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Abstract: When modeling multivariate phenomena, properly capturing
the joint extremal behavior is often one of the many concerns. Archimax
copulas appear as successful candidates in case of asymptotic dependence.
In this paper, the class of Archimax copulas is extended via their stochastic
representation to a clustered construction. These clustered Archimax cop-
ulas are characterized by a partition of the random variables into groups
linked by a radial copula; each cluster is Archimax and therefore defined by
its own Archimedean generator and stable tail dependence function. The
proposed extension allows for both asymptotic dependence and indepen-
dence between the clusters, a property which is sought, for example, in
applications in environmental sciences and finance. The model also inher-
its from the ability of Archimax copulas to capture dependence between
variables at pre-extreme levels. The asymptotic behavior of the model is
established, leading to a rich class of stable tail dependence functions.
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1. Introduction

The Archimax copula model introduced by Capéraà, Fougères and Genest (1997)
has been advocated in Chatelain, Fougères and Nešlehová (2020) as a flexible
way to model a group of variables whose asymptotic dependence is driven by a
stable tail dependence function (stdf); or more precisely a random vector whose
dependence structure follows an asymptotic extreme-value regime perturbed by
the same distortion. However, as it is the case for rainfall over large territories
for example, asymptotic independence between certain variables is likely to be
present and this phenomenon cannot be handled by a single Archimax model
without limiting the marginal dependence structure to be an (exchangeable)
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Archimedean copula. In financial applications, a stock portfolio might contain
stocks from the same industry, causing them to be dependent in the extreme
regime, while stocks from different industries might be asymptotically indepen-
dent. Likewise, assuming the same distortion for all variables may not be realistic
when the number of variables is large.

We propose a dependence model based on the survival copula of a nonnega-
tive, real random vector of the form

X = (R1S1, . . . , RKSK) ,

where for all k ∈ {1, . . . ,K}, Rk are nonnegative random variables and Sk are
dk-dimensional random vectors which will be characterized later. More specifi-
cally, each of the vectors RkSk = Rk × (Sk1, . . . , Skdk

) will be defined so as to
have an Archimax survival copula, while conditional independence of the vec-
tors {Sk}Kk=1 given {Rk}Kk=1 will introduce parsimony to the dependence model.
This paper focuses on the survival copula of X, which can subsequently be used
in a copula model with arbitrary margins.

Stochastic representations involving a randomly scaled random vector are
very common in the literature. For example, pseudo-polar representations exist
for elliptical (see Fang, Kotz and Ng (1990)), generalized Pareto (see Ferreira
and de Haan (2014)), Archimedean (see McNeil and Nešlehová (2009)) and Li-
ouville (see Belzile and Nešlehová (2017)). Such constructions have garnered
significant interest as models suited for extreme values; they can offer the flex-
ibility needed to model across extremal dependence classes as shown in Huser,
Opitz and Thibaud (2017), Wadsworth et al. (2017) and Huser and Wadsworth
(2019). Engelke, Opitz and Wadsworth (2019) offer an extensive study of the
extremal behavior of bivariate pseudo-polar vectors. As shown in Charpentier
et al. (2014), Archimax copulas also allow a representation of the form RS; the
interpretation proposed by Chatelain, Fougères and Nešlehová (2020) is that of
a radial variable R distorting the vector S characterized by a stdf and there-
fore representing the extremal regime. The aim of this paper is to propose a
dependence model in a way that its higher-dimensional margins are Archimax
copulas but with possibly different distortions or stdfs. There is also a connec-
tion to be made with Hofert, Huser and Prasad (2018) which have extended the
class of Archimax copulas with completely monotone Archimedean generators
to hierarchical constructions. Therein, hierarchies can be introduced either via
the frailties or stdfs, but the extremal behavior is not elicited.

In this paper, we define the new class of clustered Archimax copulas. Build-
ing a model from this family is straightforward as it only requires specifying the
Archimax clusters and the dependence between the radial variables R1, . . . , RK .
Under non-restrictive assumptions, the extremal behavior of the clustered Archi-
max copula is obtained and shown to be quite flexible. We find that different
choices of popular Archimedean generators coupled with dependence models on
the radial variables lead to various regimes falling under either asymptotic de-
pendence or independence between clusters. Meanwhile, each Archimax cluster
retains its flexibility in the extreme dependence regime. We also propose infer-
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ence techniques to fit clustered Archimax copulas to data and illustrate with a
data application on rainfall in France.

The paper is organized as follows. Section 2 contains preliminary notions;
Section 3 defines the model; Section 4 presents results on its extremal behavior;
Section 5 provides illustrative examples; Section 6 covers inference techniques
and a simulation study; Section 7 contains the data application; finally, Section 8
concludes the paper with a discussion. Proofs are reported in Appendix A, while
Appendix C formulates a conjecture extending Theorem 4.1.

2. Preliminaries

Copulas contain all the information pertaining to the dependence between the
components of continuous random vectors. The decomposition of Sklar (1959)
links the marginals and the joint distribution of a random random vector via a
copula, which is simply a distribution function on the unit hypercube with
standard uniform margins. Consider X = (X1, . . . , Xd) ∼ F with margins
F1, . . . , Fd. Then there exists a copula C such that for any (x1, . . . , xd) ∈ R

d,

F (x1, . . . , xd) = Pr(X1 ≤ x1, . . . , Xd ≤ xd) = C{F1(x1), . . . , Fd(xd)} .

Moreover, C is unique if the margins are all continuous. There is also a version of
Sklar’s decomposition for survival functions. That is, given the marginal survival
functions F̄1, . . . , F̄d and the joint marginal function F̄ , there exists a copula C̄,
called a survival copula of X, such that for all (x1, . . . , xd) ∈ R

d,

F̄ (x1, . . . , xd) = Pr(X1 > x1, . . . , Xd > xd) = C̄{F̄1(x1), . . . , F̄d(xd)} .

