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Abstract: In Geographical Information Systems, spatial point pattern
data are often analysed by dividing space into pixels, recording the pres-
ence or absence of points in each pixel, and fitting a logistic regression.
We study weaknesses of this approach, propose improvements, and demon-
strate an application to prospective geology in Western Australia. Models
based on different pixel grids are incompatible (a ‘change-of-support’ prob-
lem) unless the pixels are very small. On a fine pixel grid, a spatial logistic
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regression is approximately a Poisson point process with loglinear inten-
sity; we give explicit distributional bounds. For a loglinear Poisson process,
the optimal parameter estimator from pixel data is not spatial logistic re-
gression, but complementary log-log regression with an offset depending on
pixel area. If the pixel raster is randomly subsampled, logistic regression
is conditionally optimal. Bias and efficiency depend strongly on the spatial
regularity of the covariates. For discontinuous covariates, we propose a new
algorithmic strategy in which pixels are subdivided, and demonstrate its
efficiency.
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1. Introduction

This paper investigates techniques used in Geographical Information Systems
(GIS) to analyse spatial point pattern data. Figure 1 shows a motivating exam-
ple, a map of the spatial locations of gold deposits and other geological features
in a survey region. The goal of analysis is to predict the occurrence of gold
deposits using other covariates. Further details are given in Section 3.

In statistical science, spatial point pattern data such as Figure 1 are usually
analysed by applying spatial point process methods [29, 59, 43] to the exact
spatial coordinates of the data points. However in GIS practice, the first step in
analysing a spatial point pattern is usually to discretise it.

Logistic regression is commonly used in GIS to predict the probability of
occurrence of mineral deposits [1, 20], archaeological finds [69, 49], landslides
[21, 35] and other events which can be treated as points at the scale of interest.
The study region is divided into pixels; in each pixel the presence or absence of
any data points is recorded; then logistic regression [58, 31, 42] is used to predict
the probability of the presence of a point as a function of predictor variables.
Pixel-based spatial logistic regression for point events was developed in geology
by Agterberg [1] on the suggestion of Tukey [74]. It was later independently
rediscovered in archaeology [69, 39, 49, 50] and is now standard in GIS.

The implications of logistic regression are not well understood in the GIS
literature; some writers describe it as a “nonparametric” technique [51, p. 24],
and the interpretation of the fitted parameters is widely held to be obscure.

Fig 1. Murchison data: 255 gold deposits (blue circles), geological faults (red solid lines) and
greenstone outcrop (light green shading) in the Murchison area of Western Australia. Left:
full survey region, 330 × 400 km. Right: magnified subregion, 150 × 150 km. Reproduced by
kind permission of the Geological Survey of Western Australia.
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Nonetheless, it is clear that a pixel-based logistic regression is approximately
equivalent to a Poisson point process model for the original data points.

Pixel-based logistic regression is not necessarily worse than other techniques,
because all point process methods involve numerical approximations. The like-
lihood of a spatial Poisson point process is not generally available in closed
form, so approximations are unavoidable. Spatial discretization has the advan-
tage of converting the point process to a generalized linear model. Lewis [54]
and Brillinger [16, 18, 17] showed that the likelihood of a general point pro-
cess in one-dimensional time, or a Poisson point process in higher dimensions,
can be usefully approximated by the likelihood of logistic regression for the dis-
cretised process. Asymptotic equivalence was established in [15]. This makes it
practicable to fit spatial Poisson point process models of general form to point
pattern data [14, 22, 8, 9] by enlisting the efficient and reliable software already
developed for logistic regression. Approximation of a stochastic process by a
generalized linear model is now commonplace in applied statistics [55, 56, 57].

Pixel discretisation is not fundamentally objectionable, but it tends to ob-
scure the stochastic model. GIS literature is unclear about the precise meaning
and implications of pixel-based logistic regression; the interpretation of a fitted
model; prediction from the model; and the relationship between models fitted
using different pixel sizes.

Hence, there are immediate benefits for GIS users in recognising that pixel-
based logistic regression is essentially equivalent to a Poisson point process.
A wide variety of statistical tools for inference, model selection, validation and
prediction is available for Poisson processes. This will be outlined in a companion
paper [7].

On the other hand, it appears to be unknown precisely how much efficiency is
lost by discretising a point pattern onto a pixel grid. There are also unanswered
questions about the relationship between different models and the optimal choice
of fitting technique. Further practical algorithmic problems are encountered in
fitting pixel-based logistic regressions; GIS manuals suggest pragmatic solutions,
without casting much light on the problems.

Thus, what seems to be missing is a detailed study of pixel-based logistic
regression from the standpoints of stochastic modelling and statistical method-
ology. This is the aim of the present paper. Specifically we examine the impli-
cations of pixel-based logistic regression as a stochastic model; the relevance
of pixel size; the precise connection to Poisson point process models; and the
performance of parameter estimators and algorithms. Our major findings are
summarised in the next section.

2. Summary of findings

2.1. Pixel size

Of course, counting points inside pixels is a special case of aggregating spa-
tial data into discrete geographical areas. This has been studied extensively



A. Baddeley et al./Spatial logistic regression 1156

in epidemiology and in ecological and environmental statistics [32, 79, 78, 77].
However, most epidemiological research deals with geographical areas that are
predetermined regions of appreciable size. In pixel-based regression, the pixel
grid is chosen arbitrarily, and is usually very fine, which leads to a different set
of methodological and practical problems.

When the pixel grid can be chosen arbitrarily, important questions include
the equivalence of models fitted using different pixel grids (the “modifiable area
unit problem” [61] or “change-of-support” [36, 11, 24]), the relation between
discrete and continuous spatial models (“ecological fallacy” [66]) and bias due
to aggregation over pixels (“ecological bias” [77, 78] or aggregation bias [27,
3]). GIS literature seems unclear on these questions, except to acknowledge
that the interpretation of the fitted probabilities and model parameters clearly
depends on the pixel size. The interpretation of fitted parameters is often said
to be obscure [82, p. 175] and is typically based only on the sign of the slope
parameters [35, pp. 405–407].

One of our unexpected findings is that it may be impossible to reconcile two
spatial logistic regression models that were fitted to the same spatial point pat-
tern data using different pixel grids (Section 5.1). Two such models are logically
incompatible except in simple cases. Thus, there is no physical process which
satisfies a logistic regression model whenever it is discretised on any pixel grid.
The implication is that two research teams who apply spatial logistic regres-
sion to the same data, but using different pixel sizes, may obtain results that
cannot be reconciled. A spatial logistic regression, fitted to data from a fully-
explored survey region, cannot always be extrapolated to make predictions in a
prospective exploration region.

2.2. Poisson point process

In the GIS community the accepted practical remedy for such inconsistency
is to take a very fine pixel grid. As the pixel size tends to zero, spatial logistic
regressions with the same form of linear predictor are asymptotically equivalent,
provided the linear predictor includes an intercept term.

However, the limit of spatial logistic regressions as pixel size tends to zero
is a Poisson point process. Essentially this follows from the assumption of in-
dependent responses in logistic regression. A more precise result is given in
Section 6 using distributional approximation. Furthermore, the use of the lo-
gistic link implies that the intensity of the limiting Poisson point process is a
loglinear function of the spatial covariates, termed a modulated Poisson process
by Cox [23]. Thus, contrary to the general view in the GIS literature, there is
a clear physical meaning for the model parameters of spatial logistic regression,
when pixels are small (cf. [10]). The Poisson model allows prediction of several
quantities of interest, as we discuss in a companion paper on applications [7].

Thus, spatial logistic regression is physically meaningful only when pixels
are extremely small, in which case it is equivalent to a Poisson point process
with loglinear intensity. In the remainder of the paper we assume a loglinear
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Poisson point process model holds (for point events in the continuous spatial
domain) and investigate optimal parameter estimation. In particular we compare
the statistical performance of spatial logistic regression with the theoretically
optimal method.

2.3. Estimation

We find that, in many cases, logistic regression using a fine grid of pixels is
practically equivalent to the theoretical ideal of maximum likelihood estima-
tion using the exact spatial coordinates of the data points. However, statistical
performance and optimality depend very strongly on the regularity of the spa-
tial covariates as functions of spatial location. If the covariates are piecewise
constant inside each pixel, then the pixel presence/absence data conform ex-
actly to a complementary log–log regression, i.e. binary regression with the link
g(p) = log(− log(1 − p)) instead of the logit link g(p) = log(p/(1 − p)). Com-
plementary log–log regressions on different pixel grids are compatible. Logistic
regression estimates of the parameters have bias of order O(a) and efficiency
of order 1 − O(a) where a is the pixel area. Alternatively if the covariates are
smooth functions, then the pixel presence/absence data do not conform exactly
to any generalized linear model. Logistic regression and complementary log-log
regression estimates have bias of order O(δ) and efficiency of order 1 − O(δ)
where δ is pixel diameter. If the covariates are not smooth, logistic regression
and complementary log-log regression estimates may converge poorly. All three
scenarios are relevant in practice, but only the last one causes difficulty.

However, using a very fine grid of pixels may be computationally expensive
and can cause numerical instability in model-fitting algorithms. In a fine pixel
grid, almost all pixels do not contain a data point so that the overwhelming
majority of responses are zeroes. Taylor series approximation of the loglikelihood
may be inaccurate, leading to numerical instability and the Hauck-Donner effect
[40]. This is likely if one covariate is highly influential [75, p. 198], intuitively
because this approaches a scenario where the MLE does not exist [72].

To avoid such problems, a strategy popular in the GIS literature is to ran-
domly sub-sample those pixels with value 0, while retaining all the pixels with
value 1, and to apply logistic regression (with an offset term) to the selected
pixels. Conditional on the sample, logistic regression is optimal (due to the rela-
tion between loglinear Poisson and logistic regressions) but subsampling inflates
the bias and variance.

We propose a new algorithmic strategy for increasing efficiency and reducing
computational load. This is applicable to the case where a covariate is piecewise
smooth on each of several subdomains D1, . . . , Dm whose boundaries are very
irregular. Take a coarse pixel grid and subdivide each pixel Sj into sub-pixels
Sjk = Sj ∩Dk. Treating the sub-pixels (Sjk) as a new pixel grid, apply logistic
regression or complementary log–log regression with the appropriate offset. This
strategy can greatly increase efficiency.
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2.4. Plan of paper

The plan of the paper is as follows. The geological example in Figure 1 is dis-
cussed in detail in Section 3. Basic definitions are stated in Section 4. Incom-
patibility of logistic regressions using different pixel sizes is studied in Section 5.
Poisson approximation results are given in Section 6. In the remainder of the
paper we assume a loglinear Poisson point process model. Section 7 discusses
(‘exact’) maximum likelihood for this model based on observation of the exact
location of each point. Section 8 discusses maximum likelihood based on discre-
tised observations on a pixel grid. In special cases, the discretised observations
conform exactly to a generalized linear model, as explained in Section 9. Other-
wise, spatial logistic regression is an approximation, as discussed in Section 10.
The bias incurred by this approximation is calculated in Section 11. Two syn-
thetic examples are analysed completely in Section 12. The GIS subsampling
strategy is analysed in Section 13. Our new strategy of splitting pixels is pre-
sented in Section 14. The geological example (Section 3) is analysed in full in
Section 15. Conclusions and recommendations are summarised in Section 16.

3. Motivating example

3.1. Data

Figure 1 shows the spatial locations of gold deposits and associated geological
features in the Murchison area of Western Australia. The data were extracted
from a large scale (1:500,000) study of the Murchison area by the Geological
Survey of Western Australia [80]. The study region is contained in a 330× 400
kilometre rectangle. At this scale, gold deposits are point-like. Gold deposits in
this region should occur only in greenstone bedrock. ‘Outcrop’ is bedrock that is
exposed at the surface and therefore observable in a geological survey. Geolog-
ical faults can be observed reliably only within the greenstone outcrop region.
However, some faults have been extrapolated (by geological “interpretation”)
beyond the outcrop.

