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Abstract: This paper examines the local power of the likelihood ratio,
Wald, score and gradient tests under the presence of a scalar parameter, φ
say, that is orthogonal to the remaining parameters. We show that some of
the coefficients that define the local powers remain unchanged regardless
of whether φ is known or needs to be estimated, whereas the others can be
written as the sum of two terms, the first of which being the corresponding
term obtained as if φ were known, and the second, an additional term
yielded by the fact that φ is unknown. The contribution of each set of
parameters on the local powers of the tests can then be examined. Various
implications of our main result are stated and discussed. Several examples
are presented for illustrative purposes.
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1. Introduction

The likelihood ratio (LR), Wald and Rao score tests are usually employed for
testing hypotheses in parametric models. These tests have been widely used in
economics, engineering and biology, among other fields. Recently, Terrell (2002)
proposed a new criterion for testing hypotheses, referred to as the gradient test.
As we will see below, the gradient statistic is very simple to compute when
compared with the Wald and the score statistics. Due to its simplicity, Rao
(2005) wrote: “The suggestion by Terrell is attractive as it is simple to compute.
It would be of interest to investigate the performance of the [gradient] statistic.”
An interesting result about the gradient statistic is that it shares the same first
order asymptotic properties with the LR, Wald and score statistics. That is,
to the first order of approximation, these statistics have the same asymptotic
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distributional properties either under the null hypothesis or under a sequence of
Pitman alternatives, i.e. a sequence of local alternatives that shrink to the null
hypothesis at a convergence rate n−1/2, n being the sample size. Additionally, it
is known that, up to an error of order n−1, the LR, Wald, score and gradient tests
have the same size properties but their local powers differ in the n−1/2 term.
Therefore, a meaningful comparison among the criteria can be performed by
comparing the nonnull asymptotic expansions to order n−1/2 of the distribution
functions of these statistics under a sequence of Pitman alternatives.

The nonnull asymptotic expansions up to order n−1/2 for the distribution
functions of the LR and Wald statistics for testing a composite hypothesis in the
presence of nuisance parameters were derived by Hayakawa (1975). Harris and
Peers (1980) obtained an analogous result for the score statistic. The asymptotic
expansion up to order n−1/2 for the distribution function of the gradient statistic
was derived by Lemonte and Ferrari (2012). The null asymptotic expansion up
to order n−1 for the distribution function of the likelihood ratio statistic for
testing a composite hypothesis in the presence of nuisance parameters is given
in Hayakawa (1977, 1987), while an analogous result for the score statistic was
obtained by Harris (1985); see also Hayakawa and Puri (1985). The derivation
of the null asymptotic expansion up to order n−1 for the distribution function
of the gradient statistic is in progress and will be published in a future article.

Let π(θ) be a continuous parametric model and ℓ(θ) be the corresponding
total log-likelihood function, where θ = (β⊤

1 ,β
⊤
2 , φ)

⊤ is a (p + 1)-vector of
unknown parameters. The dimensions of β1 and β2 are q and p−q, respectively,
and φ is a scalar parameter. We focus on testing the composite null hypothesis
H0 : β2 = β20 against the two-sided alternative hypothesis H1 : β2 6= β20,
where β20 is a specified vector and β1 and φ are nuisance parameters. Let
Uθ = ∂ℓ(θ)/∂θ and Kθ = E(UθU

⊤

θ ) be the score function and the Fisher

information matrix for θ, respectively. Also, let θ̂ = (β̂⊤
1 , β̂

⊤
2 , φ̂)

⊤ and θ̃ =

(β̃⊤
1 ,β

⊤
20, φ̃)

⊤ denote the unrestricted (under H1) and restricted (under H0)
maximum likelihood estimators of θ = (β⊤

1 ,β
⊤
2 , φ)

⊤. The likelihood ratio (S1),
Wald (S2), score (S3) and gradient (S4) statistics for testing H0 versus H1 are
given, respectively, by

S1 = 2
{
ℓ(θ̂)− ℓ(θ̃)

}
, S2 = (θ̂ − θ̃)⊤K̂θ(θ̂ − θ̃),

S3 = Ũ⊤

θ K̃−1
θ Ũθ, S4 = Ũ⊤

θ (θ̂ − θ̃),

where K̂θ = Kθ(θ̂), K̃θ = Kθ(θ̃) and Ũθ = Uθ(θ̃). The limiting distribution
of S1, S2, S3 and S4 is χ2

p−q under H0. Under H1, these statistics have a χ
2
p−q,λ,

i.e. a noncentral chi-square distribution with p − q degrees of freedom and an
appropriate noncentrality parameter λ. The null hypothesis is rejected for a
given nominal level, γ say, if the test statistic exceeds the upper 100(1 − γ)%
quantile of the χ2

p−q distribution.

