
Electronic Journal of Statistics

Vol. 5 (2011) 1503–1536
ISSN: 1935-7524
DOI: 10.1214/11-EJS644

On a nonparametric resampling scheme

for Markov random fields

Lionel Truquet

UMR 6625 CNRS Institut de Recherche Mathématique de Rennes (IRMAR) Université de
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1. Introduction

The aim of this paper is to study an extension of a resampling scheme investi-
gated by Bickel & Levina [4] for a particular class of stationary Markov random
fields. This resampling method is in turn an adaption to random fields of the lo-
cal bootstrap for Markov processes introduced by Paparoditis & Politis [28] for
bootstrapping some time series. The basic principle of this bootstrap procedure
can be formulated as follows: given a sample of a process, generate a replicate
of this sample whose characteristics are similar to the original one. Generally,
a stationary Markov model is defined by an invariant measure with respect to
some probability kernels. Under some conditions, it is possible to simulate the
model, using these kernels and a convenient recursive algorithm. Then, in order
to reproduce the behaviour of the original time series or random field, a natu-
ral idea is to use nonparametric estimators of those kernels and to simulate a
replicate of the sample, using the same algorithm. The term “bootstrap” comes
from the fact that the nonparametric estimators of the conditional distributions
used in [28] and [4] are based on a weighted empirical measure of the sample.
This empirical measure is constructed using the idea of the kernel regression
estimation. For example, in the case of a p−Markovian time series, the purpose
is to estimate the regression function E (1Xt≤x|Xt−1, . . . , Xt−p).
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In [28], this method is shown to be applicable to a large class of Markovian
time series in order to estimate some statistics of the original process. A variant
of this method was investigated by Monbet & Marteau [25] for multivariate
processes.

Bickel & Levina [4] studied an extension of this method to a class of Markov
random fields in the texture synthesis framework. The goal of texture synthesis
can be stated as follows: given a texture sample, synthesize a new texture that
appears similar to a human observer. Texture mapping or image compression
are frequent applications for such algorithms. The stochastic nature of texture
variations makes it a particularly natural area for applying statistical methods
but usually the consistency of those algorithms are not investigated. In [4], the
motivation of the authors was to give a theoretical justification to the popu-
lar algorithm of Efros and Leung [13] used for texture synthesis. But a crucial
assumption made on the random field is that its simulation can be done recur-
sively, starting from a seed and ordering the pixels as for the simulation of a
time series. In particular, if (Xs)s∈Z2 denotes a random field, the rectangular
lattice R (the sites of the pixels) of Z2 is ordered setting R = {s1, . . . , sk} and it
is assumed that for i ∈ {1, . . . , k}, the conditional distribution of Xsi given the
“past”Xsi−1 , . . . , Xs1 depends only on a limited number of variables. The conse-
quence is that a texture can be simulated quickly with a single sweep. A typical
example of such random fields were introduced by Pickard [29]. Although these
models do not have a physical interpretation for a spatial phenomenon, they re-
main numerically efficient when the conditional kernels used for the simulation
depend on more and more variables of the “past”. In fact, these models have
been introduced in the context of image analysis in order to approximate the
general Markov-Gibbs model which is more difficult to handle: a recursive com-
putation of joint distributions is generally impossible for the general model and
Markov chains methods such as the Gibbs sampler or the Metropolis algorithm
must be used for the simulation. However, this restrictive class of random fields
approximates generally very well the textures for the statistics distinguishable
by a human observer when large data sets are available (see in particular the
simulation results given in [4]).

In this paper we will not make the same assumption as in [4] and we will study
an extension of the results given in [4] for a general Markov-Gibbs random field
satisfying some regularity conditions. We will consider a classical stochastic
relaxation algorithm: the Gibbs sampler. Gibbs sampling is a Markov chain
method used to simulate a sample of a random field, using its local conditional
distribution (LCD), that is for s ∈ Z

2 the distribution of Xs given (Xt)t6=s

(which only depends on a finite number of variables if X is a Markov random
field). Then a natural idea is to build a nonparametric estimator of the LCD,
using the same idea as Bickel & Levina [4] and to simulate a replicate of the
random field. However, in general, it is not possible to define a joint distribution
associated to the nonparametric estimator of the LCD. This point makes the
problem difficult to study because our algorithm will simulate a strange non-
Markovian distribution whose shape depends on the estimator but also on the
size of the desired replicate. Nevertheless we give some conditions under which
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our method has consistency properties (i.e convergence to the distribution of
the original random field).

We believe that studying such an extension is interesting for several reasons.
First, our approach enlightens the good behaviour of another algorithm for tex-
ture synthesis introduced by Paget & Longstaff [27] and the resampling scheme
studied is in the spirit of their work, using the nonparametric regression estima-
tion introduced in [28] and extended in [4] to the random fields case. Secondly,
although Gibbs sampling leads to long simulation times, this stochastic relax-
ation method applies to general Markov random fields, taking into account all
the directions in the restitution of their local interactions. Motivated by other
statistical applications, we believe that bootstrapping the “true” model instead
of an approximation is more natural. Of course, the simulation of an image using
a single sweep is numerically a great advantage and the speed of the algorithm is
a major problem for the applications of texture synthesis. But except simulation
time, the general statistical model should give better results, provided of course
finding a suitable algorithm. However we do not claim that the approach studied
in this paper is a satisfying answer, especially for the texture synthesis problem
because the general Gibbs model is very difficult to handle, as shown by the im-
pressive multiscale algorithm of Paget and Longstaff for texture synthesis (see
Section 5), necessary to speed up the algorithm and to avoid problems related
to local minima of the energy. Moreover the texture synthesis problem has been
extensively studied over the last decade and several complex algorithms give
now better results for this particular problem (see in particular [22, 12] or [21]).
But to our knowledge, a consistency result for bootstrapping the distribution of
a general Markov field has not been investigated yet.

Finally, it could be interesting to consider other statistical applications. As
pointed in [4], this kind of resampling scheme could also be used to approximate
the distribution of some linear statistics, although its principle differs from some
classical methods (using blocks) studied for stationary time series (see Künsch
[20]) or random fields (see Politis & Romano [30]). This approach is used in [28]
for time series. Moreover in [25], the simulation of missing data is investigated
for time series. The so-called local grid bootstrap of [25] was successfully applied
to wind data (see [2]) and it seems of interest to extend this approach to spatio-
temporal phenomena. In the spatial context, one could use the observed sites
for the estimation of the LCD and in a second step the Gibbs sampling for the
simulation of the missing data. In this kind of application, ordering the different
sites for the simulation seems not very natural. One can also argue that all the
statistics are not distinguishable by a human observer and that the (visual)
good results obtained in [4] for the texture synthesis should be extended to
more natural random fields.

The paper is organized as follows. In Section 2, we recall the results of
Bickel and Levina about their nonparametric resampling for a particular class
of Markov random fields. In Section 3, we extend the resampling principle of
Section 2 to general Markov random fields and some consistency results are
proved for our extension. The example of a nearest-neighbor Markov random
field with a pairwise potential is detailed in Section 4. Section 5 is devoted to
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the texture synthesis problem: we recall the multiscale algorithm used by Paget
and Longstaff, which has an independent interest and we give several simulation
examples. Proofs of our investigations are postponed to the last section of the
paper.

2. The Markov Mesh Models algorithm

2.1. Principle

We first recall the Markov Mesh Models (MMM in the sequel) algorithm intro-
duced by Bickel and Levina [4] in the context of the texture synthesis problem.
This algorithm is different from the original algorithm of Efros and Leung [13]
by the order in which pixels are filled in the synthesized texture (raster instead
of spiral), and the weights with which the pixels are resampled.

In the sequel we consider {Xt, t ∈ N
∗ × N

∗} a real-valued random field and
a positive integer o ∈ N

∗. We will use the following notations:

• for A ⊂ N
∗ × N

∗, XA denote the family (Xt)t∈A;
• for A, B ⊂ N

∗ × N
∗, A+ B = {tA + tB, (tA, tB) ∈ A× B} and A− B =

{tA − tB , (tA, tB) ∈ A×B}.

For t = (t1, t2) ∈ N
∗ × N

∗ and s ∈ N
∗ × N

∗, define the index sets

• U
(o)
t =

{
u = (u1, u2) ∈ N

∗ × N
∗; max(1, t1 − o) ≤ u1 ≤ t1,

max(1, t2 − o) ≤ u2 ≤ t2 and u 6= t
}
;

• U
(o)
t (s) = U

(o)
t − {t}+ {s};

• Wt = {1, . . . , t1} × {1, . . . , t2} \ {t}.

The set U
(o)
t is always included in the square of size (o+ 1)× (o+ 1) with t as

the bottom right corner, t itself excluded, but there are (o + 1)2 − 1 possible

shapes of U
(o)
t . Then,

Definition 1. A random field X = {Xt, t ∈ N
∗ ×N

∗} is a Markov mesh model
if there exists o ∈ N

∗ such that for all t ∈ N
∗ × N

∗,

P (Xt|XWt
) = P

(
Xt|XU

(o)
t

)
. (2.1)

Now, the MMM resampling algorithm of Bickel and Levina [4] can be pre-
sented. First assume that a MMM X is observed on rectangle JT = {1, . . . , T1}×
{1 . . . , T2} with T1, T2 ≥ o. Then consider a family of kernels (W (ℓ))ℓ∈N∗ that are
Borelian functions W (ℓ) : Rℓ → [0,∞) satisfying some general smoothness as-
sumptions (see Assumption (A4) in the Appendix). Moreover, for a resampling
width b > 0 and all ℓ ∈ N

∗, define

W
(ℓ)
b (y) = b−ℓW (ℓ)(y/b) y ∈ R

ℓ.

