956

AIC selection 0.924 0.986 0.985 0.982 0.984 0.989
S-BIC averaging 0.786† 0.902† 0.872† 0.920† 0.876† 0.921†

BIC selection 0.825 0.927 0.955 0.955 0.979 0.951

µ2 S-AIC averaging 0.854 0.960 0.904 0.959 0.929 0.956
AIC selection 0.939 0.998 0.978 0.988 1.014 0.987

S-BIC averaging 0.761† 0.926† 0.857† 0.928† 0.919† 0.922†

BIC selection 0.809 0.961 0.949 0.956 1.028 0.966

µ3 S-AIC averaging 0.800 0.934 0.884 0.945 0.933† 0.950
AIC selection 0.900 0.992 0.955 0.984 1.004 0.986

S-BIC averaging 0.677† 0.873† 0.835† 0.902† 0.946 0.914†

BIC selection 0.745 0.901 0.950 0.935 1.100 0.949

n=200
µ1 S-AIC averaging 0.856 0.937 0.914 0.949 0.916 0.951

AIC selection 0.935 0.966 0.995 0.991 0.977 0.998
S-BIC averaging 0.778† 0.879† 0.882† 0.906† 0.887† 0.907†

BIC selection 0.795 0.920 0.956 0.945 0.970 0.942

µ2 S-AIC averaging 0.850 0.954 0.894 0.958 0.932† 0.954
AIC selection 0.921 0.987 0.966 0.983 0.991 0.983

S-BIC averaging 0.747† 0.914† 0.853† 0.918† 0.958 0.913†

BIC selection 0.783 0.951 0.914 0.955 1.044 0.951

µ3 S-AIC averaging 0.770 0.935 0.868 0.952 0.928† 0.953
AIC selection 0.881 0.978 0.966 1.001 1.011 0.990

S-BIC averaging 0.611† 0.867† 0.815† 0.905† 0.985 0.920†

BIC selection 0.653 0.916 0.920 0.944 1.143 0.969

indicates that the given method is superior to the full model estimator, and vice
versa. Tables 1 and 2 report the results for ρ = 0.5 and ρ = 0 respectively2.
To facilitate readability, the smallest RMSE in each panel is flagged by a “†”.
Note that the full model estimator is always unbiased even if over-fits the true
model, but its variance can be larger than those produced by estimators that
are biased.

The following observations may be noted from the results. First, of all cases
considered, model averaging invariably delivers superior RMSE than its model
selection counterpart. Although there are exceptions, this superiority is generally
more marked when σu = 0.1 than when σu = 0.5, and when ρ = 0 than when ρ =
0.5, ceteris paribus. Second, in the case of δ = δ(1), no matter the values of ρ, σu

and n, the full model estimator always yields the worst estimates; this is hardly
surprising as the full model is grossly over-fitted when δ = δ(1). For the other
two choices of δ, full model estimation, with few exceptions, remains inferior

2We have also considered covariance structures of explanatory variables other than those
described here but the results are not reported due to their similarity to those presented here.
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Table 2

RMSE of estimators when ρ = 0

δ(1) δ(2) δ(3)

σu = 0.1 0.5 0.1 0.5 0.1 0.5
n=100
µ1 S-AIC averaging 0.844 0.937 0.934 0.961 0.931 0.961

AIC selection 0.920 0.978 1.012 0.998 1.017 0.997
S-BIC averaging 0.766† 0.889† 0.905† 0.930† 0.900† 0.931†

BIC selection 0.803 0.939 1.008 0.969 1.013 0.976

µ2 S-AIC averaging 0.734 0.886 0.846 0.892 0.902† 0.894
AIC selection 0.863 0.951 0.958 0.952 1.013 0.954

S-BIC averaging 0.591† 0.809† 0.792† 0.822† 0.929 0.825†

BIC selection 0.659 0.877 0.931 0.885 1.113 0.876

µ3 S-AIC averaging 0.719 0.870 0.873 0.906 0.964† 0.924
AIC selection 0.873 0.943 0.993 0.968 1.077 0.975

S-BIC averaging 0.566† 0.778† 0.841† 0.847† 1.038 0.882†

BIC selection 0.643 0.859 0.999 0.915 1.255 0.933

n=200
µ1 S-AIC averaging 0.842 0.924 0.953 0.956 0.954 0.957

AIC selection 0.915 0.969 1.039 0.999 1.036 0.998
S-BIC averaging 0.762† 0.861† 0.944† 0.925† 0.945† 0.925†

