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Abstract: We consider the problem of uncertainty quantification in change
point regressions, where the signal can be piecewise polynomial of arbitrary
but fixed degree. That is we seek disjoint intervals which, uniformly at a
given confidence level, must each contain a change point location. We pro-
pose a procedure based on performing local tests at a number of scales and
locations on a sparse grid, which adapts to the choice of grid in the sense
that by choosing a sparser grid one explicitly pays a lower price for multiple
testing. The procedure is fast as its computational complexity is always of
the order O(n log(n)) where n is the length of the data, and optimal in
the sense that under certain mild conditions every change point is detected
with high probability and the widths of the intervals returned match the
mini-max localisation rates for the associated change point problem up to
log factors. A detailed simulation study shows our procedure is competitive
against state of the art algorithms for similar problems. Our procedure is
implemented in the R package ChangePointInference which is available
via GitHub.

MSC2020 subject classifications: 62F25, 62F05.
Keywords and phrases: Confidence intervals, uniform coverage, uncon-
ditional coverage, structural breaks, piecewise polynomials, extreme value
analysis.

Received March 2024.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594
2 Difference based tests with family-wise error control . . . . . . . . . 598

2.1 Local tests for a change point . . . . . . . . . . . . . . . . . . . 598
2.2 Local tests on a sparse gird . . . . . . . . . . . . . . . . . . . . 599
2.3 Family-wise error control under Gaussianity . . . . . . . . . . . 600
2.4 Extension to dependent and non-Gaussian noise . . . . . . . . . 603

3 A fast algorithm for change point inference . . . . . . . . . . . . . . 604
3.1 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604
3.2 Variance and long run variance estimation . . . . . . . . . . . . 606
3.3 Consistency of the algorithm . . . . . . . . . . . . . . . . . . . 608

arXiv: 2307.03639

593

https://imstat.org/journals-and-publications/electronic-journal-of-statistics/
https://doi.org/10.1214/25-EJS2345
https://orcid.org/0009-0003-8501-5737
https://orcid.org/0000-0002-9676-902X
mailto:s.a.gavioli-akilagun@lse.ac.uk
mailto:p.fryzlewicz@lse.ac.uk
https://github.com/gaviosha/ChangePointInference
https://mathscinet.ams.org/mathscinet/msc/msc2020.html
https://arxiv.org/abs/2307.03639


594 S. Gavioli-Akilagun and P. Fryzlewicz

3.4 Optimality of the algorithm . . . . . . . . . . . . . . . . . . . . 610
3.5 On the polynomial order of the signal . . . . . . . . . . . . . . 612

4 Simulation studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614
4.1 Alternative methods for change point inference . . . . . . . . . 614
4.2 Coverage on null signals . . . . . . . . . . . . . . . . . . . . . . 615
4.3 Coverage in the presence of strong serial dependence . . . . . . 618
4.4 Performance on test signals . . . . . . . . . . . . . . . . . . . . 619

5 Real data examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621
5.1 Application to bone mineral density acquisition curves . . . . . 621
5.2 Applications to nitrogen dioxide concentration in London . . . 624

6 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625
6.1 Preparatory results . . . . . . . . . . . . . . . . . . . . . . . . . 625
6.2 Intermediate results . . . . . . . . . . . . . . . . . . . . . . . . 628
6.3 Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . 634
6.4 Proof of Theorem 2.2 . . . . . . . . . . . . . . . . . . . . . . . . 636
6.5 Proof of Lemma 3.1 . . . . . . . . . . . . . . . . . . . . . . . . 637
6.6 Proof of Lemma 3.2 . . . . . . . . . . . . . . . . . . . . . . . . 639
6.7 Proof of Lemma 3.3 . . . . . . . . . . . . . . . . . . . . . . . . 640
6.8 Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . 642
6.9 Proof of Lemma 3.4 . . . . . . . . . . . . . . . . . . . . . . . . 643
6.10 Remarks on Assumption 3.3 . . . . . . . . . . . . . . . . . . . . 644

7 Additional numerical illustrations . . . . . . . . . . . . . . . . . . . . 648
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 649
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 650

1. Introduction

We study the setting in which an analyst observes data Y = (Y1, . . . , Yn)′ on
an equi-spaced grid which can be written as the sum of a signal component and
a noise component:

Yt = f◦ (t/n) + ζt t = 1, . . . , n (1)

The signal component f◦ : [0, 1] �→ R is known to be a piecewise polynomial
function of arbitrary but fixed degree p. That is, associated with f◦(·) are N
integer valued change point locations Θ = {η1, . . . , ηN}, whose number is pos-
sibly diverging with n, such that for each k = 1, . . . , N the function can be
described as a degree p polynomial on the sub-interval [(ηk − p− 1)/n, ηk/n]
but not on [(ηk − p)/n, (ηk + 1)/n]. Examples of such signals are shown in the
left column of Figure 1. Both N and Θ are unknown. Several algorithms exist
for estimating N and Θ in specific instances of model (1), such as when f◦(·) is
piecewise constant [51, 36, 28, 35] or when f◦(·) is piecewise linear [34, 9, 2, 64].
While the piecewise constant and piecewise linear change point regression are
well studied, the generic piecewise polynomial model has attracted less atten-
tion. Nevertheless, the piecewise polynomial model has practical applications
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in areas as diverse as finance [76, 61, 66], aerospace engineering [22], protein
folding [11], light transmittance [1], climatology [5], and data compression [39].

Our goal in this paper is to simultaneously quantify the level of uncertainty
the around the existence and location of each putative change point in the
generic piecewise polynomial model. This is a worthwhile task since estimates
of the change point locations are not consistent in the usual sense: the best
rate at which a change point can be localised on the domain {1, . . . , n} is OP(1)
[85, 86], however this can be as high as OP (n�k) for each k = 1, . . . , N where
�k ∈ [0, 1) depends on the smoothness of f◦(·) at each change point location ηk
[90, 91]. Moreover, since most algorithms do not quantify uncertainty around
the change points they recover, it is difficult to say whether these change points
are real or spuriously estimated.

We propose a procedure which aims to return the narrowest possible disjoint
sub-intervals of the index set {1, . . . , n} in such a way that each must contain a
change point location uniformly at some confidence level chosen by the user. Ex-
amples of such intervals are shown in the right column of Figure 1. This is done
by testing for a change at a range of scales and locations belonging to a sparse
grid, and tightly bounding the supremum of local test statistics over the same
grid which guarantees sharp unconditional family-wise error control. An advan-
tage of this approach is that once can post-search each unconditional interval
for the best location(s) of the change-point(s) with appropriate statistics with-
out worrying about significance testing. We initially study the setting in which
the noise components are independent with marginal N

(
0, σ2) distribution and

later in Section 2.4 extend our results to dependent and non-Gaussian noise.
Motivated by the fact that taking (p + 1)-th differences will eliminate a degree
p polynomial trend [15], we consider tests based on differences of (standardised)
local sums of the data sequence. There are several advantages to working with
tests based on local sums as opposed to for example likelihood ratio or Wald
statistics, which we list below.

• Each of our local test can be completed in O(1) time in a straightforward
manner, regardless of the degree of the underlying polynomial or the scale
at which the test is performed, leading to a procedure with worst case
complexity O (n log(n)) when test are carried out on a sparse grid.

• Local averaging brings the contaminating noise closer to Gaussianity,
which is a feature we exploit in Section 2.4 when studying the behaviour
of the procedure under non-Gaussian and possibly dependent noise.

• Unlike procedures based on differencing the raw data, which are known
to be sub-optimal, as we show in Theorem 3.1 the combination of local
averaging followed by differencing leads to a procedure which is optimal
in a mini-max sense.

• The asymptotic analysis is by design uncomplicated, as it boils down to
analysing the high excursion probability of a stationary Gaussian field
whose local structure depends on the polynomial degree in a straightfor-
ward way.

We now review existing procedures in the literature for change point inference
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Fig 1: the piecewise constant blocks signal, piecewise linear waves signal, and
piecewise quadratic hills signal each contaminated with i.i.d. Gaussian noise
(left column). Intervals of significance with uniform 90% coverage returned by
our procedure (right column). Black dashed lines (- - -) represent underlying
piecewise polynomial signal, light grey lines (—) represent the observed data
sequence, red shaded regions (�) represent intervals of significance returned by
our procedure, red dotted lines (· · ·) represent split points within each interval
associated with the piecewsie polynomial fit providing the lowest sum of squared
residuals.
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in specific instances of model (1). If one is able to localise all change points at a
fast enough rate it is possible to construct asymptotically valid confidence inter-
vals for the change point locations. This is done by [68, 19] for piecewise constant
f◦(·) and by [7, 8] for regressions with piecewise constant coefficients. A crucial
limitation of these approaches is that confidence intervals are only valid condi-
tional on the number of change points being correctly estimated. Since there is
no guarantee this will happen in a finite sample these intervals are problematic
to interpret in practice. We further note that the piecewise constant regression
model considered by [7, 8] does not actually cover generic the piecewise poly-
nomial model (1), as it is necessary to assume the regressors are stationary or
satisfy certain regularity conditions which are necessarily violated by polyno-
mial functions of t. The SMUCE estimator and its many variants [35, 72, 23, 48]
estimates a piecewise constant signal subject to the constraint that empirical
residuals pass a multi-scale test, and produces a confidence set for the signal
from which uniform confidence intervals for the change point locations can be
extracted. However, the multi-scale tests have been observed to be poorly cali-
brated [37]. Moreover, letting the size of the test determine the estimated signal
leads to larger nominal coverage actually reducing coverage [16]. In [32, 31] ap-
proximations of the tail probability of the supremum of local likelihood ratio
tests for constant means and constant slopes calculated at all possible scales
and locations are derived, and an algorithm is provided which returns uniform
confidence intervals for the change point locations. However, the approach in
these papers does not extend to the case of generic piecewise polynomials, and
the algorithm propose has cubic time complexity in the worst case. The Nar-
rowest Significance Pursuit algorithm [38, 37] tests for local deviations from a
linear model using the multi-resolution norm [69], and bounds the supremum of
local tests by the multi-resolution norm of the unobserved noise which in turn
can be controlled using the results in [49, 50, 77]. However, computing each
local test requires solving a linear program, which makes the procedure slow in
practice. Moreover, other than for piecewise constant and continuous piecewise
linear signals contaminated with Gaussian noise, it has not been shown that the
procedure can detect change points optimally.

We finally review some approaches for problems closely related to the one
studied in this paper. The problem of testing for the presence of a single change
point in piecewise polynomials has previously been considered by [46, 5, 4] by
studying the supremum of likelihood ratio tests, and by [45, 63] by studying
partial sums of residuals from a least squares fit. These tests however do not
extend to the case of multiple change points, which is the focus of this paper.
Given estimates Θ̂ and N̂ some authors focus on testing whether a change did
in fact occur at each estimated change point location. This is a post selection
inference problem as it requires conditioning on the estimation of Θ̂, and has
been studied by [44, 47, 12] for piecewise constant f◦(·) and by [67] for generic
piecewise polynomial f◦(·). However, the goal of these methods is to quantify
uncertainty about the size of each change, whereas our goal is to simultaneously
quantify uncertainty about the existence and the location of the change point.
The piecewise polynomial problem is closely related to the problem of detecting
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changes in the smoothness of the regression function in nonparametric regres-
sions [78, 41]. The distribution of certain estimators for the location of a single
change have been derived for instance by [70]; such results allow for inference
on the location of the change. Our focus on the piecewise polynomial problem
is motivated by practical considerations: a parametric model is often preferable
to practitioners due to ease of interpretability. Finally, Bayesian approaches to
change point detection provide an alternative approach to uncertainty quan-
tification, via credible intervals derived from the posterior. However, choosing
sensible priors and sampling from the posterior remain non-trial tasks. Methods
for evaluating the posterior have been studied by [80, 33, 71].

The remainder of the paper is structured as follows. In Section 2 we introduce
local tests for the presence of a change based on differences of local sums of the
data, and study their behaviour under the null of no change points in terms of
the family-wise error when the test are applied over a sparse grid. In Section 3 we
introduce a fast algorithm for turning our local tests into a collection of disjoint
intervals which each must contain a change at a prescribed significance level, and
show the algorithm’s consistency and optimality in terms of recovering narrow
intervals which each contain a change point location. In section 4 we compare the
performance of our algorithm with that of existing procedures when applied to
simulated data. Finally in Section 5 we show the practical use of our algorithm
via two real data examples.

2. Difference based tests with family-wise error control

2.1. Local tests for a change point

We begin by describing tests for the presence of a change on a localised segment
of the data. Motivated by the fact that a polynomial trend will be eliminated by
differencing, if it were suspected that a segment of the data contained a change
point location one could divide the segment into p + 2 chunks of roughly equal
size and take the (p + 1)-th difference of the sequence of local sums on each
chunk. Since summing boosts the signal from the change point, and differencing
eliminates the polynomial trend, one could then declare a change if the result-
ing quantity coming from the summed and differenced sequence, appropriately
scaled, was large in absolute value. By contrast, simply differencing the data on
the segment would reduce the signal from the change, and any statistic based
on the differenced data only would be sub-optimal for detecting the change.

For each local test we write l for the location of the data segment being
inspected for a change point and w for the width of the data segment. Following
the reasoning above, to test for the presence of a change point on the interval
{l, . . . , l + w − 1} we first compute the following non-overlapping local sums:

Ȳ j
l,w = Y

l+j
⌊

w
p+2

⌋ + · · · + Y
l+(j+1)

⌊
w

p+2

⌋
−1 j = 0, . . . , p + 1

We then declare a change if the test statistic defined in (2) below, which cor-
responds to the the (p + 1)-th differences of the sequence Ȳ 0

l,w, . . . , Ȳ
p+1
l,w scaled
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so that its variance is constant independent of l and w when the noise is ho-
moskedastic and independently distributed, is large in absolute value.

Dp
l,w (Y ) =

{⌊
w

p + 2

⌋ p+1∑
i=0

(
p + 1
i

)2
}−1/2 p+1∑

j=0
(−1)p+1−j

(
p + 1
j

)
Ȳ j
l,w (2)

The functional introduced in (2) enjoys the following properties, which make it
well suited for the task of change change point testing on piecewise polynomials:

• Additivity: for any two vectors f , g ∈ R
n it holds that Dp

l,w (f + g) =
Dp

l,w (f) + Dp
l,w (g) for all admissible l’s and w’s.

• Annihilation of polynomials: if the entries of f ∈ R
n are from a polynomial

of degree no larger than p then Dp
l,w (f) = 0 for all admissible l’s and w’s.

• Large for discontinuous functions: if the entries of f ∈ R
n are from a piece-

wise monomial with a single discontinuity at location η then |Dp
l,w (f) | > 0

for all l’s and w’s such that η ∈ {l, . . . , l + w − 1}.

The first two properties ensure (2) is small under the local null of no change,
whereas the third property can be used to show that for some admissible (l, w)
pair the the statistic will be large in absolute value in the presence of a change.

Consequently, for some λ > 0 to be chosen later on, each local test for the
presence of a change on an interval {l, . . . , l + w − 1} takes the following form:

Tλ
l,w (Y) = 1

{
|Dp

l,w (Y ) | > λ
}
. (3)

When p = 0 the statistic (2) recovers the moving sum filter used for change
point detection in the piecewise constant model [28]. This also corresponds to
the (square root of) the likelihood ratio statistic for testing the null of a constant
mean on the segment under Gaussian noise, as well as the Wald statistic for the
same problem. Typical approaches for generalising to higher order polynomial
change point problems involve local likelihood-ratio or Wlad statistics for testing
the null of a polynomial mean on the segment [9, 31, 2, 52], which however are
hard to stochastically control. We show that simply extending the order of
differencing leads to simple and powerful tests.

2.2. Local tests on a sparse gird

For the purpose of making inference statements about an unknown number of
change point locations, we would like to apply the local tests (3) over a grid
which is both dense enough to cover all potential change point locations well
and sparse enough to allow all local tests to be computed quickly. Given a
suitable grid G of (l, w) pairs, if λ were chosen to control the family-wise error
of the collection of tests

T λ
G (Y) =

{
Tλ
l,w (Y) | (l, w) ∈ G

}
(4)
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at some level α, we could be sure that with probability 1 − α every (l, w) pair
on which a test rejects corresponds to a segment of the data containing at least
one change point location.

We propose to use the following grid, which is parameterised by a minimum
grid scale parameter W , controlling the minimum support of the detection statis-
tic (2), and a decay parameter a > 1, controlling the density of the grid:

G (W,a) =
{
(l, w) ∈ N

2 | w ∈ W(W,a), 1 ≤ l ≤ n− w
}

(5)
W (W,a) =

{
w =

⌊
ak
⌋
| �loga(W )� ≤ k ≤ �loga(n/2)�

}
.

Associated with the grid is the collection of sub-intervals of {1, . . . , n} whose
length is larger than W and can be written as an integer power of a. For example,
the collection of intervals {l, . . . , l + w − 1} associated with the (l, w) pairs in
the grid obtained when n = 20 and setting W = 2 and a = 2 is shown in Figure
2 below. For this configuration of a and W , the associated collection of intervals
consists of all contiguous sub-interval of {1, . . . , 20} having dyadic length.

