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Abstract: The problem of estimating the center of symmetry of a symmet-
ric signal in Gaussian white noise is considered. The underlying nuisance
function f is not assumed to be differentiable, which makes a new point of
view to the problem necessary.

We investigate the well-known sieve maximum likelihood estimators
based on the cumulated periodogram, and study minimax rates over classes
of irregular functions. It is shown that if the class appropriately controls the
growth to infinity of the Fisher information over the sieve, semiparametric
fast rates of convergence are obtained. We prove a lower bound result which
implies that these semiparametric rates are really slower than the paramet-
ric ones, contrary to the regular case. Our results also suggest that there
may be room to improve on the popular cumulated periodogram estimator.
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1. Introduction and main results

Let L2[0, 1] be the Hilbert space of all real-valued square integrable functions
on the interval [0, 1]. The model we consider, which will be referred to as the
translation model in the sequel, consists of observing a path Y , which is a solution
of the diffusion equation

dY (t) = f(t− θ)dt+ εdW (t) , t ∈ [−1/2, 1/2], (ε > 0) (1)
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where the unknown function f is symmetric (that is f(−u) = f(u) for all u),
1-periodic and when restricted to [0, 1], belongs to L2[0, 1]. The unknown pa-
rameter θ, that is the center of symmetry of the signal f(· − θ), is supposed
to belong to a compact subset of the real numbers, and W is here standard
Brownian motion on [−1/2, 1/2]. We shall work in the asymptotic framework
ε → 0. For basic properties of this model and related ones, such as estimation
of the period of a periodic function, estimation of the amplitude, etc., see [6].

The problem of estimating features (e.g. location of symmetry, period, am-
plitude ...) of an unknown signal corrupted by noise is a central issue in signal
processing and its applications (telecommunications, laser vibrometry, to name
a few), see [7] and the references therein. Model (1) can be seen as an idealized
version in continuous time of a finite sample model. One of the most important
methods of estimation involves the maximization of the so-called cumulated pe-
riodogram. In the context of model (1), this is the same as maximizing in τ the
quantity

ℓK(τ) =

K
∑

k=1

∣

∣

∣

∣

∣

√
2

∫ 1/2
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cos(2πk(t− τ))dY (t)
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∣

∣

∣

2

.

One still needs to choose the integer K, which corresponds to the dimension
of the finite-dimensional space (or sieve) approximating the functional space
where f lives. Some issues related to this (delicate) choice are discussed in the
sequel. In this paper we will study the cumulated periodogram estimator when
the underlying function f is irregular, find uniform rates of convergence over
specific “irregularity” classes, and show that there may be room to improve on
the periodogram estimator.

1.1. Framework

In the sequel we shall expand functions in L2[0, 1] over the trigonometric ba-
sis. Since in model (1) f is even, we can expand it over the elements εk(·) =√
2 cos(2πk·), for k ≥ 0. For f in L2[0, 1], we denote by ‖ · ‖2 its L2-norm and

by {fk}k≥0 the sequence of its Fourier coefficients, so that

‖f‖22 =
∫ 1

0

f(t)2dt, fk =
√
2

∫ 1

0

f(t) cos(2πkt)dt (k ≥ 1).

The only further assumption that we make a priori on the function f is that
there exist positive constants ρ and L with L2 > 2ρ2 such that f belongs to the
set F defined as

(F) F , F(ρ, L) = {f ∈ L2[0, 1], |f1| ≥ ρ, ‖f‖22 ≤ L2}.

We also extend the functions in F by 1-periodicity so that they can be seen as
functions over the real line. Note that we do not assume a form of differentiability
of f , as opposed to works studying the models at stake in the regular framework
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(for instance, in [3, 5, 2] and [4], existence of strictly more than one derivative
in the L2-sense is required). The assumption on f1 is a way to ensure that the
quantity

∑

k≥0 k
2f2

k (up to a factor ε−2 it equals the Fisher information), which
might be infinite in our context, is far away from zero. This corresponds to
the fact that one wants to exclude functions which could be arbitrarily close in
L2[0, 1] to a constant function, for which estimation of θ in (1) is impossible. It
also ensures that the function f has 1 as the smallest period, which is important
for identifiability reasons.

We further assume that the parameter θ belongs to a compact interval ΘS

ΘS = [−τ0, τ0] ⊂]− 1/4, 1/4[.

One easily checks that to ensure identifiability, the parameter set should have a
diameter smaller than 1/2, which explains the choice for ΘS .

The aim of the statistical problem at hand is to understand how and how
fast one can estimate the unknown θ, the function f being unknown as well.
An estimator will be as usual a measurable function of the observations, which
means here a measurable function with respect to the σ-field generated by the
process Y , solution of (1), on the Banach space BS of continuous functions on
[−1/2, 1/2]. We denote by PS

θ,f the probability distribution generated by Y on
this space.

The natural statistical object to work with is the likelihood, which, in the
context of model (1), is defined as a likelihood ratio. Let PS

0 be the probability
distribution generated by ε times Brownian motion on BS. Then the likelihood
LS(θ, f) is defined as a Radon-Nikodym derivative, for which an explicit expres-
sion is given by Girsanov’s formula: for any Y ∈ BS,

LS(θ, f)(Y) ,
dPS

θ,f

dPS
0

(Y) =exp

(

ε−2

∫ 1/2

−1/2

f(t− θ)dY(t) − ε−2

2

∫ 1/2

−1/2

f(t− θ)2dt

)

.

We denote by ES
θ,f the expectation under the probability distribution PS

θ,f . For
simplicity we often drop the index S.

1.2. Irregular signals

In the sequel, an irregular function will be an element f of L2[0, 1] such that the
sum

∑

k≥1 k
2f2

k is infinite. Informally, the Fisher information becomes infinite
in this case. We start by some basic examples of such functions.

1. Step function. Define the element of L2[−1/2, 1/2]

g1(u) = 1|u|<1/4

and extend it by periodicity to R. The Fourier coefficients g1,k of this
function behave like k−1 as k increases.
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2. Infinite jump. More generally, for any 0 < η < 1/2,

gη(u) = |u|−η10<|u|<1/4

extended by periodicity to R has Fourier coefficients gη,k that behave like
k−1+η.

It is important to note that no continuity or differentiability assumption is made
on f . In particular, here we do not impose any constraint on quantities such
as “the number of jumps of f” or the regularity of f between its jumps points.
This is in contrast to the problems considered in [6] for irregular functions, and
more generally, in so-called “change-points” problems; see for instance [8]. In
fact, the semiparametric rates we obtain below will be different.

Classes of irregular functions based on sieve-Fisher information. Since the
goal of efficient inference cannot be the “Fisher information”

∑

k≥1 k
2f2

k , which
is now infinite, a natural approach is to define classes of functions quantifying
by how much partial sums of this quantity grow. Define, for an integer K0 > 0,
reals M > 0 and α ∈]0, 1[, the class

Sα(K0,M) =

{

f ∈ F : ∀K ≥ K0,

K
∑

k=1

k2f2
k ≥MK2−2α

}

. (2)

For instance, the functions g1 and gη considered above belong respectively to
S1/2(K,M) and S1/2−η(K,M), for appropriate choices of constants K,M .

