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Abstract: Mixtures of regression are useful for regression learning with
respect to an uncertain and heterogeneous response variable of interest. In
addition to being a rich predictive model for the response given some co-
variates, the model parameters provide meaningful information about the
heterogeneity in the data population, which is represented by the condi-
tional distributions for the response given the covariates associated with
a number of distinct but latent subpopulations. In this paper, we inves-
tigate conditions of strong identifiability, MLE rates of convergence for
the conditional density and model parameters, and the Bayesian posterior
contraction behavior arising in finite mixture of regression models, under
exact-fitted and over-fitted settings and when the number of components is
unknown. This theory is applicable to common choices of link functions and
families of conditional distributions employed by practitioners. We provide
simulation studies and data illustrations, which shed some light on the
parameter learning behavior found in several popular regression mixture
models reported in the literature.
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1. Introduction

Regression is often associated with the task of curve fitting — given data samples
for pairs of random variables (X,Y ), find a function y = F (x) that captures the
relationship between X and Y as well as possible. As the underlying population
for the (X,Y ) pairs becomes increasingly complex, much effort has been devoted
to learning more complex models for the regression function F . In many data
domains, however, due to the heterogeneity of the behavior of the response
variable Y with respect to covariate X, no single function F can fit the data
pairs well, no matter how complex F is. Many authors noticed this challenge and
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adopted a mixture modeling framework into the regression problem, going back
to [11, 35], and continuing with more recent applications, e.g., [1, 4, 28, 33, 32].

To capture the uncertain and highly heterogeneous behavior of response vari-
able Y given covariate X, one needs more than one single regression model.
Suppose that there are k different regression behaviors, one can represent the
conditional distribution of Y given X by a mixture of k conditional density
functions associated with k underlying (latent) subpopulations. One can draw
from modeling tools of conditional densities such as generalized linear models
or more complex components to increase model fitness for the regression task
[22, 16]. Making inferences in regression mixtures can be achieved in a frequen-
tist framework (e.g., maximum conditional likelihood estimation (MLE) [3]), or
a Bayesian framework [21]. In addition to enhanced predictability for the re-
sponse variable given the covariate, a key benefit of regression mixture models
is that the model parameters may be used to explicate the relationship between
these variables more accurately and meaningfully.

Despite the aforementioned long history of applications, a satisfactory level
of understanding of several key issues concerning model parameters’ identifia-
bility and a large sample theory of regression mixture models remains far from
being complete. This is perhaps due to the somewhat unusual position where
regression mixture model based methods sit — like any regression problem one
is interested in prediction performance, but unlike the traditional viewpoint of a
single curve-fitting task one must come to terms with the multi-modality of the
response variable due to the underlying data population’s latent heterogeneity.
Thus, one must also be interested in the quality of parameter estimates repre-
senting such heterogeneity. There is a slowly growing theoretical literature, but
most existing works are limited to the questions of consistency of estimation for
the mixture of generalized linear models with some specific classes of conditional
densities and link functions, or simulation-based methods [15, 24, 23, 40, 12, 39].
In particular, [15] investigates the identifiability of the mixture of Gaussian re-
gression models with linear link functions. [24] generalizes the results for the
exponential families. [40] further extends the identifiability results to more gen-
eral link functions, but no analysis of parameter estimation. [39] shows the
consistency for density learning of this model under the Bayesian setting. On
parameter estimation behavior, more recently [25] proposed a penalized MLE
method for model selection for the class of identifiable mixture of regression
models with linear link functions and established rates of parameter estimation.
[20] investigated the parameter estimation behavior for the Gaussian mixture
of regression models.

In this paper, we study parameter identifiability, parameter estimation be-
havior, and prediction performance arising from the finite mixture of regression
models. We work with general conditional density kernels and link functions,
investigate both an MLE approach and a Bayesian approach for estimation.
Consider a regression mixture model in the following form:

fG0(y|x) =
k0∑
j=1

p0
jf(y|h1(x, θ0

1j), h2(x, θ0
2j)), (1)



Identifiability and parameter learning in regression mixture models 133

where x ∈ X ⊂ R
p is a vector including the explanatory variables, y ∈ Y is the

response variable. The conditional density function fG0(y|x) take the mixture
form, where the discrete probability measure G0 =

∑k0
j=1 p

0
jδ(θ0

1j ,θ
0
2j) encapsu-

lates all unknown parameters in the model, with (p0
j )

k0
j=1 being the mixing pro-

portion, and (θ0
1j)

k0
j=1 and (θ0

2j)
k0
j=1 being parameters in a compact subspace Θ1

of Rd1 and Θ2 of Rd2 , respectively. We call G0 the latent mixing measure asso-
ciated with the regression mixture model. The link functions h1 : X ×Θ1 → H1
and h2 : X ×Θ2 → H2 are known, where H1, H2 are compact subsets of R. The
family of densities {f(y|μ, φ) : μ ∈ H1, φ ∈ H2} is given, where all of them are
dominated by a common distribution ν on Y which can be either a counting or
continuous measure. In many applications, the family f is a dispersion exponen-
tial family distribution with parameter μ = h1(x, θ1) is modeled as the mean,
and φ = h2(x, θ2) is modeled as the variance of f(y|h1(x, θ1), h2(x, θ2)) so that
the mixture of regression models can capture the average trends and dispersion
of subpopulations in the data. We are interested assessing the quality of the
conditional density estimates, as well as that of parameters (p0

j )
k0
j=1, (θ0

1j)
k0
j=1,

and (θ0
2j)

k0
j=1 from i.i.d. samples (xi, yi)ni=1, where distribution of yi given xi is

given in the model (1) and xi follows some (unknown) marginal distribution PX

on X .
Our parameter estimation theory inherits from and generalizes several recent

developments in the finite mixture models literature. [2] initiated the theoretical
investigation of parameter estimation in a univariate finite mixture model by
introducing a notion of strong identifiability. [31] developed a theory for both
finite and infinite mixture models in a multivariate setting using optimal trans-
port distances. [17] studied convergence rates in various families of vector-matrix
distributions. A central concept in these papers is the notion of strong identifi-
ability of (unconditional) mixtures of density functions. This is a condition on
a parametrized family of density function f of y, as there is no covariate x here.
At a high level, it requires that the family of function f , along with their partial
derivatives with respect to the parameters up to a certain order, are linearly
independent. Once this condition is satisfied, one can establish a lower bound
on the distance between mixture distributions in terms of the optimal transport
distances between the corresponding latent mixing parameters. Such a bound
is called an inverse bound, which plays a crucial role in deriving the rates of
parameter estimates.

With regression mixture modeling, we move from the unconditional mixtures
described above to conditional mixture models. Thus, there are several fun-
damental distinctions. First, one works with the family of conditional density
functions in the form f(y|h(x, θ)), which involves both the conditional density
kernel f and the link function h. A strong identifiability condition for condi-
tional distributions that we develop will inevitably involve both variables x and
y. The focus of inference is on the conditional distribution of Y given covari-
ate X, while the marginal distribution of X is assumed unknown and of little
interest. Accordingly, the identifiability condition must ideally require as little
information from the marginal distribution of the covariate as possible. More-
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over, given that the identifiability condition holds, the inverse bound that we
establish will be a lower bound on the expected distance of the conditional den-
sities, where the expectation is taken with respect to the marginal distribution
of the covariate. This is also crucial because we will obtain rates of conditional
density estimation in terms of the mentioned expected distance and use the
inverse bound to derive the rates of convergence for the corresponding mixing
parameters of interest.

Another interesting feature that distinguishes conditional mixtures from un-
conditional mixtures is that the former tends to satisfy strong identifiability
conditions more easily than the latter. This is because of the role the covariate
x plays in providing more constraints that prevent the violation of the linear
independence condition. For instance, it is trivial that an unconditional mixture
of Bernoulli distributions is not identifiable, but it will be shown (not so easily)
that the mixture of conditional distributions using the Bernoulli kernel is not
only identifiable but also strongly identifiable. There are situations where there
is a lack of strong identifiability, such as in the case of negative binomial regres-
sion mixtures, a model extensively employed in practice (e.g., see [33, 32]), but
we shall show that such situations occur precisely only in a Lebesgue measure
zero subset of the parameter space.

To summarize, there are several contributions made in this paper. First, we
develop a rigorous notion of strong identifiability for general regression mix-
ture models. We provide a characterization of such a notion in terms of simple
conditions on the conditional density kernel f and link function h and show
that they are satisfied by a broad range of density kernels and link functions
often employed in practice. Second, we study several examples of regression mix-
tures when strong identifiability is violated and investigate the consequences.
Third, we establish convergence rates for regression mixtures given strong iden-
tifiability, under both Bayesian estimation and MLE frameworks. We consider
three different learning scenarios: when the number of mixture components k0
is known (i.e., exact-fitted setting), when only an upper bound is known (i.e.,
overfitted setting), and when even such an upper bound is unknown. Finally, we
conduct a series of simulation studies to support the theory and discuss the con-
nections with empirical findings in the regression mixture literature [23, 33, 34].

In this paper we shall focus primarily on the “point-wise” convergence pa-
rameter estimation rate, i.e., assume that there is a fixed true set of parameters
in the mixture model, instead of allowing them to vary and overlap arbitrarily
as in a minimax setting, e.g., [14, 44, 41]. The uniform convergence rates arising
in the latter asymptotic setting are known to be extremely slow as the level of
over-fitting increases and generally challenging to establish. In theory, the dis-
tinction between the minimax and pointwise convergence rates within the finite
mixture framework deserves careful attention; see the recent paper [41] for the
sharpest and general treatment in the finite and multivariate mixture setting. In
practice, the slow minimax convergence rates do not reflect the meaningful ap-
plicability of mixture modeling based methods. For instance, for many realistic
data distributions, such as in the crash data analysis [32] (to be demonstrated
in Section 5), the fixed true parameters assumption is arguably more applicable
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since the modeler knows that there are only some heterogeneous but unchanged
sources that lead to car crashes. Furthermore, unlike vanilla mixtures, previous
theoretical investigation for regression mixture models only mentioned identifi-
ability and consistency [15, 24, 39]. Hence, the investigation of the point-wise
parameter estimation behavior can be valuable and the technique we study may
be useful for a more delicate analysis of this model class.

The rest of this paper is organized as follows. Section 2 provides prelimi-
naries on the mixture of regression models. In Section 3, we present notions
of strong identifiability and associated characterization for regression mixtures,
followed by a set of inverse bounds. Building upon this strong identifiability
theory, in Section 4, we establish the rates of conditional density estimation and
parameter estimation. In Section 5, we carry out simulation studies and data
illustrations to support our theory and discuss the empirical findings in the lit-
erature. Finally, Section 6 discusses future directions. All proofs are deferred to
the Supplementary material.

Notation Given a mixing measure G =
∑k

j=1 pjδ(θ1j ,θ2j), the mixture of re-
gression model with respect to G is denoted by fG(y|x) =

∑k
j=1 pjf(y|h1(x, θ1j),

h2(x, θ2j)). The joint distribution of (x, y) is dPG(x, y) = dPX(x)×fG(y|x)dν(y),
where PX is an unknown distribution of covariate X. EX denotes the expec-
tation w.r.t. PX . We write fj(y|x) = f(y|h1(x, θ1j), h2(x, θ2j)) for short, for
j = 1, . . . , k, if there is no confusion. Denote Θ = Θ1 × Θ2, H = H1 × H2.
Let Ek(Θ) be the space of mixing measures with exactly k atoms in Θ, and
Ok(Θ) = ∪k

κ=1Eκ(Θ) the space of mixing measures with no more than k atoms
in Θ. If there is no confusion, we write Ek(Θ) and OK(Θ) as Ek and OK for short.
For two sequence (an)∞n=1 and (bn)∞n=1, we write an � bn if there is a constant
C such that an ≤ Cbn for all n. We also write an � bn if bn � an, and an � bn
if we have both an � bn and an � bn. The multiplicative constants in those
inequalities will be specified in the main results for clarity. We use dH , dTV ,
and K for the Hellinger distance, total variation distance, and Kullback-Leibler
(KL) divergence between densities, respectively.

2. Preliminaries

Regression mixture models A mixture of regression model may be applied
with many different family distributions and link functions to fit a large range
of data distributions. For example, when the response variable y is continuous,
we can choose the family of (conditional) density to be normal {N (y|μ, φ) :
μ ∈ R, φ ∈ R+}, and parametrize μj and φj via two link functions μj =
h1(x, θ1j), φj = h2(x, θ2j), for j = 1, . . . , k. These functions can be represented
by polynomials or trigonometric polynomials with variable x and coefficients
θ1j , θ2j . Alternatively, when y is a counting variable, one can use the Binomial
distribution {Bin(y|N, q) : q ∈ [0, 1]} if y is bounded and the Poisson distri-
bution {Poi(y|μ) : μ ∈ R+} otherwise. If one wishes to take into account the
dispersion of y, Negative Binomial distribution {NB(y|μ, φ) : μ, φ ∈ R+}, where
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NB(y|μ, φ) = Γ(φ + y)
Γ(φ)y!

(
μ

φ + μ

)y (
φ

φ + μ

)φ

may be used. If the values of μ or

φ need to be non-negative or belong to a compact set, one may apply functions
such as exponential functions or the sigmoid (inverse logit) function composit-
ing with a polynomial or trigonometric polynomial parametrized by θ1, θ2. The
general theory to be presented will be applicable to all these models, and others.

Wasserstein distances As discussed in the Introduction, all parameters in
the mixture model for the conditional distribution fG(y|x) of the response y

given covariate x are encapsulated by the latent mixing measure G =
∑k

j=1 pj
δ(θ1j ,θ2j). In order to characterize identifiability and learning rates of parameter
learning, one needs a suitable metric for the mixing measure G. Wasserstein
distances have become a useful tool to quantify the convergence of latent mixing
measures in mixture models [31]. Given two discrete measures G =

∑k
j=1 pjδθj

and G′ =
∑k′

j=1 p
′
jδθ′

j
on a normed space Θ endowed with a norm ‖ · ‖, the Wr

Wasserstein metric, in which r ≥ 1, is defined as:

Wr(G,G′) =

⎡⎣inf
q

k,k′∑
i,j=1

qij
∥∥θi − θ′j

∥∥r⎤⎦1/r

,

where the infimum is taken over all joint distribution on [1, . . . , k] × [1, . . . , k′]
such that

∑k
i=1 qij = p′j ,

∑k′

j=1 qij = pi. Note that for G0 =
∑k0

j=1 p
0
jδθ0

j
∈ Ek0 ,

if G =
∑k

j=1 pjδθj varies on Ok such that Wr(G,G0) → 0 and Θ is compact,
then

W r
r (G,G0) �

k0∑
i=1

∣∣∣∣∣∣
∑
θj∈Vi

pj − p0
i

∣∣∣∣∣∣+
k0∑
i=1

∑
θj∈Vi

pj
∥∥θj − θ0

i

∥∥r , (2)

where Vi = {θ :
∥∥θ − θ0

i

∥∥ ≤
∥∥θ − θ0

i′

∥∥∀i′ �= i} is the Voronoi cell of θ0
i in Θ

(see, e.g., [19]). Hence, for every atom of G0, there is a subset of atoms of G
converging to it at the same rate as Wr(G,G0) → 0. Therefore, the convergence
in a Wasserstein metric Wr implies the convergence of parameters in mixture
models. In this paper, unless noted otherwise the space Θ = Θ1 × Θ2 is chosen
to be a compact subset of Rd1+d2 and ‖·‖ is the usual �2 distance.

Mixtures of conditional densities In a regression mixture model, a focus
of inference will be on the conditional density fG(y|x), while there will be as
little assumption as possible on the marginal distribution of covariate X. It is
clear from the representation of fG(y|x) that the identifiability and parameter
learning behavior of the regression problem will repose upon suitable conditions
specified by f , h and the unknown parameter G. The analysis of conditional
density estimation requires us to control how large the conditional density family
{f(y|h1(x, θ1), h2(x, θ2)) : θ1 ∈ Θ1, θ2 ∈ Θ2} is. This can be accomplished by
assuming Lipschitz conditions on f , h1 and h2. In particular, we say that f is
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uniformly Lipschitz if there exists cf > 0 such that for all μ, μ′ ∈ H1, φ, φ
′ ∈ H2:

sup
y∈Y

|f(y|μ, φ) − f(y|μ′, φ′)| ≤ cf (|μ− μ′| + |φ− φ′|). (3)

The link functions h1 and h2 are called uniformly Lipschitz if there are c1, c2 > 0
such that for all θ1, θ

′
1 ∈ Θ1, θ2, θ

′
2 ∈ Θ2:

sup
x∈X

|h1(x, θ1)−h1(x, θ′1)| ≤ c1 ‖θ1−θ′1‖ , sup
x∈X

|h2(x, θ2)−h2(x, θ′2)| ≤ c2 ‖θ2−θ′2‖ .

(4)
In a regression problem, one is interested in prediction error guarantee in

addition to assessing the quality of parameter estimates. For a standard (single
component) regression model, we often model f(y|x) = f(y|h1(x, θ1), h2(x, θ2)),
where h1(x, θ) is the mean parameter, i.e., E[Y |X = x] = h1(x, θ). After estimat-
ing θ̂1 from the data, the prediction error is customarily taken to be the mean
square error EX(h1(X, θ0

1) − h1(X, θ̂1))2, where θ0
1 is the true parameter. For

a regression mixture, let the true latent mixing measure be
∑k0

j=1 p
0
jδ(θ0

1j ,θ
0
2j)

for which an estimate is denoted by
∑k

j=1 p̂jδ(θ̂1j ,θ̂2j). In this setting, due to
the heterogeneous nature of the response, the predicted value for y at any x
may be taken by the quantity

∑k
j=1 p̂jδh1(x,θ̂1j), or its mean

∑k
j=1 p̂jh1(x, θ̂1j).

As a result, the prediction error for the mean estimate can be written as
EXW 2

2

(∑k0
j=1 p

0
jδh1(X,θ0

j ),
∑k

j=1 p̂jδh1(X,θ̂1j)

)
. If one is interested in describing

the prediction error in terms of both the mean trend and dispersion, one can
use EXW 2

2

(∑k0
j=1 p

0
jδ(h1(X,θ0

1j),h2(X,θ0
2j)),

∑k
j=1 p̂jδ(h1(X,θ̂1j),h2(X,θ̂2j))

)
.

Key inequalities The following basic inequality controls the expected total
variation distance between conditional densities by a Wasserstein distance be-
tween the corresponding parameters:

Lemma 1. Assume conditions (3) and (4) hold. Then for every G ∈ OK(Θ)
and K ≥ 1, we have

EX [dTV (fG(·|X), fG0(·|X))] � W1(G,G0), (5)

where the multiplicative constant in this inequality only depends on cf , c1, and
c2.

The inequality established in the above lemma quantifies the impact of pa-
rameter estimation on the quality of conditional density estimation: if G is well
estimated, then so is the conditional distribution represented by the conditional
densities fG(Y |X). In order to quantify the identifiability and convergence of
the unknown parameter G, we will need to establish inequalities of the following
type:

EX [dTV (fG(·|X), fG0(·|X))] � W r
r (G,G0), (6)

for all G in some space of latent mixing measures, and r depends on that space.
Following [31, 42, 6], we refer to this as inverse bounds, because in our set-
ting, they allow us to lower bound the distance between conditional probability
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models (fG and fG0) by the distance between the parameters of inferential in-
terest (G and G0). Unlike prior works, our inverse bounds control the expected
total variational distance under the marginal distribution of the covariate X.
A simple observation is that these inverse bounds are quantitative versions of
the classical identifiability condition [37] for the regression problem, because if
fG = fG0 for a.e. x, y, then the bound (6) entails that G = G0. Moreover, the
inverse bounds play an important role in establishing the convergence rate for
parameter estimation. They allow us to translate convergence rates for density
estimation (left-hand side of Eq. (6)) into that of parameter estimation (right-
hand side of Eq. (6)). The technique to prove inverse bounds is to rely on a
notion of strong identifiability to be developed for regression mixture models in
the following section.

3. Strong identifiability and inverse bounds

3.1. Conditions of strong identifiability

Identifiability and strong identifiability conditions play important roles in the
theoretical analysis of mixture models [37, 2, 17]. They provide a finer char-
acterization of the non-singularity of the Fisher information for mixtures of
distributions [19]. In plain words, these conditions require that the kernel den-
sity function of interest and its derivatives up to a certain order with respect to
all relevant parameters be linearly independent. For the mixture of regression
model (1), the kernel density function is that of the conditional probability of
variable y given covariate x. The following definition is our formulation of strong
identifiability for the conditional density functions:

Definition 1. The family of conditional densities {f(y|h1(x, θ1), h2(x, θ2)) :
θ1 ∈ Θ1, θ2 ∈ Θ2} (or in short, f(·|h1, h2)) is identifiable in order r, where r = 1
(resp., r = 2) with complexity level k, if f(y|h1(x, θ1), h2(x, θ2)) is differentiable
up to order r with respect to (θ1, θ2), and (A1.) (resp., (A2.)) holds.

(A1.) (First order identifiable) For any given k distinct elements (θ11, θ21), . . . ,
(θ1k, θ2k) ∈ Θ1 × Θ2, if there exist αj ∈ R, βj ∈ R

d1 , γj ∈ R
d2 as j =

1, . . . , k such that for almost all x, y (w.r.t. PX × ν)
k∑

j=1
αjfj(y|x) + β�

j

∂

∂θ1
fj(y|x) + γ�

j

∂

∂θ2
fj(y|x) = 0,

then αj = 0, βj = 0 ∈ R
d1 , γj = 0 ∈ R

d2 for j = 1, . . . , k;
(A2.) (Second order identifiable) For any given k distinct elements (θ11, θ21), . . . ,

(θ1k, θ2k) ∈ Θ1 × Θ2 and s1, . . . , sk ≥ 1, if there exist αj ∈ R, βj ∈
Rd1 , γj ∈ Rd2 , and ρjt ∈ Rd1 , νjt ∈ Rd2 as j = 1, . . . , k, t = 1, . . . , s
such that for almost all x, y (w.r.t. PX × ν)
k∑

j=1
αjfj(y|x) + β�

j

∂

∂θ1
fj(y|x) + γ�

j

∂

∂θ2
fj(y|x) +

sj∑
t=1

(
ρ�jt

∂

∂θ2
1
fj(y|x)ρjt

)
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+
sj∑
t=1

(
ν�jt

∂

∂θ2
2
fj(y|x)νjt

)
+

sj∑
t=1

(
ρ�jt

∂

∂θ1∂θ2
fj(y|x)νjt

)
= 0,

then αj = 0, βj = ρjt = 0 ∈ Rd1 , γj = νjt = 0 ∈ Rd2 for t = 1, . . . , sj , j =
1, . . . , k.

