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Abstract: We consider the problem of multivariate density estimation
when the unknown density is assumed to follow a particular form of di-
mensionality reduction, a noisy independent factor analysis (IFA) model.
In this model the data are generated by a number of latent independent
components having unknown distributions and are observed in Gaussian
noise. We do not assume that either the number of components or the
matrix mixing the components are known. We show that the densities of
this form can be estimated with a fast rate. Using the mirror averaging
aggregation algorithm, we construct a density estimator which achieves a
nearly parametric rate (log1/4 n)/

√
n, independent of the dimensionality of

the data, as the sample size n tends to infinity. This estimator is adaptive
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to the number of components, their distributions and the mixing matrix.
We then apply this density estimator to construct nonparametric plug-in
classifiers and show that they achieve the best obtainable rate of the excess
Bayes risk, to within a logarithmic factor independent of the dimension of
the data. Applications of this classifier to simulated data sets and to real
data from a remote sensing experiment show promising results.

AMS 2000 subject classifications: Primary 62H25; secondary 62G07,
62H30.
Keywords and phrases: Nonparametric density estimation, independent
factor analysis, aggregation, plug-in classifier, remote sensing.
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1. Introduction

Complex data sets lying in multidimensional spaces are a commonplace occur-
rence in many areas of science and engineering. There are various sources of this
kind of data, including biology (genetic networks, gene expression microarrays,
molecular imaging data), communications (internet data, cell phone networks),
risk management, and many others. One of the important challenges of the anal-
ysis of such data is to reduce its dimensionality in order to identify and visualize
its structure.

It is well known that common nonparametric density estimators are quite
unreliable even for moderately high-dimensional data. This motivates the use
of dimensionality reduction models. The literature on dimensionality reduction
is very extensive, and we mention here only some recent publications that are
connected to our context and contain further references [9, 10, 26, 28, 31].

In this paper we consider the independent factor analysis (IFA) model, which
generalizes the ordinary factor analysis (FA), principal component analysis
(PCA), and independent component analysis (ICA). The IFA model was in-
troduced by Attias [6] as a method for recovering independent hidden sources
from their observed mixtures. In the ordinary FA and PCA, the hidden sources
are assumed to be uncorrelated and the analysis is based on the covariance ma-
trices, while IFA assumes that the hidden sources (factors) are independent and
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have unknown distributions. The ICA, in its standard form, assumes that the
number of sources is equal to the number of observed variables and that the
mixtures are observed without noise. Mixing of sources in realistic situations,
however, generally involves noise and different numbers of sources (factors) and
observed variables, and the IFA model allows for both of these extensions of ICA.

Most of the existing ICA algorithms concentrate on recovering the mixing
matrix and either assume the known distribution of sources or allow for their
limited, parametric flexibility [16]. Attias [6] and more recent IFA papers [1, 4,
23] either use mixture of Gaussian distributions as source models or assume that
the number of independent sources is known, or both. In the present paper the
IFA serves as a dimensionality reduction model for multivariate nonparametric
density estimation; we suppose that the distribution of the sources (factors) and
their number are unknown.

Samarov and Tsybakov [27] have shown that densities which have the stan-
dard, noiseless ICA representation can be estimated at an optimal one-dimen-
sional nonparametric rate, without knowing the mixing matrix of the indepen-
dent sources. Here our goal is to estimate a multivariate density in the noisy
IFA model with unknown number of latent independent components observed
in Gaussian noise. It turns out that the density generated by this model can
be estimated with a very fast rate. In Section 2 we show that, using recently
developed methods of aggregation [18, 19] we can estimate the density of this
form at a parametric root-n rate, up to a logarithmic factor independent of the
dimension d.

One of the main applications of multivariate density estimators is in the
supervised learning. They can be used to construct plug-in classifiers by esti-
mating the densities of each labeled class. Recently, Audibert and Tsybakov [7]
have shown that plug-in classifiers can achieve fast rates of the excess Bayes
risk and under certain conditions perform better than classifiers based on the
(penalized) empirical risk minimization. A difficulty with such density-based
plug-in classifiers is that, even when the dimension d is moderately large, most
density estimators have poor accuracy in the tails, i.e., in the region which is
important for classification purposes. Amato, Antoniadis and Grégoire [2] have
suggested to overcome this problem using the ICA model for multivariate data.
The resulting method appears to outperform linear, quadratic and flexible dis-
criminant analysis [14] in the training set, but its performance is rather poor in
the testing set. Earlier, Polzehl [25] suggested a discrimination-oriented version
of projection pursuit density estimation, which appears to produce quite good
results but at a high computational cost. His procedure depends on some tuning
steps, such as bandwidth selection, which are left open and appear to be crucial
for the implementation. More recently, Montanari et al. [23] constructed plug-in
classifiers based on the IFA model, with the sources assumed to be distributed
according to a mixture of Gaussian distributions, and reported promising nu-
merical results.

In Section 3 we give a bound to the excess risk of nonparametric plug-in
classifiers in terms of the MISE of the density estimators of each class. Combin-
ing this bound with the results of Section 2, we show that if the data in each
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class are generated by a noisy IFA model, the corresponding plug-in classifiers
achieve, within a logarithmic factor independent of the dimensionality d, the
best obtainable rate of the excess Bayes risk. In Section 4 we describe the algo-
rithm implementing our classifier. Section 5 reports results of the application of
the algorithm to simulated and real data.

2. Independent factor analysis model for density estimation

We consider the noisy IFA model:

X = AS+ ǫ, (2.1)

where A is a d ×m unknown deterministic matrix of factor loadings with un-
known m < d, S is an unobserved m-dimensional random vector with inde-
pendent zero-mean components (called factors) having unknown distributions
with finite variance, and ǫ is a random vector of noise, independent of S, which
we will assume to have d-dimensional normal distribution with zero mean and
covariance matrix σ2Id, σ

2 > 0. Here Id denotes the d× d identity matrix.
Assume that we have independent observations X1, . . . ,Xn, where each Xi

has the same distribution as X. As mentioned in the Introduction, this model
is an extension of the ICA model, which is widely used in signal processing for
blind source separation. In the signal processing literature the components of S
are called sources rather than factors. The basic ICA model assumes ǫ = 0 and
m = d (cf., e.g., [16]). Unlike in the signal processing literature, our goal here is
to estimate the target density pX(·) of X, and model (2.1) serves as a particular
form of dimensionality reduction for density estimation.

Somewhat different versions of this model where the signal S has not neces-
sarily independent components and needs to be non-Gaussian were considered
recently in [9, 28]. Blanchard et al. [9] and the follow-up paper by Kawanabe
et al. [20] use projection pursuit type techniques to identify the non-Gaussian
subspace spanned by the columns of A with known number of columns m, while
Samarov and Tsybakov [28] propose aggregation methods to estimate the den-
sity of X when neither the non-Gaussian subspace, nor its dimension are known.