BIC selection 0.777 0.904 1.043 0.967 1.046 0.963

µ2 S-AIC averaging 0.690 0.859 0.815 0.872 0.912† 0.885
AIC selection 0.819 0.938 0.957 0.942 1.042 0.964

S-BIC averaging 0.536† 0.746† 0.782† 0.775† 1.033 0.798†

BIC selection 0.588 0.812 0.917 0.830 1.243 0.852

µ3 S-AIC averaging 0.651 0.846 0.846 0.895 0.974† 0.916
AIC selection 0.770 0.943 0.983 0.959 1.123 0.974

S-BIC averaging 0.480† 0.723† 0.834† 0.827† 1.141 0.876†

BIC selection 0.537 0.800 1.003 0.902 1.383 0.945

to model averaging, but it can be a better strategy than model selection in a
good number of cases. The improved performance of the full model estimator
for these choices of δ is of no surprise - when δ = δ(2) or δ = δ(3), the full model
is either only mildly over-fitted or correctly specified. However, although the full
model estimator is always asymptotically unbiased, in most cases the variance
produced by the full model estimator remains larger than those produced by
other strategies. Thus, the full model estimator frequently remains worse than
the other estimators even when the full model is the true model or close to being
the true model. That being said, the AIC and BIC model selection estimators
both perform poorly when ρ = 0, δ = δ(3), and σu = 0.1, having MSEs that are
larger than that of the full model estimator for all three estimands and both
values of n. Interestingly, it is also under these choices of ρ, δ and σu that model
averaging is sometimes found to perform worse than full model estimation. This
can be partially explained by noting that when δ = δ(3), γ1 = γ2 = γ3 = 1, and
with the majority of submodels in the model average having at least one γj =
0, the model average estimator will likely be substantially biased. When σu =
0.5, model selection typically has an edge over full model estimation irrespective
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of δ. Third, in the large majority of cases considered, the S-BIC model average
estimator yields the smallest MSE; in the remaining cases where S-BIC model
averaging is not the best strategy, the most accurate estimates are invariably
produced by S-AIC averaging. In other words, for all of the cases considered, the
dominating estimator is always either the S-AIC or the S-BIC model average
estimator. Fourth, of the two model selection estimators, the BIC estimator
is generally preferred to the AIC estimator, and there are a good number of
instances where the BIC model selection estimator has smaller MSE than the S-
AIC model average estimator. Commonly, the RMSE comparisons of estimators
for n = 100 and 200 are reasonably similar.

5. Analysis of real data

Here, we apply our method to a subset of data obtained from the Continuing
Survey of Food Intakes by Individuals (CSFII) conducted by the U.S. Depart-
ment of Agriculture in 1985 and 1986.3

This data set contains dietary intake and related information of n = 1827
individuals between the age of 25 and 50. Using the available data, we specify
the following model for calorie intake, denoted by y:

y =
7∑

i=1

βixi + f0(t) + zf1(t) + ε,

where x1, x2, x3, x4 and x5 represent intake levels of fat, protein, carbohydrates,
Vitamin A and Vitamin C respectively, x6 is an indicator variable for alcohol
consumption, x7 is body mass index, z is income and t is age. As we think that
fat, protein and carbohydrates are the key determinants of calories, and we are
primarily interested in the effects that these variables have on calorie intake, we
treat x1, x2 and x3 as mandatory in the parametric component of the model. In-
deed, statistical results based on the full model reveal that only x1, x2, x3 and x6

are significant, and the coefficient estimates (in absolute values) of x1, x2 and x3

are at least three-fold those of the other variables. As we are less interested in the
effects of x4, x5, x6, and x7 on y, we treat this second group of variables as op-
tional. One key role of the optional variables is to improve the estimation of the
coefficients of the mandatory variables. This approach for distinguishing between
mandatory and optional explanatory variables is adopted from [28] and [9].

We are interested in the estimation of the following four estimands: µ1 = β1,
µ2 = β2, µ3 = β3 and µ4 = β1/β2, based on five alternative estimation methods:
FMA by S-AIC and S-BIC, model selection by AIC and BIC, and full model
estimation. The estimands µ1, µ2 and µ3 are of obvious interest because they
represent the marginal effects that each of the mandatory explanatory variables
have on calorie intake. The estimand µ4 is also of interest as it measures the effect

3This is part of the Nationwide Food Consumption Survey, published by the U.S. De-
partment of Agriculture Human Nutrition Information Service, Hyattsville, Maryland, CSFII
Reports No. 85-4 and No. 86-3.
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Table 3