Classes of irregular functions based on Kullback-Leibler divergence. We will
also consider the following class, which defines the irregularity using the intrinsic
distance on the statistical problem, that is here the L2-distance between the
signals. Let us define, for positive η,M1 and 0 < α < 1,

Fα(η,M1) =

{

f ∈ F , ∀ τ, θ ∈ ΘS : |τ − θ| < η,

∫ 1/2

−1/2

{f(t− θ)− f(t− τ)}2 dt ≥M1(τ − θ)2α
}

.

For instance, we have g1 ∈ FS
1/2(δ,M) and gη ∈ FS

1/2−η(δ,M) for appropriate
δ,M . In fact, it can be checked that for any 0 < α < 1, we have the inclusion
Sα(K0,M) ⊂ Fα(δ,M1), for small enough K0 and large enoughM . This can be
seen by expanding the L2-distance over the Fourier basis and using the bound
| sin(u)| ≥ 2|u|/π for 0 ≤ |u| ≤ π/2.

1.3. Semiparametric rates for sieve maximum likelihood estimators

A natural way to obtain estimators in model (1) is to use the profile likelihood
method (see [10], Chap. 25) which consists in maximizing the likelihood in two
steps: first one maximizes it with respect to the nuisance parameter, obtaining
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a function -the profile likelihood- independent of f , and then one chooses the
maximizer of this quantity as estimator. In fact, the first step cannot involve
a maximum over the whole space F , which is too large, thus one restricts the
maximization to a sieve, which here will be the linear space generated by the
first K elements of the trigonometric basis. The final estimator is obtained by
choosing K and is called the sieve maximum likelihood, or sieve-MLE.

This method is particularly useful here since the profile likelihood can be
written explicitly and in fact leads to a criterion function known as cumulated
periodogram. The calculations leading to the criterion together with refinements
with weights have been studied in detail in [3] and [2], which is why we directly
give the expression of the obtained profile likelihood,

ℓK(τ) =

K
∑

k=1

∣

∣

∣

∣

∣

√
2

∫ 1/2

−1/2

cos(2πk(t− τ))dY (t)

∣

∣

∣

∣

∣

2

, (3)

where τ belongs to ΘS , Y (t) is assumed to satisfy (1), and K is an integer to

be chosen. For any K > 0, we obtain a sieve-MLE θ̂(K) by setting

θ̂(K) = Argmax
τ∈ΘS

ℓK(τ). (4)

The choice of K will be made precise below.

Considered class of nuisance functions. A first candidate for the class is cer-
tainly the whole class F defined above. However, this class contains (almost)
all smooth functions, for which we know that estimation is in fact more difficult
in the considered model, and the obtained rate turns out to be ε (the usual
parametric n−1/2); see Theorem 1.2 and Section 1.4 for a corresponding (and
in fact stronger) lower bound result.

A smaller class allows us to obtain uniform fast rates for sieve-MLEs: the class
Sα(K0,M) defined by (2), which enables us to quantify the “irregularity” of a
function through the parameter α using a control on the first K coefficients of f
in the (Fourier) basis. Note that the definition of Sα(K0,M) is quite natural in
the sense that it precisely gives control over the Fisher information for estimating
θ in the sequence (depending on K) of sieve models where (θ, f) is of the form
{(θ, f1, . . . , fK)}. Indeed, one easily checks that the Fisher information for the

latter sieve model used in (1) equals ε−2
∑K

k=1 k
2f2

k . In that sense the considered
class is perhaps the most natural one to consider in the non-regular case. We
shall see that considering an essentially larger class leads again to the usual
regular rates, see Theorem 1.4.

Let us now make the following choice for the cut-off parameter K

K∗
S = K∗

S,α =

{

⌊ε− 2
1+2α ⌋ if 1/4 ≤ α ≤ 1,

⌊ε− 4
1+4α ⌋ if 0 < α < 1/4

. (5)
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The associated sieve-MLE is defined by θ̂S = θ̂(K∗
S). Let us define the rate

rε =

{

ε
4

1+4α if 0 < α < 1/4,

ε
3

1+2α if 1/4 ≤ α ≤ 1.
(6)

Our first result is the following upper bound:

Theorem 1.1. Let θ̂S = θ̂(K∗
S) and let rε be defined by (6).Then with lε =

− log ε, for any 0 < α < 1, K0 > 0 and M > 0,

lim
ε→0

sup
θ∈ΘS, f∈Sα(K0,M)

Pθ,f

(∣

∣

∣
θ̂S − θ

∣

∣

∣
> l1/αε rε

)

= 0.

For 1/4 ≤ α < 1, we also have that

lim
ε→0

sup
θ∈ΘS, f∈Sα(K0,M)

r−2
ε Eθ,f

(

θ̂S − θ
)2

< +∞.

The rate of convergence rε is a fast rate in that it is faster than the usual
parametric rate rS0,ε = ε (that is 1/

√
n if we take ε = 1/

√
n). Note that the

smaller α (that is the more irregular the function in the sense of the classes
Sα(K0,M)), the faster we can estimate θ, as we can see immediately from the
expression (6). A close examination of the proof of Theorem 1.1 reveals that the

rate of θ̂(K) is quite sensitive to the choice of the cut-off K. Note also that there
is a change of slope in the power of the rate (6) at α = 1/4, which is reminiscent
of the nonparametric effect observed in the problem of estimating the L2-norm,
where α = 1/4 is also a transition point. Finally note that the choice of K
depends on the parameter α, which is often unknown in practice. A natural
follow-up of the previous result is then to build a fully adaptive estimate, see
Section 1.6 for a further discussion.

When we consider the larger class F , we can use our methods to extend
the semiparametric results known in the regular case where f is differentiable
and the Fisher information is finite, saying that semiparametric estimation is
possible at rate ε, whatever the regularity of f in F :

Theorem 1.2. Let K̃ = ⌊ε−1/2⌋ and let us define θ̃S = θ̂(K̃).Then

lim
ε→0

sup
θ∈ΘS, f∈F

ε−2Eθ,f(θ̃S − θ)2 < +∞.

In the next section, it will become clear that consider the class Fα will give
the same upper bound as Theorem 1.2.

Possible other choices of basis functions. One could also consider the cumu-
lated periodogram with respect to other basis functions, for instance wavelets.
But here we shall consider only the Fourier basis, which leads to the interpre-
tation of the criterion as sum of estimated harmonics, and which also has good
properties with respect to a shift of the parameter, which makes the mathema-
tical analysis simpler.
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1.4. Lower bounds

As we have seen in Section 1.3, the rate of sieve-MLE estimators is, uniformly
over the class Sα(K0,M), faster than the smooth rate. It is then natural to
investigate the best possible rate of convergence of semiparametric estimators
in the minimax sense over such classes. In particular, we would like to know
whether it is possible or not to do as well as in the parametric case, which is
the case in the regular framework, at least asymptotically. Let us define

rε = ε
5

1+4α . (7)

Theorem 1.3. For any 0 < α < 1, positive K0,M , we can choose L, defining
the class F , large enough such that there exist C such that, using (7),

lim inf
ε→0

inf
θ̂

sup
θ∈ΘS, f∈Sα(K0,M)

Eθ,f((θ̂ − θ)2rε
−2) ≥ C > 0,

where the infima are taken over all estimators of θ in the translation model.