The grid defined by (5) is similar to several grids already proposed for differ-
ent change point detection problems [56, 14, 74], in that the size of scales decays
exponentially. Two key difference are first that for any scale w all possible loca-
tions l are considered, and second that all scales with w = o (W ) are excluded
from the grid. Regarding the minimum grid scale, if the noise were known to
be independently distributed and Gaussian we could take W = O(1) and still
retain family-wise error control using our proof technique. However, under de-
pendent or non-Gaussian noise letting the minimum grid scale diverge at an
appropriate rate with n is necessary for controlling the family-wise error, as this
allows local sums of the noise to be treated as approximately uncorrelated and
Gaussian.

2.3. Family-wise error control under Gaussianity

As a starting point for family-wise error analysis in more general noise settings,
we first show how to control the family-wise error of the local tests (3) over

Fig 2: intervals associated with G (W,a) when n = 20, W = 2, and a = 2.
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the grid (5) when the noise terms are independently distributed and Gaussian.
The approach is to tightly bound the maximum of the local test statistics (2)
under the null of no change points, and use this bound to select an appropriate
threshold λ for (4). We impose the following assumptions on the minimum grid
scale and on the noise components.

Assumption 2.1. The noise terms ζ1, . . . , ζn are mutually independent with
marginal N (0, σ2) distribution for some σ > 0.

Assumption 2.2. The minimum grid scale W satisfies W/ log(n) → d for
some d ∈ (0,∞).

With these assumption in place we have the following result on the behaviour
of the maximum of local test statistics (2) under the null of no change points.

Theorem 2.1. Let Y = (Y1, . . . , Yn)′ be from model (1) with signal component
having no change points and grant Assumptions 2.1 - 2.2 hold. For fixed a > 1
introduce the following quantity:

Mσ
G(W,a) (Y ) = max

(l,w)∈G(W,a)

{
1
σ
Dp

l,w (Y )
}
.

(i) Putting an =
√

2 log(n) and bn = 2 log(n) − 1
2 log log(n) − log(2

√
π) the

sequence of random variables
{
anM

σ
G(W,a) (Y ) − bn | n ∈ N

}
is tight, and there

are constants H1,1 and H1,2 depending only on a, p, and d such that for fixed
x ∈ R the following holds

o(1)+exp
(
−H1,1e

−x
)
≤ P

(
anM

σ
G(W,a) (Y ) − bn ≤ x

)
≤ exp

(
−H1,2e

−x
)
+o(1).

(ii) Moreover the result in (i) continues to hold if σ is replaced with any
consistent estimator σ̂ which satisfies |σ̂/σ − 1| = oP

(
log−1(n)

)
.

Note that for large values of n the quantity

Lσ
G(W,a) (Y ) = max

(l,w)∈G(W,a)

{
1
σ

∣∣∣Dp
l,w (Y )

∣∣∣}
behaves asymptotically like the maximum of two independent copies of
Mσ

G(W,a) (Y ). We do not give a formal proof of this statement, however the state-
ment can be understood intuitively by writing Lσ

G(W,a) (Y ) = Mσ
G(W,a) (Y ) ∨

Mσ
G(W,a) (−Y ) and then using the well known fact that order statistics are

asymptotically independent [30, 50]. Therefore, in light of Theorem 2.1 it follows
that under Assumptions 2.1 - 2.2, for any α ∈ (0, 1), choosing λ = σ̂λα with σ̂
satisfying the condition given in part (ii) and λα defined as follows

λα =
√

2 log(n)+
−1

2 log log(n) − log (2
√
π/H1,2) + log

(
−2 log−1 (1 − α)

)√
2 log(n)

(6)

will result in the collection of tests T λ
G(W,a) (Y) having family-wise error asymp-

totically no larger than α. In Section 3.2 we given an example of an estimator
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σ̂ which satisfies condition (ii) in Theorem 2.1 above, even if the data contains
change points, provided the number of change points does not grow too quickly
with the n.

Importantly, the threshold (6) explicitly accounts for the grid used, in the
sense that if one chooses a coarser gird a lower price is paid for multiple testing.
More specifically, if one chooses a coarser grid by increasing a the constant H1,2
adjusts which reduces the size of (6). As a result, each local test performed will
have higher power with the same family-wise error guarantee. Naturally, on a
coarser grid the collection of tests may overall have lower power for detecting a
change, since fewer tests are carried out in total.

The constants H1,1 and H1,2 are defined explicitly below, where we put b1 =
1/a and b2 = 1, and Φ̄ (·) for the tail function of a standard Gaussian random
variable.

H1,i =
∞∑
j=0

p2
∞

(
2Cp

ajbid

)
i = 1, 2 (7)

p∞ (x) = exp
(
−

∞∑
k=1

1
k

Φ̄
(√

kx/4
))

Cp = (p + 2)

⎛⎝1 +
p+1∑
j=1

(
p + 1
j

)(
p + 1
j − 1

)/ p+1∑
i=0

(
p + 1
i

)2
⎞⎠

The effect of the decay parameter a on H1,1 and H1,2 can now be understood
via (7) using the additional fact that [49, Corollary 3.18] for any C > 0 the
quantity p2

∞ (C/x) behaves like C/(2x) when x is large.
We now explain the origin of the double inequality in Theorem 2.1, and why it

is sufficient for strong family-wise error control. In Theorem 2.1 we are only able
to establish tightness of the normalised maximum, as opposed to convergence
to an extreme value distribution, for the following reason: the maximum over
standardised increments of a sequence of Gaussian variables will be achieved on
scales of the order O (log(n)) as was shown by [49, 50], but scales of this order
cannot necessarily be expressed as integer powers of a. Consequently the choice
of grid introduces small fluctuations in the maximum, which persist in the limit,
and correspond to the difference between log(n) and the closest integer power of
a. However for a sub-sequence of n’s on which the quantity bn = a�loga(W )�/W
converges the normalised maximum does converge. The constants H1,1 and H1,2
therefore correspond to the largest and smallest constants which may appear
in the extreme value limit on a sub-sequence of n’s on which bn converges to
some constant. Such fluctuations can arise even for maxima of sequences of
i.i.d. random variables [3]; for instance the maximum of n i.i.d. Poisson random
variables with fixed rate fluctuates between two integers [53].
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2.4. Extension to dependent and non-Gaussian noise

We now extend the result of Theorem 2.1 to dependent and non-Gaussian noise.
This is done through the standard approach [43, 54, 28] of computing local tests
only on scales large enough such that partial sums of the data can be replaced
by increments of a Wiener process without affecting the asymptotics. Therefore,
we impose the following assumptions on the minimum grid scale and the noise
component.

Assumption 2.3. The noise terms are mean zero and weakly stationary, with
auto-covariance function γh = Cov (ζ0, ζh) and strictly positive long run vari-
ance τ2 = γ0 + 2

∑
h>0 γh.

Assumption 2.4. There exists a Wiener process {B(t)}t>0 such that for some
ν > 0, possibly after enlarging the probability space, it holds P-almost surely that∑n

t=1 ζt − τB(n) = O
(
n

1
2+ν

)
.

Assumption 2.5. With the same ν as in Assumption 2.4, the minimum grid
scale W satisfies n/W → ∞ and n

2
2+ν log(n)/W → 0.

Assumption 2.4 holds under a wide range of common dependence conditions
such as β-mixing, functional dependence, and auto-covaraince decay [10, 73, 58];
these dependence conditions in turn hold for a range of popular time series
models such as ARMA, GARCH, and bilinear models [26, 87]. If the noise terms
are independently distributed Assumption 2.4 holds as long as their (2 + ν)-
th moment is bounded [55, 21]. With these assumption in place we have the
following result on the behaviour of the maximum of local test statistics (2)
under the null of no change points.

Theorem 2.2. Let Y = (Y1, . . . , Yn)′ be from model (1) with signal component
having no change points and grant Assumptions 2.3 - 2.5 hold. For fixed a > 1
introduce the following quantity:

Mτ
G(W,a) (Y ) = max

(l,w)∈G(W,a)

{
1
τ
Dp

l,w (Y )
}
.

(i) Putting an,W =
√

2 log(n/W ) and bn,W = 2 log(n/W )+ 1
2 log log(n/W )−

log(
√
π) the sequence of random variables

{
an,WMτ

G(W,a) (Y ) − bn,W | n ∈ N

}
is tight, and there are constants H2,1 and H2,2 depending only on a and p such
that for fixed x ∈ R the following holds

o(1) + exp
(
−H2,1e

−x
)
≤ P

(
an,WMτ

G(W,a) (Y ) − bn,W ≤ x
)

≤ exp
(
−H2,2e

−x
)

+ o(1).

(ii) Moreover the result in (i) continues to hold if τ is replaced with any
consistent estimator τ̂ which satisfies |τ̂ /τ − 1| = oP

(
log−1(n/W )

)
.
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By the same reasoning used in Section 2.3 under assumptions 2.3 - 2.5 Theo-
rem 2.2 guarantees that choosing λ = τ̂λα, with τ̂ satisfying the condition given
in part (ii), and with λα defined as follows

λα =
√

2 log(n/W ) +
1
2 log log(n/W ) − log (

√
π/H2,2) + log

(
−2 log−1 (1 − α)

)√
2 log(n/W )

(8)
will result in the collection of tests T λ

G(W,a) (Y) having family-wise error asymp-
totically no larger than α. In Section 3.2 we give examples of variance and long
run variance estimators which satisfy condition (ii) in Theorem 2.2, even in the
presence of change points, provided the number of change points does not grow
too quickly with n.

By the same mechanism as in Theorem 2.1 the threshold (8) is adaptive to
the chosen grid. The constants H2,1 and H2,2 in Theorem 2.2 are as shown
below, where Cp and bi are as in Section 2.3.

H2,i = b−1
i Cp

1 − a−1 i = 1, 2

The proofs of Theorems 2.1 and 2.2 reveal that maxima achieved over dif-
ferent scales in the grid (5) will be asymptotically independent. This combined
with the tightness of the normalised maximum shows that the thresholds (6)
and (8) are the sharpest possible for each scale in the grid, under their respective
sets of assumptions. That is, if one were to restrict tests to a single scale of the
order O (W ) the threshold needed to control the family-wise error of the collec-
tion of tests would be asymptotically equivalent to the thresholds presented for
controlling the family-wise error of test conducted on the whole grid.

3. A fast algorithm for change point inference

3.1. The algorithm

We now present an algorithm, based on the tests introduced in Section 2, for
efficiently recovering disjoint sub-intervals of the index set {1, . . . n} in such
a way that each must contain a change point uniformly at some prescribed
significance level α. The algorithm is motivated by the Narrowest Significance
Pursuit proposed by [38], in that the focuses is on recovering theses intervals
through a series of local tests so that each interval is the narrowest possible.
However, there are several important differences between our approach and the
approach in [38], which we outline below before presenting the algorithm.

• Each of our local tests can be computed in constant time as a function of
the sample size and independently of the scale of the computation. This
is not the case for [38], where each local test requires solving a linear
program.

• We compute local tests over the sparse grid defined in (5), whereas [38]
uses a two stage procedure where local tests are initially performed over
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a coarse grid and intervals flagged in the first stage are exhaustively sub-
searched. In the worst case the former leads to O (n log(n)) tests being
carried out, whereas the latter may lead to O

(
n2) test being performed.

• The thresholds used used in our local tests are designed to adapt to the
chosen grid, which accounts for the statistical-computational trade off in
large scale problems change point problems. However, the threshold used
in [38] does not depend on the chosen grid.

Given a grid of (l, w) pairs G (W,a) constructed according to (5) our approach
is to greedily search for a pair on which the associated local test (3) declares
a change, starting from the finest scale in the grid. When such a pair is found
the associated interval {l, . . . , l + w − 1} is recorded and the search is recursively
repeat to the left and right of this interval. Pseudo code for the procedure is given
below in Algorithm 1. In the pseudo code given integers s and e which satisfy
1 ≤ s < e ≤ n we write Gs,e (W,a) for the set of (l, w) pairs in G (W,a) which
can be associated with an interval satisfying {l, . . . , l + w − 1} ⊆ {s, . . . , e}. We
write λα for either of the thresholds (6) or (8), depending on whether we are
operating under Assumptions 2.1 - 2.2 or Assumptions 2.3 - 2.5. Finally we write
τ̂ for a generic estimator of the (long run) standard deviation of the noise which
satisfies either the of the conditions in of part (ii) of Theorem 2.1 or in part (ii)
of Theorem 2.2, depending on the set of assumptions we are operating under.

Algorithm 1: The greedy interval search algorithm for change point
inference in piecewise polynomials. Given an appropriate threshold, the
algorithm returns a collection of mutually disjoint intervals which each
must contain a change point uniformly with probability at least 1−α+
o(1).

1 function greedyIntervalSearch(Y , s, e):
2 if e− s < min (W,p + 1) then
3 STOP
4 end
5 detection ← False
6 for (l, w) in Gs,e (W,a) do
7 if

∣∣∣Dp
l,w (Y )

∣∣∣ > τ̂λα then
8 RecordInterval(l, w)
9 greedyIntervalSearch(Y, s, l)

10 greedyIntervalSearch(Y, l + w − 1, e)
11 detection ← True
12 end
13 if detection then
14 BREAK
15 end
16 end
17 return

A consequence of using thresholds (6) and (8) in Algorithm 1 is that with
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no assumptions on the number of change points in the data or their spacing,
with high probability, every interval returned is guaranteed to contain at least
one change point. The number of intervals returned therefore functions as an
assumption free lower bound on the number of change points in the data. This
behaviour is summarised in Corollary 3.1 below.

Corollary 3.1. Let Î1, . . . , ÎN̂ be intervals returned by Algorithm 1. On a set
with probability asymptotically larger than 1 − α the following events occur si-
multaneously:

E∗
1 =

{
N̂ ≤ N

}
E∗

2 =
{
Îk ∩ Θ �= ∅ | k = 1, . . . , N̂

}
.

Although the coverage guarantee provided by Corollary 3.1 is asymptotic in
nature, in practice we find that Algorithm 1 provides accurate coverage in finite
samples, and in fact tends to deliver over coverage; see the simulation results
in Section 4.2 and in Section 7. The thresholds proposed for Algorithm 1 rely
on extreme value asymptotics. For such results the convergence rate is often
slow, and indeed we conjecture that the convergence rate for our procedure is
no better than O

(
log−1(n)

)
. However, it is also known that the extreme value

approximation for upper quantiles works well even for moderate sample sizes;
confer for instance [20, Figure 1.3.1], [59, Section 2.4], and [4, 5].

The worst case run time of Algorithm 1 is always of the order O (n log(n)),
independent of the number of change points in the data, their spacing, and the
polynomial degree of the signal. This is because the worst case run time will
be attained when a test has to be carried out for every (l, w) pair in the grid
G (W,a). However, for any fixed a > 1 the the grid contains at most of the order
O (n log(n)) such pairs, and by first calculating all cumulative sums of the data,
which can be done in O (n) time, each local test can be carried out in constant
time.

We finally remark that many existing procedures for change point detection
make use of thresholds which involve unknown constants other than the scale
of the noise. In general these constants are either chosen sub-optimally, or cal-
ibrated via Monte Carlo. See for instance the implementation of [85] by [60]
for an example in in the piecewise constant setting, and the discussion on the
practical selection of tuning parameters in [52] for an example in the piecewise
linear setting. Meanwhile, the thresholds used in Algorithm 1 are the sharpest
possible, and do not rely on any unknown constants other than the scale of the
noise.

3.2. Variance and long run variance estimation

In general the scale of the noise will not be known, and to make Algorithm
1 operational the (long run) standard deviation of the noise will need to be
estimated consistently, according to the conditions given in part (ii) of either
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Theorem 2.1 or Theorem 2.2. In this section we give several strategies for con-
sistently estimating the noise level in the presence of an unknown piecewise
polynomial signal.

3.2.1. Variance estimation under Gaussian noise

In change point problems where the noise is independently distributed, ho-
moskedastic, and Gaussian the standard deviation is commonly estimated us-
ing the median absolute deviation (MAD) estimator [42]. To account for the
unknown piecewise polynomial signal we propose to use the following general-
isation of the MAD estimator based on the (p + 1)-th difference of the data.
Letting Xp+2, . . . , Xn be the (p+1)-th difference of the sequence Y1, . . . , Yn the
estimator is defined as follows:

σ̂MAD = median {|Xp+2| , . . . , |Xn|}

Φ−1 (3/4)
√∑p+1

j=0
(
p+1
j

)2 . (9)

As shown by the following lemma, when the assumptions of Theorem 2.1 hold
the modified MAD estimator satisfies the condition in part (ii) of the Theorem
2.1 as long as the number of change points grows more slowly than n/ log(n).

Lemma 3.1. If the noise terms are independently distributed and Gaussian
with common variance σ2 it holds that

|σ̂MAD − σ| = OP

(
1√
n
∨ N

n

)
.