In the sequel, for simplicity, we will omit the exponent o and ℓ for respectively

U
(o)
t , U

(o)
t (s) and W

(ℓ)
b .
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The MMM resampling algorithm

The aim of the algorithm is to generate a texture X∗ = {X∗
t , t ∈ RT } from the

observed field {Xt, t ∈ JT }, where RT = {1, . . . , uT } × {1 . . . , vT }. There are 3
main steps in this algorithm.

1. Select a starting value for {X∗
t : 1 ≤ t1 ≤ o + 1, 1 ≤ t2 ≤ o + 1}, the

top left (o + 1) × (o + 1) square. Typically the starting value will be a
(o+ 1)× (o+ 1) square random chosen from the observed field (Xt)t∈IT .

2. Suppose that there exists (u, v) ∈ RT such that X∗
t has been generated

for t ∈ {1, . . . , u−1}×{1, . . . , vT }∪{u}×{1, . . . , v−1}, that is, u−1 rows
are filled in completely, and the row u is filled up for the column v. To
generate the next value X∗

t = X∗
(u,v), let Nt be a discrete random variable

with probability distribution

P(Nt = s) =
1

ZT
Wb

(
X∗

Ut
−XUt(s)

)

for all s ∈ N
∗ × N

∗ such that Ut(s) ⊂ JT and where ZT =
∑

s Wb(X
∗
Ut

−
XUt(s)) is a normalizing constant. Note that the set of all possible s is such
that the conditioning neighborhood of s fits within the observed texture
field.

3. Generate Nt and set X∗
t = X∗

(u,v) = XNt
.

In Figure 1, we show two steps in the progress of the MMM algorithm, just after
the choice of the seed (step 1 above) and when the neighborhood of the pixel is
full (see the center of the picture in Figure 1). In Figure 2, we illustrate the dif-
ference with the original algorithm of Efros and Leung. Here, the seed is located
at the center of the new texture and the synthesis uses a spiral ordering. At each
step, a pixel X∗

t is chosen conditionally to some pixels previously simulated and
located in a square window centered at t. Another difference with the MMM
algorithm is the choice of uniform weights for the synthesis (see [4] for details).

Fig 1. MMM algorithm, o = 2 Fig 2. Efros and Leung algorithm, o = 2
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The MMM algorithm is formulated for a particular class of random fields, the
Markov Mesh Models (also known as Pickard random fields [29]) which were
introduced by Abend, Harley and Kanal [1]. These models have been devel-
oped for image applications and can be efficiently simulated. The resampling
scheme described above is an adaption to random fields of a method proposed
for bootstrapping Markovian time series ([31, 28]).

2.2. Consistency results

To state the consistency of the above algorithm, we need the following notations:

• for A ⊂ Z
2, |A| is the cardinal of A.

• for x = (x1, x2) ∈ Z
2, ‖x‖∞ = max(|x1| , |x2|).

• for A,B ⊂ Z
2, d(A,B) = infx∈A,y∈B{‖x− y‖∞}.

• for y ∈ R
ℓ with ℓ ∈ N

∗, ‖y‖ is the usual Euclidean norm.
• for T = (T1, T2) ∈ N

∗×N
∗, let [T ] = T1 T2 and T → ∞means T1∧T2 → ∞.

Let A ⊂ Z
2 \ {0} such that |A| < ∞. For t ∈ Z

2, define

Yt = (Xt+j)j∈A .

Moreover we define the following subsets of N∗ × N
∗:

IT =
{
t ∈ JT , {t}+A ⊂ JT

}
.

To show the consistency of their algorithm, Bickel and Levina prove a general
lemma about the estimation of the local conditional distribution function

FX|Y (x|y) = P(Xt ≤ x|Yt = y)

(see Theorem 2 in [4]). More precisely they establish the convergence of the
following sample cumulative conditional distribution function, defined by

FT (x|y) =
1

ZT

∑

s∈IT

1Xs≤x WbT (y − Ys) , (2.2)

for (x, y) ∈ S×SA and T ∈ N
∗×N

∗ such that IT 6= ∅. Here ZT =
∑

s∈IT
WbT (y−

Ys). Note that FT is a classical nonparametric regression estimator of the con-
ditional expectation E (1Xt≤x|Yt = y). We recall the following theorem whose
assumptions are reported to the Appendix.

Theorem 1 (Theorem 2 [4]). If X is a MMM satisfying assumptions (A1)–(A4)
(see section 6.1), then for all A ∈ Z

2 such that |A| < ∞,

sup
(x,y)∈S×SA

∣∣FT (x|y)− FX|Y (x|y)
∣∣→T→∞ 0.
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Note. Theorem 1 will also be used for our extension. Moreover an almost sure
convergence rate for this approximation will be given (see Theorem 4).

Using Theorem 1, Bickel & Levina show the consistency of their MMM algo-
rithm and also of the original spiral resampling algorithm of Efros and Leung,
using appropriated conditional independence properties (we refer to [4] for de-
tails). This resampling scheme uses the kernel regression estimation and requires
some regularity assumptions (see Assumptions (A1-4) in section 6.1). As it is
pointed in [4], these assumptions are perfectly plausible for most real textures:
the mixing property is natural for stochastic textures, the compactness assump-
tion is always satisfied since the number of gray levels is finite, and this number
is sufficiently high in most of real textures to make the smoothness assumptions
plausible.

However, the random fields used for the two algorithms described above must
satisfy suitable conditional independence properties. For example, when o = 1,
the rows of the MMM form a Markov chain. This is also the case for the Efros
& Leung algorithm for which the last simulated row on a square lattice depends
(conditionally to the previous rows) only on the last row: then it is easily seen
that the rows of a such stationary process form a Markov chain. Moreover if
o > 1, the rows on a square lattice evolve as a multivariate o−markovian time
series.

For a general Markov-Gibbs model, such properties do not hold in general and
it is not possible to simulate a sample using a single sweep. For example, consider
the simple example of the four nearest neighbor AR model with Gaussian white
noise

Xt = α
∑

‖j‖
∞

=1

Xt−j + ξt, t ∈ Z
2,

with 0 < |α| < 1
4 . Then it is shown in Guyon [18] (see p. 13, Theorem 1.3.2 and

its proof) that this Gaussian Markov random field does not admit a represen-
tation of the form

Xt =
∑

j∈K

ajXt−j + et, t ∈ Z
2,

where et is independent of (Xt−j)j∈J , J is a half space of Z2 and K is a finite
subset of J . However, such an “unilateral” representation is necessary in order
to apply the Markov property at each step of the MMM algorithm or the Efros
& Leung algorithm. For the simple class of linear gaussian random fields, the
unilateral type representation writes generally as an infinite linear expansion
(see [18], Example 1.3.3). Then for a general Markov random field, it would be
necessary to take in account of all the pixels previously simulated in order to
apply the MMM or the spiral algorithm. Of course, applications of some Markov
properties using a large neighborhood size o, provide an approximation of the
model (see [3]). A class of Markov random fields satisfying these unilateral type
Markov assumptions were introduced in [1] and [29]. These models have been
developed for image applications and they remain numerically efficient tools
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which approximate very well the general model, as shown by the simulations
given in [4]. The stationary models used in [4] satisfy the usual Markov property
even for the sites located on the boundary of a square lattice. Such processes
were characterized in Champagnat & al. [5] and as pointed by the authors, the
class of such models is restrictive compared to general MRF’s.

Having in mind other statistical applications than the texture synthesis prob-
lem, we believe that a resampling scheme that can apply to a general Markov
random field is of interest. For example, the simulation of missing data in me-
teorology, using an ordering for the different sites, seems not very appropriated.
This is why we investigate in the next section, an extension of the algorithms
described above for the general model using Gibbs sampling.

3. Extension of the resampling algorithm for a general
Markov-Gibbs model

The goal of this section is to study convergence properties of a resampling
scheme that can apply to more natural random fields than MMM. In particular,
the model is not supposed to satisfy assumption (2.1). We will use the non-
parametric estimators (2.2) of the local conditional distributions of the random
field. Basically, our extension of the algorithm given in [4] can be formulated as
follows:

1. Choose some values for the pixels {X∗
j /j ∈ RT } using the sample {Xj/j ∈

JT }.
2. Choose randomly a site j of RT , extract the neighborhood X∗

j+No
and

choose a new pixel Xs with a probability given by the conditional distri-
bution FT (constructed with A = No).

3. Repeat point 2.

HereNo denotes a full square centered at 0. The algorithm just formulated above
has similarities with the Gibbs sampler with a random visiting scheme used for
the simulation of a Markov random field. However, as it will be explained in
this section, this algorithm is not exactly a Gibbs sampler but just a Markov
chain approach for the simulation of a bootstrap sample (theoretically, the step
2 must be repeated infinitely often). Note that at each step we use a conditional
distribution with respect to a full neighborhood of a given site. Contrarily to
the MMM algorithm, there is no initialization with a seed.