In this paper, we shall assume that β = (β⊤
1 ,β

⊤
2 )

⊤ is globally orthogonal to
φ in the sense of Cox and Reid (1987). In other words, the Fisher information
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matrix for θ and its inverse are block-diagonal,

Kθ = diag{Kβ,Kφ}, K−1
θ = diag{K−1

β ,K−1
φ },

say. Here, Kβ is the Fisher information matrix for β and Kφ is the information
relative to φ. There are numerous statistical models for which global orthogo-
nality holds; see Section 3.

The global orthogonality of the parameters will be exploited and we will show
an interesting decomposition of the n−1/2 term of the expansion of the nonnull
distribution function of the four statistics. From the partition of θ and the global
orthogonality between β and φ, we have the corresponding partitions:

Uθ = (U⊤

β1
,U⊤

β2
, Uφ)

⊤, Kβ =

[
Kβ11 Kβ12

Kβ21 Kβ22

]
, K−1

β =

[
K11 K12

K21 K22

]
.

Hence, the statistics S2, S3 and S4 can be rewritten as

S2 = (β̂2 −β20)
⊤K̂22−1

(β̂2 −β20), S3 = Ũ⊤

β2
K̃22Ũβ2

, S4 = Ũ⊤

β2
(β̂2 −β20),

where K̂22 = K22(θ̂), K̃22 = K22(θ̃) and Ũβ2
= Uβ2

(θ̃). Notice that S4, the
gradient statistic, has a very simple form and does not involve the information
matrix, neither expected nor observed, unlike S2 and S3. Terrell (2002) points
out that the gradient statistic “is not transparently non-negative, even though
it must be so asymptotically.” His Theorem 2 implies that if the log-likelihood
function is concave and is differentiable at θ̃, then S4 ≥ 0.

The subject matter of this note is the local power of the LR, Wald, score and
gradient tests for testing the null hypothesis H0 : β2 = β20 under a sequence
of Pitman alternatives, when global orthogonality between β and φ holds. The
nonnull distribution function of the statistics S1, S2, S3 and S4 under Pitman
alternatives for testing H0 : β2 = β20 takes the form

Pr(Si ≤ x) = Gf,λ(x) +

3∑

k=0

bikGf+2k,λ(x) +O(n−1), (1)

for i = 1, 2, 3, 4, where Gf,λ(x) is the cumulative distribution function of a non-
central chi-square variate with f degrees of freedom and an appropriate non-
centrality parameter λ. Here, f = p − q. Clearly, the local power (up to order
n−1/2) of the four corresponding tests are given by 1 − Pr(Si ≤ x), where x is
replaced by the appropriate quantile of the χ2

p−q distribution according to the
chosen nominal level. The coefficients bik (i = 1, 2, 3, 4 and k = 0, 1, 2, 3) and λ
are given in Hayakawa (1975), Harris and Peers (1980) and Lemonte and Ferrari
(2012), and are reproduced in Section 2.

We will show that the coefficients bi2 and bi3, for i = 1, 2, 3, 4, in (1) remain
unchanged regardless of whether φ is known or needs to be estimated, whereas
the coefficients bi1, for i = 1, 2, 3, 4, can be written as the sum of two terms, the
first of which being the corresponding term obtained as if φ were known, and the
second, an additional term yielded by the fact that φ is unknown. A sufficient
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condition under which this additional term is zero will be given. The general
result derived in this paper allows one to explicitly verify the contribution of
each parameter on the local power of the LR, Wald, score and gradient tests for
testing the null hypothesis H0. We also discuss on the local power of the tests
for testing the null hypothesis H0 : φ = φ0, where φ0 is a specified scalar value,
when β acts as a vector of nuisance parameters. Some examples which include
probability density functions and regression models are considered to illustrate
our result.

2. Main result

In order to derive our main result, we shall assume that the local alternative
hypothesis is H1n : β2 = β20 + ǫ, where ǫ = (ǫq+1, . . . , ǫp)

⊤ is of order n−1/2.
We define the quantities

ǫ∗ =



K−1

β11Kβ12

−Ip−q

0


 ǫ, A = ((ars)) =

[
Aβ 0

0 K−1
φ

]
,

M = ((mrs)) =

[
Mβ 0

0 0

]
,

where Ip−q is a (p− q)× (p− q) identity matrix, r, s = 1, . . . , p+ 1, and

Mβ = K−1
β −Aβ, Aβ =

[
K−1

β11 0

0 0

]
.

Note that whenever an index equals p+ 1, it refers to φ, the last component of
the parameter vector. To make the notation more intuitive, in many instances
we will write φ instead of p+1. We have mrφ = mφr = mφφ = 0, arφ = aφr = 0
(r = 1, . . . , p) and aφφ = K−1

φ . In the following, we use the standard notation for
the cumulants of the log-likelihood derivatives (Lawley, 1956; Harris, 1985). Let
Ur = ∂ℓ(θ)/∂θr, Urs = ∂2ℓ(θ)/∂θr∂θs, Urst = ∂3ℓ(θ)/∂θr∂θs∂θt and so on, for
r, s, t = 1, . . . , p + 1. We have κrs = E(Urs), κrst = E(Urst), κr,st = E(UrUrs),
κr,s,t = E(UrUsUt), etc. All cumulants κ’s refer to a total over the sample and
are, in general, of order n.