When we speak of strong identifiability without specifying the complexity
level, it should be understood that the condition is satisfied for any complex-
ity level k ≥ 1. These strong identifiability conditions for conditional density
functions are useful in deriving rates of convergence for the regression mixture
model’s parameters even when the associated Fisher information matrices are
singular, e.g., when the model has redundant parameters. Indeed, when showing
the convergence rate of an estimator G to the true mixing measure G0 in the
over-fitted setting, there might exist several redundant atoms of G converge to a
common atom of G0. The customary technique of applying the first-order Taylor
expansion around fG0(·|X) may fail because the coefficients of these redundant
components can be combined and canceled out. Instead, one needs to perform
a Taylor expansion up to the second order around fG0(·|X), necessitating the
second-order identifiability condition developed here. It will be shown in the
sequel that the strong identifiability conditions hold for most popular mixtures
of regression models. There are notable exceptions which shall be discussed sep-
arately. For instance, a mixture of binomial regression models generally satisfies
strong identifiability only up to a finite complexity level.

Since our model (1) is hierarchical with two levels of parameters:

G0=
k0∑
j=1

p0
jδ(θ1j ,θ2j) �→

k0∑
j=1

p0
jδ(h1(x,θ1j),h2(x,θ2j)) �→

k0∑
j=1

p0
jf(y|h(x, θ1j), h(x, θ2j)),

(7)
it is difficult to directly verify conditions (A1.) and (A2.). We will show in
the following that they can be deduced from the identifiability conditions of a
family of (unconditional) distribution {f(y|μ, φ) : μ, φ} and family of functions
(h1, h2). Recall from [17, 31]:

Definition 2. The family of (unconditional) distributions {f(y|μ, φ) : (μ, φ) ∈
H} (or in short, f) is identifiable in order r with complexity level k, for some
r, k ≥ 0, if f(y|μ, φ) is differentiable up to order r in (μ, φ) and the following
holds:

(A3.) For any given k distinct elements (μ1, φ1), . . . , (μk, φk) ∈ H, if for each
pair of n := (n1, n2), where n1 ≥ n2 ≥ 0, n1 + n2 ≤ r, we have α

(j)
n ∈ R

such that
r∑

l=0

∑
n1+n2=l

k∑
j=1

α(j)
n

∂n1+n2f

∂μn1∂φn2
(y|μj , φi) = 0

for almost all y, then α
(j)
n = 0 for all 1 ≤ j ≤ k and pair n = (n1, n2).
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Condition (A3.) for r = 0 simply ensures that the mixture of f distributions
model uniquely identifies the mixture components. The strong identifiability
conditions (r ≥ 1) are required to establish the convergence rates [2, 31]. In
particular, we only need to consider r = 1 and 2 (first and second-order identi-
fiability) in this article. In the model (1), there is a hierarchically higher level of
parameters (θ1, θ2) that we want to learn, and it connects to the observations
through the link functions h1, h2 as μ = h1(x, θ1), φ = h2(x, θ2). To ensure that
θ1 and θ2 can be learned efficiently, we also need suitable conditions for h1 and
h2.

Definition 3. The family of functions {(h1(x, θ1), h2(x, θ2)) : θ1 ∈ Θ1, θ2 ∈
Θ2} is called identifiable with complexity level k respect to PX if the following
conditions hold:

(A4.) For every set of k + 1 distinct elements (θ11, θ21), ..., (θ1(k+1), θ2(k+1)) ∈
Θ1 × Θ2, there exists a subset A ⊂ X , PX(A) > 0 such that
(h1(x, θ11), h2(x, θ21)), ..., (h1(x, θ1(k+1)), h2(x, θ2(k+1))) are distinct for ev-
ery x ∈ A;

(A5.) Moreover, if there are vector β1 ∈ R
d1 , β2 ∈ R

d2 such that

β�
1

∂

∂θ1
h1(x, θ1j)=0, β�

2
∂

∂θ2
h2(x, θ2j)=0 ∀x ∈ A \N, j=1, . . . , k+1,

where N is a zero-measure set (i.e., PX(N) = 0), then β1 = 0 and β2 = 0.

Remark 1. 1. Condition (A4.) is necessary for identifying regression mix-
ture components. Indeed, for two distinct pairs (θ1, θ2) and (θ′1, θ′2) in Θ1×
Θ2, there may exists some point x ∈ X so that h1(x, θ1) = h1(x, θ′1), h2(x,
θ2) = h2(x, θ′2). If we only observe data (x, y) at such x, it is not possible
to distinguish between (θ1, θ2) and (θ′1, θ′2).

2. In linear models, condition (A5.) reads that there is no multicollinearity:
If we model h1(x, θ) = θ1ψ1(x)+· · ·+θd1ψd1(x), where ψi’s are pre-defined
functions, then by substitute this into condition (A5.), we have ψ1, . . . , ψd1

must be linearly independent as functions of x. Otherwise, the model is not
identifiable with respect to parameters θj’s.

3. (A4.) and (A5.) can be viewed as generalization (to non-linear) and popu-
lation versions of condition (1b) and (2) in [13] (or condition in Theorem
2.2 in [15]).

Hence, the two conditions in Definition 3 are necessary for learning parame-
ters of the mixture of regression models. The following result shows that Defi-
nition 2 and Definition 3 give sufficient conditions to deduce the strong identi-
fiability given by Definition 1, where the chain rule plays an essential role in its
proof.

Theorem 1. For any complexity level k, if the family of distributions f is
strongly identifiable in order r (via (A3.)) and the family of functions h is
identifiable (via (A4.) and (A5.)), then the family of conditional density f(y|x)
is strongly identifiable in order r, where r = 1, 2.
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3.2. Characterization of strong identifiability

Theorem 1 provides a simple recipe for establishing the strong identifiability of
the conditional densities arising in regression mixture models (1) by checking the
identifiability conditions of family f and family h. In the following, we provide
specific examples.

Proposition 1. (a) The family of location normal distribution {N (y|μ, σ2) :
μ ∈ R} with fixed variance σ2 is identifiable in the second order, for N (y|μ, σ2) =
exp(−(y−μ)2/2σ2). The location-scale family {N (y|μ, σ2) : μ ∈ R, σ2 ∈ R+} is
identifiable in the first order;
(b) The Poisson family {Poi(y|λ) : λ ∈ R

+} is identifiable in the second order;
(c) The family of Binomial distributions {Bin(y|N, q) : q ∈ [0, 1]} with fixed
number of trials N is identifiable in the first order with complexity level k if
2k ≤ N + 1, and is identifiable in the second order with complexity level k if
3k ≤ N + 1;
(d) The family of negative binomial distributions {NB(y|μ, φ) : μ} with fixed
φ ∈ R+ is identifiable in the second order.

The identifiability conditions (A4.) and (A5.) usually hold for parametric
models, as we see below. We first define a general class of functions:

Definition 4. We say a family of functions {h(x, θ) : θ ∈ Θ} is completely
identifiable if for any θ �= θ′ ∈ Θ, we have h(x, θ) �= h(x, θ′) almost surely in
PX .

Proposition 2. If h1 and h2 are both completely identifiable, then the family
of functions {(h1, h2)} satisfies condition (A4.).

Most functions used in parametric regression mixture models are completely
identifiable.

Proposition 3. Suppose that PX has a density with respect to Lebesgue mea-
sure on X , then the following families of functions are completely identifiable
and satisfy condition (A5.):
(a) Polynomial of finite dimensions h(x, θ)=

∑
d1+...+dp≤d,di≥0 θ(d1,...,dp)x

d1
1 . . .

x
dp
p , where d ∈ N+ and θ = (θ(d1,...,dp) : di ≥ 0,

∑p
i=1 di ≤ d);

(b) Trigonometric polynomials in R: h(x, θ) = a0 +
∑d

n=1 bn sin(nx) +
∑d

n=1 cn
cos(nx), where θ = (a0, b1, . . . , bd, c1, . . . , cd);
(c) Mixtures of polynomials and trigonometric polynomials as in (a) and (b):
h(x, θ)=

∑d
n=0 anx

n+
∑d

n=1 bn sin(nx)+
∑d

n=1 cn cos(nx), where θ=(a0, . . . , ad,
b1, . . . , bd, c1, . . . , cd);
(d) h(x, θ) = g(p(x, θ)), where g is a diffeomorphism, i.e., a continuously dif-
ferentiable bijective function, and p(x, θ) is completely identifiable and satisfies
condition (A5.).

Remark 2. In a general linear model, h(x, θ) = exp(θ�x) ∈ R+ or h(x, θ) =
σ(θ�x) ∈ [0, 1], where σ is the sigmoid (inverse logit) function. Both the expo-
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nential function and sigmoid function are one-to-one, and θ�x is a first-order
polynomial, so the above results apply.

3.3. Inverse bounds for mixture of regression models

At the heart of our convergence theory for parameter learning in regression
mixture models lies a set of inverse bounds, which are given as follows.

Theorem 2. (a) (Exact-fitted) Given G0 ∈ Ek0(Θ) for k0 ∈ N+. Suppose
that the family of conditional densities {f(·|h1, h2)} is identifiable in the
first order, and the family of functions (h1, h2) is identifiable (with the
complexity level k0). Then for all G ∈ Ek0(Θ), there holds

EXdTV (fG(·|X), fG0(·|X)) � W1(G,G0), (8)

where the constant in this inequality depends only on G0, h1, h2, f,PX , and
ν (but not on G).

(b) (Over-fitted) Given G0 ∈ Ek0(Θ) for k0 ∈ N+ and k0 ≤ K̄ for some natural
number K̄. Suppose that the family of conditional densities {f(·|h1, h2)}
is identifiable in the second order, and the family of functions (h1, h2) is
identifiable (with the complexity level K̄). Then for all G ∈ OK̄(Θ), there
holds

EXdTV (fG(·|X), fG0(·|X)) � W 2
2 (G,G0). (9)

where the constant in this inequality depends only on G0, h1, h2, f,PX , and
ν (but not on G).

If the true number of components k0 is known, then Theorem 2 entails that
the convergence rate for parameter estimations can be as fast as the convergence
rate for conditional densities under the total variation distance. However, in
practice, we may not know k0 and fit the system by a large number K̄. In this
over-fitted regime, provided that the identifiability conditions for distribution
f and function h are satisfied in the second order, the convergence rate for
parameter estimation may be twice as slow as that of the conditional densities.

Based on the convergence behavior of the regression mixture model’s pa-
rameters, we can establish guarantees on the prediction error for the response
variable. The following bounds will be useful for deducing the prediction error
bounds from that of parameter estimates.

Proposition 4. Suppose that the density f and link functions h1, h2 are uni-
formly Lipschitz, then for all G ∈ OK̄(Θ), G =

∑K̄
j=1 pjδ(θ1j ,θ2j) and r ≥ 1, we

have

Wr(G,G0) � EXWr

⎛⎝ K̄∑
j=1

pjδ(h1(X,θ1j),h2(X,θ2j)),

k0∑
j=1

p0
jδ(h1(X,θ0

1j),h2(X,θ0
2j))

⎞⎠ ,
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and

Wr(G,G0) � EX

∣∣∣∣∣∣
K̄∑
j=1

pjhu(X, θuj) −
k0∑
i=1

p0
ihu(X, θ0

ui)

∣∣∣∣∣∣ ∀u = 1, 2,

where the constants in those inequalities only depend on Lipschitz constants of
h1 and h2.

3.4. Consequences of lack of strong identifiability

Strong identifiability notions characterize the favorable conditions under which
efficient regression learning is possible in the mixture setting. Next, we turn
our attention to the consequence of the lack of strong identifiability. Firstly,
we note that the normal distributions satisfy the well-known heat equation:
∂2

∂μ2N (y|μ, σ2) = ∂

∂(σ2)N (y|μ, σ2), ∀μ ∈ R, σ2 ∈ R+, so the mixture of nor-

mal regression model no longer satisfies the strong identifiability condition in
the second order. This (Fisher information matrix’s) singularity structure is
universal (i.e., holds for all μ, σ2). Therefore, the inverse bounds presented in
Theorem 2 for the over-fitted setting may not hold and potentially lead to slow
convergence rates for the mixture of regression with normal kernel, which can
be seen in some recent work [20, 30, 29]. However, this kernel does satisfy the
strong identifiability in the first order, so the parameter estimation rate in the
mixture of normal regression is as fast as the density estimation rate in the
exact-fitted setting, as established by Theorem 1 and 2.

Another interesting example arises in negative binomial regression mixture
models, which have been utilized in the traffic analysis of heterogeneous en-
vironments [33, 32]. These authors observed via many empirical experiments
that the quality of parameter estimates and the prediction performance may
be affected by the (overlapped) sample-mean values obtained from the data.
However, there was a lack of precise theoretical understanding. Our theoretical
framework can be applied to shed light on the behavior of this class of regres-
sion mixture model. It starts with the observation that the mixture of negative
binomial distributions does not even satisfy the first-order strongly identifiable
condition. Moreover, we can identify precisely the instances where strong iden-
tifiability fails to hold and investigate the impact on the quality of parameter
estimates and the prediction performance in such instances.

First, we note that the mean-dispersion negative binomial conditional density
{NB(y|μ, φ) : μ ∈ R+, φ ∈ R+} satisfies the following equation:

∂

∂μ
NB(y|μ, φ) = φ

μ
NB
(
y|μφ + 1

φ
, φ + 1

)
− φ

μ
NB(y|μ, φ), ∀y ∈ N. (10)

Thus, a 2-mixture of negative binomial distributions NB(y|μ1, φ1) and NB
(y|μ2, φ2) such that

μ1

φ1
= μ2

φ2
and φ1 = φ2 + 1 (11)
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does not satisfy the strong identifiability condition in the first order. As a result,
the inverse bounds of the general type (6) cannot hold, even in the exact-fitted
setting. The following proposition makes this clear.

Proposition 5. Consider a mixture of negative binomial regression model with
link functions h(x, θ1) = exp(θ10 + (θ̄1)�x), h(x, θ2) = θ2 for θ1 = [θ10, θ̄1] ∈
Rp+1 and θ2 ∈ R+. For any k0 ≥ 2 and r ≥ 1, there exists G0 and a sequence
Gn ∈ Ek0 such that Wr(Gn, G0) → 0 and

EdTV (fGn(·|X), fG0(·|X)) � W 2r
r (Gn, G0). (12)

As a consequence of (12), for any measurable estimate Ĝn of the mixing measure
G, the following holds for any r ≥ 1:

inf
Ĝn∈Ek0

sup
G∈Ek0

EPG
Wr(Ĝn, G) � n−1/(4r). (13)

Remark 3. By plugging r = 1 into (12), it is clear that the inverse bound (8)
for the exact-fitted setting no longer holds for the negative binomial regression
mixture family. Part of the reason for the slow minimax rate is due to the use
of Wr. For a general finite mixture, it is not difficult to show a minimax lower
bound n−1/(2r) under Wr, provided that the number of mixture components is
known. Here, a non-trivial minimax rate n−1/(4r) twice as slow arises due to
the violation of strong identifiability for the negative binomial mixtures. The
sharpest minimax rate remains unknown for this model setting.

Nonetheless, we will show that non-identifiability occurs only in a Lebesgue
measure zero subset of the parameter space.

Proposition 6. Given k distinct pairs (μ1, φ1), . . . , (μk, φk) ∈ R+ × R+ such
that there does not exist two indices i �= j satisfying μi

φi
= μj

φj
and |φi −φj | = 1,

then the mixture of negative binomials (NB(μi, φi))ki=1 is strongly identifiable in
the first order. If we further assume that there does not exist two indices i �= j

satisfying μi

φi
= μj

φj
and |φi−φj | ∈ {1, 2}, then the mixture of negative binomials

(NB(μi, φi))ki=1 is strongly identifiable in the second order.

Finally, we note that the theory established earlier (Theorem 1 and The-
orem 2) represent sufficient conditions. There still may exist non-identifiable
or non-strongly identifiable families f and (h1, h2) that lead to strong iden-
tifiable f(·|h1, h2). As an example, the mixture of two Binomial distributions
p(y) = p1Bin(y|1, q1) + p2Bin(y|1, q2), with parameter (p1, p2, q1, q2) is not even
identifiable: e.g., the model is the same with (p1, p2, q1, q2) = (.5, .5, .3, .7) and
(p1, p2, q1, q2) = (.5, .5, .2, .8). However, the mixture of two logistic regression
models fG(y|x) = p1Bin(y|1, σ(θ�1 x)) + p2Bin(y|1, σ(θ�2 x))) is strongly identi-
fiable and enjoys the inverse bound as well as standard convergence rates, as
shown in the following proposition.
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Proposition 7. Suppose that the link function h(x, θ) = σ(θx) := 1/(1+eθx) for
θ, x ∈ R, and the density kernel f(y) = Bin(y|1, q), where q = h(x, θ). Moreover,
the support of PX contains an open set in R. Then, the mixture of two binomial
regression components associated with the mixing measure G = p1δθ1 + p2δθ2 ,
where θ1 + θ2 �= 0, is strongly identifiable in the first order.

The proof of such a result involves some specific analytical properties of kernel
f and function h and is difficult to generalize. This again highlights our general
theory developed in this section, which is applicable to a vast range of kernels
f and link functions (h1, h2). The pathological phenomena described will be
revisited in Section 5 via simulations.

4. Statistical efficiency in learning regression mixtures

Building on the previous section, we are ready to present convergence rates of
the maximum likelihood estimator, and a Bayesian posterior contraction theory
for the quantities of interest.

4.1. Maximum (conditional) likelihood estimation

Given n i.i.d. observations (x1, y1), . . . , (xn, yn), where xj
i.i.d.∼ PX and yj |xj ∼

fG0(y|x), j = 1, . . . , n, for G0 =
∑k0

i=1 p
0
jδ(θ0

1j ,θ
0
2j). Denote the maximum likeli-

hood estimate by

Ĝn := arg max
G∈Ek0 (Θ)

n∑
j=1

log fG(yj |xj),

in the exact-fitted setting, and we change the Ek0(Θ) in the above formula to
OK(Θ), where K ≥ k0 in the over-fitted setting. It is implicitly assumed in this
section that Ĝn is measurable, otherwise a standard treatment using an outer
measure of PG0 instead of PG0 can be invoked. To obtain the rate of convergence
of Ĝn to G0, we combine the inverse bounds above with the convergence of
density estimates based on the standard theory of M-estimation for regression
problems [38]. For conditional density estimation, the convergence behavior of
fĜn

to fG0 is evaluated in the sense of the expected Hellinger distance:

d
2
H(fG, fG′) := EXd2

H(fG(·|X), fG′(·|X))

= 1
2

∫
X

∫
Y
(
√

fG(y|x) −
√

fG′(y|x))2dν(y)dPX(x),

for all G,G′ ∈ ∪∞
k=1Ok(Θ). To this end, recall several basic notions related to

the entropy numbers of a class of functions. For any k ∈ N, set

Fk(Θ) =
{
fG(y|x) : G ∈ Ok(Θ)

}
, F1/2

k (Θ) =
{
f

1/2
(G+G0)/2(y|x) : G ∈ Ok(Θ)

}
,
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and the Hellinger ball centered around fG0 :

F1/2
k (δ) = F1/2

k (Θ, δ) =
{
f1/2 ∈ F1/2

k (Θ) : dH(f, fG0) ≤ δ

}
.

The complexity (richness) of this set is characterized by the following entropy
integral:

J (δ) := J (δ,P1/2
k (Θ, δ)) =

(∫ δ

δ2/213
H

1/2
B (u,F1/2

k (δ), L2(PX × ν))du
)

∨ δ,

(14)
where HB is the bracketing entropy number, L2 distance between two con-
ditional densities f and g is defined as ‖f − g‖L2

:= (
∫
dPX

∫
dν(f(y|x) −

g(y|x))2)1/2, and the constant 213 appears due to the chaining technique in
bounding supremum of empirical processes [38, 10]. A useful tool for establish-
ing the rate of convergence under expected conditional density estimation by
the MLE is given by the following theorem, which is an adaptation of Theorem
7.4. in [38] or Theorem 7.2.1. in [10]).

Theorem 3. Take Ψ(δ) ≥ J (δ,F1/2
k (δ)) in such a way that Ψ(δ)/δ2 is a non-

increasing function of δ. Then, for a universal constant c and for
√
nδ2

n ≥ cΨ(δn), (15)

we have for all δ ≥ δn that PG0(dH(fĜn
, fG0) > δ) ≤ c exp

(
−nδ2

c2

)
.

Combining Theorem 3 with the inverse bounds established in Section 3, we
readily arrive at the following concentration inequalities for the MLE’s parame-
ter estimates based on the bracketing entropy numbers and its entropy integral
given by Eq. (14).

Theorem 4. (a) (Exact-fitted) Suppose that k0 is known, the entropy condi-
tion (15) holds, the family of conditional densities f(·|h1, h2) is identifiable
in the first order, and (h1, h2) is identifiable. Then, for any G0 ∈ Ek0(Θ),
there exist a constant C depending on G0 and universal constant c such
that for all δ > δn:

PG0

(
W1(Ĝn, G0) > Cδ

)
≤ c exp(−nδ2/c2).

(b) (Over-fitted) Suppose that k0 is unknown but k0 < K̄ known, the en-
tropy condition (15) holds, the family of conditional densities f(·|h1, h2)
is identifiable in the second order, and (h1, h2) is identifiable. Then, for
any G0 ∈ Ek0(Θ), there exist a constant C depending on G0 and K and
universal constant c such that for all δ > δn:

PG0

(
W 2

2 (Ĝn, G0) > Cδ
)
≤ c exp(−nδ2/c2).
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From the definition and condition of the entropy integral (Eq. (14)), we see
that the key to establishing convergence rate δn is by controlling the bracket-
ing entropy number HB(u,F1/2

k , L2). Generally, under some conditions on the
smoothness and boundedness of the model, we can show that the bracketing en-
tropy number of the model space is in the same order as that of the parameter
space, which then yields the parametric convergence rates for finite-dimensional
models. By generalizing the proof technique for bounding entropy number of
Gaussian mixture models in [9], in the following, we shall present a set of mild
assumptions for general classes of regression mixture models and obtain rates
of convergence under these assumptions.

(B1.) (Assumptions on kernel densities) For the family of distribution
{f(y|μ, φ)|μ ∈ H1, φ ∈ H2}, ‖f(·|μ, φ)‖∞ is uniformly bounded and uni-
formly light tail probability, i.e., there exist constant c, c and constant
d1, d2, d3 > 0 such that f(y|μ, φ) ≤ d1 exp(−d2|y|d3), for all y ≥ c or y ≤ c
and μ ∈ H1, φ ∈ H2.

(B2.) (Lipschitz assumptions) Both the kernel densities {f(y|μ, φ)|μ ∈ H1, φ ∈
H2} and link functions h1 and h2 are uniformly Lipschitz in the sense of
(3) and (4).

We note that:

Proposition 8. The families of Normal, Poisson, Binomial, and negative bi-
nomial distribution satisfy condition (B1.).

The predictive performance of MLE for the regression mixture model is given
as follows.

Theorem 5. Given assumptions (B1.) and (B2.), and the dominating measure
ν is Lebesgue over R or counting measure on Z. Then, there exists a constant
C depending on Θ, f, h1, h2, and a universal constant c such that

PG0

(
dH(fĜn

, fG0) > C

√
logn
n

)
≤ c exp(− log n/c2).

Combining Theorem 2 and Theorem 5, we arrive at the convergence rates for
the maximum (conditional) likelihood estimates for the model parameters:

Theorem 6. (a) (Exact-fitted) Suppose that k0 is known, the family of condi-
tional densities f(·|h1, h2) is identifiable in the first order, and the family
of functions (h1, h2) is identifiable. Furthermore, assume (B1.) and (B2.)
hold, then for any G0 ∈ Ek0(Θ), there exist constant C depending on
G0,Θ, f, h1, h2 and a universal constant c such that

PG0

(
W1(Ĝn, G0) > C(logn/n)1/2

)
≤ c exp(− logn/c2).