3.2.2. Variance estimation under non-Gaussian noise

For variance estimation under independently distributed light tailed homoskedas-
tic noise, difference based estimators are often used [27, 79, 40]. To account for
the unknown piecewise polynomial signal we propose to use the following esti-
mator based on the (p+ 1)-th difference of the data sequence. The estimator is
defined as follows:

σ̂2
DIF = 1

n− (p + 1)

n∑
t=p+2

⎧⎨⎩ X2
t∑p+1

j=0
(
p+1
j

)2
⎫⎬⎭ . (10)

As shown by the following lemma, under some mild conditions on signal
component the difference based estimator satisfies condition (ii) in Theorem 2.2
as long as the number of change points again grows more slowly than n/ log(n).

Lemma 3.2. If the function f◦ (·) is bounded and the noise terms are inde-
pendently distributed with common variance σ2 and bounded fourth moments it
holds that ∣∣σ̂2

DIF − σ2∣∣ = OP

(
1√
n
∨ N

n

)
.
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3.2.3. Long-run variance estimation

For estimating the long run variance we extend the estimator proposed in [89],
based on first order differences of local sums of the data, to (p+1)-th differences.
To form the estimator we choose a scale W ′, which is not necessarily related to
any of the scales in the grid (5), and form the following local sums:

Ȳt,W ′ = Y(t−1)W ′+1 + · · · + YtW ′ , t = 1, . . . , �n/W ′� (11)

Then, putting X̄p+2,W ′ , . . . , X̄�n/W ′�,W ′ for the (p + 1)-th difference of the se-
quence of ȲW ′ ’s, the estimator is defined as follows:

τ̂2
DIF = 1

�n/W ′� − (p + 1)

⌊
n/W ′⌋∑
t=p+2

{
X̄2

t,W ′

W ′∑p+1
i=0
(
p+1
i

)2
}
. (12)

In order to show consistency of our long run variance estimator we need to im-
pose the following assumption, which states that the sequence of auto-covariances
for the noise decay sufficiently fast and can be estimated well from a finite sam-
ple.

Assumption 3.1. The auto-covariances decay fast enough that
∑

h>1 h |γh| <
∞, and for any fixed integer h and any ordered subset of {1, . . . , n− h}, say M ,
it holds that |M |−1∑

t∈M ζtζt+h = γh + OP

(
1/
√
|M |
)
.

With the above assumption in place, we have the following guarantee on the
consistency of the estimator.

Lemma 3.3. If the function f◦ (·) is bounded and the noise terms satisfy As-
sumption 2.3 and Assumption 3.1 it holds that∣∣τ̂2

DIF − τ2∣∣ = OP

(
W ′
√
n
∨ 1

W ′ ∨
NW ′2

n

)
.

Lemma 3.3 shows that if, for example, W ′ is chosen to be of the order
W ′ = O

(
nθ
)

for some θ < 1/2 then (12) satisfies the condition in part (ii)
of Theorem 2.2 as long as the number of change points grows more slowly than
n1−2θ log−1 (n/W ). In practice we follow [89] in setting W ′ = n1/3.

3.3. Consistency of the algorithm

We now investigate the conditions under which algorithm Algorithm 1 is con-
sistent, in the sense that with high probability it is able to detect all change
points and returns no spurious intervals. It is useful to parameterise the signal
in model (1) between change point locations as follows:

f◦ (t/n) =
{∑p

j=0 αj,k (t/n− ηk/n)j if ηk−1 < t ≤ ηk∑p
j=0 βj,k (t/n− ηk/n)j if ηk < t ≤ ηk+1

k = 1, . . . , N.

(13)
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Therefore, the absolute change in the j-th derivative of f◦(·) at the k-th
change point location can be written as Δj,k = |αj,k − βj,k|. Putting η0 = 0
and ηN+1 = n we write δk = min (ηk − ηk−1, ηk+1 − ηk) for the effective sample
size associated with the k-th change location. The most prominent change in
derivative at each change point location can therefore be defined as follows:

p∗k ∈ arg max
0≤j≤p

{
Δj,k

(
δk
n

)j
}

k = 1, . . . , N. (14)

In order to show the consistency of Algorithm 1 we impose two restriction on
the signal. The first states that the changes in derivative at each change point
location are bounded. The second states that although multiple changes in the
derivatives of f◦ (·) can occur at each change point location, there is always one
dominating change. This excludes the possibility of signal cancellation occurring.

Assumption 3.2. There is a constant CΔ > 0 such that |Δjk| < CΔ for each
j, k.

Assumption 3.3. For each k = 1, . . . , N the quantity p∗k is uniquely de-
fined, and for any sequence (ρk,n)n≥1 with the property ρk,n ≤ δk/n for all
n ≥ 1 it holds that |Δj,k| ρjk,n ≤ Cp∗

k

∣∣Δp∗
k,k

∣∣ ρp∗
k

k,n for all j �= p∗k, where Cp∗
k

=
1

2p∗
k
+2(p∗+1)p

.

For example, Assumption 3.3 would be violated by the piecewise linear signal
shown in (15) for which n = 8 and η = 4, and the scaled difference in slopes
between the first four entries and the last four had the same magnitude but the
opposite sign to the corresponding difference in levels. That is: Δ0 = Δ1 (δ/n).

f = (−7/8,−6/8,−5/8,−4/8, 3/8, 2/8, 1/8, 0)′ (15)

In practice, in situations when Assumption 3.3 is violated our procedure is
still able to detect the corresponding change point. This is because although
signal cancellation such as in (15) may occur on a particular interval considered
by Algorithm 1, it is unlikely to occur on every interval considered. In the
above example, if we were to look at the sub-vector (−5/8,−4/8, 3/8, 2/8)′ no
cancellation would occur. See also Remark 6.10 in the Proofs section, where we
show how the assumption can be relaxed for piecewise linear functions, and show
good practical performance via simulation on higher order piecewise polynomials
which violate the assumption. With these assumptions in place we have the
following result.

Theorem 3.1. Let Î1, . . . , ÎN̂ be intervals returned by Algorithm 1 run on data
Y = (Y1, . . . , Yn)′ from model (1), with parameters a > 1, W , and α ∈ (0, 1).
Grant Assumptions 3.2-3.3 and either of Assumptions 2.2-2.1 or 2.3-2.5 hold,
and let the threshold λα chosen according to (6) or (8) accordingly. If the the
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effective sample size at each change point location satisfies

δk > C1

⎛⎝W ∨ n
2p∗k

2p∗
k
+1

(
τ2 log(n)

Δ2
p∗
k,k

) 1
2p∗

k
+1
⎞⎠ k = 1, . . . , N (16)

then on a set with probability a−α+ o(1) the following events occur simultane-
ously:

E∗
3 =

{
N̂ = N

}
E∗

4 =
{
Îk ∩ Θ = {ηk} | k = 1, . . . , N

}
E∗

5 =

⎧⎨⎩∣∣∣Îk∣∣∣ ≤ C2

⎛⎝W ∨ n
2p∗k

2p∗
k
+1

(
τ2 log(n)

Δ2
p∗
k,k

) 1
2p∗

k
+1
⎞⎠∣∣k = 1, . . . , N

⎫⎬⎭ .

Here C1 and C2 depend only on α, a and p.

Theorem 3.1 states that on a set with probability asymptotically larger than
1 − α, where α can be tuned by the user, the number of intervals returned by
Algorithm 1 coincides with the true number of change points (event E∗

3 ), and
every interval returned contains exactly one change point (event E∗

4 ). Event E∗
5

provides bounds on the widths of intervals returned, which in turn implies a
bound on the localisation rate of any change point estimator which lies within
a given interval returned by the algorithm.

Theorem 3.1 leads to the following large sample consistency result.

Corollary 3.2. Let Î1, . . . , ÎN̂ be intervals returned by Algorithm 1 under the
same conditions as Theorem 3.1 but with threshold λ = (1 + ε) aW,n for some
fixed ε > 0, where aW,n is as defined in Theorem 2.2. Then on a set with
probability 1 − o(1) the events E∗

1 , E∗
2 , and E∗

3 occur simultaneously.

An important consequence of Theorem 3.1 and Corollary 3.2 is that any point-
wise estimator η̂k for the k-th change point location which lies in an interval Îk
will inherit the localisation rate implied by event E∗

5 . As explained in Section 3.4
this rate is unimprovable in a minimax sense. This result extends to the naive
estimator formed by setting η̂k to the midpoint of the interval Îk. However,
more sophisticated estimators can be used; for example one may choose η̂k to
be the split point which results in the lowest sum of squared residuals when a
piecewise polynomial function is fit over each Îk (see for example Figure 1).

3.4. Optimality of the algorithm

In [91, 90] it was shown that, under independent sub-Gaussian noise with
Orlicz-ψ2 norm bounded from above by some ω2, the mini-max localisation
rate for each change point in the generic piecewsie polynomial model is of the
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order

O

⎛⎝n
2p∗k

2p∗
k
+1

(
ω2

Δ2
p∗
k,k

) 1
2p∗

k
+1
⎞⎠ , k = 1, . . . , N. (17)

Examining the proof of Lemma 2 in [91] one can see that the same rate holds for
weakly dependent noise by replacing the sub-Gaussian parameter ω2 with the
long run variance τ2. Therefore, under Assumptions 2.1- 2.2 where W is of the
order O (log(n)), the bounds guaranteed by E∗

5 can be seen to be optimal up to
log terms. That is, the width of each interval returned matches (up to log terms)
the best possible rate at which the corresponding change point can be localised.
Under Assumptions 2.3-2.5, where W grows slightly faster than n2/(2+ν), the
bounds provided by event E∗

5 are again optimal as long as ν > 1 and the most
prominent change occurs in derivatives of order 1 or higher. However, whenever
p∗k = 0 comparing to (17) it is clear the bounds are no longer optimal.

The aforementioned lack of optimality is due to Assumption 2.5, which re-
quires the minimum support of our detection statistic to be relatively larger.
This is needed in order that a strong approximation result may be invoked for
a range of noise distributions. However, the requirement that W grows at a
polynomial rate with n can be overly conservative. For example, if the noise
terms are independently distributed with finite moment generating function in
a neighbourhood of zero, which is the setting studied by [91, 90], then Theorem
1 in [55] states that after enlarging the probability space

n∑
t=1

ζt − τB(n) = O (log(n)) , P-almost surely.

Consequently, in this setting the results of Theorem 3.1 continue to hold with
W of the order o

(
log3(n)

)
. In which case, setting λα accordingly, the bound

provided by event E∗
5 again results optimal up to the log factors.

The width of the k-th interval depends (up to constants) only on the order
of the derivative at which the most prominent change occurs, and not on the
overall polynomial degree of the signal. This shows the intervals adapt locally to
the smoothness of the signal. Interestingly the rate O

(
n2p∗/(2p∗+1)) is the same

as the minimax bound on the sup-norm risk for p∗-smooth Holder regression
functions [84, Theorem 2.10]. The error probability α does not appear explicitly
in Theorem 3.1 as it is absorbed into the constants C1 and C2. Indeed for
different but fixed choices of α all thresholds constructed according to the rules
discussed in Sections 2.3 and 2.4 will be asymptotically equivalent. However in
finite samples there is a clear price to pay for requesting higher coverage since
as α ↓ 0 we have that −2 log−1 (1 − α) ∼ 2/α.

Finally, the effect of the degree of serial dependence on the lengths of the
intervals is explicit, as the long run variance of the noise appears in the upper
bound on the interval lengths. The nature of this dependence is similar to that
found by [29] in the simpler problem of detecting a bump in the mean function
of a stationary Gaussian process.



612 S. Gavioli-Akilagun and P. Fryzlewicz

3.5. On the polynomial order of the signal

We emphasise that in the problem statement p refers to the maximum poly-
nomial order of the signal on any stationary segment, and that the polynomial
order of the signal is permitted to vary between segments. If p is unknown, it
should be considered as an input to our algorithm. However, provided this input
is chosen large than or equal to the maximum polynomial order, it only affects
the output in terms of constants and not rates. Of course, in a finite sample
there is a price to pay: choosing p larger leads to longer intervals through inflat-
ing the constant C2, and changes the change point detection condition through
inflating the constant C1.

We observe that in applications analysts usually have in mind a reasonable
idea of p motivated by knowledge of the problem at hand. However, it may be
unreasonable to assume that the maximum polynomial order is known exactly.
Therefore, we present two methods for determining p from data given upper
and lower bounds p and p such that p ∈

{
p, . . . , p

}
. The methods are designed

for the setup in Sections 2.3 and 2.4 respectively.

3.5.1. Estimating p via the strengthened Schwarz Information Criterion

[36] introduced the strengthened Schwarz Information Criterion (sSIC) for con-
sistently estimating the number of change points in the canonical change point
model for which the signal is piecewise constant and the contaminating noise is
independently distributed and Gaussian. The same approach can be extended
to estimating p in the piecewise polynomial model.

Given data Y = (Y1, . . . , Yn)′ from model (1) and some p′ ∈
{
p, . . . , p

}
let Î1, . . . , ÎN̂p′

be the output of Algorithm 1 under the assumption that the
maximum polynomial degree is p′, run with threshold λ = (1 + ε)aW,n for some
fixed ε > 0. Let η̂1, . . . , η̂N̂p′

be the split points within each interval associated
with the piecewsie polynomial fit providing the lowest sum of squared residuals
and let f̂p′ (·) be the function estimated via least squares between these knots.
Following Section 3.4 in [36] for some arbitrary but fixed α > 1 the sCIC at p′

is defined as

sSIC (p′) = n

2 log
(
σ̂2
p′
)

+ (N̂p′ + 1) (p′ + 1) logα (n) ,

where in particular

σ̂2
p′ = 1

n

n∑
t=1

(
Yt − f̂p′(t/n)

)2
.

Then, the maximum polynomial degree of the signal can be estimated as

p̂ = arg min
p≤p′≤p

sSIC (p′) . (18)

Regarding the large sample consistency of p̂, we have the following result.
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Lemma 3.4. Let p̂ be the estimator defined in (18). Grant Assumptions 2.2
and 2.1 as well as condition (16) hold, and moreover assume moreover that: (i)
p ≤ p ≤ p and (p− p) = O(1), (ii) N = O(1), and (iii) the coefficients in (13)
are all of the order O(1). Then P (p̂ = p) → 1 as n → ∞.

3.5.2. Estimating p via recursive testing on null intervals

The finite difference functional which has so far been used to test for the
presence of a change point can itself be used to estimate the maximum de-
gree of the signal. For some p′ ∈

{
p, . . . , p

}
let K be a contiguous subset of

{1, . . . , n} for which |K| is a multiple of (p′ +2). Therefore, introduce the statis-
tic

Dp′

K (Y ) =

⎧⎨⎩
⌊

|K|
p′ + 2

⌋ p′+1∑
i=0

(
p′ + 1

i

)2
⎫⎬⎭

−1/2
p′+1∑
j=0

(−1)p
′+1−j

(
p′ + 1

j

)
Ȳ j
K (19)

where in particular letting K have elements
{
k1, . . . , k|K|

}
we write

Ȳ j
K = Y

k1+j |K|
p′+2

+ · · · + Y(j+k1) |K|
p′+2

, j = 0, . . . , p′ + 1

for non-overlapping sums of the data over the (p′ + 2) equally sized contiguous
partitions of K. Note that if K corresponds to a stretch of data which contains
no change points and p′ < p then (19) will be large in (absolute) expectation,
whereas if p′ ≥ p then (19) will be small.

Using the above intuition, to estimate p we first run Algorithm 1 with thresh-
old λ = (1 + ε)aW,n for some small but fixed ε > 0 assuming the maximum
polynomial order of the signal is p′ = p. We then obtain sets K̂ = {K̂1, K̂2, . . . }
by retaining indices between each interval returned, and trimming either the
first or last few indices so that the number of elements in each K̂ is a multiple
of (p′ + 1). Note that since p ≥ p by Corollary 3.2 with high probability each
K̂ corresponds to a stretch of data which contains no change points. Finally
we test whether |Dp′−1

K̂
(Y ) | > (1 + ε)aW,n for each K̂. If any such test is not

passed we conclude that p = p′. Else, we repeat the procedure with p′ − 1. The
procedure automatically ends once p is reached, since we assume p ≥ p, and
by this point we have concluded that p < p′ for all p′ > p. The procedure is
sumarized in Algorithm 2. Regarding the large sample consistency of the output
of Algorithm 2 we have the following result.

Lemma 3.5. Let p̂ be the output of Algorithm 2. Grant Assumptions 2.3, 2.4,
and 2.5 as well as condition (16) hold, and moreover assume moreover that: (i)
p ≤ p ≤ p and (p− p) = O(1), (ii) N = O(1), and (iii) the coefficients in (13)
are all of the order O(1). Then P (p̂ = p) → 1 as n → ∞.
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Algorithm 2: An algorithm for determining the maximum polynomial
order of the signal by progressively estimating intervals of significance
and testing null intervals for the presence of a change points in a lower
degree polynomial.