3.1. An approximated Gibbs sampler for Markov random fields

In this paper we consider a Markov-Gibbs random field X over Z2 with a con-
tinuous compact state space S ⊂ R and we denote by µ its distribution. More
precisely, denoting by λS the Lebesgue measure on S and

No =
{
j ∈ Z

2 : 0 < ‖j‖∞ ≤ o
}
,
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we assume that the probability measure µ on SZ2

satisfies the following defini-
tion.

Definition 2. A probability measure µ on SZ
2

is said to be the distribution of a
stationary Markov random field X with neighborhood system No if there exists
a family of applications (called a Gibbs potential) Φ = {φA : SA → R, A ∈ S}
indexed by S, the set of all finite subsets of Z2 such that

φA(xA) = φA+s(xA), ∀(A, s) ∈ S × Z
2,

φA ≡ 0, if No ⊂ A,

and for V ∈ S, the conditional distributions of µ are given by:

µ (dxV |xV c) = P (XV ∈ dxV |XV c = xV c) (3.1)

=
1

ZV (xV c)
exp

(
∑

A∈S:A∩V 6=∅

φA(xA)

)
λ
(V )
S (dxV ), (3.2)

where ZV (xV c) is a normalization constant, λ
(V )
S denotes the product measure

on SV and V c = Z
2 \ V the complementary of V .

We refer to Guyon [18] for an introduction to Markov random fields. Us-
ing this formulation, it is easily seen that the following Markov properties are
satisfied:

P
(
Xt|XZ2\{t}

)
= P (Xt|Xt+No

) , t ∈ Z
2. (3.3)

The set t+No is called the set of neighbors of the site t. Moreover P
(
Xt|XZ2\{t}

)

is referred to the local conditional distribution (LCD). It is possible to show
that any stationary random field satisfying (3.3) with a positive conditional
density over S can be defined using a Gibbs potential Φ as in Definition 2. This
characterization is given by the Hammersley-Clifford theorem (see [18]) and has
been studied by several authors (see for example [3]). In general, a Markov
random field satisfies the condition

P (Xt|XC) = P
(
Xt|X(t+No)∩C

)
, t ∈ Z

2,

only if t + No ⊂ C. In contrast, the more restrictive class of MMM assumes
additional conditional independence properties (see property (2.1)).

A difficulty which arises with Gibbs random fields is the phase transition
problem. For a given potential Φ, several random fields distributions can satisfy
(3.1) and natural candidates are the cluster points of the probability kernels
given by the right hand side of (3.1), when V ր Z

2. In the sequel, we denote by
G(Φ) the set of probability measures whose conditional distributions are given
by (3.1). We refer to Georgii [17] for an introduction to Gibbs random fields and
the phase transition phenomenon.

In order to extend the consistency proof of Bickel and Levina to general
Markov random fields, we use the one point conditional distributions (2.2) with
A = No. However, in this case, the one point distribution (2.2) cannot be in
general the LCD of a random field.
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Proposition 1. Suppose that |IT | ≥ 2. Then when W is the Gaussian kernel,
the one point conditional law FT cannot be the LCD of a random field.

In particular, no Gibbs potential can be associated to FT when W is the
Gaussian kernel. It is well known that for a given one point conditional dis-
tribution, several constraints are required to be the conditional distribution of
a random field (see [18] p. 98). Those constraints are satisfied if the form of
the one point conditional distribution is given by a Gibbs potential, as in (3.1).
Thus, we could avoid this compatibility issue using a nonparametric estimator
of the Gibbs potential. Unfortunately, this kind of estimation is not very well
investigated in its full generality and its study is beyond the scope of this paper.

Nevertheless, we will use the conditional distributions FT and the principle
of the Gibbs sampler for the simulation of an approximated realization of the
random field X . We refer to [16] for the use of the Gibbs sampler (see also
[18] p211). Suppose that RT = {−uT , . . . , uT} × {−vT , . . . , vT } is a rectangle
of Z2 and define ∂RT = (RT +No) \ RT the boundary of RT . Then, given a

sequence z ∈ SZ
2

, the Gibbs sampler gives an approximated simulation of a
realization of the distribution µRT

(·|z) = P(XRT
|X∂RT

= z∂RT
). The principle

is to simulate a SRT−valued Markov chain with invariant distribution µRT
(·|z).

When G (Φ) = {µ}, the compactness assumption ensures that

lim
T→∞

µRT
(·|z)× δzRc

T
= µ

weakly, whatever the value of the boundary conditions z∂RT
. The transition P

(z)
RT

of this Markov chain is constructed using a visiting scheme for the sites of RT :
at each time a site is chosen, we replace the value at this site by a realization
of the conditional distribution FX|Y . A requirement is that each site has to be
visited infinitely often. Here are two well known examples of transitions for the
Gibbs sampler:

• The periodic visiting scheme. Here we denote by ≺ the lexicographic order
relation on RT . If x, x̃ ∈ SRT and s ∈ RT , we define the vectors x̃x(s) ∈
SNo such that x̃x(s)j = x̃s+j if s + j ≺ s and x̃x(s) = xs+j otherwise,
completed with the boundary conditions xs+j = zs+j or x̃s+j = zs+j if
the site (s, j) ∈ RT × No is such that s + j /∈ RT . Then we define the
following transition on SRT :

P
(z)
RT

(x, dx̃) = ⊗s∈RT
FX|Y (dx̃s|x̃x(s)) . (3.4)

• The random visiting scheme with uniform law uses the transition:

P
(z)
RT

(x, dx̃) =
1

|RT |

∑

s∈RT

∏

u∈RT ,u6=s

δxu
(dx̃u)× FX|Y (dx̃s|xs+No

) . (3.5)

From now on, we fix an arbitrary element z ∈ SZ
2

for the boundary conditions of

the Gibbs sampler. Then we just write PRT
instead of P

(z)
RT

and the conditional
distribution µRT

(·|z) is simply denoted by µRT
.
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Suppose that we use the conditional distributions FT and the Gibbs sampler
to synthesize a new texture on the rectangle RT . We suppose here that as-
sumptions of Theorem 1 hold. Though the conditional distributions FT are not
compatible with a Markov random field, one can use those distributions to sim-
ulate a Markov chain. The transition of this Markov chain can be constructed
by replacing FX|Y by FT in (3.4) or (3.5) and we define

P ∗
T,RT

(x, dx̃) = ⊗s∈RT
FT (dx̃s|x̃x(s)) , (3.6)

or

P ∗
T,RT

(x, dx̃) =
1

|RT |

∑

s∈RT

∏

u∈RT ,u6=s

δxu
(dx̃u)× FT (dx̃s|xs+No

) . (3.7)

Then if the marginal distribution of the Markov chain with transition P ∗
T,RT

converges a.s to an invariant probability µ∗
T,RT

on IRT

T satisfying

µ∗
T,RT

= P ∗
T,RT

µ∗
T,RT

, (3.8)

we hope that µ∗
T,RT

is not too far from the unique invariant distribution µRT

associated to the transition PRT
(the unicity holds if the transition PRT

is
positive, see [24]).

Note. Comparated to the method studied in [4], our extension uses the same
nonparametric estimation but requires several sweeps on RT for the simulation
of one bootstrap sample and then a high computational cost. Numerically, a sim-
ulation procedure using a single sweep is of course a great advantage, especially
for the texture synthesis problem. However, without additional assumptions of
conditional independence, it is not possible to simulate a sample using a single
sweep.

3.2. Asymptotic when RT = R

Here we consider the case RT = R for all T (i.e we consider a fixed rectangle R
for the simulation and an increasing size for the original sample). We are going
to study the convergence of the sequence (µ∗

T,R)T , defined in (3.8), to the dis-
tribution µR. Usually, the size of the bootstrap sample must increase to infinity
with the size of the original sample. This is the case for statistical applications
(see [28] for applications to the distribution of some linear statistics) but also for
the texture synthesis problem, where the bootstrap sample is generally larger
than the original one. Then the asymptotic investigated here is not the most
natural, but a consistency result can be stated using the assumptions of The-
orem 1 only. We also point out that the family of distributions (µ∗

T,R)R is not
ensured to be coherent, in the sense that

µ∗
T,R (dxU |zUc) 6= µ∗

T,U (dxU ),
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for a square U such that U ∪ (U +No) ⊂ R. For example if U = {0}, one have
µ∗
T,U (dxU ) = FT (dx0|zNo

) which cannot be the conditional distribution of a
measure defined on a product (see Proposition 1 and its proof). This problem
suggests that the shape of the bootstrap distributions depends not only on the
size of the sample T , but also on the size of R. It also emphasizes that a classical
nonparametric estimation of the LCD is not enough to estimate the full Markov
model: this point is an important difference with respect to the markovian time
series studied in [28].