By independence between the noise and the vector of factors S, the target
density pX can be written as a convolution:

pX(x) =

∫

Rm

φd,σ2(x−As)FS(ds), (2.2)

where φd,σ2 denotes the density of a d-dimensional Gaussian distribution
Nd(0, σ

2Id) and FS is the distribution of S.
Note that (2.2) can be viewed as a variation of the Gaussian mixture model

which is widely used in classification, image analysis, mathematical finance and
other areas, cf., e.g., [22, 32]. In Gaussian mixture models, the matrix A is the
identity matrix, FS is typically a discrete distribution with finite support, and
variances of the Gaussian terms are usually different.
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Since in (2.2) we have a convolution with a Gaussian distribution, the density
pX has very strong smoothness properties, no matter how irregular the distri-
bution FS of the factors is, whether or not the factors are independent, and
whether or not the mixing matrix A is known. In the Appendix, we construct a
kernel estimator p̂∗n of pX such that

E||p̂∗n − pX||22 ≤ C
(log n)d/2

n
, (2.3)

where C is a constant and || · ||2 is the L2(R
d) norm. As in [5, 8] it is not hard to

show that the rate given in (2.3) is optimal for the class of densities pX defined
by (2.2) with arbitrary probability distribution FS.

Though this rate appears to be very fast asymptotically, it does not guarantee
good accuracy for most practical values of n, even if d is moderately large. For
example, if d = 10, we have (log n)d/2 > n for all n ≤ 105.

We will make further assumptions on the model (2.1) which will allow us
to eliminate this dependence of the rate on the dimension d. It is well known
that the standard, covariance-based factor analysis model is not fully identifi-
able without extra assumptions (see, e.g., [3]). Indeed, the factors are defined
only up to an arbitrary rotation. The independence of factors assumed in (2.1)
excludes this indeterminacy provided that at most one factor is allowed to have
a Gaussian distribution. This last assumption, needed for the identifiability of
A, is standard in the ICA literature, see, e.g., [16]. However, we will not need it
in this paper because it turns out that for estimation of the density under the
assumptions listed below it suffices to identify A only up to a permutation of
its columns.

We will collect here the assumptions used in the paper.

Assumption 1. The columns of the matrix A are orthonormal.

Assumption 2. The number of factors m does not exceed an upper bound M ,
M < d.

Assumption 3. The M largest eigenvalues of the covariance matrix ΣX of the
random vector X are distinct and the 4th moments of the components of X are
finite.

Assumption 1 is rather restrictive but, as we show below, together with the
assumed independence of the factors, it is crucial to obtain a weak dependency
of the rate in (2.3) on the dimension d.

Assumption 2 means that model (2.1) indeed provides the dimensionality
reduction. The assumption M < d is only needed to estimate the variance σ2 of
the noise; if σ2 is known we can allow M = d.

Assumption 3 is needed to establish, in the proof of Theorem 2.1, root-n
consistency of the eigenvectors of the sample covariance matrix of X.

In order to construct our estimator, we first consider the estimation of pX
when the dimension m, the mixing matrix A, and the level of noise σ2 are
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specified; the fact that none of these quantities is known is addressed later in
this section.

Since the columns of A are orthonormal, we have ATX = S+AT
ǫ and

φd,σ2(x−As) =

(

1

2πσ2

)d/2

exp

{

− 1

2σ2
(x−As)T (x−As)

}

=

(

1

2πσ2

)d/2

exp

{

− 1

2σ2
(s−ATx)T (s−ATx)

}

exp

{

− 1

2σ2
xT (Id −AAT )x

}

.

Substitution of the above expression in (2.2) gives:

pX(x) =

(

1

2πσ2

)(d−m)/2

exp

{

− 1

2σ2
xT (Id −AAT )x

}∫

Rm

φm,σ2(s−ATx)FS(ds).

Now, by independence of the factors, we get:

pX(x) ≡ pm,A(x) =

(

1

2πσ2

)(d−m)/2

exp

{

− 1

2σ2
xT (Id −AAT )x

} m
∏

k=1

gk(a
T
k x)

(2.4)
where ak denotes the kth column of A and

gk(u) =

∫

R

φ1,σ2 (u− s)FSk
(ds),

where FSk
denotes the distribution of the kth component Sk of S. We see that to

estimate the target density pX it suffices to estimate nonparametrically each one-
dimensional density gk using the projections of an observed sample X1, . . . ,Xn

generated by the model 2.1) onto the kth direction ak.
Note that, similarly to (2.2), the density gk is obtained from convolution with

a one-dimensional Gaussian density, and therefore has very strong smoothness
properties. To estimate gk we will use the kernel estimators

ĝk(x) =
1

nhn

n
∑

i=1

K

(

x− aTk Xi

hn

)

, k = 1, . . . ,m, (2.5)

with a bandwidth hn ≍ (log n)−1/2 and the sinc function kernelK(u) = sinu/πu.
We could also use here any other kernel K whose Fourier transform is bounded
and compactly supported, for example, the de la Vallée-Poussin kernel K(u) =
(cos(u)−cos(2u))/(πu2), which is absolutely integrable and therefore well suited
for studying the L1-error.

A potential problem of negative values of ĝk in the regions where the data
are sparse can be corrected using several methods (see, for example, [12, 13]).
For our practical implementation we will follow the method suggested in [13],
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and our estimators will be obtained by truncating the estimator ĝk(x) outside
the “central” range where it is nonnegative, and then renormalizing.

Once each “projection” density gk is estimated by the corresponding kernel
estimator (2.5), the full target density pX is then estimated using (2.4):

p̂n,m,A(x) =

(

1

2πσ2

)(d−m)/2

exp

{

− 1

2σ2
xT (Id −AAT )x

} m
∏

k=1

ĝk(a
T
k x). (2.6)

The following proposition proved in the Appendix summarizes the discussion
for the case when A and σ2 are known.

Proposition 2.1. Consider a random sample of size n from the density pX
given by (2.4) with known A and σ2 and let Assumption 1 hold. Then the esti-
mator (2.6) with ĝk given in (2.5) has the mean integrated square error of the
order (log n)1/2/n:

E‖p̂n,m,A − pX‖22 = O
(

(log n)1/2

n

)

.

Note that neither m nor d affect the rate. Note also that Proposition 2.1 is
valid with no assumption on the distribution of the factors. The identifiability
assumption (that at most one factor is allowed to have a Gaussian distribution)
is not used in the proof, since we do not estimate the matrix A. Also in Propo-
sition 2.1 we do not use the assumption that the factors have finite variances.
This assumption is needed to make possible the estimation of the variance σ2,
while in Proposition 2.1 the variance is a given value.

So far in this section we have assumed that A and σ2 are known. When σ2

is an unknown parameter, it is still possible to obtain the same rates based on
the approach outlined above, provided that the dimensionality reduction holds
in the strict sense, i.e., m < d. Indeed, assume that we know an upper bound
M for the number of factors m and that M < d, i.e. that Assumption 2 holds.

The assumed independence and finite variance of the factors imply that their
covariance matrix, which we will denote by W , is diagonal. The covariance
matrix ΣX of X is given by:

ΣX = AWAT + σ2Id.

If λ1(ΣX) ≥ · · · ≥ λd(ΣX) denote the eigenvalues of ΣX sorted in decreasing
order, then λi(ΣX) = wi + σ2, for i = 1, . . . ,m, and λi(ΣX) = σ2 for i > m,
where wi denote the diagonal elements of W . We estimate σ2 with

σ̂2 =
1

d−M

d
∑

i=M+1

λ̂i,

where λ̂i, i = 1, . . . , d, are the eigenvalues of the sample covariance matrix Σ̂X

arranged in decreasing order. Note that σ̂2 is a root-n consistent estimator.
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Indeed, the root-n consistency of each λ̂i is a consequence of elementwise root-n
consistency of Σ̂X and a classical inequality from matrix perturbation theory:

|λi(C +D)− λi(C)| ≤ |||D|||, i = 1, 2, . . . , d,

where C and D are any symmetric matrices and |||D||| is the spectral norm of
D, see, e.g. Corollary 4.10, p.203, in [30].