Prospective geology aims to predict the occurrence of valuable deposits, or
at least to identify areas of higher ‘prospectivity’, where a deposit is relatively
likely. Surveys such as Figure 1 can be used as training data for learning about
relationships between the abundance of deposits and geological covariates such
as geochemistry and the proximity of other features. The appropriate relation-
ship is effectively a point process model. A fitted model can then be applied in
a new exploration area to predict the spatially varying intensity of deposits.

The ancient bedrock of Western Australia has been heavily eroded and leached,
removing much geologically useful information from the surface. This militates
against the use of geomagnetic or gravitational measurement, alluvial chemistry
and other techniques. It is in this context that traditional surveys like Figure 1
are important.
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The Murchison data have been analysed by various methods [19, 33, 37, 46].
The consensus is that there is strong evidence that the gold deposit pattern has
higher intensity at locations closer to the faults.

3.2. Traditional analysis

To apply spatial logistic regression, we divided the study region into an N ×N
grid of pixels. For each pixel j, we recorded the binary response yj = 1 if at least
one gold deposit fell inside the pixel, and yj = 0 otherwise. The two covariates
were the greenstone indicator gj (equal to 1 if the centre of pixel j is inside
the greenstone area, and 0 otherwise) and the fault distance dj (the distance in
kilometres from the centre of pixel j to the nearest fault). We then fitted the
two logistic regression models

log
pj

1− pj
= β0 + β1gj + β2dj (1)

log
pj

1− pj
= γ0 + γ1dj (2)

where pj = P{Yj = 1}. Table 1 shows the fitted coefficients obtained using
different pixel resolutions N .

The standard iteratively-reweighted least squares fitting algorithm in the R

system [63, 75] reported numerical exceptions when fitting model (2), but not
with model (1).

Having fitted a model, the usual practice in geological applications is to
display a pixel image of the fitted probabilities p̂j as shown in Figure 2. Direct
interpretation of the fitted parameters from spatial logistic regression is widely
regarded as difficult in GIS literature [82, p. 175]. The intercept clearly depends
strongly on pixel size; usually the other parameters are only given a qualitative
interpretation based on the sign of the coefficient (cf. [35, pp. 405–407]).

The estimates of the slope parameter γ1 in (2) are approximately independent
of pixel size, but the estimates of factor effects β1, β2 in (1) change by up to
50% as pixel size is reduced. This effect is discussed in Section 5. The negative
values of β2, γ1 are consistent with the interpretation that gold deposits are
more abundant near a fault. Further analysis is reported in Section 15.

Table 1

Estimates of the parameters in the spatial logistic regression models (1) and (2) for the
Murchison data, obtained using different pixel grids. The parameters β0, β1, γ0 are

dimensionless while β2, γ1 have units km
−1

grid β0 β1 β2 γ0 γ1
64× 64 -2.64 2.19 -0.156 -1.16 -0.270
128× 128 -3.96 2.30 -0.143 -2.27 -0.271
256× 256 -5.45 2.53 -0.126 -3.60 -0.265
512× 512 -7.31 2.91 -0.110 -4.98 -0.269
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Fig 2. Fitted pixel occupancy probabilities for the Murchison data of Figure 1 based on a
logistic regression model (1) on a 128×128 pixel grid. Left: full survey region; Right: magnified
subregion.

4. Definitions

The following definitions will be used throughout the paper. The study area is
a compact region W ⊂ R

d (usually d = 2) in which we observe a realisation
of a spatial point process X. A pixel grid G is a partition of W into disjoint
measurable sets Sj ⊂ W of area (or d-dimensional volume) aj and diameter
δj , for j = 1, . . . , J . The typical pixel grid is a rectangular array in which all
pixels have the same area; pixels of unequal area may be necessary on a curved
surface (such as the Earth or celestial sphere). Irregular geographical areas can
be regarded as generalised pixels, so that our results also apply to aggregated
point counts in spatial epidemiology. Let Nj = N(X ∩ Sj) be the number of
points of X falling in pixel Sj , and Yj = I{Nj > 0} the indicator of the event
that at least one point ofX falls in Sj . Write µj = ENj for the expected number
of points in Sj , and pj = EYj = P{Nj > 0} for the probability that at least one
point of X falls in Sj .

A spatial logistic regression model for X with respect to G assumes that the
random variables Y1, . . . , Yn are independent with

log
pj

1− pj
= βtzj (3)

for j = 1, . . . , n, where β is a k-dimensional vector parameter and zj is a k-
dimensional vector of covariates associated with pixel Sj .

The general theory does not specify how the pixel covariate values zj should
be determined when an artificial pixel grid G is superimposed on the domain
W in continuous space. Suppose that Z : W → R

k is a vector-valued function
providing the values Z(u) of a k-dimensional covariate at any location u ∈ W .
The computationally simplest way to define zj is to choose a representative or
‘central’ point cj ∈ Sj for each pixel Sj , and to read the covariate value at this
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location,
zj = Z(cj). (4)

Alternatively, for suitable types of covariateZ, the pixel value zj may be defined
as the mean value over the pixel,

zj =
1

aj

∫

Sj

Z(u) du (5)

where again aj is the area (or d-dimensional volume) of the pixel.
Statistical properties are influenced by the spatial regularity of the function

Z. We will consider three different cases. In the first and most optimistic case
Z is constant within each pixel,

Z(u) = zj for u ∈ Sj , (6)

so that (4) and (5) agree. Covariates of this kind include indicators of broad
geological classification, and national boundaries. In the second case Z is a
Lipschitz function, i.e. satisfies ||Z(u) − Z(v)|| ≤ C||u − v|| where C < ∞
is constant. Examples include distance transforms (e.g. Z(u) is the distance
from u to the nearest geological fault), geographical coordinates, and kernel-
smoothed geochemical assay values. In the third case, Z is a non-Lipschitz
function, typified by indicators of very irregular spatial domains such as exposed
rock areas.

5. Effect of pixel size

5.1. Incompatibility of models based on different pixel grids

Here we show that spatial logistic regressions at two different pixel scales can
be mathematically inconsistent. Let G = {Sj , j = 1, . . . , J} and H = {Tk, k =
1, . . . ,K} be two pixel grids on W . For convenience, assume that H is a refine-
ment of G, obtained by subdividing each pixel Sj in G into exactly r subpixels
from H,

Sj =
⋃

k∈K(j)

Tk (7)

where K(j) is the set of indices k such that Tk ⊂ Sj . Now let X be a point
process on W , and assume that X satisfies a spatial logistic regression with
respect to both grids G and H, with linear predictors of the same form, say

log
pj

1− pj
= αtz(Sj) (8)

log
qk

1− qk
= βtz(Tk) (9)

where pj = P{N(X ∩ Sj) > 0} and qk = P{N(X ∩ Tk) > 0} are the presence
probabilities for the pixels in G and H respectively. The k-dimensional vector
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covariate z(Sj) associated with a pixel Sj is assumed to be determined either
by pixel averaging (5) or sampling (4) of a covariate function Z : W → R

k. The
canonical parameters α,β are also k-dimensional vectors.

The independence of pixel responses in H, and the decomposition (7), imply
that

1− pj =
∏

k∈K(j)

(1 − qk) (10)

since both sides give the probability of having no points in Sj. This key equation
identifies the scaling property of the pixel probabilities: the quantity log(1−pj)
is additive over pixels. It also implies that the three equations (8), (9) and (10)
could be inconsistent in general.

Lemma 1. Assume that the covariate function Z is constant within pixels of
G, i.e. (6) holds.

(a) Suppose there are at least three pixels Sj , Sj′ , Sj′′ in G such that pj, pj′ , pj′′

are distinct values and zj , zj′ , zj′′ are collinear vectors. Then the three
equations (8), (9) and (10) are logically inconsistent.

(b) Suppose that {Z(u) : u ∈ W} is a basis for R
k. Then (8), (9) and (10)

are consistent.

For the proof, see Appendix A.1. Lemma 1 has several implications in prac-
tice. First, two research teams who apply spatial logistic regression to the same
data, but using different pixel sizes, may obtain results that cannot be reconciled.
Second, there does not necessarily exist a random phenomenon in continuous
space which we can rely upon to satisfy the assumptions of spatial logistic re-
gression after it is discretised on a pixel raster of arbitrary scale. Third, a spatial
logistic regression, fitted to data from a fully-explored survey region, can be ex-
trapolated to make predictions in a prospective exploration region, only if the
covariate data for the prospective region are converted to the same pixel grid
size as the original survey data.

Example 1. Consider spatial logistic regression with an intercept and a single
slope parameter, log(p/(1 − p)) = β0 + β1ζ. Thus Z(u) = (1, ζ(u)) where ζ :
W → R is a real-valued spatial covariate. Assume ζ is constant within each pixel
of G, but takes at least three different values on W . Then Lemma 1(a) applies,
and spatial logistic regressions on two grids G and H are logically incompatible.

Inconsistency does not arise when the covariateZ is binary– or factor–valued,
provided the model is not overdetermined.

Example 2. Let the covariate T (u) take categorical values (e.g. representing
soil type or rock type) with possible categories 1, 2, . . . ,K. Effectively this divides
the domain W into subregions Wk = {u ∈ W : T (u) = k}. Assume that T is
constant within pixels of G. Then a spatial logistic regression (8) asserts that
the presence probability is constant across pixels within a sub-domain Wk. The
canonical covariate is Z(u) = (t1(u), . . . , tK(u)) where tk(u) = I{T (u) = k} is
the dummy variable associated with category k. The values of Z are the standard
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unit basis of RK . Hence Lemma 1(b) applies, and two spatial logistic regressions
(8) and (9) are logically consistent.

Example 3. Let Z(u) = (1, a(u), b(u)) where a(u) = I{u ∈ A} and b(u) =
I{u ∈ B} are the indicators of two sets A,B ⊂ W with nonempty intersection.
It can be shown [38] that logistic regressions on different pixel grids are incom-
patible.

5.2. Approximate compatibility on fine grids

Equations (8), (9) and (10) become asymptotically equivalent when pixels are
small, under certain conditions. Heuristically, as pixel size tends to zero, the
presence probabilities pj tend to zero, and the left side of (8) is log(pj/(1−pj)) ∼
log pj where ∼ denotes asymptotic equivalence. The relation (69) for conversion
between two pixel grids becomes pj = 1− (1− qk)

r ∼ rqk, so that

log pj ≈ log r + log qk, k ∈ K(j).

Here r is the number of pixels in grid H into which each pixel in G is subdivided.
Equivalently log pj − log aj ≈ log qk − log bk, where aj , bk are the areas (or d-
dimensional volumes) of pixels Sj ∈ G and Tk ∈ H respectively. Hence the
following adjusted versions of the spatial logistic regressions (8) and (9) are
approximately equivalent, with the same coefficient vector β:

log
pj

1− pj
= log aj + βtz(Sj) (11)

log
qk

1− qk
= log bk + βtz(Tk)

In practical applications, this requires that the linear predictor of the model
include either an intercept term which can absorb the adjustment log aj , or
a separate offset term log aj . A proof of asymptotic equivalence is given in
Section 6.4.

6. Poisson process approximation

A spatial logistic regression on a fine pixel grid is approximately a Poisson
point process. Intuitively this is clear, since spatial logistic regression assumes
independence between pixels, and the presence probabilities pj in a fine grid are
small. The classical Poisson limit theorem is almost enough to establish this.

In Section 6.3 we obtain a stronger result giving a precise bound on the dis-
tance between the distribution of the two point processes in a quite general
setting where we do not assume any particular model for the presence probabil-
ities. A limit theorem for the special case of the logistic model (3) is then given
as a consequence in Section 6.4.
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6.1. Point processes

It is useful to represent a spatial point pattern x in W ⊂ R
d as a finite measure

x =
∑n

i=1 δxi
where xi ∈ W are the individual points (i = 1, . . . , n) and δu

is the Dirac measure which puts mass 1 at location u ∈ R
d. We shall allow a

point pattern x to have multiple points at the same location. A point pattern
without multiple points is called simple. The number of points of x falling in a
set A ⊆ W will be written as x(A) in the general case, and as N(x ∩ A) if x
is simple. Denote by N the set of totally finite point measures (i.e. finite point
patterns with multiplicity) on W , equipped with the (standard) vague topology
and its Borel σ-algebra [44, Sections 4.1 and 15.7]. This is the minimal σ-algebra
which renders X 7→ X(A) measurable for every compact A ⊆ W . Thus point
processes are interpreted as random point measures.

