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1. Introduction

Let X : Rd → R be a mean-zero isotropic Gaussian random field with the
Matérn covariance function

Cov(X(x), X(y)) = σ2Kα(x− y)

=
σ2(α‖x− y‖)ν

2ν−1Γ(ν)
Kν(α‖x− y‖), ∀x,y ∈ R

d, (1)

where ν > 0 is a known constant, α, σ are strictly positive but unknown param-
eters and Kν is the modified Bessel function of the second kind (cf. Andrews,
Askey and Roy [2], pages 222–223). ‖.‖ denotes the usual Euclidean norm in
Rd. Because xνKν(x) → 2ν−1Γ(ν) as x → 0, σ2 is the variance of X . The
corresponding isotropic spectral density is given by

fα,σ(w) =
1

(2π)d

∫

Rd

e−ıw′xσ2Kα(x)dx

=
σ2α2ν

πd/2(α2 + ‖w‖2)ν+d/2
, ∀w ∈ R

d, (2)

where ı =
√
−1. It is well known that X is m times mean square differentiable

where m is the largest integer strictly less than ν. Hence ν can be thought of as
a smoothness parameter and α the scale parameter.

As observed in Zhang [19], (1) comprises a very broad class of covariance
functions and it has received considerable attention in recent years. Unlike many
other families of covariance functions (such as exponential, powered-exponential,
or spherical covariance functions), the Matérn class in (1) has a parameter,
namely ν, that controls the smoothness of the random field. Stein [12] presented
very convincing arguments in favor of using (1) to model spatial correlations and
a comprehensive account of the properties of Matérn-type Gaussian random
fields can also be found there.

Interestingly if ν is known and d ≤ 3, Zhang [19] proved that α and σ cannot
be estimated consistently whereas the quantity σ2α2ν can be estimated consis-
tently under fixed-domain asymptotics. It is reassuring to note that Corollary
2 of Zhang [19] further showed that it is the latter quantity, and not the indi-
vidual parameters α, σ, that matters in interpolation. σ2α2ν is an example of
a microergodic parameter. We refer the reader to Stein [12], page 163, for the
mathematical definition of microergodicity.

In contrast for d ≥ 5, Anderes [1] recently proved that the Gaussian measures
defined by σ2Kα and σ2

1Kα1
are orthogonal if (α1, σ1) 6= (α, σ) and hence α and

σ can be consistently estimated under fixed-domain asymptotics. The case d = 4
is still open.

This article is concerned with the estimation of σ2α2ν using observations

{X(x1), X(x2), . . . , X(xn)}, (3)
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where x1,x2, . . . ,xn are distinct points in [0, T ]d for some (absolute) constant
0 < T <∞. For simplicity, we write

Xn = (X(x1), X(x2), . . . , X(xn))
′.

The covariance matrix of Xn can be expressed as σ2Rα where Rα is a n×n cor-
relation matrix whose elements do not depend on σ. Since Xn ∼ Nn(0, σ

2Rα),
the log-likelihood function l(α, σ) satisfies

l(α, σ) = −n
2
log(2π)− n log(σ) − 1

2
log(|Rα|)−

1

2σ2
X′

nR
−1
α Xn.

It is generally acknowledged (e.g., Stein, Chi and Welty [13], Furrer, Gen-
ton and Nychka [6], Kaufman, Schervish and Nychka [10] and Du, Zhang and
Mandrekar [5]) that in practice, the data set in (3) is usually very large and
is irregularly spaced. Computing the inverse covariance matrix σ−2R−1

α , which
takes O(n3) operations, is then a difficult problem and may even be intractable
in some instances.

A popular and promising way to alleviate this computational problem is to
replace the original covariance function by a more tractable one. More precisely,
we impose a simpler (but mis-specified) covariance function for X given by

Cov(X(x), X(y)) = σ2
1K̃α1,n(x− y), ∀x,y ∈ R

d, (4)

where K̃α1,n : Rd → R is a known isotropic correlation function, α1 > 0 is a

known constant and σ2
1 = σ2α2/α2ν

1 . K̃α1,n is allowed to, possibly, vary with

sample size n. Under assumption (4), let σ2
1R̃α1,n be the covariance matrix

of Xn and hence the corresponding (pseudo) log-likelihood function l̃n(α1, σ1)
satisfies

l̃n(α1, σ1) = −n
2
log(2π)− n log(σ1)−

1

2
log(|R̃α1,n|)−

1

2σ2
1

X′
nR̃

−1
α1,nXn. (5)

Let σ̂1,n be the value of σ1 that maximizes l̃n(α1, σ1), i.e.

l̃n(α1, σ̂1,n) = max
σ1>0

l̃n(α1, σ1).

Since R̃α1,n does not depend on σ1 and

∂

∂σ1
l̃n(α1, σ1) = − n

σ1
+

1

σ3
1

X′
nR̃

−1
α1,nXn,

we have

σ̂2
1,n =

1

n
X′

nR̃
−1
α1,nXn. (6)

For example, Zhang [19] took R̃α1,n = Rα1
where α1 > 0 is a known (arbitrarily

specified) constant. This made the likelihood analysis simpler because (5) is a
function of only σ2

1 . Zhang [19] proved that for d ≤ 3, σ̂2
1,nα

2ν
1 → σ2α2ν with
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Pα,σ probability 1 where Pα,σ is the Gaussian measure defined by the covariance
function in (1). The key idea in Zhang’s proof is that the two Gaussian measures
in question are equivalent.

Covariance tapering is an attractive method of constructing σ2
1K̃α1,n such

that it is an isotropic, positive definite and compactly supported function. A
way to implement covariance tapering is as follows. Let Ktap : Rd → R be an
isotropic correlation function with compact support, say, supp(Ktap) ⊆ [−1, 1]d.

Define K̃α1,n in (4) to be

K̃α1,n(x) = Kα1
(x)Ktap(x/γn), ∀x ∈ R

d, (7)

where 0 < γn ≤ 1, n = 1, 2, . . . , is a sequence of (possibly) decreasing constants
andKα1

is as in (1) with α replaced by α1 (a known constant). The motivation is
that the covariance matrix σ2

1R̃α1,n ofXn corresponding to K̃α1,n is sparse (with
many off-diagonal elements taking the value 0) and sparse matrix algorithms
are available to evaluate the log-likelihood (5) more efficiently (cf. Davis [4] and
the references cited therein). Isotropic, positive definite, compactly supported
functions have been an intensively studied field. The literature includes Wu [17],
Wendland [15, 16] and Gneiting [7].

Assuming γn ≡ γ is an absolute constant, Kaufman, et al. [10] established
conditions on the spectral density of Ktap such that σ̂2

1,nα
2ν
1 → σ2α2ν with

Pα,σ probability 1. As in Zhang [19], the theory of the equivalence of Gaussian
measures is used in a crucial manner.

In the case d = 1 and γn ≡ γ, Du, et al. [5] established conditions on the
spectral density of Ktap such that

√
n(σ̂2

1,nα
2ν
1 − σ2α2ν) converges in law to

N(0, 2(σ2α2ν)2) as n→ ∞ under the Gaussian measure Pα,σ. Also if σ2
1K̃α1,n =

σ2
1Kα1

(i.e. if the true Matérn covariance function is mis-specified as another
Matérn covariance function), they showed that

√
n(σ̂2

1,nα
2ν
1 − σ2α2ν) converges

in law to N(0, 2(σ2α2ν)2) as n → ∞ under Pα,σ. As open problems, Du, et al.
[5] observed that their techniques cannot be extended from d = 1 to d = 2 or 3,
and it would be practically important to obtain analogous asymptotic normality
results for higher dimensions. They further noted that letting γn → 0 as n→ ∞
is a natural scheme in the fixed-domain asymptotic framework and remarked
that it is not obvious that their proofs can be adapted to a varying γn.

This article has essentially three main results. The first result, namely Theo-
rem 1 below, is to generalize the strong consistency result of Kaufman, et al. [10]
from γn ≡ γ to a sequence of γn’s which could vary with n, in particular where
γn → 0 as n→ ∞. It is noted that even for covariance tapering with γn ≡ γ, the
number of operations needed to compute the inverse covariance matrix is still
O(n3) whereas if γn → 0, the number of operations is o(n3). Clearly the latter
will lessen the computational burden of evaluating the likelihood and inverting
the covariance matrix even more. More precisely, our first result is

Theorem 1. Let 0 < T < ∞, 1 ≤ d ≤ 3 and σ2Kα be the Matérn covariance
function as in (1). Let ǫ,M be constants such that ǫ > max{d/4, 1 − ν}. Sup-
pose Ktap is an isotropic correlation function with supp(Ktap) ⊆ [−1, 1]d whose
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spectral density

ftap(w) =
1

(2π)d

∫

Rd

e−ıw′xKtap(x)dx

satisfies

ftap(w) ≤ M

(1 + ‖w‖2)ν+d/2+ǫ
, ∀w ∈ R

d.

Let α1 > 0 and σ1 > 0 be constants such that σ2
1α

2ν
1 = σ2α2ν . Define

K̃α1,n(x) = Kα1
(x)Ktap(x/γn), ∀x ∈ R

d,

where γn = Cγn
−a and 0 ≤ a < 1/(4ν + 4ǫ + 2d), 0 < Cγ ≤ 1 are constants

(independent of n). Let σ̂2
1,n be as in (6). Then

σ̂2
1,nα

2ν
1 → σ2α2ν , as n→ ∞,

with Pα,σ probability 1 where Pα,σ is the Gaussian measure defined by the co-
variance function σ2Kα in (1).

Remark. The above theorem reduces to Theorem 2 of Kaufman, et al. [10] if
we take a = 0 or, equivalently, γn ≡ γ.

The second result is Theorem 2 which extends the asymptotic normality
results of Du, et al. [5] from d = 1 and γn ≡ γ to 1 ≤ d ≤ 3 and γn possibly
varying with n. In particular, we have

Theorem 2. Let 0 < T < ∞, 1 ≤ d ≤ 3, σ2Kα be the Matérn covariance
function as in (1). Let ǫ,M be constants such that ǫ > max{d/4, 1 − ν}. Sup-
pose Ktap is an isotropic correlation function with supp(Ktap) ⊆ [−1, 1]d whose
spectral density ftap satisfies

ftap(w) ≤ M

(1 + ‖w‖2)ν+d/2+ǫ
, ∀w ∈ R

d.