We will see in the next section that the semiparametric rate found in this
Theorem is slower than the rates obtained in the parametric case, which is the
model where f ∈ Sα(K0,M) would be known. This means that a significant
loss of speed occurs due to the nuisance parameter f . Note also that this lower
bound is actually strictly faster than the rates we found for the sieve-MLE. This
suggest that maybe we can improve on the cumulative periodogram estimator;
see also the discussion in Section 1.6.

The fact that in Theorem 1.3 we might need to choose L very big is related
to the fact that the upper bound on the L2-norms in F might conflict with the
lower bound on the L2-distance of the signals.

Another interesting question is the following: what happens if we seek for
uniform results over classes larger than Sα, for instance the classes Fα defined
by (3)? The next lower bound result shows that the latter are, somehow, too
large, in that one cannot do better than the rate in the smooth case.

Theorem 1.4. For any 0 < α < 1 and positive η,M1, we can choose L, defining
the class F(ρ, L), big enough such that

lim inf
ε→0

inf
θ̂

sup
θ∈ΘS, f∈Fα(η,M1)

Eθ,f((θ̂ − θ)2ε−2) > 0,

where the infima are taken over all estimators of θ in the translation model.

In the semiparametric context, it is thus not possible to obtain a better
minimax rate of convergence over the classes Fα than in the case where f is
smooth.

1.5. Parametric rates

Let us consider model (1) in the parametric case, that is for known f . Suppose
that f is continuously differentiable on [0, 1], then it is not hard to check that
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the parametric models {Pθ,f , θ ∈ ΘS} form a regular statistical experiment as
defined for instance in [6], page 65. In particular, the Fisher information Iε(f)
is finite and equals

Iε(f) = ε−2‖f ′‖22 = ε−2
∑

k≥1

(2πk)2f2
k . (8)

The maximum likelihood estimator

θ = Argmax
τ∈ΘS

∫ 1/2

−1/2

f(t− τ)dY(t)

is locally asymptotically minimax and its mean square risk satisfies, as ε→ 0,

sup
θ∈ΘS

Eθ,f((θ − θ)2Iε(f)) = 1 + o(1).

Interestingly, in the semiparametric (regular) framework where f is not known
but assumed to be continuously differentiable, it can be shown that exactly the
same rate of convergence with the same constant can be attained for properly
chosen estimates, see, for instance, [3] and references therein. The situation is
completely different for less regular functions, as the comparison of the rates
obtained in Theorem 1.3 (lower bound) and in the Proposition below (upper
bound for known f) reveals.

Rates of convergence for known f . Both for purposes of comparison with
the smooth case and for comparison with the rates for unknown f obtained in
Section 1.3, it is now important to mention what type of rates of convergence
arise in the parametric case where f is known and irregular. The case of functions
with a bounded number of jump points has been studied in [6]. For instance, to
estimate θ when f = g1, the rate in terms of the quadratic risk can be shown to
be within a constant times ε2. More generally, for an “α”-regular f , one expects
a rate in ε1/α. Indeed, we show below that this is true (up to a log-factor) for
any f in a class Sα.

Since here f is known, so is also f [K](·) =
∑K

k=1 fkεk(·) and we define, for
any sequence of integers K = K(ε) such that K(ε) → +∞ as ε→ 0,

θ(K) , Argmax
τ∈ΘS

∫ 1/2

−1/2

f [K](t− τ)dY(t).

Let ⌊x⌋ be the integer part of the real x. The proof of the following proposition
is sketched in Section 4.

Proposition 1. Fix positive K0,M and α ∈]0, 1[. Let us define lε = log(ε−1)
and Kα = ⌊(lεε)−1/α⌋. Then for any f in Sα(K0,M),

lim
ε→0

sup
θ∈ΘS

Pθ,f

(

|θ(Kα)− θ| ≥ l1/αε ε1/α
)

= 0.
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Notice that arbitrarily high rates can be achieved as the known signal f gets
more and more irregular. We have seen that in the semiparametric framework,
this will no longer be possible, which is very different from the regular case.

In the proposition an extra logarithmic factor arises. This might be due to the
fairly broad class we consider (with no special continuity assumptions on f) or
to the fact that our -fairly simple, see Section 4- method of proof is suboptimal.

1.6. Discussion

The obtained rates of convergence are summarized in Figure 1. Uniform fast
rates of convergence are obtained for sieve-MLE estimators (the ‘square’-curve)
over appropriate spaces and the best possible rates in the minimax sense over
these spaces are strictly below the parametric ones (‘plus’ and ‘circle’-curves).
This loss of speed is even worse if one considers larger spaces (‘diamond’-curve).
Hence, not assuming differentiability of f enables us to discover new properties
of the models at stake, in particular the breakdown in the semiparametric rate
for low regularities.

Furthermore, from a practical point of view, it is appealing to do as few
regularity assumptions on f as possible to have a broader framework of study
available. The fine tuning ofK that is needed here, see (5), confirms the sensitiv-
ity observed in practice with respect to the choice of K of estimation algorithms
like the ones considered in [7] or [1].
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Fig 1. Rates of convergence.
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The results presented here obviously only constitute a first step in the un-
derstanding of rates of convergence for the cumulated periodogram in the non-
regular case, and many questions remain open. For instance, the “gap” between
the ‘square’ and ‘plus’-curves leads to two questions. The first one is: can we do
better with sieve-MLEs (4) than the rate we obtain for the choice (5) of K∗? In
other words, is the choiceK = K∗ optimal? Although we shall not prove it here,
we think it is, see the discussion at the end of the proof of Theorem 1.1. The
second question is, if the sieve-MLEs cannot do better than the ‘square’-curve,
is the ‘plus’-curve not optimal or can we improve estimation? We conjecture
that there are estimators outperforming the sieve-MLEs, which would then be
based on a different criterion than the cumulative periodogram. Since the most
efficient practical algorithms we know (for instance the one in [7]) are based
on model selection ideas with penalization using as a criterion the cumulated
periodogram, it would also be highly desirable to answer the latter question to
possibly obtain a different criterion leading to a faster algorithm.

A first improvement on the cumulated periodogram estimator would be to
chose K in an adaptive (possibly data-driven) way and obtain a theorem which
would yield the above rates for the resulting estimator in both regular and non-
regular cases. A further direction would be to allow for (possibly data-driven)
weights in front of each square in (3). For instance, one could consider a type
of thresholding estimator which would put to zero the elements of the sum of
(3) which are below the expected noise level. Understanding the behavior of
such non-linear estimators in the present semiparametric context would be very
desirable too, from both practical and theoretical perspective.

2. Upper bound proofs

Let us denote, for a process Y indexed by a subset Θ of the real numbers,

‖ Y ‖ , sup
t∈Θ

Y (t).

The notation . (resp. &) is used for “smaller (resp. larger) than or equal to a
universal constant times”. Sometimes we make universal constants explicit and
denote them by C. Furthermore, O and o are the usual Landau symbols. For
any integers m,n, we denote by m ∧ n their minimum.