6.2. A metric between distributions of point processes

Define the metric d0 on W by d0(x, y) = min(1, ‖x−y‖) for all x, y ∈ W . Define

the d1-distance between two point measures x =
∑x(W )

i=1 δxi
and y =

∑y(W )
i=1 δyi

in N by d1(x,y) = minτ∈Σn

[
1
n

∑n
i=1d0(xi, yτ(i))

]
if x(W ) = y(W ) = n >

0, while d1(x,y) = 0 if both patterns are empty (x(W ) = y(W ) = 0) and
d1(x,y) = 1 if x(W ) 6= y(W ), where Σn denotes the set of permutations of
{1, 2, . . . , n}. That is, in the most interesting case where x(W ) = y(W ) > 0,
the d1-distance between x and y is the average distance between points under
an optimal pairing. It can be seen that d1 ≤ 1 is a metric that metrises the weak
topology, which is the same as the vague topology, since W is compact.

Now let P(N) be the space of probability measures on N, that is, the space
of point process distributions. Define the d2-distance between two distributions
P,Q ∈ P(N) by

d2(P,Q) = sup
f∈F2

∣∣∣∣
∫

f dP −

∫
f dQ

∣∣∣∣ = min
X∼P
Y ∼Q

E[d1(X ,Y )] (12)

where F2 = {f : N → R; |f(x)− f(y)| ≤ d1(x,y) for all x,y ∈ N}.

Lemma 2. d2 is a metric on P(N) with values ≤ 1 that metrises conver-

gence in distribution; that is, for point processes X ,X(1),X(2), . . . we have
d2
(
L (X(m)),L (X)

)
→ 0 if and only if X(m) converges to X in distribution

as m → ∞.

For the proof see [70] and [83]. See [71] for an equivalent metric d̄2 ≤ d2.

6.3. A general bound for Poisson process approximation of the

observed process

Theorem 3. Let X be a simple point process on a compact set W ⊂ R
d. Suppose

there is a pixel grid G with pixels Sj of diameter δj, for which Yj = I{Nj > 0}
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are independent, where Nj = N(X ∩ Sj), for j = 1, . . . , J . Let λ be any finite
measure on W . Then

d2
(
L (X),Pois(λ)

)
≤ 2max

j
δj + P{∃j : Nj > 1}

+

J∑

j=1

∣∣λ(Sj)− P{Nj > 0}
∣∣

+ 6.5 max
j

P{Nj > 0}; (13)

if the expectation measure of X is λ, this yields

d2
(
L (X),Pois(λ)

)
≤ 2max

j
δj +

J∑

j=1

(
ENj −P{Nj = 1}

)
+6.5 max

j
ENj . (14)

See Appendix A.2 for the proof. Note that we do not assume any particular
model for the pixel probabilities pj = P{Nj > 0}, only that the Yj are indepen-
dent. This result applies equally to logistic regression, complementary log–log
regresssion and other models mooted in the GIS literature. Moreover, the proof
technique is flexible enough to allow for pixel values that are weakly dependent
at the cost of additional small terms in the upper bound.

From the above result we obtain a Poisson limit theorem for a quite gen-
eral sequence of point processes whose discretisations exhibit independent pixel
values on successively finer pixel grids.

Definition 1. A sequence
(
G(m)

)
m∈N

of partitions G(m) = {Sm,j; 1 ≤ j ≤

Jm} of W is called nested if Sm−1,i ∩ Sm,j ∈ {Sm,j, ∅} for all m ∈ N, 1 ≤
i ≤ Jm−1, and 1 ≤ j ≤ Jm. It is asymptotically infinitesimal if the pixel
diameters δm,j = diam(Sm,j) and d-dimensional volumes am,j = |Sm,j | satisfy
δm = max1≤j≤Jm

δm,j → 0 and hence am = max1≤j≤Jm
am,j → 0 as m → ∞.

Corollary 4. Let (X(m))m∈N be a sequence of simple point processes on the
compact set W ⊂ R

d with intensities (λ(m))m, such that λ(m) → λ in L1 as
m → ∞ for some integrable λ : W → R+. Let

(
G(m)

)
m∈N

be an asymptoti-
cally infinitesimal, nested sequence of partitions of W . Assume that the random
variables Nm,j = N(X(m) ∩ Sm,j) satisfy

(i)
(
I{Nm,j > 0}

)
1≤j≤Jm

is independent for every m;

(ii)
∑Jm

j=1

(
ENm,j − P{Nm,j = 1}

)
→ 0 as m → ∞.

Then X(m) converges in distribution as m → ∞ to a Poisson process with
intensity λ.

See Appendix A.2 for the proof.

Definition 2. In the notation of Corollary 4, the sequence of pixel grids
(
G(m)

)
m

is an asymptotically exact discretisation of the sequence of point processes
(X(m))m if

P{∃j : Nm,j > 1} → 0 as m → ∞.
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Asymptotic exactness is slightly weaker than condition (ii) of Corollary 4. By
Hölder’s inequality, for any α > 0,

Jm∑

j=1

(
ENm,j − P{Nm,j = 1}

)

=

Jm∑

j=1

E
[
Nm,j I{Nm,j > 1}

]

≤ E

[
X(m)(W ) max

1≤j≤Jm

I{Nm,j > 1}
]

≤
(
E
[
X(m)(W )1+α

])1/(1+α)
(
E

[
max

1≤j≤Jm

I{Nm,j > 1}
])α/(1+α)

.

Thus (ii) holds if the discretisation of X(m) is asymptotically exact and the

sequence
(
E
[
X(m)(W )1+α

])
m

is bounded for some α > 0.

6.4. Poisson process approximation for spatial logistic regression

In spatial logistic regression, the relationship between the presence probabilities
p and the explanatory covariates Z is controlled by the form of the logistic link
function. In the fine-pixel limit, this also controls the relationship between the
intensity of the limiting Poisson process and the covariates. As pixel size tends
to zero we have p → 0 and log(p/(1 − p)) ∼ log p, so that the limiting Poisson
intensity is a loglinear function of the covariates.

Theorem 5. Assume that the observation window W is compact and the covari-
ate function Z : W → R

k is continuous. Let
(
G(m)

)
m∈N

be an asymptotically

infinitesimal, nested sequence of partitions of W . For each m, let X(m) be a
simple point process which, when discretised, satisfies the assumptions of spa-
tial logistic regression; that is, writing Nm,j = N(X(m) ∩ Sm,j), the indicators
I{Nm,j > 0} are independent for j = 1, 2, . . . , Jm and the presence probabilities
pm,j = P{Nm,j > 0} satisfy

log
pm,j

1− pm,j
= log am,j + βtzm,j .

The covariate value zm,j is either a sampled value (4) or the average value (5)

of Z over the pixel Sm,j. Suppose furthermore that the discretisation of X(m)

is asymptotically exact.
Then X(m) converges in distribution as m → ∞ to a Poisson process with

loglinear intensity λ, where logλ(u) = βtZ(u).

7. Maximum likelihood for loglinear Poisson point process

In the remainder of this paper we assume a loglinear Poisson model holds, and
investigate the optimal way to fit such a model. We begin with a brief study of
‘exact’ maximum likelihood for the point process.
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7.1. Assumptions

Assume X is a Poisson point process with log intensity

logλβ(u) = βtZ(u) (15)

on a bounded set W ⊂ R
d, where β ∈ R

k is the parameter, and Z : W → R
k is

such that λβ is integrable on W . Let G be a pixel grid consisting of pixels Sj of
area aj , j = 1, . . . , J . The corresponding pixel counts Nj and presence/absence
indicators Yj were defined in Section 4. Under the Poisson model, the Nj are
independent Poisson random variables with means

ENj = µj =

∫

Sj

λβ(u) du =

∫

Sj

exp(βtZ(u)) du (16)

and the presence-absence indicators are independent Bernoulli variables with

P{Yj = 1} = pj = 1− exp(−µj). (17)

7.2. Point process likelihood

First consider the likelihood of the point process X based on complete informa-
tion about the realisation

x = {x1, . . . , xn}, xi ∈ W. (18)

The loglikelihood of the Poisson point process with intensity λβ(u), of general
form, is

logL(β) =
∑

i

logλβ(xi)−

∫

W

λβ(u) du (19)

as shown in [26, pp. 23, 213]. For the loglinear intensity (15) the loglikelihood
takes the form

ℓ(β) = logL(β) = β
t
∑

i

Z(xi)−

∫

W

exp(βt
Z(u)) du. (20)

This model is a canonically parametrised exponential family [13, p. 113], [53,
pp. 23–24] with concave loglikelihood, with efficient score

U(β) =
∑

i

Z(xi)−

∫

W

Z(u)λβ(u) du (21)

and Fisher information

I(β) =

∫

W

[
∂

∂β
log λβ(u)

] [
∂

∂β
logλβ(u)

]t
λβ(u) du

=

∫

W

Z(u)Z(u)
t
λβ(u) du. (22)
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For a general concave loglikelihood, with arbitrary data, the existence and
uniqueness of the maximum likelihood estimate (MLE) are not guaranteed,
and depend on the absence of directions of recession [67, 81, 72, 2, 34]. For
the loglikelihood (20) of the loglinear Poisson process, with data obtained from
a realization of the Poisson process, the MLE exists uniquely except in trivial
cases.

Lemma 6. Let X be a Poisson point process with loglinear intensity (15).
Assume the matrix

M =

∫

W

Z(u)Z(u)
t
du

is positive definite. Then the model is identifiable. Conditional on the event that∑
i Z(xi) 6= 0, the MLE β̂ = argmax ℓ(β) exists and is unique.

For a sketch proof, see Appendix A.4. The condition on M is analogous to
requiring the design matrix of a GLM to have full rank. Note that the Lemma
implicitly assumes that the data Z(xi) are consistent with the model, since
they are obtained from a realization of X . The condition that

∑
i Z(xi) 6= 0 is

satisfied if, for example, the model contains an intercept term and the realization
x is not empty. Explicit examples are studied in Section 12.

7.3. Asymptotic normality

For very general Poisson point process models, Rathbun and Cressie [64, Theo-
rem 11, pp. 135–136] and Kutoyants [48, Thm. 2.4, p. 51] proved that the MLE
is consistent, asymptotically normal and asymptotically efficient in a ‘large do-
main’ limiting regime. See also [47]. The following simpler conditions (adapted
from [64]) are sufficient here. We use || · ||p to denote the usual Lp norm in R

d.

Theorem 7. Let Wn, n = 1, 2, . . . be an increasing sequence of compact subsets
of Rd whose union is Rd. Let X be a Poisson point process on R

d with loglinear
intensity (15) where β ∈ R

k is a vector parameter and Z : Rd → R
k a vector

covariate. Assume

1. Z is uniformly bounded, i.e. there is K < ∞ such that ||Z(u)||2 < K for
all u ∈ R

d;
2. the matrix

Mn =

∫

Wn

Z(u)Z(u)
t
du

is positive definite for all n; and
3. |Mn| → ∞, where | · | is the matrix norm |H | = sup{||Hx||1 : ||x||2 = 1}.

Let β̂n be the MLE of β based on X ∩Wn. Then β̂n is a consistent, asymptot-
ically normal and asymptotically efficient estimator of β with asymptotic vari-
ance I(β)−1, where I(β) is defined in (22) with W replaced by Wn.

The integral in the loglinear Poisson process likelihood (20) is the Laplace
transform of the covariate function Z. Consequently the likelihood is not gen-
erally available in closed form, and the maximum likelihood estimate does not
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generally permit exact analytic solution. Some form of numerical approximation
of the integrals appearing in (20)–(22) is required. Approximations relevant to
the spatial Poisson point process have been described in [14, 8, 22].