It can be shown that if U ∼ C, then 1−U ∼ C̄ (see Nelsen (2006)). There is a
large amount of literature on dependence modeling via copulas; we refer to the
monographs of Nelsen (2006), Durante and Sempi (2010) and Joe (2015).

One particular family of copulas, called Archimax, was introduced in two
dimensions by Capéraà, Fougères and Genest (2000), and extended to arbitrary
dimensions by Mesiar and Jágr (2013) and Charpentier et al. (2014). General-
izing both Archimedean and extreme-value copula families, Archimax copulas
take the form, for all (u1, . . . , ud) ∈ (0, 1),

Cψ,�(u1, . . . , ud) = ψ ◦ �{φ(u1), . . . , φ(ud)} , (2.1)

where ψ is an Archimedean generator with inverse φ and � is a stdf. These two
functional parameters are defined below.

Definition 2.1. A non-increasing and continuous function ψ : [0,∞) → [0, 1]
which satisfies ψ(0) = 1, limx→∞ ψ(x) = 0 and is strictly decreasing on [0, xψ),
where xψ = inf{x : ψ(x) = 0}, is called an Archimedean generator.

A function � : Rd
+ → R+ is called a d-variate stable tail dependence function

(stdf) if there exists a finite measure μ on the d-dimensional unit simplex Δd =
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{w ∈ [0, 1]d : w1+ · · ·+wd = 1} satisfying
∫
Δd

sjdμ(s) = 1 for all j ∈ {1, . . . , d},
such that for all x ∈ R

d
+,

�(x) =
∫

Δd

max(x1s1, . . . , xdsd)dμ(s).

A d-dimensional copula C is called Archimax if it permits the representa-
tion (2.1) for some d-variate stdf � and an Archimedean generator ψ with inverse
φ : (0, 1] → [0,∞), where by convention ψ(∞) = 0 and φ(0) = xψ.

In the special case when ψ(x) = ψΠ(x) = exp(−x), one has that Cψ,� reduces
to the extreme value copula with stdf � defined for all (u1, . . . , ud) ∈ (0, 1)d by

C�(u) = exp{−�(− ln u1, . . . ,− ln ud)} .

Stable tail dependence functions were introduced by Huang (1992) and are given
a characterization by Ressel (2013) in terms of homogeneity, convexity and
boundary properties. In this paper, the d-norm representation of stdfs is partic-
ularly useful. The following characterization, as discussed in Aulbach, Falk and
Zott (2015), can be traced back to the work of Pickands (1975), de Haan and
Resnick (1977), and Vatan (1985) on the representation of standard max-stable
processes. Any d-dimensional stdf � can be written, for (x1, . . . , xd) ∈ R

d
+, as

�(x1, . . . , xd) = E
(

max
1≤k≤d

xkWk

)
(2.2)

for some positive random variables W1, . . . ,Wd with unit mean. When �(x) =
�Π(x) = x1 + . . .+ xd, i.e., the stdf corresponding to asymptotic independence,
Cψ,� is simply an Archimedean copula given for all (u1, . . . , ud) ∈ (0, 1)d by

Cψ(u) = ψ{φ(u1) + . . . + φ(ud)} .

Conditions on ψ for Cψ to be a copula were explored in McNeil and Nešlehová
(2009), while conditions for ψ and � for (2.1) to be a copula were explored in
Charpentier et al. (2014).

Archimax copulas also admit a stochastic representation, which this paper
builds upon. Theorem 3.3 of Charpentier et al. (2014) states under conditions
on ψ and �, that Cψ,� is the survival copula of a random vector

(X1, . . . , Xd) = (RS1, . . . , RSd) = RS, (2.3)

where R is a positive random variable independent of S = (S1, . . . , Sd). The
distribution of R is linked to the Archimedean generator via the Williamson-d
transform, i.e. ψ = Wd(FR) and FR = W

−1
d (ψ). We refer to McNeil and

Nešlehová (2009) and Larsson and Nešlehová (2011) for more details. The sur-
vival function of S is given, for any s ∈ R

d
+, by

Ḡ�(s) = Pr(S1 > s1, . . . , Sd > sd) = [max{0, 1 − �(s)}]d−1
. (2.4)
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Note in particular that the margins of S are Beta. Specifically, Si ∼ Beta(1, d−1)
for all i ∈ {1, . . . , d}. We interpret (2.3) as a dependence structure defined by a
distortion (or radial) random variable R applied to the extremal component S.

Archimax copulas have a given extreme-value attractor, which motivates their
use to model pre-extreme dependence. Recall that a function f : R+ → R+ is
regularly varying with index α ∈ R if and only if for all x > 0, f(xt)/f(t) → xα

as t → ∞, denoted f ∈ Rα. When 1 − ψ(1/·) ∈ R−α for α ∈ (0, 1], it is shown
in Proposition 6.1 of Charpentier et al. (2014) that Cψ,� is in the maximum
domain of attraction of the extreme-value copula C�α , i.e., for any u ∈ [0, 1]d,

lim
n→∞

Cn
ψ,�(u1/n) = C�α(u), (2.5)

where for any x ∈ R
d
+, �α(x) = �α(x1/α). It is apparent that the Archimax

family is fully flexible in the asymptotic regime, meaning that any extreme-
value copula C� corresponds to a subclass of Archimax copulas that will be
attracted to it.