1 function maxDegreeEstimation(Y , p, p):
2 p′ ← p
3 Detection ← False
4 while p′ > p do
5 Obtain intervals K̂ = {K̂1, K̂2, . . . } from Algorithm 1 using
6 threshold λ = (1 + ε)aW,n and assuming maximum degree p′.
7 for K̂ ∈ K̂ do
8 if |Dp′−1

K̂
(Y ) | > (1 + ε)aW,n then

9 Detection ← True
10 end
11 end
12 if Detection then
13 BREAK
14 end
15 p′ ← (p′ − 1)
16 end
17 return

4. Simulation studies

4.1. Alternative methods for change point inference

We will compare our proposed methodology with existing algorithms with pub-
licly available implementations, which each promise to return intervals contain-
ing true change point locations uniformly at a significance level chosen by the
user. These are: the Narrowest Significance Pursuit (NSP) algorithm of [38], its
self-normalised variant (NSP-SN), and its extension to auto-regressive signals
(NSP-AR); the bootstrap confidence intervals for moving sums (MOSUM) of
[19] using a single bandwidth (uniscale) and multiple bandwidths (multiscale);
the simultaneous multiscale change point estimator (SMUCE) of [35], as well
as its extension to heterogeneous noise (H-SMUCE) developed by [72], and its
extension to dependent noise (Dep-SMUCE) developed by [23]. We also con-
sider the conditional confidence intervals of [7] (B&P) with significance level
Bonferroni-corrected for the estimated number of change-points. For our own
procedure we write DIF1 for Algorithm 1 run under the assumptions of The-
orem 2.1 and DIF2 for the algorithm run under the assumption of Theorem
2.2. Additionally we write MAD if the scale of the noise is estimated using the
median absolute deviation estimator (9), SD if the scale is estimated using the
difference based estimator of the standard deviation (10), and LRV if the long
run variance is estimated using (12). Each of the methods considered is designed
for different noise types and different change point models, and we summarise
this information in Table 1 below.
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Table 1

Suitability of each method to non-Gaussian noise, dependent noise, and change point
detection in higher order polynomial signals. The the letter e indicates that no theoretical
guarantees are given but the authors observe good empirical performance of the method.

Method non-Gaussian
noise

dependent
noise

higher order
polynomials

DIF1-MAD ✗ ✗ ✓
DIF2-SD ✓ ✗ ✓
DIF2-LRV ✓ ✓ ✓
NSP ✗ ✗ ✓
NSP-SN ✓ ✗ ✓
NSP-AR ✗ ✓ ✓
B&P ✓ ✗ ✗
MOSUM (uniscale) ✓ ✗ ✗
MOSUM (multiscale) ✓ ✗ ✗
SMUCE ✗ ✗ ✗
H-SMUCE e ✗ ✗
Dep-SMUCE ✓ ✓ ✗

Throughout the simulation studies, whenever a method requires the user to
specify a minimum support parameter we set this to W = 0.5n1/2. Exceptions
occur for Dep-SMUCE for which we follow the authors’ recommendation in
setting W = n1/3, for DIF1-MAD in which we set W = log(n) following the
results of Theorem 2.1, and for the multiscale MOSUM procedure for which
we generate a grid of bandwidths using the bandwidths.auto function in the
MOSUM package [68]. For our own procedure we set the decay parameter regu-
lating the density of the grid to a =

√
2 as was done in [56] for the grid proposed

therein.

4.2. Coverage on null signals

We first investigate empirically the coverage provided by our algorithm and the
alternatives introduced in Section 4.1. To investigate coverage we apply each
method to a vector of pure noise with length n = 750 generated according to
each of the noise types listed below, setting the noise level to σ = 1, and over
100 replications record the proportion of times no intervals of significance are
returned. For each procedure we set appropriate tuning parameters in order
that the family-wise error is nominally controlled at the level α = 0.1. Where
applicable we ask each procedure to test for change points in polynomial signals
of degrees 0, 1, and 2.

• (N1): ζt ∼ N (0, σ2) i.i.d.
• (N2): ζt ∼ t5 × σ

√
0.6 i.i.d.

• (N3): ζt ∼ σ × Laplace(0, 1/
√

2) i.i.d.
• (N4): ζt = φζt−t + εt with φ = 0.8 and εt ∼ N (0, σ2/(1 − φ2) i.i.d.
• (N5): ζt = φζt−t + εt with φ = 0.8 and εt ∼ t5 × σ

√
0.6/(1 − φ2) i.i.d.

• (N6): ζt = φ1ζt−1 + φ2ζt−2 +
∑6

j=1 θjεt−j + εt with φ1 = 0.75, φ2 = −0.5,
θj = 0.1 × (9 − j) and εt ∼ N (0, σ2) i.i.d.
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Table 2

Proportion of times out of 100 replications each method returned no intervals of significance
when applied to a noise vector of length n = 750, as well as whether each method is

theoretically guaranteed to provide correct coverage. The letter c indicates that the method
should give correct coverage conditional on the event that the number of change points is
correctly estimated. The the letter e indicates that no theoretical guarantees are given but

the authors observe good empirical performance of the method.
guarantee degree 0 degree 1 degree 2

DIF1-MAD ✓ 0.93 0.92 0.95
DIF2-SD ✓ 0.98 1.00 1.00
DIF2-LRV ✓ 0.97 0.99 0.97
NSP ✓ 0.96 0.99 0.99
NSP-SN ✓ 1.00 1.00 1.00
NSP-AR ✓ 1.00 1.00 0.99
B&P c 0.99 - -
MOSUM (uniscale) c 0.98 - -
MOSUM (multiscale) c 0.94 - -
SMUCE ✓ 0.96 - -
H-SMUCE ✓ 0.95 - -
Dep-SMUCE ✓ 0.92 - -

(a) Coverage on noise type N1 with σ = 1

guarantee degree 0 degree 1 degree 2
DIF1-MAD ✗ 0.46 0.45 0.38
DIF2-SD ✓ 0.98 0.97 0.95
DIF2-LRV ✓ 0.93 0.92 0.91
NSP ✗ 0.05 0.04 0.04
NSP-SN ✓ 1.00 1.00 1.00
NSP-AR ✗ 0.14 0.10 0.19
B&P c 0.97 - -
MOSUM (uniscale) c 0.99 - -
MOSUM (multiscale) c 0.98 - -
SMUCE ✗ 0.21 - -
H-SMUCE e 1.00 - -
Dep-SMUCE ✓ 0.95 - -

(b) Coverage on noise type N2 with σ = 1

guarantee degree 0 degree 1 degree 2
DIF1-MAD ✗ 0.36 0.33 0.37
DIF2-SD ✓ 0.97 0.99 0.99
DIF2-LRV ✓ 0.98 0.98 0.94
NSP ✗ 0.02 0.04 0.03
NSP-SN ✓ 1.00 1.00 1.00
NSP-AR ✗ 0.19 0.23 0.22
B&P c 0.95 - -
MOSUM (uniscale) c 1.00 - -
MOSUM (multiscale) c 0.98 - -
SMUCE ✗ 0.14 - -
H-SMUCE e 1.00 - -
Dep-SMUCE ✓ 0.90 - -

(c) Coverage on noise type N3 with σ = 1

The results of the simulation study are reported in Tables 2 and 3. We also
highlight whether each method comes with theoretical coverage guarantees for
each noise type, where the letter c indicates that the method should give correct
coverage conditional on the event that the number of change points is correctly



Inference for change points in piecewise polynomials 617

Table 3

Proportion of times out of 100 replications each method returned no intervals of significance
when applied to a noise vector of length n = 750, as well as whether each method is

theoretically guaranteed to provide correct coverage. The letter c indicates that the method
should give correct coverage conditional on the event that the number of change points is
correctly estimated. The the letter e indicates that no theoretical guarantees are given but

the authors observe good empirical performance of the method.
guarantee degree 0 degree 1 degree 2

DIF1-MAD ✗ 0.00 0.00 0.00
DIF2-SD ✗ 0.00 0.00 0.00
DIF2-LRV ✓ 0.90 0.90 0.89
NSP ✗ 0.00 0.00 0.00
NSP-SN ✗ 0.00 0.00 0.01
NSP-AR ✓ 1.00 0.99 0.98
B&P ✗ 0.00 - -
MOSUM (uniscale) ✗ 0.00 - -
MOSUM (multiscale) ✗ 0.00 - -
SMUCE ✗ 0.00 - -
H-SMUCE ✗ 0.00 - -
Dep-SMUCE ✓ 0.41 - -

(a) Coverage on noise type N4 with σ = 1

guarantee degree 0 degree 1 degree 2
DIF1-MAD ✗ 0.00 0.00 0.00
DIF2-SD ✗ 0.00 0.00 0.00
DIF2-LRV ✓ 0.87 0.91 0.95
NSP ✗ 0.00 0.00 0.00
NSP-SN ✗ 0.00 0.01 0
NSP-AR ✗ 0.17 0.12 0.07
B&P ✗ 0.00 - -
MOSUM (uniscale) ✗ 0.00 - -
MOSUM (multiscale) ✗ 0.00 - -
SMUCE ✗ 0.00 - -
H-SMUCE ✗ 0.00 - -
Dep-SMUCE ✓ 0.32 - -

(b) Coverage on noise type N5 with σ = 1

guarantee degree 0 degree 1 degree 2
DIF1-MAD ✗ 0.00 0.00 0.00
DIF2-SD ✗ 0.00 0.00 0.00
DIF2-LRV ✓ 0.99 0.95 1.00
NSP ✗ 0.00 0.00 0.00
NSP-SN ✗ 0.03 0.10 0.12
NSP-AR ✗ 0.83 0.87 0.93
B&P ✗ 0.00 - -
MOSUM (uniscale) ✗ 0.00 - -
MOSUM (multiscale) ✗ 0.00 - -
SMUCE ✗ 0.00 - -
H-SMUCE ✗ 0.00 - -
Dep-SMUCE ✓ 0.94 - -

(c) Coverage on noise type N6 with σ = 1

estimated. The majority of methods tested keep the nominal size well for noise
types consistent with the assumptions under which they were developed and
in general tend to provide over coverage. The only exception occurs for Dep-
SMUCE which delivers significant under-coverage on noise types N4 and N5.
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The coverage provided by our procedure is likewise accurate, and in particular
under Gaussian noise tends to provide coverage closer to the level requested than
that provided by competing methods. This shows that the asymptotic results in
Theorems 2.1 and 2.2 hold well in finite samples, and that that our procedure is
generally better calibrated than other available methods; see also the additional
simulation study in Section 7 of the appendix, which shows that the same results
hold for a range of signal lengths.

4.3. Coverage in the presence of strong serial dependence

Calibrating change point procedures in the presence of serial dependence is a
difficult problem, and in practice few available methods work well uniformly;
see for instance the numerical comparison in [18]. We remark that in the pres-
ence of strong serial dependence the coverage provided by our procedure can
break down. To illustrate this, Table 4 reports the proportion of times over 100
replications for which DIF2-LRV reported no intervals on significance on the
the signal

ζt = φjζt−1 + εt with φj = 0.8 + j/100 (20)

with εt ∼ N (0, 1) i.i.d. and j = 0, . . . , 10. For large φ the procedure no longer
delivers the desired coverage. However, on closer inspection this appears to be
a failure of the long run variance estimator proposed in (12) which for values
of φ close to 1 tends to under-estimate the long run variance, rather than the
asymptotic theory. This is because scaling each local test by the true time av-
erage variance constant (TAVC, [88]), which for a given scale W ′′ is defined
as

TAVC(W ′′) = E

⎡⎢⎣
⎛⎝ 1√

W ′′

W ′′∑
t=1

ζt

⎞⎠2
⎤⎥⎦ , (21)

at a scale proportional to the W supplied to DIF2-LRV our procedure attains
the desired level of coverage. The time average variance constant converges to
the long run variance as long as W ′′ diverges with the sample size. As argued by
[65] it is preferable to scale by the time average variance constant, as opposed to
the long run variance, as with a properly chosen scale the latter better accounts
for the local variation of each test. In fact, close inspection of the proof of

Table 4

Proportion of times out of 100 replications DIF2-LRV returned no intervals of significance
when applied to a noise vector of length n = 750 form (20) and normalized with estimated

long run standard deviation τ̂DIF calculated according to (12) as well as the TAVC
calculated at scale W ′′ = 2

5
√
n, the true long run standard deviation.

φ 0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9
Estimated LRV 0.94 0.86 0.89 0.89 0.86 0.81 0.84 0.83 0.62 0.72 0.51

True TAVC 0.98 0.96 0.96 0.98 0.96 0.94 0.93 0.96 0.90 0.95 0.87
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Lemma 3.3 reveals that (12) is consistent for the TAVC calculated at the scale
W ′. However, the conditions of Lemma 3.3 limit (12) to scales of the order
W ′ = o (

√
n).

In light of the above, there are a number of approaches one may take if strong
serial dependence is suspected. For instance, one could slightly pre-whiten the
data using the heuristic methods suggested in Section 4.1 of [9]. Alternatively
one may run DIF2-LRV with a conservative, but nonetheless consistent, estima-
tor of the long run variance. For instance one may scale by τ̂2

DIF + C/W ′′′ for
some positive constant C > 0 and some W ′′′ diverging with n.

4.4. Performance on test signals

Next we investigate the performance of our method and its competitors on
test signals containing change points. To investigate performance we apply each
method to 100 sample paths from the change point models M1, M2, and M3 listed
below, contaminated with each of the four noise types introduced in Section
4.2 above. On each iteration we record for each method: the number of intervals
which contain at least one change point location (no. genuine), the proportion of
intervals returned which contain at least one change point location (prop. gen-
uine), the average length of intervals returned (length), and whether all intervals
returned contain at least once change point location (coverage). We report the
average of these quantities, and again highlight whether each method comes
with theoretical coverage guarantees for each noise type (guarantee).

• (M1): the first n = 512 values of piecewise constant the blocks signal
from [25], shown in Figure 1a, with N = 4 change points at locations
Θ = {205, 267, 308, 472}

• (M2): the first n = 600 values of the piecewise linear waves signal from
[9], shown in Figure 6c, with N = 3 change points at locations Θ =
{150, 300, 450}

• (M3): the piecewise quadratic hills signal with length n = 400, shown in
Figure 6e, with N = 3 change points at locations Θ = {100, 200, 300}

The results of the simulation study are reported in Tables 5 - 7. On the
piecewise constant blocks function, among the methods which provide correct
coverage, our algorithm is generally among the top performing methods in terms
the number of change points detected and the lengths of intervals recovered. In
fact, is only outperformed by the MOSUM procedure with multiscale bandwidth
under noise types N1 and N2. The family of SMUCE algorithms, as well as the
B&P procedure, all suffer from under coverage on noise types for which they
should give accurate coverage. Among the methods compared to only the family
of NSP algorithms is applicable to higher order piecewise polynomial signals. On
the piecewise polynomial waves and hills signals our methods deliver correct
coverage where theoretical guarantees are available and consistently outperform
the only competitor, the family of NSP algorithms.
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Table 5

Average of the number of intervals which contain at least one change point location (no.
genuine), the proportion of intervals returned which contain at least one change point

location (prop. genuine), the average length of intervals returned (length), and whether all
intervals returned contain at least once change point location (coverage), on the piecewise

constant blocks signal contaminated with noise N1-N4 over 100 replications. The noise level
was set to σ = 10 for noise types N1-2and to σ = 5 for noise types N3-4. We also report

whether each method is theoretically guaranteed to provide correct coverage.
N1 N2 N3 N4 N5 N6

no. genuine 3.69 3.75 3.87 3.46 3.45 3.42
DIF1-MAD prop. genuine 0.99 0.89 0.85 0.13 0.11 0.09

length 34.86 27.19 23.89 9.36 8.87 8.30
coverage 0.97 0.61 0.42 0.00 0.00 0.00

no. genuine 3.34 3.36 3.40 3.27 3.41 3.65
DIF2-SD prop. genuine 1.00 1.00 1.00 0.17 0.19 0.17

length 43.72 43.80 43.41 16.63 16.59 16.15
coverage 1.00 0.99 0.99 0.00 0.00 0.00

no. genuine 1.98 2.03 1.97 1.35 1.33 1.39
DIF2-LRV prop. genuine 0.99 1.00 0.99 0.90 0.91 0.95

length 61.35 60.67 58.03 69.27 80.50 71.57
coverage 1.00 1.00 1.00 1.00 1.00 1.00

no. genuine 3.20 3.48 3.52 3.67 3.74 3.86
NSP prop. genuine 1.00 0.63 0.60 0.15 0.12 0.10

length 59.63 36.06 32.45 11.34 9.35 7.85
coverage 1.00 0.14 0.12 0.00 0.00 0.00

no. genuine 1.92 1.90 1.93 3.11 3.11 3.00
NSP-SN prop. genuine 1.00 1.00 1.00 0.83 0.84 0.94

length 120.41 117.62 113.95 75.43 75.16 73.08
coverage 1.00 1.00 1.00 0.36 0.42 0.80

no. genuine 0.12 0.87 0.88 0.68 0.99 1.56
NSP-AR prop. genuine 0.12 0.54 0.55 0.61 0.51 0.89

length 24.58 63.29 78.52 40.76 46.77 36.83
coverage 1.00 0.50 0.54 1.00 0.43 0.98

no. genuine 3.85 3.88 3.93 3.49 3.73 3.60
B&P prop. genuine 0.96 0.96 0.98 0.19 0.20 0.25

length 16.78 17.14 16.32 13.71 13.68 14.84
coverage 0.83 0.85 0.92 0.00 0.00 0.00

no. genuine 1.96 2.02 2.06 3.54 3.59 3.51
MOSUM (uniscale) prop. genuine 0.83 0.83 0.88 0.20 0.21 0.24

length 14.03 14.21 14.21 15.87 15.82 15.36
coverage 0.89 0.91 0.94 0.00 0.00 0.00

no. genuine 3.90 3.98 3.97 4.90 4.96 4.69
MOSUM (multiscale) prop. genuine 0.96 0.98 0.98 0.23 0.23 0.25

length 22.01 21.14 20.62 21.30 21.13 22.02
coverage 0.86 0.93 0.92 0.00 0.00 0.00

no. genuine 3.71 3.61 3.82 2.12 1.87 1.68
SMUCE prop. genuine 0.95 0.72 0.73 0.09 0.06 0.05

length 36.02 24.21 23.99 8.59 7.03 5.91
coverage 0.89 0.35 0.24 0.00 0.00 0.00

no. genuine 3.40 3.08 3.21 2.81 2.91 2.42
H-SMUCE prop. genuine 0.92 0.86 0.89 0.84 0.84 0.77

length 49.42 44.92 45.63 49.32 52.98 54.19
coverage 0.80 0.70 0.72 0.63 0.65 0.56

no. genuine 2.12 2.15 2.30 3.11 2.94 3.42
Dep-SMUCE prop. genuine 0.80 0.78 0.82 0.49 0.46 0.61

length 73.66 69.10 72.25 32.73 29.83 33.06
coverage 0.57 0.59 0.61 0.00 0.01 0.06
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Table 6

Average of the number of intervals which contain at least one change point location (no.
genuine), the proportion of intervals returned which contain at least one change point

location (prop. genuine), the average length of intervals returned (length), and whether all
intervals returned contain at least once change point location (coverage), on the piecewise
linear waves signal contaminated with noise types N1-N4 over 100 replications. The noise

level was set to σ = 5 for all noise types. We also report whether each method is
theoretically guaranteed to provide correct coverage.