8. Maximum likelihood for discretised observations

In this section we again assume the data points are generated by a loglinear
Poisson point process model (15) but now suppose that observations are discre-
tised on a pixel grid. The available observations are either the counts Nj or the
indicators Yj . Various pathologies can now occur.

8.1. Counts

The loglikelihood based on the pixel counts Nj is

logLd(β) =
∑

j

(Nj logµj − µj) (23)

where the means µj depend on β through (16). The score and Fisher information
are respectively

Ud(β) =
∑

j

(
Nj

µj
− 1

)
∂µj

∂β
(24)

Id(β) =
∑

j

1

µj

[
∂µj

∂β

] [
∂µj

∂β

]t
(25)

where
∂µj

∂β
=

∫

Sj

Z(u)λβ(u) du. (26)

The score could also be derived from the missing data principle [73]. Jensen’s
inequality (or the missing data principle for exponential families [62]) shows
that I(β)− Id(β) is nonnegative definite.

Note that (23) is an incomplete data loglikelihood [28]. It is generally not an
exponential family, and may exhibit pathological behaviour. The Hessian is

Jd(β) =

∫

W

Z(u)Z(u)
t
exp(βtZ(u)) du−

∑

j

Njvj(β) (27)

where

vj(β) =
1

µj

∂2µj

∂β2 −
1

µ2
j

(
∂µj

∂β

)2

. (28)

In view of (26) and

∂2µj

∂β2 =

∫

Sj

Z(u)Z(u)t exp(βtZ(u)) du, (29)
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we recognise vj(β) as the variance-covariance matrix of Z(U) where U is a
random point in Sj with probability density f(u) = λβ(u)/µj . Hence (27) is
the difference between two nonnegative definite matrices. For some realisations
(Nj) and parameter values β the Hessian is not positive definite, and the log-
likelihood may have multiple local maxima. Indeed the discretised model may
be unidentifiable.

Example 4. In the unit square D = [0, 1]× [0, 1] define the chessboard indicator
function h(x, y) = r([8x] + [8y]) where [·] denotes integer part, and r(n) =
I{n is odd}. The Poisson process with intensity λβ(x, y) = exp(β0 + β1h(x, y))
is identifiable. Now let G be the 4 × 4 grid of square pixels in D. We have
µj = exp(β0)(1 + exp(β1))/32 for all j. So the discretised model on G is not
identifiable.

The only case in which (23) is guaranteed to have a unique local and global
maximum is when vj(β) = 0 in (27)–(28), which implies that the covariate Z(u)
is constant within each pixel. This case is considered in Section 9.

8.2. Indicators

The presence/absence indicators Yj are Bernoulli with success probabilities

pj = pj(β) = 1− exp(−µj) = 1− exp

(
−

∫

Sj

eβ
tZ(u) du

)
. (30)

We have
∂pj
∂β

= (1− pj)
∂µj

∂β
(31)

so the loglikelihood for Bernoulli responses

logLb(β) =
∑

j

(Yj log
pj

1− pj
+ log(1− pj)) (32)

has score and Fisher information

Ub(β) =
∑

j

∂µj

∂β

(
Yj

pj
− 1

)
(33)

Ib(β) =
∑

j

1− pj
pj

[
∂µj

∂β

] [
∂µj

∂β

]t
. (34)

Jensen’s inequality or the missing information principle can again be used
to show that Id(β)− Ib(β) is nonnegative definite. Pathological behaviour may
occur here too, as the Hessian is not necessarily positive definite. In Example 4
the discretised model is again unidentifiable.
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9. Reduction to generalized linear models

This section considers the special case (6) where the covariate Z is constant
within each pixel. As shown in Section 8, this is the only case in which the
discretised observations conform exactly to a generalized linear model.

9.1. Counts

If the covariate is constant within each pixel (6), the mean count (16) simplifies
to

µj = aj exp(β
tzj) (35)

and (23) is the loglikelihood of loglinear Poisson regression with an offset term:

logµj = log aj + βtzj . (36)

Discretisation causes no loss of information in this case: the counts Nj are
sufficient for the original model, and I(β) = Id(β). The discretised model is a
canonically parametrised exponential family.

9.2. Indicators

If the covariate is constant within each pixel (6), the presence probability (30)
reduces to

pj = 1− exp(−aj exp(β
tzj)) (37)

so that (32) is the loglikelihood of complementary log–log regression with an
offset:

log(− log(1− pj)) = log aj + βtzj , (38)

rather than logistic regression. That is, the exact likelihood is that of binary
regression with the complementary log-log link

g(p) = log(− log(1 − p)) (39)

rather than the logistic link. Information is lost by replacing Nj by Yj . The
Fisher information can be calculated from (34). This model is an exponential
family, but is not canonically parametrised. The conditions for uniqueness of
the MLE are the standard conditions for this discrete model [58].

Note that complementary log–log regressions on different pixel grids are com-
patible. Under the assumptions of Section 5.1, complementary log–log regres-
sions on different pixel grids satisfy the multiplicative property (10) exactly.

9.3. A rule of thumb

Comparing (34) with (25) gives a rule-of-thumb for the relative efficiency of the
MLE of β based on the presence/absence indicators Yj , relative to the MLE
based on the pixel counts Nj . If there is only one real covariate, the relative
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efficiency is

Ib(β)

Id(β)
=

∑
j(

∂
∂βµj)

2(1− pj)/pj∑
j(

∂
∂βµj)2/µj

=

∑
j wj/ (e

µj − 1)
∑

j wj/µj

where wj = (∂µj/∂β)
2. A rule of thumb (derived by assuming the wj are all

equal) is to approximate
Ib(β)

Id(β)
≈

µ̄

eµ̄ − 1

where µ̄ = 1
N

∑
µj is the average expected number of points per pixel. Thus the

loss of efficiency should be tolerable as long as µ̄ < 0.2, say. For pixels of equal
area, µ̄ = 1

N

∫
W

λβ(u) du can be estimated by N(X)/N , the average number of
data points per pixel.

9.4. Relations between regression models

The following fundamental relationships give some insight into the preceding
results. Let N1, . . . , NJ be independent Poisson variables satisfying a loglinear
regression µj = ENj = exp(βtzj). Let Yj = I{Nj > 0}. Then Y1, . . . , YJ satisfy
a complementary log–log regression with the same linear predictor, log(− log(1−
pj)) = βtzj where pj = P{Yj = 1}. This is well known [58, p. 212]. Now let

qj = P{Yj = 1 | Nj ≤ 1} = P{Nj > 0 | Nj ≤ 1} =
µj

1 + µj
;

then log(qj/(1 − qj)) = logµj = βtzj . Thus, conditional on Nj ≤ 1 for all
j, the responses Yj satisfy a logistic regression with the same linear predictor.
One consequence is that spatial logistic regression and complementary log–log
regression will be approximately equivalent if P{Nj ≥ 2 for some j} is negligible.

10. Approximation by generalized linear models

In general, the discretised responses Yj do not conform exactly to any generalized
linear model. This reflects a familiar difficulty with incomplete data likelihoods,
in particular those from an exponential family. In the spatial context, it is an
instance of the ‘ecological fallacy’ or ‘modifiable area unit problem’, closely
related to the geostatistical problem of ‘change of support’ [36, 11, 66, 61, 24].

Both logistic regression and complementary log–log regression are practical
approximations. The approximate loglikelihoods can be maximised using stan-
dard software, and may have better properties than the true loglikelihoods (23)
and (32) of the discretised responses.

10.1. Approximate likelihoods

Section 10.1.1 describes the spatial logistic regression approximation, and Sec-
tion 10.1.2 investigates spatial binary regression with a complementary log–log
link.
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10.1.1. Logistic regression

In spatial logistic regression, the true binary loglikelihood (32) is approximated
by the loglikelihood of logistic regression

logLLR(β) =
∑

j

(
Yj log

pLR(β, j)

1− pLR(β, j))
+ log(1− pLR(β, j))

)

= βt
∑

j

Yjzj +
∑

j

Yj log aj

−
∑

j

log(1 + exp(log aj + βtzj)) (40)

where zj are covariate values associated with pixels Sj , and

pLR(β, j) =
exp(log aj + βtzj)

1 + exp(log aj + βtzj)
=
[
1 + exp(− log aj − βtzj)

]−1
(41)

is the probability predicted by spatial logistic regression (11) in which the linear
predictor includes an offset equal to the log of pixel area. The approximate MLE
exists uniquely under usual conditions [58].

Note that the true loglikelihood (32) is not equivalent to (40), and indeed (32)
is usually not equivalent to the loglikelihood of any GLM. The mean response
EYj = pj depends on β through (30). Except in some extreme cases, this cannot
be cast in the form g(pj) = βtzj required for a binary GLM. Similarly, the
loglikelihood (23) of the countsNj is generally not equivalent to the loglikelihood
of any Poisson GLM.

10.1.2. Complementary log–log regression

The true binary loglikelihood (32) may alternatively be approximated by the
loglikelihood of complementary log-log regression (38),

logLCL(β) =
∑

j

(
Yj log

pCL(β, j)

1− pCL(β, j))
+ log(1 − pCL(β, j))

)

=
∑

j

Yj log(1− exp(−aj exp(β
tzj)))

+
∑

j

(1− Yj)aj exp(β
tzj) (42)

where
pCL(β, j) = 1− exp(−aj exp(β

tzj)) (43)

is the probability predicted by complementary log-log regression, with surrogate
covariate values zj determined by sampling (4) or averaging (5) the covariate
function Z.
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10.2. Fine-pixel limit

When pixel size reduces to zero (the “fine-pixel limit”) we shall prove that the
likelihood of spatial logistic regression converges to the exact likelihood, and that
the spatial logistic regression estimator β̃ converges to the maximum likelihood
estimator β̂.

To obtain convergence of the loglikelihoods as well as the estimators, the
loglikelihood of spatial logistic regression (40) will be adjusted by subtracting∑

j Yj log aj (where aj is the area of pixel j) to yield the adjusted loglikelihood

logLadj = β
t
∑

j

Yjzj −
∑

j

log(1 + aj exp(β
t
zj)) (44)

where Yj is the presence indicator for pixel j.

Theorem 8. Consider the Poisson point process model with intensity of the
form λβ(u) = exp(βtZ(u)) in a fixed bounded region W ⊂ R

d, where β ∈ Θ =
R

k and Z : W → R
k. Assume the function Z is Lipschitz with constant C,

and that
∫
W Z(u)Z(u)

t
du is positive definite. Let β0 be the true value of the

parameter. Let Gn, n = 1, 2, . . . be a nested, asymptotically infinitesimal sequence
of pixel grids on W satisfying an+1 ≤ an/2 where n is the maximum pixel area
in Gn.

Consider the adjusted loglikelihood (44) of spatial logistic regression, in which
the covariate value zj associated with a pixel Sj is taken to be the average (5)
of Z over the pixel. With probability 1,

1. logLadj(β) converges pointwise to the exact loglikelihood (20),
2. the first and second derivatives of logLadj(β) converge pointwise to the

corresponding derivatives of the exact loglikelihood, and
3. the spatial logistic regression estimator β̃ = arg max Ladj(β) converges to

the maximum likelihood estimator β̂ = arg max L(β).

For the proof, see Appendix A.5. A similar result holds for the adjusted
loglikelihood of complementary log–log regression.

11. Bias in regression estimates

For practical applications it is important to assess the bias that arises from
using logistic regression or complementary log–log regression in a pixel grid of
a given resolution.

11.1. Approximate bias of logistic regression

Approximations for the bias can be obtained using a standard linearisation
argument. Let β̃ denote the estimate of β obtained using logistic regression.
This is the zero of the logistic score

ULR(β) =
∑

j

(Yj − pLR(β, j))zj . (45)
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The derivative of the logistic score

U ′
LR(β) =

∂

∂β
ULR(β) = −

∑

j

aje
βtzj

(1 + ajeβ
tzj )2

zj zj
t

= −
∑

j

pLR(β, j)(1 − pLR(β, j))zj zj
t (46)

is nonrandom (a consequence of the fact that the logit link is the canonical
link for binomial likelihoods) so equals −ILR(β) where ILR(β) is the Fisher
information of logistic regression.