(b) (Over-fitted) Suppose that k0 is unknown and is upper bounded by a known
number K̄ < +∞, the family of conditional densities f(·|h1, h2) is iden-
tifiable in the second order, and the family of functions (h1, h2) is identi-
fiable. Furthermore, assume (B1.) and (B2.) hold, there exist constant C



148 D. Do et al.

depending on G0, K̄,Θ, f, h1, h2 and a universal constant c such that

PG0

(
W2(Ĝn, G0) > C(logn/n)1/4

)
≤ c exp(− logn/c2).

Remark 4. The tail bounds in Theorem 6 can simply imply the convergence
in expectation EW1(Ĝn, G0) ≤ C(logn/n)1/2 (in part (a)) and EW2(Ĝn, G0) ≤
C(logn/n)1/4 (in part (b)), where constant C depends on G0, by using Markov’s
inequality. We present a proof in Appendix A.2.

We have established that in the over-fitted setting, a standard application of
the MLE yields a parameter estimation rate that is twice as slow compared to the
exact-fitted setting. This rate is not optimal in the pointwise sense. However,
the established convergence behavior motivate the following model selection
procedure that can asymptotically choose the correct k, which in turns yields
the optimal estimation rate, modulo a logarithmic factor, for the parameters.

Proposition 9. Let Ĝ
(k)
n ∈ Ok be the MLE estimated from data with at most

k atoms, for k = 1, . . . ,K. For a sequence (an) ⊂ R+, let

kn = inf{k : W2(Ĝ(k′)
n , Ĝ(k′+1)

n ) ≤ an∀k′ ≥ k}.

If (logn/n)1/4 � an � 1, there exist a constant C depending on Θ, h1, h2, f,K,
and a universal constant c such that for all sufficiently large n depending on G0
and (an),

PG0 (kn = k0) ≥ 1 − cn−1/c2 , (16)

and

PG0

(
W1(Ĝ(kn)

n , G0) ≥ C

(
logn
n

)1/2
)

≤ 2cn−1/c2 . (17)

4.2. Bayesian posterior contraction theorems for parameter
inference

Given i.i.d. pairs (x1, y1), . . . , (xn, yn) such that yi|xi ∼ fG0(y|x) for some true
latent mixing measure G0 =

∑k0
j=1 p

0
i δ(θ0

1j ,θ
0
2j), and xi

i.i.d.∼ PX . In the Bayesian
regime, we model the data as yi|xi ∼ fG(y|x), where G ∼ Π with Π being some
prior distribution on the space mixing measures. Let G denote the support of
the prior Π on the mixing measure G. The nature of the prior distribution Π
depends on the several different settings that we will consider. In the exact-
fitted setting, we assume K̄ ≡ k0 < +∞ is known, whereas the over-fitted
setting means that the upper bound k0 ≤ K̄ < +∞ is given, but k0 unknown.
In both cases, G = OK̄ so Π is in effect a prior distribution on (OK̄ ,B(OK̄)).
Later, we shall assume that neither k0 nor an upper bound K̄ is given; instead,
a random variable K is used to represent the number of mixture components
and endowed with a prior distribution.
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By the Bayes’ rule, the posterior distribution of the parameter G is given by

Π(G ∈ B|x[n], y[n]) =
∫
B

∏n
i=1 fG(yi|xi)dΠ(G)∫

OK̄

∏n
i=1 fG(yi|xi)dΠ(G)

for any measurable set B ⊂ G. Now, we want to study the posterior contraction
rate of Π(·|x[n], y[n]) to the true latent mixing measure G0 as n → ∞. We
proceed to describe several standard assumptions on the prior often employed
in practice.

The case of known upper bound K̄

(B3.) (Prior assumption) Prior Π on space OK̄ is induced by prior Πp × ΠK̄
θ1

×
ΠK̄

θ2
on {(p1, . . . , pK̄ , θ11, . . . , θ1K̄ , θ21, . . . , θ2K̄)|pi ≥ 0,

∑K̄
i=1 pi = 1, θ1j ∈

Θ1, θ2j ∈ Θ2}, where Πp is a prior distribution of (pj)K̄i=1 on ΔK̄−1, Πθ1 is a
prior distribution of θ1j on Θ1, and Πθ2 is a prior distribution of θ2j on Θ2,
independently for i = 1, . . . , K̄. We further assume that Πp,Πθ1 ,Πθ2 have
a density with respect to Lebesgue measure on ΔK̄−1,Θ1,Θ2, respectively,
which are bounded away from zero and infinity.

(B4.) There exists ε0 > 0 such that for all G ∈ OK̄(Θ) satisfying W1(G,G0) ≤
ε0, we have EPG0

(fG0/fG) ≤ M0 for M0 only depends on ε0, G0, K̄,Θ.
The posterior contraction behavior for conditional densities is given as fol-

lows.
Theorem 7. Assume that (B2.)-(B4.) hold. For any G0 ∈ G, there exists con-
stant C depending on Θ, f, h1, h2 such that as n → ∞,

Π
(
G:dH(fG(y|X), fG0(y|X))≥C

√
logn
n

∣∣∣∣x[n], y[n]

)
→0 in ⊗n

i=1PG0 -probability.

(18)
Combining the above result with the inverse bounds developed in Section 3

leads to the contraction rates of the posterior distribution in the exact-fitted
and over-fitted settings.
Theorem 8. Suppose that assumptions (A1.)-(A3.) and (B2.)-(B4.) hold. Fix
any G0 ∈ G.
(a) (Exact-fitted) If K̄ = k0, there exists some constant C1 depending on

G0,Θ, f, h1, h2 such that

Π
(
G:W1(G,G0)≥C1

(
logn
n

)1/2 ∣∣∣∣x[n], y[n]

)
n→∞−→ 0 in ⊗n

i=1PG0 -probability.

(b) (Over-fitted) If K̄ ≥ k0, there exists some constant C2 depending on
G0, K̄,Θ, f, h1, h2 such that

Π
(
G:W2(G,G0)≥C2

(
logn
n

)1/4 ∣∣∣∣x[n], y[n]

)
n→∞−→ 0 in ⊗n

i=1PG0 -probability.
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The case of unknown K̄

Finally, when the number of components K and its upper bound are unknown,
there are various approaches for prior specification. Here, we adopt the widely
utilized “mixture-of-finite-mixtures” prior [27]. In particular, the prior distribu-
tion Π on the space G of mixing measures is induced by the following specifica-
tion. We show that the optimal rate of parameter estimation, up to a logarithmic
factor, is achieved.

(B5.) A prior distribution ΠK on K with support in N, i.e., ΠK(K = k) > 0 for
all k ∈ N.

(B6.) For each k ∈ N, given the event K = k, the conditional prior distribution of
the mixing measure G =

∑k
j=1 pjδ(θ1j ,θ2j) ∈ Ek is induced by the following

specification: Πp×Πk
θ1
×Πk

θ2
on {(p1, . . . , pk, θ11, . . . , θ1k, θ21, . . . , θ2k)|pi ≥

0,
∑k

i=1 pi = 1, θ1j ∈ Θ1, θ2j ∈ Θ2}, where Πp is a prior distribution of
(pj)ki=1 on Δk−1, Πθ1 is a prior distribution of θ1j on Θ1, and Πθ2 is a
prior distribution of θ2j on Θ2, independently for i = 1, . . . , k. Assume
that Πp,Πθ1 ,Πθ2 have a density with respect to Lebesgue measure on
Δk−1,Θ1,Θ2, respectively, which are bounded away from zero and infinity.

(B7.) For each k ∈ N, there exists ε0 > 0 such that for all G ∈ Ek(Θ) satisfying
W1(G,G0) ≤ ε0, we have EPG0

(fG0/fG) ≤ M0 for M0 only depends on
ε0, G0, k,Θ.

Theorem 9. Assume that (A1.)-(A3.), (B2.), and (B5.)-(B7.) hold. There ex-
ists a subset G0 ⊂ G, where Π(G0) = 1 such that for all k0 ∈ N and G0 ∈ G0∩Ek0 ,
there hold as n → ∞
(a) Π(K = k0|x[n], y[n]) → 1 a.s. under ⊗n

i=1PG0 ;
(b) there is a constant C depending on G0,Θ, f, h1, h2 such that

Π
(
G:W1(G,G0)≥C

(
logn
n

)1/2 ∣∣∣∣x[n], y[n]

)
→ 0 in ⊗n

i=1 PG0 probability.

5. Simulations and data illustrations

Parameter estimation in exact-fitted and over-fitted settings We first
illustrate the parameter estimation rates of the mixture of regression models
under general settings. Consider a mixture of normal regression model with a
polynomial link function and fixed variance: fG(y|x) =

∑k
i=1 piN (y|h(x, θi), σ2),

where x ∈ R, G =
∑k

i=1 piδθi , θi ∈ R3, h(x, θi) = θi1 + θi2x+ θi3x
2. We simulate

data (xi)ni=1 from an uniform distribution on [−3, 3] and then generated yi given
xi from this model using G0 = p0

1δθ0
1

+ p0
2δθ0

2
, where σ = 1, θ0

1 = (1,−5, 1), θ0
2 =

(2, 5, 2), p0
1 = p0

2 = 0.5. Because the variances of both components are known,
and the link function is a polynomial, this model is strongly identifiable in the
second order (by Theorem 1). The maximum (conditional) likelihood estimate
Ĝn of G0 is obtained by the Expectation-Maximization (EM) algorithm. We
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Fig 1. Convergence rates of parameters estimation in the exact-fitted and over-fitted setting.

considered two cases where the number of components of G0 is known to be
2 for the exact-fitted setting and set k = 3 for the over-fitted setting. For
each setting, we consider the logarithm of the sample sizes log10(n) ranging
from 2 to 4 (so that n ranges from 100 to 10, 000) and generate n samples
from the true distribution. Each experiment is repeated 16 times, and we plot
the average (with quartile bar) of the logarithm of the error in Figure 1 and
perform a simple linear regression against logn (best to see with color). It
can be seen that the convergence rate of the exact-fitted mixing measures is
n−1/2 (in Wasserstein-1 distance), and the over-fitted mixing measures is n−1/4

(in Wasserstein-2 distance). These results are compatible with the theoretical
results established in Theorem 4.

Regression mixtures vs unconditional mixtures The characterization
results (Theorem 1 and propositions in Section 3.2) provide easy-to-check suf-
ficient conditions for strong identifiability (in the sense of Def. 1) and lead to
the parameter estimation rate as we see above. Part of the sufficient conditions
requires that the kernel density f be strongly identifiable up to a certain or-
der, a standard condition considered in the asymptotic theory for finite (and
unconditional) mixture models [31, 18, 19]. It is noteworthy that the strong
identifiability condition of a mixture of regression model given in Def. 1 is typi-
cally a weaker condition than that of a standard unconditional mixture model,
because the presence of the covariate x makes the conditional mixture model
more constrained. Hence, it is possible that for an unconditional mixture of
kernel densities f strong identifiability and hence the inverse bound V � W1
may not hold, but when f is utilized in a regression mixture model instead, the
strong identifiability and hence the inverse bound still holds.

We demonstrate this observation by a theoretical result given in Proposi-
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Fig 2. Impact of identifiability on inverse bounds: unconditional mixtures with binomial kernel
are not identifiable (left) while regression mixtures with the same kernel are strongly identi-
fiable (right).

tion 7 for the mixture of binomial regression models. To illustrate this result
by a simulation study, let pG(y) :=

∑k
i=1 piBin(y|N, qi), for G =

∑k
i=1 piδqi ∈

OK([0, 1]), where N is a fixed natural number. From the discussion in Sec-
tion 3, we know that this model is only strongly identifiable in the first order if
2k ≤ N + 1. It means the inverse bound may not hold when 2k > N + 1. Let
k = 2, N = 1 so that 2k > N + 1, and G0 = 0.5δ0.3 + 0.5δ0.7, and then uni-
formly generate 2000 random samples of G around G0. We compare W1(G,G0)
against dTV (pG, pG0) to see if the inverse bound dTV (pG, pG0) � W1(G,G0)
holds or not. It can be seen in Fig. 2(a) that such an inverse bound does not
hold. In contrast, for the mixture of binomial regression model under the same
setting k = 2, N = 1 (a.k.a. mixture of two logistic regression): fG(y|x) =
p1Bin(y|1, σ(θ1x)) + p2Bin(y|1, σ(θ2x)) for G = p1δθ1 + p2δθ2 and σ being the
sigmoid function, the inverse bound as established by Theorem 2 still holds.
We uniformly sample 2000 measure G around G0 = 0.5δ0.5 + 0.5δ5 and plot
W1(G,G0) against EXdTV (fG(y|X), fG0(y|X)), for X ∼ Uniform([−6, 6]). The
relationship EXdTV (fG(y|X), fG0(y|X)) � W1(G,G0) holds in this scenario
(Fig. 2(b)). As a consequence, the mixture of logistic regression model still en-
joys the convergence rate of n−1/2 for parameter estimation in the exact-fitted
setting.

Investigating the lack of strong identifiability In Section 3.4, we dis-
cussed the lack of strong identifiability in the mixture of negative binomial
regression models. Here, we conduct an experiment to show the posterior con-
traction rate of parameter estimation where the true model is not strongly
identifiable (cf. Eq. (11) holds). A dataset is drawn from a negative bino-
mial regression mixture model: fG(y|x) =

∑2
j=1 pjNB(y|h(x, θj), φj), where

the covariate, xi, is randomly generated from a uniform distribution over the
interval [3, 6]; the component means are h(xi, θ1) = exp(Xiθ1), h(xi, θ2) =
exp(Xiθ2), where Xi = (1, xi), i = 1, ..., n. The true latent mixing measure
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Fig 3. Convergence rate in exact-fitted case where the model is non-strongly-identifiable.

is G0 = p0
1δ{θ0

1,φ
0
1} + p0

2δ{θ0
2 ,φ

0
2}, where the regression coefficients are θ0

1 = (0, 1)′,
θ0
2 = (log 3, 1)′, the dispersion parameters are φ0

1 = 0.5, φ0
2 = 1.5 and the mixing

proportions are p0
1 = 0.4, p0

2 = 0.6. Under this simulation, Eq. (11) is satisfied.
The simulated dataset is illustrated in Figure 3(a). This model is not strongly
identifiable.

For model fitting, we adopt the Bayesian approach and consider the exact-
fitted case. Similar to [32], we choose the prior p to be Beta(1, 1), θj ∼ N (0, I2)
(normal distribution with identity covariance matrix), and φ−1

j ∼ Gamma
(0.01, 0.01) (a non-informative gamma distribution) for j = 1, 2. The full pos-
terior distribution is approximated using a Gibbs MCMC algorithm with a
Metropolis-Hasting step for φj due to the non-conjugate prior. Details are given
in Appendix E.1. For each different sample size n, we run the experiment 8
times. For each time running, we produce 2500 MCMC samples, discard the
first 500, and use the remaining samples to estimate the expected Wasserstein
distances to G0. The logarithm of estimation error averaged over the 8 runs
(with quartile error bars) is reported in Fig 3(b). By performing a simple linear
regression, we can see that W1 error is of order n−1/4, suggesting a slow rate of
pointwise convergence even in the exact-fitted setting. We note that this slow
convergence behavior is hinted (but not proved) by the inequality and minimax
bound in Proposition 5.

Analysis of crash data To validate the applicability of the proposed theoret-
ical result in Section 3.2 illustrated via the simulation study above, we use the
dataset collected in 1995 at urban 4-legged signalized intersections in Toronto,
Canada. The same data has been explored and fitted by a mixture of negative
binomial regression models by [32], where they showed the good quality of the
dataset as well as the best-fitted model for it. This crash data set contains 868
intersections, which have a total of 10, 030 reported crashes. In their paper,
the authors explicated the heterogeneity in the dataset which came from the
existence of several different sub-populations (i.e., the data collected from the
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Fig 4. The impact of Crash data being near pathological cases of non-strong identifiability.

different business environments, contains a mix of fixed and actuated traffic sig-
nals, and so on). Accordingly, the mean functional form has been used for each
component as below:

μj,i = h(F i, θj) = θj,0F
θj,1
1i F

θj,2
2i , for j = 1, 2 and i = 1, ..., 868, (19)

where μj,i is the jth component’s estimated number of crashes for intersec-
tion i; F1i counts the entering flows in vehicles/day from the major approaches
at intersection i; F2i the entering flows in vehicles/day from the minor ap-
proaches at intersection i; and θj = (log(θj,0), θj,1, θj,2)′ the estimated regres-
sion for component j. According to [32], the best model for describing the
dataset is a two-mixture of negative binomial regression where φ1 = 9.3692,
φ2 = 8.2437, p1 = 0.43, p2 = 0.57, θ1 = (−10.9407, 0.8588, 0.5056)′, θ2 =
(−9.7842, 0.3987, 0.8703)′.

It can be seen that the two values of φ1 and φ2 nearly satisfy the second
condition of the pathological case mentioned in Section 3.2 (i.e., φ1 ≈ φ2 + 1).
If the first condition holds (i.e., μ1

φ1
= μ2

φ2
), then we would be in a singular

situation. To verify this, we calculate
(
μ1,i

φ1
− μ2,i

φ2

)
for all samples (F i)868i=1.

The histogram of this difference can be seen in Fig. 4(a). By the Anderson-
Darling test, we see that this distribution is significantly different from the
degenerate distribution at 0, with the calculated p-value for this test being 1.28×
10−13. Hence, we are quite far from the pathological situations of non-strong
identifiability. In theory, the method should still enjoy the n−1/2 convergence
rate if the model is well-specified and exact-fitted. We further subsample this
data and calculate the error of the estimator from the subsampled dataset to
that of the whole dataset. For each sample size, we replicate the experiment
8 times and report the average error (in red) and the interquartile error bar
(in orange) in Fig. 4(b). We can see that the error is approximate of the order
n−1/2.
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Finally, we conduct another subsampling experiment to focus on the data
corresponding to

∣∣∣μ1,i
φ1

− μ2,i
φ2

∣∣∣ ≤ 0.3. This data subset (with sample size 502)
represents a data population that is closer to the pathological cases of non-strong
identifiability than that of the previous experiment. A noteworthy observation
is that the closer the data population is to a pathological situation, the slower
the actual convergence to the true parameters will be. In particular, the blue
dashed line in Fig. 4(b) represents the average errors in this case after an 8-time
running of the experiment. This result provides an interesting demonstration of
the population theory given in the previous section.

6. Conclusion

We developed a strong identifiability theory for general finite mixture of re-
gression models and derived rates of convergence for density estimation and
parameter estimation in both Bayesian and MLE frameworks. This theory was
shown to be applicable to a wide range of models employed in practice. It also
invites interesting new questions. First, in our models mixture weights pj ’s do
not vary with covarate x. It would be interesting to extend the theory to the
situation of co-varying weights. Second, while our theory is applicable to the
case of unknown but finite number of mixture components, it remains challeng-
ing to extend such a theory for infinite conditional mixtures motivated from
Bayesian nonparametrics [31, 16]. Finally, as demonstrated with the negative
binomial mixtures, although the singularity situation (i.e., strong identifiability
is violated) is rare, being in the vicinity of a singular model can be a far more
common scenario. We would like to investigate more precisely the impact on pa-
rameter estimates when the true model is in the vicinity of a singular model, and
to provide suitable statistical methods to overcome the inefficiency of inference
in such situations.

Supplementary material

In the supplementary material, we collect the proofs and additional information
deferred from the main text. Section A includes the proofs for all main theoret-
ical results. Section B includes the proofs for all remaining theoretical results.
Section C and Section D provide a general theory of M-estimators convergence
rates and posterior contraction rates in the regression setting, respectively. The
EM algorithms for mixtures of regression are described in Section E.

Appendix A: Proofs of main results

A.1. Identifiablity conditions and inverse bounds

Proof of Theorem 1. We will divide the proof into first order and second order
identifiability cases.
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The case r = 1: For some k ∈ N, suppose that there exist k distinct elements
(θ11, θ21), . . . , (θ1k, θ2k) ∈ Θ1 × Θ2, and αj ∈ R, βj ∈ R

d1 , γj ∈ R
d2 as j =

1, . . . ,K such that for almost all x, y (w.r.t. PX × ν)

k∑
j=1

αjfj(y|x) + β�
j

∂

∂θ1
fj(y|x) + γ�

j

∂

∂θ2
fj(y|x) = 0,

then we want to show that αj = 0, βj = 0 ∈ R
d1 , γj = 0 ∈ R

d2 for j = 1, . . . , k.
Indeed, by the chain rule, the left-hand side of the above expression is equal to

k∑
j=1

αjfj(y|x) + β�
j

∂h1(x, θ1j)
θ1j

∂

∂μ
f(y|h1(x, θ1j), h2(x, θ2j))

+γ�
j

∂h2(x, θ2j)
∂θ2j

∂

∂φ
f(y|h1(x, θ1j), h2(x, θ2j)).

Because of the identifiability of (h1, h2) (condition (A4.)), there exists a set A
with PX(A) > 0 such that (h1(x, θ1j), h2(x, θ2j))kj=1 are distinct. Therefore, by
the first order identifiability of f , we have

β�
j

∂h1(x, θ1)
∂θ1

= 0, γ�
j

∂h2(x, θ2)
∂θ2

= 0,

for all x ∈ A (possibly except a PX zero-measure set). Hence, by condition
(A5.), we have βj = 0, γj = 0 for all j = 1, . . . , k. This concludes the first-order
identifiability of the family of conditional densities f(·|h1, h2).