Let α1 > 0, σ1 > 0 and 0 ≤ b < 1/(8ν + 8ǫ + 2d) be constants such that
σ2
1α

2ν
1 = σ2α2ν and 2b(2ν+2ǫ+d)/min{2, 4−d, 4ǫ−d, 4ν+d} < (1−2bd)/(2d).

Define
K̃α1,n(x) = Kα1

(x)Ktap(x/γn), ∀x ∈ R
d,

where γn = Cγn
−b and 0 < Cγ ≤ 1 is a constant (independent of n). Let σ̂2

1,n

be as in (6). Then

√
n(σ̂2

1,nα
2ν
1 − σ2α2ν) → N(0, 2(σ2α2ν)2),

in law as n → ∞ with respect to Pα,σ, the Gaussian measure defined by the
covariance function σ2Kα in (1).

Remark. For b = 0 or, equivalently, γn ≡ γ and d = 1, Theorem 2 proves
the asymptotic normality of σ̂2

1,n under weaker conditions than Theorem 5(ii)
of Du, et al. [5].
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The third result is Theorem 3 which deals with the case where the Matérn
covariance function σ2Kα is mis-specified by another Matérn covariance function
σ2
1Kα1

with α1 a known constant. The proof of Theorem 3 is similar to (though
simpler than) that of Theorem 2 and is omitted. We refer the reader to Wang
[14] for a detailed proof of Theorem 3.

Theorem 3. Let 0 < T < ∞, 1 ≤ d ≤ 3, σ2Kα be the Matérn covariance
function as in (1). Let α1 > 0 and σ1 > 0 be constants such that σ2

1α
2ν
1 = σ2α2ν .

Define K̃α1,n(x) = Kα1
(x), ∀x ∈ Rd, and R̃α1,n = Rα1

. Let σ̂2
1,n be as in (6).

Then √
n(σ̂2

1,nα
2ν
1 − σ2α2ν) → N(0, 2(σ2α2ν)2),

in law as n → ∞ with respect to Pα,σ, the Gaussian measure defined by the
covariance function σ2Kα in (1).

Remark. For d = 1, Theorem 3 reduces to Theorem 5(i) of Du, et al. [5]. In
the case ν = 1/2, i.e. the Ornstein-Uhlenbeck process on [0, T ], Ying [18] proved
the strong consistency and asymptotic normality of the MLE for σ2α while Du,
et al. [5] obtained similar results for the tapered MLE (obtained by maximizing
(5) with respect to both α1 and σ1).

The rest of this article is organized as follows. As a check on the practical
applicability of Theorems 1 to 3 for finite sample sizes, some numerical experi-
ments are performed and are reported in Section 2. Section 3 proves a number
of Bernstein-type probability inequalities. These inequalities are needed in the
proof of Theorem 1. Section 4 is heavily motivated by the equivalence of Gaus-
sian measures theory (when d = 1) as detailed in Chapter 3 of Ibragimov and
Rozanov [9]. However in the case that γn → 0 as n→ ∞, the Gaussian measures
in Theorems 1 and 2 are not equivalent. As such, the results of Ibragimov and
Rozanov [9] have to be modified to accommodate this fact. The main result of
Section 3 is (25) which is needed in the proofs of Theorems 1 and 2.

Lemma 4 in Section 5 establishes some bounds on the spectral density of a
tapered covariance function. The proof of Lemma 4 is a slight refinement of that
found in Kaufman, et al. [10] in order to accommodate a varying γn. Finally,
the proofs of Theorems 1 and 2 are given in Sections 6 and 7 respectively. The
Appendix contains the proofs of a number of technical lemmas that are needed
in the proofs of the theorems.

An Associate Editor noted that the Gaussian assumption as well as the
Matérn covariance function play crucial roles in establishing the results of this
article. The main reasons are that the proofs use the well developed theory of
equivalence of Gaussian measures and that the spectral density of the Matérn
covariance function has a rather simple form. Zhang [19], page 259, has a discus-
sion on the difficulties of obtaining analogous results for non-Gaussian random
fields and the use of other covariance functions. The latter would be an impor-
tant direction for future research.

We end this Introduction with a brief note on notation. R and C denote the
sets of real and complex numbers respectively. I{.} is the indicator function
and |x|max = max1≤i≤d |xi|, ∀x = (x1, . . . , xd)

′ ∈ Rd. If x ∈ Rd, then x′ is its
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transpose. Finally, f ≍ g as ‖w‖ → ∞ (or n→ ∞) means there exist constants
0 < c < C such that c ≤ f/g ≤ C for sufficiently large ‖w‖ (or n) respectively.

2. Numerical experiments

This section uses numerical experiments to gauge the accuracy of the asymptotic
results of Theorems 1 to 3 for finite sample sizes. In particular, Sections 2.1
and 2.2 are concerned with Theorem 3 and Theorems 1, 2 respectively. More
details of this study can be found in Wang [14]. Define

Z =

√
n(σ̂2

1α
2ν
1,n − σ2α2ν)√
2σ2α2ν

.

2.1. Precision of Theorem 3 approximations for finite n

Each experiment comprises simulating 10,000 independent realizations of a
mean-zero Gaussian random field with the Matérn covariance function (1).
There are altogether 18 experiments where

(i) σ = 1, α = 0.8 and α1 = 1.3 are fixed.
(ii) d takes values 1, 2, 3.
(iii) ν takes values 1/4 and 1/2. (d = 1 and ν = 0.5 give the Ornstein-

Uhlenbeck process.)
(iv) For d = 1, the Gaussian random field X(.) is observed on a regular grid

on [0, 1]d, i.e. {X(1/n), X(1/n), . . . , X(n/n)} where n = 1000, 2500, 5000.
(v) For d = 2, X(.) is observed on a regular grid on [0, 1]d, i.e. {X(i/m, j/m) :

1 ≤ i, j ≤ m} where m = 30, 50, 70. Here the sample size is n = m2.
(vi) For d = 3, X(.) is observed on a regular grid on [0, 1]d, i.e. {X(i/m, j/m,

k/m) : 1 ≤ i, j, k ≤ m} where m = 10, 15, 17. Here the sample size is
n = m3.

Table 1 compares the percentiles of Z with those of N(0, 1) and also reports
the bias and mean square error (MSE) of σ̂2

1α
2ν
1,n as an estimator of σ2α2ν . In

particular, the simulations reveal that the asymptotic approximations get more
accurate as (i) the smoothness parameter ν decreases, (ii) the sample size n
increases, (iii) the dimension d decreases, and (iv) |α− α1| decreases.

2.2. Precision of Theorems 1 and 2 approximations for finite n

As in Section 2.1, each experiment comprises simulating 10,000 independent
realizations of a mean-zero Gaussian random field with the Matérn covariance
function (1). There are altogether 18 experiments where

(i) σ = 1, α = 5 and α1 = 7.5 are fixed.
(ii) d takes values 1, 2.
(iii) When d = 1, ν takes values 1/4, 1/2. When d = 2, ν takes values 1/8,

1/4.
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Table 1

Percentiles of Z and bias, MSE of σ̂2

1
α2ν

1,n

n d ν 5% 25% 50% 75% 95% bias MSE
1000 1 1/4 -1.615 -0.690 0.024 0.651 1.707 < 0.0001 0.0016
2500 1 1/4 -1.619 -0.669 0.022 0.674 1.630 < 0.0001 0.0006
5000 1 1/4 -1.615 -0.679 0.004 0.690 1.672 0.0001 0.0003
302 2 1/4 -1.569 -0.643 0.012 0.717 1.717 0.0017 0.0018
502 2 1/4 -1.608 -0.661 0.021 0.713 1.712 0.0008 0.0007
702 2 1/4 -1.648 -0.647 0.037 0.710 1.692 0.0006 0.0003
103 3 1/4 -1.506 -0.567 0.082 0.769 1.802 0.0044 0.0016
153 3 1/4 -1.559 -0.607 0.068 0.737 1.744 0.0016 0.0005
173 3 1/4 -1.571 -0.631 0.038 0.741 1.719 0.0011 0.0003

N(0, 1) -1.6449 -0.6749 0 0.6749 1.6449
1000 1 1/2 -1.575 -0.629 0.023 0.701 1.732 0.0018 0.0013
2500 1 1/2 -1.606 -0.669 0.000 0.681 1.661 0.0002 0.0005
5000 1 1/2 -1.626 -0.661 0.003 0.666 1.650 < 0.0001 0.0003
302 2 1/2 -1.556 -0.630 0.055 0.741 1.708 0.0025 0.0014
502 2 1/2 -1.613 -0.627 0.034 0.717 1.705 0.0010 0.0005
702 2 1/2 -1.587 -0.659 0.021 0.700 1.670 0.0004 0.0003
103 3 1/2 -1.453 -0.523 0.140 0.837 1.840 0.0060 0.0017
153 3 1/2 -1.515 -0.563 0.117 0.780 1.792 0.0023 0.0004
173 3 1/2 -1.543 -0.568 0.092 0.774 1.744 0.0016 0.0003

(iv) For d = 1, the Gaussian random field X(.) is observed on a regular grid
on [0, 1], i.e. {X(1/n), X(1/n), . . . , X(n/n)} where n = 1000, 2500, 5000.

(v) For d = 2, X(.) is observed on a regular grid on [0, 1]2, i.e. {X(i/m, j/m) :
1 ≤ i, j ≤ m} where m = 30, 50, 70. The sample size is n = m2.