Assume a loglinear Poisson process (15) and denote by β0 the true value of
β. Then the true expectation of the logistic score is

E0ULR(β) =
∑

j

(pj − pLR(β, j))zj (47)

where pj = pj(β0) is the true value of the success probability (30) for the log-
linear Poisson process. Expanding ULR(β) about β0 to first order, ULR(β) ≈

ULR(β0)−(β−β0)ILR(β0). Since ULR(β̃) = 0, we have β̃−β0 ≈ ILR(β0)
−1U(β0)

and heuristically
E0[β̃]− β0 ≈ ILR(β0))

−1
E0ULR(β0) (48)

where the right side is equal to


∑

j

pLR(β0, j)(1− pLR(β0, j))zj zj
t



−1
∑

j

(pj − pLR(β0, j))zj (49)

with pj given by (30) with β = β0. In test examples (Section 12.2) this is
a tolerable approximation to the bias. An asymptotic justification for (48) is
discussed in Section 11.2.

In real applications, the approximate bias incurred in spatial logistic regres-
sion may be estimated by re-fitting the model using the complementary log-log
link, then either (a) evaluating the difference between the parameter estimates
obtained using the two link functions, or (b) maximum likelihood estimation,
using (49) where pj and β0 are replaced by the fitted probabilities and estimated
parameter vector obtained using the complementary log-log link.

11.2. Asymptotics of bias in spatial logistic regression

Asymptotic analysis of the bias approximation (49) is complicated because it in-
volves two asymptotic regimes. Under “large-domain asymptotics” (Section 7.3)

the exact maximum likelihood estimator β̂ is close to β0. Under “fine-pixel

asymptotics” (Section 10.2) the spatial logistic regression estimator β̃ converges

to the exact maximum likelihood estimator β̂. For a suitable sequence of models
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with increasing domains Wn and increasingly fine pixel grids Gn, both state-
ments apply and (49) is an asymptotic approximation to the bias. Convergence
involves a balance between the effects of reducing pixel size, which tends to re-
duce discretisation bias, and expanding the domain Wn, which tends to increase
bias. The asymptotic order of the expression on the right hand side of (49) de-
pends on the rates of convergence in these two regimes and on the behaviour of
the function Z.

Lemma 9. Let X be a Poisson point process with loglinear intensity (15) ob-
served on an increasing sequence of domains Wn ↑ R

d. Assume the conditions
of Theorem 7 hold. Let Gn, n = 1, 2, . . . be a nested sequence of pixel grids on
R

d satisfying the assumptions of Theorem 8 and set an = maxj an,j. Then

(a) if Z is Lipschitz with constant C on each pixel of Gn, for sufficiently large
n, then

E0(ULR(β0)) =
∑

j

(∫

Sn,j

λβ
0
(u) du− an,je

β
0

tzj

)
zj +Rn (50)

with ||Rn|| = O(an|Wn|), and the leading term is

||E0(ULR(β0))|| ≤ O(δn|Wn|); (51)

(b) if Z is constant within pixels of Gn, for all sufficiently large n,

E0[ULR(β0)] =
1

2

∑

j

a2n,je
2β

0

tzjzj +Rn (52)

with ||Rn|| ≤ O(a2n|Wn|), and

||E0[ULR(β0)]|| ≤ O(an|Wn|). (53)

For a proof see Appendix A.6. The lemma implies that the value of the large-
domain asymptotic bias term I(β0)

−1
E0ULR(β0) is at most of order O(δn) and

at best of order O(an), depending on the behaviour of the function Z.

Theorem 10 (Large domain, fine-pixel limit). Assume the conditions of Lemma 9.

Let β̃n be the estimator of β obtained by logistic regression using the pixels of
Gn ∩Wn. Write

In =
1

|Wn|

∫

Wn

λ(u)Z(u)Z(u)
t
du

Bn =
1

|Wn|

∫

Wn

λ(u)2Z(u) du.

Assume that In → I and Bn → B where I is a finite, positive definite matrix,
and B is a finite vector. If either
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(a) Z is Lipschitz, δn = o(|Wn|−1), and

bn = I−1 1

|Wn|

∑

j

(∫

Sjn

λ(u) du− ajne
β

0

tzj

)
zj ;

or
(b) Z is constant within pixels of Gn, for all sufficiently large n, and an =

o(|Wn|−1), and

bn = I−1 1

|Wn|

1

2

∑

j

a2jne
2β

0

tzjzj ,

then β̃n
p

−→β0 and |Wn|1/2(β̃n − β0 − bn) → N(0, I−1).

The proof of Theorem 10 is standard and is omitted. Note that pixel size
must converge to zero at a faster rate in case (a) than allowed in case (b).

11.3. Bias in complementary log-log regression

Similar arguments apply to complementary log-log regression. The surrogate
score is

UCL(β) =
∑

j

(
Yj

pCL(β, j)
− 1

)
eβ

tzj zj

where pCL(β, j) is given by (43). The derivative of the surrogate score is

U ′
CL(β) =

∑

j

{
Yj

[
1

pCL(β, j)
−

1− pCL(β, j)

pCL(β, j)2
eβ

tzj

]
− 1

}
eβ

tzj zjzj
t.

Under the loglinear Poisson point process, the surrogate score and its derivative
have (‘true’) expected values

E0UCL(β) =
∑

j

(
pj

pCL(β, j)
− 1

)
eβ

tzjzj

E0U
′
CL(β) =

∑

j

{
pj

[
1

pCL(β, j)
−

1− pCL(β, j)

pCL(β, j)2
eβ

tzj

]
− 1

}
eβ

tzj zjzj
t

where pj is the true probability (30). So the bias is approximately

− (E0U
′
CL(β0))

−1
E0UCL(β0) (54)

and a similar analysis can be performed.

12. Theoretical examples

It is useful to study several examples which are computable analytically or with
simple numerical approximations.
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12.1. Factor covariate

Recall the setting of Example 2 where T (u) is a categorical covariate with pos-
sible values 1, 2, . . . ,K effectively dividing W into subdomains Wk = {u ∈
W : T (u) = k}. Consider a Poisson point process on W with different in-
tensities λk on the subdomains Wk, where λ1, . . . , λK are parameters. Thus
λ(u) = λT (u), which can be recast in the form (15) by taking βk = logλk and
Z(u) = (t1(u), . . . , tK(u)) where tk(u) = I{T (u) = k} is the indicator of Wk.

The exact maximum likelihood estimate of βk is β̂k = log λ̂k where λ̂k is the
observed intensity of points λ̂k = N(X ∩Wk)/|Wk| on the subregion Wk. The
Fisher information matrix (22) is diagonal with entries λk|Wk|.

Divide W into a grid of pixels of equal area a, and suppose T (u) is con-
stant within each pixel. For all pixels Sj contained in Wk, we have µj = aλk

and ∂µj/∂βm = I{k = m}µj. By straightforward calculation of (34) the Fisher
information Ib(β) is the diagonal matrix with entries λk |Wk| aλk/(e

aλk − 1).
Thus, replacing the pixel counts Nj by the indicators Yj has a relative efficiency
of aλk/(e

aλk − 1) for each parameter βk.

12.2. Intensity loglinear in Cartesian coordinates

Consider the Poisson point process in the unit square D = [0, 1] × [0, 1] with
intensity

λ(x, y) = exp(β0 + β1x+ β2y), (55)

where β0, β1, β2 are parameters. Figure 3 shows one simulated realisation of the
model with β = (2, 3, 2).

12.2.1. Exact MLE

Suppose the data points are at locations (xi, yi) for i = 1, . . . , n. For the model
(55), the score is (21) where Z((x, y)) = (1, x, y). The integrals in (21) are sepa-
rable so that we can simplify the score components to U0 = n−eβ0s0(β1)s0(β2),

Fig 3. Simulated realisation of inhomogeneous Poisson process with intensity (55). Simulated
pattern has 141 points.
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U1 =
∑

xi − eβ0s1(β1)s0(β2) and U2 =
∑

yi − eβ0s0(β1)s1(β2), where sk(β) =∫ 1

0 xkeβx dx if β 6= 0. We have sk(0) = 1/k and if β > 0 then s0(β) =
1
β

[
eβ − 1

]
, s1(β) = 1

β2

[
eβ(β − 1) + 1

]
and s2(β) = 1

β3

[
eβ(β2 − 2β + 2)− 2

]
.

Define tk(β) = sk(β)/s0(β). The score equations reduce to

t1(β1) = x̄, t1(β2) = ȳ, β0 = logn− log s0(β1)− log s0(β2) (56)

which can be solved numerically. By elementary analysis of the Poisson process
(using separability), the Fisher information matrix is

I = eβ0s0(β1)s0(β2)




1 t1(β1) t1(β2)
t1(β1) t2(β1) t1(β1)t1(β2)
t1(β2) t1(β1)t1(β2) t2(β2)


 . (57)

12.2.2. Exact MLE of discretised observations

Divide the unit square into an N ×N array of square pixels

Sij =
[ i− 1

N
,
i

N

)
×
[ j − 1

N
,
j

N

)

for i, j = 1, . . . , N . Then

µij =

∫

Sij

λβ(x, y) dxdy = eβ0
γi−1
1 (γ1 − 1)

β1

γj−1
2 (γ2 − 1)

β2
(58)

where γ1 = exp(β1/N) and γ2 = exp(β2/N). The partial derivatives are
(∂/∂β0)µij = µij and

∂

∂β1
µij = µij

[(
i

N
−

1

β1

)
+

1

N(γ1 − 1)

]

∂

∂β2
µij = µij

[(
j

N
−

1

β2

)
+

1

N(γ2 − 1)

]

Substituting into (25) and (34) yields the Fisher information for the count and
indicator data respectively.

Table 2 shows the asymptotic standard errors of the MLE β̂ (obtained as
the square roots of the diagonal entries of the inverse of the Fisher information
matrix) calculated for the model (55) with (β0, β1, β2) = (2, 3, 2) discretised
on a 32 × 32 pixel grid. We have µ̄ = 150.2/322 = 0.147 so the rule-of-thumb
(Section 9.3) estimate of relative efficiency is 0.147/(exp(0.147) − 1) = 0.93.
From Table 2 the actual relative efficiency (in replacing pixel counts by pres-
ence/absence) for the estimator of β0 is (0.3315/0.3494)2 = 0.90.

Table 2

Asymptotic standard errors of MLE components for the model (55) with
(β0, β1, β2) = (2, 3, 2) on the unit square, discretised on a 32× 32 pixel grid

Observations β0 β1 β2

exact points 0.3313 0.3449 0.3107
discrete counts 0.3315 0.3452 0.3109
binary 0.3494 0.3655 0.3322
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Table 3

Approximate bias in spatial logistic regression or complementary log-log regression for the
model (55) at different pixel resolutions. Values indicated as “0” are smaller than 10−10.

Other values are rounded to 4 decimal places

grid logistic cloglog
β0 β1 β2 β0 β1 β2

32× 32 -0.2141 0.3085 0.2363 0.0005 0.0000 0.0000
64× 64 -0.0611 0.0828 0.0644 -0.0001 0 0
128× 128 -0.0156 0.0208 0.0162 0.0000 0 0
256× 256 -0.0039 0.0052 0.0041 0.0000 0 0
512× 512 -0.0010 0.0013 0.0010 0.0000 0 0

Table 4

Simulation estimates of bias, standard deviation and root-mean-square error for different
estimators of the parameter vector β in model (55) using exact coordinates or a 32 × 32

pixel grid. See text for explanation

Binary (logistic) Binary (cloglog) Continuous
β0 β1 β2 β0 β1 β2 β0 β1 β2

bias -0.245 0.325 0.247 -0.026 0.016 0.011 -0.020 0.008 0.006
sd 0.397 0.415 0.376 0.349 0.367 0.331 0.332 0.347 0.311

rmse 0.466 0.527 0.450 0.350 0.367 0.331 0.332 0.347 0.311

12.2.3. Approximation by GLM

Table 3 shows the approximate bias (according to equations (49) and (54)) in-
curred by approximating this model by either a logistic regression or a comple-
mentary log-log regression, for various pixel grids. Note that the bias in logistic
regression is consistently much larger than in complementary log-log regression.