Point estimates in real data analysis

µ1 µ2 µ3 µ4

S-AIC 0.44318 0.18317 0.49939 2.42269
S-BIC 0.44331 0.18296 0.49926 2.42623
AIC (BIC) 0.44040 0.18850 0.50245 2.33634
Full Model 0.43973 0.18917 0.50261 2.32457

Table 4

95% Confidence intervals in real data analysis

Limits
Lower Upper

µ1

AIC (BIC) 0.42338 0.45742
S-AIC/S-BIC/Full Model 0.42345 0.45601

µ2

AIC (BIC) 0.16626 0.21074
S-AIC/S-BIC/Full Model 0.16749 0.21084

µ3

AIC (BIC) 0.49103 0.51386
S-AIC/S-BIC/Full Model 0.49252 0.51270

µ4

AIC (BIC) 1.99905 2.67364
S-AIC 1.96064 2.60450
S-BIC 2.00915 2.65301
Full Model 2.00264 2.64650

of fat relative to that of protein. Tables 3 and 4 present the point and interval
estimation results. We observe from the tables that the two model selection
methods produce identical results - for this data set, both the AIC and BIC
select the model that contains x1, x2, x3, x4 and x6. Results produced by the two
FMA estimators are also quite similar; both S-AIC and S-BIC model averaging
yield estimates of µ1 and µ4 that are larger and estimates of µ2 and µ3 that
are smaller than the corresponding estimates obtained from model selection
and full model estimation. The relatively large µ4 estimates produced by the
two model average estimators indicate that among the estimation approaches
considered, model averaging most accentuates the common belief that calorie
intake is associated with fat consumption more than with protein consumption.
As for interval estimation comparisons, note that for µ1, µ2 and µ3, model
averaging and the full model estimation produce the same interval estimates as
these estimands are all linear in parameters. Table 4 shows that model selection
generally results in wider confidence intervals than do full model estimation or
model averaging.

6. Concluding remarks

In this section, we summarize our main findings and point to some directions
for future research.

• In the context of the VCPLE model, we have considered frequentist model
averaging in the manner of [20]. We have derived the asymptotic distri-
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bution of the FMA estimator of the unknown parameters of interest, and
developed a confidence interval procedure based on the FMA estimator.
Asymptotically, the resultant interval achieves the target nominal cover-
age probability, and is identical to the confidence interval obtained from
the estimation of the full model. More remarkably, if the parameter of
interest is a linear combination of regression coefficients, then the equiv-
alence between the FMA and full model based confidence intervals also
holds in finite samples. In view of the simulation findings suggesting that
FMA generally has an advantage over full model estimation in point es-
timation, alternative methods of interval estimation based on the FMA
approach resulting in more efficient estimates likely exist, and this is an
area that undoubtedly deserves more study.

• Throughout this paper, we assume that Σu is known. To estimate Σu when
it is unknown, it is usually assumed that replicated observations of Xi are
available such that Wij = Xi+Uij , j = 1, . . . , Ji, i = 1, . . . , n are observed
[3, 26]. Then Σu can be consistently and unbiasedly estimated by

Σ̂u =

∑n
i=1

∑Ji

j=1(Wij − W̄i)(Wij − W̄i)
⊤

∑n
i=1(Ji − 1)

,

where W̄i =
∑Ji

j=1 Wij/Ji. The substitution of Σu by Σ̂u does not compli-
cate the theoretical analysis in any substantial way; all asymptotic results
continue to hold when Σu is replaced by a consistent estimator. Having
said that, since Ūi =

∑Ji

j=1 Uij/Ji has smaller variance than Uij , an ar-
guably better way to proceed would be to modify model (1) as

{
Yi = X⊤

i θ + Z⊤
i α(Ti) + εi

W̄i = Xi + Ūi.

In this case, the distributions of Ūi’s are different if Ji’s are not all iden-
tical. Then the expression of F in Lemma 1 should be modified to the
following, assuming that the limit exists:

F = lim
n→∞

1

n

n∑

i=1

E

([
W̄i −E(XiZ

⊤
i |Ti)

{
E(ZiZ

⊤
i |Ti)

}−1

Zi

](
εi − Ū

⊤
i θ0

)

+
n
∑Ji

j=1(Wij − W̄i)(Wij − W̄i)
⊤θ0∑n

i=1 Ji(Ji − 1)

)⊗2

.

• The only type of measurement errors we have considered is one where the
errors are present in the linear part of the model. Cases where covariates
in the non-parametric part are measured with errors, or measurement
errors arise in a more general framework, such as the generalized varying-
coefficient partially linear model g(EYi) = X⊤

i θ+Z⊤
i α(Ti), are definitely

worthy of study.
• While we considered only model averaging based on weights constructed
from values of AIC and BIC, other weight choice techniques exist [14, 15,
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16, 33, 17]. The consideration of these alternative weight choice mecha-
nisms in the context of the VCPLE model also warrants future studies.