Using the root-n consistency of σ̂2, it is not hard to show that the estimation
of σ2 does not affect a slower density estimator rate, and so in what follows we
will assume that σ2 is known.

Consider now the case where the matrix A, and hence its rank m, are un-
known. We will use a model selection type aggregation procedure similar to
the one developed recently in [28] and, more specifically, the mirror averaging
algorithm of [19]. We aggregate estimators of the type (2.6) corresponding to
candidate pairs (k, B̂k), k = 1, . . . ,M . Here B̂k is a d×k matrix whose columns
are the first k (in the decreasing order of eigenvalues) orthonormal eigenvectors
of Σ̂X− σ̂2Id (and thus of Σ̂X). Note also that the columns of A are orthonormal
eigenvectors of ΣX corresponding to its first m largest eigenvalues. In view of
this, when the true number of factors is m, it follows from Lemma A.2 in the
Appendix that, provided Assumption 3 holds, B̂m is a

√
n-consistent estimator

of A.
We can now define the aggregate estimator, applying the results of [19] in

our framework. We split the sample X1, . . . , Xn in two parts, D1 and D2 with
n1 = Card(D1), n2 = Card(D2), n = n1 + n2. From the first subsample D1 we
construct the estimators

p̂k(x) ≡ p̂n1,k,B̂k
(x) =

(

1

2πσ2

)(d−k)/2

exp

{

− 1

2σ2
xT (Id − B̂kB̂

T
k )x

} k
∏

j=1

ĝj(b
T
j x)

(2.7)
for k = 1, . . . ,M , where bj denotes the jth column of B̂k, the estimators ĝj(·) are
defined in (2.5), and both B̂k and ĝj(·) are based only on the first subsample D1.

The collection C of density estimators
{

p̂n1,k,B̂k
, k = 1, . . . ,M

}

of the form

(2.7) constructed from the subsample D1 can be considered as a collection of
fixed functions when referring to the second subsample D2. The cardinality of
this collection is M .

To proceed further, we need some more notation. Let Θ be the simplex

Θ =

{

θ ∈ R
M :

M
∑

k=1

θk = 1, θk ≥ 0, k = 1, . . . ,M

}

,

and
u(X) = (u1(X), . . . , uM (X))

T
,

where

uk(x) =

∫

p̂2k(x)dx − 2p̂k(x). (2.8)
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Introduce the vector function

H(x) = (p̂1(x), . . . , p̂M (x))
T
.

As in [19], the goal of aggregation is to construct a new density estimator p̃n(x)
of the form

p̃n(x) = θ̃
T
H(x) (2.9)

which is nearly as good in terms of the L2-risk as the best one in the collection C.
Using the mirror averaging algorithm, the aggregate weights θ̃ are computed by
a simple procedure which is recursive over the data. Starting with an arbitrary

value θ̃
(0) ∈ Θ, these weights are defined in the form:

θ̃ =
1

n2

n2
∑

ℓ=1

θ̃
(ℓ−1)

, (2.10)

where the components of θ̃
(ℓ)

are given by

θ̃
(ℓ)
k =

exp
(

−β−1
∑ℓ

r=1 uk(Xr)
)

∑M
t=1 exp

(

−β−1
∑ℓ

r=1 ut(Xr)
) , k = 1, . . . ,M, (2.11)

with Xr, r = 1, . . . , n2, denoting the elements of the second subsample D2. Here
β > 0 is a random variable measurable w.r.t. the first subsample D1.

Our main result about the convergence of the aggregated density estimator is
given in Theorem 2.1 below. We will consider the norms restricted to a Euclidean
ball B ⊂ R

d: ‖f‖22,B =
∫

B
f2(x)dx, ‖f‖∞,B = supt∈B |f(t)| for f : Rd → R.

Accordingly, in Theorem 2.1 we will restrict our estimators to B and define p̃n
by the above aggregation procedure where p̂k(x) are replaced by p̂k(x)I{x ∈ B}.
Here I{·} denotes the indicator function.

Clearly, all densities pX of the form (2.4) are bounded: ‖pX‖∞,B ≤ L0 :=
(2πσ2)−d/2 for allm andA (as mentioned earlier, we assume that σ2 is known be-
cause it can be estimated at the root-n rate). We set L̂1 = maxk=1,...,M ‖p̂k‖∞,B

and L̂ = max(L0, L̂1). In the Appendix we prove that

E‖p̂k‖∞,B ≤ L′, ∀k = 1, . . . ,M, (2.12)

where L′ is a constant.

Theorem 2.1. Let pX be the density of X in model (2.1) and Assumptions 1
through 3 hold. Let n2 = [cn/

√
logn] for some constant c > 0 such that 1 ≤

n2 < n. Then for β = 12L̂, the aggregate estimator p̃n with θ̃ obtained by the
mirror averaging algorithm restricted to a Euclidean ball B satisfies

E‖p̃n − pX‖22,B = O
(

(log n)1/2

n

)

, (2.13)

as n → +∞.
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The theorem implies that the estimator p̃n adapts to the unknown m and
A, i.e., has the same rate, independent of m and d, as in the case when the
dimension m and the matrix A are known. The proof is given in the Appendix.

Remarks.
1. Note that Theorem 2.1 holds with mild assumptions on distributions of the

factors. In particular, we do not need the factors to have discrete distributions
as in standard mixture models or to have densities with respect to the Lebesgue
measure.

2. We state Theorem 2.1 with a restricted L2-norm ‖ · ‖2,B. Under mild
assumptions on the densities of the factors we can extend it to the L2-norm on
R

d. Indeed, inspection of the proof shows that Theorem 2.1 remains valid for
balls B of radius rn which tends to infinity slowly enough as n → ∞. If pX
behaves itself far from the origin roughly as a Gaussian density (which is true
under mild assumptions on factor densities), then the integral of p2

X
outside of

the ball reduces to a value smaller than the right hand side of (2.13).

3. Application to nonparametric classification

One of the main applications of multivariate density estimators is in the su-
pervised learning, where they can be used to construct plug-in classifiers by
estimating the densities of each labeled class. The difficulty with such density-
based plug-in classifiers is that, even for moderately large dimensions d, standard
density estimators have poor accuracy in the tails, i.e., in the region which is
important for classification purposes. In this section we consider the nonpara-
metric classification problem and bound the excess misclassification error of a
plug-in classifier in terms of the MISE of class-conditional density estimators.
This bound implies that, for the class-conditional densities obeying the noisy
IFA model (2.2), the resulting plug-in classifier has nearly optimal excess error.

Assume that we have J independent training samples {Xj1, . . . , XjNj
} of

sizes Nj , j = 1, . . . , J , from J populations with densities f1, . . . , fJ on R
d. We

will denote by D the union of training samples. Assume that we also have an
observation X ∈ R

d independent of these samples and distributed according to
one of the fj. The classification problem consists in predicting the correspond-
ing value of the class label j ∈ {1, . . . , J}. We define a classifier or prediction
rule as a measurable function T (·) which assigns a class membership based on
the explanatory variable, i.e., T : Rd → {1, . . . , J}. The misclassification error
associated with a classifier T is usually defined as

R(T ) =
J
∑

j=1

πjPj(T (X) 6= j) =
J
∑

j=1

πj

∫

Rd

I(T (x) 6= j)fj(x)dx,

where Pj denotes the class-conditional population probability distribution with
density fj, and πj is the prior probability of class j. We will consider a slightly
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more general definition:

RB(T ) =
J
∑

j=1

πj

∫

B

I(T (x) 6= j)fj(x)dx,

where B is a Borel subset of Rd. The Bayes classifier T ∗ is the one with the
smallest misclassification error:

RB(T
∗) = min

T
RB(T ).