12.2.4. Simulation experiments

We generated 10,000 realisations of the Poisson point process with intensity
(55) in the unit square with parameters β = (2, 3, 2). For each realisation we
fitted the model by various methods. Table 4 shows simulation estimates of
bias, standard deviation and root-mean-square error for the different estima-
tors of β. “Binary (logistic)” is the maximum likelihood estimator for spatial
logistic regression, i.e. the maximiser of (40), where the responses Yj are pixel
presence/absence indicators on a 32× 32 pixel grid, and the linear predictor is
of the form η = β0 + β1x + β2y. “Binary (cloglog)” is the corresponding MLE
for binary regression with the complementary log-log link. “Continuous” is the
exact maximum likelihood estimate of β based on exact coordinates of all points
in the Poisson process, obtained as the solution of (56). The bias and variance
were estimated using the sample moments from the simulation.

In this model the expected number of data points is E[N ] = eβ0s0(β1)s0(β2) =
150.2. For a 32 × 32 grid, the mean expected number of points per pixel is
µ̄ = E[N ]/322 = 0.15, the maximum presence probability pj is 0.66 and the
maximum value of P{Nj ≥ 2} is 0.29. Comparison with Table 2 shows that the
predictions of asymptotic theory are quite accurate.
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13. Sampling zero pixels

The use of fine discretisations of the spatial domain increases the computational
load, and may cause numerical instability due to the overwhelming dominance
of zero values of the indicators Yj . A practical strategy that is common in the
GIS literature (e.g. [6, p. 378], [35, §3.3.1, p. 403]) is to take a sample of the
zero values. Then logistic regression is applied to the data consisting of the ‘1’
pixels (all pixels containing a point of the point pattern) and the sampled ‘0’
pixels. The validity of this procedure depends on the random sampling design.

13.1. Simple random sampling

Logistic regression for sampled data is valid if pixels are selected independently.

Lemma 11. For a particular pixel grid G let Y1, . . . , Yn be independent Bernoulli
variables satisfying a spatial logistic regression (3). Conditionally on Y1, . . . , Yn,
let S be a random sample of pixels, such that (a) if Yj = 1 then pixel j is
sampled, (b) if Yj = 0, then pixel j is sampled with probability sj > 0 indepen-
dently of other pixels. Then the conditional likelihood of Y1, . . . , Yn given S is
the likelihood of the logistic regression

log
pj

1− pj
= βtzj − log sj

for j ∈ S.

Similarly, for spatial logistic regression with an offset (11) the conditional
likelihood is that of logistic regression with an additional offset − log sj . The
proof is straightforward. This is a subsampling property of logistic regression
that is not shared by complementary log–log regression.

Since the discretisation is assumed to be very fine, the sampling procedure is
virtually equivalent to generating a point process S of sample points. Logistic
regression is optimal if the sample process S is a Poisson process.

Lemma 12. Suppose X is a Poisson point process in W with loglinear inten-
sity (15). Let S be a Poisson point process in W with intensity function ρ(u),
independent of X. Then the conditional likelihood of X given the superposition
U = X ∪ S is the likelihood of the logistic regression

log
p(u)

1− p(u)
= βtZ(u)− log ρ(u)

where p(u) is the conditional probability that the point u belongs to X given that
u ∈ U .

The connection between the Poisson and logistic models is of course very well
known [58, p. 212]. The particular result above is well-known in the context of
spatial epidemiology, e.g. [30]; however in that context X and S are observed



A. Baddeley et al./Spatial logistic regression 1182

point processes of cases and controls respectively, while in our context S is
synthetic.

Subsampling entails a loss of efficiency, and this is easily calculated in the
point process case. In Lemma 12 the conditional loglikelihood is

logL(β;X,S) =
∑

xi∈X

log
p(xi)

1− p(xi)
+

∑

uj∈X∪S

log(1− p(uj))

=
∑

xi∈X

[
βtZ(xi)− log ρ(xi)

]

−
∑

uj∈X∪S

log

(
1 +

λβ(uj)

ρ(uj)

)
(59)

and the score is

U(β;X,S) =
∑

xi∈X

Z(xi)
ρ(xi)

ρ(xi) + λβ(xi)
−
∑

uj∈S

Z(uj)
λβ(uj)

ρ(uj) + λβ(uj)
. (60)

Since X and S are independent Poisson processes, the Fisher information is

I(β) =

∫

W

Z(u)Z(u)t
(

ρ(u)

ρ(u) + λβ(u)

)2

λβ(u) du

+

∫

W

Z(u)Z(u)
t

(
λβ(u)

ρ(u) + λβ(u)

)2

ρ(u) du

=

∫

W

Z(u)Z(u)
t

(
ρ(u)

ρ(u) + λβ(u)

)
λβ(u) du. (61)

Comparison with (22) shows the loss of efficiency relative to maximum like-
lihood. Note that subsampling avoids bias associated with spatial irregularity
of covariates, assuming the exact values of the covariates are evaluated at each
data point and sample point.

13.2. Other sampling patterns

If pixels are not sampled independently, or in continuous space if the sample
points are not a Poisson process, then logistic regression is not appropriate. The
conditional likelihood of X given X ∪ S is generally intractable.

Berman and Turner [14] proposed approximating the integral in the Poisson
loglikelihood (19) by a finite sum over arbitrary sample points. Generalising,
Rathbun et al [65] considered estimating functions of the form

UR(β) =
∑

xi∈X

Z(xi)−
∑

u∈S

Z(u)
λβ(u)

ρ(u)
(62)

where ρ(u) is the intensity of S. The conditional expectation of UR(β) given
X (i.e. with respect to the distribution of S) is equal to the likelihood score:
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E[UR(β) | X] = U(β). In particular UR is an unbiased estimating function.
More generally Waagepetersen [76] studied estimating functions of the form

UW (β) =
∑

xi∈X

Z(xi)−
∑

uj∈X∪S

Z(uj)
λβ(uj)

s(uj)
(63)

where s(uj) is a suitable function. In particular if s(uj) is the intensity of X∪S

then this equation also has the property that E[UW (β) | X] = U(β) and hence
is an unbiased estimating equation.

14. Splitting pixels

In this section we propose an alternative algorithmic strategy for avoiding the
computational and numerical problems inherent in using very fine pixel grids,
while reducing bias due to spatial approximation of irregular covariates.

The most common type of spatial irregularity in the covariate function arises
when Z(u) is the indicator function of a spatial domain D with a very irregular
boundary. The greenstone outcrop in the Murchison data (Section 3) is an ex-
ample of such a domain. The indicator covariate causes a fundamental difficulty
for pixel-based spatial logistic regression which is illustrated in Figure 4. A sin-
gle square pixel Sj is shown, containing one data point xi. The irregular spatial
domain D covers part of the pixel, including the pixel centre cj , but excluding
the data point xi.

Consider the Poisson process with intensity λ(u) = exp(β0 + β1I(u)) where
I(u) = I{u ∈ D} is the indicator covariate. In exact maximum likelihood esti-
mation for the Poisson process (Section 7) the contribution to the score (21)
from the pixel Sj sketched in Figure 4 has components

U0j = 1−
∫
Sj

eβ0+β1I(u) du = 1− eβ0(aj −Aj + eβ1Aj)

U1j = I(xj)−
∫
Sj

I(u)eβ0+β1I(u) du = I(xj)− eβ0+β1Aj

where aj = |Sj | and Aj =
∫
Sj

I(u) du = |D∩Sj |. In the GLM approximation to

the likelihood of the pixel counts (Section 10) we effectively ‘approximate’ Aj

Fig 4. Illustration of the problem of irregular discontinuities. A single square pixel is shown,
containing one data point (•). A spatial domain (grey shading) with irregular boundary covers
part of the pixel, including the pixel centre (+), but excluding the data point.
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by ajI(cj) and ‘approximate’ I(xi) by I(cj). In the case illustrated in Figure 4
this means replacing I(xi) = 0 by I(cj) = 1. Summing over all j we will have∑

j ajI(cj) ≈
∑

j Aj when pixel size is small, assuming the boundary of D is
rectifiable, but

∑
i I(xi) could be very different from

∑
j I(cj) even for very

fine pixel grids. This is a counterpart of the biostatistical principle that it is
important to have accurate estimates of the hazard exposure for the cases in a
case-control study.

A simple strategy for reducing bias is to subdivide each pixel into sub-pixels
where the covariate is smooth. Suppose the study region W can be partitioned
into subdomains D1, . . . , DM such that the restriction of Z to Dm is a Lips-
chitz function, for each m = 1, . . . ,M . This embraces the situation where we
have several indicator covariates and several smooth covariates, from which we
construct new covariates by algebraic combination.

The strategy is to split each pixel Sj into sub-pixels Tjm = Sj ∩ Dm for
j = 1, . . . , J and m = 1, . . . ,M . Then the partition (Tjm)j,m is treated as the
pixel grid. Pixel covariate values zjm may be assigned either by averagingZ over
Tjm, or by evaluating Z at an arbitrary point cjm ∈ Tjm. Then spatial logistic
regression or complementary log–log regression is applied, with an offset log ajm
where ajm = |Tjm|. The split pixel grid satisfies the conditions of Lemma 9 and
Theorem 10, which predict that the parameter estimates should converge at rate
O(δn) or faster.

Split pixels Tjm are somewhat analogous to ‘mixels’ (mixed pixels) as de-
scribed in the remote sensing literature (cf. [41, 45, 52]), except that in our
context the exact geometry of the subpixels is assumed known and does not
need to be estimated.

In practice the split pixel strategy should be most efficient when the covariate
discontinuities are covered by a relatively small number of pixels Sj , so that the
total number of nonempty sub-pixels Tjm is small. Computational cost depends
on the complexity of computing the areas |Tjm| and of evaluating covariates.

15. Analysis of Murchison data

The various alternatives to spatial logistic regression developed in this paper
are now demonstrated on the Murchison data introduced in Section 3. Software
for performing the analysis was developed in the R system [63] as part of the
spatstat library [9].

15.1. Pixel regression models

Table 5 shows the results of fitting spatial logistic regressions with an offset,

log
pj

1− pj
= log a+ β0 + β1gj + β2dj (64)

log
pj

1− pj
= log a+ γ0 + γ1dj (65)
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Table 5

Estimates of the parameters in the offset spatial logistic regression models (64) and (65)
for the Murchison data, obtained using different pixel grids

grid β0 β1 β2 γ0 γ1
64× 64 -6.11 2.19 -0.156 -4.64 -0.270
128× 128 -6.04 2.30 -0.143 -4.36 -0.271
256× 256 -6.25 2.53 -0.126 -4.30 -0.265
512× 512 -6.63 2.91 -0.110 -4.29 -0.269

Table 6

Estimates of the parameters in the offset complementary log–log regression models (66) and
(67) for the Murchison data, obtained using different pixel grids

grid β0 β1 β2 γ0 γ1
64× 64 -6.18 2.03 -0.146 -4.74 -0.260
128× 128 -6.07 2.24 -0.140 -4.40 -0.267
256× 256 -6.26 2.52 -0.125 -4.31 -0.264
512× 512 -6.63 2.90 -0.110 -4.30 -0.269

to the Murchison data, where a = |W |/N2 is the pixel area. This could alterna-
tively have been derived from Table 1 by adding − log a to the estimates of β0

and γ0 in Table 1.
Table 6 shows the results of fitting the analogous complementary log–log

regressions

log(− log(1 − pj)) = log a+ β0 + β1gj + β2dj (66)

log(− log(1 − pj)) = log a+ γ0 + γ1dj (67)

Numerical exceptions were again encountered in fitting model (67) but not (66).
The estimates of the slope parameter γ1 in (67) are approximately indepen-

dent of pixel size, but the estimates of β1, β2 in (66) change by up to 40% as
pixel size is reduced.