The criterion ℓK defined in (3) can be written

ℓK(τ) =

K
∑

k=1

f2
k cos

2(2πk(τ − θ)) + εη1(τ) + ε2η2(τ),

where

η1(τ) = 2

K
∑

k=1

fk {cos(2πkτ)ξk + sin(2πkτ)ξ∗k} cos(2πk(τ − θ)) (9)

η2(τ) =

K
∑

k=1

{cos(2πkτ)ξk + sin(2πkτ)ξ∗k}2 , (10)
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and

ξk =
√
2

∫ 1/2

−1/2

cos(2πkt)dW (t), ξ∗k =
√
2

∫ 1/2

−1/2

sin(2πkt)dW (t).

Note that {ξk}k≥1 and {ξ∗k}k≥1 form two independent sequences of independent
N (0, 1) variables. Note also that η2 is a pure noise term (that is, it does not
depend on f). Let us write

ℓK(τ)− ℓK(θ) = −
K
∑

k=1

f2
k sin2(2πk(τ − θ))+ ε(η1(τ)− η1(θ))+ ε2(η2(τ)− η2(θ)).

Using the properties of the Fourier basis and setting δ = τ − θ one checks that

E({η1(τ) − η1(θ)}2) = 4

K
∑

k=1

f2
k sin2(2πkδ) , 4v(δ,K), (11)

E({η2(τ) − η2(θ)}2) = 4
K
∑

k=1

sin2(2πkδ). (12)

2.1. Control of the stochastic parts of the criterion

To prove our upper-bound results, it is useful to be able to control the processes
η1(τ)−η1(θ) and η2(τ)−η2(θ). We establish that their supremum over the sets of
interest is controlled up to a logarithmic factor by the supremum of the standard
deviations. For Gaussian processes (thus a priori only for η1(τ) − η1(θ)), this
property is known to be true if one is able to control the entropy of the indexing
set of the process with respect to the natural semimetric given by its covariance
structure (see for example [9], Theorem 2.4 or [11], Appendix A.2.2). Here we
shall instead use the fact that the two processes at stake are differentiable a.s.
(which comes from their explicit dependence in τ , see Equations (9) and (10))
and we will apply the useful Lemma 2.1, that we know from [5].

Lemma 2.1. Let Z(t) be a stochastic process differentiable a.s., µ and x positive
real numbers and I an interval of R. Then it holds

P

(

sup
τ∈I

Z(τ) > x

)

≤ e−µx sup
τ∈I

(

Ee2µZ(τ)
)1/2

(

1 + µ

∫

τ∈I

(E|Z ′

(τ)|2)1/2dτ
)

.

Lemma 2.2. There exist positive constants C1, C2, C3, C4 such that for K large
enough, for any y > 0,

P
(

‖η2 −K‖ > y
√
K
)

≤ C1K exp(−C2y{y ∧K1/2})

P
(

‖η′2‖ > yK3/2
)

≤ C3K
2 exp(−C4y{y ∧K3/2}).
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Lemma 2.3. Let γε be a sequence tending to zero as ε → 0 and v(·,K) be
defined by (11). There exist positive constants C5, C6 such that for K large
enough, for any positive real y,

sup
θ∈ΘS,f∈F

Pθ,f

(

sup
γε≤|τ−θ|<2τ0

|η1(τ) − η1(θ)|
v(τ − θ,K)1/2

≥ y

)

≤ C5γ
−4
ε K4 exp(−C6y

2).

The proof of Lemmas 2.2 and 2.3 can be found in Section 4.3. Note that Lemma
2.2 implies that if K is polynomial in ε−1, then P(‖η2 − K‖ > lε

√
K) and

P(‖η′2‖ > lεK
3/2) decrease to zero faster than any polynomial in ε, the same

also holding for P(‖η2(·)− η2(θ)‖ > lε
√
K).

2.2. Proof of Theorems 1.1 and 1.2

Let us first briefly comment on the strategy of proof of Theorem 1.1. The main
part of the proof is the local study of the criterion ℓK(τ) around the true value
τ = θ. Proving that it takes its global maximum close to τ = θ gives us already
a first “rough” rate of convergence. Then, we refine this first rate in successive
steps by analyzing the dependence of ℓK(τ) − ℓK(θ) in τ − θ.

The usual approach when f is sufficiently smooth is to expand the criterion
ℓK around τ = θ using Taylor’s formula and to control the rest terms by bounds
on the derivatives of ℓK , we refer to [3, 4] (and [5, 2] in the case of the period
model). This approach cannot be used here, at least not until a sufficiently fast
rate has been reached. The reason is that as long as δ > K−1, the functional
v(δ, ε) does not behave like δ2 but like δ2α. A similar phenomenon (but this
time independently of f) occurs with the pure noise part η2(τ) − η2(θ): we
shall use the bound | sin(2πkδ)| ≤ 1 ∧ 2πk|δ|, which yields different estimates
depending on how close τ is to θ. In the “smooth” case, this discussion was
unnecessary since K could be chosen small enough, corresponding to the fact
that the smoother the function, the smaller the number of significative Fourier
coefficients.

Proof of Theorem 1.1. For simplicity of notation, the cut-off K∗
S defined by (5)

will be denoted by K. Let γε ≥ γ′ε be two sequences of positive reals and v(δ,K)

defined by (11). Since by definition θ̂S is a point of maximum of the criterion,
we have that

P(γ′ε < |θ̂S − θ| ≤ γε)

≤ P

(

sup
τ : γ′

ε<|τ−θ|≤γε

ℓK(τ) ≥ ℓK(θ)

)

≤ P

(

sup
δ: γ′

ε<|δ|≤γε

−v(δ,K) + 2ε(η1(τ) − η1(θ)) + ε2(η2(τ)− η2(θ)) ≥ 0

)

.
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This quantity can be further bounded above by

P(γ′ε < |θ̂S − θ| ≤ γε)

≤ P

(

4ε sup
γ′

ε<|δ|≤γε

η1(τ) − η1(θ)

v(δ,K)1/2
≥ inf

γ′

ε<|δ|≤γε

v(δ,K)1/2

)

(13)

+P

(

2ε2 sup
γ′

ε<|δ|≤γε

η2(τ) − η2(θ)

v(δ,K)1/2
≥ inf

γ′

ε<|δ|≤γε

v(δ,K)1/2

)

. (14)

We first establish that θ̂S converges at least at rate γ1,ε = lεεK
1/4. For this we

prove that the right-hand side of the last display tends to zero if γε = 2τ0 and
γ′ε = γ1,ε. Note that γ1,ε tends to zero due to the choice K = K∗.

Note that v(δ,K) ≥ f2
1 sin

2(2πδ). Since |δ| < 2τ0 and 2τ0 is strictly less than
1/2, we have that, using (F), infδ: |δ|>γ1,ε

v(δ,K)1/2 & |f1|γ1,ε & γ1,ε. Thus
using Lemma 2.3, we obtain that (13) tends to zero as ε → 0. To see that the
same holds for (14), note that for some small C > 0,

(14) ≤ P

(

ε2 sup
δ: γ′

ε<|δ|≤γε

η2(τ)− η2(θ) ≥ inf
δ: |δ|>γε

v(δ,K)

)

(15)

≤ P

(

sup
δ: γ′

ε<|δ|≤γε

η2(τ) − η2(θ) ≥ Cl2εK
1/2

)

.