In general, the Bayes classifier is not unique. It is easy to see that there exists
a Bayes classifier T ∗ which does not depend on B and which is defined by

πT∗(x)fT∗(x)(x) = min
1≤j≤J

πjfj(x), ∀ x ∈ R
d.

A classifier trained on the sample D will be denoted by TD(x). A key character-
istic of such a classifier is the misclassification error RB(TD). One of the main
goals in statistical learning is to construct a classifier with the smallest possible
excess risk

E(TD) = ERB(TD)−RB(T
∗).

We consider plug-in classifiers T̂ (x) defined by:

πT̂ (x)f̂T̂ (x)(x) = min
1≤j≤J

πj f̂j(x), ∀ x ∈ R
d

where f̂j is an estimator of density fj based on the training sample {Xj1,
. . . , XjNj

}.
The following proposition relates the excess risk E(T̂ ) of plug-in classifiers to

the rate of convergence of the estimators f̂j .

Proposition 3.1.

E(T̂ ) ≤
J
∑

j=1

πj E

∫

B

|f̂j(x)− fj(x)|dx

Proof of the proposition is given in the Appendix.
Assume now that the class-conditional densities follow the noisy IFA model

(2.2) with different unknown mixing matrices and that Nj ≍ n for all j. Let B

be a Euclidean ball in R
d and define each of the estimators f̂j using the mirror

averaging procedure as in the previous section. Then, using Theorem 2.1, we
have

E

∫

B

|f̂j(x) − fj(x)|dx ≤
√

|B| E‖f̂j − fj‖2,B = O
(

(logn)1/4√
n

)

as n → ∞, where |B| denotes the volume of the ball B. Thus, the excess risk
E(T̂ ) converges to 0 at the rate (logn)1/4/

√
n independently of the dimension

d. Following the argument in [11] or [35], it is easy to show that this is the best

obtainable rate for the excess risk, up to the log1/4 n factor.
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4. The algorithm

In this section we discuss numerical aspects of the proposed density estimator.
Clearly, one-dimensional kernel density estimators ĝk with given bandwidth,

say hn ∝ (logn)−1/2, can be computed in a fast way. Similarly, estimating the
variance of the noise component in the noisy IFA model amounts to imple-
menting a single singular value decomposition (SVD) of the d× n data matrix
D = (X1, . . . ,Xn). Let D = V ΛUT be the SVD of D, where Λ is the diagonal
matrix and U , V are matrices with orthonormal columns. We assume w.l.o.g.
that Xi are centered. Then an estimate of the variance σ̂2

k with rank k approx-
imation, k ≤ M , is given by

σ̂2
k =

1

d− k

d
∑

i=k+1

s2i , k = 1, . . . ,M (4.1)

where si are the diagonal elements of Λ/
√
n sorted in the decreasing order.

When the index matrix A is unknown, the rank k approximation B̂k of A used
in the density estimator p̂k, cf. (2.7), can be easily obtained from the SVD of D.
Indeed, we can take B̂k = Vk, where Vk is formed by the first k columns of V .
So, accurate computation of the density estimators (2.7) is feasible, reasonably
fast and does not require a huge amount of memory even for very large n and d.

Therefore, the complexity of the procedure is controlled by the numerical
implementation of the mirror averaging algorithm which, in particular, requires
the computation of the score functions uk(x), involving integration of p̂2k, see
(2.8). The numerical implementation of the integral of the square of density
estimates p̂k in R

d can be realized by means of cubature formulas. Recall that for
the calculation of

∫

p̂k(x)
2dx, say, a cubature has the form

∑N
i=1 wip̂

2
k(xi) where

xi are the nodes and wi are the associated weights. In our setting, M integrals
involving the B̂k-projections need to be calculated for each θk, so formulas with
fixed nodes will be actually more economical. On multidimensional domains,
product quadratures quickly become prohibitive (they grow exponentially in d
for the same accuracy), and therefore this approach is not realistic.

An alternative is to use Monte-Carlo integration methods which require much
more evaluations but do not depend on the dimension d, or a more clever imple-
mentation through Gibbs sampling by generating samples from some suitable
distribution for the Monte-Carlo estimates. Several Gibbs sampling strategies
were considered in the present work. The fastest one was to generate samples
directly from p̂k, so that

∫

p̂2k(x)dx ≃ 1

Q

Q
∑

i=1

p̂k(xi),

where Q is the number of generated i.i.d. random realizations xi from the den-
sity p̂k.



U. Amato et al./Noisy independent factor model 719

The overall algorithm implementing our approach is the following:

Algorithm 4.1. - Compute the singular value decomposition of the data ar-
ray D:

D = V ΛUT ,

with matrices U , V , and Λ having dimensions n × d, d × d and d × d,
respectively;

- for k=1,. . .,M

Take B̂k as the matrix built from the first k columns of V ;

Compute σ̂2
k from (4.1);

Compute the density estimator p̂k(x) from (2.7) based on the subsam-
ple D1;

Compute uk(x) from (2.8).

- end for

- Estimate the weights through (2.10)–(2.11) and output the final density es-
timator (2.9).

To speed up computations, one-dimensional kernel density estimators ĝj, j =
1, . . . ,M , in (2.7) are obtained through a Fast Fourier Transform algorithm,
cf. [29].

The algorithm for estimating
∫

p̂2k(x)dx in (2.8) goes through the following
steps.

Algorithm 4.2. - GenerateQ independent random numbers, y
(i)
k , i = 1, . . . , Q,

from each ĝk, k = 1, . . . ,M , and compute the corresponding density

ĝk(y
(i)
k ) by kernel density estimation;

- Generate the corresponding d-dimensional x(i) as x(i) = B̂ky
(i) + (Id −

B̂kB̂
T
k )ǫ

(i), y(i) ≡ (y
(i)
1 , . . . , y

(i)
k ), with ǫ

(i) being random numbers ex-
tracted from a d-variate Gaussian density function having 0 mean and
diagonal covariance σ̂2

kId;
- Compute p̂k(x

(i)) through (2.7);

- Output the estimate 1
Q

∑Q
i=1 p̂k(x

(i)) of the integral
∫

p̂2k(x)dx.
Here Q is chosen so that generating more random numbers does not change
the estimated value of the integral within a predefined tolerance. Random num-
bers generated from the density estimator ĝk are based on the corresponding
cumulative functions and pre-computed on a high resolution grid with linear
interpolation.