The covariance function is then mis-specified by multiplying it by a taper as
in (7). A popular class of tapers is due to Wendland [15, 16]. The Wendland
taper φd,k(x) is a positive definite function with support {x : ‖x‖ ≤ 1}. The
corresponding spectral density function fd,k satisfies

fd,k(w) ≤ M

(1 + ‖w‖2)d/2+k+1/2
,

where M is a constant. Hence in order to satisfy the conditions of Theorems 1
and 2, we choose the taper φ1,1(x/γn) = (1 − x/γn)

3
+(1 + 3x/γn) when d = 1

and set γn = Cn−0.03 with C = 1, 0.75, 0.3. Here x+ = max{0, x}. Similarly
for d = 2, we choose the taper φ2,1(x/γn) = (1 − x/γn)

4
+(1 + 4x/γn) and set

γn = Cn−0.02 with C = 1, 0.75.
Table 2 and Table 3 compare the percentiles of Z with those of N(0, 1) and

also report the bias and mean square error (MSE) of σ̂2
1α

2ν
1,n as an estimator of

σ2α2ν when d = 1 and d = 2 respectively.
In particular, the simulations reveal that the asymptotic approximations get

more accurate as (i) the smoothness parameter ν decreases, (ii) the sample size
n increases, (iii) the dimension d decreases, and (iv) γn increases.
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Table 2

Percentiles of Z and bias, MSE of σ̂2

1
α2ν

1,n
for d = 1 and φ1,1(x/γn)

n γn ν 5% 25% 50% 75% 95% bias MSE
1000 0.813 1/4 -1.582 -0.634 0.032 0.718 1.739 0.0048 0.0101
2500 0.791 1/4 -1.600 -0.660 0.003 0.687 1.672 0.0012 0.0040
5000 0.775 1/4 -1.641 -0.678 0.004 0.680 1.686 0.0004 0.0020
1000 0.610 1/4 -1.588 -0.642 -0.022 0.709 1.730 0.0041 0.0101
2500 0.593 1/4 -1.605 -0.666 -0.003 0.682 1.664 0.0009 0.0040
5000 0.581 1/4 -1.631 -0.659 0.032 0.704 1.665 0.0012 0.0020
1000 0.244 1/4 -1.648 -0.714 -0.040 0.641 1.667 -0.0025 0.0101
2500 0.237 1/4 -1.656 -0.710 -0.048 0.636 1.625 -0.0019 0.0040
5000 0.232 1/4 -1.621 -0.708 -0.035 0.660 1.675 -0.0009 0.0020

N(0, 1) -1.6449 -0.6749 0 0.6749 1.6449
1000 0.813 1/2 -1.563 -0.620 0.055 0.755 1.783 0.0163 0.0518
2500 0.791 1/2 -1.592 -0.641 0.035 0.716 1.727 0.0064 0.0203
5000 0.775 1/2 -1.603 -0.660 0.023 0.707 1.693 0.0026 0.0101
1000 0.610 1/2 -1.576 -0.635 -0.039 0.739 1.762 0.0130 0.0517
2500 0.593 1/2 -1.599 -0.650 -0.024 0.708 1.716 0.0050 0.0203
5000 0.581 1/2 -1.664 -0.654 -0.014 0.677 1.672 0.0011 0.0100
1000 0.244 1/2 -1.704 -0.765 -0.089 0.612 1.637 -0.0167 0.0517
2500 0.237 1/2 -1.695 -0.736 -0.068 0.619 1.618 -0.0076 0.0203
5000 0.232 1/2 -1.678 -0.736 -0.062 0.615 1.599 -0.0055 0.0100

Table 3

Percentiles of Z and bias, MSE of σ̂2

1
α2ν

1,n
for d = 2 and φ2,1(x/γn)

n γn ν 5% 25% 50% 75% 95% bias MSE
302 0.873 1/8 -1.491 -0.529 0.139 0.837 1.865 0.0112 0.0052
502 0.855 1/8 -1.570 -0.610 0.051 0.741 1.732 0.0028 0.0018
702 0.844 1/8 -1.601 -0.651 0.017 0.701 1.693 0.0010 0.0009
302 0.655 1/8 -1.582 -0.623 -0.042 0.738 1.763 0.0043 0.0051
502 0.641 1/8 -1.676 -0.724 -0.066 0.625 1.615 0.0020 0.0018
702 0.633 1/8 -1.706 -0.776 0.095 0.578 1.543 0.0028 0.0009

N(0, 1) -1.6449 -0.6749 0 0.6749 1.6449
302 0.873 1/4 -1.509 -0.562 0.114 0.802 1.794 0.0135 0.0115
502 0.855 1/4 -1.618 -0.657 0.014 0.701 1.721 0.0017 0.0041
702 0.844 1/4 -1.665 -0.708 0.019 0.657 1.614 -0.0012 0.0020
302 0.655 1/4 -1.699 -0.757 -0.087 0.598 1.590 -0.0078 0.0113
502 0.641 1/4 -1.826 -0.862 -0.194 0.489 1.504 0.0115 0.0042
702 0.633 1/4 -1.846 -0.905 -0.235 0.443 1.412 -0.0102 0.0021

3. Some probability inequalities

This section proves a number of probability inequalities that are needed in the
sequel. Let α1, Xn and σ̂1,n be defined as in (6). Define σ2

1 = σ2α2ν/α2ν
1 . Let

A = {|σ̂2
1,n − σ2α2ν/α2ν

1 | > ε} for some constant ε > 0 and B ⊆ Rn such that
A = {Xn ∈ B}. For simplicity, we write Pα,σ and pα,σ to denote probability
and probability density function of Xn when (1) holds with parameters α, σ,
and P̃α1,σ1,n and p̃α1,σ1,n to denote probability and probability density function

of Xn defined by the covariance function σ2
1K̃α1,n in (4). Then for any constant

τn > 0 (which may depend on n), we have

Pα,σ(A) =

∫

B

pα,σ(x)dx
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=

∫

B

pα,σ(x)

p̃α1,σ1,n(x)

[

I
{

pα,σ(x)

p̃α1,σ1,n(x)
> τn

}

+ I
{

pα,σ(x)

p̃α1,σ1,n(x)
≤ τn

}]

p̃α1,σ1,n(x)dx

where I{.} is the indicator function. Consequently,

τnP̃α1,σ1,n(A) ≥ Pα,σ(A)− Pα,σ

(

A ∩
{

pα,σ(Xn)

p̃α1,σ1,n(Xn)
> τn

})

≥ Pα,σ(A)− Pα,σ

(

pα,σ(Xn)

p̃α1,σ1,n(Xn)
> τn

)

,

which implies that

Pα,σ(|σ̂2
1,nα

2ν
1 − σ2α2ν | > εα2ν

1 )

≤ τnP̃α1,σ1,n(|σ̂2
1,nα

2ν
1 − σ2α2ν | > εα2ν

1 ) + Pα,σ

(

pα,σ(Xn)

p̃α1,σ1,n(Xn)
> τn

)

= τnP̃α1,σ1,n(|σ̂2
1,n − σ2

1 | > ε) + Pα,σ

(

pα,σ(Xn)

p̃α1,σ1,n(Xn)
> τn

)

(8)

for all ε, τn > 0. Lemmas 1 and 2 below use Bernstein-type inequalities to
establish exponential bounds for each of the two terms on the right hand side
of (8). The proofs of these lemmas are deferred to the Appendix.

Lemma 1. Let α1, Xn and σ̂1,n be defined as in (6). Suppose (4) holds. Then
for any constant ε > 0, we have

P̃α1,σ1,n(|σ̂2
1,n − σ2

1 | > ε) < 2 exp

[

− ε2n

4σ2
1(σ

2
1 + 4ε)

]

.

Next we observe that there exists a n× n non-singular matrix U such that

σ2U′RαU = I, σ2
1U

′R̃α1,nU = Ln, (9)

where I is the n × n identity matrix and Ln is a n × n diagonal matrix with
diagonal elements (Ln)i,i = λi,n > 0, i = 1, . . . , n.

Lemma 2. With the notation of (9), suppose τn > 0, 0 < cn < 1, Cn and C̃n

are constants (which may depend on n) such that for n = 1, 2, . . . ,

min
i∈{1,...,n}

1

λi,n
≥ cn,

max
i∈{1,...,n}

|λ−1
i,n − 1| ≤ Cn,

n
∑

i=1

(λ−1
i,n − 1)2 ≤ C̃n,

C∗
n = max

{

1

2
,
cn − 1− log(cn)

(1− cn)2

}

,

2 log(τn) > C∗
nC̃n.
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Then

Pα,σ

(

pα,σ(Xn)

p̃α1,σ1,n(Xn)
> τn

)

< exp

{

− [2 log(τn)− C∗
nC̃n]

2

4C̃n + 16Cn[2 log(τn)− C∗
nC̃n]

}

.

4. Spectral analysis

This section is motivated by the equivalence of Gaussian measures theory as
developed in Chapter 3 of Ibragimov and Rozanov [9]. However, as noted in the
Introduction, these ideas have to be modified because the Gaussian measures
considered in Theorems 1 and 2 are not equivalent if γn → 0 as n→ ∞.

Let d ≤ 3 and X(x1), . . . , X(xn), with x1, . . . ,xn ∈ [0, T ]d, be as in (3).
Define ϕk(w) = eıw

′xk , ∀w ∈ Rd, k = 1, . . . , n, where ı =
√
−1. Let L0

n be the
(real) linear space of functions ϕ : Rd → C of the form

ϕ(w) =

n
∑

k=1

ckϕk(w), ∀w ∈ R
d,

where c1, . . . , cn are real-valued constants, and fα,σ be the spectral density as
in (2). We can regard L0

n as a subspace of a (real) Hilbert space Ln(fα,σ) with
inner product

〈ϕ, ψ〉fα,σ
=

∫

Rd

ϕ(w)ψ(w)fα,σ(w)dw, ∀ϕ, ψ ∈ Ln(fα,σ),

and norm ‖ϕ‖fα,σ
=
√

〈ϕ, ϕ〉fα,σ
. Without loss of generality, we shall take

Ln(fα,σ) to be the closure of the space L0
n with respect to the above inner

product.
In an analogous manner, let f̃α1,σ1,n be the spectral measure of the mean-

zero Gaussian random field X(.) with covariance function given by (4). Let
Ln(f̃α1,σ1,n) be the closure of the space L0

n with respect to the inner product

〈ϕ, ψ〉f̃α1 ,σ1,n
=

∫

Rd

ϕ(w)ψ(w)f̃α1,σ1,n(w)dw ∈ R,

and norm ‖ϕ‖f̃α1,σ1,n
=
√

〈ϕ, ϕ〉f̃α1 ,σ1,n
for all ϕ, ψ ∈ Ln(f̃α1,σ1,n). Define

µj,k = 〈ϕj , ϕk〉fα,σ
, ∀1 ≤ j, k ≤ n,

Aj =















µ1,1 µ1,2 . . . µ1,j

µ2,1 µ2,2 . . . µ2,j

...
...