These findings were broadly anticipated by our analysis in Section 11. For any
spatial location u let d(u) be the distance from u to the nearest fault, and g(u)
the indicator which equals 1 if u lies inside the greenstone outcrop region. The
function d is Lipschitz with constant 1, by the triangle inequality. Lemma 9(a)
applies to model (67) so the bias in the spatial logistic regression estimates of
γ0, γ1 should be at most of order O(δn). However, g is not Lipschitz and has
jump discontinuities along a very irregular boundary. Hence, Lemma 9 does not
apply to model (66) and the estimates could depend strongly on the pixel grid
geometry.

15.2. Subsampling

Table 7 summarises the results of applying the subsampling strategy of Sec-
tion 13, Lemma 12, to the Murchison data. The objective is to fit the loglinear
Poisson point process model

λ(u) = exp(β0 + β1g(u) + β2d(u)). (68)
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Table 7

Sample means and standard deviations of the parameter estimates for the loglinear Poisson
model (68) obtained by logistic regression using a Poisson process of sampling points with

intensity ρ, expected number of sampling points s = ρ|W |

ρ s β0 β1 β2

10λ 2,550 -6.53 (0.06) 2.85 (0.07) -0.121 (0.008)
100λ 25,500 -6.59 (0.03) 2.86 (0.02) -0.112 (0.003)
500λ 127,500 -6.59 (0.01) 2.85 (0.01) -0.112 (0.001)

Table 8

Sample means and standard deviations of parameter estimates for the loglinear Poisson
model (68) obtained by logistic regression on a random subset of the 512× 512 pixel grid

with selection probability q, expected number of sample points s = 5122q. Last line obtained
using all pixels

K q s β0 β1 β2

10 0.01 2,540 -6.58 (0.07) 2.90 (0.08) -0.117 (0.007)
100 0.10 25,400 -6.63 (0.02) 2.90 (0.02) -0.111 (0.003)
500 0.49 127,400 -6.63 (0.01) 2.91 (0.01) -0.109 (0.001)

1 262,144 -6.63 2.91 -0.110

A Poisson process of sample points with constant intensity ρ was generated; the
covariates d(u) and g(u) were evaluated exactly at the data points and sample
points; and logistic regression with offset − log ρ was fitted to the indicators
(Y = 1 for data points, Y = 0 for sample points). Sampling intensity was

ρ = Kλ̂ where K ∈ {10, 100, 500} and λ̂ = n/|W | was the empirical mean
intensity of the data points. There are approximately s = nK sample points, so
the computational load is roughly equivalent to pixel-based logistic regression
with an m×m pixel grid, wherem =

√
n(K + 1) ≈ 50, 160 and 360 respectively.

Estimates for K = 10 and 100 are based on 100 simulations while estimates for
K = 500 are based on 30 simulations.

Comparing Tables 7 and 9 we find that, for approximately equal computa-
tional effort, the mean square error is approximately equivalent.

Note that Table 7 refers to the strategy described in Lemma 12 of taking
Poisson sample points in continuous space, and using the exact values of the
covariates at the sample points.

Table 8 shows the results of subsampling the pixels in spatial logistic regres-
sion as described in Lemma 11. For a 512 × 512 grid of pixels, the covariates
were evaluated at the centre of each pixel. Pixels that did not contain a data
point were randomly retained or deleted, with retention probability q, indepen-
dently of other pixels. The retention probability q was taken to be K times the
fraction of pixels containing a data point, with K chosen to be 10, 100 or 500.
Logistic regression with offset log a − log q, where a is pixel area, was fitted to
the data from the retained pixels. Table 8 shows the sample means and stan-
dard deviations of the resulting parameter estimates. For comparison, the last
line of Table 8 gives the fitted coefficients obtained when all pixel data are used
(obtained from Table 5). There are some persistent discrepancies between the
outcomes of Tables 7 and 8 which we attribute to discretisation effects in the
latter.
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15.3. Split pixels

Table 9 shows the results of using the split-pixel strategy proposed in Section 14
to fit the spatial logistic regression model (64) and the complementary log–log
regression (66). Any pixel Sj that was intersected by the irregular polygonal
boundary of the greenstone outcrop was divided into two sub-pixels Tj0 and
Tj1 by this boundary. The areas of the two sub-pixels were computed using the
discrete version of Green’s formula. The distance covariate djm for subpixel Tjm

was simply taken to be the value of dj for Sj , computed as the distance from
the centre of Sj to the nearest geological fault. The greenstone indicator was
assigned gjm = m for m = 0, 1.

Complementary log–log regression with pixel splitting produces very stable
results. The parameter estimates obtained with a 64× 64 pixel grid are within
5% of the estimates for the 512× 512 grid. For a graphical comparison between
the different methods, Figure 5 is a plot of estimates of the slope parameter β2

in the Poisson loglinear model (68) using logistic regression or complementary
log–log regression, with or without pixel splitting. These results confirm the
high efficiency of the pixel-splitting strategy.

Table 9

Parameter estimates using the split pixel strategy for the offset spatial logistic regression
model (64) and the offset complementary log–log regression model (66) for the Murchison

data

logistic cloglog
grid β0 β1 β2 β0 β1 β2

64 × 64 -6.70 2.86 -0.125 -6.78 2.74 -0.115
128 × 128 -6.69 2.97 -0.114 -6.71 2.92 -0.111
256 × 256 -6.65 2.94 -0.107 -6.66 2.92 -0.106
512 × 512 -6.59 2.86 -0.112 -6.59 2.86 -0.112
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Fig 5. Estimates of slope parameter β2 in the loglinear model (68) for the Murchison data
using different algorithms.



A. Baddeley et al./Spatial logistic regression 1188

15.4. Discussion of analysis

The model fitted by this analysis is a Poisson point process with intensity (68).
A colour image plot of the fitted intensity function (not shown) is visually
very similar to a plot of the fitted pixel occupancy probabilities (Figure 2 of
Section 3.2). However the values of the fitted intensity function have a physical
meaning independent of the pixel size.

The foregoing data analysis is designed only to demonstrate features of the
method. In particular it should be understood that other loglinear Poisson mod-
els could be fitted to the Murchison data using the same covariates (i.e. the
original covariates can be transformed to make new canonical covariates). For
example the intensity could be a log-quadratic function of distance to the nearest
fault.

We have not undertaken a full analysis, which would require exploratory
consideration of different models, inspection of model diagnostics, and model
selection. Model diagnostics will be discussed in a sequel paper. Formal tech-
niques for model selection are available since the Poisson likelihood can be eval-
uated explicitly; one may apply the likelihood ratio test based on an analysis of
deviance, or criteria such as AIC.

We have avoided discussing the validity of the Poisson process model for
the Murchison data. Gold deposits might well be spatially clustered (posi-
tively associated) due to random effects in the formation process. Landslides
and avalanches are likely to be a regular (negatively associated) point process
because each event requires the buildup of material [60, sec. 4]. Such models
can be dealt with using established techniques of spatial statistics [25, 29, 59].
This is a general issue for GIS data analysis that is brought into focus by the
current work.

We implicitly assumed that the point pattern dataset is a complete and ac-
curate record of the realisation of the point process. That is, the map of gold
deposits is complete and accurate within the study region. In reality such maps
typically show only the known deposits. At the very least, one should allow for
spatial variation in the intensity or reliability of the survey. To a first approx-
imation, everything is observable inside an outcrop (rock not covered by soil)
while nothing is directly observable elsewhere.

16. Conclusions and recommendations

In applications where a study region is divided into pixels of arbitrary size, we
have shown that spatial logistic regression models do not necessarily have a
consistent meaning, independent of the choice of pixel size. A consistent mean-
ing is obtained only when pixels are very small; in this case, the model is a
Poisson point process, whose intensity is a loglinear function of the (canonical)
covariates.

Estimation of the parameters of a loglinear Poisson process can be performed
to a good approximation using presence/absence data on a coarse pixel grid:
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the preferred algorithm is binary regression with the complementary log–log
link (instead of the logistic link) and with an offset term equal to the logarithm
of pixel area. Our theoretical and empirical results show that this technique is
typically much more accurate than logistic regression for a given grid size.

The assignment of values to the pixel covariates zj , particularly for the pix-
els that contain data points, can have substantial influence on statistical per-
formance. This is analogous to the importance of obtaining accurate estimates
of hazard exposure for the cases in an epidemiological case–control study. An
important instance of this problem occurs when the covariate has jump discon-
tinuities along a highly irregular edge. The split pixel strategy is a very effective
solution, and is recommended especially in very large datasets.

The MLE is not necessarily appropriate; other possibilities for fitting Poisson
point process models include robust estimation [4, 5, 84]. However, robust esti-
mating equations have a structure similar to the score of the loglinear Poisson
model [5], so we expect similar issues to arise in robust estimation.
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Appendix A: Proofs

A.1. Incompatibility Lemma

Proof of Lemma 1. In the subdivision (7) the component pixels Tk and their
union Sj all share the same covariate value z(Tk) = z(Sj) = zj for k ∈ K(j).
Through (9) this implies that each of the component pixels Tk has the same
presence probability qk, so that

1− pj = (1 − qk)
r, k ∈ K(j). (69)

Assume that equations (8), (9) and (69) all hold. Then

1 + exp(αtzj) =
[
1 + exp(βtzj)

]r

and hence
αtzj = log

{[
1 + exp(βtzj)

]r
− 1
}

(70)

for all pixels Sj in G. The function f(x) = log((1 + ex)r − 1) appearing on the
right hand side of (70) is strictly increasing and strictly convex.
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Assumption (a) implies that we can write zj = tzj′+(1−t)zj′′ with 0 < t < 1.
Substituting in (70) yields

t αtzj′ + (1− t) αtzj′′ = f
(
tβtzj′ + (1− t)βtzj′′

)
.

Applying (70) to each term on the left side and writing vj = βtzj for any j,
we obtain tf(vj′) + (1− t)f(vj′′ ) = f(tvj′ + (1− t)vj′′ ). But this is impossible,
since f is strictly convex and the values vj′ , vj′′ are distinct. The contradiction
implies that (10), (8), (9) are inconsistent.

Assumption (b) implies that βtzj , and hence f(βtzj), takes at most k dis-
tinct values. Since the vectors zj form a basis, equation (70) has solutions.

A.2. Poisson process approximation for general models

This section contains proofs for Theorem 3 and Corollary 4 from Section 6.3.

Proof of Theorem 3. Choose a fixed point γj ∈ Sj for every j ∈ {1, . . . , J} and
define the function γ : W → {γj ; 1 ≤ j ≤ J} by γ(x) = γj if x ∈ Sj . Denote

by X̃ =
∑J

j=1 Yjδγj
the pixel point process, which has expectation measure

µ =
∑J

j=1 pjδγj
. Let Π be a Poisson process on W with expectation measure λ

and Π̃ a Poisson process with expectation measureµ. Write rj = supu∈Sj
‖u−γi‖

and r̄ = max1≤j≤J rj . We can split up the initial distance as

d2
(
L (X),Pois(λ)

)
≤ d2

(
L (X),L (X̃)

)
+d2

(
L (X̃),L (Π̃)

)
+d2

(
L (Π̃),L (Π)

)

(71)
and examine each of the summands on the right hand side separately. For the
first one, we obtain

d2
(
L (X),L (X̃)

)
≤ Ed1(X, X̃)

= E
[
d1(X, X̃) I{Nj = Yj for every j}

]

+ E
[
d1(X , X̃) I{Nj > 1 for some j}

]

= E

[(
1

X(W )

∑
x∈X‖x− γ(x)‖

)
I{Nj = Yj for every j}

]

+ P{Nj > 1 for some j}

≤ r̄ + P{Nj > 1 for some j}.