N1 N2 N3 N4 N5 N6
no. genuine 2.98 2.77 2.66 1.51 1.60 2.28

DIF1-MAD prop. genuine 0.98 0.83 0.77 0.06 0.06 0.05
length 81.57 65.57 58.03 12.85 11.91 9.13

coverage 0.92 0.49 0.39 0.00 0.00 0.00
no. genuine 2.99 2.98 2.97 1.66 1.71 2.56

DIF2-SD prop. genuine 1.00 0.99 0.99 0.08 0.09 0.08
length 94.25 92.87 92.98 16.67 17.14 15.05

coverage 0.99 0.98 0.96 0.00 0.00 0.00
no. genuine 3.00 2.98 2.98 1.36 1.51 1.54

DIF2-LRV prop. genuine 1.00 0.99 0.99 0.96 0.99 0.99
length 95.78 97.32 98.90 233.37 219.28 239.46

coverage 0.99 0.98 0.97 0.97 0.97 0.99
no. genuine 3.00 2.60 2.67 1.73 1.85 1.85

NSP prop. genuine 1.00 0.65 0.66 0.11 0.09 0.07
length 93.06 58.00 57.31 20.36 17.06 14.02

coverage 1.00 0.16 0.19 0.00 0.00 0.00
no. genuine 2.99 3.00 3.00 2.42 2.34 2.44

NSP-SN prop. genuine 1.00 1.00 1.00 0.84 0.83 0.96
length 126.23 124.74 125.23 119.64 116.84 135.12

coverage 1.00 1.00 1.00 0.58 0.57 0.90
no. genuine 0.62 1.38 1.63 0.00 0.44 0.09

NSP-AR prop. genuine 0.51 0.63 0.77 0.00 0.29 0.09
length 98.93 96.03 113.80 0.00 59.68 22.95

coverage 1.00 0.39 0.59 1.00 0.39 0.97

5. Real data examples

5.1. Application to bone mineral density acquisition curves

We analyse data on bone mineral acquisition in 423 healthy males and females
aged between 9 and 25. The data is available from hastie.su.domains and was
first analysed in [6]. The data was originally collected as part of a longitudinal
study where four consecutive yearly measurements of bone mass by dual energy
x-ray absorptiometry were taken from each subject. We obtain bone density
acquisition curves for males and females by grouping measurements by gender
and age and averaging over measurements in each grouping. The processed data
are plotted in the first row of Figure 3. There is some disagreement over the
age at which peak bone mass density is attained in adolescents [57, 83, 62]. One
possible solution is to model the data in Figure 3 as following a piecewise linear
trend, and to infer this information from any estimated change point locations.

We apply the procedure DIF2-SD to the data, with the tuning parameters
specified in Section 4, because as the data are strictly positive the assumption
of Gaussian noise is unlikely to hold. We additionally estimate change point

https://hastie.su.domains/ElemStatLearn/datasets/spnbmd.csv
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Table 7

Average of the number of intervals which contain at least one change point location (no.
genuine), the proportion of intervals returned which contain at least one change point

location (prop. genuine), the average length of intervals returned (length), and whether all
intervals returned contain at least once change point location (coverage), on the piecewise

quadratic hills signal contaminated with noise types N1-N4 over 100 replications. The noise
level was set to σ = 1 for all noise types. We also report whether each method is

theoretically guaranteed to provide correct coverage.
N1 N2 N3 N4 N5 N6

no. genuine 3.00 2.85 2.90 1.86 1.79 1.99
DIF1-MAD prop. genuine 0.99 0.85 0.86 0.14 0.12 0.07

length 43.32 36.10 35.09 16.66 14.93 8.60
coverage 0.95 0.51 0.58 0.00 0.00 0.00

no. genuine 3.00 2.99 3.00 1.72 1.92 2.60
DIF2-SD prop. genuine 1.00 0.99 1.00 0.16 0.18 0.12

length 51.96 51.37 51.16 19.77 20.36 16.01
coverage 1.00 0.97 1.00 0.00 0.00 0.00

no. genuine 3.00 3.00 3.00 1.82 1.72 1.69
DIF2-LRV prop. genuine 1.00 1.00 1.00 0.98 0.95 0.98

length 69.29 68.27 68.84 122.55 121.99 131.37
coverage 1.00 1.00 1.00 0.99 0.95 1.00

no. genuine 3.00 2.89 2.97 2.04 2.13 1.99
NSP prop. genuine 1.00 0.83 0.87 0.25 0.22 0.16

length 50.55 40.40 39.59 28.13 23.17 19.24
coverage 1.00 0.44 0.60 0.00 0.00 0.00

no. genuine 2.96 2.96 2.93 2.77 2.77 2.69
NSP-SN prop. genuine 1.00 1.00 1.00 1.00 0.98 1.00

length 83.66 83.21 83.62 92.23 90.86 95.98
coverage 1.00 1.00 1.00 1.00 0.95 1.00

no. genuine 0.52 1.40 1.60 0.03 0.55 0.24
NSP-AR prop. genuine 0.44 0.75 0.85 0.03 0.40 0.24

length 60.37 64.41 72.31 3.51 52.93 41.64
coverage 1.00 0.65 0.79 1.00 0.48 0.93

locations using five state of the art algorithms for recovering changes in piece-
wise linear signals which however do not come with any coverage guarantees.
These are: the Narrowest-Over-Threshold algorithm (NOT) of [9], and the same
algorithm run with the requirement that the estimated signal be continuous
(NOT-cont), the Isolate Detect algorithm (ID) of [2], the dynamic program-
ming based algorithm of [7] (BP), and the Continuous-piecewise-linear Pruned
Optimal Partitioning algorithm (CPOP) of [34]. When applying each method
we use the default parameters in their respective R packages.

The results of the analysis are shown in in the second row of Figure 3. On both
bone density acquisition curves all methods for change point detection estimate
a single change point location, save for CPOP. However, on the male bone
density acquisition data there is considerable disagreement among the methods
regarding the location of the change point detected. Since the methods do not
quantify the uncertainty around each estimated change point, it is difficult to
say which estimate is closest to the truth. DIF2-SD also returns a single interval
of significance when applied to each data set, and each interval returned contains
all change point locations recovered by the other methods on each respective
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Fig 3: black / grey solid lines (— / —) represents bone density acquisition
curves for males and females between the ages of 9 and 25, red shaded regions
(�) represent intervals of significance returned by DIF2-SD, dashed coloured
lines represent change point locations recovered by NOT (- - -), NOT-cont
(· · · ), ID (- - -), BP (- - -), and CPOP (- - -).



624 S. Gavioli-Akilagun and P. Fryzlewicz

data set save the extraneous change point detected by CPOP. By Corollary 3.1
one can be certain each interval contains at least one true change point location
with high probability. We therefore re-apply the aforementioned change point
detectors to this interval only. The results are shown in the third row of Figure
3, where this time there is much greater agreement among the methods. We also
note that the corresponding intervals returned by NSP-SN (not shown), which
is the only competing method from Section 4.1 applicable to the data, cover
essentially the entire range of the data.

5.2. Applications to nitrogen dioxide concentration in London

We analyse daily average concentrations of nitrogen dioxide (NO2) at Maryle-
bone Road in London between September 2, 2000 and September 30, 2020.
The data are available from uk-air.defra.gov.uk and were originally anal-
ysed from a change point perspective, assuming a piecewsie constant mean, by
[18]. We follow their analysis in [17] by taking the square root transform of the
data and removing seasonal and weekly variation. The processed data is plotted
in Figure 4. [18] identify three historical events which are likely to have affected
NO2 concentration levels in London during the period in question, which are
summarised below.

• February 2003: installation of particulate traps on most London buses and
other heavy duty diesel vehicles.

• April 8, 2019: introduction of Ultra Low Emission zones in central London.
• March 23, 2020: beginning of the nation-wide COVID-19 lockdown.

We apply the procedure DIF2-LRV to the data with tuning parameters spec-
ified in Section 4, since time series of NO2 concentrations are known to be
strongly serially correlated. For comparison we additionally estimate change
point locations using three state of the art algorithms for recovering changes

Fig 4: daily average concentrations of NO2 at Marylebone Road after square
root transform and with seasonal variation removed, red dashed lines (- - -)
and dark red shaded region (�) represent dates of events which are likely to
have affected NO2 concentration levels.

https://uk-air.defra.gov.uk/
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in piecewise constant signals in the presence of serially correlated noise, which
however do not come with coverage guarantees. These are: the algorithm of [81]
for Detecting Changes in Autocorrelated and Fluctuating Signals (DeCAFS),
the algorithm of [13] for estimating multiple change-points in the mean of a
Gaussian AR(1) process (AR1seg), and the Wild Contrast Maximisation and
gappy Schwarz algorithm (WCM.gSa) of [18]. When applying each method
we use default parameters in their respective R packages save for the De-
CAFS algorithm for which our choice of tuning parameters is guided by the
guidedModelSelection function in the DeCAFS R package.

The results of the analysis are shown in Figure 5. DIF2-LRV returns four
intervals, among which the first, third, and fourth cover the dates of important
events identified by [18]. Within each of these three intervals AR1seg, DeCAFS,
and WCM.gSa each identify one change point, with the exception of WCM.gSa
which identifies two change points in the third interval returned. However, when
we re-apply WCM.gSa over the third interval only one change point is detected,
suggesting the second change point in this interval was spuriously estimated.
DeCAFS detects a change point between the first and second intervals returned
by DIF2-LRV. However, re-applying the algorithms to data between the two
intervals no change points are detected suggesting the original change points
were also spuriously estimated. We finally note that the data analysed consists
of n = 7139 observations, and running DIF2-LRV on a desktop computer with
a 3.20GHz Intel (R) Core (TM) i7-8700 CPU took 4.1 seconds. Running Dep-
SMUCE and NSP-AR, which are the only competing methods from Section 4.1
applicable to the data, on the same machine took 15.1 seconds and 145.8 seconds
respectively. Dep-SMUCE returns similar intervals to DIF2-LRV, whereas NSP-
AR does not detect any change points in the data.

6. Proofs

For sequences {an}n>0 and {bn}n>0 we write an <∼ bn if there is a constant
C > 0 for which an ≤ Cbn for every n > 0. We write an ∼ bn if an/bn → 1 as
n → ∞. We write |A| for the cardinality of a set A. The density, cumulative
density, and tail functions of a standard Gaussian random variable are written
respectively as φ (·), Φ (·), and Φ̄ (·).

6.1. Preparatory results

Definition 6.1. Let {ξ(t)}t>0 be a centred Gaussian process with unit variance,
then if there are constants Cξ > 0 and α ∈ (0, 2] such that for all t > 0 the
following holds

Cov (ξ(t), ξ(t + s)) = 1 − Cξ |s|α + o (|s|α) , |s| → 0,

the process is called stationary with index α and local structure Cξ. Moreover, the
process has almost surely continuous sample paths and for any compact K ⊂ R

+

the quantity MK = supt∈K {ξ (t)} is well defined.
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Fig 5: grey lines (—) represent daily average concentrations of NO2 at Maryle-
bone Road after square root transform and with seasonal variation removed, red
shaded regions (�) represent intervals of significance returned by DIF2-LRV,
blue dashed lines (- - -) represent change points recovered by a given algorithm,
blue solid lines (—) represent the corresponding fitted piecewise constant signal.
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Lemma 6.1 (Berman’s lemma). Let ζ1, . . . , ζn and ζ̃1, . . . , ζ̃n be two sequences
of Gaussian random variables with marginal N (0, 1) distribution and covari-
ances Cov (ζi, ζj) = Λij and Cov

(
ζ̃i, ζ̃j

)
= Λ̃ij. Define ρij = max

(
|Λij | ,

∣∣Λ̃ij

∣∣).
For any real numbers u1, . . . , un the following holds:∣∣P (ζj ≤ uj | 1 ≤ j ≤ n) − P

(
ζ̃j ≤ uj | 1 ≤ j ≤ n

)∣∣
≤ 1

2π
∑

1≤i<j≤n

∣∣Λij − Λ̃ij

∣∣ (1 − ρ2
ij

)−1/2 exp
(
−

1
2
(
u2
i + u2

j

)
1 + ρij

)
.

Proof. See Theorem 4.2.1 in [59].

Lemma 6.2 (Khintchine’s lemma). Let {Mn}n>0 be a sequence of random
variables and let G be a non-degenerate distribution. If {(cn, dn)}n>0 are scaling
and centring sequences such that (Mn − cn) /dn → G then for any alternative
sequences {(c′n, d′n)}n>0 satisfying dn/d

′
n ∼ 1 and (cn − c′n) /dn = o(1) we also

have that (Mn − c′d) /d′n → G.

Proof. See Theorem 1.2.3 in [59].

Lemma 6.3 (Pickand’s lemma, continuous version). Let {ξ(t)}t>0 be a station-
ary Gaussian process with index α ∈ (0, 2] and local structure Cξ > 0. There is
a constant Hα > 0 such that for any compact K ⊂ R

+ the following holds:

P

(
sup
t∈K

{ξ (t)} > u

)
∼ HαC

1/α
ξ |K|u2/α−1φ (u) .

Moreover the values H1 = 1 and H2 = 1/
√
π are known explicitly.

Proof. See Theorem 9.15 in [75], and Remark 12.2.10 in [59] for the values of
Hα.

Lemma 6.4 (Pickand’s lemma, discrete version). Let {ξ(t)}t>0 be a stationary
Gaussian process with index α ∈ (0, 2] and local structure Cξ > 0. If q → 0 and
u → ∞ in such a way that u2/αq → a > 0 the following holds for any compact
K ⊂ R

+:
P

(
sup

t∈K∩Zq
{ξ (t)} > u

)
∼ Fξ (a) |K|u2/α−1φ (u) .

The function Fξ (·) is defined as follows

Fξ (a) = lim
T→∞

1
T
E

[
exp
(

sup
s∈[0,T ]∩aZ

Z (s)
)]

,

where {Z(s)}s>0 is a stationary Gaussian process with first and second moments
as follows

E (Z(s)) = −Cξ |s|α ,

Cov (Z(s1), Z(s2)) = Cξ |s1|α + Cξ |s2|α − Cξ |s1 − s2|α .
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Proof. See Lemma 12.2.1 in [59].

Lemma 6.5. Let {B (t)}t>0 be standard Brownian motion and define the func-
tion F (·) as follows:

F (x) = lim
T→∞

1
T
E

[
exp
(

sup
s∈[0,T ]∩xZ

{B(s) − s/2}
)]

.

(i) For x > 0 it holds that F (x) = p2
∞ (x) /x where p∞ (·) is defined as follows:

p∞ (x) = exp
(
−

∞∑
k=1

1
k

Φ̄
(√

kx/4
))

.

(ii) Putting G (y) = (1/y)F (C/y) for any fixed C > 0 it holds that

G (y) ∼ 1/2y as y → ∞.

Proof. See Theorem 7.2 and Corollary 3.18 respectively in [49].