5. Simulations and examples

5.1. Density estimation

To study the performance of density estimates based on our noisy IFA model
we have conducted an extensive set of simulations. As samples drawn form fac-
tors s, we used data generated from a variety of source distributions, including



U. Amato et al./Noisy independent factor model 720

Table 1

List of basic functions considered for the numerical experiments. G(q, r) stands for
Gaussian distribution with mean q and standard deviation r; χ2(r) indicates chi-square

density function with r degrees of freedom; γ(r) is Gamma distribution of parameters r and
1; t(r) is Student distribution with r degrees of freedom

Index Test function
1 G(0, 1)
2 χ2(1)
3 0.5G(−3, 1) + 0.5G(2, 1)
4 0.4γ(5, 1) + 0.6γ(13, 1)
5 χ2(8)
6 t(5)
7 Double exponential : exp(−|x|)

subgaussian and supergaussian distributions, as well as distributions that are
nearly Gaussian. We studied unimodal, multimodal, symmetric, and nonsym-
metric distributions. Table 1 lists the basic (one-dimensional) test densities from
which multidimensional density functions are built.

Experiments were run up to dimension d = 10 with a number of independent
factors equal to 1 and 2. Random i.i.d. noise was generated and added to the
simulated signals so that the Signal to Noise Ratio (SNR) was equal to 3, 5 or
7, where from (2.1) and by Assumption 1 the SNR is computed as

SNR =

∑M
k=1 var(sk)

Dσ2

The kernels K for density estimators ĝj in (2.7) were the Gaussian, the sinc and

de la Vallée-Poussin kernels; the bandwidth h was chosen as h = σ/ log1/2 n. To
obtain legitimate (i.e., nonnegative) density functions they were post-processed
by the procedure of [13]. The size of the sample was chosen as n=200, 300, 500,
700, 1000, 2000 and 4000. In order to apply the aggregate estimation involved
in Noisy IFA, the sample has been randomly split in two parts D1 and D2 of
equal size n1 = n2 = n/2. The following criterion was used for evaluating the
performance of density estimators:

I1 := 100

(

1−
∫

(pestimated(x) − pX(x))
2
dx

∫

p2
X
(x)dx

)

. (5.1)

The performance of IFA density estimation was compared with kernel smooth-
ing (KS) [34] as implemented in the KS package available in R. IFA density es-
timation has been implemented in the MATLAB environment and the scripts are
available upon request. We note that KS can be effectively computed only up
to d = 6 if the FFT algorithm is used. In contrast with this, our method has no
practical restrictions on the dimension. This is due to the use of a proper Gibbs
sampling for estimating integrals (2.8); in addition the density estimate can be
computed on any set in R

d, not necessarily on a lattice imposed by the FFT.
We conducted numerical experiments by generating random samples of size

n from the independent components of Table 1, random mixing matrices, and
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Fig 1. Boxplot of the error criterion I1 (Eq. (5.1)) in the case d = 2, Signal to Noise Ratio
3 and test function 2 for several sample sizes.

different realizations of Gaussian noise. In particular, the elements of the mixing
matrix A were generated as i.i.d. standard Gaussian random variables and then
the matrix was orthonormalized by a Gram-Schmidt procedure. We perform
50 Monte-Carlo replications for each case and output the corresponding values
I1. Results over all experiments show a very good performance of Noisy IFA.
For brevity we only show some representative figures in the form of boxplots.
We display different test functions to demonstrate good performances over all of
them. Moreover, we present only the case of SNR=3 because it seems to be more
interesting for applications and because improvement of performance for both
methods flattens the differences. Figure 1 shows the case of d = 2, SNR=3 and
test function 2 (chi-square function), where the superiority of the aggregated
Noisy IFA with respect to KS is clear. Figure 2 shows analogous boxplots in
the case d = 3 and test function 3 (mixture of Gaussians), again when SNR=3.
This case is interesting because the dimension d is larger, whereas the number
of independent factors is kept constant with respect to the previous experiment.
Figure 2 clearly shows that difference of performance between Noisy IFA and KS
increases in favor of the former. Figure 3 shows boxplots in the case d = 5 and
test functions 5 and 6 (chi-square and Student, respectively), again for SNR=3.
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Fig 2. Boxplot of the error criterion I1 (Eq. (5.1)) in the case d = 3, Signal to Noise Ratio
3 and test function 3 for several sample sizes.

Better performance of Noisy IFA with respect to KS is confirmed, especially
when d increases. Finally, Figure 4 refers to the case d = 10 and test function 4
(mixture of Gammas) again for SNR=3. KS boxplots are not shown because the
software is available only for d ≤ 6. The figure shows that accuracy of NoisyIFA
is very good also for higher dimensions.

Finally, Table 2 shows typical computational times of aggregated IFA and
KS density estimators. Executions were run on a single core 64-bit Opteron 248
processor with MATLAB version R2008a, R 2.9.0 and Linux Operating System.
We see that the aggregated IFA is more than one order of magnitude faster
than KS.

Table 2

Computational time (sec) of aggregated IFA and KS for some test configurations

Experiment Aggregated IFA KS
d = 2, n = 500 0.3 3
d = 3, n = 500 0.9 15
d = 5, n = 500 4 120
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Fig 3. Boxplot of the error criterion I1 (Eq. (5.1)) in the case d = 5, Signal to Noise Ratio
3 and test functions 5 and 6 for several sample sizes.

5.2. Classification: A real data example

In this subsection we apply the nonparametric classification method suggested in
Section 3 to real data. We consider only a two-class problem and we assume that
the class-conditional distributions follow the noisy IFA model. To evaluate the
performance of our approach in comparison with other classification methods
that are often used in this context, we have also applied to these data three
other classification procedures, one parametric and two nonparametric:

LDA (Linear Discriminant Analysis). It relies on the estimate of the class-
conditional density functions (supposed to be Gaussian with a common
covariance matrix among classes), and on the consequent separation of the
two classes by a hyperplane in d-dimensional space.

NPDA (Nonparametric Discriminant Analysis [2]). In this procedure class-
conditional density functions are estimated nonparametrically by the ker-
nel method, assuming that the density obeys an ICA model. The kernel
functions mentioned above in this section were considered in the experi-
ments. The smoothing procedure uses an asymptotic estimate of the band-
width and a correction for getting non-negative density estimators.
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Fig 4. Boxplot of the error criterion I1 (Eq. (5.1)) in the case d = 10, Signal to Noise Ratio
3 and test function 4 for several sample sizes.

FDA (Flexible Discriminant Analysis [14]). This method is also nonparametric,
but classification is performed through an equivalent regression problem
where the regression function is estimated by the spline method.

We have compared the performance of the classification methods on a data
set from a remote sensing experiment. MSG (METEOSAT Second Generation)
is a series of geostationary satellites launched by EUMETSAT (EUropean or-
ganization for the exploitation of METeorological SATellites) mainly aimed at
providing data useful for the weather forecast. A primary instrument onboard
MSG is SEVIRI, a radiometer measuring radiance emitted by Earth at d = 11
spectral channels having a resolution of 3 Km2 at sub-satellite point. Essen-
tially, SEVIRI produces 11 images of the whole Earth hemisphere centered at
0o degrees latitude every 15 minutes. Recognizing whether each pixel of the im-
ages is clear or affected by clouds (cloud detection) is a mandatory preliminary
task for any processing of satellite data. In this respect multispectral radiance
data are prone to improve the detectability of clouds, thanks to the peculiar
behavior of clouds in selected spectral bands. Figure 5 shows an RGB image of
the Earth taken by SEVIRI on June 30th 2006 UTC time 11:12 composed by 3
selected spectral channels. This problem is faced by classification where start-
ing from a variate with dimension d = 11 (i.e., radiance measured over pixels
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Fig 5. RGB image obtained from the SEVIRI sensor onboard MSG on June 30th 2006 UTC
Time 11:12.

of the 11 images), a 2-class label (clear or cloudy) is assigned to each pixel. In
order to accomplish this task by supervised classification a training set has to
be defined. Here we take the training set from a cloud mask produced by sensor
MODIS onboard NOAA EOS series satellites. MODIS sensor is endowed with a
product (MOD35) aimed to produce a reliable cloud mask in many pixels (con-
fident classification in the terminology of MOD35). The algorithm underlying
MOD35 is based on physical arguments, with a series of simple threshold tests
mostly based on couples of spectral bands (see [24] for details of the algorithm).
Troubles in dealing with the increasing number of spectral bands of current and
next generation instrumentation from the physical point of view is fostering in-
vestigation of statistical methods for detecting clouds. Due to the very different
spectral characteristics of water and land pixels, two separate independent clas-
sifications are performed for the two cases. Over land the SEVIRI data set is
composed of 36415 cloudy pixels and 61361 clear ones; for water pixels we have
47048 cloudy pixels and 53610 clear ones. We assume that labels assigned by
MOD35 are the truth.