(72)

We write Π∗ =
∑J

j=1 Π(Sj)δγj
and use a somewhat similar argument for

the third summand. Employing two well-known facts about the total variation
distance and Poisson distributions (see [12], Proposition A.1.1 (1.15) and The-
orem 1.C), we have
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d2
(
L (Π),L (Π̃)

)
≤ d2

(
L (Π),L (Π∗)

)
+ d2

(
L (Π∗),L (Π̃)

)

≤ E
[
d1(Π,Π∗)

]
+ dTV

(
L (Π∗),L (Π̃)

)

≤ E
[

1
Π(W )

∑
x∈Π

‖x− γ(x)‖
]
+

J∑

j=1

dTV

(
Pois(λ(Sj)),Pois(pj)

)

≤ r̄ +
J∑

j=1

∣∣λ(Sj)− P{Nj > 0}
∣∣.

(73)

For the second summand on the right hand side of inequality (71), we use
a result obtained by Stein’s method for Poisson process approximation. The-
orem 4.3.C in [70], which is derived by a slight modification of the proof of
Equation (6.3) of Theorem 6.1 in [83], yields that

d2
(
L (X̃),L (Π̃)

)
= d2

(
L
(∑J

j=1Yjδγj

)
,Pois

(∑J
j=1(EYj)δγj

))

≤

(
1 ∧

6.5

µ(W )

) J∑

j=1

p2j ≤ 6.5 max
1≤j≤J

pj .
(74)

Plugging the inequalities obtained for the three summands into (71) leads to
the upper bound claimed in (13). Inequality (14) is a simple consequence.

The same proof technique can be used to deal with (weakly) dependent pixel
values Yj . In this case the inequality (74) is replaced by that obtained in [12,
Theorem 10.F] or, more generally, by [83, (5.51)]. This leads to a reasonable but
more complicated upper bound which contains extra summands to control the
amount and structure of dependence amongst the Yj .

Proof of Corollary 4. Write λ(du) = λ(u)du. By Condition (i) we can apply
inequality (13) of Theorem 3 for each of the partitions G(m), m ∈ N. Since

P{Nm,j > 0} ≤ λ(Sm,j) +
∑Jm

j=1|ENm,j − λ(Sm,j)|, this yields

d2
(
L (X(m)),Pois(λ)

)
≤ 2δm +

Jm∑

j=1

(
ENm,j − P{Nm,j = 1}

)

+ 7.5

Jm∑

j=1

∣∣λ(Sm,j)− ENm,j

∣∣+ 6.5 max
j

λ(Sm,j).

(75)

By the prerequisites the first two summands converge to zero as m → ∞. For
the third summand, we have

Jm∑

j=1

∣∣λ(Sm,j)−ENm,j

∣∣ ≤
Jm∑

j=1

∣∣∣∣
∫

Sm,j

(
λ(u)−λ(m)(u)

)
du

∣∣∣∣≤
∫

W

∣∣λ(u)−λ(m)(u)
∣∣ du,
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which goes to zero as well. Finally, it can be shown from the fact that (G(m))m
is nested and asymptotically infinitesimal that maxj λ(Sm,j) → 0 as m → ∞;
compare Lemma A1.6.II in [26] (noting that (G(m))m is a dissecting system for

W in the sense defined there). Thus inequality (75) implies that d2
(
L (X(m)),

Pois(λ)
)
→ 0, and henceX(m) converges in distribution to Pois(λ) by Lemma 2.

A.3. Poisson process approximation for spatial logistic regression

This section contains a proof of Theorem 5 from Section 6.4.
Write λ(du) = λ(u)du for the expectation measure of the Poisson process.

Note that pm,j ≤ pm,j/(1− pm,j) ≤ Kam,j, where K = maxu∈W exp(βtZ(u)).
For each m the conditions of Theorem 3 are satisfied, so that we can employ
inequality (13). The third summand in the upper bound can then be estimated
further as

Jm∑

j=1

∣∣λ(Sm,j)− P{Nm,j > 0}
∣∣ =

Jm∑

j=1

∣∣∣∣
∫

Sm,j

exp
(
βtZ(u)

)
du− pm,j

∣∣∣∣

≤ |W |εm +

Jm∑

j=1

∣∣∣∣exp(β
tzm,j)am,j − pm,j

∣∣∣∣

= |W |εm +

Jm∑

j=1

p2m,j

1− pm,j

≤ |W |εm +K2|W | am,

where εm = max1≤j≤Jm
supu∈Sm,j

∣∣exp(βtzm,j)− exp(βtZ(u))
∣∣, which goes to

zero by the choice of zm,j, the uniform continuity of Z on W , and δm → 0.
Hence we have for the total d2-error

d2
(
L (X(m)),Pois(λ)

)
≤ 2δm+P{∃j : Nm,j > 1}+ |W |εm+K

(
K|W |+6.5

)
am.
(76)

By the prerequisites all the summands on the right hand side of (76) tend to

zero, so that, by Lemma 2, X(m) converges in distribution to a Poisson process
with expectation measure λ as m → ∞.

A.4. Existence of MLE for loglinear Poisson process

Following is a sketch proof of Lemma 6 in Section 7.
Let D = {

∑
i tiZ(xi) : ti > 0} be the relative interior of the convex cone

generated by the covariate values Z(xi) for the data points. Let C be the relative
interior of the convex cone generated by the image of the covariate function Z,
defined as follows. First the image measure Z♯ is a finite measure on R

k defined
by Z♯(B) =

∫
W I{Z(u) ∈ B} du for measurable B ⊆ R

k. Its support spt(Z♯) is
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the smallest closed set S whose complement has measure zero under Z♯. Finally
C is the relative interior of the convex cone generated by spt(Z♯).

By arguments similar to [72] the negative loglikelihood has no directions of
recession iff D ∩ C 6= ∅. For a realization of the Poisson process, the values
Z(xi) are almost surely in spt(Z♯), so D ⊆ C. Hence the MLE exists uniquely
iff D 6= ∅, which is equivalent to requiring Z(xi) 6= 0 for at least one i.

A.5. Fine-pixel limit for logistic regression

This section contains a proof of Theorem 8 from Section 10.2.
For any fixed β, the function h(u) = βtZ(u) is uniformly bounded above

and below, since Z is Lipschitz and W is bounded. Hence the values βtzj

are uniformly bounded (independent of pixel size). Using the first order Taylor
expansion of log(1 + x) at x = 0, we get

∑

j

log(1 + an,j exp(β
tzj)) =

∑

j

an,j exp(β
tzj) +R1

where the remainder satisfies

|R1| ≤
1

2

∑

j

a2n,j exp(2β
tzj) ≤

1

2
an
∑

j

an,j exp(2β
tzj).

Accordingly

∑

j

log(1 + an,j exp(β
tzj)) →

∫

W

exp(βtZ(u)) du

for each fixed β, since g(u) = exp(βtZ(u)) is clearly Riemann integrable.
Let Nn,j denote the number of points of X in pixel Sn,j from grid Gn. Then

Nn,j is Poisson distributed with mean µn,j =
∫
Sn,j

λβ
0
(u) du. Consider the event

An = {∃j : Nn,j > 1} for grid Gn. We have

P(An) = 1−
∏

j

e−µn,j (1 + µn,j).

By Taylor expansion

P(An) ≤ 1− exp(−
1

2
an
∑

j

an,je
2βtzj )

so that P(An) → 0. Furthermore, since an+1 ≤ an/2, we have
∑

n P(An) < ∞
and by the Borel-Cantelli Lemma P(A) = 0 whereA = {An occurs infinitely often}.
For realisations of X outside the null set A, Lipschitz continuity of Z gives

|
∑

j

Yjzj −
∑

xi∈X

Z(xi)| ≤ NCδn
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where N = N(X ∩ W ) is the total number of points in the realisation of the
process. Thus ∑

j

Yjzj
a.s.
−→

∑

xi∈X

Z(xi).

Hence logLadj(β) converges pointwise to the exact log likelihood, almost surely.
By similar arguments, the first and second derivatives of logLadj(β) converge

pointwise to the corresponding derivatives of the exact loglikelihood, almost
surely.

The functions ℓ(β) = logL(β) and ℓn(β) = logLadj(β) are convex, with

negative definite second derivative. Hence the respective maximisers β̃n and β̂

are uniquely determined. Since ℓn converges pointwise to ℓ, and the first deriva-
tive of ℓn converges pointwise to the first derivative of ℓ, we have that ℓn(β)
converges uniformly to ℓ(β) in any bounded region. Hence ℓn hypoconverges to
ℓ by [68, Thm 7.17, p. 252]. The upper level sets un(t) = {β : ℓn(β) ≥ t} are
bounded convex sets, so hypoconvergence implies [68, Exercise 7.32, p. 266] that
for fixed t there is a bounded set Bt such that un(t) ⊂ Bt for sufficiently large
n. Since ℓn and ℓ have unique maxima, by Theorem 7.33 of [68, p. 266] we have

β̃n → β̂.

A.6. Asymptotics of bias in spatial logistic regression

This section contains a proof of Lemma 9 in Section 11.2.
For a pixel Sn,j in the grid Gn

pn,j − pLR(β0, j) = 1− exp

(
−

∫

Sn,j

eβ0

tZ(u) du

)
−

1

1 + exp(−β0
tzj)/an,j

.

Applying separate Taylor expansions to 1− exp(−x) and x/(1 + x)

pn,j − pLR(β0, j) =

∫

Sn,j

exp(β0
tZ(u)) du − an,j exp(β0

tzj) +Rj +R′
j

where the remainders satisfy

Rj ≤
1

2

(∫

Sn,j

eβ0

tZ(u) du

)2

≤
1

2
anan,je

2C||β
0
||

R′
j ≤

(
an,j exp(β0

t
zj)
)2

≤ anan,je
2C||β

0
||.

Summing over j and using (47) we have

E0ULR(β0) =
∑

j

(∫

Sn,j

exp(β0
t
Z(u)) du − an,j exp(β0

t
zj) +Rj +R′

j

)
zj
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where
∑

j Rj ≤ O(an|Wn|) and similarly for
∑

j R
′
j . Since ||zj || is uniformly

bounded,

||
∑

j

(Rj +R′
j)zj || = O(an|Wn|)

which proves (50). By Lipschitz continuity in each pixel, for all u ∈ Sn,j we have
|| exp(β0

t
Z(u))− exp(β0

t
zj)|| ≤ C||zj ||δn,j , so that

||

∫

Sj

exp(β0
t
Z(u)) du− an,j exp(β0

t
zj)|| ≤ an,jC||zj ||δn

and

||
∑

j

(∫

Sj

exp(β0
tZ(u)) du − an exp(β0

tzj)

)
zj || ≤ |Wn|Cδn sup

u∈W
||Z(u)||2.

This proves (51). For part (b) of Lemma 9, when Z is constant within pixels,
the true presence probability is

pn,j = 1− exp(−µn,j) = 1− exp(−an,j exp(β0
tzj))

where zj = Z(cj) for arbitrary cj ∈ Sn,j . Thus pn,j − pLR(β0, j) = f(an,j ×
exp(β0

tzj)) where

f(x) = 1− e−x −
x

1 + x
=

1

2
x2 +R(x)

with remainder |R(x)| ≤ x3. Hence

∑

j

(pn,j − pLR(β0, j))zj =
1

2

∑

j

a2n,j exp(2β0
tzj)zj +

∑

j

Rjzj

where |Rj | ≤ a3n,j exp(3β0
tzj). Since Z is constant within pixels,

an,j exp(3β0
tzj)zj =

∫

Sn,j

λβ
0
(u)3Z(u) du

so that

||
∑

j

Rjzj || ≤ a2n

∫

Wn

λβ
0
(u)3||Z(u)|| du ≤ O(a2n|Wn|)

which establishes (52). Similarly for the leading term

||
1

2

∑

j

a2n,j exp(2β0
tzj)zj || ≤

an
2

∫

Wn

λβ
0
(u)2||Z(u)|| du = O(an|Wn|)

which proves (53).
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