The case r = 2: For any k, s ≥ 1, given k distinct elements (θ11, θ21), . . . ,
(θ1k, θ2k) ∈ Θ1 × Θ2, if there exist αj ∈ R, βj ∈ R

d1 , γj ∈ R
d2 , and ρjt ∈

R
d1 , νjt ∈ R

d2 as t = 1, . . . , sj and j = 1, . . . , k such that for almost all x, y
(w.r.t. PX × ν)

k∑
j=1

αjfj(y|x) + β�
j

∂

∂θ1
fj(y|x) + γ�

j

∂

∂θ2
fj(y|x) +

sj∑
t=1

(
ρ�jt

∂

∂θ2
1
fj(y|x)ρjt

)

+
sj∑
t=1

(
ν�jt

∂

∂θ2
2
fj(y|x)νjt

)
+

sj∑
t=1

(
ρ�jt

∂

∂θ1∂θ2
fj(y|x)νjt

)
= 0,

then we want to show that αj = 0, βj = ρjt = 0 ∈ R
d1 , γj = νjt = 0 ∈ R

d2 for
j = 1, . . . , k, t = 1, . . . , s. Indeed, again, by the chain rule, the expression above
is equivalent to

k∑
j=1

αjfj(y|x) +
(
β�
j

∂h1(x, θ1)
∂θ1

+
sj∑
t=1

ρ�jt
∂2h1(x, θ1j)

∂θ2
1

ρjt

)
∂

∂μ
fj(y|x)

+
sj∑
t=1

(
ρ�jt

∂h1(x, θ1j)
∂θ1

)2
∂

∂μ2 fj(y|x)
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+
(
γ�
j

∂h2(x, θ2)
∂θ2

+
sj∑
t=1

ν�jt
∂2h2(x, θ2j)

∂θ2
2

νjt

)
∂

∂φ
fj(y|x)

+
sj∑
t=1

(
ν�jt

∂h2(x, θ2j)
∂θ2

)2
∂2

∂φ2 fj(y|x)

+2
sj∑
t=1

(
ρ�jt

∂2

∂θ1∂θ2
fj(y|x)νjt

)
∂2

∂μ∂φ
fj(y|x) = 0. (20)

Because of the identifiability of (h1, h2) (condition (A4.)), there exists a set A
with PX(A) > 0 such that (h1(x, θ1j), h2(x, θ2j))kj=1 are distinct. By the second-
order identifiability of f , then we have

αj = 0,

β�
j

∂h1(x, θ1)
θ1

+
sj∑
t=1

ρ�jt
∂2h1(x, θ1j)

∂θ2
1

ρjt = 0,
sj∑
t=1

(
ρ�jt

∂h1(x, θ1j)
∂θ1

)2

= 0,

γ�
j

∂h2(x, θ2)
θ2

+
sj∑
t=1

ν�jt
∂2h2(x, θ2j)

∂θ2
2

νjt = 0,
sj∑
t=1

(
ν�jt

∂h2(x, θ2j)
∂θ2

)2

= 0,

sj∑
t=1

(
ρ�jt

∂2

∂θ1∂θ2
fj(y|x)νjt

)
= 0,

for all x ∈ A, possibly except a PX zero-measure set. Hence, by condition (A5.),
from the third and fifth equation above, we have αj = 0, ρjt = 0, νjt = 0 for all
t = 1, . . . , sj , j = 1, . . . , k. These together with the second and fourth equation
further imply that βj = 0, γj = 0 for all j = 1, . . . , k. We arrive at the second-
order identifiability of family of conditional densities f(y|x) as desired.

Proof of Theorem 2. In order to prove part (a) of the theorem, we divide it into
two regimes, local and global, and establish two following claims: for any ε′ > 0,

inf
G∈Ek0 (Θ):W1(G,G0)>ε′

EXdTV (fG(·|X), fG0(·|X))
W1(G,G0)

> 0, (21)

lim
ε→0

inf
G∈Ek0 (Θ)

{
EXdTV (fG(·|X), fG0(·|X))

W1(G,G0)
: W1(G,G0) ≤ ε

}
> 0. (22)

Proof of claim (21): Suppose that this is not true, that is, there exists a
sequence G� ∈ Ek(Θ) such that W1(G�, G0) > ε′ for all n and as n → ∞,

EXdTV (fG�
(·|X), fG0(·|X))

W1(G�, G0)
→ 0.

This implies EXdTV (fG�
(·|X), fG0(·|X)) → 0. Since Δk0−1, Θ1 and Θ2 are com-

pact, there exists a subsequence of (G�)� (which is assumed to be (G�)� itself
without loss of generality) that converges weakly to some G′ =

∑k′

j=1 p
′
jδ(θ′

1j ,θ
′
2j) ∈
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Ok0(Θ1×Θ2), where (θ′11, θ′21), . . . , (θ′1k′ , θ′2k′) are distinct. Hence, W1(G′, G0) >
ε′, and EXdTV (fG′(·|X), fG0(·|X)) = 0. Because dTV (fG′(·|x), fG0(·|x)) ≥ 0 for
all x, this implies

fG′(y|x) = fG0(y|x) a.s. in x, y,

which means
k′∑
j=1

p′jf(y|h1(x, θ′1j), h2(x, θ′2j)) =
k0∑
j=1

p0
jf(y|h1(x, θ0

2j), h2(x, θ0
2j)) a.s. in x, y.

By the zero-order identifiability of f , we conclude that

k′∑
j=1

p′jδ(h1(x,θ′
1j),h2(x,θ′

2j)) =
k0∑
j=1

p0
jδ(h1(x,θ0

1j),h2(x,θ0
2j)) a.s. in x. (23)

If family (h1, h2) is identifiable, then we argue that the set {(θ′11, θ′21), . . . ,
(θ′1k′ , θ′1k′)} must equal {(θ0

11, θ
0
21), . . . , (θ0

1k0
, θ0

2k0
)}. Otherwise, we can assume

(without loss of generality) that (θ′11, θ′21) �∈ {(θ0
11, θ

0
21), . . . , (θ0

1k0
, θ0

2k0
)}, which

means there exists a set A with PX(A) > 0 such that (h1(x, θ′11), h2(x, θ′21)) is
distinct from any pair among (h1(x, θ0

11), h2(x, θ0
21)) . . . , (h1(x, θ0

1k0
), h2(x, θ0

2k0
))

for all x ∈ A. But this contradicts (23), because the left-hand side put a posi-
tive weight to the atom (h(x, θ′11), h(x, θ′21)), which the right-hand side does not
have. Hence, we have the set {(θ′11, θ′21), . . . , (θ′1k0

, θ′1k0
)} equals {(θ0

11, θ
0
21), . . . ,

(θ0
1k0

, θ0
2k0

)}. Now, without loss of generality, we can assign (θ′11, θ′21) = (θ0
11, θ

0
21),

. . . , (θ′1k0
, θ′2k0

) = (θ0
1k0

, θ0
2k0

). Because (θ0
11, θ

0
21), . . . , (θ0

1k0
, θ0

2k0
) are distinct,

there exists x′ such that

(h1(x′, θ0
11), h2(x′, θ0

21)), . . . , (h1(x′, θ0
1k0

), h2(x′, θ0
2k0

))

are distinct, which together with Eq. (23) entail that p′i = p0
i for all i ∈

{1, . . . , k0}. Thus, G′ = G0, while W1(G′, G0) > ε′, a contradiction. Hence,
claim (21) is proved.

Proof of claim (22): Suppose this does not hold. Then there exists a sequence
G� ∈ Ek0(Θ) such that

W1(G�, G0) → 0, EXdTV (fG�
(·|X), fG0(·|X))

W1(G�, G0)
→ 0. (24)

We can relabel the atoms and weights of G� such that it admits the following
form:

G� =
k0∑
j=1

p�jδ(θ�
1j ,θ

�
2j), (25)

where p�j → p0
j , θ�j → θ0

j and θ�2j → θ0
2j for all i ∈ [k0]. To ease the ensuing

presentation, we denote Δp�j := p�j − p0
j , Δθ�1i := θ�1j − θ0

1j and Δθ�2j := θ�2j − θ0
2j
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for i ∈ [k0]. Then, using the coupling between G� and G0 such that it put mass
min{p�i , p0

i } on δ((θ�
1j ,θ

�
2j),(θ0

1j ,θ
0
2j)), we can verify that

W1(G�, G0) �
k0∑
i=1

∣∣Δp�j
∣∣+ p�j(

∥∥Δθ�1j
∥∥+

∥∥Δθ�2j
∥∥) =: D1(G�, G0). (26)

The remainder of the proof is composed of three steps.

Step 1 (Taylor expansion) To ease the notation, we write for short

f0
j (y|x) = f(y|h1(x, θ0

1j), h2(x, θ0
2j)),

and

f �
j (y|x) = f(y|h1(x, θ�1j), h2(x, θ�2j)),

for all j = 1, . . . , k0. Because f(y|h1(x, θ1), h2(x, θ2)) is differentiable with re-
spect to θ for all x, y, by applying Taylor expansion up to the first order and
the chain rule, we find that for all j = 1, . . . , k0,

f �
j (y|x) − f0

j (y|x) = (Δθ�1j)�
∂

∂θ1
f0
j (y|x) + (Δθ�2j)�

∂

∂θ2
f0
j (y|x) + Rj(x, y),

where Rj(x) is Taylor remainder such that Rj(x, y) = o(
∥∥Δθ�1j

∥∥+
∥∥Δθ�2j

∥∥) for
i ∈ [k0]. Combine the above expression for j = 1, . . . , k0, we have

fG�
(y|x) − fG0(y|x) =

k0∑
j=1

(
Δp�j

)
f0
j (y|x) + p�j(Δθ�1j)�

∂

∂θ1
f0
j (y|x)

+ p�j(Δθ�2j)�
∂

∂θ2
f0
j (y|x) + R(x, y), (27)

where R(x, y) =
∑�

i=1 p
�
jRi(x, y) = o

(∑k0
i=1 p

�
j

(∥∥Δθ�1j
∥∥+

∥∥Δθ�2j
∥∥)). From

Eq. (26), we have R(x, y)/D1(G�, G0) → 0 as � → ∞ for all x, y.

Step 2 (Extracting non-vanishing coefficients) From Eq. (24) and (26), we
have that

EXdTV (fG�
(·|X), fG0(·|X))

D1(G�, G0)
→ 0 (� → ∞). (28)

We can write

fG�
(y|x) − fG0(y|x)
D1(G�, G0)

=
k0∑
j=1

α�
jf

0
j (y|x) + (β�

j)�
∂

∂θ1
f0
j (y|x) + (γ�

i )�
∂

∂θ2
f0
j (y|x)

+ R(x, y)
D1(G�, G0)

, (29)
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where α�
i =

(
Δp�j

)
D1(G�, G0)

∈ R, β�
i =

p�j(Δθ�1j)
D1(G�, G0)

∈ R
d1 and γ�

i =
p�j(Δθ�2j)

D1(G�, G0)
∈

R
d2 . From the definition of D1(G�, G0), we have

k0∑
i=1

|α�
i | +

k0∑
i=1

‖β�
i ‖ +

k0∑
i=1

‖γ�
i ‖ = 1,

therefore (α�
i) is in [−1, 1], (β�

i ) is in [−1, 1]d1 and (γ�
i ) is in [−1, 1]d2 , by the

compactness of those sets, there exist subsequences of (α�
i), β�

i and γ�
i (without

loss of generality, we assume it is the whole sequence itself) such that α�
i →

αi ∈ [−1, 1], β�
i → βi ∈ [−1, 1]d as � → ∞ for all i = 1, . . . , k0. As

∑k0
i=1 |αi| +∑k0

i=1 ‖βi‖ +
∑k0

i=1 ‖γi‖ = 1, at least one of them is not zero.

Step 3 (Deriving contradiction via Fatou’s lemma) By Fatou’s lemma, we
have

lim inf
�→∞

2EXdTV (fG�
(·|X), fG0(·|X))

D1(G�, G0)

= lim inf
�→∞

∫
X
dPX(x)

∫
Y
dν(y)

∣∣∣∣fG�
(y|x) − fG0(y|x)
D1(G�, G0)

∣∣∣∣
≥
∫
X
dPX(x)

∫
Y
dν(y)

(
lim inf
n→∞

∣∣∣∣fG�
(y|x) − fG0(y|x)
D1(G�, G0)

∣∣∣∣)
≥
∫
X
dPX(x)

∫
Y
dν(y)

∣∣∣∣lim inf
�→∞

fG�
(y|x) − fG0(y|x)
D1(G�, G0)

∣∣∣∣
=
∫
X
dPX(x)

∫
Y
dν(y)

∣∣∣∣∣∣
k0∑
j=1

αjf
0
j (y|x) + (βj)�

∂

∂θ1
f0
j (y|x) + (γi)�

∂

∂θ2
f0
j (y|x)

∣∣∣∣∣∣ .
Since limn→∞

EXdTV (fG�
(·|X), fG0(·|X))

D1(G�, G0)
= 0, we have

k0∑
j=1

αjf
0
j (y|x) + (βj)�

∂

∂θ1
f0
j (y|x) + (γi)�

∂

∂θ2
f0
j (y|x) = 0, a.s. in x, y, (30)

where at least one of αi, βi, γi are not 0. But by the identifiability of family
of conditional densities f (condition (A1.)), we have α1 = · · · = αk0 = 0,
β1 = · · · = βk0 = 0 and γ1 = · · · = γk0 = 0. Hence, we arrive at a contradiction
and conclude claim (22).

For part (b) of the theorem, in a similar spirit we can achieve the conclusion
by proving the following claims:

inf
G∈OK(Θ):W2(G,G0)>ε′

EXdTV (fG(·|X), fG0(·|X))
W 2

2 (G,G0)
> 0, (31)
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for any ε′ > 0, and

lim
ε→0

inf
G∈OK(Θ)

{
EXdTV (fG(·|X), fG0(·|X))

W 2
2 (G,G0)

: W2(G,G0) ≤ ε

}
> 0. (32)

The proof of claim (31) is similar to that of claim (21) and is omitted. Now
we proceed to prove claim (32). Suppose this does not hold. So there exists a
sequence G� ∈ OK(Θ) such that

W2(G�, G0) → 0, EXdTV (pG�
(·|X), pG0(·|X))

W 2
2 (G�, G0)

→ 0. (33)

We can assume that all G� have the same number of atoms (by extracting a
subsequence if needed) and relabel the atoms and weights of G� such that it
admits the following form:

G� =
k0+r∑
j=1

sj∑
t=1

p�jtδ(θ�
1jt,θ

�
2jt), (34)

where
∑sj

t=1 p
�
jt → p0

j , θ�1jt → θ0
1j and θ�2jt → θ0

2j for all j ∈ [k0 + r], p0
j = 0

for all j > k0, and (θ0
11, θ

0
21), . . . , (θ0

1(k0+r), θ
0
2(k0+r)) are distinct. For all j, t, we

denote Δθ�1jt := θ�1jt − θ0
1j , Δθ�2jt := θ�2jt − θ0

2j , and Δp�j :=
∑sj

t=1 p
�
jt − p0

j . We
have

W 2
2 (G�, G0) �

k0+r∑
j=1

(∣∣Δp�j
∣∣+ sj∑

t=1
p�jt

(∥∥Δθ�1jt
∥∥2 +

∥∥Δθ�2jt
∥∥2)) =: D2(G�, G0)

(35)

As in part (a) the remainder of the proof is divided into three steps.

Step 1 (Taylor expansion) To ease the notation, we write for short

f0
j (y|x) = f(y|h1(x, θ0

1j), h2(x, θ0
2j)), f �

jt(y|x) = f(y|h1(x, θ�1jt), h2(x, θ�2jt)),

for all t = 1, . . . , sj , j = 1, . . . , k0 + r. Because f(y|h1(x, θ1), h2(x, θ2)) is differ-
entiable up to the second order with respect to θ1, θ2 for all x, y, by applying
Taylor expansion up to the second order and the chain rule, we find that

f �
jt(y|x) − f0

j (y|x) = (Δθ�1jt)�
∂

∂θ1
f0
j (y|x) + (Δθ�2jt)�

∂

∂θ2
f0
j (y|x)

+ 1
2(Δθ�1jt)�

∂2

∂θ2
1
f0
j (y|x)(Δθ�1jt) + 1

2(Δθ�2jt)�
∂2

∂θ2
2
f0
j (y|x)(Δθ�2jt)

+ (Δθ�1jt)�
∂2

∂θ1∂θ2
f0
j (y|x)(Δθ�2jt) + Ri(x, y)
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where Ri(x, y) is Taylor remainder such that Rij(x, y) = o
(∥∥Δθ�1jt

∥∥2) for i ∈
[k0 + r]. Therefore,

fG�
(y|x) − fG0(y|x) =

k0+r∑
j=1

(
Δp�j

)
f0
j (y|x) +

k0+r∑
j=1

sj∑
t=1

p�jt(f �
jt(y|x) − f0

j (y|x))

=
k0+r∑
j=1

(
Δp�j

)
f0
j (y|x) +

k0+r∑
j=1

(
sj∑
t=1

p�ij(Δθ�1jt)�
)

∂

∂θ1
f0
j (y|x)

+
k0+r∑
j=1

(
sj∑
t=1

p�ij(Δθ�2jt)�
)

∂

∂θ2
f0
j (y|x)

+
k0+r∑
j=1

( sj∑
t=1

p�ij
2 (Δθ�1jt)�

∂2

∂θ2
1
f0
j (y|x)(Δθ�1jt)

)

+
k0+r∑
j=1

( sj∑
t=1

p�ij
2 (Δθ�2jt)�

∂2

∂θ2
2
f0
j (y|x)(Δθ�2jt)

)

+
k0+r∑
j=1

( sj∑
t=1

p�ij
2 (Δθ�1jt)�

∂2

∂θ1∂θ2
f0
j (y|x)(Δθ�2jt)

)
+ R(x, y),

(36)

where R(x, y) =
∑

j,t p
�
jtwjt(x, y) = o

(∑
j,t p

�
jt

(∥∥Δθ�1jt
∥∥2 +

∥∥Δθ�2jt
∥∥2)). From

the expression in Eq. (35), we have R(x, y)/D2(G�, G0) → 0 as � → ∞ for all
x, y.

Step 2 (Extracting non-vanishing coefficients) From Eq. (33) and (35), we
have that

EXdTV (fG�
(·|X), fG0(·|X))

D2(G�, G0)
→ 0 (� → ∞). (37)

We can write

fG�
(y|x) − fG0(y|x)
D2(G�, G0)

=
k0+r∑
i=1

a�jf
0
j (y|x) +

k0+r∑
j=1

bnj
∂

∂θ1
f0
j (y|x) +

k0+r∑
j=1

cnj
∂

∂θ2
f0
j (y|x)

+
k0+r∑
j=1

( sj∑
t=1

(w�
jt)�

∂2

∂θ2
1
f0
j (y|x)(w�

jt)
)

+
k0+r∑
j=1

( sj∑
t=1

(v�jt)�
∂2

∂θ2
2
f0
j (y|x)(v�jt)

)

+ 2
k0+r∑
j=1

( sj∑
t=1

(w�
jt)�

∂2

∂θ1∂θ2
f0
j (y|x)(v�jt)

)
+ R(x, y), (38)

where

a�j =
(
Δp�j

)
D2(G�, G0)

, b�j =
∑sj

t=1 p
�
jt(Δθ�1jt)

D2(G�, G0)
, c�j =

∑sj
t=1 p

�
jt(Δθ�2jt)

D2(G�, G0)
,
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and

w�
jt =

√
p�jt(Δθ�1jt)√

2D2(G�, G0)
, v�jt =

√
p�jt(Δθ�2jt)√

2D2(G�, G0)
,

for all j ∈ [k0 + l]. From the definition of D2(G�, G0), we have

k0+r∑
j=1

|anj | + 2
k0+r∑
j=1

si∑
t=1

∥∥w�
jt

∥∥2 + 2
k0+r∑
j=1

si∑
t=1

∥∥v�jt∥∥2 = 1,

so that M� := maxj,t{|a�j |, ‖bnj ‖, ‖cnj ‖, ‖w�
jt‖2, ‖v�jt‖2} is always bounded below

by 1
5K̄

for all n, and does not converge to 0. Denote

α�
j = a�j/M�, β�

j = b�j/M�, γ�
j = c�j/M�, ρ�jt = w�

jt/
√
M�, ν�jt = v�jt/

√
M�.

for all t = 1, . . . , sj , j = 1, . . . , k0 + r. By compactness and subsequence argu-
ment, we can have that αn

j → αj ∈ [−1, 1], βn
j → βj ∈ [−1, 1]d1 and γ�

j,t → γj ∈
[−1, 1]d2 , and ρ�jt → ρjt ∈ [−1, 1]d1 , ν�jt → νjt ∈ R

d2 as � → ∞ for all t, j, and
at least one of those limits is not zero.

Step 3 (Deriving contradiction via Fatou’s lemma) By Fatou’s lemma, we
have

lim inf
n→∞

2
M�

EXdTV (fG�
(·|X), fG0(·|X))

D2(G�, G0)

= lim inf
n→∞

2
M�

∫
X
dPX(x)

∫
Y
dν(y)

∣∣∣∣fG�
(y|x) − fG0(y|x)
D2(G�, G0)

∣∣∣∣
≥
∫
X
dPX(x)

∫
Y
dν(y)

(
lim inf
n→∞

1
M�

∣∣∣∣fG�
(y|x) − fG0(y|x)
D2(G�, G0)

∣∣∣∣)
≥
∫
X
dPX(x)

∫
Y
dν(y)

∣∣∣∣lim inf
n→∞

1
M�

fG�
(y|x) − fG0(y|x)
D2(G�, G0)

∣∣∣∣
=
∫
X
dPX(x)

∫
Y
dν(y)

∣∣∣∣ k0+l∑
j=1

αjf
0
j (y|x) + (βj)�

∂

∂θ1
f0
j (y|x) + (γj)�

∂

∂θ2
f0
j (y|x)

+
sj∑
t=1

(ρjt)�
∂

∂θ2
1
f0
j (y|x)(ρjt) +

sj∑
t=1

(νjt)�
∂

∂θ2
2
f0
j (y|x)(νjt)

+ 2
sj∑
t=1

(ρjt)�
∂

∂θ1∂θ2
f0
j (y|x)(νjt)

∣∣∣∣.
Since limn→∞

1
M�

EXdTV (fG�
(·|X), fG0(·|X))

D2(G�, G0)
= 0, the integrand in the right

hand side of the above display is 0 for almost all x, y. By the second order
identifiability of f(y|x), all the coefficients are 0, which contradicts with the
fact derived in the end of Step 2. We arrive at the conclusion of claim (32).
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Proof of Proposition 2. We want to prove that for h1 and h2 being completely
identifiable, then for any k ≥ 1 and distinct pairs (θ11, θ21), . . . , (θ1k, θ2k) we
have

(h1(x, θ11), h2(x, θ21)), . . . , (h1(x, θ1k), h2(x, θ2k))

are distinct almost surely. For any i �= j, because (θ1i, θ2i) �= (θ1j , θ2j), we have
either θ1i �= θ1j or θ2i �= θ2j . By the complete identifiability of h1 and h2, we
have either

PX({x : h1(x, θ1i) = h1(x, θ1j)}) = 0,

or
PX({x : h2(x, θ2i) = h2(x, θ2j)}) = 0.

Hence,

PX({x : (h1(x, θ1i), h2(x, θ2i)) = (h1(x, θ1j), h2(x, θ2j))})
= PX({x : h1(x, θ1i) = h1(x, θ1j), h2(x, θ2i) = h2(x, θ2j)})
≤ min{PX({x : h1(x, θ1i) = h1(x, θ1j)}),PX({x : h2(x, θ2i) = h2(x, θ2j)})}
= 0.

Now consider the set

A = ∪1≤i<j≤k{x : (h1(x, θ1i), h2(x, θ2i)) = (h1(x, θ1j), h2(x, θ2j))},

we have

PX(A) ≤
∑

1≤i<j≤k

PX({x : (h1(x, θ1i), h2(x, θ2i)) = (h1(x, θ1j), h2(x, θ2j))}) = 0.

Therefore, (h1(x, θ11), h2(x, θ21)), . . . , (h1(x, θ1k), h2(x, θ2k)) are distinct on Ac,
where PX(Ac) = 1.