The general expressions for the coefficients bik’s (i = 1, 2, 3, 4 and k =
0, 1, 2, 3) that define the nonnull expansions of the distribution function of the
statistics S1, S2, S3 and S4 under Pitman alternatives for testing H0 : β2 = β20,
which are given in (1), can be written as

b11 = −1

6

p+1∑

r,s,t=1

(κrst − 2κr,s,t)ǫ
∗

rǫ
∗

sǫ
∗

t −
1

2

p+1∑

r,s,t=1

(κrst + 2κr,st)arsǫ
∗

t

− 1

2

p∑

r=q+1

p+1∑

s,t=1

(κrst + κr,st)ǫrǫ
∗

sǫ
∗

t ,
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b21 = −1

2

p+1∑

r,s,t=1

(κrst + 2κr,st)ǫ
∗

rǫ
∗

sǫ
∗

t +

p+1∑

r,s,t=1

κr,stmrsǫ
∗

t

− 1

2

p∑

r,s,t=1

(κrst + 2κr,st)κ
r,sǫ∗t −

1

2

p∑

r=q+1

p+1∑

s,t=1

(κrst + κr,st)ǫrǫ
∗

sǫ
∗

t ,

b31 = −1

6

p+1∑

r,s,t=1

(κrst − 2κr,s,t)ǫ
∗

rǫ
∗

sǫ
∗

t +
1

2

p+1∑

r,s,t=1

κr,s,tmrsǫ
∗

t

− 1

2

p+1∑

r,s,t=1

(κrst + 2κr,st)arsǫ
∗

t −
1

2

p∑

r=q+1

p+1∑

s,t=1

(κrst + κr,st)ǫrǫ
∗

sǫ
∗

t ,

b41 =
1

4

p+1∑

r,s,t=1

κrstκ
r,sǫ∗t −

1

2

p+1∑

r,s,t=1

(κrst + 2κr,st)ǫ
∗

rǫ
∗

sǫ
∗

t

− 1

4

p+1∑

r,s,t=1

(4κr,st + 3κrst)arsǫ
∗

t −
1

2

p∑

r=q+1

p+1∑

s,t=1

(κrst + κr,st)ǫrǫ
∗

sǫ
∗

t ,

b12 = −1

6

p+1∑

r,s,t=1

κr,s,tǫ
∗

rǫ
∗

sǫ
∗

t , b13 = 0,

b22 =
1

2

p+1∑

r,s,t=1

κr,stǫ
∗

rǫ
∗

sǫ
∗

t +
1

2

p+1∑

r,s,t=1

κrstmrsǫ
∗

t ,

b23 =
1

6

p+1∑

r,s,t=1

κrstǫ
∗

rǫ
∗

sǫ
∗

t , b32 = −1

2

p+1∑

r,s,t=1

κr,s,tmrsǫ
∗

t ,

b33 = −1

6

p+1∑

r,s,t=1

κr,s,tǫ
∗

rǫ
∗

sǫ
∗

t ,

b42 = −1

4

p+1∑

r,s,t=1

κrstmrsǫ
∗

t +
1

4

p+1∑

r,s,t=1

(κrst + 2κr,st)ǫ
∗

rǫ
∗

sǫ
∗

t ,

b43 = − 1

12

p+1∑

r,s,t=1

κr,s,tǫ
∗

rǫ
∗

sǫ
∗

t ,

and bi0 = −(bi1 + bi2 + bi3), for i = 1, 2, 3, 4, where κr,s is the (r, s)th element
of K−1

θ and ǫ∗r is the rth element of the vector ǫ∗. Here, the non-centrality
parameter is given by λ = ǫ∗⊤Kθǫ

∗. The coefficients bik’s are of order n−1/2

and all quantities except ǫ are evaluated under the null hypothesis.
Based on the general expressions of the coefficients presented above and ex-

ploiting the orthogonality between β and φ, we arrive, after long and tedious
algebraic manipulations, at the following general result.
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Theorem 1 Let θ = (β⊤
1 ,β

⊤
2 , φ)

⊤ be the parameter vector of dimension p+1,
where the dimensions of β1 and β2 are q and p−q, respectively, and φ is a scalar
parameter. Assume that β = (β⊤

1 ,β
⊤
2 )

⊤ and φ are globally orthogonal. The
nonnull asymptotic expansions of the distribution functions of the LR, Wald,
score and gradient statistics for testing the null hypothesis H0 : β2 = β20 under
a sequence of Pitman alternatives are given by (1) with f = p−q, λ = ǫ⊤(Kβ22−
Kβ21K