In order to evaluate the methods, for each case (land and water) we divide the
data set randomly into two parts; a training set of about 2/3 of the pixels used for
estimation and learning (training set) and a test set of about 1/3 of the pixels
used for evaluating the prediction capability of the estimated discrimination.
The split was done 50 times in such a way that the proportion of clear and
cloudy pixels of the whole original data set was respected. As in the density
estimation experiments, the training dataset has been split in two parts D1 and
D2 of equal size to apply the aggregate estimator involved in noisy IFA. The
results are summarized in the Figure 6 showing the boxplots of misclassification
errors for the various classification methods over 50 random splits for land (left)
and water (right). For the land pixels, apart the NPDA method which has a
poor behavior, none of the other three methods clearly stands out and they all
perform essentially well. For the water panels (cf. the right panel of Figure 6) we
get different conclusions. Here the boxplots clearly indicate that our noisy IFA
classification method has the smallest error. Finally, Figure 7 shows the cloud
mask overimposed to the analyzed area.
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Table 3

Computational time taken by LDA, NPDA, FDA, NoisyIFA methodologies to classify the
image of the cloud experiment (land pixels)

Method CPU time (s)
LDA 0.4
NPDA 2.9
FDA 265
Noisy IFA - recursive 314

LDA NPDA FDA NoisyIFA
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Fig 6. Boxplot of the misclassifications for the considered classifiers. Results refer to land
(left) and water (right) pixels of the remote sensing data.

Fig 7. Cloud mask estimated over a part of the region in Fig. 5 by Noisy IFA. Black: area
not subject to classification; blue: pixels over water classified as clear; green: pixels over land
classified as clear; white: pixels over land or water classified as cloudy.
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6. Conclusions

We have considered multivariate density estimation with dimensionality reduc-
tion expressed in terms of noisy independent factor analysis (IFA) model. In
this model the data are generated by a (small) number of latent independent
components having unknown distributions and observed in Gaussian noise.

Without assuming that either the number of components or the mixing
matrix are known, we have shown that the densities of this form can be es-
timated with a fast rate. Using the mirror averaging aggregation algorithm,
we constructed a density estimator which achieves a nearly parametric rate
log1/4 n/

√
n, independent of the dimension of the data.

We then applied these density estimates to construct nonparametric plug-
in classifiers and have shown that they achieve, within a logarithmic factor
independent of d, the best obtainable rate of the excess Bayes risk.

These theoretical results were supported by numerical simulations and by an
application to a complex data set from a remote sensing experiment in which
our IFA classifier outperformed several commonly used classification methods.
Implementation of the IFA-based density estimator and of the related classifier
is computationally intensive; therefore an efficient computational algorithm has
been developed that makes mirror averaging aggregation feasible from compu-
tational point of view.

Appendix A: Proofs

Proof of (2.3). Note that (2.2) implies that the Fourier transform ϕX(u) =
∫

Rd pX(x)eix
T
udx of the density pX satisfies the inequality

|ϕX(u)| ≤ e−σ2‖u‖2/2 (A.1)

for all u ∈ R
d, where ‖ · ‖ denotes the Euclidean norm in R

d. Define the kernel
estimator

p̂∗n(x) =
1

nhd

n
∑

i=1

K

(

Xi − x

h

)

with the kernelK : Rd → R, such thatK(x) =
∏d

k=1 K0(xk), x
T = (x1, x2, . . . , xd),

where K0 is the sinc kernel: K0(x) =
sin x
πx , for x 6= 0, and K(0) = 1/π, with the

Fourier transform ΦK0(t) = I(|t| ≤ 1).
Using Plancherel theorem and acting as in Theorem 1.4 on p. 21 of [33], we

have

E‖p̂∗n − pX‖22 =
1

(2π)d
E

∫

|ϕn(u)Φ
K(hu)− ϕX(u)|2du

≤ 1

(2π)d

[
∫

|1− ΦK(hu)|2|ϕX(u)|2du+
1

n

∫

|ΦK(hu)|2du
]

,

where ϕn(u) = n−1
∑n

j=1 e
iXT

j u is the empirical characteristic function and

ΦK(v) is the Fourier transform of K. Note that ΦK(v) =
∏d

j=1 I{|vj | ≤ 1}
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where vj are the components of v ∈ R
d. Now, for the bias term we have,

using (A.1),
∫

|1− ΦK(hu)|2|ϕX(u)|2du =

∫

I

{

∃j : |uj | >
1

h

}

|ϕX(u)|2du

≤
∫

I

{

∃j : |uj | >
1

h

}

e−σ2
u

2/4e−σ2
u

2/4du

≤ e−σ2/4h2

∫

e−σ2
u

2/4du = e−σ2/4h2

(

4π

σ2

)d/2

.

Next, the variance term

1

n

∫

|ΦK(hu)|2du =
1

n

d
∏

j=1

∫

I

{

|uj| ≤
1

h

}

duj =
2d

nhd
.

Combining the last two expressions, we get

E‖p̂∗n − pX‖22 ≤ C

(

e−σ2/4h2

+
1

nhd

)

with some constant C > 0. Taking here h = σ(4 logn)−1/2, we get (2.3). �

Proof of Proposition 2.1. W.l.o.g. we will suppose here that ak are the
canonical basis vectors in R

d. Note first that the proof of (2.3) with d = 1
implies that the estimators (2.5) achieve the convergence rate of (logn)1/2/n
for the quadratic risk:

E‖ĝk − gk‖22 = O((log n)1/2/n) ∀k = 1, . . . ,m. (A.2)

Denoting C > 0 a constant, not always the same, we have for the estimator (2.6)

E‖p̂n,m,A − pX‖22 ≤ CE

∥

∥

∥

∥

∥

∥

m
∏

j=1

ĝj −
m
∏

j=1

gj

∥

∥

∥

∥

∥

∥

2

2

= CE







∥

∥

∥

∥

∥

∥

m
∑

k=1

k−1
∏

j=1

gj(ĝk − gk)

m
∏

j=k+1

ĝj

∥

∥

∥

∥

∥

∥

2

2







≤ C

m
∑

k=1

E







∥

∥

∥

∥

∥

∥

k−1
∏

j=1

gj

∥

∥

∥

∥

∥

∥

2

2

‖ĝk − gk‖22

∥

∥

∥

∥

∥

∥

m
∏

j=k+1

ĝj

∥

∥

∥

∥

∥

∥

2

2







≤ C

m
∑

k=1

k−1
∏

j=1

‖gj‖22E



‖ĝk − gk‖22
m
∏

j=k+1

‖ĝj‖22





≤ C
m

max
k=1

E
[

‖ĝk − gk‖22
m
∏

j=k+1

‖ĝj‖22
]

,
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where
∏u

i=l ai = 1 when l > u and we have used that the L2-norms of gj are
bounded for all j = 1, . . . ,m. The latter is due to the fact that ‖gj‖2 ≤ ‖φ1,σ2‖2.
The equality in the first line of the last display is just a telescopic sum while
the inequality in its second line uses that the arguments of gj and ĝj are aTk x,
and the integral factorizes because of the orthonormality of ak’s.