The following theorem states a result of continuity of the invariant measure
µ∗
T,R with respect to the transition P ∗

T,R. Since the state space of the process X
is compact, Theorem 1 and a tightness argument lead to the following result

Theorem 2. For T ∈ N
2 such that IT 6= ∅, let P ∗

T,R be the transition defined in
(3.4) or (3.5) replacing FX|Y by FT . Assume that the assumptions of Theorem 1
hold. Then P ∗

T,R has a unique invariant distribution µ∗
T,R and for all initial value

x(0) ∈ IRT , the approximated Gibbs sampler converges to µ∗
T,R in distribution.

Moreover we have almost surely:

lim
T→∞

µ∗
T,R = µR = P (XR|X∂R = z∂R) , in distribution.

Notes

1. It is easily seen that the regularity assumption (A3) of Theorem 1 is
satisfied when the potential Φ is a family of continuously differentiable
applications.

2. Theorem 2 shows the consistency of the bootstrap distribution only for the
simulation on a fixed rectangle R. Of course, it is more interesting to inves-
tigate the case of increasing bootstrap samples X∗

RT
with RT ր Z

2. The
difficulty for such an asymptotic is that no information seems available for
the bootstrap distribution µ∗

T,RT
except its invariance with respect to the

Markov kernel P ∗
T,RT

. In particular, the conditional distributions of µ∗
T,RT

are unknown and it is difficult to derive properties of some marginal distri-
butions. However, Theorem 2 suggests that such an asymptotic should be
possible if the growth of the sequence (RT )T is moderated and G(Φ) = {µ}.
In the next section, we show that the sequence (RT )T can be chosen ar-
bitrarily under a strong assumption on the LCD.

3.3. Asymptotic when RT ր Z
2

The case RT ր Z
2 is the most natural for the bootstrap and its applications

(e.g texture synthesis). We only consider the case of the Gibbs sampler with a
random visiting scheme (3.5). Our aim here is to study the convergence of the
sequence (µ∗

T,RT
)T to µ, the distribution of the random field X . The difficulty

is that the transition P ∗
T,RT

(x, ·) defined in (3.5) converges weakly to the Dirac
measure δx and this limit is not informative to study the cluster points of the
sequence (µ∗

T,RT
)T . On the other hand, the single site conditional distributions
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associated to µ∗
T,RT

are not FT in general and are just defined through the im-
plicit equation µ∗

T,RT
= P ∗

T,RT
µ∗
T,RT

; a tractable expression of the bootstrap
distributions seems not available. Moreover, the sequence (µRT

)T can have sev-
eral cluster points if the random field exhibits a phase transition, i.e |G(Φ)| > 1.
A sufficient condition ensuring the unicity of the Gibbs measure is the Dobrushin
contraction condition (see [8]). A survey of the Dobrushin contraction technique
and its application is given in [15]. As we will see, this kind of condition is also
sufficient to give a positive answer for the convergence of the sequence (µ∗

T,RT
)T .

Let us first recall the definition of the contraction coefficients in our setting. If
| · | denotes the usual distance on S, we recall that the Wasserstein metric of
order 1 is defined for two distributions G and H on S by

dW (G,H) = sup
|
∫
fdG−

∫
fdH |

δ(f)
,

where the supremum is taken over all Lipschitz functions f on S with:

δ(f) = sup
a 6=b

|f(a)− f(b)|

|a− b|
< ∞.

Another expression is given by

dW (G,H) =

∫

S

|G(t)−H(t)|dt.

Define for j ∈ No,

Lj = sup

{
dW

(
FX|Y (·|xNo

) , FX|Y (·|x̃No
)
)

|xj − x̃j |
/x = x̃ off j

}
, (3.9)

Then it can be shown (see [15]) that under the condition

α =
∑

j∈No

Lj < 1, (3.10)

we have G(Φ) = {µ}.
Also for R ⊂ Z

2, denote by LR the class of Lipschitzian functions f on SR

satisfying

|f(u)− f(v)| ≤
∑

i∈R

|ui − vi|δi(f),
∑

i∈R

δi(f) < ∞

where

δi(f) = sup

{
|f(u)− f(v)|

|ui − vi|
/u = v off i

}
.

Finally, we denote by dR the distance between probability measures on SR

defined by

dR(α, β) = sup





∣∣∣∣
∫

fdα−

∫
fdβ

∣∣∣∣ : f ∈ LR, L(f) =
∑

j∈R

δj(f) = 1



 .

Then we have the following result.
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Theorem 3. Assume (3.10). Then we have almost surely

dR
(
µ∗
T,R, µR

)
≤

1

1− α
sup

y∈SNo

∫

S

∣∣FT (x|y) − FX|Y (x|y)
∣∣ dx.

Moreover, for an arbitrary sequence of rectangles RT ր Z
2, we have almost

surely

lim
T→∞

µ∗
T,RT

× δzRc
T
= µ weakly.

Notes

1. Condition (3.10) is a restrictive assumption because it assumes that the
random field X has very weak interactions. Under this condition and us-
ing Theorem 4, a rate of convergence for the invariant measure of the
approximated Gibbs sampler is available.
We did not prove the convergence of µ∗

T,RT
to the distribution µ of the

sample assuming only that there is no phase transition. As mentioned
before, the main difficulty is due to the lack of available local properties
of the measure µ∗

T,RT
, e.g local conditional distributions. This problem

could be avoided using a nonparametric estimation of the Gibbs potential
(although the corresponding simulation scheme will probably be no more
linked to a resampling method). Indeed, in this case, an estimation of the
local conditional distribution would be compatible with the existence of
joint distributions, which is a failure in our context as shown in Propo-
sition 1. Nonparametric estimators of the Gibbs potential seem to have
been investigated only for particular cases. One can mention the work of
Dachian [6] who considers {0, 1}−valued random fields or [7] for the non-
parametric estimation of a pairwise-interaction Gibbs point process. On
the other hand, an estimation of each function ΦC where C is a clique
of No and ΦC is defined in (3.1) could lead to a much more complicated
procedure for the estimation of the local conditional distribution than the
method studied here which is a simple extension of that of Bickel and
Levina, using nonparametric regression estimation.

2. We mention that the more classical Dobrushin condition for unicity (i.e
G(Φ) = {µ}) is formulated using the total variation distance. In this case
the condition (3.10) becomes

1

4

∑

j∈No

sup

{∫
|fX|Y (x|y)− fX|Y (x|y

′)|dx, y = y′ off j

}
< 1, (3.11)

But contrarily to the Wasserstein metric, the total variation distance is
not compatible with the convergence stated in Theorem 1 for the LCD.

3. In this paper, we study the Gibbs sampler with random scanning using the
uniform distribution. We mention that one can also use different distribu-
tions {cj,T : j ∈ RT } for the visiting scheme, for which limT→∞ cT,j =
cj > 0 with

∑
j∈Z2 cj = 1. In this case, the cluster points of the sequence
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(µ∗
T,RT

)T can be shown to be invariant measures for an infinite volume
Gibbs sampling. Additional developments are required in order to study
the unicity of these cluster points; this problem will be investigated in a
subsequent paper.

3.4. A convergence rate in Theorem 1

In this section, we establish an almost sure convergence rate for the estimators
(2.2), which is a result of independent interest. Here we consider a random field
X and a finite subset A of Z2 \ {0}. A convergence rate for the Theorem 2 of [4]
can be established. In fact, as mentioned previously, the proof of this theorem
does not use the MMM property (2.1) and applies to more general random fields.
Following Bickel and Levina’s proof, we obtain the following result.

Theorem 4. If X is a is a random field satisfying assumptions (A1-4), then
for all A ∈ Z

2 \ {0} such that v = |A| < ∞,

sup
(x,y)∈S×SA

∣∣FT (x|y)− FX|Y (x|y)
∣∣ = O

(
[T ]−γ

)
a.s

where 0 < γ < τ−2
2(v+1)(τ+v+2) and b = bT = O([T ]−δ) with δ = τ−2

2(v+1)(τ+v+2) .

Notes

• The convergence rate in Theorem 4 is depending on a power law of [T ] and
the maximal exponent of convergence rate that we can obtain is 1

2(1+v)

(when τ → ∞ for the mixing assumption). Note that if o = 0 (correspond-
ing to an independent random field) then v = 0 and the convergence rate
is arbitrary close to [T ]1/2.

• From this result, one can also obtain a convergence rate for joint distribu-
tions (see in particular Theorem 6.1). Such a rate could be interesting to
obtain additional properties of the bootstrap distribution.

3.5. The choice of parameters

From the above results, we have a theoretical method to resample a Markov
random field. It is enough to use the sample {(Xs, Ys)/s ∈ IT } and to run
an approximated Gibbs sampler with the conditional distribution FT evaluated
with the help of a kernel W . But from a practical point of view, the choice of
two parameters need to be discussed: the neighborhood size o in the Markov
property and the value of the bandwidth bT . In this paper, we focus on the
bandwidth parameter bT assuming that the neighborhood size o is known.