Proof of Proposition 4. (a) This comes directly from the fact that if h1 and h2

are Lipschitz. For any G0 =
∑k0

j=1 p
0
i δ(θ0

1j ,θ
0
2j) ∈ Ek0(Θ), G =

∑K̄
i=1 piδ(θ1i,θ2i) ∈

EK̄(Θ), we have

|h1(x, θ0
1j) − h1(x, θ1i)| ≤ c1

∥∥θ0
1j − θ1i

∥∥ ,
and

|h2(x, θ0
2j) − h2(x, θ2i)| ≤ c2

∥∥θ0
2j − θ2i

∥∥ ,
for any j = 1, . . . , k0, i = 1, . . . , K̄ and all x ∈ X , where c1 and c2 are constants
which only depend on h1 and h2. Hence, for any coupling (qij)K̄,k0

i,j=1 of (pi)K̄i=1
and (p0

j )
k0
j=1, we have∑

i,j

qij(
∥∥θ1i − θ0

1j
∥∥+

∥∥θ2i − θ0
2j
∥∥)

≥ C1
∑
i,j

qij(|h(x, θ1i) − h(x, θ0
1j)| + |h(x, θ1i) − h(x, θ0

2j)|)
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for C1 = 1/max{c1, c2} and for all x ∈ X . Taking infimum with respect to the
LHS, we have

Wr(G,G0) ≥ C1Wr

⎛⎝ k0∑
j=1

p0
jδ(h1(x,θ0

1j),h2(x,θ0
2j)),

K∑
j=1

pjδ(h1(x,θ1j),h2(x,θ2j))

⎞⎠ ,

Taking the expectation with respect to PX we obtain

Wr(G,G0) ≥ C1EXWr

⎛⎝ k0∑
j=1

p0
jδ(h1(X,θ0

1j),h2(X,θ0
2j)),

K∑
j=1

pjδ(h1(X,θ1j),h2(X,θ2j))

⎞⎠ .

(b) For any coupling (qij)K,k0
i,j=1 of (pi)Ki=1 and (p0

j )
k0
j=1 we have

EX

∣∣∣∣∣∣
K∑
i=1

pih1(X, θ1i) −
k0∑
j=1

p0
jh1(X, θ0

1j)

∣∣∣∣∣∣ ≤
K,k0∑
i,j=1

qij |h1(X, θ1i) − h1(X, θ0
1j)|

≤
K,k0∑
i,j=1

qijc1
∥∥θ1i − θ0

1j
∥∥ .

Taking infimum of all feasible (qij)i,j , this implies

EX

∣∣∣∣∣∣
K∑
i=1

pih1(X, θ1i) −
k0∑
j=1

p0
jh1(X, θ0

1j)

∣∣∣∣∣∣ ≤ c1W1(G,G0).

Doing similarly for h2, we have the conclusion.

A.2. Convergence rates for conditional density estimation and
parameter estimation

Firstly, we combine the inverse bounds (Theorem 2) with the convergence theory
for density estimation to derive convergence rates for parameter estimation that
arise in regression mixture models as presented in Theorem 4.

Proof of Theorem 4. Recall that with the assumptions in this theorem, we have

EXdTV (fG, fG0) ≥ C1W1(G,G0) ∀G ∈ Ek0(Θ),

and for any K > k0,

EXdTV (fG, fG0) ≥ C2W
2
2 (G,G0) ∀G ∈ OK(Θ),

for C1, C2 > 0 only depend on Θ, G0, f, h1, h2, and K. Besides,
√

2dH(fG, fG0) ≥ EXdTV (fG, fG0) ∀G,G0.
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Combining these inequalities with the concentration inequality given in Theo-
rem 3 to have

PG0(W1(Ĝn, G0) > Cδ) ≤ PG0(dH(fG, fG0) >
√

2CC1δ) ≤ c exp(−nδ2/c2),

for the exact-fitted setting, since Ĝn ∈ Ek0(Θ). In the over-fitted setting, a
similar argument yields

PG0(W 2
2 (Ĝn, G0) > Cδ) ≤ PG0(dH(fG, fG0) >

√
2CC2δ) ≤ c exp(−nδ2/c2).

Next, we proceed to prove Theorem 5 which is concerned with the convergence
rates of conditional density estimation.

Proof of Theorem 5. The proof is a generalization of proof of Theorem 3.1 in
[9]. First we prove that if for any fixed k and for all ε ∈ (0, 1/2), these claims
hold

logN(ε,Fk(Θ), ‖·‖∞) � log(1/ε) (39)
HB(ε,Fk(Θ), dH) � log(1/ε), (40)

then by applying Theorem 3, we can arrive at our conclusion. Indeed, since∥∥∥∥∥
(
f + f0

2

)1/2

−
(
g + f0

2

)1/2
∥∥∥∥∥

2

≤ dH(f, g)

for all densities f, g, f0, we have

HB(u,F1/2
k (Θ, u), ‖·‖2) ≤ HB(u,Pk(Ω), dH),

for all u > 0. Thus, we can bound the bracketing entropy integral as follows

J (δ,F1/2
k (Θ, δ)) ≤

(∫ δ

δ2/213
H

1/2
B (u,Fk(Ω), dH)du

)
∨ δ

�
(∫ δ

δ2/213
log(1/u)du

)
∨ δ

≤
(∫ δ

δ2/213
log(213/δ2)du

)
∨ δ

≤ δ log(213/δ2) ∨ δ

� δ log(1/δ),

where we use the fact that log(1/u) is a decreasing function. Hence, if we choose
Ψ(δ) = δ log(1/δ), then Ψ(δ) � J (δ,P1/2

k (Θ, δ)), Ψ(δ)/δ2 = log(1/δ)(1/δ) is a
non-increasing function, and for δn = O((log n/n)1/2), we have

√
nδ2

n � logn/
√
n � Ψ(δn).
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Therefore, the result of Theorem 3 says that there exist constant C and c such
that

P

(
dH(fĜn

, fG0) > C

√
logn
n

)
� exp(−c logn),

which is the conclusion. It remains to verify (39) and (40).

Proof of claim (39) Since Θ1 and Θ2 are compact, for all ε > 0, there
exists a ε-net B1 of (Θ1, ‖·‖) and B2 of (Θ2, ‖·‖) with the cardinality |B1| ≤(

diam(Θ1)
ε

)d1

and |B2| ≤
(

diam(Θ2)
ε

)d2

. We also know that there exists a

ε-net A for (Δk−1, ‖·‖∞) such that |A| ≤
(

5
ε

)k

([9]). We consider the following

subset of Fk(Θ)

C = {pG : G =
k∑

i=1
piδ(θ1j ,θ2j), (pi)

k
i=1 ∈ A, θ1j ∈ B1, θ2j ∈ B2∀ i}.

We can see that

|C| = |A| × |B1|k × |B2|k ≤
(

5
ε

)k (diam(Θ1)
ε

)d1k (diam(Θ2)
ε

)d2k

.

For any G =
∑k

i=1 piδθ1j ∈ Ok(Θ), there exist (p̃i)ki=1 ∈ A and θ̃i ∈ B such
that |pi − p̃i| ≤ ε and

∥∥θ1j − θ̃i
∥∥ ≤ ε for all i. Let G̃ =

∑k
i=1 p̃iδθ̃i and G′ =∑k

i=1 p̃iδθ1j , by triangle inequality, we have

‖fG(y|x) − fG̃(y|x)‖∞ ≤ ‖fG(y|x) − fG′(y|x)‖∞ + ‖fG′(y|x) − fG̃(y|x)‖∞

≤
k∑

j=1
|pj − p̃j | ‖f(y|h1(x, θ1j), h2(x, θ2j))‖∞

+
k∑

j=1
p̃j
∥∥(f(y|h1(x, θ1j), h2(x, θ2j)) − f(y|h1(x, θ̃1j), h2(x, θ̃2j))

∥∥
∞

�
k∑

j=1
|pj − p̃j | ‖f(y|h1(x, θ1j), h2(x, θ2j))‖∞

+
k∑

i=1
p̃j
(∥∥θ1j − θ̃1j

∥∥+
∥∥θ2j − θ̃2j

∥∥)
� ε,

where we apply the assumptions that ‖f(y|μ, φ)‖∞ is bounded uniformly in
(μ, φ) ∈ H, and the uniform Lipschitz of f and h1, h2. Hence C forms a ε-net of
Fk(Θ). This implies that

N(ε,Fk(Θ), ‖·‖∞) �
(

5
ε

)k (diam(Θ1)
ε

)d1k (diam(Θ2)
ε

)d2k

.
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Taking the logarithm of both sides, we arrive at the conclusion of claim (39).

Proof of claim (40) We first construct an ε-bracketing for Fk(Θ) under �1
norm. Let η be a small number that we can choose later, and f1, . . . , fM is a
η-net for Fk(Θ) under ‖·‖∞, for M � log(1/ε). Denote by C1 an upper bound
for ‖f(y|μ, φ)‖∞ for all (μ, φ) ∈ H. From our assumptions, we can construct an
envelope for Fk(Θ) as follows

H(x, y) =
{
d1 exp(−d2|y|d3), ∀y > c or y < c

C1, ∀y ∈ [c, c],

where we can assume that c > 0 and c < 0. Then, we can create the brackets
[fL

i (x, y), fU
i (x, y)]Mi=1 by

fL
i (x, y) := max{fi(y|x) − η, 0}, fU

i (x, y) := max{fi(y|x) + η,H(x, y)}.

Because for all f ∈ Fk(Θ), we have a fi such that ‖f − fi‖∞ ≤ η, it can be seen
that f(y|x) ∈ [fL

i (x, y), fU
i (x, y)] for all x, y. Therefore, Fk(Θ) ⊂ ∪M

i=1[fL
i , f

U
i ].

Besides, for any C > c and C < c, we have∫
(fU

i − fL
i )dP(x)dν(y) ≤

∫
x

∫ y=C

y=C

(fU
i − fL

i )dP(x)dν(y)

+
∫
x

∫
{y<C}∪{y>C}

(fU
i − fL

i )dP(x)dν(y)

≤ η(C − C) +
∫
{y<C}∪{y>C}

d1 exp(−d2|y|d3)dν(y)

≤ η(C − C) +
∫
{u<d2|C|d3}∪{u>d2C

d3}
d1 exp(−|u|)|u|1/d3−1dν(y)

� η(C − C) + C exp(−d2C
d3) − C exp(d2C

d3), (41)

where we use the change of variable formula u = d2|y|d3 , and the fact that when
ν is the Lebesgue measure:∫

u≥z

exp(−u) (u)1/d3−1
du = z1/d3e−z

∫ ∞

0
(1 + s)1/d3−1e−zs

≤ z1/d3e−z 1
z − 1/d3 + 1 < z1/d3e−z,

for all z ≥ 0. Notice that if f is a probability mass function (i.e., ν is discrete),
we can change the integral to sum, and the result still holds because

∞∑
y=C+1

exp(−d2|y|d3) ≤
∫ ∞

y=C

exp(−d2|y|d3)dy.
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Now, let C = c(log(1/η))1/d3 , C = c(log(1/η))1/d3 , we have

∥∥fU
i − fL

i

∥∥
1 � ηd4

(
log
(

1
η

))1/d3

,

where d4 = max{1, d2c
d3 , d2|c|d3}. Hence, there exists a positive constant c

which does not depend on η such that

HB(cηd4(log(1/η))1/d3 ,Fk(Θ), ‖·‖1) � log(1/η).

Let ε = cηd4(log(1/η))1/d3 , we have log(1/ε) � log(1/η). Combining with in-
equality ‖·‖1 ≤ h2 yields

HB(ε,Fk(Θ), h) ≤ HB(ε2,Fk(Θ), ‖·‖1) � log(1/ε2) � log(1/ε).

Thus, we have proved claim (40).

Finally, we obtain upper bounds on the tail probability for some popular
family of distributions in order to verify that they satisfy all conditions of The-
orem 3.

Proof of Proposition 8. Since the parameter space Λ is compact, we can assume
it is a subset of some [λ, λ], where λ > 0 and λ < 0. If the family of distribution
is discrete, then obviously its probability mass function is bounded uniformly
by 1.
(a) For the family of normal distribution {f(y|μ, σ2) : μ ∈ [λ, λ], σ2}, we have
that

f(y|μ, σ2) ≤ 1√
2πσ2

exp(−y/8σ2), (42)

for all y > 2λ or y < 2λ.
(b) For the family of Binomial distribution Bin(N, q), we can see that it is
discrete and domain of q is bounded. Therefore the conclusion is immediate.
(c) For the family of Poisson distribution f(y|λ), we have that f(y|λ) = 0∀ y < 0
and

f(y|λ) = e−λλy

y! ≤ exp(−y),

for all y ≥ 2(λe)2 due to the inequality y! ≥
(y

2

)y/2
.

(d) For the family of negative binomial distribution f(y|μ, φ), we also have
f(y|μ, φ) = 0∀ y < 0, and

f(y|μ, φ) � y[φ]+1
(

μ

μ + θ

)y

≤ y[φ]+1
(

μ

μ + θ

)y

≤
(

μ

μ + θ

)y/2

.

for all y large enough compared to μ and φ.

Proof of Theorem 6. Similar to the proof of Theorem 4, with δn =
√

log(n)/n
(and using Theorem 5 instead of Theorem 3).
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Proof of Remark 4. From Theorem 6, there exist constants C depending on
G0,Θ, f, h1, h2 and an universal constant c such that

PG0

(
W1(Ĝn, G0) > δ

)
≤ c exp(−nδ2/c2),

for all δ > C(logn/n)1/2 =: δn. Therefore,

EG0W1(Ĝn, G0)=EG0W1(Ĝn, G0)1[W1(Ĝn,G0)<δn]

+ EG0W1(Ĝn, G0)1[W1(Ĝn,G0)>δn]

≤ δn +
∫ ∞

δn

PG0

(
W1(Ĝn, G0) > δ

)
dδ

≤ δn +
∫ ∞

δn

c exp(−nδ2/c2)dδ

≤ δn +
∫ ∞

δn

c exp(−C(n logn)1/2δ/c2)dδ

= δn + c
c2

(n logn)1/2C
exp(−C(n logn)1/2δ/c2)

∣∣∣∣δn
∞

≤ C ′
(

logn
n

)1/2

,

where C ′ is a constant depending on Θ, f, h1, h2, G0. Similar inequalities yield
the expectation bound for W2(Ĝn, G0) in the over-fitted setting.

Proof of Proposition 9. From Theorem 6, we have that with probability at least
1 − cn−1/c2 ,

W2(Ĝ(k0)
n , Ĝ(k0−1)

n ) ≥ W2(G0, Ĝ
(k0−1)
n ) −W2(G0, Ĝ

(k0)
n )

≥ W2(G0, G
⊥
0 ) − C1

(
logn
n

)1/4

� an,

where C1 is a constant depending on G0,Θ, h1, h2, f , and

G⊥
0 ∈ arg inf

G∈Ok−1
W2(G0, G).

Note that since Ok0−1 is compact and W2 is a metric and continuous for both
arguments, this infimum problem achieves at least a minimizer (see also [5] for
the closed form solution of G⊥

0 ). In the second inequality, we also use the fact
that W 2

2 (G0, Ĝ
(k0)
n ) ≤ W1(G0, Ĝ

(k0)
n ) as W1(G0, Ĝ

(k0)
n ) → 0. Since G0 ∈ Ek0(Θ),

W2(G0, G
⊥
0 ) is a positive constant, which justifies the last inequality above.

Besides, for all k ∈ [k0,K − 1], with probability at least 1− cn−1/c2 , we have

W2(Ĝ(k)
n , Ĝ(k+1)

n ) ≤ W2(Ĝ(k)
n , G0) + W2(G0, Ĝ

(k+1)
n ) ≤ C2

(
logn
n

)1/4

� an.
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Hence, for sufficiently large n, the selection rule of kn gives P(kn = k0) ≥
1−cn−1/c2 . By combining it with Theorem 7(a), we arrive at the conclusion (17).

A.3. Posterior contraction theorems

Proof of Theorem 7. It suffices to verify conditions (i) and (ii) of Theorem 11 in
Appendix D in order to arrive at the conclusion, with F = Fn = {fG : G ∈ OK}
and εn = (logn/n)1/2.

Checking condition (i): We need to show that the prior distribution puts
enough mass around the true (conditional) density function fG0 , i.e., to ob-
tain a lower bound for Π(B2(fG0 , εn)). First, consider the ball {G ∈ OK(Θ) :
W1(G,G0) ≤ Cε2n} for a constant C to be chosen later. By Lemma 1, we have
EXd2

H(fG0 , fG) ≤ C1Cε2n, where C1 depends on Θ. Because CC1ε
2
n ≤ ε0 for all

sufficiently large n, we have EPX×fG0
(fG0/fG) ≤ M . By Theorem 5 in [43], we

have

EPX
K(fG0 , fG) � ε2n log(

√
M/
√
CC1εn)

EPX
K2(fG0 , fG) � ε2n log(

√
M/
√
CC1εn)2.

Hence, for M = log(
√
M/

√
CC1), we have

Π(B2(fG0 ,Mεn)) ≥ Π(W1(G,G0) ≤ Cεn).

However, for all G =
∑k0

i=1 piδ(θ1i,θ2i) such that ‖θ1i − θ0
1i‖ ≤ εn/(4k0), ‖θ2i −

θ0
2i‖ ≤ εn/(4k0), |pi − p0

i | ≤ εn/(4k0diam(Θ1) × diam(Θ2)), we have

W1(G0, G)≤
k0∑
i=1

(p0
i ∧ pi)(

∥∥θ1i−θ0
1i
∥∥+
∥∥θ2i−θ0

2i
∥∥)+|pi − p0

i |(diam(Θ1)diam(Θ2))

≤ εn.

Due to assumption (B1.), the prior measure of this set is asymptotically greater
than εn Hence

Π(W1(G,G0) ≤ Cεn) � εn � e−cnε2n ,

as εn = (logn/n)1/2.

Checking condition (ii): We need to provide an upper bound for the entropy
number logN(F , dH , εn). By Lemma 1,

d
2
H(fG, fG0) ≤ EXdTV (fG, fG0) � W1(G,G0)

We use the same strategy as in the proof of Theorem 5. Since Θ1 and Θ2 are com-
pact, for all ε > 0, there exists an ε-net B1 of (Θ1, ‖·‖) and B2 of (Θ2, ‖·‖) with
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the cardinality |B1| ≤
(

diam(Θ1)
ε

)d1

and |B2| ≤
(

diam(Θ2)
ε

)d2

. Moreover,

there exists an ε-net A for (Δk−1, ‖·‖∞) such that |A| ≤
(

5
ε

)k

. We consider

the following subset of F

C = {G : G =
k∑

i=1
pjδ(θ1j ,θ2j), (pj)

k
j=1 ∈ A, θ1j ∈ B1, θ2j ∈ B2∀ j}.

Note that

|C| = |A| × |B1|k × |B2|k ≤
(

5
ε

)k (diam(Θ1)
ε

)d1k (diam(Θ2)
ε

)d2k

.

For any G =
∑k

i=1 piδ(θ1j ,θ2j) ∈ Ok(Θ), there exist (p̃j)kj=1 ∈ A and θ̃j ∈ B

such that |pj − p̃j | ≤ εn and
∥∥θ1j − θ̃2j

∥∥ ≤ εn,
∥∥θ2j − θ̃2j

∥∥ ≤ εn for all j. Let
G̃ =

∑k
j=1 p̃iδ(θ̃1j ,θ̃2j) and G′ =

∑k
i=1 p̃iδ(θ1j ,θ2j), by the triangle inequality, we

have

W1(G, G̃) ≤ W1(G,G′) + W1(G′, G̃)

≤
k∑

j=1
|pj − p̃j |2(diam(Θ1) + diam(Θ2))

+
k∑

j=1
p̃j(
∥∥θ1j − θ̃1j

∥∥+
∥∥θ2j − θ̃2j

∥∥) � εn,

This implies that the covering number

N(εn,F , dH) �
(

5
εn

)k (diam(Θ1)
εn

)d1k (diam(Θ2)
εn

)d2k

.

Taking logarithm of both sides, we obtain logN(εn,F , dH) � log(1/εn) ≤ nε2n.
Now, we are ready to apply Theorem 11 to conclude the proof.

Proof of Theorem 8. The proof of this theorem is similar to that of Theorem 4.
It is a direct consequence of Theorem 7, where we proved that the posterior
contraction rate of dH(fG, fG0) is (logn/n)1/2, and the inverse bounds (Theo-
rem 2), where we showed that dH(fG, fG0) � W1(G,G0) in the exact-fitted case
and dH(fG, fG0) � W 2

2 (G,G0) in the over-fitted case.

Now we are to establish the consistency of the number of parameters and the
posterior contraction rate of the latent mixing measure in a Bayesian estimation
setting, where the regression mixture model is endowed with a “mixture of finite
mixture” prior. The proof makes a crucial usage of Doob’s consistency theorem
([8] Theorem 6.9, or [26] Theorem 2.2).
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Proof of Theorem 9. For each latent mixing measure G, we write k(G) as its
number of (distinct) support points. Recall that we have a prior Π on G =
∪∞
k=1Ek, which is a subset of the complete and separable Wasserstein space

endowed with metric W1. By assumption, G (and hence k(G)) is identifiable.
By Doob’s consistency theorem [7] (or [8] Theorem 6.9), there exists G0 ⊂ G
such that Π(G0) = 1 and for any G0 ∈ G0 ∩ Ek0 , i.e. those G0 ∈ G0 that that
have k0 supporting atoms, we have

P(k(G) = k0|x[n], y[n]) = E[1(k(G) = k0)|x[n], y[n]] → 1(k(G0) = k0) = 1,

almost surely in ⊗∞
i=1PG0 . For the mixture of finite mixtures prior, K represents

the (random) number of components. Moreover, by assumption, given K = k,
the prior distributions on p = (pj)kj=1 and (θj)kj=1 are absolutely continuous, and
set G =

∑k
j=1 pjδθj . Thus, under the induced prior Π on the mixing measure,

we have k(G) = K for Π-almost all G. This entails that there exists G′
0 ⊂ G

such that Π(G′
0) = 1 and for any G0 ∈ G′

0 we have

P(k(G) = K|x[n], y[n]) = 1 ∀n ≥ 1 a.s ⊗∞
i=1 PG0 .

Now, for any G0 ∈ G0 ∩ G′
0, by the calculus of probabilities

P(K = k0|x[n], y[n]) ≥ P(K = k0, k(G) = k0|x[n], y[n])
= P(K = k(G), k(G) = k0|x[n], y[n])
≥ P(k(G) = k0|x[n], y[n]) − P(k(G) �= K|x[n], y[n])
= P(k(G) = k0|x[n], y[n]).

Thus, P(K = k0|x[n], y[n]) → 1 a.s ⊗∞
i=1 PG0 , provided that G0 ∈ G0 ∩ G′

0 ∩ Ek0 .
Then, with εn =

√
logn/n, we can bound:

Π(G : W1(G,G0) � εn|x[n], y[n]) =
∞∑
k=1

Π(G ∈ Ek(Θ) : W1(G,G0) � εn|x[n], y[n])

≤ Π(K �= k0|x[n], y[n])
+ Π(G ∈ Ek0(Θ) : W1(G,G0) � εn|x[n], y[n]).

The first term goes to 0 PG0 -almost surely, thanks to the argument above. For
the second term, we apply the first part of Theorem 8 to conclude that it tends
to 0 in PG0 -probability.