3. Model specification and notation

As a first step towards the specification of clustered Archimax copulas, we need
to introduce the notion of clusters to the random vector X. To that end, let
G = {G1, . . . ,GK} be a partition of {1, . . . , d} into K disjoint sets. Because
the stochastic representation (2.3) only makes sense in dimensions two and
higher, we shall require, throughout this paper, that dk = |Gk| ≥ 2 for all
k ∈ {1, . . . ,K}. Note that singleton clusters could be included, but this would
require more tedious notation. In this setup, K ≤ 	d/2
 and of course also
d1 + · · ·+dK = d. For convenience, we treat the subsets Gk as ordered sets. This
allows us to refer to the subvector of X associated with the kth cluster Gk =
{i1, . . . , idk

} as Xk = (Xi1 , . . . , Xidk
) or, in shorter notation, Xk = (Xi)i∈Gk

.
As we shall see shortly, a clustered Archimax copula is defined through a

partition G as well as K stdfs and K distortion variables. To ease the read-
ing, we will use the notation � = (�1, . . . , �K) and ψ = (ψ1, . . . , ψK), where
for each k ∈ {1, . . . ,K}, �k is a dk-variate stdf and ψk is a dk-monotone
Archimedean generator, i.e., differentiable up to order dk − 2 with derivatives
satisfying (−1)mψ

(m)
k (x) ≥ 0 for all x ∈ (0,∞) for m ∈ {1, . . . , dk − 2} and

further (−1)dk−2ψ(dk−2) is nonincreasing and convex on (0,∞).

Definition 3.1. A d-variate copula CG,ψ,�,Q is called clustered Archimax copula
with cluster partition G = {G1, . . . ,GK}, stdfs �, Archimedean generators ψ =
{ψ1, . . . , ψK} respectively d1, . . . , dK-monotone, and copula Q that we term the
radial copula, if it is the survival copula of a random vector X that satisfies the
following:

(i) For each k ∈ {1, . . . ,K}, Xk = RkSk for some dk-dimensional random
vector Sk with survival function Ḡk = Ḡ�k as in (2.4) and random variable
Rk is distributed as the inverse Williamson dk-transform of ψk.
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(ii) The random vectors S1, . . . ,SK are mutually independent.
(iii) The random vector R = (R1, . . . , RK) is independent of S1, . . . ,SK and

has copula Q.

Note that by Sklar’s Theorem, the joint distribution of R in Definition 3.1 is
fully determined by its copula Q and marginal distributions that are the inverse
Williamson-d transforms of ψ.

In more explicit notation, Definition 3.1 states that, upon re-indexing so that
G is contiguous with ordered subsets, any clustered Archimax random vector X
admits the representation

X = (X1, . . . ,XK) =
(
R1S11, . . . , R1S1d1 , . . . , RKSK1, . . . , RKSKdK

)
. (3.1)

As the name suggests, certain multivariate margins of a clustered Archimax
copula CG,ψ,�,Q are Archimax. Specifically, Theorem 3.3 of Charpentier et al.
(2014) ensures that for each k ∈ {1, . . . ,K}, the survival copula of Xk is the
dk-dimensional Archimax copula Cψk,�k . In particular, in the boundary case
when K = 1, the entire copula is Archimax. It also follows from the proof of the
latter theorem that the survival copula CG,ψ,�,Q of X in (3.1) is the distribution
function of{

ψ1(R1S11), . . . , ψ1(R1S1d1), . . . , ψK(RKSK1), . . . , ψK(RKSKdK
)
}
. (3.2)

Throughout the paper, for each k ∈ {1, . . . ,K}, we let Sk = (Si)i∈Gk
be

the vector that contains the components of S corresponding to cluster k. In
particular, when X is as in (3.1), then S = (S1, . . . ,SK). Furthermore, analo-
gously to X and S, for any vector x ∈ R

d
+ and all k ∈ {1, . . . ,K}, we denote

by xk = (xi)i∈Gk
∈ R

dk
+ the subvector of x associated with the kth cluster Gk.

Accordingly, for all k ∈ {1, . . . ,K} and i ∈ {1, . . . , dk}, we use Xki, Ski and xki

to denote the ith entry of Xk, Sk and xk, respectively. Finally, unless other-
wise stated, all operations involving one- and multi-dimensional vectors (ran-
dom or not) should be understood as componentwise, e.g., for k ∈ {1, . . . ,K},
RkS

2
k = (RkS

2
i )i∈Gk

.

4. Extremal properties

In this section, we investigate the extremal behavior of a clustered Archimax
copula CG,ψ,�,Q. The main result, Theorem 4.1 below, delineates the conditions
under which CG,ψ,�,Q is in a copula domain of attraction of some extreme-value
copula and identifies the latter. Since the survival copula CG,ψ,�,Q of X in (3.1)
is also the copula of 1/X, we will study the extremal behavior of 1/X.

The distortion vector R has an effect on both inter- and intra-cluster depen-
dence at extreme levels. Its extreme behavior is important, so it is natural to
make the following two assumptions. The first concerns the properties of the
margins of 1/R. Recall that a univariate random variable X with distribution
F is in the maximum domain of attraction of a non-degenerate distribution G,
denoted X ∈ M(G) or F ∈ M(G) iff there exist sequences an ∈ R+, bn ∈ R
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such that, for any x ∈ R, Fn(anx+bn) → G(x) as n → ∞. Moreover, the Fisher-
Tippett Theorem states that G, up to location and scale, is either Fréchet (Φρ),
Gumbel (Λ) or Weibull (Ψρ) with ρ > 0.

Assumption 4.1. For a clustered Archimax copula as in Definition 3.1, assume
that {1, . . . ,K} is the union of disjoint sets D1 and D2, such that

(i) k ∈ D1 if and only if 1/Rk ∈ M(Φρk
) for some ρk ∈ (0, 1).