−1
β11Kβ12)ǫ, and

b11 = b011 + ξ, b21 = b021 + ξ, b31 = b031 + ξ, b41 = b041 + ξ,

b12 = b33 = 2b43 = −1

6

p∑

r,s,t=1

κr,s,tǫ
∗

rǫ
∗

sǫ
∗

t ,

b22 =
1

2

p∑

r,s,t=1

κr,stǫ
∗

rǫ
∗

sǫ
∗

t +
1

2

p∑

r,s,t=1

κrstmrsǫ
∗

t ,

b13 = 0, b23 =
1

6

p∑

r,s,t=1

κrstǫ
∗

rǫ
∗

sǫ
∗

t , b32 = −1

2

p∑

r,s,t=1

κr,s,tmrsǫ
∗

t ,

b42 = −1

4

p∑

r,s,t=1

κrstmrsǫ
∗

t +
1

4

p∑

r,s,t=1

(κrst + 2κr,st)ǫ
∗

rǫ
∗

sǫ
∗

t ,

where

ξ = −
K−1

φ

2

p∑

t=1

(κφφt + 2κφ,φt)ǫ
∗

t ,

with κφφt = E(∂3ℓ(θ)/∂φ2∂βt) and κφ,φt = E{(∂ℓ(θ)/∂φ)(∂2ℓ(θ)/∂φ∂βt)},

b011 = −1

6

p∑

r,s,t=1

(κrst − 2κr,s,t)ǫ
∗

rǫ
∗

sǫ
∗

t −
1

2

p∑

r,s,t=1

(κrst + 2κr,st)arsǫ
∗

t

− 1

2

p∑

r=q+1

p∑

s,t=1

(κrst + κr,st)ǫrǫ
∗

sǫ
∗

t ,

b021 = −1

2

p∑

r,s,t=1

(κrst + 2κr,st)ǫ
∗

rǫ
∗

sǫ
∗

t +

p∑

r,s,t=1

κr,stmrsǫ
∗

t

− 1

2

p∑

r,s,t=1

(κrst + 2κr,st)κ
r,sǫ∗t −

1

2

p∑

r=q+1

p∑

s,t=1

(κrst + κr,st)ǫrǫ
∗

sǫ
∗

t ,

b031 = −1

6

p∑

r,s,t=1

(κrst − 2κr,s,t)ǫ
∗

rǫ
∗

sǫ
∗

t +
1

2

p∑

r,s,t=1

κr,s,tmrsǫ
∗

t

− 1

2

p∑

r,s,t=1

(κrst + 2κr,st)arsǫ
∗

t −
1

2

p∑

r=q+1

p∑

s,t=1

(κrst + κr,st)ǫrǫ
∗

sǫ
∗

t ,



A note on the local power 427

b041 =
1

4

p∑

r,s,t=1

κrstκ
r,sǫ∗t −

1

2

p∑

r,s,t=1

(κrst + 2κr,st)ǫ
∗

rǫ
∗

sǫ
∗

t

− 1

4

p∑

r,s,t=1

(4κr,st + 3κrst)arsǫ
∗

t −
1

2

p∑

r=q+1

p∑

s,t=1

(κrst + κr,st)ǫrǫ
∗

sǫ
∗

t ,

and bi0 = −(bi1 + bi2 + bi3), for i = 1, 2, 3, 4.

Notice that b0i1 (i = 1, 2, 3, 4) and bik (i = 1, 2, 3, 4 and k = 2, 3) represent
the contribution of the parameter vector β to the local power of the LR, Wald,
score and gradient tests for testing the null hypothesis H0 : β2 = β20, since
these expressions are only obtained over the components of β, i.e. as if φ were
known. On the other hand, the quantity ξ, which depends on third-order mixed
cumulants involving φ and β, can be regarded as the contribution of the pa-
rameter φ to the local power of the LR, Wald, score and gradient tests when
it is unknown, that is, when it needs to be estimated. It is interesting to note
that the contribution yielded by the fact that φ is unknown is the same for the
four tests. Additionally, the contribution of the parameter φ to the local power
of the tests only appears in the coefficient bi1 (i = 1, 2, 3, 4) and, of course, in
bi0 (i = 1, 2, 3, 4).

Theorem 1 implies that the limiting distribution of the four statistics, namely
a non-central chi-square distribution with non-centrality parameter λ, is the
same regardless of whether φ is known or estimated from the data. Notice that
ξ is the only term that involves cumulants of log-likelihood derivatives with
respect to φ, and it decreases with the Fisher information for φ and vanishes if

φ is known. By using the Bartlett identity κφ,φt = κ
(φ)
φt − κφφt, for t = 1, . . . , p,

where κ
(φ)
φt = ∂κφt/∂φ, we have κφ,φt = −κφφt since the orthogonality between

β and φ implies that κφt = 0. Therefore, we can write

ξ =
K−1

φ

2

p∑

t=1

κφφtǫ
∗

t . (2)

Theorem 1 has a practical application when the goal is to obtain explicit
formulas to the nonnull distribution function of any of the four tests for special
models in which orthogonality holds. It suggests that the coefficients bik’s should
be obtained as if the scalar orthogonal parameter φ were known, and the extra
contribution due to the estimation of φ should be obtained from (2).