Appendix B: Proofs of remaining main results

B.1. Basic inequalities

Proof of Lemma 1. Let G =
∑K

i=1 piδ(θ1i,θ2i) and recall that G0 =
∑k0

j=1 p
0
i

δ(θ0
1j ,θ

0
2j). To ease the presentation, denote fi(y|x) = f(y|h1(x, θ1i), h2(x, θ2i))
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and f0
j (y|x) = f(y|h1(x, θ0

1j), h2(x, θ0
2j)) for i = 1, . . . ,K, j = 1, . . . , k0. We have

EXdTV (fG(·|X), fG0(·|X)) =
∫
X
dPX

∫
Y
dν(y)

∣∣∣∣∣∣
K∑
i=1

pifi(y|x) −
k0∑
j=1

p0
jf

0
j (y|x)

∣∣∣∣∣∣
=
∫
X
dPX

∫
Y
dν(y)

∣∣∣∣∣∣
K,k0∑
i,j=1

qij(fi(y|x) − f0
j (y|x))

∣∣∣∣∣∣
≤

K,k0∑
i,j=1

qij

∫
X
dPX

∫
Y
dν(y)

∣∣fi(y|x) − f0
j (y|x)

∣∣ ,
for any coupling (qij)K,k0

i,j=1 of (pi)Ki=1 and (p0
j )

k0
j=1. But because of the uniform

Lipschitz assumption of f and h1, h2, we have

|fi(y|x) − f0
j (y|x)| ≤ c(|h1(x, θ1i) − h1(x, θ0

1j)| + |h2(x, θ2i) − h2(x, θ0
2j)|),

and then

|fi(y|x) − f0
j (y|x)| ≤ cc1

∥∥θ1i − θ0
1j
∥∥+ cc2

∥∥θ2i − θ0
2j
∥∥ ∀x, y.

Therefore,

EXdTV (fG(·|X), fG0(·|X)) ≤ cmax{c1, c2}
K,k0∑
i,j=1

qij(
∥∥θ1i − θ0

1j
∥∥+

∥∥θ2i − θ0
2j
∥∥),

for all x, y. Taking infimum of all feasible (qij)i,j to obtain

EXdTV (fG(·|X), fG0(·|X)) � W1(G,G0).

Remark 5. By inspecting the proof above, we see that the results still hold if
we change the uniform Lipschitz condition of h1 and h2 to the integrability of
the Lipschitz constants, i.e. there exist c1(x), c2(x) for all x ∈ X such that

h1(x, θ1)−h1(x, θ′1) ≤ c1(x) ‖θ1 − θ′1‖ , h2(x, θ2)−h2(x, θ′2) ≤ c2(x) ‖θ2 − θ′2‖ ,

for all θ1, θ2, θ
′
1, θ

′
2, and EXc1(X) < ∞,EXc2(X) < ∞. This condition is weaker

than the uniformly Lipschitz condition in x.

B.2. Identifiability results

Proof of Proposition 1. (a), (b): Can be found in [2, 17].
(c) First, we will establish the first order identifiability condition when 2K ≤

N +1. Suppose that q1, q2, . . . qK ∈ [0, 1] are distinct and there exist α1, . . . , αK ,
β1, . . . , βK such that

α1Bin(y|q1) + · · ·+ αKBin(y|qK) + β1
∂

∂q
Bin(y|q1) + · · ·+ βK

∂

∂q
Bin(y|qK) = 0,

(43)
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for all y = 0, 1, . . . , N . Direct calculation gives
K∑
i=1

qyi (1 − qi)N−yαi +
K∑
i=1

∂

∂q
qyi (1 − qi)N−yβi = 0, ∀y = 0, . . . , N. (44)

Because this is a system of linear equations of (αi, βi)Ki=1, it suffices to show
that the following (N + 1) × 2K matrix has independent columns⎛⎜⎜⎜⎝

(1 − q1)N · · · (1 − qK)N ∂
∂q (1 − q1)N · · · ∂

∂q (1 − qK)N
...

. . .
...

...
. . .

...

qN1 · · · qNK
∂
∂q q

N
1 · · · ∂

∂q q
N
K

⎞⎟⎟⎟⎠ .

Multiplying this matrix with the following upper triangular matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
(
N
1
) (

N
2
)

· · ·
(
N
N

)
0 1

(
N−1

1
)

· · ·
(
N−1
N−1
)

0 0 1 · · ·
(
N−2
N−2
)

...
...

...
. . .

...

0 0 0 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

we only need to prove the following (N + 1) × 2K matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · 1 0 · · · 0

q1 · · · qK 1 · · · 1

q2
1 · · · q2

2 2q1 · · · 2q2
...

. . .
...

...
. . .

...

qN1 · · · qNK NqN−1
1 · · · NqN−1

K

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
has independent columns. Because 2K ≤N+1, it suffices to prove that det(D1) �=
0, for

D1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · 1 0 · · · 0

q1 · · · qK 1 · · · 1

q2
1 · · · q2

2 2q1 · · · 2q2
...

. . .
...

...
. . .

...

q2K−1
1 · · · q2K−1

K (2K − 1)q2K−2
1 · · · (2K − 1)q2K−2

K

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (45)

In the following, we will prove that det(D1) =
∏

1≤i<j≤K(qi − qj)4, so that it
is different from 0 if q1, . . . , qN are distinct as in our assumption. We borrow
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an idea in calculating the determinant of the Vandermonde matrix. Note that
det(D1) is a polynomial of q1, q2, . . . , qK , with the degree of each qi no more
than 4K − 4. Let us treat q1 = x as a variable, while q2, . . . , qK as constants,
and prove that the polynomial f(x) being equal to

det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 · · · 1 0 0 · · · 0
x q2 · · · qK 1 1 · · · 1
x2 q2

2 · · · q2
K 2x 2q2 · · · 2qK

...
...

. . .
...

...
...

. . .
...

x2K−1 q2K−1
2 · · · q2K−1

K (2K − 1)x2K−2 (2K − 1)q2K−2
2 · · · (2K − 1)q2K−2

K

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is a polynomial having degree 4(K − 1) of x and can be factorized as
∏K

i=2(x−
qi)4. It suffices for us to show f(x), f ′(x), f ′′(x), f (3)(x) all attains q2 as solu-
tions, and similar for other qi’s. It can be seen that f1(q2) is a determinant of a
matrix with identical first two columns, therefore f1(q2) = 0. For the derivative
of f1, we use the derivative rule for product (fg)′ = f ′g+g′f to have that f ′

1(x)
equals

det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 1 0 0 · · · 0
1 · · · qK 1 1 · · · 1
2x · · · q2

K 2x 2q2 · · · 2qK
...

. . .
...

...
...

. . .
...

(2K − 1)x2K−2 · · · q2K−1
K (2K − 1)x2K−2 (2K − 1)q2K−2

2 · · · (2K − 1)q2K−2
K

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · 1 0 0 · · · 0
x · · · qK 0 1 · · · 1
x2 · · · q2

K 2 2q2 · · · 2qK
...

. . .
...

...
...

. . .
...

x2K−1 · · · q2K−1
K (2K − 1)(2K − 2)x2K−3 (2K − 1)q2K−2

2 · · · (2K − 1)q2K−2
K

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

As the first matrix has identical first and (K+1)-th columns, its determinant
equals 0. Hence, f ′

1(x) equals

det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · 1 0 0 · · · 0
x · · · qK 0 1 · · · 1
x2 · · · q2

K 2 2q2 · · · 2qK
...

. . .
...

...
...

. . .
...

x2K−1 · · · q2K−1
K (2K − 1)(2K − 2)x2K−3 (2K − 1)q2K−2

2 · · · (2K − 1)q2K−2
K

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Now consider f ′
1(q2). It is the determinant of a matrix that has identical first

two columns, so f ′
1(q2) = 0. Continuing to apply the derivative rule for products

of functions, f ′′
1 (x) equals
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det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 1 0 · · · 0
1 · · · qK 0 · · · 1
2x · · · q2

K 2 · · · 2qK
...

. . .
...

...
. . .

...
(2K − 1)x2K−2 · · · q2K−1

K

∏2
i=1(2K − i)x2K−3 · · · (2K − 1)q2K−2

K

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · 1 0 · · · 0
x · · · qK 0 · · · 1
x2 · · · q2

K 0 · · · 2qK
...

. . .
...

...
. . .

...
x2K−1 · · · q2K−1

K

∏3
i=1(2K − i)x2K−4 · · · (2K − 1)q2K−2

K

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Substitute x = q2 in the formula above, the first matrix has identical first and
(K+2)-th column, and the second matrix has identical first two columns. Hence,
f ′′
1 (q2) = 0. Continue applying derivative one more time, f (3)

1 (x) equals

det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 1 0 · · · 0
0 · · · qK 0 · · · 1
2 · · · q2

K 2 · · · 2qK
...

. . .
...

...
. . .

...∏2
i=1(2K − i)x2K−3 · · · q2K−1

K

∏2
i=1(2K − i)x2K−3 · · · (2K − 1)q2K−2

K

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 1 0 · · · 0
1 · · · qK 0 · · · 1
2x · · · q2

K 2 · · · 2qK
...

. . .
...

...
. . .

...
(2K − 1)x2K−2 · · · q2K−1

K

∏3
i=1(2K − i)x2K−4 · · · (2K − 1)q2K−2

K

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 1 0 · · · 0
1 · · · qK 0 · · · 1
2x · · · q2

K 0 · · · 2qK
...

. . .
...

...
. . .

...
(2K − 1)x2K−2 · · · q2K−1

K

∏3
i=1(2K − i)x2K−4 · · · (2K − 1)q2K−2

K

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · 1 0 · · · 0
x · · · qK 0 · · · 1
x2 · · · q2

K 0 · · · 2qK
...

. . .
...

...
. . .

...
x2K−1 · · · q2K−1

K

∏4
i=1(2K − i)x2K−5 · · · (2K − 1)q2K−2

K

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The first matrix has two identical columns, so its determinant is 0. Meanwhile,
when we substitute x = q2 into the other three matrices, each also has identical
columns. Hence, f (3)(q2) = 0. We obtain that f1(x) ∝

∏K
i=2(x−qi)4. By treating

q2, . . . , qK as variables respectively and applying the same argument, we have

det(D1) =
∏

1≤i<j �=K

(qi − qj)4 �= 0,
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whenever q1, q2, . . . , qK are distinct.
The proof for establishing the second order identifiability when 3K ≤ N+1 is

similar, where the determinant of the derived 3K×3K matrix is
∏

1≤i<j �=K(qi−
qj)6 �= 0.

(d) For the family of negative binomial distributions, the density is given as

NB(y|μ, φ) = Γ(φ + y)
Γ(φ)y!

(
μ

φ + μ

)y (
φ

φ + μ

)φ

.

Suppose that μ1, ..., μK are distinct, and there exist α1, ..., αK , β1, ..., βK ,
γ1, ..., γK such that for every y ∈ N

K∑
i=1

αiNB(y|μi, φ) +
K∑
i=1

βi
∂

∂μ
NB(y|μi, φ) +

K∑
i=1

γi
∂2

∂μ2 NB(y|μi, φ) = 0. (46)

We will show that α1 = · · · = αK = β1 = · · · = βK = γ1 = . . . γK = 0. Indeed,
Eq. (46) is simplified as below

K∑
i=1

αi

(
μi

φ + μi

)y (
φ

φ + μi

)φ

+
K∑
i=1

βi

(
μi

φ + μi

)y−1(
φ

φ + μi

)φ+1
y − μi

φ + μi

+
K∑
i=1

γi

(
μi

φ + μi

)y−2(
φ

φ + μi

)φ+1 1
(φ + μi)3

[φ(y − μi)2 − y(2μi + φ) + μ2
i ]

= 0,
(47)

for all y ∈ N. Without loss of generality, assume μ1 is the largest value in the set
of {μ1, ..., μK}. This implies that μ1

φ + μ1
is also the largest value in the set of{

μ1

φ + μ1
, ...,

μK

φ + μK

}
. Dividing both sides of Eq. (47) by

(
μ1

φ + μ1

)y−2

[φ(y−

μ1)2 − y(2μ1 + φ) + μ2
1] =

(
μ1

φ + μ1

)y−2
A1(y), we obtain

K∑
i=1

αi

(
μi(φ + μ1)
μ1(φ + μi)

)y−2(
μi

φ + μi

)2(
φ

φ + μi

)φ 1
A1(y)

+
K∑
i=1

βi

(
μi(φ + μ1)
μ1(φ + μi)

)y−2(
μi

φ + μi

)(
φ

φ + μi

)φ+1
y − μi

(φ + μi)A1(y)

+
K∑
i=2

γi

(
μi(φ + μ1)
μ1(φ + μi)

)y−2(
φ

φ + μi

)φ+1
Ai(y)

(φ + μi)3A1(y)

+ γ1

(
φ

φ + μ1

)φ+1 1
(φ + μ1)3

= 0,∀y ∈ N. (48)
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Let y → ∞ in (48), we get γ1 = 0. After dropping γ1 in (47), the remaining

terms of the equation is divided by
(

μ1

φ + μ1

)y−1

(y − μ1), we have

K∑
i=1

αi

(
μi(φ + μ1)
μ1(φ + μi)

)y−1(
μi

φ + μi

)(
φ

φ + μi

)φ 1
y − μ1

+
K∑
i=2

βi

(
μi(φ + μ1)
μ1(φ + μi)

)y−1(
φ

φ + μi

)φ+1(
y − μi

y − μ1

)
1

φ + μi

+
K∑
i=2

γi

(
μi(φ + μ1)
μ1(φ + μi)

)y−2(
φ

φ + μi

)φ+1 1
(φ + μi)3

Ai(y)
y − μ1

+ β1

(
φ

φ + μ1

)φ+1 1
φ + μ1

= 0,∀y ∈ N. (49)

Taking the limit y → ∞ both sides of Eq. (49), we get β1 = 0. Continuing this

procedure, we set β1 = 0 and γ1 = 0 in Eq. (46), then divide
(

μ1

φ + μ1

)y

on

both sides of the remaining equation. The final result leads to the following:

K∑
i=2

αi

(
μi(φ + μ1)
μ1(φ + μi)

)y (
φ

φ + μi

)φ

+
K∑
i=2

βi

(
μi(φ + μ1)
μ1(φ + μi)

)y (
μi

φ + μi

)−1(
φ

φ + μi

)φ+1
y − μi

φ + μi

+
K∑
i=2

γi

(
μi(φ + μ1)
μ1(φ + μi)

)y (
μi

φ + μi

)−2(
φ

φ + μi

)φ+1
Ai(y)

(φ + μi)3

+ α1

(
φ

φ + μ1

)φ

= 0,∀y ∈ N. (50)

It is clear to see that α1 = 0 when y approaches ∞ in Eq. (50). We have shown
that α1, β1, γ1 = 0. Inductively, we obtain that αi, βi, γi = 0 for i = 2, ...,K.

Proof of Proposition 3. Since PX is absolutely continuous with respect to the
Lebesgue measure on Rp, it is sufficient to prove the result in this proposition
with respect to the Lebesgue measure.

(a) We will prove this part by applying an inductive argument with respect
to p (dimension of covariate x). Suppose p = 1. For θ �= θ′, the equation
h(x, θ) = h(x, θ′) is a non-trivial polynomial equation, it only has a finite num-
ber of solutions. Thus the set of solution has Lebesgue measure zero, so we have
h(x, θ) �= h(x, θ′) a.s.

Assume now that the proposition is valid up to the parameter space dimension
p−1. Now we prove that it is correct for p. Using a similar argument as above, it
suffices to show that the set of solutions for any non-trivial polynomial has zero
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measure. Indeed, consider any such polynomial of degree d of variable x ∈ R
p,

we can write x = (Xp−1, xp), where Xp−1 ∈ R
p−1 and xp ∈ R. The polynomial

then can be written as:
d∑

j=0
pj(Xp−1)xi

p = 0, (51)

where (pj(Xp−1))dj=0 are polynomial of Xp−1 ∈ R
p−1, at least one of which is

non-trivial.
Now, partition the set Z of the solutions for this polynomial into two mea-

surable sets Z = A ∪B, where

A = {(Xp−1, xp) : pj(Xp−1) = 0 ∀j = 1, ..., d}
B = {(Xp−1, xp) : at least one pj(Xp−1) �= 0, and xp satisfies (51).}

The Lebesgue measure of set A is 0 using the induction hypothesis. While for
any x = (Xp−1, xp) in set B, for each such Xp−1, there exist only a finite number
of xp ∈ R to satisfy (51), which has zero Lebesgue measure in R. Therefore, we
can use Fubini’s theorem to deduce that the measure of B is also zero. Thus,
Z has measure zero. We have established that h(x, θ) is completely identifiable
for any polynomial h(x, θ).

Turning to the verification of Assumption (A5.), since ∂

∂θ
h(x, θ) is again a

non-trivial polynomial of x, (A5.) is also satisfied using the same argument
above.

(b) Similar to part (a), we only need to prove that a non-trivial (not all
coefficients are 0) trigonometric polynomial of x:

a0 +
d∑

n=1
bn cos(nx) +

d∑
n=1

sin(nx) = 0 (52)

has a countable number of solutions. Write cos(nx) = 1
2(einx+e−inx), sin(nx) =

1
2i (e

inx − e−inx), where i is the imaginary unit, we can rewrite a non-trivial
trigonometric polynomial above as

a0 +
d∑

n=1
b̃ne

inx +
d∑

n=1
c̃ne

−inx = 0, (53)

where b̃n and c̃n are computed from bn, cn, and the tuple (a0, b̃n, c̃n) is non-
trivial. Set y = eix, this becomes a polynomial in y ∈ C, which has a finite
number of solutions, by the fundamental theorem of algebra. Combining this
with the fact that eix = y only has a countable solution in x, we arrive at the
conclusion. The condition spelled out in Assumption (A5.) also holds because
the derivative of a trigonometric polynomial is still of the same form.
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(c) Similar to above, we express a non-trivial mixture of polynomials and
trigonometric polynomials in the form:

d∑
n=0

anx
n +

d∑
n=1

b̃ne
inx +

d∑
n=1

c̃ne
−inx = 0, (54)

which is a holomorphic function in C. This function is known to have an iso-
lated set of solutions, which has zero measure [36]. Thus, these functions are
completely identifiable. Conditions in Assumption (A5.) also follow because the
derivative of a function of this type is still of the same form.

(d) Given h(x, θ) = g(p(x, θ)), where g is diffeomorphic.
To verify the complete identifiability condition, it can be seen that for θ �= θ′:

h(x, θ) = h(x, θ′) ⇔ p(x, θ) = p(x, θ′), so that the complete identifiability of h
can be deduced from what of p.

To verify Assumption (A5.), note that β� ∂h(x, θ)
∂θ

= β�g′(p(x, θ))∂p(x, θ)
∂θ

.
Since g′(p(x, θ)) �= 0 (as g is a diffeomorphism), the two equations below are
equivalent.

β� ∂h(x, θ)
∂θ

= 0 ⇐⇒ β� ∂p(x, θ)
∂θ

= 0.

Hence, h satisfies assumption (A5.) if p does.

Now we turn into the proof of Proposition 7, which illustrates the discus-
sion in Section 5 by showing that a mixture of binomial regression model may
be strongly identifiable even though the (unconditional) mixture of binomial
distributions is not identifiable in even in the classical sense.

Proof of Proposition 7. Consider θ1 �= ±θ2. Suppose that for some a1, a2, b1, b2 ∈
R we have

a1Bin(y|1, h(x, θ1)) + a2Bin(y|1, h(x, θ2))

+ b1
∂

∂θ
Bin(y|1, h(x, θ1)) + b2

∂

∂θ
Bin(y|1, h(x, θ2)) = 0,

for all y = 0, 1, and x ∈ supp(PX). Then we will show that a1 = a2 = b1 = b2
= 0. Denote σi(x) = h(x, θi), we have Bin(1|1, h(x, θi)) = σi = 1−Bin(0|1, h(x, θi)).
Besides, ∂

∂θ
Bin(1|1, h(x, θi)) = xσi(x)(1 − σi(x)) = − ∂

∂θ
Bin

(0|1, h(x, θi)), so that
a1 + a2 = 0, (55)

and

a1σ1(x)+a2σ2(x)+b1xσ1(x)(1−σ1(x))+b2xσ2(x)(1−σ2(x))=0, ∀x ∈ supp(PX).
(56)

Because Eq. (56) satisfies for all x in an open set, and it is an analytic function of
x, it satisfies for all x ∈ R (identity theorem) [36]. Without the loss of generality,
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we assume θ1 < θ2. If 0 ≤ θ1 < θ2, then by dividing both sides of Eq. (56) by
σ1(x)x, one obtains

a1

x
+a2

1 + exp(θ1x)
1 + exp(θ2x)

1
x

+b1(1−σ1(x))+b2(1−σ2(x))1 + exp(θ1x)
1 + exp(θ2x) = 0, ∀x ∈ R.

Let x → ∞, we have b1(1 − σ1(x)) → b1/2 or b1 (depending on whether θ1 = 0
or θ1 > 0) and all other terms go to 0. Hence b1 = 0. Next, dividing both sides
of Eq. (56) by σ1(x), one obtains

a1 + a2
1 + exp(θ1x)
1 + exp(θ2x) + b2(1 − σ2(x)) (1 + exp(θ1x))x

1 + exp(θ2x) = 0, ∀x ∈ R.

Let x → ∞, we have a1 = 0. Therefore,

a2 + b2
exp(θ2x)

1 + exp(θ2x)x = 0 ∀x ∈ R,

which implies a2 = b2 = 0. In the other case where θ1 < 0 < θ2, we let x → ∞
in Eq. (56) and notice that θ1(x) → 1, θ2(x) → 0 then a1 = 0. Similarly let
x → −∞, we have a2 = 0. Then Eq. (56) becomes

b1h(x, θ1)(1 − h(x, θ1)) + b2h(x, θ2)(1 − h(x, θ2)) = 0.

But notice that h(x, θ1)(1 − h(x, θ1)) = h(x,−θ1)(1 − h(x,−θ1)), so by letting
θ′1 = −θ1, we are back to the case θ′1, θ2 > 0. Similar to the case θ1, θ2 < 0, we
can transform θ1 �→ −θ1, θ2 �→ θ′2 to go back to the first case θ1, θ2 > 0 (because
Eq. (56) satisfies for all x ∈ R). Hence, in all cases we have a1 = a2 = b1 = b2 =
0. Hence, strong identifiability in the first order is established.

Remark 6. 1. The fact that mixture of Binomial distributions is not iden-
tifiable in general can be seen from a simple example: 0.5Bin(y|1, q1) +
0.5Bin(y|1, q2) = 0.5Bin(y|1, q1+ε)+0.5Bin(y|1, q2−ε) for all valid ε > 0.
That is also the reason why one cannot include the intercept parameter in
the definition of h in the proposition above.

2. The proof technique of this proposition is to perform analytic continuation
so that the identifiability equation satisfies for all x ∈ R then we can ex-
amine the limits x → ±∞. Extending this proof technique mixture of more
components (more than 2) is generally more challenging because several
components can have the same limit as x → ±∞. We once more highlight
the usefulness of Theorem 1 and Theorem 2 for providing the guarantee
for a large class of identifiable mixture densities.