(ii) k ∈ D2 if and only if there exists an εk > 0 such that E{1/R1+εk
k } < ∞.

While the two cases above cover most widely considered Archimedean genera-
tors, we do conjecture an extension in Appendix C.1 that includes the boundary
case 1/Rk ∈ M(Φ1) and E(1/Rk) = ∞. If Assumption 4.1 holds, k ∈ D1 means
that 1/Rk is heavy-tailed and this occurs if and only if 1 − ψ(1/·) ∈ R−ρk

,
as shown in Theorem 2 in Larsson and Nešlehová (2011). In contrast, k ∈ D2
implies that 1−ψ(1/·) ∈ R−1 by Proposition 2 in Belzile and Nešlehová (2017).
By the same proposition, one then has that 1/Xki ∈ M(Φρk

) for k ∈ D1 and
i ∈ {1, . . . , dk} and 1/Xki ∈ M(Φ1) for k ∈ D2 and i ∈ {1, . . . , dk}. This means
that under Assumption 4.1, the respective clustered Archimax copula is in the
copula domain of attraction of an extreme-value copula C0 if and only if 1/X
is in the maximum domain of attraction of an extreme-value distribution with
copula C0. Such a domain of attraction result requires further assumptions on
the extremal behavior of the entire vector 1/R.

Assumption 4.2. For a clustered Archimax copula as in Definition 3.1, assume
that the reciprocal distortion vector 1/R is in the maximum domain of attraction
of a multivariate extreme-value distribution with stdf �1/R given, for x ∈ R

K
+ ,

by
�1/R(x) = E

(
max

1≤k≤K
xkWk

)
for some positive random variables W1, . . . ,WK with unit mean.

It will become apparent in the next result that the choice of the aforemen-
tioned d-norm representations for stdfs is convenient in this context. We are
now in position to formulate the main result of this section.

Theorem 4.1. Let CG,ψ,�,Q be a clustered Archimax copula such that Assump-
tions 4.1 and 4.2 hold with (W1, . . . ,WK) independent of S. For k ∈ D1, let bk =
E{1/Zρk

k }, Zk ∼ Beta(1, dk − 1). Then 1/X ∈ M(H) with 1/Xki ∈ M(Hki),
where Hki = Φρk

for k ∈ D1 and i ∈ {1, . . . , dk} and Hki = Φ1 for k ∈ D2 and
i ∈ {1, . . . , dk}. The stdf of H is given for all x ∈ R

d
+ by

�G,ψ,�,Q(x) = E

⎛
⎝ max

k∈D1
1≤i≤dk

xkiWk

bkS
ρk

ki

⎞
⎠+

∑
k∈D2

�k(xk) . (4.1)

Inter-cluster asymptotic independence can also be achieved if the distortions
are asymptotically independent, as shown in the following corollary.
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Corollary 4.1. If {1/Rk : k ∈ D1} are asymptotically independent, then for
x ∈ R

d
+, the limiting stdf in (4.1) simplifies to

�G,ψ,�,Q(x) =
∑
k∈D1

�ρk

k

(
x

1/ρk

k

)
+
∑
k∈D2

�k(xk) .

Remark 4.1. Note that under the hypothesis of Theorem 4.1, the asymptotic
behavior of {1/Rk : k ∈ D2} has no influence on the form of �G,ψ,�,Q.

The following corollary to Theorem 4.1 compares the inter-cluster stdf to
that of the reciprocal distortions (1/R1, . . . , 1/RK).

Corollary 4.2. Under the hypothesis of Theorem 4.1, let (i1, . . . , iK) ∈ G1 ×
. . .× GK . Then, for all x′ ∈ R

K
+ and x ∈ R

d
+ such that (xi1 , . . . , xiK ) = x′ and

xi = 0 for all i ∈ {1, . . . , d} \ {i1, . . . , iK},

�1/R(x′) ≤ �G,ψ,�,Q(x).

Remark 4.2. It is worth noting that (4.1) elicits a new method to combine
different stdfs in a non-trivial way. Since the second component of (4.1) does
not reveal any new combination of stdfs, suppose for now that D2 = ∅. For a
given k ∈ {1, . . . ,K}, we then automatically have that D1. Setting xli = 0 for
all l �= k and all i = 1, . . . , dl recovers the marginal stdf of the cluster k. This
marginal stdf is equal to

E
(

max
1≤i≤dk

xki

bkS
ρk

ki

)

for xk ∈ R
dk
+ , which itself is equal to �ρk

k

(
x

1/ρk

k

)
by Proposition (6.1) of Charp-

entier et al. (2014). In the bivariate case, the form above is a special case of (7)
in Engelke, Opitz and Wadsworth (2019). The attractor of the bivariate Archi-
max copula is in particular obtained as a special case of their Proposition 1 and
Equation (6), see Sections 2.1 and 4 therein. The complete stdf, defined for all
x ∈ R

d
+, by

E

⎛
⎝ max

k∈D1
1≤i≤dk

xkiWk

bkS
ρk

ki

⎞
⎠ ,

essentially mixes the marginal cluster stdfs �ρ1
1 (x1/ρ1

1 ), . . . , �ρK

K (x1/ρK

K ) with the
limiting stdf of (1/R1, . . . , 1/RK). Simply put, Corollary 4.2 shows that this
mixing results in a weaker asymptotic dependence between clusters than that
of the reciprocal distortions (1/R1, . . . , 1/RK), characterized by �1/R.