The quality of the bootstrap approximations depends heavily on how close
the function FT (·|y) is to the LCD FX|Y (·|y). Usually, for the nonparametric
kernel regression, a value of bT which is too small will give predictions with too
high variance while a value of bT which is too large will lead to an oversmooth
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function with high bias. In [28], the authors propose to equilibrate the bias
and the variance, fitting a Gaussian AR process to the data. If X denotes a
p-Markovian time series, they assume that X satisfies the following equation

Xt = m+ a1Xt−1 + . . .+ apXt−p + ξt, t ∈ Z,

where ξ is a Gaussian white noise (ξ0 ∼ N (0, σ2)). In this case, assuming that
the kernel W satisfies W (y) = Πp

i=1W (yi) (e.g the Gaussian kernel), the number
bT = bT (y) which minimizes the quantity

∫
(Bias (FT (x|y)))

2
+ Var (FT (x|y)) dx,

is given by (see [28])

bT (y) =

(
σ4W1

TfY (y)W 2
2 (2σ2C1(y)2 + 0.25C2

2)

) 1
p+4

, (3.12)

where
C1(y) = aTΓ−1

p (y − κ) , C2 = aTa,

with

a = (a1, . . . , ap)
′
, κ = (E(X0), . . . ,E(X0))

′, Γp = (Cov (Xt−i,Xt−j))1≤i,j≤p
.

Moreover W1 =
∫
W 2(y)dy and W2 =

∫
y21W (y1)dy1 < ∞. Note that an esti-

mator b̂AR(y) of bAR(y) can be derived substituting the unknown quantities in
(3.12) by sample estimates or fitting the linear model to the data. The advan-
tage of such an approximation is that the values of bAR depend on the particular
state y of the process. In fact this method can also be adapted to the case of
random fields, assuming in our case

Xt|Yt ∼ N



m+
∑

j∈No

ajXt−j , σ
2





and using a straightforward modification of (3.12).
One other approach is to use cross validation in the spirit of Härdle and Vieu

[19]. For example, one can compute the kernel estimator using a part of the
sample and then a prediction error using the second part of the sample. In [19],
the case of the leave-out technique is studied for a two-dimensional time series.

We propose to combine the two approaches mentioned above. More precisely,
for a particular state y, we define a bandwidth of the form

bT (y) = CT × bAR(y). (3.13)

Then we first compute an estimator b̂AR as in [28] using the formula (3.12) and
after the constant CT is estimated using cross-validation for the kernel estima-
tion of the mean E (Xt|Yt), separating the sample into two parts of equal size.
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In this case, the scale parameter CT could correct the misspecification made by
fitting the Gaussian model to the data. Of course, one can modify this approach
using cross-validation for the kernel estimation of E (1Xt≤x|Yt) and minimizing
an integrated error over x. One can also use the leave-out method for the sec-
ond step or just one step with cross validation only. However, more complicated
methods will require more programming effort. In the next section, we use the
two-step method described previously for the choice of the bandwidth param-
eter. We also mention that these methods also apply to the MMM algorithm,
with appropriated modifications.

4. The example of a pairwise-interaction Gibbs potential

In this section we consider the case of a Markov random field whose state space
is S = [a, b], the reference measure is the Lebesgue measure and the (translation
invariant) Gibbs potential is given for A ⊂ N1 by

φA(xA) =





βx0, if A = {0},
βjx0xj , if A = {0, j} and ‖j‖∞ = 1,
0, otherwise.

(4.1)

A random field X associated with the previous Gibbs potential is a nearest
neighbor Markov random field (i.e o = 1), whose one point conditional densities
are given for i ∈ Z

d by

fX|Y (xi|yi) =
αie

xiαi

ebαi − eaαi
,

αi = β +
∑

j∈N1

βjxi+j .

It is a particular example of a continuous spin Ising model. The following propo-
sition makes condition (3.10) more precise in this context:

Proposition 2. If
∑

j∈N1
|βj | <

12
(b−a)2 , then condition (3.10) holds.

Notes

• One can also extend this result for a neighborhood size o ≥ 1.
• The more classical unicity condition of Dobrushin which is expressed in
term of total variation distance (see 3.11) is less easy to precise. One can
consider the stricter condition given by Simon [32] which writes

∑

A∋i

(|A| − 1)

(
sup
x

ΦA(xA)− inf
x
ΦA(xA)

)
< 2.

For the potential defined in (4.1), when a = −b < 0, we obtain the condi-
tion

∑
j∈No

|βj | <
1
b2 which is more restrictive than that of Proposition 2.
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(a) (b)

Fig 3. Dependence with respect to boundary conditions (200 × 200 pixels).

• For a potential given by (4.1), it is straightforward to verify the regu-
larity assumptions (A2) and (A3). However the assumption (A1) is less
clear. It is well known that mixing conditions with exponential decays hold
under the usual Dobrushin unicity condition (see [17]).When for example
b = −a, assumption (A1) is satisfied if

∑
j∈No

|βj | <
1
b2 (which implies the

condition (3.11) by the remark above). Without condition (3.11), it is not
easy to prove mixing properties of the random field. This problem occurs
in particular if we assume only the weaker contraction condition given in
Proposition 2. Nevertheless, the contraction condition (3.10) implies co-
variance inequalities between Lipschitzian functionals of some marginals
of the unique Gibbs measure (see [15]). In this case, one can verify the
Lipshitzian type mixing conditions introduced by Doukhan & Louichi [10]
and an analogue of inequality (1) for the moment of partial sums is avail-
able (see [11]). Thus, with this slight modification of assumption (A1),
Theorem 1 still holds. Details are omitted.

The problem of phase transition is illustrated in figure 3 when all the βj ’s
equal to 0.5, β = 0 and S = [−1, 1]. In this case, a simulation of a sample of size
200 × 200 does not give the same distribution when the boundary conditions
satisfy z ≡ −1 or z ≡ 1, as it is usually the case in statistical mechanics when
the inverse of the so-called temperature (here 0.5) is sufficiently high to ensure
that |G(Φ)| > 1.

When S = [−1, 1], Figure (4) shows a sample and its replicate in two cases.
For the first case, we set β = 0 and the βj ’s are given by the following array

−1.2 0 1.2
0 × 0
1.2 0 −1.2

,
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(a) (b) (c) (d)

Fig 4. (a) sample 40× 40, (b) replicate 40 × 40, (c) sample 60 × 60, (d) replicate 60× 60.

while for the second case, we set β = 1 and the βj ’s are given by the array

1.5 1.5 −1.5
−1.5 × −1.5
−1.5 1.5 1.5

Observe that the condition given in Proposition 2 does not hold, but we choose
the coefficients βj large enough in order to make the “attraction-repulsion” phe-
nomenon in the Gibbs potential sufficient for a visual analysis of the interactions
and of the quality of the resampling. Indeed, condition (3.10) is related to weak
interactions for the random field and local characteristics of the sample are less
distinguishable. In figure 3, in order to avoid a possible dependency of the sim-
ulation with respect to the boundary conditions, we use the same boundary for
the sample and the bootstrap replicate.

Of course, one could also estimate the distribution of some linear statistics as
in [28] and a comparison with the MMM algorithm studied in [4] or the block
method [30] would be of interest. This can be done for model (4.1), under the
condition of Proposition 2 which ensures the consistency of the bootstrap distri-
butions. Those aspects will not be considered in the present paper: a statistical
comparison between the MMM and the method of Gibbs sampling requires the
simulation of several bootstrap samples for several original samples and then a
high computational coast. This kind of comparison could be investigated more
seriously in a subsequent paper.

5. The approach of Paget and Longstaff for texture synthesis and
simulation examples

5.1. Paget and Longstaff method

For the texture synthesis problem, Paget and Longstaff [27] investigate a non-
parametric method also based on the Gibbs sampler, using kernel density estima-
tion, but the consistency of their algorithm was not considered. Their nonpara-
metric estimator of the LCD is not directly linked to the regression estimation
and resampling but all the results formulated in section 3 have their analogue.
However, we choose to formulate our results in a resampling context and in the
spirit of the existing literature ([4, 28]).
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Fig 5. Grid organization via decimation (source [27]).

For highly structured textures, the convergence of the Gibbs sampler can
lead to some numerical difficulties, especially if the neighborhood size o must
be very large to capture the global characteristics of the texture and if the
Gibbs potential of the underlying stochastic process has a large number of local
minima. In this case, a huge number of iterations could be necessary in order
to reach the equilibrium.

Then Paget and Longstaff proposed a multiscale algorithm, using a multigrid
representation of an image, as shown in Figure 5 which is taken from [27]. If
S0 = [0,M1] × [0,M2] represents the pixel’s sites of an image x0, the lower
resolutions, or higher grid levels l > 0, are decimated versions of the image at
level l = 0. For a grid level l > 0, the image xl is defined on the lattice Sl ⊂ S,
where

Sl = {s = (2li, 2lj)/0 ≤ i ≤ M1/2
l, 0 ≤ j ≤ M2/2

l}.

The set of sites Sl at level l represents a decimation of the previous set of sites
Sl−1 at the lower grid level l− 1. The neighborhood system is redefined for each
grid level l > 0:

N l
t = {s ∈ Sl/ ‖t− s‖∞ ≤ o}.