Now, let Π0
i and Πi, for i = 1, 2, 3, 4, be the local powers (ignoring terms

of order smaller than n−1/2) of the test that uses the statistic Si when φ is
known and when φ is unknown, respectively. It is well known that Gm,λ(x) −
Gm+2,λ(x) = 2gm+2,λ(x), where gf,λ(x) is the probability density function of
a non-central chi-square variate with f degrees of freedom and non-centrality
parameter λ. We can then write Πi − Π0

i = c ξ for i = 1, 2, 3, 4, where c =
2gp−q+2,λ(x) > 0 and x represents the appropriate quantile of the reference
distribution for the chosen nominal level. Therefore, the difference between the
local powers can be zero, or it can increase or decrease when φ needs to be
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estimated, depending on the sign of the components of ǫ. If κφφt = 0, for
t = 1, . . . , p, we have ξ = 0 and hence the local powers of the four tests do not
change when a scalar parameter, which is globally orthogonal to the remaining
parameters, is included in the model specification. In the next section we will
present various examples for which this happens.

If q = 0, the null hypothesis takes the form H0 : β = β0. Also, ǫ
∗ = −ǫ

and A = 0. Therefore, an immediate consequence of Theorem 1 is the following
corollary.

Corollary 1 Let θ = (β, φ)⊤ be the parameter vector with β and φ being glob-
ally orthogonal parameters. The nonnull asymptotic expansions of the distri-
bution functions of the LR, Wald, score and gradient statistics for testing the
null hypothesis H0 : β = β0 under a sequence of Pitman alternatives are given
by (1) with f = p and λ = ǫ⊤Kβǫ, and the coefficients are b11 = b011 + ξ,
b21 = b021 + ξ, b31 = b031 + ξ, b41 = b041 + ξ, ξ = 1

2K
−1
φ

∑p
t=1(κφφt + 2κφ,φt)ǫt,

b011 = 1
6

∑p
r,s,t=1(κrst − 2κr,s,t)ǫrǫsǫt − 1

2

∑p
r=q+1

∑p
s,t=1(κrst + κr,st)ǫrǫsǫt,

b021 =
1

2

p∑

r,s,t=1

(κrst + 2κr,st)ǫrǫsǫt +
1

2

p∑

r,s,t=1

κrstκ
r,sǫt

− 1

2

p∑

r=q+1

p∑

s,t=1

(κrst + κr,st)ǫrǫsǫt,

b031 =
1

6

p∑

r,s,t=1

(κrst − 2κr,s,t)ǫrǫsǫt −
1

2

p∑

r,s,t=1

κr,s,tκ
r,sǫt

− 1

2

p∑

r=q+1

p∑

s,t=1

(κrst + κr,st)ǫrǫsǫt,

b041 = −1

4

p∑

r,s,t=1

κrstκ
r,sǫt +

1

2

p∑

r,s,t=1

(κrst + 2κr,st)ǫrǫsǫt

− 1

2

p∑

r=q+1

p∑

s,t=1

(κrst + κr,st)ǫrǫsǫt,

b12 = b33 = 2b43 = 1
6

∑p
r,s,t=1 κr,s,tǫrǫsǫt, b13 = 0, b22 = − 1

2

∑p
r,s,t=1 κr,stǫrǫsǫt−

1
2

∑p
r,s,t=1 κrstκ

r,sǫt, b23 = − 1
6

∑p
r,s,t=1 κrstǫrǫsǫt, b32 = 1

2

∑p
r,s,t=1 κr,s,tκ

r,sǫt,

b42 = 1
4

∑p
r,s,t=1 κrstκ

r,sǫt − 1
4

∑p
r,s,t=1(κrst + 2κr,st)ǫrǫsǫt and bi0 = −(bi1 +

bi2 + bi3), for i = 1, 2, 3, 4.

If q = 0 and p = 1, the null hypothesis is H0 : β = β0, where β0 is a specified
scalar, and hence we have the corollary.

Corollary 2 Let θ = (β, φ)⊤ be the parameter vector with β and φ being glob-
ally orthogonal scalar parameters. The nonnull asymptotic expansions of the
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distribution functions of the LR, Wald, score and gradient statistics for testing
the null hypothesis H0 : β = β0 under a sequence of Pitman alternatives are
given by (1) with f = 1 and λ = ǫ2Kβ, and the coefficients are b11 = b011 + ξ,
b21 = b021 + ξ, b31 = b031 + ξ, b41 = b041 + ξ, ξ = 1

2K
−1
φ (κφφβ + 2κφ,φβ)ǫ,

b011 = − 1
6 (κβββ+κβ,β,β)ǫ

3, b021 = 1
2κβββK

−1
β ǫ+ 1

2κβ,ββǫ
3, b031 = − 1

2κβ,β,βK
−1
β ǫ−

1
6 (κβββ + κβ,β,β)ǫ

3, b041 = − 1
4κβββK

−1
β ǫ + 1

2κβ,ββǫ
3, b12 = b33 = 2b43 =

1
6κβ,β,βǫ

3, b13 = 0, b22 = − 1
2κβ,ββǫ

3 − 1
2κβββK

−1
β ǫ, b23 = − 1

6κβββǫ
3, b32 =

1
2κβ,β,βK

−1
β ǫ, b42 = 1

4κβββK
−1
β ǫ− 1

4 (κβββ+2κβ,ββ)ǫ
3 and bi0 = −(bi1+bi2+bi3),

for i = 1, 2, 3, 4, where ǫ = β − β0 and Kβ is the information of β. Here,
κφφβ = E(∂3ℓ(θ)/∂φ2∂β), κβ,ββ = E{(∂ℓ(θ)/∂β)(∂2ℓ(θ)/∂β2)}, and so on.