5. Insights into modeling

In this section, we provide examples of parametric families that can be used to
construct clustered Archimax copulas. Simulating from single Archimax copulas
has recently garnered attention, as methods have been advanced by Mai (2022)
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and Ng, Hasan and Tarokh (2022). Due to the popularity of Archimedean cop-
ulas, there is a wide array of parametric families for the distortions to choose
from. When ψ is d-times differentiable, its inverse Williamson d-transform has
the density, given, for r > 0, by

fR(r) = (−1)d r
d−1ψ(d)(r)
(d− 1)! ;

viz. Eq. (2) in McNeil and Nešlehová (2010).

Example 5.1 (Clayton Generator). Consider the Clayton generator defined in
(4.2.1) in Nelsen (2006), for x ∈ [0,∞) and θ ∈ [−1,∞) \ {0}, by

ψθ(x) = (1 + θx)−1/θ .

When θ ≥ −1/(d− 1), ψθ is d-monotone and one can obtain the distribution of
R using the inverse Williamson d-transform. For example, when θ > 0, McNeil
and Nešlehová (2009) calculate that one has, for r > 0,

fR(r) = (1 + θr)−d−1/θ rd−1

(d− 1)!

d−1∏
j=1

(1 + θj) .

We can see that for any d ≥ 2 and β < d,

E(1/Rβ) =
θd
{∏d

j=0(1/θ + j)
}

(d− 1)!

∫ ∞

0

rd−1−β

(1 + θr)1/θ+d
dr < ∞ .

Thus if the k-th cluster has a Clayton distortion with θ > 0, then its compo-
nents are asymptotically independent from all other clusters since k ∈ D2 in
Theorem 4.1.

Example 5.2 (Joe generator). Consider the Joe generator defined in (4.2.6) in
Nelsen (2006), for x ∈ [0,∞) and θ ∈ [1,∞), by

ψθ(x) = 1 − {1 − e−x}1/θ.

Since 1 − ψθ(1/·) ∈ R−1/θ, Theorem 2 from Larsson and Nešlehová (2011)
implies that 1/R ∈ M(Φ1/θ). Thus, if the k-th cluster has a Joe distortion, it is
asymptotically dependent with all other clusters with j ∈ D1, whose distortions
Rj are asymptotically dependent with Rk.

We now present synthetic examples of clustered Archimax copula based on
the families presented above. By virtue of being constructed via the stochastic
representation in Equation (3.2), random number generation from this model
is straightforward. Recall that we do not require complete monotonicity of the
Archimedean generators and therefore rely on the radial representation in Equa-
tion (2.3). Our simulation algorithm is a simple extension of Algorithm 4.2 in
Charpentier et al. (2014). The R code to generate the samples is provided in the
supplementary materials (Chatelain, Perreault, Fougères and Nešlehová, 2025).
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Algorithm 5.1. Let CG,ψ,�,Q be as in Definition 3.1. To simulate an observa-
tion (U1, . . . , Ud) from CG,ψ,�,Q,

1. Simulate a vector (R1, . . . , RK). This can be done by simulating a vector
(V1, . . . , VK) ∼ Q̄ and applying the transformations F−1

Rk
(1 − Vk) for each

k ∈ {1, . . . ,K}. Following McNeil and Nešlehová (2009), for r ∈ [0,∞),

FRk
(r) = 1 −

dk−2∑
j=0

(−1)jrjψ(j)
k (r)

j! −
(−1)d−1rd−1ψ

(dk−1)
k,+ (r)

(dk − 1)! ,

where ψ
(d−1)
k,+ is the right-hand derivative of ψ(d−1)

k .
2. For each k ∈ {1, . . . ,K}, generate an observation Sk = (Sk1, . . . , Skdk

)
whose survival function is given, for any s ∈ R

dk
+ , by

Ḡ�k(s) = Pr(Sk1 > s1, . . . , Skdk
> sdk

) = [max{0, 1 − �k(s)}]dk−1
.

3. Construct U by setting U1 = ψ1(R1S1), . . . ,UK = ψK(RKSK).

Remark 5.1. In fact, the dependence structure of the distortions does not need
to be defined via a copula, as long as it can be simulated from.

In order to illustrate the findings of Section 4, we use Algorithm 5.1 to gen-
erate samples from two clustered Archimax copulas, Model A and Model B
described in Table 5.1; they differ only in the choice of their radial copula
Q. In both cases, three trivariate Archimax copulas representing three clus-
ters are combined to form a 9-dimensional dependence structure. The first
cluster is defined by a Clayton-Gumbel Archimax copula, while the other two
are defined by Joe-Gumbel Archimax copulas. The partition of {1, . . . , 9} is
G = {G1,G2,G3} = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}. Assumption 4.1 holds with
1 ∈ D1 and 2, 3 ∈ D2. Figures D.1 and D.2 in Appendix D represent samples
drawn from Model A and B. It is clearly visible when comparing the off-diagonal
3-by-3 blocks that both models have the same intra-cluster dependence while
having different inter-cluster dependence.

For both samples, we produce chi plots to represent extremal intra and inter-
cluster dependence. Out of the 36 possible variable pairs, we chose 6 to cover
all pairings of clusters G1,G2,G3. Figure 5.1 displays those of variables {1, 2}
(intra-cluster G1 − G1), {1, 7} (inter-cluster G1 − G3) and {4, 7} (inter-cluster
G2 − G3). Figure D.3 in Appendix D pertains to the remaining three cluster
pairings. Following Coles, Heffernan and Tawn (1999), for the pair (i, j), the
quantity of interest is given, for q ∈ (0, 1), by

χij(q) = 2 − log Pr(Ui < q,Uj < q)
log q . (5.1)

The well-known upper tail dependence coefficient of Joe (2015) is then simply
expressed

λij = lim
q↑1

χij(q) , (5.2)
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Table 5.1

Simulated models.