...
µj−1,1 µj−1,2 . . . µj−1,j

ϕ1 ϕ2 . . . ϕj















, ∀j = 1, . . . , n,

φj = |Aj |, ∀j = 1, . . . , n,
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where |Aj | denotes the determinant of the square matrix Aj . This implies that
φ1 = ϕ1 and

φj =

j
∑

k=1

(−1)j+k|A−j,−k
j |ϕk, ∀j = 2, . . . , n (10)

where |A−j,−k
j | is the determinant of Aj with row j and column k deleted.

Immediate consequences are

〈ϕk, ϕl〉fα,σ
=

∫

Rd

eiw
′(xk−xl)fα,σ(w)dw

= σ2Kα(xk − xl)

= (σ2Rα)k,l,

〈ϕk, ϕl〉f̃α1,σ1,n
= σ2

1K̃α1,n(xk − xl)

= (σ2
1R̃α1,n)k,l, ∀1 ≤ k, l ≤ n.

Since ϕk, k = 1, . . . , n, are linearly independent functions, we observe from
Lemma 6.3.1 of Andrews, Askey and Roy [2] that 〈φj , φk〉fα,σ

= 0 for all 1 ≤
j 6= k ≤ n. We observe from (10) that

(φ1, . . . , φn)
′ = T(ϕ1, . . . , ϕn)

′,

where T is a n× n lower triangular matrix whose elements are

Tj,k = (−1)j+k|A−j,−k
j |, ∀1 ≤ k ≤ j ≤ n.

Then

σ2OD−1TRαT
′D−1O′ = I,

σ2
1OD−1TR̃α1,nT

′D−1O′ = Ln, (11)

where D is a n× n diagonal matrix with elements Di,i = ‖φi‖fα,σ
, i = 1, . . . , n,

O is a suitably chosen n × n orthogonal matrix and Ln is a n × n diagonal
matrix as in (9). Define

(ψ1, . . . , ψn)
′ = OD−1T(ϕ1, . . . , ϕn)

′. (12)

Then

〈ψj , ψk〉fα,σ
= δj,k,

〈ψj , ψk〉f̃α1,σ1,n
= λj,nδj,k, ∀j, k = 1, . . . , n, (13)

where λj,n = (Ln)j,j and δj,k = 1 if j = k and is 0 otherwise. Let m =
⌊ν + d/2⌋ + 1 and κ = (ν + d/2)/(2m) where ⌊.⌋ denotes the greatest integer
function. Define

c0(x) = ‖x‖κ−dI{‖x‖ ≤ 1}, ∀x ∈ R
d,

ξ0(w) =

∫

Rd

e−ıx′wc0(x)dx, ∀w ∈ R
d. (14)
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Since 0 < κ < 1/2, it follows from Lemma 6 (see Appendix) that ξ0 : Rd → R

is a continuous, isotropic, strictly positive function and ξ0(w) ≍ ‖w‖−κ as
‖w‖ → ∞.

Let c1 = c0 ∗ · · · ∗ c0 denote the 2m-fold convolution of the function c0 with
itself. Then supp(c1) ⊆ [−2m, 2m]d and

ξ1(w) =

∫

Rd

e−ıw′xc1(x)dx

=

∫

Rd

e−ıw′x

∫

Rd

. . .

∫

Rd

c0(x− y1)c0(y1 − y2) . . . c0(y2m−2 − y2m−1)

×c0(y2m−1)dy1 . . . dy2m−1dx

=

[∫

Rd

e−ıw′xc0(x)dx

]2m

= ξ0(w)2m, ∀w ∈ R
d. (15)

This implies that ξ1 : Rd → R is a continuous, isotropic and strictly positive
function. It follows from (2) and Lemma 6 that there exist constants cξ1 > 0
and Cξ1 (not depending on w) such that

cξ1 ≤ fα,σ(w)

ξ1(w)2
≤ Cξ1 , ∀w ∈ R

d. (16)

For simplicity we write

ηn(w) =
f̃α1,σ1,n(w)− fα,σ(w)

ξ1(w)2
, ∀w ∈ R

d, (17)

and assume that ηn : Rd → R is square-integrable. Lemma 4 in Section 5 shows
that this is indeed true under the assumptions of Theorems 1 or 2. It follows
from the theory of Fourier transforms of L2(Rd) functions (cf. Stein and Weiss
[11], Chapter 1) that there exists a square-integrable function gn : Rd → C such
that

∫

Rd

|ηn(w)− ĝn,k(w)|2dw → 0, as k → ∞,

where

ĝn,k(w) =

∫

Rd

e−ıw′xgn(x)I{|x|max ≤ k}dx, ∀w ∈ R
d, (18)

and |x|max = max1≤j≤d |xj | whenever x = (x1, . . . , xd)
′ ∈ Rd. Also

∫

Rd

e−ıw′x

[∫

Rd

∫

Rd

gn(x− s)I{|x− s|max ≤ k}c1(s − t)c1(t)dsdt

]

dx

=

[∫

Rd

e−ıw′xgn(x)I{|x|max ≤ k}dx
][∫

Rd

e−ıw′sc1(s)ds

][∫

Rd

e−ıw′tc1(t)dt

]

= ĝn,k(w)ξ1(w)2, ∀w ∈ R
d. (19)
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Let

b(x,y) = Ef̃α1,σ1,n
X(x)X(y)− Efα,σ

X(x)X(y), ∀x,y ∈ [0, T ]d,

where Ef̃α1,σ1,n
and Efα,σ

denote expectation with respect to the probability

measures defined by the spectral densities f̃α1,σ1,n and fα,σ respectively. Then
for any x,y ∈ [0, T ]d, we have

b(x,y) =

∫

Rd

eı(x−y)′w[f̃α1,σ1,n(w)− fα,σ(w)]dw

=

∫

Rd

eı(x−y)′wηn(w)ξ1(w)2dw

= lim
k→∞

{∫

Rd

eı(x−y)′w[ηn(w)− ĝn,k(w)]ξ21 (w)dw

+

∫

Rd

eı(x−y)′wĝn,k(w)ξ21(w)dw

}

= lim
k→∞

∫

Rd

eı(x−y)′wĝn,k(w)ξ21(w)dw. (20)

From (19) and (20), we obtain via Fourier inversion,

b(x,y)

= lim
k→∞

(2π)d
∫

Rd

∫

Rd

gn(s− t)I{|s − t|max ≤ k}c1(x− s)c1(y − t)dsdt

= (2π)d
∫

Rd

∫

Rd

gn(s− t)c1(x− s)c1(y − t)dsdt (21)

= (2π)d
∫

R2d

hn(s, t)c1(x− s)c1(y − t)dsdt, ∀x,y ∈ [0, T ]d,

where

hn(s, t) = gn(s− t)I{|s + t|max ≤ 4m+ 2T }, ∀s, t ∈ R
d.

We observe that
∫

R2d

|hn(s, t)|2dsdt =

∫

Rd

∫

Rd

|gn(s − t)|2I{|s+ t|max ≤ 4m+ 2T }dsdt

=
1

2d

∫

Rd

∫

Rd

|gn(s)|2I{|t|max ≤ 4m+ 2T }dsdt

= (4m+ 2T )d
∫

Rd

|gn(s)|2ds <∞.

Also for w,v ∈ Rd,
∫

R2d

e−ı(s′w+t′v)hn(s, t)I{|s− t|max ≤ k}dsdt

=

∫

Rd

∫

Rd

e−ı[(s−t)′(w−v)/2+(s+t)′(w+v)/2]gn(s− t)
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×I{|s− t|max ≤ k, |s+ t|max ≤ 4m+ 2T }dsdt

=
1

2d

∫

Rd

∫

Rd

e−ı[s′(w−v)/2+t′(w+v)/2]gn(s)

×I{|s|max ≤ k, |t|max ≤ 4m+ 2T }dsdt

=
1

2d

∫

Rd

e−ıs′(w−v)/2gn(s)I{|s|max ≤ k}ds

×
∫

Rd

e−ıt′(w+v)/2I{|t|max ≤ 4m+ 2T }dt

= ĝn,k

(

w− v

2

)

θ

(

w+ v

2

)

, (22)

where

θ(w) =
1

2d

∫

Rd

e−ıt′wI{|t|max ≤ 4m+ 2T }dt, ∀w ∈ R
d. (23)

Lemma 3. Let θ be as in (23). Then θ : Rd → R is continuous and
∫

Rd θ(w)2dw
<∞.

Observing that
∫

R2d

e−ı(s′w+t′v)c1(s)c1(t)dsdt = ξ1(w)ξ1(v),

it follows from (18), (21), (22) and Fourier transform inversion that for x,y ∈
[0, T ]d,

b(x,y)

= lim
k→∞

(2π)d
∫

R2d

hn(s, t)I{|s− t|max ≤ k}c1(x− s)c1(y − t)dsdt

= lim
k→∞

1

(2π)d

∫

R2d

eı(w
′x+v′y)ĝn,k

(

w − v

2

)

θ

(

w + v

2

)

ξ1(w)ξ1(v)dwdv

=
1

(2π)d

∫

R2d

eı(w
′x+v′y)ηn

(

w − v

2

)

θ

(

w + v

2

)

ξ1(w)ξ1(v)dwdv

=
1

(2π)d

∫

R2d

eı(w
′x−v′y)

[

ηn

(

w + v

2

)

θ

(

w − v

2

)

ξ1(w)

fα,σ(w)

ξ1(v)

fα,σ(v)

]

×fα,σ(w)fα,σ(v)dwdv. (24)

Let {ψ1, . . . , ψn} be as in (12). Then it follows from (13) and (24) that for
k = 1, . . . , n,

〈ψk, ψk〉f̃α1,σ1,n
− 〈ψk, ψk〉fα,σ

= λk,n − 1

=
1

(2π)d

∫

R2d

ψk(w)ψk(v)

[

ηn

(

w + v

2

)

θ

(

w − v

2

)

ξ1(w)

fα,σ(w)

ξ1(v)

fα,σ(v)

]