For a level grid l, the Gibbs sampling is not applied to the sites s ∈ Sl+1. In
fact, a multiscale representation of a Markov random field is used (see [23] for
a precise definition). To better incorporate the multiscale relaxation described
above, Paget and Longstaff have also introduced a pixel temperature function
in order to determine when to stop the Gibbs sampler at one level and start it
at the next level. Let l be a grid level. A pixel temperature is incorporated in
equation (2.2) by modifying the form of the difference

d = y − Ys. (5.1)

In fact, at the beginning of the stochastic relaxation at a level l, they define for
a site j ∈ Sl of the output texture the pixel temperature cj as follows: cj = 0 if
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j ∈ Sl+1 and cj = 1 otherwise. The difference d is replaced by d′ such that:

d′j = (1− ct+j)(xt+j −Xs+j), j ∈ No.

When a pixel xt has been relaxed in the stochastic relaxation process, Paget
and Longstaff set:

T̃t = max{0,
ξ +

∑
j∈No

ct+j

|No|
}

where ξ < 0 is fixed by the user.
Here, the idea is to provide a total confidence to pixels coming from the

preceding resolution and to progressively increase the confidence level of a pixel
synthesized in the present resolution. When cj = 0 ∀j ∈ Sl, the stochastic
relaxation process is considered to have reached an equilibrium state, indicating
that the image can be propagated to the next lower grid level. This notion of
temperature is related to the global temperature used in stochastic annealing
(see [16]). Although we have incorporated this pixel temperature function for
texture synthesis, we will not study in this paper statistical properties of such
an approximation.

5.2. Texture synthesis examples

In order to illustrate the behaviour of the resampling scheme for the texture
synthesis problem, we use the multiscale algorithm with the pixel temperature
function described above in order to simulate a new texture from a sample. The
Gaussian kernel is chosen for the simulations.

• The neighborhood size is set at o = 3 or o = 4.
• As in [26], we set ξ = −1. Moreover 4 or 5 grid levels are used for the
synthesis.

Figure 6 shows a step of the synthesis at the highest resolution. The Gibbs
sampler runs in the raster ordering (the periodic visiting scheme (3.4)) and

Fig 6. The Gibbs sampler and the highest resolution.
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(a) (b)

Fig 7. (a) Original texture 160× 160 pixels, (b) Synthesis with the multiresolution algorithm
200× 200 pixels.

Fig 8. Original texture (128 × 128) and synthesis (200× 200).

Figure 6 shows the first sweep. One can see that the lower resolutions give the
shape of the texture. Moreover the pixel temperature function helps for a good
initialization of the sampler. Simulation results are also given in Figure 8 and
Figure 7 and the visual quality is comparable to the simulations given in [4].
Note that small discontinuities appear for the bootstrap sample in Figure 7.
Those problems could be explained by the presence of several local maxima
for the true probability distribution of the sample but also by additional local
maxima due to the nonparametric estimation.

A comparison between the different algorithms in the texture synthesis setting
is not the objective of the present paper. Generally, the MMM and the multiscale
algorithm give good results and the computer graphics community has explored
several variants and complex computational tools very well adapted for this
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difficult problem over the last decade (see in particular [22, 12] or [21]), in
particular for improving the spiral algorithm of Efros & Leung. Instead of a
visual appreciation of the simulations, we believe more informative a comparison
of some statistical properties of the different resampling schemes used in their
simplest form, in order to bootstrap the distribution of a simple model (for
example model (4.1)).

6. Appendix

6.1. Assumptions of Theorem 1

(A1) The random field X is strictly stationary and α-mixing: for k, c ∈ N
∗,

we assume that the strong mixing coefficients

αX(k, c) = sup
{
|P (AB)− P (A)P (B)|, A ∈ σ(XE), B ∈ σ(XF )

}
,

where the suppremum is taken over all the subsets E,F ⊂ Z
2 such that

d(E,F ) = k, |E|+ |F | ≤ c, satisfy

∞∑

k=1

(k + 1)2c−1αX(k, c)ǫ/(c+ǫ) < ∞,

for a given ǫ > 0 and a real number τ > 2 such that for c = 2 ⌈τ/2⌉.
(A2) The distribution of Xt has a compact support S ⊂ R.
(A3) FX,Y = P (Xt ≤ ·, Yt ≤ ·), FX|Y and FY = P (Yt ≤ ·) have bounded

continuous strictly positive densities (denoted fX,Y , fX|Y and fY respec-
tively) with respect to Lebesgue measure. Moreover, there exists L > 0
such that for any y, y′ ∈ SA, any x ∈ S,

∣∣∣∣
∫ x

−∞

fX,Y (z, y)dz −

∫ x

−∞

fX,Y (z, y
′)dz

∣∣∣∣ ≤ L ‖y − y′‖ .

(A4) The family of kernels (W (ℓ))ℓ∈N∗ is such that W (ℓ) : Rℓ → (0,∞) are
bounded, symmetric and first-order Lipschitz continuous functions such
that for all ℓ ∈ N

∗,
∫

uW (ℓ)(u)dλℓ(u) = 0 and

∫
‖u‖W (ℓ)(u)dλℓ(u) < ∞.

Moreover, the width of W
(ℓ)
b is supposed to be such that b = bT =

O([T ]−δ), with δ > 0.

6.2. Proof of Theorem 4

We follow the proof of theorem 2 of Bickel and Levina in order to compute a
convergence rate. We first recall the following lemma which proof can be found
in [9].
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Lemma 1. (Moment inequality). Let Ft be a real-valued random field indexed
by I ⊂ Z

d satisfying conditions (A1). If EFt = 0, Ft ∈ L
τ then there exists a

constant C depending only on τ and mixing coefficients of Ft such that

E

∣∣∣∣∣
∑

t∈I

Ft

∣∣∣∣∣

τ

≤ Cmax
(
L(τ, ǫ), L(2, ǫ)τ/2

)
,

where

L(κ, ǫ) =
∑

t∈I

(
E |Ft|

κ+ǫ
)κ/(κ+ǫ)

.

It is easy to see that if supt ‖Ft‖∞ ≤ M , then we obtain:

E

∣∣∣∣∣
∑

t∈I

Ft

∣∣∣∣∣

τ

≤ CM τ |I|τ/2 . (6.1)

For (x, y) ∈ S × SA, we set:

rT (x, y) = [T ]−1
∑

s∈IT

1(−∞,x](Xs)Wb(y − Ys),

r(x, y) =

∫ 1(−∞,x](z)fX,Y (z, y)dz,

fT (y) = [T ]−1
∑

s∈IT

Wb(y − Ys).

We have:

FT (x|y) =
rT (x, y)

fT (y)
, FX|Y (x|y) =

r(x, y)

fY (y)
. (6.2)

Following the proof of lemma A2 in [4], we prove the following result

Lemma 2. Under assumptions (A1)–(A4), for any x ∈ R

sup
(x,y)∈S×SA

|rT (x, y)− r(x, y)| = O([T ]−γ)

for 0 < γ < τ−2
2(v+1)(τ+v+2) .

Proof of Lemma 2 In this proof, we will denote by C > 0 a generic constant
which does not depend on T .

Let δ > 0 such that bT = O
(
[T ]−δ

)
, then the proof of lemma A2 in [4] leads

to
sup

(x,y)∈S×SA

|ErT (x, y)− r(x, y)| = O
(
[T ]−δ

)
. (6.3)

Then we need to bound sup(x,y)∈S×SA |rT (x, y)− ErT (x, y)|.
As in [4], we define

Zt,T (x, y) = 1(−∞,x](Xt)WbT (y − Yt)− E (1Xt≤xWbT (y − Yt))

and we need to bound sup(x,y)∈S×SA

∣∣ 1
[T ]

∑
t∈IT

Zt,T (x, y)
∣∣.
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As S×SA is compact, we can cover S× SA with NT cubes Ii,T with centers
(xi, yi) and sides LT for the supremum norm. Without loss of generality, we
suppose x1 ≤ · · · ≤ xNT

and we set x0 = x1 − LT and xNT
= xNT

+ LT . Then

sup
(x,y)∈S×SA

∣∣∣∣∣[T ]
−1
∑

t∈IT

Zt,T (x, y)

∣∣∣∣∣

≤ max
1≤i≤NT

∣∣∣∣∣[T ]
−1
∑

t∈IT

Zt,T (xi, yi)

∣∣∣∣∣

+ max
1≤i≤NT

sup
(x,y)∈(S×SA)∩Ii,T

∣∣∣∣∣[T ]
−1
∑

t∈IT

(Zt,T (x, y)− Zt,T (xi, yi))

∣∣∣∣∣

= I + II.

• First let us deal with term II. Using assumption (A4) for the kernel, we
have for t ∈ IT and x ∈ (xi−1, xi]:

|Zt,T (x, y) − Zt,T (xi, yi)|

≤ C
(
b
−(v+1)
T ‖y − yi‖+ b−v

T

(1xi−1<Xt≤xi
+ P(xi−1 < Xt ≤ xi)

))

≤ C
(
b
−(v+1)
T LT + b−v

T

(1xi−1<Xt≤xi
+ P(xi−1 < Xt ≤ xi)

))
.

We choose LT = [T ]−β and we set Ui,t = 1]xi−1,xi](Xt) − P(xi−1 < Xt ≤
xi+1). Note that assumption (A2) about the existence of densities allows
to derive the bound:

P(xi−1 < X0 ≤ xi) ≤ CLT .