Model A Model B

Radial (survival) copula Q̄ Gaussian,
ρ12 = ρ13 = ρ23 = 0.5

Gumbel, ϑR = 4

Radial extremal behavior Asymptotic independence
λR = 0

Asymptotic dependence
λR = 0.81

S specification �1: Logistic, ϑ1 = 1.25
�2: Logistic, ϑ2 = 2
�3: Logistic, ϑ3 = 1.5

�1: Logistic, ϑ1 = 1.25
�2: Logistic, ϑ2 = 2
�3: Logistic, ϑ3 = 1.5

R specification R1: Clayton, θ1 = 1.5
R2: Joe, θ2 = 1.5
R3: Joe, θ3 = 2

R1: Clayton, θ1 = 1.5
R2: Joe, θ2 = 1.5
R3: Joe, θ3 = 2

Intra-cluster extremal dependence Cluster 1: Asymptotic
dependence λ(1) ≈ 0.26
Cluster 2: Asymptotic
dependence λ(2) ≈ 0.74
Cluster 3: Asymptotic
dependence λ(3) ≈ 0.74

Cluster 1: Asymptotic
dependence λ(1) ≈ 0.26
Cluster 2: Asymptotic
dependence λ(2) ≈ 0.74
Cluster 3: Asymptotic
dependence λ(3) ≈ 0.74

Inter-cluster extremal dependence Clusters 1-2: Asymptotic
independence λ(12) = 0
Clusters 1-3: Asymptotic
independence λ(13) = 0
Clusters 2-3: Asymptotic
independence λ(23) = 0

Clusters 1-2: Asymptotic
independence λ(12) = 0
Clusters 1-3: Asymptotic
independence λ(13) = 0
Cluster 2-3: Asymptotic
dependence λ(23) ≈ 0.5

provided the limit exists. For each k ∈ {1, 2, 3}, the values of λij are in fact equal
for all i, j ∈ Gk and i �= j due to the fact that the logistic stdf is symmetric
with respect to permutation of its arguments. Therefore, for each k ∈ {1, 2, 3},
we can simplify the notation by having λ(k) = λij with any i, j ∈ Gk such
that i �= j. Both samples exhibit the same intra-cluster extreme dependence,
with λ(1) = 2 − 21/ϑ1 ≈ 0.26 for the first cluster (see Figures 5.1 (a) and (b)),
λ(2) = 2 − 21/(θ2ϑ2) ≈ 0.74 (see Figures D.3 (c) and (d)) for the second cluster
and λ(3) = 2 − 21/(θ3ϑ3) ≈ 0.74 (see Figures D.3 (e) and (f)) for the third
cluster. Note that the pairs (θ2, ϑ2), (θ3, ϑ3) were chosen to be different while
resulting in the same upper tail dependence coefficient. These values are the
same within each cluster because Cψθk

,�ϑk
was chosen to be exchangeable for

each k ∈ {1, 2, 3}. The upper tail dependence coefficient of any bivariate copula
C in the domain of attraction of an extreme-value copula C� can be shown to
be λ = 2 − �(1, 1). We therefore obtain the true values of λ(k) via (2.5), noting
that the index of regular variation α is equal to 1 for any Clayton generator ψθ

and equal to 1/θ for any Joe generator ψθ.
Now, for k, l ∈ {1, 2, 3} and k �= l, let λ(kl) = λij where i ∈ Gk and j ∈ Gl.

As for the intra-cluster extreme dependence, this simplified notation is possible
due to the fact that given a pair Gk and Gl, all values of λij such that i ∈ Gk

and j ∈ Gl are equal. In Figures 5.1 (c) and (d) and D.3 (a) and (b), we
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Fig 5.1. Pair chi plots for the sample from Model A (left) and Model B (right). The full black
line is the empirical estimate of (5.1), the dotted lines are 95% confidence intervals and the
red lines represent the true values of limq→1 χij(q) for each pair (i, j). The dotted green line
in panel (f) represents the upper tail dependence coefficient of (1/R2, 1/R3). The samples
used for the empirical estimates are those of Figures D.1 and D.2.

have λ(12) = λ(13) = 0. As explained in Example 5.1, the choice of a Clayton
generator forces cluster 1 to be asymptotically independent from clusters 2 and
3. In Figure 5.1 (e) we have λ(23) = 0. This is due to the fact that the Gaussian
copula used to model the dependence between distortions forces asymptotic
independence between clusters; see Example 4.1. However, Figure 5.1 (f) shows
asymptotic dependence between clusters 2 and 3, i.e. λ(23) > 0. The value,
approximately equal to 0.5, was obtained numerically by simulating from (4.1).
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Corollary 4.2 is illustrated by the fact that λ(23) is lower than the upper tail
dependence coefficient of (1/R2, 1/R3).

6. Inference

From now on, let Y denote the d-dimensional, continuous random vector of
interest, whose underlying copula CG,ψ,�,Q is clustered Archimax. For k ∈
{1, . . . ,K} and i ∈ {1, . . . , dk} let Fki denote the distribution function of Yki,
recalling that Yk = (Yi)i∈Gk

by definition, and let U be the d-dimensional cop-
ula realization associated with Y , i.e., Uki = Fki(Yki) and U has distribution
CG,ψ,�,Q. Finally, suppose that we observe a sample {Y j}nj=1 of i.i.d. replicates
of Y with corresponding (unobserved) copula realizations {U j}nj=1.