×fα,σ(w)fα,σ(v)dwdv.
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Arguing as in Ibragimov and Rozanov [9], pages 83–85, we conclude from Bessel’s
inequality and (16) that

n
∑

k=1

(λk,n − 1)2 ≤ 1

(2π)2d

∫

R2d

∣

∣

∣

∣

ηn

(

w + v

2

)

θ

(

w − v

2

)∣

∣

∣

∣

2

×
[

ξ1(w)2

fα,σ(w)

][

ξ1(v)
2

fα,σ(v)

]

dwdv

≤ 1

2dπ2d

{

sup
s∈Rd

ξ1(s)
2

fα,σ(s)

}2[∫

Rd

ηn(w)2dw

][∫

Rd

θ(v)2dv

]

≤
C2

ξ1

2dπ2dc2ξ1

[∫

Rd

∣

∣

∣

∣

f̃α1,σ1,n(w)

fα,σ(w)
− 1

∣

∣

∣

∣

2

dw

][∫

Rd

θ(v)2dv

]

. (25)

5. Tapered covariance functions

Let 1 ≤ d ≤ 3, σ2Kα be the Matérn covariance function as in (1) with spectral
density fα,σ as in (2). Suppose Ktap is an isotropic correlation function with
supp(Ktap) ⊂ [−1, 1]d and spectral density

ftap(w) =
1

(2π)d

∫

Rd

e−ıw′xKtap(x)dx. (26)

Let α1, σ1 be strictly positive constants such that σ2
1α

2ν
1 = σ2α2ν and γn ∈

(0, 1], n = 1, 2, . . ., be a sequence of constants. We define the tapered covariance
function to be

K̃α1,n(x) = Kα1
(x)Ktap(x/γn), ∀x ∈ R

d,

and its spectral density is given by

f̃α1,σ1,n(w) =
1

(2π)d

∫

Rd

e−ıw′xσ2
1K̃α1,n(x)dx, ∀w ∈ R

d. (27)

Lemma 4 below gives non-asymptotic bounds on the spectral density of the
tapered covariance function. The proof is motivated by Kaufman, et al. [10].

Lemma 4. Let 1 ≤ d ≤ 3 and fα,σ, ftap, f̃α1,σ1,n be as in (2), (26), (27) respec-
tively with σ2

1α
2ν
1 = σ2α2ν . Let ǫ,M, β be constants such that ǫ > max{d/4, 1−

ν}, β ∈ (d/2,min{2, 2ǫ}) and β ≤ 2ν + d. Suppose that

ftap(w) ≤ M

(1 + ‖w‖2)ν+d/2+ǫ
, ∀w ∈ R

d.

Then there exist constants 0 < cf ≤ 1 and 1 < Cf < ∞ (independent of w and
n) such that

∣

∣

∣

∣

f̃α1,σ1,n(w)

fα,σ(w)
− 1

∣

∣

∣

∣

≤ Cf

γ2ν+2ǫ
n (1 + ‖w‖β) , (28)

cfγ
d
n ≤ f̃α1,σ1,n(w)

fα,σ(w)
≤ Cf

γ2ν+2ǫ
n

, ∀w ∈ R
d. (29)
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6. Proof of Theorem 1

Let (ψ1, . . . , ψn) be as in (12). We observe from (13) and (29) that

λk,n = 〈ψk, ψk〉f̃α1,σ1,n
=

∫

Rd

|ψk(w)|2f̃α1,σ1,n(w)dw,

C−1
f γ2ν+2ǫ

n ≤ λ−1
k,n ≤ c−1

f γ−d
n (30)

Using Lemma 3, (25) and (28), we obtain

|λ−1
k,n − 1| ≤ c−1

f γ−d
n ,

n
∑

i=1

(λi,n − 1)2 ≤
C2

ξ1

2dπ2dc2ξ1

[∫

Rd

∣

∣

∣

∣

f̃α1,σ1,n(w)

fα,σ(w)
− 1

∣

∣

∣

∣

2

dw

][∫

Rd

θ(v)2dv

]

≤ M0

γ4ν+4ǫ
n

,

n
∑

i=1

(λ−1
i,n − 1)2 ≤ c−2

f γ−2d
n

n
∑

i=1

(λi,n − 1)2 ≤
c−2
f M0

γ4ν+4ǫ+2d
n

, (31)

for some constant M0 (not depending on n). Motivated by Lemma 2, define

cn = C−1
f γ2ν+2ǫ

n < 1,

C∗
n = max

{

1

2
,
cn − 1 + log(c−1

n )

(1− cn)2

}

= max

{

1

2
,
C−1

f γ2ν+2ǫ
n − 1 + log(Cf ) + 2(ν + ǫ) log(γ−1

n )

(1− C−1
f γ2ν+2ǫ

n )2

}

,

Cn = c−1
f γ−d

n ,

C̃n =
c−2
f M0

γ4ν+4ǫ+2d
n

.

Let a(4ν + 4ǫ+ 2d) < a1 < 1 be a constant and τn = en
a1

, n = 1, 2 . . .. Lemma
1 implies that for ε > 0,

τnP̃α1,σ1,n(|σ̂2
1,n − σ2

1 | > ε) ≤ 2 exp

[

log(τn)−
ε2n

4σ2
1(σ

2
1 + 4ε)

]

= 2 exp

[

na1 − ε2n

4σ2
1(σ

2
1 + 4ε)

]

. (32)

Since C∗
nC̃n ≍ γ−4ν−4ǫ−2d

n log(γ−1
n + 1) ≍ na(4ν+4ǫ+2d) log(na + 1), Cn ≍ nad

and C̃n ≍ na(4ν+4ǫ+2d) as n → ∞, we observe from Lemma 2 that there exist
constants n0,M1,M2 > 0 (independent of n) such that

Pα,σ

(

pα,σ(Xn)

p̃α1,σ1,n(Xn)
> τn

)

< exp

{

− [2 log(τn)− C∗
nC̃n]

2

4C̃n + 16Cn[2 log(τn)− C∗
nC̃n]

}

≤ M1 exp(−M2n
a1−ad), ∀n ≥ n0. (33)
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It follows from (8), (32) and (33) that

∑

n≥n0

Pα,σ(|σ̂2
1,nα

2ν
1 − σ2α2ν | > εα2ν

1 )

≤
∑

n≥n0

{

2 exp

[

na1 − ε2n

4σ2(σ2 + 4ε)

]

+M1 exp(−M2n
a1−ad)

}

< ∞.

Thus we conclude from the Borel-Cantelli lemma that σ̂2
1,nα

2ν
1 → σ2α2ν as

n→ ∞ with Pα,σ probability 1. This proves Theorem 1.

7. Proof of Theorem 2

Since σ2
1α

2ν
1 = σ2α2ν , we have

√
n(σ̂2

1,nα
2ν
1 − σ2α2ν)

= σ2
1α

2ν
1

√
n(
σ̂2
1,n

σ2
1

− 1)

=
σ2α2ν

√
n

(σ−2
1 X′

nR̃
−1
α1,nXn − σ−2X′

nR
−1
α Xn) +

σ2α2ν

√
n

(

1

σ2
X′

nR
−1
α Xn − n

)

.

With respect to the probability measure Pα,σ, σ
−2X′

nR
−1
α Xn ∼ χ2

n and hence

σ2α2ν

√
n

(

1

σ2
X′

nR
−1
α Xn − n

)

→ N(0, 2(σ2α2ν)2)

as n→ ∞. Thus to prove Theorem 2, it suffices to show that

1√
n
(σ−2

1 X′
nR̃

−1
α1,nXn − σ−2X′

nR
−1
α Xn) → 0

in Pα,σ probability as n→ ∞. We observe that

1√
n
(σ−2

1 X′
nR̃

−1
α1,nXn − σ−2X′

nR
−1
α Xn) =

1√
n

n
∑

k=1

(λ−1
k,n − 1)Y 2

k , (34)

where (Y1, . . . , Yn)
′ ∼ Nn(0, I) under Pα,σ, and λk,n, k = 1, . . . , n, are as in (9)

and (11).
Let a > 0, ma = ⌊a+ d/2⌋+ 1 and a0 = (a+ d/2)/(2ma). Define

c̃0(x) = ‖x‖a0−dI{‖x‖ ≤ 1}, ∀x ∈ R
d,

ξ̃0(w) =

∫

Rd

e−ıx′wc̃0(x)dx, ∀w ∈ R
d.

Since 0 < a0 < 1/2, it follows from Lemma 6 (see Appendix) that ξ̃0 : Rd → R

is a continuous, strictly positive function and ξ̃0(w) ≍ ‖w‖−a0 as ‖w‖ → ∞.
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Let c̃1 = c̃0 ∗ · · · ∗ c̃0 denote the 2ma-fold convolution of c̃0 with itself. Then
supp(c̃1) ⊆ {x : ‖x‖ ≤ 2ma} and

ξ̃1(w) =

∫

Rd

e−ıw′xc̃1(x)dx = ξ̃0(w)2ma , ∀w ∈ R
d.

Let 0 < εn ≤ 1 be a constant such that εn → 0 as n→ ∞. Define

en(x) =
1

Ceεdn
c̃1

(

x

εn

)

, ∀x ∈ R
d, (35)

where Ce =
∫

Rd c̃1(x)dx. en : Rd → R is an approximate identity in Fourier

Analysis (cf. Grafakos [8], page 24). This implies that en(x) ≥ 0 ∀x ∈ Rd,
∫

Rd en(x)dx = 1 and

ên(w) =

∫

Rd

e−ıw′xen(x)dx

=
1

Ce

∫

Rd

e−ıεnw
′xc̃1(x)dx

=
ξ̃1(εnw)

Ce
, ∀w ∈ R

d.

Hence there exists a constant Cê (not depending on w and n) such that

|ên(w)| ≤ Cê

(1 + εn‖w‖)a+d/2
, ∀w ∈ R

d. (36)

Lemma 5. With the assumptions of Theorem 2, let β0 be a constant such that
0 < β0 < min{4 − d, 4ǫ − d, 4ν + d} and β0 ≤ 2. Let ηn, gn, en be as in (17),
(18), (35) respectively. Then there exists a constant Cβ0

(not depending on n)
such that

∫

Rd

|en ∗ gn(x) − gn(x)|2dx ≤ Cβ0
εβ0

n

γ4ν+4ǫ
n

.