• While we assumed i.i.d. observations, the extension to the non-i.i.d. situ-
ation will be a fruitful avenue for future research. [35] recently considered
model averaging with non-i.i.d. observations in a linear measurement error
model, which is a special case of the more general VCPLE model frame-
work examined here.

• It should be mentioned that although the FMA strategy being studied
produces a

√
n-consistent estimator of the parametric component of the

model, this strategy when applied to the non-parametric component of the
model does not yield an estimator that converges to the unknown function
at the rate of 1/

√
n. It is for this reason that throughout the paper we

focused only on the estimators in the parametric component. It remains
for future research to develop an FMA strategy for the non-parametric
component that possesses optimal properties.
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7. Appendix

Proof of Lemma 1. Write

Ŵi = [(Z⊤
i 0)(D⊤

tiΩtiDti)
−1D⊤

tiΩtiW]⊤, Ûi = [(Z⊤
i 0)(D⊤

tiΩtiDti)
−1D⊤

tiΩtiU]⊤,

Ŷi = (Z⊤
i 0)(D⊤

tiΩtiDti)
−1D⊤

tiΩtiY, and ε̂i = (Z⊤
i 0)(D⊤

tiΩtiDti)
−1D⊤

tiΩtiε,

and let ▽ = W̃⊤W̃ − nΣu. Then from equation (4), we have

θ̂ − θtrue

= ▽−1
n∑

i=1

(Wi − Ŵi)(Yi − Ŷi)−▽−1 ▽ θtrue

= ▽−1
[ n∑

i=1

(Wi − Ŵi)(Yi − Ŷi)−
n∑

i=1

(Wi − Ŵi)(Wi − Ŵi)
⊤θtrue + nΣuθtrue

]

= ▽−1nΣuθtrue +▽−1
n∑

i=1

(Wi − Ŵi)
[
Yi − Ŷi − (Wi − Ŵi)

⊤θtrue

]
.
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From the expressions of Ŷi, Ŵi, Ûi and ε̂i, we obtain

Yi − Ŷi − (Wi − Ŵi)
⊤θtrue

= X⊤
i θtrue + Z⊤

i α(Ti) + εi−(Z⊤
i 0)(D⊤

tiΩtiDti)
−1D⊤

tiΩtiY −X⊤
i θtrue − U⊤

i θtrue

+ (Z⊤
i 0)(D⊤

tiΩtiDti)
−1D⊤

tiΩtiXθtrue + (Z⊤
i 0)(D⊤

tiΩtiDti)
−1D⊤

tiΩtiUθtrue

= Z⊤
i α(Ti) + εi − U⊤

i θtrue − ε̂i + Û⊤
i θtrue − (Z⊤

i 0)(D⊤
tiΩtiDti)

−1D⊤
tiΩtiM.

Hence,

n∑

i=1

(Wi − Ŵi)
(
Yi − Ŷi − (Wi − Ŵi)θtrue

)

=

n∑

i=1

(Wi − Ŵi)(εi − U⊤
i θtrue) +

n∑

i=1

(Wi − Ŵi)(Û
⊤
i θtrue − ε̂i)

+

n∑

i=1

(Wi − Ŵi){Z⊤
i α(Ti)− (Z⊤

i 0)(D⊤
tiΩtiDti)

−1D⊤
tiΩtiM}

=

n∑

i=1

[Wi −E(WiZ
⊤
i |Ti){E(ZiZ

⊤
i |Ti)}−1Zi](εi − U⊤

i θtrue)

+

n∑

i=1

[E(WiZ
⊤
i |Ti){E(ZiZ

⊤
i |Ti)}−1Zi − Ŵi](εi − U⊤

i θtrue)

+
n∑

i=1

(Wi − Ŵi)(Û
⊤
i θtrue − ε̂i)

+

n∑

i=1

(Wi − Ŵi){Z⊤
i α(Ti)− (Z⊤

i 0)(D⊤
tiΩtiDti)

−1D⊤
tiΩtiM}

≡ J1 + J2 + J3 + J4.