Finally we use Lemma 2.2. Now we shall use repeatedly (13)-(14), improving
each time on the rate of convergence γ′ε assuming that f belongs to Sα(K0,M).

Let us check that the rate of convergence over Sα(K0,M) is at least γ2,ε =

D2xεK
−1, where xε = l

1/4α
ε and D2 is a large enough constant (we do this

only in the case α ≤ 3/4, since for 3/4 < α ≤ 1, γ1,ε ≤ γ2,ε). Thus in this
paragraph we work on the set {δ : γ2,ε < |δ| ≤ γ1,ε}. Since δ now tends to zero,
⌊1/4|δ|⌋ ≥ 1/8|δ|. Using the fact that for any x ∈ [−π/2, π/2], | sin(x)| ≥ 2|x|/π,
we have that for δ positive,

v(δ,K) ≥
K∧⌊1/4δ⌋
∑

k=1

f2
k sin

2(2πkδ) & δ2
K∧1/8δ
∑

k=1

k2f2
k .

The definition of the class Sα now implies that v(δ,K) & δ2{K ∧ 1/8δ}2−2α &
δ2α and thus it holds infδ: γ2,ε<|δ|≤γ1,ε

v(δ,K) & x2αε K−2α. To show that (13)
and (14) (via (15)) tend to zero, we make use of Lemmas 2.3, 2.2. This can be
done if the two following conditions are satisfied:

ε−1xαεK
−α &

√

lε and ε−2x2αε K−2α &
√

lεK.

This happens if K is less than Kmax = ε
−4α
1+4α . Since this is the case for the

choice K = K∗, we have proved that θ̂S achieves the rate γ2,ε. Finally we check
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that θ̂S achieves the rate γ3,ε = x4εrε. On the set {δ : γ3,ε < |δ| ≤ γ2,ε},

v(δ,K) ≥
K/xε
∑

k=1

f2
k sin

2(2πkδ) & δ2(K/xε)
2−2α,

and thus infδ: γ3,ε<|δ|≤γ2,ε
v(δ,K)1/2 is bounded from below by γ3,ε(K/xε)

1−α,
which in view of the definitions of K∗ and rε together with Lemma 2.3 implies
that (13) tends to zero. Now note that since η2 is differentiable, there exists a
real cτ such that η2(τ) − η2(θ) = (τ − θ)η′2(cτ ) = δη′2(cτ ). Thus

sup
γ3,ε<|δ|≤γ2,ε

|η2(τ)− η2(θ)|
v(δ,K)1/2

. (K/xε)
α−1 sup

τ∈Θ
|η′2(τ)|,

where we have used the bound in the one but last display to bound the denom-
inator from below. We finally obtain that

(14) ≤ P

(

sup
τ∈Θ

|η′2(τ)| & ε−2(K/xε)
1−α inf

δ: γ3,ε<|δ|≤γ2,ε

v(δ,K)1/2
)

≤ P

(

sup
τ∈Θ

|η′2(τ)| & ε−2(K/xε)
2−2αγ3,ε

)

.

Using the definitions of K∗ and rε, we see that ε−2(K/xε)
2−2αγ3,ε & K3/2lε.

Now Lemma 2.2 implies that (14) tends to zero faster than any power of ε,
which concludes the proof of the first part of the Theorem.

To obtain the second part of the Theorem, we apply Lemma 4.1 with the

rate vε = l
1/α
ε rSε . From what precedes we have that Pθ,f(|θ̂S − θ| > vε) tends

to zero faster than any power of ε. Since f belongs to the class Sα(K0,M), we
have I2(K) ≥ K2−2α and (18) is bounded by ε2K2α−2+ε4K4α−1. By definition
of K = K∗

S , this is within a constant of the target rate rSε . Now note that
I4(K) ≤ K2I2(K) and I3(K) ≤ KI2(K). For 1/4 ≤ α < 1, using these bounds
together with the expressions of r(ε), K∗

S and vε, we obtain that r(ε) = o(rSε ).

Hence in this case the quadratic risk of θ̂S is within a constant of rSε .

Proof of Theorem 1.2. We reproduce the beginning of the proof of Theorem 1.1
and obtain a rate γε = lεεK̃

1/4 (note that this intermediate rate is faster than

K̃−1). Now we proceed as in the last step of the proof for θ̂S . Using the estimates
v(δ, K̃) & δ2 together with Lemmas 2.3 and 2.2, we obtain a deviation inequality
with rate lεε.

To obtain the result for the quadratic risk, we can now apply Lemma 4.1 with
vε = lεε. Since I2(K) is bounded from below by a positive constant, (18) is at
most a constant times ε2. It is now enough to check that r(ε) is negligible. Apply-
ing the Cauchy-Schwarz inequality, I4(K) ≤ (I2(K)I6(K))1/2 ≤ I2(K)1/2K3.
Further using that I3(K) ≤ K3 and K = K̃, we obtain r(ε) = o(ε2).

Remark. One can note that the rate in Theorem 1.1 is determined by the value
of τ − θ such that the pure-noise process ε2(η2(τ)− η2(θ)) becomes dominant in
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the balancing of −∑K
k=1 f

2
k sin2(2πk(τ−θ))+ε(η1(τ)−η1(θ))+ε2(η2(τ)−η2(θ)).

Values of K essentially faster or slower than K∗ eventually lead to rates for τ−θ
slower than rSε when doing the preceding balancing. By contrast, η1 determines
the rate in the parametric case studied in Theorem 1.2.

3. Lower bound proofs

To prove a lower bound on the rate of convergence when estimating θ, we will
follow a well-known approach, which is outlined beautifully in Pollard’s so far un-
published book Asymptopia: choose Pθ,g1 , . . . ,Pθ,gm and Pτ,g1 , . . . ,Pτ,gm with
τ far enough away from θ, such that

Qθ ,
1

m

m
∑

k=1

Pθ,gk and Qτ ,
1

m

m
∑

k=1

P̃τ,gk

remain close in L1. Then we can use the following inequality:

inf
θ̂

sup
(θ,f)

Eθ,f

(

θ̂ − θ
)2

≥ 1

4
(θ − τ)2

(

1− 1

2
‖Qθ −Qτ‖1

)

.

So our goal is to maximize (θ − τ)2, keeping ‖Qθ −Qτ‖1 away from 2. In both
the proofs of Theorem 1.4 and of Theorem 1.3, we do this by choosing a smooth
function fm (which may in fact not depend on m), and bounding respectively
χ2(Pθ,fm ,Qθ), χ

2(Pτ,fm ,Qτ ) (these can be bounded using the same technique)
and χ2(Pθ,fm ,Pτ,fm), which is relatively easy since fm is smooth. Since for any
two probability measures P and Q we have

‖P−Q‖1 ≤
√

χ2(P,Q),

we can then use the triangle inequality for the L1-norm to bound ‖Qθ −Qτ‖1.
This scheme is depicted in Figure 2.

3.1. Proof of Theorem 1.4

To prove Theorem 1.4, we need the following lemma.

Lemma 3.1. Suppose f ∈ L2[0, 1] and the perturbations η1, . . . , ηm ∈ L2[0, 1].
Define

P1 = Pθ,f and P2 =
1

m

m
∑

k=1

Pθ,f+ηk
.