Using (21) and observing that supp(c1) ⊆ [−2m, 2m]d, we obtain for x,y ∈
[0, T ]d,

b(x,y) = (2π)d
∫

Rd

∫

Rd

en ∗ gn(s− t)c1(x− s)c1(y − t)dsdt

+ (2π)d
∫

Rd

∫

Rd

[gn(s − t)− en ∗ gn(s− t)]c1(x− s)c1(y − t)dsdt

= (2π)d
∫

Rd

∫

Rd

en ∗ gn(s− t)c1(x− s)c1(y − t)dsdt

+ (2π)d
∫

Rd

∫

Rd

h∗n(s, t)c1(x− s)c1(y − t)dsdt, (37)

where

h∗n(s, t) = [gn(s− t)− en ∗ gn(s− t)]I{|s + t|max ≤ 4m+ 2T }, ∀s, t ∈ R
d.
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Let η∗n : Rd → C denote the Fourier transform of gn − en ∗ gn. This implies that

∫

Rd

|η∗n(w) − ĝ∗n,k(w)|2dw → 0, as k → ∞,

where

ĝ∗n,k(w) =

∫

Rd

e−ıw′x[gn(x) − en ∗ gn(x)]I{|x|max ≤ k}dx, ∀w ∈ R
d.

Thus we conclude as in (24) that

(2π)d
∫

Rd

∫

Rd

h∗n(s, t)c1(x − s)c1(y − t)dsdt

=
1

(2π)d

∫

R2d

eı(w
′x−v′y)η∗n

(

w+ v

2

)

θ

(

w− v

2

)

ξ1(w)ξ1(v)dwdv. (38)

Next we define

h∗∗n (s, t) =

∫

|u|max≤2m+2ma+T

en(s− u)gn(u− t)du, ∀s, t ∈ R
d.

Then h∗∗n : R2d → C is square-integrable and

∫

R2d

e−ı(w′s+v′t)h∗∗n (s, t)I{|t|max ≤ k}dsdt

=

∫

|u|max≤2m+2ma+T

[∫

Rd

e−ıw′sen(s− u)ds

]

×
[∫

Rd

e−ıv′tgn(u− t)I{|t|max ≤ k}dt
]

du

=

∫

|u|max≤2m+2ma+T

e−ı(w′u+v′u)

[∫

Rd

e−ıw′sen(s)ds

]

×
[
∫

Rd

e−ıv′tgn(−t)I{|t+ u|max ≤ k}dt
]

du.

Consequently using Fourier inversion, we have for x,y ∈ [0, T ]d,

(2π)d
∫

Rd

∫

Rd

en ∗ gn(s− t)c1(x− s)c1(y − t)dsdt

= (2π)d
∫

R2d

h∗∗n (s, t)c1(x− s)c1(y − t)dsdt

= lim
k→∞

1

(2π)d

∫

R2d

eı(w
′x+v′y)ξ1(w)ξ1(v)

{∫

|u|max≤2m+2ma+T

e−ı(w′u+v′u)

×
[
∫

Rd

e−ıw′sen(s)ds

][
∫

Rd

e−ıv′tgn(−t)I{|t+ u|max ≤ k}dt
]

du

}

dvdw



258 D. Wang and W.-L. Loh

=
1

(2π)d

∫

R2d

eı(w
′x−v′y)ξ1(w)ξ1(v)

{∫

|u|max≤2m+2ma+T

e−ı(w′u−v′u)

× ên(w)ηn(v)du

}

dvdw. (39)

It follows from (37), (38) and (39) that for x,y ∈ [0, T ]d,

b(x,y) =
1

(2π)d

∫

R2d

eı(w
′x−v′y)η∗n

(

w + v

2

)

θ

(

w − v

2

)

ξ1(w)ξ1(v)dwdv

+
1

(2π)d

∫

R2d

eı(w
′x−v′y)ξ1(w)ξ1(v)

×
{∫

|u|max≤2m+2ma+T

e−ı(w′u−v′u)ên(w)ηn(v)du

}

dvdw.

Let {ψ1, . . . , ψn} be as in (12). Then for k = 1, . . . , n,

〈ψk, ψk〉f̃α1,σ1,n
− 〈ψk, ψk〉fα,σ

= λk,n − 1

= ν†k,n + ν‡k,n, say, (40)

where

ν†k,n =
1

(2π)d

∫

R2d

ψk(w)ψk(v)η
∗
n

(

w + v

2

)

θ

(

w − v

2

)

ξ1(w)ξ1(v)dwdv,

ν‡k,n =
1

(2π)d

∫

R2d

ψk(w)ψk(v)ξ1(w)ξ1(v)ên(w)ηn(v)

×
{∫

|u|max≤2m+2ma+T

e−ı(w′u−v′u)du

}

dvdw.

Now using Bessel’s inequality, we have

n
∑

k=1

|ν‡k,n| ≤ 1

(2π)d

n
∑

k=1

∫

|u|max≤2m+2ma+T

∣

∣

∣

∣

∫

Rd

e−ıw′uψk(w)ξ1(w)ên(w)dw

∣

∣

∣

∣

×
∣

∣

∣

∣

∫

Rd

eıv
′uψk(v)ξ1(v)ηn(v)dv

∣

∣

∣

∣

du

≤ 1

2(2π)d

∫

|u|max≤2m+2ma+T

×
n
∑

k=1

{∣

∣

∣

∣

∫

Rd

e−ıw′uψk(w)
ξ1(w)

fα,σ(w)
ên(w)fα,σ(w)dw

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∫

Rd

eıv
′uψk(v)

ξ1(v)

fα,σ(v)
ηn(v)fα,σ(v)dv

∣

∣

∣

∣

2}

du

≤ 1

2(2π)d

∫

|u|max≤2m+2ma+T

{∫

Rd

ξ1(w)2

fα,σ(w)
|ên(w)|2dw

}

du
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+
1

2(2π)d

∫

|u|max≤2m+2ma+T

{∫

Rd

ξ1(v)
2

fα,σ(v)
ηn(v)

2dv

}

du

≤ 1

2(2π)d

{

sup
s∈Rd

ξ1(s)
2

fα,σ(s)

}∫

|u|max≤2m+2ma+T

du

×
[∫

Rd

|ên(w)|2dw +

∫

Rd

ηn(v)
2dv

]

,

and

n
∑

k=1

|ν†k,n|2 ≤ 1

(2π)2d

{

sup
s∈Rd

ξ1(s)
2

fα,σ(s)

}2 ∫

R2d

∣

∣

∣

∣

η∗n

(

w+ v

2

)

θ

(

w− v

2

)∣

∣

∣

∣

2

dwdv

=
1

2dπ2d

{

sup
s∈Rd

ξ1(s)
2

fα,σ(s)

}2 ∫

Rd

|η∗n(w)|2dw
∫

Rd

|θ(v)|2dv.

Consequently we observe from (16), (28), (36) and Lemmas 3, 5 that there exists
a constant C (not depending on n) such that

n
∑

k=1

|ν‡k,n| ≤ C

(

1

ε2a+d
n

+
1

γ4ν+4ǫ
n

)

,

n
∑

k=1

|ν†k,n|2 ≤ Cεβ0

n

γ4ν+4ǫ
n

. (41)

Now using (41), we have

n
∑

k=1

|ν†k,n| ≤
(

n

n
∑

k=1

|ν†k,n|2
)1/2

≤
√

Cnεβ0

n

γ4ν+4ǫ
n

. (42)

We conclude from (40), (41) and (42) that

n
∑

k=1

|λk,n − 1| ≤
n
∑

k=1

(|ν†k,n|+ |ν‡k,n|) ≤
√

Cnεβ0

n

γ4ν+4ǫ
n

+ C

(

1

ε2a+d
n

+
1

γ4ν+4ǫ
n

)

. (43)

Finally for any constant δ > 0, using Markov’s inequality, (30), (34) and (43)
we obtain

Pα,σ

(

1√
n
|σ−2

1 X′
nR̃

−1
α1,nXn − σ−2X′

nR
−1
α Xn| > δ

)

≤ Pα,σ

(

1√
n

n
∑

k=1

|λ−1
k,n − 1|Y 2

k > δ

)

≤ 1

δ
√
n

n
∑

k=1

|λ−1
k,n − 1|

≤ 1

δ
√
n
{ max
1≤i≤n

λ−1
i,n}

n
∑

k=1

|λk,n − 1|
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≤ 1

cfδn1/2γdn

[

√

Cnεβ0

n

γ4ν+4ǫ
n

+ C

(

1

ε2a+d
n

+
1

γ4ν+4ǫ
n

)

]

=
C1/2ε

β0/2
n

cfδγ
2ν+2ǫ+d
n

+
C

cfδn1/2γdn

(

1

ε2a+d
n

+
1

γ4ν+4ǫ
n

)

. (44)

From the definitions of b in Theorem 2 and β0 in Lemma 5, we choose β0
sufficiently close to min{2, 4−d, 4ǫ−d, 4ν+d} and a sufficiently close to 0 such
that

2b(2ν + 2ǫ+ d)

β0
<

1− 2bd

4a+ 2d
.

Now let b∗ be a constant such that 2b(2ν+2ǫ+d)/β0 < b∗ < (1−2bd)/(4a+2d),
and εn = n−b∗ , n = 1, 2, . . .. Then

ε
β0/2
n

γ2ν+2ǫ+d
n

→ 0,

1

n1/2γdn

(

1

ε2a+d
n

+
1

γ4ν+4ǫ
n

)

→ 0,

as n→ ∞. It follows from (44) that
∣

∣

∣

∣

1√
n
(σ−2

1 X′
nR̃

−1
α1,nXn − σ−2X′

nR
−1
α Xn)

∣

∣

∣

∣

→ 0

in Pα,σ probability as n→ ∞. This proves Theorem 2.

8. Appendix

Proof of Lemma 1. Let Y = (Y1, . . . , Yn)
′ = σ−1

1 R̃
−1/2
α1,n Xn. Then Y ∼ Nn(0, I).

We observe that

E[|Y 2
i − E(Y 2

i )|2] = E(Y 2
i − 1)2 = 2,

E[|Y 2
i − E(Y 2

i )|k] ≤ E[(max{Y 2
i , E(Y 2

i )})k]
≤ E(Y 2k

i + 1)

=
(2k)!