6.2. Intermediate results

Lemma 6.6. Let {B (t)}t>0 be standard Brownian motion and define the pro-
cess {ξ (t)}t>0 as follows:

ξ (l) =
{(

1
p + 2

) p+1∑
i=0

(
p + 1
i

)2
}−1/2 p+1∑

j=0
(−1)p+1−j

(
p + 1
j

)
Yl,j

Yl,j =
[
B

(
l + j + 1

p + 2

)
−B

(
l + j

p + 2

)]
.

(i) The process {ξ (l)}l>0 is the continuous time analogue of 1
σD

p
l,w (Y ) under

Assumption 2.1 and the null of no change points, in the sense that for a given
scale w the following holds:{

1
σ
Dp

l,w (Y ) | 1 ≤ l ≤ n− w

}
d= {ξ (l/w) | 1 ≤ l ≤ n− w} .

(ii) According to Definition 6.1 the process is locally stationary with index
α = 1 and local structure Cp defined as follows:

Cp = (p + 2)

⎛⎝1 +
∑p+1

j=1
(
p+1
j

)(
p+1
j−1
)

∑p+1
j=0
(
p+1
j

)2
⎞⎠ .

Proof. Part (i) can be verified by inspection. To show part (ii) note that for all
l > 0 we have E (ξ (l)) = 0 and E

(
ξ2 (l)

)
= 1, so it remains to calculate the
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covariance between ξ (l) and ξ (l + sl) for |sl| → 0. First, taking sl > 0 we have
the following:

Cov (ξ(l), ξ(l + sl)) =
((

1
p + 2

) p+1∑
i=0

(
p + 1
i

)2
)−1

×
p+1∑
j=0

p+1∑
k=0

(
p + 1
j

)(
p + 1
k

)
(−1)j+k Cov (Yl,j ,Yl+sl,k)

=
((

1
p + 2

) p+1∑
i=0

(
p + 1
i

)2
)−1

×

⎧⎨⎩
p+1∑
j=0

(
p + 1
j

)2

Cov (Yl,j ,Yl+sl,j) + . . .

· · · +
p+1∑
j=1

(−1)
(
p + 1
j

)(
p + 1
j − 1

)
Cov (Yl,j ,Yl+sl,j−1)

⎫⎬⎭ .

Using the fact that Cov (B(l1), B(l2)) = min (l1, l2) gives the following:

Cov (Yl,j ,Yl+sl,j) = 1
p + 2 − sl

Cov (Yl,j ,Yl+sl,j−1) = sl.

Therefore for sl → 0 with sl > 0 we have the following:

Cov (ξ(l), ξ(l + sl)) = 1 − (p + 2)

⎛⎝1 +
∑p+1

j=1
(
p+1
j

)(
p+1
j−1
)

∑p+1
j=0
(
p+1
j

)2
⎞⎠ sl.

The same calculations can be repeated for the case sl < 0 and so ultimately we
have that Cov (ξ(l), ξ(l + sl)) = 1 − Cp|sl| as |sl| → 0.

Lemma 6.7. Consider the problem of testing for the presence of a change point
on the interval I = {1, . . . ,m} where m satisfies (p + 2)δ ≤ m < (p + 2)(δ + 1)
for some integer δ > 1. If the interval contains a single change point at location
δ with change sizes Δ0, . . . ,Δp then the test

Tλ
1,m = 1

{
|Dp

1,(p+2)δ (Y ) | > λ
}

with threshold λ = τ̂ × λ̄, for some λ̄ > 0, will detect the change on the event{
Lτ̂
G(W,a) (ζ) ≤ λ̄

}
∩ {τ̂ < 2τ} (22)

as long Assumption 3.3 is satisfied and δ′ satisfied the inequality

δ > n
2p∗

2p∗+1

(
16C2

p,p∗τ2λ̄2

|Δp∗ |2

) 1
2p∗+1

,
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where

Cp,p∗ = 2p
∗+2(p∗ + 2)

√√√√p+1∑
i=0

(
p + 1
i

)2

.

Proof. By the linearity of the difference operator and the triangle inequality the
change will be detected if the following occurs:∣∣Dp

1,m (f)
∣∣ > ∣∣Dp

1,m (ζ)
∣∣+ λ. (23)

Moreover on (22) we must have that
∣∣Dp

1,m (ζ)
∣∣+ λ < 4τ λ̄. Writing Bk for the

k-th Bernoulli number we have the following by Faulhaber’s formula for any
integers p > 0 and δ > 1:

1
δ′

δ′∑
t=1

(1 − t/δ′)p = (δ′)−(p+1)
δ′−1∑
s=1

sp

=
(

1
p + 1

)(
δ′ − 1
δ′

)p+1 p∑
k=0

(
p + 1
k

)
Bk (δ′ − 1)−k

≥
(

1
p + 1

)(
δ′ − 1
δ′

)p+1

≥ 1
2p+1(p + 1) . (24)

Using the above along with Assumption 3.3 and the fact that the test statistic
(2) is invariant to the addition of arbitrary degree p polynomials we have the
following:

∣∣Dp
1,m (f)

∣∣ = {δ p+1∑
i=0

(
p + 1
i

)2
}− 1

2
∣∣∣∣∣∣

p∑
j=0

Δj

δ∑
t=1

(
t

n
− δ

n

)j
∣∣∣∣∣∣

≥
√
δ |Δp∗ |

(
δ

n

)p∗
⎡⎣ 1

δ

∑δ
t=1
(
1 − t

δ

)p∗√∑p+1
i=0
(
p+1
i

)2
⎤⎦

−
∑

0≤j≤p
j =p∗

√
δ |Δj |

(
δ

n

)j
⎡⎣ 1

δ

∑δ
t=1
(
1 − 1

δ

)j√∑p+1
i=0
(
p+1
i

)2
⎤⎦

≥ C−1
p,p∗ |Δp∗ | δ 2p∗+1

2 n−p∗
. (25)

Therefore combining (23) and (25) we have that on the event (22) the change
will be detected if C−1

p,p∗ |Δp∗ | δ 2p∗+1
2 n−p∗

> 4τ λ̄, and the desired result follows
by rearranging.



Inference for change points in piecewise polynomials 631

Theorem 6.1. Put w = �c log(n)� for some constant c > 0 and introduce
maximum of the local test statistics (2) appropriately standardised and restricted
to scales w as follows:

Mσ
c log(n) (Y) = max

{
1
σ
Dp

l,w (Y) | 1 ≤ l ≤ n− w

}
.

Then under Assumption 2.1 and the null of no change points for any fixed x ∈ R

the following holds, where an and bn are defined as in Theorem 2.1:

P

(
anM

σ
c log(n) (Y) − bn ≤ x

)
∼ exp

(
−
(

2Cp

c

)
F

(
2Cp

c

)
e−x

)
.

Proof. Omitting dependence on x introduce the following notation.

un =
√

2 log(n) +
(
−1

2 log log(n) − log
(
2
√
π
)

+ x

)
/
√

2 log(n)

For some ρ ∈ (0, 1) we decompose the index set {1, . . . , n} into disjoint blocks
A0, B0, A1, B1, . . . respectively of size w and wρ defined as follows:

Ai = {l | i (w + wρ) < l ≤ (i + 1)w + iwρ}
Bi = {l | (i + 1)w + iwρ < l ≤ (i + 1)(w + wρ)} .

The proof proceeds in three steps.
STEP 1: we first show that the behaviour of small blocks is asymptotically

unimportant for the maximum. Putting Bn = ∪iBi and using the fact |Bn| ∼
nwρ/(w + wρ) and u2

n = 2 log(n) − log log(n) + O (1) the following holds:

P

(
max
l∈Bn

{
1
σ
Dp

l,w (Y)
}

> un

)
≤
∑
l∈Bn

P

(
1
σ
Dp

l,w (Y) > un

)
= |Bn| Φ̄ (un)

<∼
wρ

w + wρ
.

STEP 2: next we show that the any dependence between larger blocks is
asymptotically unimportant for the the maximum. Write

Λl1,l2 = Cov
(

1
σ
Dp

l1,w
(Y) , 1

σ
Dp

l2,w
(Y)
)
,

and let σ−1D̃p
l,w (Y) be random variables with the same marginal distributions

as σ−1Dp
l,w (Y) and covariances as shown below:

Λ̃l1,l2 =
{

Λl1,l2 l1 ∈ Ai1 , l2 ∈ Ai2 with i1 = i2

0 else
.
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For any l1, l2 write j1,2 = |{l1, . . . , l1 + w − 1} ∩ {l2, . . . , l2 + w − 1}| and put
Λl1,l2 = Λj1,2 . Writing An = ∪iAi and using Lemma 6.1 we have the following:∣∣∣∣P(max

l∈An

{
1
σ
Dp

l,w (Y)
}

≤ un

)
− P

(
max
l∈An

{
1
σ
D̃p

l,w (Y)
}

≤ un

)∣∣∣∣ (26)

≤ 1
2π

∑
l1∈Ai,l2∈Aj

i =j

∣∣Λl1,l2 − Λ̃l1,l2

∣∣ (1 − Λ2
l1,l2

)−1/2 exp
(
− u2

n

1 + Λl1,l2

)

<∼

|An|/|A0|∑
i=0

∑
l1∈Ai

l2∈Ai+1

∣∣Λl1,l2 − Λ̃l1,l2

∣∣ (1 − Λ2
l1,l2

)−1/2 exp
(
− u2

n

1 + Λl1,l2

)

<∼
|An|
|A0|

|A0|∑
l=1

l∑
j=1

Λj

(
1 − Λ2

j

)−1/2 exp
(
−2 log(n) − log log(n)

1 + Λj

)

<∼ log(n) |An|
|A0|

|A0|∑
l=1

l∑
j=1

Λj

(
1 − Λ2

j

)−1/2 exp
(
−2 log(n)

1 + Λj

)
.

Note that for some fixed K > 0 depending on p it must hold that Λj ≤
min (jK,w − wρ) /w. Therefore the first term after the double sum can be
bounded as follows:

Λj

(
1 − Λ2

j

)−1/2 ≤ Λj (1 − Λj)−1/2

≤ min (jK,w − wρ) /
√

(w − min (jK,w − wρ))w
≤ min (jK,w − wρ) /

√
w. (27)

For the exponential term put 2/(1 + Λj) = 1 + δj . The following holds:

δj = (1 − Λj) / (1 + Λj)
≥ (w − min (jK,w − wρ)) / (w + min (jK,w − wρ))
≥ (w − min (jK,w − wρ)) /2w. (28)

Therefore substituting (27) and (28) into (26) we obtain the following:

(26) <∼

√
log(n)
n

|An|
|A0|

l∑
j=1

min (jK,w − wρ)
(
n

1
2w

)−(w−min(jK,w−wρ))

=
√

log(n)
n

|An|
|A0|

⎧⎨⎩
�|A0|/K�∑

l=1

l∑
j=1

jK
(
n

1
2w

)−(w−jK)
+ . . .

· · · +
|A0|∑

l=�|A0|/K�+1

l∑
j=1

(w − wρ)
(
n

1
2w

)wρ

⎫⎬⎭ . (29)
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The first sum in (29) can be bounded as follows:

�|A0|/K�∑
l=1

l∑
j=1

jK
(
n

1
2w

)−(w−jK)
<∼ n−1/2

∫ �|A0|/K�+1

1

∫ y+1

1
x
(
n

1
2w

)Kx

dxdy

<∼ wn−w−(1−ρ)/2. (30)

The second sum in (29) can be bounded as follows:

|A0|∑
l=�|A0|/K�+1

l∑
j=1

(w − wρ)
(
n

1
2w

)wρ

<∼ wn−w−(1−ρ)/2
|A0|∑

l=�|A0|/K�+1

(l)

<∼ w3n−w−(1−ρ)/2. (31)

Finally plugging (30) and (31) into (26) and using the fact that |An|/|A0| ∼
n/(w + wρ) we obtain the following for some C > 0 depending on ρ as long as
n is sufficiently large:

(26) <∼

√
log(n)
n

|An|
|A0|

{
n−w−(1−ρ)/2 (w + w3)}

<∼ log5/2(n)n−w−(1−ρ)/2

<∼ exp (−C logρ(n)) .

STEP 3: we now prove Theorem 6.1. Using Lemma 6.4 and part (i) of Lemma
6.6 and noting that u2

n/w ∼ 2/c gives the following for any i = 0, . . . , |An| − 1

P

(
max
l∈Ai

{
1
σ
Dp

l,w (Y)
}

> un

)
∼
(w
n

)(2Cp

c

)
F

(
2Cp

c

)
e−x. (32)

It is evident that

P

(
Mσ

c log(n) (Y) ≤ un

)
≤ P

(
max
l∈An

{
1
σ
Dp

l,w (Y)
}

≤ un

)
.

Therefore (32), the results of step 2, and that |An|/|A0| ∼ n/w imply that

lim
n→∞

P

(
Mσ

c log(n) (Y) ≤ un

)
≤ lim

n→∞

{
P

(
max
l∈An

{
1
σ
D̃p

l,w (Y)
}

≤ un

)
+ O (exp (−C logρ(n)))

}
= lim

n→∞

(
1 −
(w
n

)(2Cp

c

)
F

(
2Cp

c

)
e−x

)|An|/|A0|

= exp
(
−
(

2Cp

c

)
F

(
2Cp

c

)
e−x

)
.
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Going the other way it is also evident that

P

(
Mσ

c log(n) (Y) ≤ un

)
≥ P

(
max
l∈An

{
1
σ
Dp

l,w (Y)
}

≤ un

)
− P

(
max
l∈Bn

{
1
σ
Dp

l,w (Y )
}

> un

)
.

Using (32) and the results of Steps 1 and 2 gives the following:

lim
n→∞

P

(
Mσ

c log(n) (Y) ≤ un

)
≥ lim

n→∞

{
P

(
max
l∈An

{
1
σ
D̃p

l,w (Y )
}

≤ un

)
−O (exp (−C logρ(n))) −O

(
wρ

w + wρ

)}
= lim

n→∞

(
1 −
(w
n

)(2Cp

c

)
F

(
2Cp

c

)
e−x

)|An|/|A0|

= exp
(
−
(

2Cp

c

)
F

(
2Cp

c

)
e−x

)
.

Therefore, the theorem is proved.

6.3. Proof of Theorem 2.1

Proof. Given the result in part (i), part (ii) follows immediately from Lemma
6.2. For the proof of part (i) write kn = �loga(W )� and for some A > 0 introduce
the restrictions of the a-adic grid defined in (5) to scales no larger than WaA:

G− (A) =
{
(l, w) ∈ N

2 | w ∈ W−(A), 1 ≤ l ≤ n− w
}

W− (A) =
{
w =

⌊
ak
⌋
| kn ≤ k ≤ kn + A

}
.

Introduce also the restriction of (5) to scales strictly larger than WaA:

G+ (A) =
{
(l, w) ∈ N

2 | w ∈ W+(A), 1 ≤ l ≤ n− w
}

W+ (A) =
{
w =

⌊
ak
⌋
| kn + A < k ≤ �loga(n/2)�

}
.

The proof proceeds in four steps.
STEP 1: we first show that the behaviour of the tests statistic on large scales

is asymptotically unimportant for the maximum. Making use of lemma 6.3 we
have the following:

P

(
max

(l,w)∈G+(A)

{
1
σ
Dp

l,w (Y)
}

> un

)

≤
�loga(n/2)�∑
k=kn+A

⌊
n/ak

⌋
−1∑

i=0
P

(
max

{
1
σ
Dp

l,�ak� (Y) | i×
⌊
ak
⌋
< l ≤ (i + 1) ×

⌊
ak
⌋}

> un

)
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≤
�loga(n/2)�∑
k=kn+A

( n

ak

)
P

(
sup

t∈[0,1)
{ξ (t)} > un

)

<∼

�loga(n/2)�∑
k=kn+A

( n

ak

)
une

−u
2
n/2

<∼
a−A

1 − a−1 .

Finally, sending A → ∞ the claim is proved.
STEP 2: next we show that for any fixed A the dependence between maxima

occurring over different scales in W−(A) is asymptotically unimportant for the
overall maximum. Write

Λl1,w1,l2,w2 = Cov
(

1
σ
Dp

l1,w1
(Y), 1

σ
Dp

l2,w2
(Y)
)
,

and let σ−1D̃
(p)
l,w (Y) be random variables with the same marginal distribution

as σ−1Dp
l,w (Y) and covariance as shown below:

Λ̃l1,l2,w1,w2 =
{

Λl1,l2,w1,w2 if w1 = w2

0 else
.