Then it holds

χ2(P1,P2) + 1 = EP1

(

dP2

dP1

)2

=
1

m2

∑

1≤i,j≤m

exp

(

1

ε2

∫ 1/2

−1/2

{ηiηj}(t− θ)dt

)

.
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Fig 2. Idea behind lower bound proofs.

The proof of this Lemma follows from the Girsanov formula and some elemen-
tary calculations. Note that the result does not depend on f .

Now choose the smooth function

f(x) = cos(2πx).

We will choose perturbations η1, . . . , ηm such that f+ηk ∈ Fα(η,M1), and such
that Pθ,f and 1

m

∑m
k=1 Pθ,f+ηk

are arbitrarily close together as m → ∞. This
will show that you cannot estimate θ in the class Fα faster than in the smooth
case.

We start with an element φ ∈ L2[−1/2, 1/2], with support in (−1/4, 1/4),
and such that φ ∈ Fα(1/2, R), for some constant R we will specify later. Re-
call that elements of F are extended by 1-periodicity. However, to define our
perturbations, we shall just need the values of φ within (−1/2, 1/2], so we set
φ0(x) = φ(x)1(−1/2,1/2](x) for all x, where 1B is the indicator of B. For fixed
m and any x in (−1/2, 1/2], we define for k = 1, . . . ,m

ηk(x) =
√
mφ0

(

m

(

x+
1

4m
− k

2m

))

+
√
mφ0

(

m

(

−x+ 1

4m
− k

2m

))

.

Then we define ηk(x) for any x in R by 1-periodicity. These rescaled, translated
and symmetrized versions of φ are all orthogonal, since their supports are dis-
joint. We wish to check that f+ηk ∈ Fα(η,M1). First we remark that bounding
the first Fourier coefficient of f + ηk from below is not a problem, since

∣

∣

∣

∣

∣

∫ 1/2

−1/2

ηk(x)e
−2πix dx

∣

∣

∣

∣

∣

≤
∫ 1/2

−1/2

|ηk(x)| dx ≤ 2√
m

∫ 1/2

−1/2

|φ(x)| dx,

so this can be done by choosing m large enough. Also note that for every m ≥ 2
and k = 1, . . . ,m, we have

‖ηk‖22 = 2‖φ‖22,
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so the L2-norm of the ηk’s remains bounded. Finally, using the inequality (a+
b)2 ≥ 1

2a
2 − b2, we see that

∫ 1/2

−1/2

[f(x− θ) + ηk(x− θ)− f(x− τ) − ηk(x− τ)]2 dx

≥ 1

2

∫ 1/2

−1/2

[ηk(x− θ) − ηk(x− τ)]
2
dx−

∫ 1/2

−1/2

[f(x− θ)− f(x− τ)]
2
dx

≥ 1

2

∫ 1/2

−1/2

[ηk(x− θ) − ηk(x− τ)]2 dx− 2π2(θ − τ)2.

In order to control the first part of the right-hand side, we assume thatm is even,
since otherwise η(m+1)/2 will have period 1/2, which might cause problems. If
m is even and |θ− τ | > 1/2m, but |θ− τ | < η ≤ 1/2, then for every k, ηk(x− θ)
will have at least one “bump” (either the left scaled copy of φ or the right one)
which is disjoint from the support of ηk(x− τ), and vice versa. This means that

∫ 1/2

−1/2

[ηk(x − θ)− ηk(x− τ)]
2
dx ≥ 2‖φ‖22

(

for |θ − τ | > 1

2m

)

.

Furthermore, if |θ − τ | ≤ 1/2m, then it is not hard to see that
∫ 1/2

−1/2

[ηk(x− θ)− ηk(x− τ)]2 dx ≥
∫ 1/2

−1/2

[φ(y −mθ)− φ(y −mτ)]2 dy

≥ Rm2α(θ − τ)2α.

To guarantee that f + ηk ∈ Fα(η,M1), it is therefore enough to make sure that
‖φ‖2 is larger than some lower bound depending on η andM1 (but not onm!), in
which case the relevant inequalities are satisfied for all m big enough. Increasing
‖φ‖2 = ‖ηk‖2 might cause the function f + ηk to leave the class F(ρ, L), unless
we choose L big enough. Now define

Qθ =
1

m

m
∑

k=1

Pθ,f+ηk
.

Then Lemma 3.1 tells us that, using the fact that the ηk’s are orthogonal,

‖Pθ,f −Qθ‖1 ≤
√

χ2(Pθ,f ,Qθ) ≤
1√
m

√

e2‖φ‖
2
2
/ε2 − 1.

This means that by choosing m large enough, we can put P0,θ arbitrarily close
to Pθ,f . Furthermore, it is clear that

‖Pθ,f −Qθ‖1 = ‖Pτ,f −Qτ‖1.
Since f is smooth, we can keep ‖Pθ,f −Pτ,f‖ ≤ 1 when |θ− τ | is of the order ε:

‖Pθ,f −Pτ,f‖ ≤
√

χ2(Pθ,f ,Pτ,f)

=

√

exp

(

ε−2

∫ 1

0

(f(t− τ) − f(t− θ))2 dt

)

− 1 ≤ 1,
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where the last inequality holds if

∫ 1

0

(f(t− τ) − f(t− θ))2 dt = 2 sin2(2π(θ − τ)) ≤ 1

2
ε2.

This can be done by choosing |θ − τ | = ε/4π. By the arguments belonging to
Figure 2 the minimax result of Theorem 1.4 then follows.

3.2. Proof of Theorem 1.3

Here we will need slightly more complicated perturbations than in the previous
section. We therefore also need a new lemma:

Lemma 3.2. Suppose φ1, . . . , φm ∈ L2[0, 1] are orthogonal and f ∈ L2[0, 1]
and ‖φi‖22 ≤M . Extend these functions periodically. Suppose the interval I has
integer length. Define Pf as the measure corresponding to the model

dX(t) = f(t)dt+ dW (t) (t ∈ I).

For m ≥ 1 define W = {−1, 1}m and for w ∈ W, define

φw =

m
∑

i=1

wiφi.

Finally, let us define

QW = 2−m
∑

w∈W

Pf+φw
.

Then there exists a constant C > 0 depending only on M such that

EPf

(

dQW

dPf

)2

≤ exp

(

C

m
∑

i=1

(
∫

I

φ2i (t) dt

)2
)

.

Proof. We start by noting that if F is a primitive of f , we have

dPf+φw

dPf
(X) = exp

(
∫

I

φw(t) dX(t)− 1

2

∫

I

φ2w(t) dt−
∫

I

f(t)φw(t) dt

)

= exp

(
∫

I

φw(t) d(X − F )(t)− 1

2

∫

I

φ2w(t) dt

)

.

This means that, using the fact that the φi’s are orthogonal,

dQW

dPf
(X) = 2−m

∑

w∈W

exp

(
∫

I

φw(t) d(X − F )(t)− 1

2

∫

I

φ2w(t) dt

)

= exp

(

−1

2

n
∑

i=1

∫

I

φ2i (t) dt

)

2−m
∑

w∈W

exp

(
∫

I

φw(t) d(X − F )(t)

)
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= exp

(

−1

2

n
∑

i=1

∫

I

φ2i (t) dt

)

×

m
∏

i=1

1

2

[

exp

(
∫

I

φi(t) d(X −F )(t)

)

+ exp

(

−
∫

I

φi(t) d(X −F )(t)

)]

.