If we wish to test H0 : φ = φ0, where φ0 is a specified scalar and β acts
as a vector of nuisance parameters, then the expressions for the coefficients bik
(i = 1, 2, 3, 4 and k = 0, 1, 2, 3) that define the nonnull asymptotic expansions
of the distribution functions of the LR, Wald, score and gradient statistics for
testing the null hypothesis H0 : φ = φ0 under a sequence of Pitman alternatives
H1n : φ = φ0 + ǫ, where ǫ = φ − φ0 is assumed to be of order n−1/2, are
given by b11 = b011 + ξ, b21 = b021 + ξ, b31 = b031 + ξ, b41 = b041 + ξ, b011 =
− 1

6 (κφφφ + κφ,φ,φ)ǫ
3, b021 = 1

2κφφφK
−1
φ ǫ + 1

2κφ,φφǫ
3, b031 = − 1

2κφ,φ,φK
−1
φ ǫ −

1
6 (κφφφ+κφ,φ,φ)ǫ

3, b041 = − 1
4κφφφK

−1
φ ǫ+ 1

2κφ,φφǫ
3, b12 = b33 = 2b43 = 1

6κφ,φ,φǫ
3,

b13 = 0, b22 = − 1
2κφ,φφǫ

3 − 1
2κφφφK

−1
φ ǫ, b23 = − 1

6κφφφǫ
3, b32 = 1

2κφ,φ,φK
−1
φ ǫ,

b42 = 1
4κφφφK

−1
φ ǫ − 1

4 (κφφφ + 2κφ,φφ)ǫ
3 and bi0 = −(bi1 + bi2 + bi3), for i =

1, 2, 3, 4. Here, the additional contribution on the local power of the tests when
β needs to be estimated takes the form ξ = 1

2

∑p
r,s=1(κrsφ + 2κr,sφ)κ

−1
r,sǫ. Also,

if p = 1, then ξ = 1
2K

−1
β (κββφ + 2κβ,βφ)ǫ.

As a final remark, we shall point out that our results are also valid when
the statistics are modified via a Bartlett or a Bartlett-type correction (see, for
example, Cribari–Neto and Cordeiro, 1996) since the corrections have no effect
on the n−1/2 term of the local power of the corresponding tests. The advantage
of the corrected tests is that they are less size distorted than the tests in the
original form in small and moderate-sized samples.

3. Examples

In this section, we discuss some examples to illustrate our results. We focus
on ξ, which determines whether the local power changes if a parameter that is
globally orthogonal to the remaining parameters is introduced in the model. It
is evident that several other special cases could be considered.

Normal distribution. Let y1, . . . , yn be independent and identically dis-
tributed (i.i.d.) random variables with probability density function (p.d.f.) in
the form π(y;µ, σ2) = (2πσ2)−1/2 exp{−(y − µ)2/(2σ2)}, where −∞ < y < ∞,
µ ∈ R and σ2 > 0. First, let H0 : µ = µ0 be the null hypothesis of interest,
where µ0 is a specified scalar. In this case, ξ = 0. Here, bik = 0 (i = 1, 2, 3, 4
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and k = 0, 1, 2, 3), which implies that Π1 = Π2 = Π3 = Π4 up to order n−1/2,
as expected. Now, consider the test of the null hypothesis H0 : σ2 = σ2

0 against
H1 : σ2 6= σ2

0 , where σ
2
0 is a specified positive scalar. We have ξ = −ǫ/(2σ2

0),
where ǫ = σ2 − σ2

0 = O(n−1/2). Notice that the additional contribution on the
local power of the LR, Wald, score and gradient tests for testing H0 : σ2 = σ2

0

by considering µ unknown does not depend on this parameter.

Birnbaum–Saunders distribution. The Birnbaum–Saunders (BS) distri-
bution introduced by Birnbaum and Saunders (1969a,b) is also known as the
fatigue life distribution. It describes the total time until the damage caused by
the development and growth of a dominant crack reaches a threshold level and
causes a failure. The BS distribution has been used quite effectively to model
times to failure for materials subject to fatigue and for modeling lifetime data.
Let y1, . . . , yn be i.i.d. random variables with a BS distribution with p.d.f. given
by π(y;α, η) = κ(α, η)y−3/2(y + η) exp{−τ(y/η)/(2α2)}, where y > 0, α > 0
(shape parameter), η > 0 (scale parameter), κ(α, η) = exp(α−2)/(2α