Note that for each a > 1 there will be a Λa ∈ (0, 1) depending only on a such
that for any w1 �= w2 and all permissible l1, l2 it holds that Λl1,w1,l2,w2 ≤ Λa.
Therefore using Lemma 6.1 we have the following:∣∣∣∣P( max

(l,w)∈G−(A)

{
1
σ
Dp

l,w (Y)
}

≤ un

)
− P

(
max

(l,w)∈G−(A)

{
1
σ
D̃p

l,w (Y)
}

≤ un

)∣∣∣∣
≤ 1

2π
∑

w1,w2∈W−(A)
w1 =w2

∑
1≤l1≤n−w1
1≤l2≤n−w2

∣∣∣∣Λl1,w1
l2,w2

− Λ̃l1,w1
l2,w2

∣∣∣∣(1 − Λ2
l1,w1
l2,w2

)−1/2

exp

⎛⎜⎝− u2
n

1 + Λ2
l1,w1
l2,w2

⎞⎟⎠

<∼
∑

w1,w2∈W−(A)
w1 =w2

∑
1≤l1≤n−w1
1≤l2≤n−w2

|l1−l2|<max(w1,w2)

Λl1,w1
l2,w2

(
1 − Λ2

l1,w1
l2,w2

)−1/2

exp

⎛⎜⎝− u2
n

1 + Λ2
l1,w1
l2,w2

⎞⎟⎠

<∼ log(n)
∑

w1,w2∈W−(A)
w1 =w2

∑
1≤l1≤n−w1
1≤l2≤n−w2

|l1−l2|<max(w1,w2)

(
Λa√

1 − Λ2
a

)
exp
(
−2 log(n)

1 + Λa

)

<∼ (1 + A)2 aA log2(n) × n− 1−Λa
1+Λa .

Since Λa < 1 the statement is proved.
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STEP 3: we now show that if we pass to a sub-sequence of n’s on which
the quantity bn = a�loga(W )�/W converges to some constant b the sequence of
normalised maxima {

anM
σ
G(W,a) (Y) − bn | n ∈ N

}
(33)

converges weakly to a Gumbel distribution. On such a sub-sequence for each
j ∈ N we have that akn+j ∼ ajbd× log(n). Therefore from Theorem 6.1 we have
that

P

(
max

1≤l≤n−�akn+j�

{
1
σ
Dp

l,�akn+j� (Y)
}

≤ un

)
∼ exp

(
−
(

2Cp

ajbd

)
F

(
2Cp

ajbd

)
e−τ

)
.

The following inequality is evident:

P

(
Mσ

G(W,a) (Y) ≤ un

)
≤ P

(
max

(l,w)∈G−(A)

{
1
σ
Dp

l,w (Y)
}

≤ un

)
.

Therefore (6.3) and the result from step 2 imply that

lim sup
n→∞

P

(
Mσ

G(W,a) (Y) ≤ un

)
≤ exp

⎛⎝−
∞∑
j=0

(
2Cp

ajbd

)
F

(
2Cp

ajbd

)
e−x

⎞⎠ .

Note that because a > 1 by part (ii) of Lemma 6.5 the above sum converges.
Going the other way the following inequality is also evident:

P

(
Mσ

G(W,a) (Y) ≤ un

)
≥ P

(
max

(l,w)∈G−(A)

{
1
σ
Dp

l,w (Y)
}

≤ un

)
− P

(
max

(l,w)∈G+(A)

{
1
σ
Dp

l,w (Y)
}

> un

)
.

Therefore (6.3) and the result from steps 1 and 2 imply the following:

lim inf
n→∞

P

(
Mσ

G(W,a) (Y) ≤ un

)
≥ exp

⎛⎝−
∞∑
j=0

(
2Cp

ajbd

)
F

(
2Cp

ajbd

)
e−x

⎞⎠ .

Therefore, the statement is proved.
STEP 4: we now prove the result in part (i). Since bn may have any sub-

sequential limit between 1/a and 1 it follows from step 4 that the sequence of
random variables (33) is tight. Using part (i) of Lemma 6.5 the constants in (7)
are easily recognised as the largest and smallest constants which may appear in
the extreme value limit.

6.4. Proof of Theorem 2.2

Proof. With W satisfying Assumption 2.5 and omitting dependence on x intro-
duce the following notation:

un,W =
√

2 log (n/W ) +
(

1
2 log log(n/W ) − log(

√
π) + x

)
/
√

2 log (n/W ).
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We first investigate the be behaviour of local test statistics (2) restricted to
a particular scale of the order O(W ) under the null of no change points. For
some c > 0 put w = �cW �, and write

Mτ
cW (Y) = max

{
1
τ
Dp

l,w (Y) | 1 ≤ l ≤ n− w

}
.

Putting B = (B(1), . . . , B(n))′, where {B(t)}t>0 is the process introduced in
Assumption 2.4, making use of Assumption 2.4 the following holds:

Mτ
n,W (Y) = max

{
Dp

l,w (B) | 1 ≤ l ≤ n− w
}

+ OP

(√
n

2
2+ν /W

)
. (34)

Moreover, using Lemma 6.3 and arguing as in the proof of Theorem 6.1 the
following holds:

P
(
M1

cW (B) ≤ un,W
)
∼

�n/w�∏
i=0

P

(
max

{
Dp

l,w (B) | i× w < l ≤ (i + 1) × w
}
≤ un,W

)

∼
[
1 − P

(
sup

l∈[0,1)
{ξ (l)} > un,W

)]�n/w�

∼ exp
(
−Cp

c
e−x

)
. (35)

Therefore, combining (34) and (35) and arguing as in the proof of Theorem 2.1,
we immediately have that

P (Mτ
cW (Y) ≤ un,W ) ∼ exp

(
−Cp

c
e−x

)
.

On a sub-sequence of n’s for which the quantity bn = a�loga(W )�/W converges
to some constant b, arguing as in the proof of Theorem 2.1, we therefore have
under the null of no change points that

P

(
Mτ

G(W,a) (Y) ≤ un,W

)
→ exp

(
−
(

b−1Cp

1 − a−1

)
e−x

)
.

However, it is again clear that bn can have any sub-sequential limit between a−1

and 1, so part (i) of the theorem is proved. Part (ii) again follows from Lemma
6.2.

6.5. Proof of Lemma 3.1

Proof. Write m = (n− p− 1) / (p + 1) and cΦ = Φ
(
2Φ−1 (3/4)

)
−3/4. For some

ε > 0 not depending on n put Aε =
(
3/cΦ +

√
9/c2Φ + 2ε

)
/2, and therefore

define
δ = Aεσ

cΦ

(
1√
m

∨ N

m

)
. (36)
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We will show that with n sufficiently large

P (|σ̂MAD − σ| > δ) ≤ 2(p + 1)e−ε, (37)

which implies the desired result. For simplicity assume n− (p+ 1) is a multiple
of (p + 1) and introduce the following sets:

Ij = {p + 1 ≤ t ≤ n | (t + j) mod (p + 1) = 0}
Iη = ∪N

k=1 {ηk, . . . , ηk + (p + 1)}
Ij,1 = Ij \ Iη
Ij,2 = Ij ∩ Iη.

Introducing also the random variables

Bδ
t = 1

⎧⎨⎩|Xt| > Φ−1(3/4)

√√√√p+1∑
i=0

(
p + 1
i

)2

[σ + δ]

⎫⎬⎭ , t = p + 1, . . . , n

and put pδ = E
(
Bδ

t | t �∈ Iη
)
. The following holds via Hoeffding’s inequality:

P (σ̂MAD − σ > δ)

= P

⎛⎝median {|Xp+1|, . . . , |Xn|}

Φ−1 (3/4)
√∑p+1

i=0
(
p+1
i

)2 > σ + δ

⎞⎠
≤

p∑
j=0

P

⎛⎝∑
t∈Ij,1

Bδ
t +

∑
t∈Ij,2

Bδ
t >

n− (p + 1)
2(p + 1)

⎞⎠
≤

p∑
j=0

P

⎛⎝∑
t∈Ij,1

(
Bδ

t − pδ
)
>

n− (p + 1)
2(p + 1) − |Ij,2| − pδ |Ij,1|

⎞⎠
≤ (p + 1) exp

(
−2m

[
(1/2 − pδ)2 + (N/m)2 − 2 (1/2 − pδ) (N/m)

]2)
.

(38)

We now bound pδ from above and from below. For the lower bound, putting
Z ∼ N (0, 1) we have that

pδ = P
(
|Z| > Φ−1(3/4) [1 + δ/σ]

)
= 2
(

1 −
∫ Φ−1(3/4)

−∞
φ (x [1 + δ/σ]) dx [1 + δ/σ]

)
≥ 2
(
1 − Φ

(
Φ−1(3/4)

)
[1 + δ/σ]

)
= 1/2 − (3/2) × (δ/σ), (39)

which holds because for all α > 1 and any x ∈ R it holds that φ(αx) ≤ φ(x). For
the upper bound write f(x) = Φ

(
Φ−1 (3/4) (1 + x)

)
for x ∈ [0, 1]. Then using
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the facts that (i) f(0) = 3/4, (ii) f(1) = Φ
(
2Φ−1 (3/4)

)
, (iii) Φ(·) is concave on

[0, 1], and (iv) δ/σ ≤ 1 for n sufficiently large, we obtain that

pδ = 2
(
1 − Φ

(
Φ−1 (3/4) [1 + δ/σ]

))
≤ 1/2 − cΦδ

σ
(40)

for n sufficiently large. Therefore plugging (39), (40) and (36) into (38) we obtain
that

P (σ̂MAD − σ > δ)
≤ (p + 1)

× exp
(
−2m

[
A2

ε

(
m−1/2 ∨N/m

)2
+ (N/m)2 − 3Aε

cΦ

(
m−1/2 ∨N/m

)
(N/m)

])
≤ (p + 1) exp

(
−2m

[(
A2

ε −
3Aε

cΦ

)(
m−1/2 ∨N/m

)2
])

≤ (p + 1) exp (−ε) .

Similar arguments give identical bounds on the probability that σ̂MAD − σ is
smaller that a given δ, which overall establishes (37).

6.6. Proof of Lemma 3.2

Proof. Write γi = max1≤t≤n E |ζt/σ|i for each i = 2, 3 and put Dp = D̃
′
pD̃p

where D̃p is the n×n difference matrix such that each entry in the vector Dpx
is the (p + 1)-th difference of the corresponding entry in the n-vector x scaled
by

1/

√√√√p+1∑
i=0

(
p + 1
i

)2

.

Writing Y = f + ζ the equation below follows directly from equation (6) in
[24].

E

[∣∣σ̂2
DIF − σ2∣∣2] ≤ [(f ′Dpf

)2 + 4σ2f ′D2
pf + 4f ′ (Dpdiag (Dp)1)σ3γ3 + . . .

· · · + σ4trace
{

diag (Dp)2
}

(γ4 − 3) + 2σ4trace
(
D2

p

)]
/ (n− p− 1)2

Since the noise terms have bounded fourth moment and function f◦(·) is assumed
to be bounded the following must hold:

σ4trace
{

diag (Dp)2
}

(γ4 − 3) + 2σ4trace
(
D2

p

)
= O (n)(

f ′Dpf
)2 + 4σ2f ′D2

pf + 4f ′ (Dpdiag (Dp)1)σ3γ3 = O
(
N2) .
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It therefore follows that

E

[∣∣σ̂2
DIF − σ2∣∣2] ≤ O

(
1
n
∨ N2

n2

)
,

and as such the desired result follows by Chebyshev’s inequality.

6.7. Proof of Lemma 3.3

Proof. Write Ȳ =
(
Ȳ1,W ′ , . . . , Ȳ�n/W ′�,W ′

)′ and let f̄ and ζ̄ be defined analo-
gously. Let Dp be as defined in the proof of the last lemma, with its dimensions
suitably adjusted. Finally put m = �n/W ′� − (p + 1). We can therefore write
τ̂2
DIF = 1

mW Ȳ ′DpȲ , and the absolute difference between our estimator and the
truth can be bounded as follows:∣∣τ̂2

DIF − τ2∣∣ = ∣∣∣∣ 1
mW ′

(
f̄ + ζ̄

)′
Dp

(
f̄ + ζ̄

)
− τ2

∣∣∣∣
<∼

∣∣∣∣ 1
mW ′ ζ̄

′Dpζ̄ − 1
mW ′E

(
ζ̄′Dpζ̄

)∣∣∣∣+ ∣∣∣∣ 1
mW ′E

(
ζ̄′Dpζ̄

)
− τ2

∣∣∣∣
+ 1

mW ′
∣∣f̄ ′Dpf̄

∣∣+ 1
mW ′

∣∣f̄ ′Dpζ̄
∣∣

= T1 + T2 + T3 + T4.

We now bound each of the terms in turn. Introducing the notation

ψp,j = (−1)p+1−j

(
p + 1
j

)
/

√√√√p+1∑
i=0

(
p + 1
i

)2
.

We can therefore write
1

mW ′ ζ̄
′Dpζ̄

= 1
m

⌊
n/W ′⌋∑
s=p+2

⎛⎝p+1∑
j=0

ψp,j

(
ζ̄s−j,W ′/

√
W ′
)⎞⎠2

= 1
m

⌊
n/W ′⌋∑
s=p+2

⎡⎣p+1∑
j=0

ψ2
p,j

(
ζ̄s−j,W ′/

√
W ′
)2

+
∑
k =l

0≤k,l≤p+1

ψp,kψp,l

(
ζ̄s−k,W ′/

√
W ′
)(

ζ̄s−l,W ′/
√
W ′
)⎤⎥⎥⎦ .

From which it follows that

1
mW ′E

(
ζ̄′Dpζ̄

)
=

p+1∑
j=0

ψ2
p,j

⎛⎝γ0 + 2
W ′−1∑
h=1

(
1 − h

W ′

)
γh

⎞⎠
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+
∑
k =l

0≤k,l≤p+1

ψp,kψp,l

⎛⎝γW ′|k−l| + 2
W ′−1∑
h=1

(
1 − h

W ′

)
γW ′|k−l|+h

⎞⎠ .

Using these facts term T1 can be bounded as follows

T1 ≤

∣∣∣∣∣∣ 1
m

⌊
n/W ′⌋∑
s=p+2

p+1∑
j=0

ψ2
p,j

⎛⎝(ζ̄s−j,W ′/
√
W ′
)2

− γ0 − 2
W ′−1∑
h=1

(
1 − h

W ′

)
γh

⎞⎠∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
1
m

⌊
n/W ′⌋∑
s=p+2

∑
k =l

0≤k,l≤p+1

ψp,kψp,l

((
ζ̄s−k,W /

√
W ′
)(

ζ̄s−l,W ′/
√
W ′
)

− γW ′|k−l| − 2
W ′−1∑
h=1

(
1 − h

W ′

)
γW ′|k−l|+h

⎞⎠∣∣∣∣∣∣
= T1,1 + T1,2.

For the first term we have that

T1,1 =

∣∣∣∣∣∣ 1
m

⌊
n/W ′⌋∑
s=p+2

p+1∑
j=0

ψ2
p,j

⎛⎝ 1
W

W ′(s−j)∑
t=W ′(s−j−1)+1

ζ2
t

+ 2
W ′

W ′−1∑
h=1

W ′(s−j)−h∑
t=W ′(s−j−1)+1

ζtζt+h − γ0 − 2
W ′−1∑
h=1

(
1 − h

W ′

)
γh

⎞⎠∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1
m

⌊
n/W ′⌋∑
s=p+2

p+1∑
j=0

ψ2
p,j

⎛⎝ 1
W ′

W ′(s−j)∑
t=W ′(s−j−1)+1

(
ζ2
t − γ0

)

+
W ′−1∑
h=1

1
(W ′ − h)

W ′(s−j)−h∑
t=W ′(s−j−1)+1

(
1 − h

W ′

)
(ζtζt+h − γh)

⎞⎠∣∣∣∣∣∣
≤

p+1∑
j=0

ψ2
p,j

⎧⎨⎩
∣∣∣∣∣∣ 1
mW ′

⌊
n/W ′⌋∑
s=p+2

W ′(s−j)∑
t=W ′(s−j−1)+1

(
ζ2
t − γ0

)∣∣∣∣∣∣
+

W ′−1∑
h=1

∣∣∣∣∣∣ 1
m (W ′ − h)

⌊
n/W ′⌋∑
s=p+2

W ′(s−j)−h∑
t=W ′(s−j−1)+1

(ζtζt+h − γh)

∣∣∣∣∣∣
⎫⎬⎭

=
p+1∑
j=0

ψ2
p,j

⎧⎨⎩OP

(
1√
mW ′

)
+

W ′∑
h=1

OP

(
1√

m (W ′ − h)

)⎫⎬⎭
≤ OP

(
W ′
√
n

)
.
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Where in the last line we have used the fact that m ∼ n/W ′ along with the fact
that
W ′−1∑
h=1

1√
n
(
1 − h

W ′

) <
1√
n

(∫ W ′−1

1

1√
1 − x

W ′
dx +

√
W ′

)
= 2W ′

√
n

(1 + o(1)) .