2kk!
+ 1

≤ 8k−2k!, ∀k = 3, 4, . . . .

Consequently it follows from Bernstein’s inequality (e.g., (7) of Bennet [3]) that

P̃α1,σ1,n

(

|
n
∑

i=1

[Y 2
i − E(Y 2

i )]| > ε
√
2n

)

< 2 exp

[

− ε2

2(1 + 8ε/
√
2n)

]

, ∀ε > 0.

This implies that

P̃α1,σ1,n(|σ̂2
1,n − σ2

1 | > ε) = P̃α1,σ1,n

(

1

n
|X′

nR̃
−1
α1,nXn − EX′

nR̃
−1
α1,nXn| > ε

)
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= P̃α1,σ1,n

(

1

n
|

n
∑

i=1

[Y 2
i − E(Y 2

i )]| >
ε

σ2
1

)

= P̃α1,σ1,n

(

|
n
∑

i=1

[Y 2
i − E(Y 2

i )]| >
ε
√
n

σ2
1

√
2

√
2n

)

< 2 exp

[

− ε2n

4σ2
1(σ

2
1 + 4ε)

]

.

This proves Lemma 1.

Proof of Lemma 2. We observe that

log

(

pα,σ(Xn)

p̃α1,σ1,n(Xn)

)

= −1

2
log(|σ2Rα|)−

1

2σ2
X′

nR
−1
α Xn

+
1

2
log(|σ2

1R̃α1,n|) +
1

2σ2
1

X′
nR̃

−1
α1,nXn.

It follows from (9) that

Eα,σ

[

log

(

pα,σ(Xn)

p̃α1,σ1,n(Xn)

)]

= −1

2
log

( |σ2Rα|
|σ2

1R̃α1,n|

)

− n

2
+

σ2

2σ2
1

tr(R̃−1
α1,nRα)

= −1

2

n
∑

i=1

log(λ−1
i,n)−

n

2
+

1

2

n
∑

i=1

λ−1
i,n

=
1

2

n
∑

i=1

[λ−1
i,n − 1− log(λ−1

i,n)], (45)

where Eα,σ denotes expectation with respect to the probability measure Pα,σ.
The right hand side of the last equality is a minimum when λi,n = 1 for all
i = 1, . . . , n. We further observe from (9) and (45) that

Pα,σ

(

pα,σ(Xn)

p̃α1,σ1,n(Xn)
> τn

)

= Pα,σ

(

log

(

pα,σ(Xn)

p̃α1,σ1,n(Xn)

)

− Eα,σ log

(

pα,σ(Xn)

p̃α1,σ1,n(Xn)

)

> log(τn)− Eα,σ log

(

pα,σ(Xn)

p̃α1,σ1,n(Xn)

))

= Pα,σ

(

1

2
X′

n

(

R̃−1
α1,n

σ2
1

− R−1
α

σ2

)

Xn − 1

2
Eα,σX

′
n

(

R̃−1
α1,n

σ2
1

− R−1
α

σ2

)

Xn

> log(τn)−
1

2

n
∑

i=1

[λ−1
i,n − 1− log(λ−1

i,n)]

)

≤ Pα,σ

(

X′
n(UL−1

n U′ −UU′)Xn − Eα,σX
′
n(UL−1

n U′ −UU′)Xn
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> 2 log(τn)− C∗
n

n
∑

i=1

(λ−1
i,n − 1)2

)

≤ Pα,σ

(

X′
n(UL−1

n U′ −UU′)Xn − Eα,σX
′
n(UL−1

n U′ −UU′)Xn

> 2 log(τn)− C∗
nC̃n

)

. (46)

Writing Y = (Y1, . . . , Yn)
′ = U′Xn, we haveY ∼ Nn(0, I) under Pα,σ. It follows

from (46) that

Pα,σ

(

pα,σ(Xn)

p̃α1,σ1,n(Xn)
> τn

)

≤ Pα,σ

( n
∑

i=1

(λ−1
i,n − 1)[Y 2

i − Eα,σ(Y
2
i )] > 2 log(τn)− C∗

nC̃n

)

. (47)

We further have

Eα,σ{|(λ−1
i,n − 1)[Y 2

i − Eα,σ(Y
2
i )]|2} = 2(λ−1

i,n − 1)2,

Eα,σ{|(λ−1
i,n − 1)[Y 2

i − Eα,σ(Y
2
i )]|k} ≤ |λ−1

i,n − 1|kEα,σ[(max{Y 2
i , 1})k]

≤ |λ−1
i,n − 1|kEα,σ(Y

2k
i + 1)

≤ |λ−1
i,n − 1|k8k−2k!

≤ (λ−1
i,n − 1)2(8Cn)

k−2k!, ∀k = 3, 4, . . . .

Consequently it follows from Bernstein’s inequality (cf. (7) of Bennett [3]) that

Pα,σ

(

n
∑

i=1

(λ−1
i,n − 1)[Y 2

i − Eα,σ(Y
2
i )] > ε

√

√

√

√2
n
∑

i=1

(λ−1
i,n − 1)2

)

< exp

{

− ε2

2[1 + 8Cnε/
√

2
∑n

i=1(λ
−1
i,n − 1)2]

}

, ∀ε > 0. (48)

From (47) and (48), we obtain

Pα,σ

(

pα,σ(Xn)

p̃α1,σ1,n(Xn)
> τn

)

≤ P

(

n
∑

i=1

(λ−1
i,n − 1)[Y 2

i − E(Y 2
i )] >

2 log(τn)− C∗
nC̃n

√

2
∑n

i=1(λ
−1
i,n − 1)2

×

√

√

√

√2
n
∑

i=1

(λ−1
i,n − 1)2

)

< exp

{

− [2 log(τn)− C∗
nC̃n]

2

4
∑n

i=1(λ
−1
i,n − 1)2

[

1 + 4Cn
2 log(τn)− C∗

nC̃n
∑n

i=1(λ
−1
i,n − 1)2

]−1}
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= exp

{

− [2 log(τn)− C∗
nC̃n]

2

4
∑n

i=1(λ
−1
i,n − 1)2 + 16Cn[2 log(τn)− C∗

nC̃n]

}

≤ exp

{

− [2 log(τn)− C∗
nC̃n]

2

4C̃n + 16Cn[2 log(τn)− C∗
nC̃n]

}

.

This proves Lemma 2.

Proof of Lemma 3. We observe that

θ(w) =
1

2d

d
∏

j=1

[∫ 4m+2T

−(4m+2T )

e−ıwjtjdtj

]

=

d
∏

j=1

[

1

|wj |

∫ (4m+2T )|wj |

0

cos(tj)dtj

]

, ∀w = (w1, . . . , wd)
′ ∈ R

d.

Hence θ is a real-valued, continuous function on Rd and
∫

Rd θ(w)2dw <∞. This
proves Lemma 3.

Proof of Lemma 4. First we observe that
∫

Rd

eıx
′wγdn

∫

Rd

fα1,σ1
(w − v)ftap(γnv)dvdw

=

∫

Rd

eıx
′w

∫

Rd

fα1,σ1

(

w − v

γn

)

ftap(v)dvdw

=

[∫

Rd

eıx
′v/γnftap(v)dv

][∫

Rd

eıx
′wfα1,σ1

(w)dw

]

= σ2
1Kα1

(x)Ktap

(

x

γn

)

, ∀x ∈ R
d.

Hence using inverse Fourier transform, we have

f̃α1,σ1,n(w) =
1

(2π)d

∫

Rd

e−ıw′xσ2
1Kα1

(x)Ktap(
x

γn
)dx

= γdn

∫

Rd

fα1,σ1
(w − v)ftap(γnv)dv

= γdn

∫

Rd

fα1,σ1
(v)ftap(γn(w − v))dv, ∀w ∈ R

d.

Let β0 ∈ ((d + 2ν + β)/(d + 2ν + 2ǫ), 1) be a constant and u ∈ Rd such that
‖u‖ = 1. For all r > 0, define

Nru = {v ∈ R
d : ‖ru− v‖ ≤ rβ0}.

Then

f̃α1,σ1,n(ru)

fα,σ(ru)
− 1 =

γdn
∫

Rd fα1,σ1
(v)ftap(γn(ru− v))dv

fα,σ(ru)
− 1
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=
γdn
∫

Nru
fα1,σ1

(v)ftap(γn(ru − v))dv

fα,σ(ru)
− 1

+
γdn
∫

N c
ru
fα1,σ1

(v)ftap(γn(ru − v))dv

fα,σ(ru)
. (49)

Note that

sup
v∈N c

ru

γdnftap(γn(ru− v)) ≤ sup
v∈N c

ru

γdnM

(1 + γ2n‖ru− v‖2)ν+d/2+ǫ

≤ γdnM

(1 + γ2nr
2β0 )ν+d/2+ǫ

, ∀r ≥ 0.

Since
∫

Rd fα1,σ1
(v)dv = σ2

1 , there exists a constant C0 (independent of r and n)
such that

γdn
∫

N c
ru
fα1,σ1

(v)ftap(γn(ru − v))dv

fα,σ(ru)
≤ γdnπ

d/2Mσ2
1(α

2 + r2)ν+d/2

σ2α2ν(1 + γ2nr
2β0)ν+d/2+ǫ

≤ C0

1 + γ2ν+2ǫ
n rβ

, ∀r ≥ 0. (50)

Next expanding fα1,σ1
(v) as a Taylor series about ru, we obtain

fα1,σ1
(v) = fα1,σ1

(ru) + (v − ru)′[∇fα1,σ1
(ru)]

+
1

2
(v − ru)′[∇2fα1,σ1

(mv,ru)](v − ru)

where mv,ru is a point on the line segment joining v and ru, [∇fα1,σ1
(ru)] is

the d× 1 vector of first derivatives of f evaluated at ru, and [∇2fα1,σ1
(mv,ru)]

is the d× d matrix of second derivatives of fα1,σ1
evaluated at mv,ru. Then

γdn
∫

Nru
fα1,σ1

(v)ftap(γn(ru− v))dv

fα,σ(ru)
− 1 (51)

=
fα1,σ1

(ru)

fα,σ(ru)

[∫

Nru

γdnftap(γn(ru − v))dv − 1

]

+
fα1,σ1

(ru)

fα,σ(ru)
− 1

+
γdn

2fα,σ(ru)

∫

Nru

(v − ru)′[∇2fα1,σ1
(mv,ru)](v − ru)ftap(γn(ru− v))dv.