√
2πη)

and τ(z) = z + z−1. We first consider the null hypothesis H0 : α = α0,
where α0 is a specified positive scalar. It is possible to show that ξ = −ǫ(2 +
α2
0)/{2[α0(2π)

−1/2h(α0) + 1]}, where ǫ = α − α0 = O(n−1/2) and h(α0) =
α0(π/2)

1/2 − π exp(2/α2
0)[1 − Φ(2/α0)], Φ(·) being the cumulative distribution

function of the standard normal distribution. It is interesting to note that ξ does
not involve the parameter η. For testing the null hypothesis H0 : η = η0 against
H1 : η 6= η0, where η0 is a specified positive scalar, ξ reduces to ξ = 0 and hence
the coefficients that define the nonnull asymptotic expansions of the distribution
functions of the LR, Wald, score and gradient statistics do not change when the
parameter α needs to be estimated.

von Mises distribution. Let y1, . . . , yn be i.i.d. random variables with a von
Mises distribution with mean direction µ and concentration parameter φ and
p.d.f. π(y;µ, φ) = {2πI0(φ)}−1 exp{φ cos(y−µ)}, where 0 ≤ y < 2π, 0 ≤ µ < 2π,
φ > 0 and I0(·) is the modified Bessel function of the first kind and order
0. The positive parameter φ measures the concentration of the distribution:
as φ → 0 the von Mises distribution converges to the uniform distribution
around the circumference, whereas for φ→ ∞ the distribution tends to the point
distribution concentrated in the mean direction. This distribution is particularly
useful for the analysis of circular data. For testing H0 : µ = µ0, where µ0 is
a specified scalar, we have ξ = 0 and hence when one introduces unknown
concentration the coefficients that define the nonnull asymptotic expansions of
the distribution functions of the LR, Wald, score and gradient statistics do not
change. The additional contribution on the local powers of the LR, Wald, score
and gradient tests (up to order n−1/2) for testing H0 : φ = φ0, where φ0 is a
specified positive scalar, when the parameter µ unknown, reduces to ξ = ǫ/(2φ0),
where ǫ = φ− φ0 = O(n−1/2).

Generalized linear models. In the following consider the problem of test-
ing hypothesis in the class of generalized linear models (McCullagh and Nelder,
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1989). Suppose that the random variables y1, . . . , yn are independent and each
yl has a probability density function of the form π(y; ζl, φ) = exp

[
φ{yζl −

b(ζl)} + c(y, φ)
]
, where b(·) and c(·, ·) are known appropriate functions. The

function c(·, ·) admits a factorization of the form c(y, φ) = c1(φ) + c2(y). The
mean and the variance of yl are E(yl) = µl = db(ζl)/dζl and var(yl) = φ−1Vl,
where Vl = dµl/dζl is called the variance function and ζl = q(µl) =

∫
V −1
l dµl

is a known one-to-one function of µl. The choice of the variance function Vl
as a function of µl determines q(µl). We have Vl = 1 [q(µl) = µl], Vl =
µ2
l [q(µl) = −1/µl] and Vl = µ3

l [q(µl) = −1/(2µ2
l )] for the normal, gamma

and inverse Gaussian models, respectively. The parameters ζl and φ > 0 are
called the canonical and precision parameters, respectively. The systematic
part of the model is defined by d(µl) = ηl = x⊤

l β (l = 1, . . . , n), where
d(·) is a known one-to-one differentiable link function, x⊤

l = (xl1, . . . , xlp) is
a vector of known variables associated with the lth observable response and
β = (β1, . . . , βp)

⊤ is a set of unknown parameters to be estimated (p < n). Let
X = (x1, . . . ,xn)

⊤ be the model matrix with full column rank, i.e. rank(X) = p.
The hypothesis of interest is H0 : β2 = β20, which will be tested against
the alternative hypothesis H1 : β2 6= β20, where β is partitioned as β =
(β⊤

1 ,β
⊤
2 )

⊤, with β1 = (β1, . . . , βq)
⊤ and β2 = (βq+1, . . . , βp)

⊤. We have ξ = 0
and hence the coefficients that define the nonnull asymptotic expansions of
the distribution functions of the LR, Wald, score and gradient statistics do
not change when the parameter φ needs to be estimated. On the other hand,
for testing H0 : φ = φ0, where φ0 is a specified positive scalar, we have
ξ = pǫ/(2φ0) with ǫ = φ − φ0 = O(n−1/2). Notice that the additional con-
tribution on the local powers of the LR, Wald, score and gradient tests (up to
order n−1/2) for testing H0 by considering the parameter vector β unknown
depends on the rank of the matrix X. Also, ξ does not involve the unknown
β. For the class of exponential family nonlinear models (Cordeiro and Paula,
1989), which is a natural extension of the generalized linear models for al-
lowing nonlinear systematic component, we arrive exactly at the same con-
clusions.