Arguing analogously we likewise have that T1,2 ≤ OP

(
W ′
√
n

)
. For the second

term we have that

T2 =

∣∣∣∣∣∣γ0 + 2
W ′−1∑
h=1

(
1 − h

W ′

)
γh

+
∑
k =l

0≤k,l≤p+1

ψp,kψp,l

⎛⎝γW ′|k−l| + 2
W ′−1∑
h=1

(
1 − h

W ′

)
γW ′|k−l|+h

⎞⎠− γ0 − 2
∞∑
h=1

γh

∣∣∣∣∣∣∣∣
≤ 2

∣∣∣∣∣∣
W ′−1∑
h=1

(
1 − h

W ′

)
γh −

⎧⎨⎩
W ′−1∑
h=1

+
∞∑

h=W ′

⎫⎬⎭ γh

∣∣∣∣∣∣
+ 2

∑
k =l

0≤k,l≤p+1

ψp,kψp,l

∣∣∣∣∣∣
W ′−1∑
h=0

γW ′|k−l|+h

∣∣∣∣∣∣
≤ 2

W ′−1∑
h=1

h

W ′ |γh| + 2
∞∑

h=W ′

|γh| + 2
∑
k =l

0≤k,l≤p+1

ψp,kψp,l

W ′−1∑
h=0

∣∣γW ′|k−l|+h

∣∣

<
2
W ′

⎛⎜⎜⎝ ∞∑
h=1

h |γh| +
∑
k =l

0≤k,l≤p+1

ψp,kψp,l

W ′−1∑
h=0

(W ′|k − l| + h)
∣∣γW ′|k−l|+h

∣∣
⎞⎟⎟⎠

= O
(
W ′−1) .

For the third term we have that T3 ≤ O
(

NW ′2

n

)
and for the fourth term we

likewise have that T4 ≤ O
(

NW ′2

n

)
. Combining the bounds on terms T1, T2, T3,

and T4 the stated result follows.

6.8. Proof of Theorem 3.1

Proof. With slight abuse of notation write I ∈ G (W,a) if I = {l, . . . , l + w − 1},
where (l, w) ∈ G (W,a). For each k = 1, . . . , N introduce the set of intervals

Ik =
{
I∈ G (W,a) | ηk ∈ I,

⌊
|I ∩ {1, . . . , ηk}|

p + 2

⌋
= (p + 1)

⌊
|I ∩ {ηk + 1, . . . , n}|

p + 2

⌋}
.
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Moreover assume that

δk > 2a (p + 2)

⎛⎝W ∨ n
2p∗k

2p∗
k
+1

(
16C2

p,p∗
k
τ2λ2

α∣∣Δp∗
k,k

∣∣2
) 1

2p∗
k
+1
⎞⎠ , k = 1, . . . , N.

Since λ2
α = O (log(n)) for any fixed α and either of threshold (6) or threshold

(8), this assumption can be seen to correspond to condition (16) in Theorem
3.1. For ease of reading introduce the notation

V α
k (n) = n

2p∗k
2p∗

k
+1
(
16C2

p,p∗τ2λ2
α/
∣∣Δp∗

k,k

∣∣2) 1
2p∗

k
+1

, k = 1, . . . , N.

Due to lemma 6.7, testing for a change point on an interval I ′ ∈ Ik using (3) with
threshold λα the k-th change point will be detected as long as |I ′| > (p+1)V α

k (n)
on the event {

Lτ̂
G(W,a) (ζ) ≤ λα

}
∩ {τ̂ < 2τ} . (41)

Therefore, there must be an interval I ′′ ∈ Ik with |I ′′| < a (p + 2) (W ∨ V α
k (n))

on which the k-th change can be detected. By the assumption on the δ’s and
the above discussion, the shortest interval in G (W,a) on which the k-th chaneg
point can be detected will not overlap with the shortest intervals on which the
(k − 1)-th and (k + 1)-th changes will be detected. Finally, on the event (41)
no test carried out on a sub-interval which are free from change points will
spuriously reject. Therefore, events E∗

3 , E∗
4 , and E∗

5 are verified.

6.9. Proof of Lemma 3.4

Proof. We must show that sSIC(p′) > sSIC(p) for all p′ �= p in the set
{
p, . . . , p

}
.

We begin with the case p′ > p for which we have that

sSIC(p′) − sSIC(p)

= n

2 log
(

1 −
σ̂2
p − σ̂2

p′

σ̂2
p

)
+
[(

N̂p′ + 1
)

(p′ + 1) −
(
N̂p + 1

)
(p + 1)

]
logα(n)

:= T1 + T2.

Observe that by Corollary 3.2 on a set with probability 1 + o(1) we will have
that N̂p′ = N̂p = N . Therefore, the fact that the ζ’s are Gaussian combined
with the �2 risk of constrained least squares spline estimators, which can be
found for example in [82], guarantee that on a set with probability 1 + o(1) we
will have that |σ̂2

p′ − σ2| <∼ n−1 log(n) for each p′ ≥ p. Consequently

T1 >∼ −n

2
(
σ̂2
p − σ̂2

p′
)
/σ̂2

p ≥ −n

2
(∣∣σ̂2

p − σ2∣∣+ ∣∣σ̂2
p′ − σ2∣∣) /σ̂2

p >∼ − log(n).
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Again by Corollary 3.2 we have that with high probability

T2 = (N + 1) (p′ − p) logα(n) � log(n).

Consequently, for n sufficiently larger we have that with high probability sSIC(p′)−
sSIC(p) > 0 for p′ > p. Next we consider the case p′ < p for which we have that

sSIC(p′) − sSIC(p)

= n

2 log
(
σ̂2
p′

σ̂2
p

)
+
[(

N̂p′ + 1
)

(p′ + 1) −
(
N̂p + 1

)
(p + 1)

]
logα(n)

:= T1 + T2. (42)

By condition (iii) on a high probability set we must have that T1 is negative and
of the order O (n log(n)), while N̂p′ will be of the order O(n/ log(n)). Therefore,
since α > 1 we are done. Since (p − p) = O(1) a union bound argument is
sufficient to establish that with n sufficiently large, on a high probability set,
sSIC(p′) > sSIC(p) for all p′ �= p. This completes the proof.

6.10. Remarks on Assumption 3.3

We remark that 3.3 was made for ease of technical exposition, and although
it does not seem straightforward to relax the assumption in full generality we
conjecture that Algorithm 1 is able to localize all change points at the optimal
rate when the assumption is violated, albeit with different leading constants
in (16). The reason for the claim is the following: Assumption 3.3 is made to
avoid the possibility of signal cancellation will, however examining the proof of
Lemma 6.7 it can be seen that there are only p values of δ′ for which exact signal
cancellation occurs, and for any such δ′ increasing or decreasing δ′ by a constant
will result in an interval of the same order for which no signal cancellation occurs.

Here we show that Algorithm 1 can localize change points at the optimal
rate in the absence of Assumption 3.3 the when signal is piecewise linear. More-
over we provide some simulated examples of piecewise polynomial signals which
violate Assumption 3.3 and show that the change points are still detected.

6.10.1. Relaxing Assumption 3.3 for piecewise linear signals signals

Here we show that for piecewise linear signals Algorithm 1 is able to localize all
changes at the minimax optimal rate when Assumption 3.3 does not hold, pro-
vided the remaining assumption in Theorem 3.1 hold. Without loss of generality
we consider the case of a single change:

f◦ (t/n) =
{
α0 + α1 (t/n− η/n) if t ≤ η

β0 + β1 (t/n− η/n) if t > η
.
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Therefore we will show that using the threshold λ = τ̂ λ̄, for some λ̄ > 0, on a
high probability set the change can be detected on an interval of length at most

Cn
2p∗

2p∗+1
(
16τ2λ̄2/Δ2

p∗
) 1

2p∗+1 ,

where C is a sufficiently large constant and p∗ ∈ {0, 1} is defined as in (14).
If sign(α0 − β0) = sign(α1 − β1) this can be shown precisely as in Lemma 6.7.
Therefore, we examine the setting in which sign(α0 − β0) �= sign(α1 − β1), for
which there are three possible cases of interest:

• Case I: Δ0 = Δ1 (δ/n)
• Case II: Δ0 > Δ1 (δ/n)
• Case III: Δ0 < Δ1 (δ/n)

Similar to Lemma 6.7, without loss of generality we let δ′ be an integer such
that the change occurs at location δ′ and put m = (p+ 2)δ′. We therefore need
to show that the statistic |D1

1,m (Y ) | can detect the change point with high
probability for an appropriately chosen δ′. For ease of reading introduce the
notation

C1 = 1/

√√√√ 2∑
i=0

(
2
i

)2

gδ′ = 1
δ′

δ′∑
t=1

(1 − t/δ′) for δ′ ∈ N.

Case I: let δ′ be an integer for which δ′ < δ/2. Using the facts that Δ1/Δ0 =
n/δ and gδ′ < 1/2 for all δ′ we have that∣∣D1

1,m (f)
∣∣ ≥ C1

√
δ′ (Δ0 − gδ′Δ1 (δ′/n))

= C1
√
δ′ (Δ0 − gδ′Δ0 (δ′/δ))

≥ 3C1

4
√
δ′Δ0

and the desired result follows by rearranging (23).
Case II: this can be treated similarly to Case I.
Case III: note that there is a δ′′ for which Δ0 = Δ1 (δ′′/n). We first consider

the setting where δ′′ < (2/C1)2
(
16τ2λ̄2/Δ2

1
)1/3, in which case letting δ′ be such

that δ′ > 24δ′′, and using the fact that gδ′ ≥ 1/12 for all δ′ > 1 by (24), we
have that ∣∣D1

1,m (f)
∣∣ ≥ C1

√
δ′ (gδ′Δ1 (δ′/n) − Δ0)

≥ C1

12
√
δ′ (Δ1 (δ′/n) − 12Δ0)

≥ C1

24
√
δ′Δ1 (δ′/n) .
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Therefore, rearranging (23) and accounting for the facts that we must have
δ′ > 24δ′′ we obtain that the change will be detected as soon as

δ′ ≥ 24 (2/C1)2
(
16τ2λ̄2/Δ2

1
)1/3

.

Finally we consider the case δ′′ ≥ (2/C1)2
(
16τ2λ̄2/Δ2

1
)1/3. In this case, letting

δ′ ≤ δ′′ and using the fact that Δ0 ≥ Δ1 (δ′/n) for all such δ′ we obtain that∣∣D1
1,m (f)

∣∣ ≥ C1
√
δ′ (Δ0 − gδ′Δ1 (δ′/n))

≥ C1

2
√
δ′Δ0

≥ C1

2
√
δ′Δ1 (δ′/n) ,

and as in the previous cases the desired result follows by rearranging (23).

6.10.2. Examples of higher order polynomials which violate 3.3

Here we give simulated examples of higher order piecewise polynomial signals
which violate Assumption 3.3, and show that Algorithm 1 is still able to detect
the change points in practice. Specifically we consider three piecewise quadratic
signals with a single change point at location η:

f◦ (t/n) =
{
α0 + α1 (t/n− η/n) + α2 (t/n− η/n)2 if t ≤ η

β0 + β1 (t/n− η/n) + β2 (t/n− η/n)2 if t > η
(43)

We consider three instances of (43) where in each case the sample size is n =
500, the change point occurs at location η = n/2, and changes occur in two
derivatives of different order in such a way that the changes work against each
other in the sense that they have different signs and the signal strengths as
measured by Δj (δ/n)j for j = 0, 1, 2 exactly match. The three models are
denoted by M1, M2, and M3 and the values of the α’s and β’s are given in Table
8 below.

We contaminate the signals with independent noise having marginal N
(
0, 0.52)

distribution and apply Algorithm 1 with parameter α = 0.1. The results of this
experiment, which was run with random seed 42 in R, are shown in Figure 6.
In all three cases Algorithm 1 returns a single interval which contains the true
change point location.

Table 8

Values of α’s and β’s for three instances of (43) which violate Assumption 3.3 when the
sample size is n = 500 and the change point occurs at location η = n/2.

α0 β0 α1 β1 α2 β2
M1 −1/2 1/2 −2 2 0 0
M2 0 0 6 −6 −12 12
M3 1/2 −1/2 0 0 −2 2
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Fig 6: Piecewise polynomial signals which violate Assumption 3.3 with coef-
ficients specified in Table 8, contaminated with i.i.d. Gaussian noise having
standard deviation σ = 0.5 (left column). Intervals of significance with uniform
90% coverage returned by our procedure (right column). Black dashed lines (- -
-) represent underlying piecewise polynomial signal, light grey lines (—) repre-
sent the observed data sequence, red shaded regions (�) represent intervals of
significance returned by our procedure.
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7. Additional numerical illustrations

To further investigate the coverage provided by our method in finite samples,
in this section we reproduce the simulation study in Section 4.2 for signals of
length n ∈ {100, 500, 1000, 2000}. The results are shown in Tables 9, and confirm
that for a range of signal lengths our procedure continues to provide accurate
coverage.

Table 9

Proportion of times out of 100 replications each method returned no intervals of significance
when applied to a noise vector of length n ∈ {100, 500, 1000, 2000}, as well as whether each

method is theoretically guaranteed to provide correct coverage.
degree 0 degree 1 degree 2

DIF1-MAD 0.93 0.92 0.94
n = 100 DIF2-SD 1.00 1.00 1.00

DIF2-LRV 0.98 0.92 0.95
DIF1-MAD 0.93 0.97 0.94

n = 500 DIF2-SD 1.00 1.00 1.00
DIF2-LRV 0.99 0.98 0.96
DIF1-MAD 0.93 0.92 0.93

n = 1000 DIF2-SD 1.00 1.00 0.99
DIF2-LRV 0.98 0.98 0.99
DIF1-MAD 0.88 0.93 0.95

n = 2000 DIF2-SD 1.00 0.99 0.99
DIF2-LRV 0.98 0.98 0.95

(a) Coverage on noise type N1 with σ = 1

degree 0 degree 1 degree 2
DIF1-MAD 0.88 0.64 0.81

n = 100 DIF2-SD 0.99 0.98 0.99
DIF2-LRV 1.00 0.91 0.91
DIF1-MAD 0.52 0.42 0.50

n = 500 DIF2-SD 0.98 0.97 0.99
DIF2-LRV 0.99 0.93 0.94
DIF1-MAD 0.43 0.28 0.39

n = 1000 DIF2-SD 0.94 0.99 0.97
DIF2-LRV 0.91 0.95 0.90
DIF1-MAD 0.23 0.19 0.18

n = 2000 DIF2-SD 0.99 0.97 0.96
DIF2-LRV 0.99 0.97 0.94

(b) Coverage on noise type N2 with σ = 1

degree 0 degree 1 degree 2
DIF1-MAD 0.72 0.71 0.65

n = 100 DIF2-SD 0.98 1.00 0.99
DIF2-LRV 0.95 0.94 0.91
DIF1-MAD 0.40 0.31 0.37

n = 500 DIF2-SD 0.99 0.97 1.00
DIF2-LRV 0.98 0.94 0.91
DIF1-MAD 0.23 0.26 0.37

n = 1000 DIF2-SD 0.98 0.96 0.98
DIF2-LRV 0.98 0.97 0.93
DIF1-MAD 0.17 0.15 0.15

n = 2000 DIF2-SD 0.96 0.98 0.99
DIF2-LRV 0.97 0.98 0.97

(c) Coverage on noise type N3 with σ = 1
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Table 10

Proportion of times out of 100 replications each method returned no intervals of significance
when applied to a noise vector of length n ∈ {100, 500, 1000, 2000}, as well as whether each

method is theoretically guaranteed to provide correct coverage.
degree 0 degree 1 degree 2

DIF1-MAD 0.00 0.00 0.00
n = 100 DIF2-SD 0.00 0.00 0.00

DIF2-LRV 0.74 0.79 0.77
DIF1-MAD 0.00 0.00 0.00

n = 500 DIF2-SD 0.00 0.00 0.00
DIF2-LRV 0.92 0.87 0.91
DIF1-MAD 0.00 0.00 0.00

n = 1000 DIF2-SD 0.00 0.00 0.00
DIF2-LRV 0.95 0.89 0.94
DIF1-MAD 0.00 0.00 0.00

n = 2000 DIF2-SD 0.00 0.00 0.00
DIF2-LRV 0.98 0.98 0.97

(a) Coverage on noise type N4 with σ = 1

degree 0 degree 1 degree 2
DIF1-MAD 0.00 0.00 0.00

n = 100 DIF2-SD 0.00 0.00 0.00
DIF2-LRV 0.75 0.69 0.72
DIF1-MAD 0.00 0.00 0.00

n = 500 DIF2-SD 0.00 0.00 0.00
DIF2-LRV 0.89 0.82 0.88
DIF1-MAD 0.00 0.00 0.00

n = 1000 DIF2-SD 0.00 0.00 0.00
DIF2-LRV 0.98 0.90 0.89
DIF1-MAD 0.00 0.00 0.00

n = 2000 DIF2-SD 0.00 0.00 0.00
DIF2-LRV 0.94 0.98 0.98

(b) Coverage on noise type N5 with σ = 1

degree 0 degree 1 degree 2
DIF1-MAD 0.00 0.00 0.00

n = 100 DIF2-SD 0.00 0.00 0.00
DIF2-LRV 0.97 0.91 0.94
DIF1-MAD 0.00 0.00 0.00

n = 500 DIF2-SD 0.00 0.00 0.00
DIF2-LRV 0.99 1.00 0.99
DIF1-MAD 0.00 0.00 0.00

n = 1000 DIF2-SD 0.00 0.00 0.00
DIF2-LRV 0.95 0.98 0.95
DIF1-MAD 0.00 0.00 0.00

n = 2000 DIF2-SD 0.00 0.00 0.00
DIF2-LRV 0.99 0.97 0.99

(c) Coverage on noise type N6 with σ = 1
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