B.3. Minimax bound for mean-dispersion negative binomial
regression mixtures

Proof of Proposition 5. Step 1. We will prove that for any k0 ≥ 2 there exist
G0 ∈ Ek0(Θ) and a sequence Gn ∈ Ek0(Θ) such that:

Wr(Gn, G0) → 0, sup
x

dH(fGn(·|x), fG0(·|x)) = O(W 2r
r (Gn, G0)). (57)
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Then, the first claim in the proposition will be proved since

sup
x

dH(fGn(·|x), fG0(·|x)) ≥ EXdTV (fGn(·|X), fG0(·|X)).

To achieve (57), intuitively, we want to pick G0 to satisfy the pathological case
described in equation (10). In particular, choose G0 =

∑k0
j=1 p

0
jδ(β0

j ,φ
0
j ) where

β0
j = (β0

jt)
p
t=0 ∈ R

p+1 such that φ0
2 = φ0

1 + 1, β0
20 = β0

10 + log
(
φ0

2
φ0

1

)
, β0

2i = β0
1i

for all i = 1, . . . , p. Let μ0
1 ≡ μ0

1(x) = exp((β0
1)�x), μ0

2 ≡ μ0
2(x) = exp((β0

2)�x),

we have μ0
1

φ0
1

= μ0
2

φ0
2
. A combination of chain rule with equation (10) yields:

∂

∂β0
10

NB(y| exp((β0
1)�x), φ0

1) = dμ0
1

dβ0
10

∂

∂μ0
1
NB(y|μ0

1, φ
0
1)
∣∣∣∣
μ0

1=exp((β0
1)�x)

= μ0
1

(
φ0

1
μ0

1
NB(y| exp((β0

2)�x), φ0
2) −

φ0
1

μ0
1
NB(y| exp((β0

1)�x), φ0
1)
)

= φ0
1NB(y| exp((β0

2)�x), φ0
2) − φ0

1NB(y| exp((β0
1)�x), φ0

1).
(58)

for all x = [1, x̄] ∈ R
p+1, y ∈ R. Now, choose a sequence Gn =

∑k0
j=1 p

n
j δ(βn

1j ,φ
0
j )

such that

pn1 = p0
1 + p0

1φ
0
1

n
, pn2 = p0

2 −
p0
1φ

0
1

n
, pnj = p0

j ∀j ≥ 3

and βn
10 = β0

10 + 1
n

, βn
ji = β0

ji for all (j, i) �= (1, 0); and φn
j = φ0

j for all j. It can
be checked that

W r
r (Gn, G0) �

1
n

+ (p0
1 − φ0

1/n)(βn
10 − β0

10)r � 1
n

=: εn.

Meanwhile, using Taylor’s expansion up to second order with integral remainder,
we have

fGn(y|x) − fG0(y|x) = (pn1 − p0
1)NB(y| exp((β0

1)�x), φ0
1)

+ (pn2 − p0
2)NB(y| exp((β0

2)�x), φ0
2)

+ p0
1(NB(y| exp((βn

1 )�x, φ0
1)) − NB(y| exp((β0

1)�x), φ0
1)))

= 1
n
p0
1φ

0
1NB(y| exp((β0

1)�x), φ0
1) −

1
n
p0
1φ

0
1NB(y| exp((β0

2)�x), φ0
2)

+ p0
1(βn

10 − β0
10)

∂

∂(β0
10)

NB(y| exp((β0
1)�x), φ0

1)

+ p0
1
(βn

10 − β0
10)2

2

∫ 1

0
dt(1 − t) ∂2

(∂β0
10)2

NB(y|μ0
1 exp(tεn), φ0

1)

= p0
1
ε2n
2

∫ 1

0
dt(1 − t) ∂2

(∂β0
10)2

NB(y|μ0
1 exp(tεn), φ0

1),
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where the zero and first-order terms are canceled out due to the equation (58).
Therefore,

d2
H(fGn(·|x), fG0(·|x)) =

∞∑
y=0

(f1/2
Gn

(y|x) − f
1/2
G0

(y|x))2

=
∞∑
y=0

(fGn(y|x) − fG0(y|x))2

(f1/2
Gn

(y|x) + f
1/2
G0

(y|x))2

≤
∞∑
y=0

(fGn(y|x) − fG0(y|x))2

(f1/2
G0

(y|x))2

≤
∞∑
y=0

(fGn(y|x) − fG0(y|x))2

p0
1NB(y|μ0

1, φ
0
1)

≤ p0
1
ε4n
2

∞∑
y=0

∫ 1

0
dt

(
(1 − t) ∂2

(∂β0
10)2

NB(y|μ0
1 exp(tεn), φ0

1)
)2

NB(y|μ0
1, φ

0
1)

= p0
1
ε4n
2

∫ 1

0
dt(1 − t)2

∞∑
y=0

(
∂2

(∂β0
10)2

NB(y|μ0
1 exp(tεn), φ0

1)
)2

NB(y|μ0
1, φ

0
1)

� ε4n,

uniformly in x, where the first two inequalities are due to the fact that NB is
non-negative, the third inequality is because of Holder’s inequality, the equality
after that is because of Fubini theorem, and the last comparison is an application
of Lemma 2 with ε chosen to be tεn. Hence,

sup
x

dH(fGn(·|x), fG0(·|x)) = O(W 2r
r (Gn, G0)),

as Gn
Wr−−→ G0.

Step 2 After having the limit above, the rest of this proof follows a stan-
dard proof technique for minimax lower bound (e.g., see Theorem 4.4. in [17]).
Indeed, for any sufficient small ε > 0, there exist G0, G

′
0 ∈ Ek0 such that

Wr(G0, G
′
0) = 2ε and supx dH(fG0 , fG′

0
) ≤ Cε2r. Applying Lemma 1 in [45],

we have the following inequality for any sequence of estimator Ĝn in Ek0 :

sup
G∈{G0,G′

0}
EPG

Wr(Ĝn, G) ≥ ε(1 − E
n
XdTV (fn

G0
, fn

G′
0
)).

where E
n
X := EP

n
X

and fn
G :=

∏n
i=1 fG(yi|Xi). Besides, we have

dTV (fn
G0

, fn
G′

0
) ≤ dH(fn

G0
, fn

G′
0
)

=
√

1 − (1 − d2
H(fG0 , fG′

0
))n

≤
√

1 − (1 − C2ε4r)n
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Selecting ε = (1/(C2n))4r, we have (1 − C2ε4r)n → e−1 so that

sup
G∈{G0,G′

0}
EPG

Wr(Ĝn, G) � ε � 1/n4r.

Hence,
inf

Ĝn∈Ek0

sup
G0∈Ek0

EPG
Wr(Ĝn, G) � 1/n4r.

Remark 7. The construction of Gn in the proof above, combined with the lack
of identifiability of the negative binomial kernels, allows us to cancel the zero and
first-order term in the Taylor expansion of fGn − fG0 , leading to the asymptotic
bound dH(fGn , fG0) � ε2n = O(W 2r

r (Gn, G0)). Therefore, we obtain the minimax
rate n−1/(4r), which is as twice as slow compared to the usual rate n−1/(2r) in
parametric models (under Wr).

Lemma 2. Let μ = exp(β�x) for β = (βj)pj=0 and x = (1, x) ∈ R
p+1, both

range in compact subspaces of Rp+1 and φ > 0. There exists ε0 > 0 such that

sup
x

sup
ε∈[0,ε0]

∞∑
y=0

(
∂2

(∂β0)2 NB(y|eεμ, φ)
)2

NB(y|μ, φ) < ∞.

Proof. Because both x and β range in compact sets, we have β�x is bounded
away from ±∞. Therefore, for sufficiently small ε0, we have qε :=

exp(β�x + ε)
exp(β�x + ε) + φ

is bounded away from 0 and 1 for all ε ∈ [0, ε0] and x, β.

Denote c = infx,β,ε qε > 0 and C = supx,β,ε qε < 1. Direct calculation gives:

∂

∂β0
NB(y|eεμ, φ) = [qε(φ + y) − y]NB(y|eεμ, φ),

∂2

(∂β0)2
NB(y|eεμ, φ) = [qε(1 − qε)(φ + y) + (qε(φ + y) − y)2]︸ ︷︷ ︸

Pε(y)

NB(y|eεμ, φ)

where Pε(y) is a polynomial of the fourth order of y, and

NB(y|eεμ, φ)
NB(y|μ, φ) =

(
qε
q0

)y ( 1 − qε
1 − q0

)φ

.

Hence,

∞∑
y=0

(
∂2

(∂β0)2 NB(y|eεμ, φ)
)2

NB(y|μ, φ) =
∑
y

(Pε(y))2
(
qε
q0

)2y ( 1 − qε
1 − q0

)2φ

NB(y|μ, φ)

=
(

1 − qε
1 − q0

)2φ

EY∼NB(μ,φ)(Pε(Y ))2
(
qε
q0

)2Y

.
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The first term is easily bounded by the comment on the range of qε in the
beginning. To uniformly bound the expectation in the expression above, we
will bound the expectation of (Pε(Y ))4 and (qε/q0)4Y separately, and then an
application of Cauchy-Schwarz inequality yields the result. Because Pε(Y ) is a
polynomial of Y with bounded coefficient, we have E(Pε(Y ))4 < ∞ uniformly
in x. For the second term, recall that the moment-generating function of EeY t

exists and equals ( q0
1−(1−q0)et )

φ for all t < log(1/(1−q0)). Given an arbitrary δ >

0, we can choose ε0 sufficient small so that 4 log(qε/q0) < 1+δ < log(1/(1−q0))
uniformly in x. So that E(qε/q0)4Y ≤ Ee(1+δ)Y = ( q0

1−(1−q0)e1+δ )φ, which is also
uniformly bounded in x. These claims together conclude the lemma.

B.4. Strong identifiability for negative binomial regression mixtures

Theorem 5 and its proof indicate that the family of negative binomial distribu-
tions does not enjoy first order identifiability in general. However, we shall show
that the set of parameter values where first order identitifiability fails to hold
has Lebesgue measure zero. In particular, the following holds.

Proposition 10. Given k distinct pairs (μ1, φ1), . . . , (μk, φk) ∈ R+ × R+ such
that there does not exist two indices i �= j satisfying⎧⎨⎩

μi

φi
= μj

φj

φi = φj + 1,

then the mixture of negative binomials (NB(μi, φi))ki=1 is strongly identifiable in
the first order.

Proof. We need to prove that if there exist (ai, bi, ci)ki=1 such that
k∑

i=1
aiNB(y|μi, φi) + bi

∂

∂μ
NB(y|μi, φi) + ci

∂

∂φ
NB(y|μi, φi) = 0, (59)

for all y ∈ N, then ai = bi = ci = 0 ∀ y = 1, . . . , k. To simplify the presentation,
we will write the negative binomial in terms of probability-dispersion parame-
ters, i.e., set q = μ/(μ + φ) (and qi = μi/(μi + φi) for all i), then the negative
binomial mass function becomes

f(y|q, φ) = Γ(φ + y)
Γ(φ)y! qy(1 − q)φ, ∀y ∈ N.

Under this presentation, we have

∂

∂μ
NB(y|μ, φ) = ∂q

∂μ
× ∂f(y|q, φ)

∂q
= φ

(μ + φ)2
∂f(y|q, φ)

∂q
,

and
∂

∂φ
NB(y|μ, φ)= ∂q

∂φ
× ∂f(y|q, φ)

∂q
+∂f(y|q, φ)

∂φ
=− μ

(μ+φ)2
∂f(y|q, φ)

∂q
+∂f(y|q, φ)

∂φ
,
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therefore, we can write Eq. (59) as

k∑
i=1

αiNB(y|qi, φi) + βi
∂

∂q
NB(y|qi, φi) + γi

∂

∂φ
NB(y|qi, φi) = 0, (60)

where αi = ai, βi = φi

(μi + φi)2
bi−

μi

(μi + φi)2
ci, and γi = ci. If we can prove that

αi = βi = γi = 0, it immediately follows that ai = bi = ci = 0 for all i = 1, . . . , k,
and we get the identifiability result. We recall that pairs (q1, φ1), . . . , (qk, φk) are
distinct (implied from the assumption (μ1, φ1), . . . , (μk, φk) are distinct) and
there does not exist indices i �= j such that{

qi = qj

φi = φj + 1.

We can simplify Eq. (60) as

k∑
i=1

[
αi + βi

(
y

qi
− φi

1 − qi

)
+ γi (fy(φi) + log(1 − qi))

]
Py(θi)qyi (1 − qi)φi = 0,

(61)
where

Py(φ) = Γ(φ + y)
Γ(φ) = φ(φ + 1) . . . (φ + y − 1), fy(φ) =

y−1∑
i=0

1
φ + i

.

The function Py(φ) has the following properties:

1. By Stirling’s formula, Py(φ) � 1
Γ(φ)

√
2π(φ + y − 1)

(
φ + y − 1

e

)φ+y−1

as y → ∞;
2. Py(φ) is an increasing polynomial of φ, and Py(φ)

Py(φ′) log(φ′) → ∞ as y → ∞
if φ > φ′;

3. For all φ, φ′ ∈ R+, 0 ≤ q < q′ ≤ 1, and polynomial p(y) we have

p(y) Py(φ)
Py(φ′)

(
q

q′

)y

→ 0 as y → ∞;

4. fy(φ) � log(y) as y → ∞.

The second and third properties are consequences of the first one. Now, consider
the subset of (q1i)k1

i=1 of (qi)ki=1 which consists of all maximal elements, i.e.
q11 = q12 = . . . q1k1 = max1≤i≤k qi. Dividing both sides of Eq. (61) by qy11 and
letting y → ∞, from the third property above, we obtain:

k1∑
i=1

[(
α1i − β1i

φ1i

1 − q11
+ γ1i log(1 − q11)

)
+ γ1ify(φ1i) + β1i

y

q11

]
×Py(φ1i)(1 − q11)φ1i → 0 (62)



188 D. Do et al.

as y → ∞. Without loss of generality, assume φ11 > φ12 > · · · > φ1k1 > 0.
Because φ11 �= φ12 +1, consider two cases: φ11 > φ12 +1 and φ11 < φ12 +1. For
the first case, we notice that

Py(φ11)
yPy(φ1i)

= Py(φ11)
Py(φ1i + 1)

φ1i + y

y
→ ∞,

as y → ∞. Hence, by dividing both sides of Eq. (62) by Py(φ11), we have(
α11 − β11

φ1i

1 − q11
+ γ11 log(1 − q11)

)
+ γ11fy(φ11) + β11

y

q11
→ 0 (y → ∞),

(63)
which implies that β11 = 0, followed by γ11 = 0 and α11 = 0. For the second case
where φ11 < φ12 + 1. We have Py(φ12)/Py(φ11) → 0 and Py(φ11)/(yPy(φ12)) →
0. By dividing both sides of Eq. (62) by yPy(φ11) and let y → ∞, we have
β11 = 0. Dividing both sides of Eq. (62) by yPy(φ11), we have β12 = 0. Finally,
dividing both sides of Eq. (62) by Py(φ11) and letting y → ∞, we also obtain
that the limit (63) holds. Hence, in all cases we obtain α11 = β11 = γ11 = 0.
Continuing this argument, we have α1i = β1i = γ1i = 0 for all i = 1, . . . , k1,
then αi = βi = γi = 0 for all i = 1, . . . , k.

Proposition 11. Given k distinct pairs (μ1, φ1), . . . , (μk, φk) ∈ R × R+ such
that there does not exist two indices i �= j satisfying⎧⎨⎩

μi

φi
= μj

φj

|φi − φj | ∈ {1, 2},

then the mixture of negative binomials (NB(μi, φi))ki=1 is strongly identifiable in
the second order.

Proof. Using the same transformation qi = μi/(μi + φi) as in the proof of
Proposition 10, we only need to prove that if there exist (ai, bi, ci, di, ei, fi)ki=1
such that for all y ∈ N:

k∑
i=1

aiNB(y|qi, φi) + bi
∂

∂q
NB(y|qi, φi) + ci

∂

∂φ
NB(y|qi, φi)

di
∂2

∂q2 NB(y|qi, φi) + ei
∂2

∂q∂φ
NB(y|qi, φi) + fi

∂2

∂φ2 NB(y|qi, φi) = 0, (64)

then ai = bi = ci = di = ei = fi = 0 for all i = 1, . . . , k. We recall that pairs
(q1, φ1), . . . , (qk, φk) are distinct (implied from the assumption (μ1, φ1), . . . ,
(μk, φk) are distinct) and there does not exist indices i �= j such that{

qi = qj

|φi − φj | ∈ {1, 2}.
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Taking all the derivatives and rewrite Eq. (64) as

k∑
i=1

[
di
q2
i

y2 +
(

2di
φi

qi(1 − qi)
− di

q2
i

+ bi
qi

)
y + ei

qi
fy(φi)y + fif

2
y (φi)

+
(

2fi log(1 − qi) + ci + ei
φi

1 − qi

)
fy(θi) + Ci(y)

]
Py(φi)qyi (1 − qi)φi = 0,

(65)

where

Py(φ) = Γ(φ + y)
Γ(φ) = φ(φ + 1) . . . (φ + y − 1), fy(φ) =

y−1∑
i=0

1
φ + i

,

and

Ci(y) = ai + bi
φi

1 − qi
+ ci log(1 − qi) + di

φ2
i + φi

(1 − qi)2

+ ei

(
φi

1 − qi
log(qi) + 1

1 − qi

)
+ fi(log(1 − qi)2 + f ′

y(φi)).

Recall some facts as follows:

1. By Stirling’s formula, Py(φ) � 1
Γ(φ)

√
2π(φ + y − 1)

(
φ + y − 1

e

)φ+y−1

as y → ∞;
2. Py(φ) is an increasing polynomial of φ, and Py(φ)

Py(φ′) log(φ′) → ∞ as y → ∞
if φ > φ′;

3. For all φ, φ′ ∈ R+, 0 ≤ q < q′ ≤ 1, and polynomial p(y) we have

p(y) Py(φ)
Py(φ′)

(
q

q′

)y

→ 0 as y → ∞;

4. fy(φ) � log(y) as y → ∞;
5. f ′

y(φi) = −
∑y

j=0
1

(φi + j)2 ∈ [−π2/6 − 1/φ2
i , 0] for all φi > 0, y ∈ N.

Now, consider the subset of (q1i)k1
i=1 of (qi)ki=1 which consists of all maximal

elements, i.e. q11 = q12 = . . . q1k1 = max1≤i≤k qi, then by dividing both sides of
Eq. (65) by qy11 and let y → ∞, from the third property above, we obtain:

k1∑
i=1

[
d1i

q2
1
y2 +

(
2d1i

φ1i

q1(1 − q1)
− d1i

q2
1

+ b1i
q1

)
y + e1i

q1
fy(φ1i)y + f1if

2
y (φ1i)

+
(

2f1i log(1 − q1) + c1i + e1i
φ1i

1 − q1

)
fy(φ1i) + Ci(y)

]
Py(φ1i)(1 − q1)φ1i = 0,

(66)
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as y → ∞. Without loss of generality, assume φ11 > φ12 > · · · > φ1k1 > 0.
Because |φ11 − φ12| �= 1, 2, there are three cases:⎧⎪⎨⎪⎩

φ11 > φ12 + 2,
φ12 + 2 > φ11 > φ12 + 1,
φ12 + 1 > φ11 > φ12.

For the first case, note that

Py(φ11)
y2Py(φ1i)

= Py(φ11)
Py(φ1i + 2)

(φ1i + y + 1)(φ1i + y)
y2 → ∞,

as y → ∞. Hence, by dividing both sides of Eq. (66) by Py(φ11), we have

d11

q2
1
y2 +

(
2d11

φ1i

q1(1 − q1)
− d11

q2
1

+ b11
q1

)
y + e11

q1
fy(φ11)y + f11f

2
y (φ11)

+
(

2f11 log(1 − q1) + c11 + e11
φ11

1 − q1

)
fy(φ11) + C11(y) → 0 (y → ∞), (67)

which, by considering the order of y, implies that d11 = b11 = e11 = f11 = c11 =
a11 = 0, respectively. For the second case, where φ12 + 1φ11 < φ12 + 2, we have
Py(φ11)/(y2Py(φ12)) → 0 and Py(φ12)/(yPy(φ11)) → 0. By dividing both sides
of Eq. (66) by y2Py(φ11) and let y → ∞, we have b11 = 0. Then dividing two
sides by yfy(φ11)Py(φ11) and yPy(φ11), we have d11 = e11 = 0. Continuing in the
same way with y2Py(φ11), we have b12 = 0. Now dividing both sides of Eq. (66)
by Py(φ11) and letting y → ∞, we obtain that the limit (63) holds, which once
again entails that e11 = f11 = c11 = a11 = 0. In the final case, dividing both sides
of Eq. (66) by y2Py(φ11), y2Py(φ12), yfy(φ11)Py(φ11), yPy(φ11), yfy(φ12)Py(φ12),
and yPy(φ12), respectively, we arrive at the same conclusion. Hence, in all cases,
we have d11 = b11 = e11 = f11 = c11 = a11 = 0. Applying repreatedly this ar-
gument, we have a1i = b1i = c1i = d1i = e1i = f1i = 0 for all i = 1, . . . , k1, then
ai = bi = ci = di = ei = f1i = 0 for all i = 1, . . . , k.

Implication in negative binomial regression mixtures From the argu-
ment above, we can see that the family of binomial regression mixture model
is strongly identifiable in the first order if we adjust the assumption (A4.) as
follows:

(A4’.) For every set of k + 1 distinct elements (θ11, θ21), ..., (θ1(k+1), θ2(k+1)) ∈
Θ1 × Θ2, there exists a subset A ⊂ X , PX(A) > 0 such that

(h1(x, θ11), h2(x, θ21)) , ...,
(
h1(x, θ1(k+1)), h2(x, θ2(k+1))

)
are distinct and |h2(x, θ2i) − h2(x, θ2j)| �= 1 (∀ i, j) for every x ∈ A.

Similarly, the second-order strong identifiability condition is satisfied if we adjust
assumption (A4.) as:
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(A4”.) For every set of k + 1 distinct elements (θ11, θ21), ..., (θ1(k+1), θ2(k+1)) ∈
Θ1 × Θ2, there exists a subset A ⊂ X , PX(A) > 0 such that

(h1(x, θ11), h2(x, θ21)) , ...,
(
h1(x, θ1(k+1)), h2(x, θ2(k+1))

)
are distinct and |h2(x, θ2i) − h2(x, θ2j)| �∈ {1, 2} (∀ i, j) for every x ∈ A.

Appendix C: Convergence rates for conditional densities via MLE

We present in this section a proof of Theorem 3, which provides general con-
vergence rates of conditional densities estimation. The proof technique follows
a general framework of M-estimation theory [38, 10], with a suitable adaptation
for handling conditional density functions. Assume that we have n i.i.d. obser-
vations (x1, y1), . . . , (xn, yn), where xi

i.i.d.∼ PX and yi|xi ∼ f0(y|x), i = 1, . . . , n,
for f0 ∈ F being some family of conditional densities of y given x (commonly
dominated by ν). Assume that there exists

f̂n ∈ arg max
f∈F

n∑
i=1

log f(yi|xi),

Set
F = {((f + f0)/2) : f ∈ F}, F1/2 = {f1/2 : f ∈ F},

and denote the (expected) Hellinger ball centered around f0 by

F1/2(δ) = {f1/2 ∈ F1/2(Θ) : dH(f, f0) ≤ δ}.