We have:

sup
(x,y)∈(S×SA)∩Ii,T

∣∣∣∣∣[T ]
−1
∑

t∈IT

(Zt,T (x, y)− Zt,T (xi, yi))

∣∣∣∣∣

≤ C

(
[T ]δ(v+1)−β + [T ]vδ−1|

∑

t∈IT

Ui,t|+ [T ]vδP(xi−1 < X0 ≤ xi)

)

≤ C

(
[T ]δ(v+1)−β + max

1≤i≤NT

[T ]vδ−1|
∑

t∈IT

Ui,t|

)
.

Now we consider a real number γ < τ−2−2vδτ−2β(v+1)
2τ .

SinceNT = O(L
−(v+1)
T ) = O

(
[T ]β(v+1)

)
, we obtain using (A1) and lemma 1

P

(
max

1≤i≤NT

[T ]vδ−1

∣∣∣∣∣
∑

t∈IT

Ui,t

∣∣∣∣∣ > [T ]−γ

)
≤

NT∑

i=1

[T ](γ+vδ−1)τ
E

∣∣∣∣∣
∑

t∈IT

Ui,t

∣∣∣∣∣

τ

≤ C[T ]β(v+1)+(γ+vδ−1)τ+ τ
2 .
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By the choice of γ, we have β(v + 1) + (γ + vδ − 1)τ + τ
2 < −1 and we

deduce from the Borel Cantelli lemma that

max
1≤i≤NT

[T ]vδ−1

∣∣∣∣∣
∑

t∈IT

Ui,t

∣∣∣∣∣ = O
(
[T ]−γ

)
a.s, γ <

τ − 2− 2vδτ − 2β(v + 1)

2τ
.

Now using the previous inequalities, we deduce that:

II ≤ O
(
[T ]δ(v+1)−β + [T ]−γ

)
, γ <

τ − 2− 2vδτ − 2β(v + 1)

2τ
. (6.4)

• Now we turn on the term I. For a real number γ̃ < τ−2−2vδτ−2β(v+1)
2τ , we

have using (A1) and lemma 1:

P(I > [T ]−γ̃) ≤
NT∑

i=1

[T ](γ̃−1)τ
E

∣∣∣∣∣
∑

t

Zt,T (xi, yi)

∣∣∣∣∣

τ

≤ CNT [T ]
(γ̃−1)τ+ τ

2 b−vτ
T

≤ C[T ]β(v+1)+(γ̃−1)τ+ τ
2 +δvτ .

By the choice of γ̃, we have

β(v + 1) + (γ̃ − 1)τ +
τ

2
+ δvτ < −1,

and by the Borel Cantelli lemma, we have

I = O
(
T−γ̃

)
a.s, γ̃ <

τ − 2− 2vδτ − 2β(v + 1)

2τ
.

Now we choose the number β such that:

β − δ(v + 1) =
τ − 2− 2vδτ − 2β(v + 1)

2τ
.

This leads to β = τ−2+2τδ
2(v+τ+1) and to the following rate:

I + II = O
(
[T ]−γ

)
, γ <

τ − 2− 2δ((v + 1)2 + vτ)

2(v + τ + 1)
.

Finally, we choose δ for an equilibrium with the bound (6.3), solving the equa-
tion:

δ =
τ − 2− 2δ((v + 1)2 + vτ)

2(v + τ + 1)
.

This leads to:

δ =
τ − 2

2(v + 1)(τ + v + 2)
> 0,

which gives the rate given by the Lemma 2. �
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Proof of Theorem 4 We write:

∣∣FT (x|y)− FX|Y (x|y)
∣∣

=
1

fT (y)

∣∣rT (x, y)− r(x, y) + r(x, y) − FX|Y (x|y)fT (y)
∣∣

≤
1

fT (y)

(
|rT (x, y)− r(x, y)| + FX|Y (x|y) |fT (y)− fY (y)|

)
.

By lemma 2, we have supx,y |rT (x, y)−r(x, y)|, supy |fT (y)−fY (y)| = O(T−γ)

a.s with 0 < γ < τ−2
2(v+1)(τ+v+2) . Since by (A2), infy∈SA fY (y) > 0 and

sup(x,y)∈S×SA FX|Y (x|y) ≤ 1, we get the result. �

6.3. Proof of Proposition 1

Suppose that Q is a probability measure on E = IZ
2

T whose one point conditional
distributions are given by FT . For h ∈ Z

2, we denote by ph : z 7→ zh the
projection defined on E. We consider k ∈ (N∗)2 and i ∈ No such that {k, k+i} ⊂
IT . We have:

Q (p0 = pi = Xi+k|ph = Xk, h /∈ {0, i})

Q (p0 = pi = Xk|ph = Xk, k /∈ {0, i})

=
Q (p0 = Xi+k|pi = Xi+k, ph = Xk, h /∈ {0, i})

Q (p0 = Xk|pi = Xi+k, ph = Xk, h /∈ {0, i})

×
Q (pi = Xi+k|ph = Xk, h 6= i)

Q (pi = Xk|ph = Xk, h 6= i)

=
Q (p0 = Xi+k|pi = Xi+k, ph = Xk, h /∈ {0, i})

Q (p0 = Xk|pi = Xi+k, ph = Xk, h /∈ {0, i})

×
Q (p0 = Xi+k|ph = Xk, h 6= 0)

Q (p0 = Xk|ph = Xk, h 6= 0)

On the other hand, we have also:

Q (p0 = pi = Xi+k|ph = Xk, h /∈ {0, i})

Q (p0 = pi = Xk|ph = Xk, h /∈ {0, i})

=
Q (pi = Xi+k|p0 = Xi+k, ph = Xk, h /∈ {0, i})

Q (pi = Xk|p0 = Xi+k, ph = Xk, h /∈ {0, i})

×
Q (p0 = Xi+k|ph = Xk, h 6= 0)

Q (p0 = Xk|ph = Xk, h 6= 0)

Using thatW (u) = (2π)−v/2 exp(−‖u‖2/2) as well as the form of the distribu-

tions FT , the equality between the two expressions of Q(p0=pi=Xi+k/ph=Xk,k/∈{0,i})
Q(p0=pi=Xk/ph=Xk,k/∈{0,i})

writes:
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|X2i+k −Xi+k|
2 +

∑

h∈No\{i}

|Xi+k+h −Xk|
2 −

∑

h∈No\{i}

|Xk+h −Xk|
2

= |Xk −Xi+k|
2 +

∑

h∈No\{−i}

|Xi+k+h −Xk|
2

−
∑

h∈No\{−i}

|Xk+h −Xk|
2 − |Xk−i −Xi+k|

2, a.s.

Then we derive:

X2
i+k −Xi+k (Xk−i +X2i+k) = X2

k −Xk (Xk−i +X2i+k) , a.s.

This is a contradiction with the density assumption for the conditional law
Xk/Xs, s 6= k. �

6.4. Proof of Theorem 2

In the theory of Markov processes, conditions ensuring the continuity of the
invariant distribution with respect to the generator can be found in [14] (see
theorem 9.10) and the following theorem is a particular case for discrete time
Markov chains with a compact state space. For completeness of this work we
give a proof of the following theorem.

Theorem 5. Suppose that for T ∈ N
2 such that IT 6= ∅, QT is a transition on

IRT ⊂ SR. Assume that there exists a transition P on SR satisfying for a given
continuous and bounded real valued function g on SR:

1. sup
x∈IR

T

∣∣∣∣
∫

g(x̃) (QT (x, dx̃)− P (x, dx̃))

∣∣∣∣→T→∞ 0.

2. x →
∫
g(x̃)P (x, dx̃) is continuous on SR.

We suppose that QT (resp. P ) admits an unique invariant distribution νT (resp.
µ). Then we have almost surely:

lim
T→∞

νT = µ, in distribution.

Proof of Theorem 5 By definition of νT , we have the following equality:

νT (A) =

∫
QT (x,A)νT (dx), A ∈ B(SR),

where B(SR) denote the Borel σ−algebra on SR. Since SR is a compact metric
space, the tightness of the sequence (νT )T implies the existence of a cluster
point denoted by ν. We are going to show that ν = µ. Then by uniqueness of
the cluster point, we will conclude:

Almost surely : lim
T→∞

νT = µ in distribution. (6.5)
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To show that ν = µ, it is sufficient to prove that ν is an invariant probability
of the transition P on SR. Then we need to show that ν(A) =

∫
P (x,A)ν(dx),

∀A ∈ B(SR).
Suppose that (Tn)n∈N is sequence in N

∗ × N
∗ such that limn→∞ νTn

= ν.
Then if g is a continuous and bounded real valued function on SR, we have:

∣∣∣∣
∫

g(y)νTn
(dy)−

∫
g(y)P (x, dy)ν(dx)

∣∣∣∣

=

∣∣∣∣
∫

g(y)QTn
(x, dy)µTn

(dx) −

∫
g(y)P (x, dy)ν(dx)

∣∣∣∣

≤ sup
x∈IR

T

∣∣∣∣
∫

g(y)QTn
(x, dy)−

∫
g(y)P (x, dy)

∣∣∣∣

+

∣∣∣∣
∫

g(y)P (x, dy)(νTn
− ν)(dx)

∣∣∣∣
= A+B.