We now evaluate the L2-norms of ĝj. By separating the diagonal and off-
diagonal terms,

‖ĝj‖22 =
1

nh

∫

K2
0 +

1

n2

∑

i6=m

1

h
K∗

(

Yi − Ym

h

)

, (A.3)

with the convolution kernel K∗ = K0 ∗K0 and we write for brevity Yi = aTj Xi.
The second term in (A.3) is a U -statistic that we will further denote by Un.
Since all the summands 1

hK
∗
(

Yi−Ym

h

)

in Un are uniformly ≤ C/h, by Hoeffding
inequality for U -statistics [15] we get

P (|Un − E(Un)| > t) ≤ 2 exp(−cnh2t2) (A.4)

for some constant c > 0 independent of n. On the other hand, it is straightfor-
ward to see that there exists a constant C0 such that |E(Un)| ≤ C0. This and
(A.4) imply:

P (|Un| > 2C0) ≤ 2 exp(−c′nh2) (A.5)

for some constant c′ > 0 independent of n. From (A.3) and (A.5) we get

P (A) ≤ 2d exp(−c′nh2), (A.6)

for the random event A = {∃j : ‖ĝj‖22 ≥ C1}, where C1 = 2C0 +
∫

K2
0/(nh).

Using (A.6), (A.2) and the fact that ‖gj‖22 and ‖ĝj‖22 are uniformly ≤ C/h
we find

E



‖ĝk − gk‖22
m
∏

j=k+1

‖ĝj‖22



 ≤ E



‖ĝk − gk‖22
m
∏

j=k+1

‖ĝj‖22I{A}





+ (C1)
m−k

E
[

‖ĝk − gk‖22I{Ac}
]

≤ (C/h)m−k+1P{A}+ C(log n)1/2/n

≤ Ch−(m−k+1) exp(−c′nh2) + C(logn)1/2/n

≤ C(logn)1/2/n.

Thus, the proposition follows. �

Proof of (2.12). We will show first that for some constant C > 0 and for all
j = 1, . . . ,M

P(‖ĝj‖∞,[−1,1] > C) ≤ 1

n1/2h3/2
, (A.7)

where ‖f‖∞,[−1,1] = supt∈[−1,1] |f(t)| for f : R → R. Note that the sinc kernel
K0 satisfies the inequality |K0(u)| ≤ 1/π for all u ∈ R. Now because

‖ĝj‖∞,[−1,1] ≤ E‖ĝj‖∞,[−1,1] + ‖ĝj − Eĝj‖∞,[−1,1]
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and

|Eĝj(t)| =
∣

∣

∣

∣

∫

K0(u)gj(t− uh)du

∣

∣

∣

∣

≤ 1

π
, ∀t ∈ R,

we have

P(‖ĝj‖∞,[−1,1] > C) ≤ P

(

‖ĝj − Eĝj‖∞,[−1,1] > C − 1

π

)

. (A.8)

Now for η(t) := ĝj(t)− Eĝj(t) we have

E(η(t +∆)− η(t))2 =
1

nh2
Var

(

K0

(

t+∆− Z

h

)

−K0

(

t− Z

h

))

≤ 1

nh2

∫ (

K0

(

t+∆− z

h

)

−K0

(

t− z

h

))2

gk(z)dz

≤ C2
0

nh3
∆2

(A.9)

for t,∆ ∈ [−1, 1], where we used that |K ′
0(u)| ≤ C0 with some constant C0 for

all u ∈ R. Also, the standard bound for the variance of kernel estimator ĝj gives

Eη2(t) ≤ C2

nh
, ∀t ∈ [−1, 1] (A.10)

with C2 =
∫

K2
0 (u)du. Now (A.9) and (A.10) verify conditions of the following

lemma.

Lemma A.1. [17, Appendix 1] Let η(t) be a continuous real-valued random
function defined on R

d such that, for some 0 < H < ∞ and d < a < ∞ we have

E|η(t+∆)− η(t)|a ≤ H‖∆‖a, ∀ t,∆ ∈ R
d,

E|η(t)|a ≤ H, ∀ t ∈ R
d.

Then for every δ > 0 and t0 ∈ R
d such that ‖t0‖ ≤ D,

E

[

sup
t:‖t−t0‖≤δ

|η(t)− η(t0)|
]

≤ B0(D + δ)dH1/aδ1−d/a

where B0 is a finite constant depending only on a and d.

Applying this lemma with d = 1, a = 2, H =
C2

0

nh3 , t0 = 0, and δ = 1, we get

E sup
t∈[−1,1]

|η(t)| ≤ E sup
t∈[−1,1]

|η(t)−η(0)|+E|η(0)| ≤ C3

n1/2h3/2
+

C
1/2
2

(nh)1/2
≤ C4

n1/2h3/2
.

Applying now in (A.8) Markov inequality and choosing C = C4 + 1/π, we
obtain (A.7).
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Next, assume w.l.o.g. that B is the unit ball in R
d. We note that (A.7) implies

P





∥

∥

∥

∥

∥

∥

k
∏

j=1

ĝj

∥

∥

∥

∥

∥

∥

∞,B

> Ck



 ≤ P





k
∏

j=1

‖ĝj‖∞,[−1,1] > Ck





≤ P(∪k
j=1{‖ĝj‖∞,[−1,1] > C}) ≤ k

n1/2h3/2
.

Using this and definition (2.7) of p̂k we have that

E‖p̂k‖∞,B ≤ (2πσ2)(d−k)/2
E

∥

∥

∥

∥

∥

∥

k
∏

j=1

ĝj

∥

∥

∥

∥

∥

∥

∞,B

≤ (2πσ2)(d−k)/2



Ck + E

∥

∥

∥

∥

∥

∥

k
∏

j=1

ĝj

∥

∥

∥

∥

∥

∥

∞,B

I







∥

∥

∥

∥

∥

∥

k
∏

j=1

ĝj

∥

∥

∥

∥

∥

∥

∞,B

> Ck











≤ (2πσ2)(d−k)/2

[

Ck +
1

(πh)k
k

n1/2h3/2

]

,

where we also used the fact that ‖ĝj‖∞,[−1,1] ≤ (πh)−1 for all j = 1, . . . , k. Since

h ≍ (log n)−1/2, we get that, for some constant Lk,

E‖p̂k‖∞,B ≤ Lk, ∀k = 1, . . . ,M,

and (2.12) follows with L′ = max(L1, L2, . . . , LM ). �

In the proof of the theorem below, we make use of the following lemma.