So we get, using the fact that the random variables
∫

I φi(t) dW (t) are indepen-
dent,

EPf

(

dQW

dPf

)2

= exp

(

−
n
∑

i=1

∫

I

φ2i (t) dt

)

×

E

(

m
∏

i=1

1

4

[

2 + e2
∫
I
φi(t) dW (t) + e−2

∫
I
φi(t) dW (t)

]

)

=

m
∏

i=1

1

2

[

exp

(

−
∫

I

φ2i (t) dt

)

+ exp

(
∫

I

φ2i (t) dt

)]

.

Now choose C > 0 such that for all |u| ≤ M , cosh(u) ≤ 1 + Cu2 ≤ eCu2

. Then
we get

EPf

(

dQW

dPf

)2

≤ exp

(

C
m
∑

i=1

(
∫

I

φ2i (t) dt

)2
)

.

Remember the definition of our class:

Sα(K0,M) =

{

f ∈ F : ∀K ≥ K0 :
K
∑

k=−K

k2|ck|2 ≥MK2−2α

}

.

Choose C > 1 big enough such that g ∈ Sα(K0,M), where g has Fourier
coefficients

gk = Ck−
1
2
−α (k ≥ 1) and g−k = gk.

Here we need to choose L, the bound on the L2-norm of functions in F , big

enough. Now fix m ≥ 2 and denote ψ̂(k) =
∫ 1

0
ψ(x)e−2ikπxdx the Fourier coef-

ficients of a square-integrable function ψ. Define φ1, . . . , φm ∈ L2[0, 1] by their
Fourier coefficients.

φ̂1(m) = C ·m− 1
2
−α

φ̂i(k) = C · k− 1
2
−α (2 ≤ i ≤ m and m+ ni−1 ≤ k < m+ ni).

For all other combinations of i and k ≥ 0 we take φ̂i(k) = 0, and we set

φ̂i(−k) = φ̂i(k). Here, n1 = 1, nm = +∞, and the other ni’s are chosen such
that for a fixed R > 4 (and all m ≥ 2) we have

‖φi‖22 ≤ RC2m−2α−1.
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The reason that this is possible, is because there exists R > 4 such that

∞
∑

k=m

C2k−1−2α ≤ 1

4
RC2m−2α (∀ m ≥ 2).

It is clear that we can make sure that for 1 ≤ i ≤ m− 1,

1

m

∞
∑

k=m

C2k−1−2α − C2 ·m−2α−1 ≤ 1

2
‖φi‖22 ≤ 1

4
RC2m−2α−1.

This means that

‖φm‖22 ≤ 2

m

∞
∑

k=m

C2k−1−2α + 2C2 ·m−2α ≤ RC2m−2α−1.

Now define fm ∈ L2[0, 1] through its Fourier coefficients:

f̂m(k) =







0 for k = 0,

C|k|− 1
2
−α for 1 ≤ k ≤ m− 1 and −m+ 1 ≤ k ≤ −1,

0 for |k| ≥ m.

Define for w ∈ W = {−1, 1}m

φw =
m
∑

i=1

wiφi.

Clearly, |f̂m(k) + φ̂w(k)| = |ĝ(k)|, so fm + φw ∈ Sα(K0,M). Also, fm and
φ1, . . . , φm are all orthogonal. Define

QW
θ = 2−m

∑

w∈W

Pθ,fm+φw
.

According to (a rescaled version of) Lemma 3.2, if we wish to bound χ2(QW
θ ,

Pθ,fm), it is enough to bound

m
∑

i=1

ε−4‖φi‖42 ≤ R2C4m−1−4αε−4.

This remains bounded if we choose

m ≈ ε−
4

1+4α .

Now define
QW

τ = 2−m
∑

w∈W

Pτ,fm+φw
.

Clearly, the above argument also shows that we have bounded χ2(QW
τ ,Pτ,fm).

Following the scheme depicted in Figure 2, we then need to bound χ2(Pθ,fm ,
Pτ,fm). This can be done by bounding

ε−2

∫ 1

0

(fm(x− θ)− fm(x− τ))2 dx.
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However,

ε−2

∫ 1

0

(fm(x− θ)− fm(x− τ))
2
dx = 2ε−2

m−1
∑

k=1

∣

∣ei2πkθ − ei2πkτ
∣

∣

2
f̂(k)2

≤ 8π2(θ − τ)2ε−2
m−1
∑

k=1

k2f̂(k)2

. (θ − τ)2ε−2m2−2α . (θ − τ)2ε−
10

1+4α .

This means that if we choose

θ − τ ≈ ε
5

1+4α ,

we can bound χ2(Pθ,fm ,Pτ,fm), which proves the lower bound in Theorem 1.3,
using the arguments belonging to Figure 2.

4. Appendix

4.1. Rates in the parametric case

We start by proving Proposition 1.

Proof of Propositions 1. The proof is very much in the spirit of the proof of
Theorem 1.1 but much easier since there are just two terms in the criterion and
no pure noise term η2. Indeed, starting again from the definition of θ(Kα) and
using the noteworthy fact that the functions f [K](· − τ) and (f − f [K])(· − θ)
are orthogonal in L2[−1/2, 1/2], one obtains

θ(K) = Argmax
τ∈ΘS

∫ 1/2

−1/2

{f [K](t− τ)− f [K](t− θ)}dW (t)

−1

2

∫ 1/2

−1/2

{f [K](t− τ)− f [K](t− θ)}2dt.

The remainder of the proof now closely follows the proof of Theorem 1.1. The
deterministic part in the preceding display equals−2

∑K
k=1 f

2
k sin2(πkδ) whereas

the process part plays the role of η1(τ)− η1(θ).

We also notice that a similar result can be obtained for f in some class Fα,
any 0 < α < 1. In this case, one rather considers the (full-, instead of sieved-)
maximum-likelihood estimator

θ , Argmax
τ∈ΘS

∫ 1/2

−1/2

f(t− τ)dY(t).

Using the fact that the observation process Y follows (1), one verifies that

θ = Argmax
τ∈ΘS

∫ 1/2

−1/2

{f(t− τ)− f(t− θ)}dW (t) − 1

2

∫ 1/2

−1/2

{f(t− τ)− f(t− θ)}2dt.
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Proposition 2. Suppose for f ∈ F there exist 0 < β < α, η > 0 and M1,M2 >
0 such that

M1(τ − θ)2α ≤
∫ 1/2

−1/2

{f(t− θ)− f(t− τ)}2 dt ≤M2(τ − θ)2β

for all θ, τ ∈ ΘS with |θ − τ | < η. Then

lim
ε→0

sup
θ∈ΘS

Pθ,f

(

|θ − θ| ≥ lεε
1/α
)

= 0.

The control from below defines the degree of irregularity of the functions
in the class, whereas the control from above is to ensure that the supremum

of the process
∫ 1/2

−1/2{f(t− τ) − f(t − θ)}dW (t) is essentially controlled by the

supremum of the standard deviations. Note that the control from below alone
does not guarantee that this last process has continuous sample paths. The proof
of Proposition 2 is similar to that of Proposition 1 and is omitted.