Symmetric linear regression models. We say that the random variable
y follows a symmetric distribution if its probability density function takes the
form π(y;µ, φ) = φ−1g

(
[y − µ]2/φ2

)
, y ∈ R, where µ ∈ R is a location pa-

rameter and φ > 0 is a scale parameter. The function g : R → [0,∞) is such
that

∫
∞

0
g(u)du < ∞ and

∫
∞

0
u−1/2g(u)du = 1 to guarantee that π(·;µ, φ) is a

density function. We then write y ∼ S(µ, φ2). The function g(·), which is inde-
pendent of y, µ and φ, is typically known as density generator. The probability
density function of z = (y − µ)/φ is π(v; 0, 1) = g(v2), v ∈ R, i.e. z ∼ S(0, 1).
The symmetrical family of distributions allows extensions of the normal distri-
bution for statistical modeling of real data involving distributions with heavier
and lighter tails than the ones of the normal distribution. Some special cases
are the following: normal, Cauchy, Student-t, generalized Student-t, type I lo-
gistic, type II logistic, generalized logistic, Kotz distribution, generalized Kotz
distribution, contaminated normal, double exponential, power exponential and
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extended power family. The symmetric linear regression model is defined as
yl = µl + εl (l = 1, . . . , n), where µl = x⊤

l β, β = (β1, . . . , βp)
⊤ is a vector of

unknown regression parameters, x⊤

l = (xl1, . . . , xlp) contains the ith observa-
tion on p covariates and εl ∼ S(0, φ2); see Ferrari and Uribe-Opazo (2001). Let
X = (x1, . . . ,xn)

⊤ be the model matrix with full column rank, i.e. rank(X) = p.
We have, when they exist, that E(yl) = µl and var(yl) = ηφ2, where η > 0 is
a constant that may be obtained from the expected value of the radial vari-
able or from the derivative of the characteristic function. Let H0 : β2 = β20

be the null hypothesis of interest, which will be tested against the alternative
hypothesis H1 : β2 6= β20, where β is partitioned as β = (β⊤

1 ,β
⊤
2 )

⊤, with
β1 = (β1, . . . , βq)

⊤ and β2 = (βq+1, . . . , βp)
⊤. It can be shown that ξ = 0 and

hence the coefficients that define the nonnull asymptotic expansions of the dis-
tribution functions of the LR, Wald, score and gradient statistics do not change
for unknown φ. For the test of H0 : φ = φ0, where φ0 is a specified positive
scalar, we have ξ = −pǫ(α3,1 + 2α2,0)/(2φ0α2,0) with ǫ = φ − φ0 = O(n−1/2),
where αr,s = E(t(r)(z)zs) with r, s = 0, 1, 2, 3, where t(z) = log g(z2) and
t(r)(z) = drt(z)/dzr. For example, for the Student-t distribution with ν degrees
of freedom we have α2,0 = −(ν+1)/(ν+3) and α3,1 = 6(ν+1){(ν+3)(ν+5)}.
Note that the additional contribution on the local powers of the LR, Wald,
score and gradient tests (up to order n−1/2) for testing H0 by considering the
parameter vector β unknown depends on p, the rank of the matrix X. For the
Student-t model, for example, ξ depends also on the degrees of freedom ν.

Birnbaum–Saunders regression model. Rieck and Nedelman (1991) pro-
posed a log-linear regression model based on the BS distribution by showing
that y (the logarithm of a BS(α, η) variate) has a sinh-normal distribution with
shape, location and scale parameters given by α, µ = log(η) and σ = 2, re-
spectively, say y ∼ SN(α, µ, 2). The regression model proposed by the authors
is given by yl = µl + εl (l = 1, . . . , n), where yl is the logarithm of the lth
observed lifetime, µl = x⊤

l β, x
⊤

l = (xl1, . . . , xlp) contains the lth observation
on p covariates (p < n), β = (β1, . . . , βp)

⊤ is a vector of unknown regression
parameters and εl ∼ SN(α, 0, 2). The log-BS regression model is becoming in-
creasingly popular in lifetime analyses and reliability studies. First, consider
the null hypothesis H0 : β2 = β20, which will be tested against the alterna-
tive hypothesis H1 : β2 6= β20, where β is partitioned as β = (β⊤

1 ,β
⊤
2 )

⊤,
with β1 = (β1, . . . , βq)

⊤ and β2 = (βq+1, . . . , βp)
⊤. It can be shown that the

coefficients that define the nonnull asymptotic expansions of the distribution
functions of the LR, Wald, score and gradient statistics do not change when
the parameter α needs to be estimated, since the additional contribution on
the local powers of the LR, Wald, score and gradient tests (up to order n−1/2)
for testing H0 by considering the parameter α unknown is ξ = 0. Now, let
H0 : α = α0 be the null hypothesis of interest, where α0 is a specified positive
scalar. In this case, ξ = −2pǫ(2 + α2

0)/{α3
0ψ(α0)} with ǫ = α− α0 = O(n−1/2),

where ψ(α0) = 2 + 4/α2
0 − (

√
2π/α0){1− erf(

√
2/α0)} exp(2/α2

0) and erf(·) is
the the error function (see, for instance, Gradshteyn and Ryzhik, 2007).
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