Theorem 3.3 of Charpentier et al. (2014) implies that there exists a stochastic
representation similar to (3.1) for the copula CG,ψ,�,Q. We will lean on this
representation to propose a method for inferring CG,ψ,�,Q from {Y j}nj=1. Given
G, we perform inference for ψ, � and Q separately. To ease the reading, we
denote by I the set

I = {(i, j, k) : 1 ≤ k ≤ K, i, j ∈ Gk, i < j} (6.1)

throughout the section, as well as in Appendix B.
In Section 6.1, we briefly review how each individual cluster can be mod-

eled using existing inference techniques for Archimax copulas. In Section 6.2,
we propose a method for estimating the dependence between clusters when the
partition G is known or hypothesized. In some cases, such as a portfolio con-
taining stocks from distinct industries, this partition can indeed be inherent to
the dataset. When G is unknown, one can use the clustering techniques of, e.g.,
Bernard et al. (2013) or Saunders, Stephenson and Karoly (2021) to create a
set of candidate partitions of distinct sizes. The number of clusters can then be
settled heuristically with the help of standard clustering tools (e.g., a dendro-
gram), or by selecting the coarsest partition that yields a satisfactory fit. These
proposed inference tools are investigated via simulations in Section 6.3.

6.1. Inference for individual clusters

This section pertains to the estimation of each marginal Archimax copulas of the
clustered Archimax copula CG,ψ,�,Q. As such, inference methods have already
been developed in Chatelain, Fougères and Nešlehová (2020) and more recently
in Ng, Hasan and Tarokh (2022).

6.1.1. Estimating ψ1, . . . , ψK

We use a parametric approach to estimate the generators ψ = (ψ1, . . . , ψK),
which requires selecting a (possibly different) parametric family for each gen-
erator. Certain properties observed in the data can guide the user to specific
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choices of generators. For example, the presence of within-cluster lower tail de-
pendence warrants the use of a Clayton generator. However, as explained in
Example 5.1, this choice implies the asymptotic independence of Yk and Y� for
all k, � ∈ {1, . . . ,K} with k �= �. This consequence is desirable when studying the
precipitation data in Section 7, but would not be appropriate, for instance, when
modeling temperatures over the same region; see Davison, Huser and Thibaud
(2013) for more details.

Once the parametric family of each generator is chosen, the parameters θ =
(θ1, . . . , θK) of ψ remain to be estimated. For a given k ∈ {1, . . . ,K}, our
estimator of θk relies on the following remark.

Remark 6.1. Any margin of an Archimax copula is itself Archimax with the
same generator. In particular, for all (i, j, k) ∈ I, with I as in (6.1), the dis-
tortions parameters θk and θij associated with Yk and (Yi, Yj), respectively, are
identical, i.e., θk = θij .

Remark 6.1 suggests that for each (i, j, k) ∈ I, an estimator θ̂ij of θij also
estimates θk. In view of this, we estimate θ by θ̄ = (θ̄1, . . . , θ̄K) given, for
k ∈ {1, . . . ,K} and Gkk = {(i, j) : i, j ∈ Gk, i < j}, by

θ̄k = 1(
dk

2
) ∑

(i,j)∈Gkk

θ̂ij , (6.2)

where, for any (i, j) ∈ Gkk, θ̂ij is the estimator defined in Section 7 of Chatelain,
Fougères and Nešlehová (2020). These latter authors discuss the cases when the
underlying generator is of the Clayton, Genest-Ghoudi, Frank or Joe families.

Remark 6.1 also suggests a simple way of assessing whether the partition
G is appropriate: if the underlying distribution is indeed a clustered Archimax
with partition G, then the hypothesis H0 that θij = θk for all (i, j, k) ∈ I must
necessarily hold. We propose to test H0 using the statistic T given by

Tijk = θ̂ij − θ̄k. (6.3)

Although its definition involves three indices, we treat T as a vector of dimension
|I|; the specific ordering of its entries does not matter, as long as it is kept fixed.
Because we expect that departures from the null will cause certain entries of
T to be large in absolute values, we test H0 using either the supremum norm
‖T ‖∞ = maxι∈I |Tι| or the (squared) Euclidean norm ‖T ‖2

2 =
∑

ι∈I T 2
ι of T ;

see Perreault, Nešlehová and Duchesne (2022) for similar hypothesis tests, albeit
in a nonparametric context.

To derive the null distribution of ‖T ‖, where ‖ · ‖ is either the supremum
or Euclidean norm, we exploit the fact that for any (i, j, k) ∈ I, θ̂ij is a func-
tion of two U-statistics with square integrable kernels (Chatelain, Fougères and
Nešlehová, 2020, Section 7). Consequently, for any ι ∈ I, Tι is a function of
several such U-statistics. Standard results about U-statistics (Hoeffding, 1948)
and the delta method then imply that, under the null,

√
nT is asymptotically

Normal as n → ∞, i.e.,
√
nT � N (0,Σ) for some positive definite matrix Σ of
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appropriate dimensions. In view of Slutsky’s Lemma and the Continuous Map-
ping Theorem, a test of approximate level α ∈ (0, 1) then consists in rejecting
H0 whenever Pr(‖Z‖ > ‖T ‖) < α, where Z ∼ N (0, Σ̂) for some consistent
estimator Σ̂ of Σ. In the data application of Section 7, we use a jackknife es-
timator of Σ derived from Section 2(c) of Arvesen (1969); see Appendix B for
the implementation details.

6.1.2. Estimating �1, . . . , �K

To estimate the stdfs � = (�1, . . . , �K), we exploit the fact that for any k ∈
{1, . . . ,K} and x ∈ R

dk ,

�k(x) = ‖x‖Ak(x/‖x‖) , (6.4)

where Ak is the Pickands dependence function associated to Yk. Indeed as char-
acterized by Ressel (2013), stdfs are homogeneous functions of degree 1 and are
thus determined by their restrictions on the unit simplex. These restrictions,
Ak(s) = �k(s) for s ∈ Δdk

, are none other than Pickands dependence functions
as introduced in the bivariate case by Pickands (1981). Specifically, we replace
Ak in (6.4) by its CFG-type estimator (Capéraà, Fougères and Genest, 1997),
defined as follows. For j ∈ {1, . . . , n}, let Û j be such that, for all k ∈ {1, . . . ,K}
and i ∈ {1, . . . , dk},

Û j
ki = rkij/(n + 1) , (6.5)

where rkij is the rank of Y j
ki among Y 1

ki, . . . , Y
n
ki. Now, for w ∈ Δdk

with Δdk
as

in Definition 2.1, let

ξ̂k,j(w) = min
1≤i≤dk

φθ̄k
(Û j

ki)/wi.