Lemma A.2. [21, Lemma A.1] Let Σ and D be two symmetric d × d matri-
ces. For an arbitrary symmetric d × d matrix C, denote by λ1(C) ≥ λ2(C) ≥
· · · ≥ λd(C) its d eigenvalues and by a1(C), a2(C), . . . , ad(C) the correspond-
ing orthonormal eigenvectors. If λr(Σ) is not a multiple eigenvalue of Σ (i.e.
λr−1 > λr > λr+1), then

er(Σ +D)− er(Σ) = −Sr(Σ)Der(Σ) +R,

where Sr(Σ) :=
∑

s6=r
1

λs−λr
Ps(Σ), Ps(Σ) is the projector on the eigenspace

corresponding to the eigenvalue λs = λs(Σ), and

‖R‖ ≤ 6‖D‖F
mins,s6=r |λs − λr|2

where ‖R‖ is the Euclidean norm of R.

Proof of Theorem 2.1. To prove the theorem we use Corollary 5.7 in [19],
which implies that for β = 12L̂ the corresponding aggregate estimator p̃n satis-
fies:

ED2
‖p̃n − pX‖22 ≤ min

k=1,...,M
‖p̂n1,k,B̂k

− pX‖22 +
β logM

n2
, (A.11)



U. Amato et al./Noisy independent factor model 732

where ED2
denotes the expectation over the second, aggregating subsample. Here

p̂n1,k,B̂k
are the estimators constructed from the first, training subsample D1,

which is supposed to be frozen when applying the result of [19] and the inequality
holds for any fixed training subsample. Taking expectation in inequality (A.11)
with respect to the training subsample, using that, by construction, p̃n and
p̂n1,k,B̂k

vanish outside B, and interchanging the expectation and the minimum
on the right hand side we get

E‖p̃n − pX‖22,B ≤ min
k=1,...,M

E‖p̂n1,k,B̂k
− pX‖22,B +

logM

n2
Eβ,

where now E is the expectation over the entire sample.
Recalling now that M < d, n2 = [cn/

√
logn], and that Eβ ≤ C by (2.12), we

obtain

E‖p̃n − pX‖22,B ≤ min
k=1,...,M

E‖p̂n1,k,B̂k
− pX‖22,B +

C(log n)1/2

n
. (A.12)

Now,
min

k=1,...,M
E‖p̂n1,k,B̂k

− pX‖22,B ≤ E‖p̂m,Â − pX‖22,B, (A.13)

where we set Â = B̂m withm being the true rank of A. We set for brevity p̂m,D ≡
p̂n1,m,D for any d×m matrix D. In view of Lemma A.2 and Assumption 3, each

of the columns of Â estimates
√
n-consistently some column of A (cf. remarks

in Section 2). Note also that p̂m,D is invariant under permutation of columns

of D. Thus, w.l.o.g. we will consider in the sequel that the columns âj of Â in
the expression for p̂m,Â are numbered in the same order as the corresponding
columns aj of A.

Since pX = pm,A, we have

‖p̂m,Â − pX‖22,B ≤ 2(‖p̂m,Â − p̂m,A‖22,B + ‖p̂m,A − pm,A‖22,B). (A.14)

Since n1 = n(1 + o(1)), by Proposition 2.1 we get

E‖p̂m,A − pm,A‖22,B = O((log n)1/2/n). (A.15)

It remains to prove that

E‖p̂m,Â − p̂m,A‖22,B = O((log n)1/2/n). (A.16)

Setting for brevity Gx(A) =
(

1
2πσ2

)(d−m)/2
exp

{

− 1
2σ2x

T (Id −AAT )x
}

we can
write (see (2.6) and (2.7)),

‖p̂m,Â − p̂m,A‖2,B = ‖Gx(Â)

m
∏

j=1

ĝj(â
T
j x)−Gx(A)

m
∏

j=1

ĝj(a
T
j x)‖2,B

≤ C‖
m
∏

j=1

ĝj(â
T
j x)−

m
∏

j=1

gj(â
T
j x)‖2,B + C‖

m
∏

j=1

ĝj(a
T
j x)−

m
∏

j=1

gj(a
T
j x)‖2,B +

‖Gx(Â)

m
∏

j=1

gj(â
T
j x)−Gx(A)

m
∏

j=1

gj(a
T
j x)‖2,B =: I1 + I2 + I3.
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As in the proof of Proposition 2.1 we get EI2i = O((log n)1/2/n), i = 1, 2. Next,
we show that EI23 = O(1/n). We write I3 ≤ I3,1 + I3,2 where

I3,1 = ‖Gx(Â)−Gx(A)‖2,B‖
m
∏

j=1

gj(a
T
j x)‖2,B,

I3,2 = C‖
m
∏

j=1

gj(â
T
j x)−

m
∏

j=1

gj(a
T
j x)‖2,B.

To bound these terms we will use the fact that ‖∏l
j=k gj(a

T
j x)‖2,B ≤ C for all

1 ≤ k ≤ l ≤ m (and the same with âj instead of aj). This fact, the definition

of Gx(·) and the boundedness of the Frobenius norms of A and Â imply that
I3,1 ≤ C‖A − Â‖F , where ‖M‖F denotes the Frobenius norm of matrix M .

Now, from Lemma A.2 and Assumption 3 we get E‖Â−A‖2F = O(1/n). Thus,
EI23,1 = O(1/n). We also get EI23,2 = O(1/n). This follows from the Lipschitz
continuity of gj(·) and from the fact that (cf. proof of Proposition 2.1):

EI23,2 ≤ C

m
∑

k=1

E





∥

∥

∥

k−1
∏

j=1

gj(a
T
j x)

∥

∥

∥

2

2,B
‖gk(aTk x)− gk(â

T
k x)‖22,B

∥

∥

∥

m
∏

j=k+1

gj(â
T
j x)

∥

∥

∥

2

2,B





So, we have EI23 = O(1/n). This finishes the proof of (A.16).
Inequalities (A.14), (A.15), and (A.16) give

E‖p̂m,Â − pX‖22,B ≤ O((log n)1/2/n),

which together with (A.12) and (A.13) completes the proof. �

Proof of Proposition 3.1. For any classifier T we have

RB(T )−RB(T
∗) =

J
∑

j=1

πj

∫

B

(I(T (x) 6= j)− I(T ∗(x) 6= j))fj(x)dx

=

J
∑

j=1

πj

∫

B

(I(T ∗(x) = j)− I(T (x) = j))fj(x)dx

=

∫

B

(πT∗(x)fT∗(x)(x) − πT (x)fT (x)(x))dx.

Therefore, the excess risk of the plug-in classifier T̂ can be written in the form

E(T̂ ) ≡ E(RB(T̂ ))−RB(T
∗)

= E

∫

B

(πT∗fT∗(x) − πT̂ f̂T̂ (x) + πT̂ f̂T̂ (x) − πT̂ fT̂ (x))dx, (A.17)
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where we omit for brevity the argument x of T ∗ and T̂ . Note that, by the
definition of T̂ , for all x ∈ R

d we have:

πT∗fT∗(x)− πT̂ f̂T̂ (x) + πT̂ f̂T̂ (x)− πT̂ fT̂ (x)

≤ πT∗fT∗(x) − πT∗ f̂T∗(x) + πT̂ |f̂T̂ (x)− fT̂ (x)|

≤
J
∑

j=1

πj |f̂j(x)− fj(x)|.

Combining the last display with (A.17) proves the proposition. �
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