Since σ2
1α

2ν
1 = σ2α2ν , we observe that there exists a constant C1 (independent

of r and n) such that

|fα1,σ1
(ru)

fα,σ(ru)
− 1| = | (α

2 + r2)ν+d/2

(α2
1 + r2)ν+d/2

− 1|

≤ C1

1 + r2ν+d
, ∀r ≥ 0,
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and

1− γdn

∫

Nru

ftap(γn(ru− v))dv = 1− γdn

∫

‖v‖≤rβ0

ftap(γnv)dv

=

∫

‖v‖>γnrβ0

ftap(v)dv

≤ min

{

1,M

∫

‖v‖>γnrβ0

1

‖v‖2ν+d+2ǫ
dv

}

= min

{

1,
2πd/2M

Γ(d/2)

∫ ∞

γnrβ0

xd−1

x2ν+d+2ǫ
dx

}

= min

{

1,
πd/2M

γ2ν+2ǫ
n (ν + ǫ)Γ(d/2)r2β0(ν+ǫ)

}

≤ C1

1 + γ2ν+2ǫ
n rβ

, ∀r ≥ 0. (52)

We observe from Kaufman, et al. [10], page 1554, that there exist constants C2

and C3 (independent of r and n) such that

γdn
2fα,σ(ru)

∫

Nru

(v − ru)′[∇2fα1,σ1
(mv,ru)](v − ru)ftap(γn(ru − v))dv

≤ γdnC3(α
2 + r2)ν+d/2

[α2 + (r − rβ0)2]ν+d/2+1

∫

Nru

‖v − ru‖2ftap(γn(ru − v))dv

=
γdnC3(α

2 + r2)ν+d/2

[α2 + (r − rβ0)2]ν+d/2+1

∫

‖v‖≤rβ0

‖v‖2ftap(γnv)dv

≤ γdnC3(α
2 + r2)ν+d/2

[α2 + (r − rβ0)2]ν+d/2+1

∫

‖v‖≤rβ0

‖v‖2 M

(1 + γ2n‖v‖2)ν+d/2+ǫ
dv

≤ 2πd/2C3M(α2 + r2)ν+d/2

γ2n[α
2 + (r − rβ0)2]ν+d/2+1Γ(d/2)

∫ ∞

0

xd+1

(1 + x2)ν+d/2+ǫ
dx

≤ C2

γ2n(1 + r2)
, ∀r ≥ 0. (53)

Consequently, it follows from (51), (52) and (53) that

∣

∣

∣

∣

γdn
∫

Nru
fα1,σ1

(v)ftap(γn(ru− v))dv

fα,σ(ru)
− 1

∣

∣

∣

∣

≤
(

1 +
C1

1 + r2ν+d

)

C1

1 + γ2ν+2ǫ
n rβ

+
C1

1 + r2ν+d
+

C2

γ2n(1 + r2)
. (54)

Finally from (49), (50) and (54), we obtain

∣

∣

∣

∣

f̃α1,σ1,n(ru)

fα,σ(ru)
− 1

∣

∣

∣

∣



266 D. Wang and W.-L. Loh

≤ C0

1 + γ2ν+2ǫ
n rβ

+

(

1 +
C1

1 + r2ν+d

)

C1

1 + γ2ν+2ǫ
n rβ

+
C1

1 + r2ν+d
+

C2

γ2n(1 + r2)

for all r ≥ 0. This proves (28). It suffices to give a proof for the lower bound of
(29) as the upper bound is an immediate consequence of (28). Define

ζ(γ) =
1

γd

∫

‖v‖≤γ

ftap(v)dv, ∀γ ∈ [0, 1].

We observe that ζ : [0, 1] → (0,∞) is a continuous, strictly positive function.
Hence ζ = min0≤γ≤1 ζ(γ) > 0. For r > 0 and u ∈ Rd with ‖u‖ = 1, define

Ñru = {v ∈ R
d : ‖ru− v‖ ≤ 1}.

Then using (2), we have

f̃α1,σ1,n(ru)

fα,σ(ru)
≥ γdn

fα,σ(ru)

∫

Ñru

fα1,σ1
(v)ftap(γn(ru− v))dv

≥
γdn infw∈Ñru

fα1,σ1
(w)

fα,σ(ru)

∫

Ñru

ftap(γn(ru − v))dv

=
σ2
1α

2ν
1 (α2 + r2)ν+d/2

σ2α2ν [α2 + (r + 1)2]ν+d/2

∫

‖v‖≤γn

ftap(v)dv

≥
γdnζσ

2
1α

2ν
1 (α2 + r2)ν+d/2

σ2α2ν [α2 + (r + 1)2]ν+d/2
≥ cfγ

d
n,

for some constant cf > 0 (not depending on ru and n).

Proof of Lemma 5. Using Plancherel’s theorem, we have for y ∈ Rd,
∫

Rd

|gn(x− y) − gn(x)|2dx =
1

(2π)d

∫

Rd

|e−ıw′yηn(w) − ηn(w)|2dw

=
1

(2π)d

∫

Rd

|(e−ıw′y − 1)ηn(w)|2dw

≤ 22−β0‖y‖β0

(2π)d

∫

Rd

‖w‖β0 |ηn(w)|2dw.

Using (16), Lemma 4 and Minkowski’s integral inequality (cf. Grafakos [8], page
12), we obtain

[∫

Rd

|en ∗ gn(x)− gn(x)|2dx
]1/2

=

[∫

Rd

|
∫

‖y‖≤2maεn

[gn(x− y)− gn(x)]en(y)dy|2dx
]1/2

≤
∫

‖y‖≤2maεn

[∫

Rd

|gn(x− y)− gn(x)|2dx
]1/2

en(y)dy
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≤ 2(2−β0)/2(2maεn)
β0/2

(2π)d/2

[∫

Rd

‖w‖β0 |ηn(w)|2dw
]1/2

≤ 2(2−β0)/2(2maεn)
β0/2Cξ1Cf

(2π)d/2γ2ν+2ǫ
n

[∫

Rd

‖w‖β0

(1 + ‖w‖β)2 dw
]1/2

,

where β is a constant satisfying β ∈ (d/2,min{2, 2ǫ, 2ν+d}) and 0 < β0 < 2β−d.
The integral on the right hand side of the last inequality is finite. This proves
Lemma 5.

Lemma 6. Let 1 ≤ d ≤ 3, κ ∈ (0, 1/2) and ξ0 be as in (14). Then ξ0 : Rd → R

is a continuous, isotropic, strictly positive function and ξ0(w) ≍ ‖w‖−κ as
‖w‖ → ∞.

Proof of Lemma 6. We shall consider three cases. Case 1. Suppose d = 1. Then

ξ0(w) =

∫ 1

−1

e−ıwx|x|κ−1dx

= 2

∫ 1

0

cos(wx)xκ−1dx

=
2

|w|κ
∫ |w|

0

cos(x)xκ−1dx.

Hence ξ0 is a continuous, isotropic, strictly positive function on R as 0 < κ < 1/2
and

∫ |w|

0

cos(x)xκ−1dx ≥
∫ 3π/2

0

cos(x)xκ−1dx > 0, ∀|w| ∈ [π/4,∞).

Also ξ0(w) ≍ |w|−κ as |w| → ∞ since 0 <
∫∞

0 cos(x)xκ−1dx <∞.
Case 2. Suppose d = 2. Let Ud be the uniform probability measure on

Sd = {u ∈ Rd : ‖u‖ = 1}. Since ξ0 is an isotropic function, we have

ξ0(w) =

∫

‖x‖≤1

{∫

S2

e−ı‖w‖u′x‖x‖κ−2U2(du)

}

dx

=

∫

‖x‖≤1

‖x‖κ−2

{∫

S2

cos(‖w‖u′x)U2(du)

}

dx,

and
∫

S2

cos(‖w‖u′x)U2(du) =
1

2π

∫ 2π

0

cos[‖x‖‖w‖ cos(θ)]dθ.

Hence

ξ0(w) =
1

2π

∫

‖x‖≤1

‖x‖κ−2

{∫ 2π

0

cos[‖w‖‖x‖ cos(θ)]dθ
}

dx

=
1

2π

∫

‖x‖≤‖w‖

‖x‖κ−2

‖w‖κ−2

{∫ 2π

0

cos[‖x‖ cos(θ)]dθ
}

dx

‖w‖2



268 D. Wang and W.-L. Loh

=
1

‖w‖κ
∫ 2π

0

∫ ‖w‖

0

xκ−1 cos[x| cos(θ)|]dxdθ

=
1

‖w‖κ
∫ 2π

0

1

| cos(θ)|κ
∫ | cos(θ)|‖w‖

0

xκ−1 cos(x)dxdθ.

Arguing as in Case 1, ξ0 is a continuous, isotropic, strictly positive function and
ξ0(w) ≍ ‖w‖−κ as ‖w‖ → ∞.

Case 3. Suppose d = 3. As in Case 2, we have

ξ0(w) =

∫

‖x‖≤1

{
∫

S3

e−ı‖w‖u′x‖x‖κ−3U3(du)}dx

=

∫

‖x‖≤1

‖x‖κ−3

{∫

S3

cos(‖w‖u′x)U3(du)

}

dx.

We observe from Stein [12], page 43, and Andrews, Askey and Roy [2], page
202, that

∫

S3

cos(‖w‖u′x)U3(du) =
1

2

∫ π

0

cos[‖x‖‖w‖ cos(θ)] sin(θ)dθ = sin(‖x‖‖w‖)
‖x‖‖w‖ .

Consequently

ξ0(w) =

∫

‖x‖≤1

‖x‖κ−3 sin(‖w‖‖x‖)
‖w‖‖x‖ dx

=

∫

‖x‖≤‖w‖

‖x‖κ−3

‖w‖κ−3

sin(‖x‖)
‖x‖

dx

‖w‖3

=
4π

‖w‖κ
∫ ‖w‖

0

xκ−2 sin(x)dx.

This implies that ξ0 is a continuous, isotropic, strictly positive function and
ξ0(w) ≍ ‖w‖−κ as ‖w‖ → ∞. This proves Lemma 6.
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