The size of this set is characterized by the bracket entropy integral

J (δ) :=
∫ δ

δ2/213
H

1/2
B (u,F1/2(δ), L2(PX × ν))du ∨ δ, (68)

where HB(u,F , L2(PX×ν)) = logNB(u,F , L2(PX×ν)), and NB(u,F , L2(PX×
ν)) is the minimal number of pairs (fL

j , f
U
j )j such that for every f ∈ F , there ex-

ists j to have fL
j ≤ f ≤ fU

j and
∥∥fU

j − fL
j

∥∥
L2 ≤ ε. Define dP0(x, y) = dPX(x)×

f0(y|x)dν(y) be the true joint distribution of (x, y). Denote by Pn the empirical
distribution of (x, y), i.e., Pn = 1

n

∑n
i=1 δ(xi,yi) and gf = 1

2 log f + f0

2f0
1(f0 > 0).

For a probability distribution P and a function g, sometimes we write Pg for∫
gdP. We start with a basic inequality that links the quality of the conditional

density estimate to the associated empirical process:

Lemma 3. With the notations defined as above, we have

1
2d

2
H

(
f̂n + f0

2 , f0

)
≤ (Pn − P0)gf̂n . (69)
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Proof. Due to the concavity of logarithm,

1
2 log f + f0

2f0
1(f0>0) ≥

1
2 log f

f0
1(f0>0).

Combining the above with the fact that f̂n is the maximum conditional likeli-
hood estimate to obtain

0 ≤
∫
f0>0

1
4 log f̂n

f0
Pn ≤

∫
f0>0

1
2 log f̂n + f0

2f0
dPn

=
∫
f0>0

gf̂nd(Pn − P0) +
∫
f0>0

1
2 log f̂n + f0

2f0
dP0.

Equivalently, ∫
f0>0

1
2 log 2f0

f̂n + f0
dP0 ≤

∫
f0>0

gf̂nd(Pn − P0).

By the inequality d2
H(1

2 (f̂n(·|x) + f0(·|x))), f0(·|x)) ≤ K(f0(·|x)‖ 1
2 (f̂n(·|x) +

f0(·|x)) for almost all x, we can take the expectation with respect to PX to
arrive at

1
2d

2
H

(
f̂n + f0

2 , f0

)
≤
∫
f0>0

1
2 log 2f0

f̂n + f0
dP0 ≤

∫
gf̂nd(Pn − P0).

For each f ∈ F , define the squared “Bernstein norm”:

ρ2(f) := 2P0(e|f(X)| − |f(X)| − 1). (70)

Let HB1(ε,F ,PX×ν) be the bracketing number with respect to Bernstein norm
of F (cf. Definition 3.5.20. in [10]). We shall make use of the concentration
behavior of empirical processes associated with the class F by the following
theorem, which is essentially Theorem 3.5.21. in [10] adapted to our setting.

Theorem 10. Let F be a class of measurable functions such that ρ(f) ≤ R for
all f ∈ F . Given C1 < ∞, for all C sufficiently large and C0 satisfying

C2
0 ≥ C2(C + 1), (71)

and for n ∈ N and t > 0 satisfying

C0

(
R ∨

∫ R

t/(26√n)

√
HB1(ε,F ,PX × ν)

)
≤ t ≤

√
n((8R) ∧ (C1R

2/K)), (72)

we have

P0(
√
n sup

f∈F
|(Pn − P0)f | ≥ t) ≤ C exp

(
− t2

C2(C1 + 1)R2

)
. (73)
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Now we are ready to prove Theorem 3.

Proof of Theorem 3. We have

P0(dH(f̂n, f0) ≥ δ)

≤ P

(√
n(Pn − P0)(gf̂n) −

√
nd

2
H

(
f̂n + f0

2 , f0

)
≥0, d2

H

(
f̂n + f0

2 , f0

)
≥δ2/C

)

≤ P0

(
sup

f :d2
H(f,f0)≥δ2/C

[
√
n(Pn − P0)(gf ) −

√
nd

2
H(f, f0)] ≥ 0

)

≤
S∑

s=0
P0

(
sup

f :2sδ2/C≤d
2
H(f,f0)≤2s+1δ2/C

|
√
n(Pn − P0)(gf )| ≥

√
n2sδ2/C

)

≤
S∑

s=0
P0

(
sup

f :d2
H(f,f0)≤2s+1δ2/C

|
√
n(Pn − P0)(gf )| ≥

√
n2sδ2/C

)
,

where S is a smallest number such that 2Sδ2/C > 1, as dH(f, f0) ≤ 1. Now we
will bound the tail probability of the empirical process

P0

(
sup

f :d2
H(f,f0)≤2s+1δ2/C

|
√
n(Pn − P0)(gf )| ≥

√
n2sδ2/C

)

by using Theorem 10. Indeed, since p(x) = (e|x| − |x| − 1)
(ex − 1)2 is a decreasing func-

tion, and gf ≥ −(log 2)/2 for all f ,

exp(|gf |) − |gf | − 1 ≤ p(−(log 2)/2)(exp(gf ) − 1)2 ≤
(√

f0 + f

2f0
− 1
)2

.

Taking expectation with respect to P0 both sides to obtain

ρ2(gf ) ≤ 2d2
H(f, f0) ≤ 2s+2δ/C.

Applying Theorem 10 with R = 2s/2+1δ/C1/2, t =
√
n2sδ2/C, we obtain

P0

(
sup

f :d2
H(f,f0)≤2s+1δ2/C

|
√
n(Pn − P0)(gf )| ≥

√
n2sδ2/C

)
≤ C ′ exp

(
−22snδ2

C ′

)
.

Hence,

P0(dH(f̂n, f0) ≥ δ) ≤
S∑

s=0
C ′ exp

(
−22snδ2

C ′

)
≤ c exp(−nδ2/c).
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Appendix D: Convergence rates of conditional densities via
Bayesian estimation

We present in this section a general theorem for the Bayesian posterior con-
traction behavior of conditional density functions that arise in the regression
problem. The proof technique follows a general approach of Bayesian estimation
theory [8], with a suitable adaptation for handling conditional density functions.
Let us recall the setup. Given i.i.d. pairs (x1, y1), (x2, y2), . . . , (xn, yn) in X ×Y
from the true generating model

yi|xi ∼ f0(y|x),
xi ∼ PX .

Here, PX is some unknown distribution of covariate X, while f0 is assumed
to belong to a family of conditional probability functions {f(y|x) : f ∈ F},
which are absolutely continuous with respect to a common dominating σ-finite
measure ν. To make inference of f0 from the data using the Bayesian approach,
we assume

yi|xi, f ∼ f(y|x),
f ∼ Π,

for some prior distribution Π on the space of conditional probability functions
F . The posterior distribution of f is given by, for any measurable subset B ⊂ F ,

Π(f ∈ B|(xi, yi)ni=1) =
∫
B

∏n
i=1 f(yi|xi)dΠ(f)∫

F
∏n

i=1 f(yi|xi)dΠ(f)
.

As in the MLE analysis, the posterior contraction behavior of f will be as-
sessed by the expected (squared) Hellinger distance dH(f, f0) = (EXd2

H(f(y|X),
f0(y|X)))1/2. That is, we will find a sequence (εn) → 0 such that

Π(dH(f(y|X), f0(y|X)) ≥ Mnεn|x1, . . . , xn, y1, . . . , yn) → 0, (74)

in ⊗n
i=1P0-probability, as n → ∞. Here, Mn is an arbitrary diverging sequence.

Recall the following basic fact (cf. [8] Lemma D.2., or [10] Chapter 7).

Lemma 4. Given arbitrary probability density p and q, there exist probability
densities p and q such that for any probability density r (all are commonly
dominated by ν)

Ey∼r

√
q(y)
p(y) ≤ 1− 1

6d
2
H(p, q)+d2

H(p, r), Ey∼r

√
p(y)
q(y) ≤ 1− 1

6d
2
H(p, q)+d2

H(q, r)

From now, for every conditional density f(y|x), denote by Pf the joint dis-
tribution of x, y, i.e., dPf (x, y) = f(y|x)dν(y) × dPX(x). Using Lemma 4 one
arrives at the following result on the existence of tests for conditional density
functions:
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Lemma 5. For any two conditional density functions f0, f1 such that d2
H(f0, f1)

= ε2, there exists a test Ψn based on x1, . . . , xn, y1, . . . , yn such that

P
n
f0

Ψn ≤ e−nε2/6, sup
f∈B(f1,ε/4)

P
n
f (1 − Ψn) ≤ e−nε2/12, (75)

where B(f, ε) := {g ∈ F : dH(f, g) ≤ ε} for all ε ≥ 0 and f ∈ F .

Proof. For any x ∈ X , consider probability density functions f0(·|x) and f1(·|x).
By Lemma 4, there exist density functions f0(·;x) and f1(·;x) such that for all
probability density functions f(·|x)

Ey∼f0(·|x)

√
f1(y|x)
f0(y|x)

≤ 1 − 1
6d

2
H(f0(·|x), f1(·|x)),

and

Ey∼f(·|x)

√
f0(y|x)
f1(y|x)

≤ 1 − 1
6d

2
H(f0(·|x), f1(·|x)) + d2

H(f(·|x), f1(·|x)).

Define test function Ψn(x1, . . . , xn, y1, . . . , yn) = 1
(∏n

i=1
f1(yi;xi)
f0(yi;xi)

≥ 1
)

. To

verify (75), by Markov’s inequality,

P
n
f0

Ψn ≤ P
n
f0

n∏
i=1

√
f1(yi|xi)
f0(yi|xi)

=
n∏

i=1
EXEY∼f0(·|X)

√
f1(Y |X)
f0(Y |X)

≤
(

1 − 1
6EXd2

H(f0(·|X), f1(·|X))
)n

= (1 − ε2/6)n

≤ e−nε2/6,

and for every f ∈ B(f1, ε/4),

P
n
fΨn ≤ P

n
f

n∏
i=1

√
f0(yi|xi)
f1(yi|xi)

=
n∏

i=1
EXEY∼f0(·|X)

√
f0(Y |X)
f1(Y |X)

≤
(

1 − 1
6EXd2

H(f0(·|X), f1(·|X)) + EXd2
H(f(·|X), f1(·|X))

)n

≤
(

1 − 1
12ε

2
)n

≤ e−nε2/12.
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The above lemma shows the existence of tests to distinguish between f0 and
a small ball around any f1 �= f0. Next, we establish the existence of tests for f0
against all f ∈ F being a bounded distance away from f0. Recall that N(F , d, ε)
denotes the covering number of F by d-balls with radius ε.

Lemma 6. For every natural number M large enough, there exists a test Ψn

such that

P
n
f0

Ψn≤N(F , dH , ε) e−nM2ε2/12

1 − e−nM2ε2/12 , sup
f∈F :dH(f,f0)>Mε

P
n
f (1−Ψn)≤e−nM2ε2/12.

(76)

Proof. For every j ∈ N such that j ≥ M , consider a minimal covering of the set
Fj := {f ∈ F : jε < dH(f, f0) < 2jε} by balls (Fj,l)l of radius jε/4. Because
Fj ⊂ F and jε/4 ≥ ε, the number of such balls is no more than N(F , dH , ε).
Moreover, by Lemma 5 for each (Fj,l)l there exists a test φj,l satisfying

P
n
f0
φj,l ≤ e−nj2ε2/6, sup

f∈Fj,l

P
n
f (1 − φj,l) ≤ e−nj2ε2/12. (77)

Let Ψn := maxj≥M ;l φj,l. Then

P
n
f0

Ψn ≤ N(F , dH , ε)
∑
j≥M

e−nj2ε2/6 ≤ N(F , dH , ε) e−nM2ε2/12

1 − e−nM2ε2/12 ,

and

sup
f∈F :dH(f,f0)>Mε

P
n
f (1 − Ψn) ≤ sup

j,l
sup

f∈Fj,l

P
n
f (1 − φj,l) ≤ e−nM2ε2/12.

Now for every ε > 0, define a ball with radius ε around f0 as

B2(f0, ε) := {f ∈ F : Pf0 log(f0(Y |X)/f(Y |X))
≤ ε2,Pf0(log(f0(Y |X)/f(Y |X)))2 ≤ ε2}.

(78)

The following theorem establishes the posterior contraction convergence rate for
conditional density functions under the expected squared Hellinger distance.

Theorem 11. Assume that there exist sequences εn, εn, such that εn ≤ εn, and√
nεn → ∞, a sequence of measurable set Fn ⊂ F , and a constant C such that

(i) Π(B2(f0, εn)) ≥ e−Cnε2n ;
(ii) logN(εn,Fn, dH) ≤ nε2n;
(iii) Π(Fc

n) ≤ e−(C+4)nε2n .

Then, for every sequence Mn → ∞, there holds

Π(f : dH(f, f0) > Mnεn|x1, . . . , xn, y1, . . . , yn) → 0 (79)

in P
n
f0

-probability, as n → ∞.
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Proof. Write x[n], y[n] = {x1, . . . , xn, y1, . . . , yn} for short. By Lemma 6, there
exists a test Ψn such that

P
n
0Ψn ≤ enε

2
n

e−nM2
nε

2
n/12

1 − e−nM2
nε

2
n/12

, sup
f∈Fn:dH(f,f0)≥Mnεn

P
n
f (1−Ψn) ≤ e−nM2

nε
2
n/12.

As Mn → ∞ and nε2n → ∞, both probabilities above go to 0. By Bayes’ rule,

Π(f : dH(f, f0) > Mnεn|x[n], y[n]) =

∫
dH(f,f0)>Mnεn

∏n
i=1(f/f0)(yi|xi)dΠ(f)∫

F
∏n

i=1(f/f0)(yi|xi)dΠ(f)
.

(80)
Let Bn := B2(f0, εn) and An = {(x[n], y[n]) :

∫
Bn

∏n
i=1(f/f0)(yi|xi)dΠ(f) ≥

e−(C+2)nε2n}. Because a probability is always less than or equal to 1, we have

Π(f : dH(f, f0) > Mnεn|x[n], y[n])

≤ 1(An)c + 1An

∫
dH(f,f0)>Mnεn

∏n
i=1(f/f0)dΠ(f)∫

F
∏n

i=1(f/f0)(yi|xi)dΠ(f)

≤ Ψn + 1(An)c + 1An

∫
dH(f,f0)>Mnεn

∏n
i=1(f/f0)dΠ(f)(1 − Ψn)∫

F
∏n

i=1(f/f0)(yi|xi)dΠ(f)

≤ Ψn + 1(An)c + e(C+2)nε2n
∫
dH(f,f0)>Mnεn

n∏
i=1

(f/f0)dΠ(f)(1 − Ψn).

By the construction of the test Ψn, we have P
n
0Ψn → 0. Besides, assumption (i)

and Lemma 7 imply that

P
n
0 (Ac

n) = P
n
0

(∫
Bn

n∏
i=1

f

f0
(yi|xi)dΠ(f) ≤ e−(C+2)nε2n

)

≤ P
n
0

(∫
Bn

n∏
i=1

f

f0
(yi|xi)dΠ(f) ≤ e−2nε2nΠ(Bn)

)

≤ 1
nε2n

→ 0.

For the last term, by Fubini’s theorem,

P
n
0 e

(C+2)nε2n
∫
dH(f,f0)>Mnεn

n∏
i=1

(f/f0)dΠ(f)(1 − Ψn)

= e(C+2)nε2n
∫
dH(f,f0)>Mnεn

P
n
0

n∏
i=1

(f/f0)(1 − Ψn)dΠ(f)

= e(C+2)nε2n
∫
dH(f,f0)>Mnεn

P
n
f (1 − Ψn)dΠ(f)

≤ e(C+2)nε2n
(∫

f∈Fn:dH(f,f0)>Mnεn

P
n
f (1 − Ψn)dΠ(f)
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+
∫
f∈Fc

n

P
n
f (1 − Ψn)dΠ(f)

)
≤ e(C+2)nε2n(e−nM2

nε
2
n/12 + Π(Fc

n)),

which tends to 0, thanks to the construction of the test and assumption (iii).

The above proof made use of the following lemma, which is taken from [8]
(and adapted for conditional densities). We include its proof for completeness.

Lemma 7. For every ε > 0, let B = B2(f0, ε). For all c > 0, we have

P
n
0

(∫
B

n∏
i=1

f

f0
(yi|xi)dΠ(f) ≤ exp(−(c + 1)nε2)Π(B)

)
≤ 1

c2nε2
. (81)

Proof. By dividing two sides of the inequality inside P
n
0 by Π(B), we can (with-

out loss of generality) assume that Π(B) = 1. By Jensen’s inequality

log
∫ n∏

i=1
(f/f0)(yi|xi)dΠ(f) ≥

n∑
i=1

∫
log(f/f0)(yi|xi)dΠ(f).

Hence, for Pn being the empirical distribution, we have

P
n
0

(∫ n∏
i=1

f

f0
(yi|xi)dΠ(f)≤ exp(−(c+1)nε2)

)

≤P
n
0

(
n∑

i=1

∫
log(f/f0)(yi|xi)dΠ(f)≤− (c+1)nε2

)

≤P
n
0

(√
n

∫ ∫
log(f/f0)dΠ(f)d(Pn−P0)

≤−
√
n(1+c)ε2−

√
n

∫ ∫
log(f/f0)dΠ(f)dP0

)
By Fubini’s theorem and the definition of B = B2(f0, ε),

−
√
n

∫ ∫
log(f/f0)dΠ(f)dP0 =

√
n

∫
P0 log(f0/f)dΠ(f) ≤

√
nε2. (82)

Therefore,

P
n
0

(∫ n∏
i=1

f

f0
(yi|xi)dΠ(f) ≤ exp(−(c + 1)nε2)

)

≤ P
n
0

(√
n

∫ ∫
log(f/f0)dΠ(f)d(Pn − P0) ≤

√
ncε2

)
(∗)
≤ VarP0(

∫
log(f/f0)dΠ(f))
c2nε4
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≤ P0(
∫

log(f/f0)dΠ(f))2

c2nε4

(∗∗)
≤ P0

∫
(log(f/f0))2dΠ(f)

c2nε4

≤ 1
c2nε2

,

where we apply Chebyshev’s inequality in (∗) and Jensen’s inequality in (∗∗).
Hence, inequality (81) is proved.

Appendix E: Computational details

E.1. Bayesian approach

Here we describe in details the derivation of Markov Chain Monte Carlo (MCMC)
algorithm that we use in Section 5. In particular, given a mixture of k-negative
binomial regression model:

fG(y|x) =
k∑

j=1
pjNB(y|h(x, θj), φj).

As mentioned in Section 5, given the data, {xi, yi}ni=1, we chose the prior
distributions of p = (p1, p2, ..., pk), θj and ηj = φ−1

j , for j = 1, ..., k as the
following

p ∼ Dir(1, 1, ..., 1)
θj ∼ MVN(0, I) (multivariate normal distribution), for j=1, ..., k,
ηj ∼ Gamma(0.01, 0.01) (a non-informative gamma distribution), for j=1, ..., k.

The full conditional posterior distributions of the model parameters are given
below.

P (Zi = j|y, x) = pjNB (yi|h(xi, θj), ηj)∑2
m=1 pmNB (yi|h(xi, θm), ηm)

, (83)

p|(y, x,Z, ...) ∼ Dir(1+n1, .., , 1+nk), where nj=#{i : Zi=j}; for j=1, ..., k,
(84)

f(θj |y, x,Z, ...) ∝

⎡⎣ ∏
i:Zi=j

NB (yi|h(xi, θj), ηj)

⎤⎦ exp
(
−1

2 ‖θj‖2
)
, (85)

g(ηj |y, x,Z, ...) ∝

⎡⎣ ∏
i:Zi=j

NB (yi|h(xi, θj), ηj)

⎤⎦ η0.01−1
j exp (−0.01ηj) , (86)
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Algorithm 1 Gibbs sampling algorithm
Input: The prior distributions of p, θj and ηj , for j = 1, ..., k;

The number of iterations (Tmax) and burn-in steps
Output: A Markov Chains {Φt}t≥0 attaining posterior distribution of (p|(y, x,Z,...),
η1|(y, x,Z, ...),..., ηk|(y, x,Z, ...), θj |(y, x,Z, ...) (for j = 1, ..., k) as the stationary

distribution.
1: t = 0. Draw Φ0 = (p(0), η(0)

1 , ..., η
(0)
k , θ

(0)
1 , ..., θ

(0)
k ) randomly.

2: for t = 1, 2, . . . , Tmax do
3: Generate Z(t) ∼ Z|y, x, p(t−1), η

(t−1)
1 , ..., η

(t−1)
k , θ

(t−1)
1 , ..., θ

(t−1)
k

4: Generate p(t) ∼ p|y, x,Z(t), θ
(t−1)
1 , ..., θ

(t−1)
k , η

(t−1)
1 , ..., η

(t−1)
k

5: Generate η
(t)
j ∼ ηj |y, x,Z(t), p(t), θ

(t−1)
1 , ..., θ

(t−1)
k � Using Metropolis-Hasting

algorithm
6: Generate θ

(t)
j ∼ θj |y, x,Z(t), p(t), η

(t)
1 , ..., η

(t)
k � Using Metropolis-Hasting algorithm

7: Set Φt = (p(t), η
(t)
1 , ..., η

(t)
k , θ

(t)
1 , ..., θ

(t)
k )

8: end for

where

NB (yi|h(xi, θj), ηj) = Γ(yi + 1/ηj)
Γ(yi + 1)Γ(1/ηj)

(
exp(x′

iθj)
exp(x′

iθj + 1/ηj)

)yi

×
(

1/ηj
x′
iθj + 1/ηj

)1/ηj

.

The full posterior distribution is sampled by using Gibbs sampling algorithm
(Algorithm 1). Since the posterior distributions of θj and ηj (j = 1, ..., k) are
known up to a normalizing constant, the Metropolis-Hasting (MH) algorithm
has been used to sample the distribution. When it comes to θj , a multivariate
normal distribution is used as a proposal density. In particular, for each j =
1, ..., k, a candidate θ∗j ∼ MVN(θ(t−1)

j ,Σ′) is accepted with probability

min
{

1,
f(θ∗j |...)

f(θ(t−1)
j |...)

}
.

In terms of ηj , the proposal density is from a Gamma distribution. Specif-
ically, for each j = 1, ..., k, a candidate η∗j ∼ Gamma(2, 2/η(t−1)

j ) is accepted
with probability

min

⎧⎨⎩1,
g(η∗j |...)p

(
η
(t−1)
j |η∗j

)
g(η(t−1)

j |...)p
(
η∗j |η

(t−1)
j

)
⎫⎬⎭ ,

where f(θj |y, x,Z(t), p(t), η(t)) and g(ηj |y, x,Z(t), p(t), θ(t)) are as in Eq. (85),
(86), respectively, and p

(
η
(t−1)
j |η∗j

)
is the gamma density Gamma(2, 2/η∗j ).

For each different sample size n, we run the experiment 16 times. For each
time of running, we produced 2500 MCMC samples and discarded the first 500
as a “burn-in” set. From among the remaining 2000, we computed the mean of a
vector containing 2000 Wasserstein distances (W1) between the MCMC results
and the true mixing distribution.
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