Note that J1 is a sum of the i.i.d. random vectors, and we can easily show that
it achieves asymptotic normality by applying the Central Limit Theorem. We
now show that each of J2, J3, and J4 is of order oP (

√
n). Following the method

used in [12], we can show that the following equation holds uniformly in T :

(Z⊤
i 0)(D⊤

tiΩtiDti)
−1D⊤

tiΩtiW = Z⊤
i {E(ZiZ

⊤
i |Ti)}−1E(ZiX

⊤
i |Ti){1+OP (cn)},

where cn =
√

log(1/h)
nh + h2. In addition, since [E(WiZ

⊤
i |Ti)]

⊤ = E(ZiW
⊤
i |Ti)

and θtrue = θ0 + (0⊤, δ⊤)⊤/
√
n, we have

J2 =

n∑

i=1

[E(WiZ
⊤
i |Ti){E(ZiZ

⊤
i |Ti)}−1Zi](εi − U⊤

i θ0)OP (cn).

The application of the Central Limit Theorem yields
∑n

i=1[E(WiZ
⊤
i |Ti){E(ZiZ

⊤
i

|Ti)}−1Zi](εi − U⊤
i θ0) = OP (

√
n). Therefore, J2 = OP (

√
ncn) = oP (

√
n). Sim-

ilarly, we can show that J3 = oP (
√
n), and J4 = oP (

√
n). Using the Slutsky
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Theorem and recognizing that ▽/n = Bn
p−→ B as n → ∞, we obtain

√
n(θ̂ − θtrue) =

(▽
n

)−1
1√
n

n∑

i=1

{(
Wi − E(WiZ

⊤
i |Ti){E(ZiZ

⊤
i |Ti)}−1Zi

)

×
[
εi − U⊤

i (β⊤, δ⊤/
√
n)⊤

]
+Σu(β

⊤, δ⊤/
√
n)⊤

}
+ oP (1)

=

(▽
n

)−1
1√
n

n∑

i=1

{(
Wi − E(WiZ

⊤
i |Ti){E(ZiZ

⊤
i |Ti)}−1Zi

)

× (εi − U⊤
i θ0) + Σuθ0

}
+ oP (1)

d−→N(0, B−1FB−1).

By the Continuous Mapping Theorem, Gns
p−→ GS. Applying the Continuous

Mapping Theorem again and using the above results, we have

√
n

(
β̂S − β
γ̂S

)
d−→ GS

(
M
D

)
∼ N

((
CSδ

(Π⊤
S
AΠS)

−1Π⊤
S
Aδ

)
, GSB

−1FB−1G⊤
S

)
.

Proof of Theorem 1. By the Taylor series expansion, we have

µtrue = µ

(
β,

δ√
n

)
= µ(β, 0) + µ⊤

γ

δ√
n
+ o

(
1√
n

)
,

and

µ̂S = µ(β̂S, γ̂S) = µ(β, 0) +

(
µβ

Π⊤
S
µγ

)⊤(
β̂S − β
γ̂S

)
+ oP

(
1√
n

)
. (17)

Hence,

µ̂S − µtrue =

(
µβ

Π⊤
S
µγ

)⊤(
β̂S − β
γ̂S

)
− µ⊤

γ

δ√
n
+ oP

(
1√
n

)

=

(
µβ

Π⊤
S
µγ

)⊤

Gns

(
β̂full − β
γ̂full

)
− µ⊤

γ

δ√
n
+ oP

(
1√
n

)
.

Note that Mn =
√
n(β̂full − β) and δ̂ =

√
nγ̂full. As

Gns =

(
Ip Cns

0|S|×p (Π⊤
S
AnΠS)

−1Π⊤
S
An

)
,

it can be shown that

√
n(µ̂S − µtrue) = µ⊤

β [Mn +B−1
11 B12(δ̂ − δ)] + ω⊤

(
δ −A−1/2

n HSA
1/2
n δ̂

)
+ oP (1).
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From the Continuous Mapping Theorem and Slutsky Theorem, the above equa-
tion converges in distribution to the following variable:

ΛS = µ⊤
β [M +B−1

11 B12(D − δ)] + ω⊤
(
δ −A−1/2HSA

1/2D
)
.

Proof of Theorem 2. From the definition of the FMA estimator µ̂avg in equation
(11), we have

√
n(µ̂avg − µtrue) =

∑

S

c(S|δ̂)
√
n(µ̂S − µtrue). (18)

From the proof of Theorem 1,
√
n(µ̂S − µtrue) on the right-hand side of (18)

can be represented by a linear function of Mn and δ̂. As c(S|d) is almost surely
continuous,

√
n(µ̂ − µtrue) is an almost surely continuous function of Mn and

δ̂. Thus, applying the Continuous Mapping Theorem, Slutsky Theorem, and
Theorem 1, we obtain the required result.
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