4.2. Expansion of the quadratic risk of the estimators

From probabilities of deviation from the true θ0 it is sometimes possible to
obtain results for the quadratic risk without logarithmic factors. This can be
done by a “localization” argument following an idea used in [3].

The idea is to introduce a quantity τ̂ (K) defined by a well-chosen linear
approximation of the Taylor expansion of the function τ → ℓK(τ) around τ = θ.

By definition of θ̂(K), we have ℓ′K(θ̂(K)) = 0. Taylor’s theorem applied to ℓ′K
around τ = θ thus yields the existence of a (random) real ζ such that

0 = ℓ′K(θ) + (θ̂(K)− θ)ℓ
(2)
K (θ) +

1

2
(θ̂(K)− θ)2ℓ

(3)
K (ζ). (16)

Now let us define τ̂ (K) by the identity

0 = ℓ′K(θ) + (τ̂ (K)− θ)Eθ,f ℓ
(2)
K (θ). (17)

For any integer p ≥ 1 let us denote Ip(K) =
∑K

k=1 k
pf2

k .

Lemma 4.1. Let τ̂ (K) be defined by (17). As ε→ 0, it holds,

Eθ,f(τ̂ (K)− θ)2 = ε2I2(K)−1 +O(ε4K3I2(K)−2). (18)

Assume, as ε → 0, that Pθ,f (|θ̂(K) − θ| > vε) = o(εη) for any η > 0, where K
is bounded by some power of ε−1. Then as ε→ 0, it holds

Eθ,f(θ̂(K)− θ)2 = O
(

Eθ,f(τ̂ (K)− θ)2 + r(ε)
)

,

where r(ε) = v
2

ε

[

ε
2(I4(K) + ε

2
K

5)I2(K)−2 + (I3(K) + ε
2
K

4)v2εI2(K)−2
]

.
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Let us now briefly explain how this Lemma can sometimes be used to obtain
rates without log-factors. Assume that one already has obtained some rate say
vε = laεrε, for some a > 0 in the sense that Pθ,f (|θ̂(K) − θ| > vε) tends to
zero faster than any power of ε−1. This is the case for Theorems 1.1 and 1.2
for instance. If for this rate vε it holds that r(ε) = o(Eθ,f (τ̂ (K)− θ)2) then the

quadratic risk of θ̂(K) is in fact given by (18).
The lemma also provides a further justification of the choice K = K∗

S in (5)
and an interesting interpretation of the rate rSε in (6) in the case 1/4 < α < 1.
In that case it can be checked that the choice K = K∗

S provides the best trade-
off in K in (18) for the class of functions Sα(K0,M), and that for this K the
remainder term r(ε) is negligible. Moreover, the obtained risk in (18) is then
(rSε )

2. The situation for α < 1/4 is more complex. The best K from the point of
view of (18) on Sα(K0,M) would be K = +∞, but then of course the remainder
r(ε) comes in. For K = K∗

S the term r(ε) is in fact larger than vε. This might
be due to the fact that our bound r(ε) is suboptimal for α < 1/4 or that this
method breaks down for low regularities.

4.3. Proof of technical lemmas

Proof of Lemma 2.2. By definition,

η2(τ)−K =

K
∑

k=1

{cos(2πkτ)ξk + sin(2πkτ)ξ∗k}2

η′2(τ) = 2
K
∑

k=1

(2πk) {cos(2πkτ)ξk + sin(2πkτ)ξ∗k}×

{− sin(2πkτ)ξk + cos(2πkτ)ξ∗k}

To control their Laplace transforms note that for any fixed τ ,

η2(τ)
D
=

K
∑

k=1

α2
k and η′2(τ)

D
= 2

K
∑

k=1

(2πk)αkα̃k
D
= 2

K
∑

k=1

(2πk)(β2
k − β̃2

k),

where
D
= denotes equality in distribution and αk, α̃k, βk, β̃k are independent

standard normal. Thus for any 0 < µ < 1/8, due to the fact that − log(1− v) ≤
v + v2 for −1/2 < v < 1/2,

E(exp{2µ(η2 −K)}) = exp(−2µK) exp

{

−
K
∑

k=1

1

2
log(1 − 4µ)

}

≤ exp(8µ2K).

Similarly, there exists C > 0 such that

E(exp{2µη′2}) ≤ exp(Cµ2K3).

By direct computation one checks E(η′2(τ)
2) . K3 and E(η′′2 (τ)

2) . K5. We
apply Lemma 2.1 to the processes η2(τ) − K and η′2(τ) with the respective
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choices x = K1/2y, µ = (K−1/2y ∧ 1)/8 and x = K3/2y, µ = (K−3/2y ∧ 1)/D,
with D a large enough constant.

Proof of Lemma 2.3. We shall again apply Lemma 2.1. Let us denote

ζ1(τ) =
η1(τ)− η1(θ)

v(τ − θ,K)1/2
.

Note that due to (11), E(ζ1(τ)
2) = 1 thus E(exp{2µζ1(τ)}) = exp(2µ2). On the

other hand, by direct calculation and using the inequality (a+ b)2 ≤ 2a2 + 2b2,

E(ζ′1(τ)
2) .

E(η′1(τ)
2)

v(τ − θ,K)
+E{η1(τ)− η1(θ)}2

{

∑K
k=1(2πk)f

2
k sin(4πk{τ − θ})

2v(τ − θ,K)3/2

}2

. K3v(δ,K)−1 +

{

K
∑

k=1

(2πk)f2
k

}2

v(δ,K)−2 . K3γ−2
ε +K2‖f‖42γ−4

ε ,

for any τ such that γε ≤ |τ − θ| ≤ 2τ0, which concludes the proof.

Proof of Lemma 4.1. The identity (18) follows using the explicit expressions of

the derivatives ℓ′K(τ) and ℓ
(2)
K (τ) evaluated at τ = θ. To obtain the second part

of the Lemma, one introduces the event A = {|θ̂(K) − θ| ≤ vε} and use the
bounds, for any η > 0

Eθ,f(θ̂(K)− θ)2 = Eθ,f{(θ̂(K)− θ)21A}+ Eθ,f{(θ̂(K)− θ)21Ac}
≤ 2Eθ,f(τ̂ (K)− θ)21A + 2Eθ,f(θ̂(K)− τ̂ (K))21A + o(εη)

. (18) +Eθ,f(θ̂(K)− τ̂ (K))21A.

It suffices bound the last term by O(r(ε)). To do so, substracting (17) and

(16) we see that it is enough to control the moments of order 2 of {ℓ(2)K (θ) −
Eθ,fℓ

(2)
K (θ)} and supζ∈Θ |ℓ(3)K (ζ)|. Simple computations similar to [3], Lemma 6

lead to

Eθ,f{ℓ(2)K (θ)−Eθ,fℓ
(2)
K (θ)}2 = O(ε2I4(K) + ε4K5)

Eθ,f sup
ζ∈Θ

|ℓ(3)K (ζ)|2 = O(I3(K) + ε2K4),

as ε→ 0, from which the result easily follows.
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