By assumption, the function x →
∫
g(y)P (x, dy) is still bounded and continuous

and the weak convergence of the sequence (νTn
)n implies that B → 0 (n → ∞).

More, A → 0 (n → ∞) follows directly from the assumption 1. Then, by
the uniqueness of the limit of the sequence (νTn

)n, we conclude that ν(dy) =∫
P (x, dy)ν(dx) and the conclusion of the theorem follows. �

Theorems 5 and 4 can now be applied to prove the convergence of the in-
variant distributions of the approximated Gibbs sampler for the two visiting
schemes (3.4) and (3.5).

Proof of Theorem 2 First, from the positivity assumption on the kernel W
in Theorem 2.2, P ∗

T,R is a.s a positive transition on the finite state space IRT .
Then this Markov chain has a unique invariant distribution µ∗

T,R and almost

surely, we have for a given starting value x(0) ∈ IRT :

lim
n→∞

(
P ∗
T,R

)n (
x(0), dx

)
= µ∗

T,R(dx), in distribution,

and the approximated Gibbs sampler converges to µ∗
T,R.

Now we are going to show that transitions P ∗
T,R, PR satisfy the assumptions

of Theorem 5. The positivity of the transition PR has been already discussed
for both cases. As µ = P (XR|X∂R = z∂R) is an invariant distribution for the
transition PR, we know from theoretical results about Markov chains that µ is
the unique invariant distribution for PR (see [24]). Assumption 2 in Theorem
5 holds from assumption (A2) on fX|Y and the Lebesgue theorem. So we only
need to verify assumption 1 in Theorem 5. To this end, we first prove that for
a given continuous and bounded real valued function h on SR × SR, we have
∀s ∈ R:

sup
(x,x̃)∈IR

T
×IR

T

∣∣∣∣
∫

h(x, x̃)
(
FT (dx̃s|x̃x(s)) − FX|Y (dx̃s|x̃x(s)

)∣∣∣∣→T→∞ 0, a.s.

(6.6)
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Indeed if ǫ > 0, the uniform continuity of h on SR × SR entails the existence of
a number δ > 0 such that

max (‖ρ− ρ′‖∞, ‖κ− κ′‖∞) < δ ⇒ |h(ρ, κ)− h(ρ′, κ′)| < ǫ.

Now choose a subdivision a1, . . . , ak of S such that for i ∈ {1, . . . , k − 1} either
(ai, ai+1) ∩ S is an empty set, either |ai − ai+1| < δ. Then for s ∈ R, we define
the function hk,s on SR × SR by

hk,s(ρ, κ) =

k−1∑

ℓ=1

1[aℓ,aℓ+1)(κs)h
(
ρ, κ(ℓ)

)
,

where for ℓ ∈ {1, . . . , k − 1}, κ(ℓ) is the element of SR such that κ
(ℓ)
s = aℓ and

κ
(ℓ)
t = κt if t ∈ R \ {s}. Then we have ‖h− hk,s‖∞ < ǫ and we deduce

sup
(x,x̃)∈IR

T
×IR

T

∣∣∣∣
∫

h(x, x̃)
(
FT (dx̃s|x̃x(s))− FX|Y (dx̃s|x̃x(s)

)∣∣∣∣

≤ 2ǫ+ (k − 1)‖h‖∞‖FT (·|·)− FX|Y (·|·)‖∞

≤ 3ǫ,

if T is large enough, using Theorem 1. Then the limit (6.6) is proved.
Now, we use (6.6) to verify assumption 1 in Theorem 5.

• In the case of the periodic visiting scheme (3.4), if u ∈ R is such that
u ≻ s, ∀s ∈ R \ {u}, we have:

∣∣∣∣
∫

g(x̃)P ∗
T,R(x, dx̃)−

∫
g(x̃)PR(x, dx̃)

∣∣∣∣

≤
∣∣
∫ ∫

g(x̃)FX|Y (dx̃u|x̃x(u))

×
(
⊗s∈R\{u}FT (dx̃s|x̃x(s)) −⊗s∈R\{u}FX|Y (dx̃s|x̃x(s))

) ∣∣

+ sup
x̃s∈S,s6=u

∣∣∣∣
∫

g(x̃)
(
FT (dx̃u|x̃x(u)) − FX|Y (dx̃u|x̃x(u))

)∣∣∣∣ . (6.7)

Then if we iterate the bound (6.7), using a non increasing enumeration
of the sites of R, we deduce the existence of a family {hs/s ∈ R} of
continuous and bounded functions on SR × SR such that:
∣∣∣∣
∫

g(x̃)P ∗
T,R(x, dx̃)−

∫
g(x̃)PR(x, dx̃)

∣∣∣∣

≤
∑

s∈R

sup
(x,x̃)∈IR

T ×IR
T

∣∣∣∣
∫

hs(x, x̃)
(
FT (dx̃s|x̃x(s)) − FX|Y (dx̃s|x̃x(s)

)∣∣∣∣ .

(6.8)

Note that the continuity of hs follows from assumption (A2) and the
Lebesgue theorem. Then applying (6.6) to the bound (6.8), we conclude
that assumption 1 in Theorem 5 holds.



On a nonparametric resampling scheme for Markov random fields 1533

• In the case of the random visiting scheme (3.5), we have for u ∈ IRT :

∣∣∣∣
∫

g(w)P ∗
T,R(u, dw) −

∫
g(w)PR(u, dw)

∣∣∣∣

≤
1

|R|

∑

s∈R

∣∣∣∣
∫

g(wsuR\{s})
(
FT (dws|us+No

)− FX|Y (dws|us+No
)
)∣∣∣∣ .

(6.9)

By (6.6), the last expression converges to zero when T → ∞. �

Proof of Theorem 6.1 For the proof we reformulate the contraction method
used by Dobrushin [8] (see also [15] (p 116-123)) in order to obtain a contraction
for the transition PR. From the two expressions of the Wasserstein metric dW ,
we have the following inequality

|

∫
gdG−

∫
gdH | ≤ L(g)

∫

S

|G(w) −H(w)|dw, (6.10)

which holds for a Lipschitz function g : S → R and for two distribution functions
H ,G with support S (L(g) denotes the Lipschitz constant of g).

We use the notation u−
j = (ui)i∈Z2\{j}. For f ∈ LR, we have

|

∫
fdµ∗

T,R −

∫
fdµR|

≤ |

∫
PR(f)dµ

∗
T,R −

∫
PR(f)dµR|+ |

∫ (
PR(f)− P ∗

T,R(f)
)
dµ∗

T,R|

≤ L (PR(f))× dR
(
µ∗
T,R, µR

)

+
1

|R|

∑

j∈R

sup
u−

j

|

∫
f(u)FT (duj |uj+No

)−

∫
f(u)FX|Y (duj |uj+No

) |

≤ L (PR(f))× dR
(
µ∗
T,R, µR

)

+
1

|R|
L(f) sup

y∈No

∫

S

|FT (x|y)− FX|Y (x|y)|dx,

using (6.10). Moreover we have

L (PR(f)) ≤
1

|R|

∑

(i,j)∈R2

δi

(
u 7→

∫
f
(
wj , u

−
j

)
FX|Y (dwj |uj+No

)

)

Using (6.10) and setting Lj = 0 if j /∈ No, we have

δi

(
u 7→

∫
f
(
wj , u

−
j

)
FX|Y (dwj |uj+No

)

)
≤ δi(f)1i6=j + δj(f)Li−j .

This yields to the following contraction inequality

L (PR(f)) ≤

(
1 +

α− 1

|R|

)
L(f),
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with α =
∑

j∈No
Lj < 1, from (3.10). The first part of the theorem easily

follows. Since the bound obtained for dR
(
µ∗
T,R, µR

)
does not depend on R, the

second part of theorem follows from the first part, the converge of µRT
to µ and

the fact that Lipschitzian functions form a convergence-determinating class. �

Proof of Proposition 2 The result will easily follow from the following in-
equality which states that for every (α, α̃) ∈ R

2:

∫ b

a

∣∣∣∣
eαz − eαa

eαb − eαa
−

eα̃z − eα̃a

eα̃b − eα̃a

∣∣∣∣ dz ≤
(b − a)2

12
|α− α̃| . (6.11)

Assume that α < α̃. First, we observe that the left hand side of (6.11) can
be written

(b − a)

∫ 1

0

∣∣∣∣
eα(b−a)z − 1

e(b−a)α − 1
−

eα̃(b−a)z − 1

eα̃(b−a) − 1

∣∣∣∣ dz.

Using the concavity of the function y → yz on R+, it is easily seen that the
absolute values can be suppressed. Then the left hand side of (6.11) writes

(b− a)

(
1

(b − a)α
−

1

e(b−a)α − 1
−

1

(b − a)α̃
+

1

e(b−a)α̃ − 1

)

and can be bounded by

(b− a)2 |α− α̃| sup
x∈R

∣∣∣∣−
1

x2
+

1

4sh2(x)

∣∣∣∣ .

One can show that the odd function g : x → − 1
x2 + 1

4sh2(x) is increasing on

[0,+∞) with limx→∞ g(x) = 0 and limx→0 g(x) = − 1
12 . Then supx∈R

|g(x)| =
1
12 . This completes the proof of inequality (6.11). �
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