Then, for all k ∈ {1, . . . ,K} and w ∈ Δdk
, the (endpoint-corrected) CFG-type

estimator of Ak is given by

log ÂCFG
k (w) = 1

n

n∑
j=1

{
log φθ̄k

(
j

n + 1

)
− log ξ̂k,j(w)

}
. (6.6)

We refer the reader to Section 3 of Chatelain, Fougères and Nešlehová (2020) for
more details about the CFG-type estimator, as well as an alternative estimator
based on that of Pickands (1981). The asymptotic behavior of the CFG and
Pickands-type estimators is established under regularity conditions on both ψ
and A; see Section 4 in Chatelain, Fougères and Nešlehová (2020).

6.2. Inference for the dependence between distortions

To model the dependence between the components of R, we suggest a parametric
approach on the underlying copula Q. To this end, we make the assumption
that Q belongs to a parametric family {Cϑ : ϑ ∈ Θ} of K-dimensional copulas,



Clustered Archimax copulas 329

where the parameter space Θ is of arbitrary dimension. We further assume the
existence of a multivariate density for R in order to proceed with a likelihood-
based method. While we cannot observe R directly, we may still derive the
corresponding likelihood based on pseudo-observations.

We follow (3.2) and define the d-dimensional random vector V , for all k ∈
{1, . . . ,K} and i ∈ {1, . . . , dk}, by Vki = ψk(RkSki), so that V has distri-
bution CG,ψ,�,Q. Now, fix ι = (i1, . . . , iK) ∈ G• = G1 × . . . × GK and note
that since Xιk = RkSιk for each k ∈ {1, . . . ,K}, the density of the subvector
Vι = {ψ1(Xι1), . . . , ψK(XιK )} of V can be expressed, for v ∈ (0, 1)K , as

fVι(v) =
∫

(0,1)K
fR{φ(v)/s}

{
K∏

k=1

fSk
(sk)φ′

k(vk)
sk

}
ds (6.7)

where φ(v)/s = {φ1(v1)/s1, . . . , φK(vK)/sK} and, for k ∈ {1, . . . ,K}, fSk
is a

Beta(1, dk−1) density. Also note that, due to Sklar’s Theorem, the joint density
of R can be written, for r ∈ R

K
+ and q the copula density of R, as

fR(r) = q{FR1(r1), . . . , FRK
(rk)}

{
K∏

k=1
fRk

(rk)
}

. (6.8)

Now, let Yn = (Y j)nj=1 and recall that U j , j ∈ {1, . . . , n}, and V are equal in
distribution. The pseudo-copula observations can be plugged into the (pseudo)
composite marginal log-likelihood (Varin, Reid and Firth, 2011) associated with
the density of Vι and given by

LK(ϑ|Yn) =
n∑

j=1

∑
i∈G•

log fVι(Û
j
i ) , (6.9)

where Û j
i = (Û j

i1
, . . . , Û j

iK
) with Û j as in (6.5), and fVι as in (6.7).

Due to the multi-dimensional integral in the expression of fVι and the possibly
large cardinality of G•, (6.9) will often be difficult to compute in practice. When
the chosen parametric family for Q allows it, a natural approach for reducing
the computational burden is to consider lower-dimensional margins to form the
composite likelihood function. For example, when Q is a Gaussian copula, it
seems reasonable to use the pairwise marginal likelihood

L2(ϑ|Yn) =
n∑

j=1

∑
1≤k<�≤K

∑
i∈Gk�

log fVιk
,Vι�

(Û j
i ) , (6.10)

where Gk� = Gk×G�, Û j
i = (Û j

i1
, Û j

i2
), and fVιk

,Vι�
is the corresponding bivariate

analogue of fVι . For more details about composite likelihood estimation, we refer
the reader to Cox and Reid (2004) and Varin, Reid and Firth (2011).

Remark 6.2. For some specific models, the similar yet simpler strategy under-
lying the estimation of ϑ can also be used. For example, let Q be a Gaussian
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copula with correlation matrix (ϑk�)1≤k,�≤K , so that ϑ is of length
(
K
2
)
. For

each k, � ∈ {1, . . . ,K} with k < �, one can first independently consider the bi-
variate log-likelihoods associated with Gk� in (6.10) to compute a set of pairwise
parameters {ρ̂i : i ∈ Gk�}, which can then be averaged over to obtain a final
estimate ρ̄k� for ϑk�. This estimator resembles the averaged maximum pseudo
likelihood estimator (AMPLE) in Górecki and Hofert (2023). We conducted a
preliminary assessment of this approach by contrasting the resulting model with
the one based on (6.10) in the context of the application described in Section 7,
which uses the Gaussian copula. We found that the two resulting models are
almost indistinguishable in this particular case.

Remark 6.3. The composite log-likelihoods LK(ϑ|Yn) and L2(ϑ|Yn) in (6.9)
and (6.10), respectively, depend on ϑ through q in (6.8) (or its bivariate ana-
logues in the case of L2(ϑ|Yn)). The functions fRk

, FRk
and φk, k ∈ {1, . . . ,K},

are assumed to be known. In practice, one can plug in the parametric estimates
proposed in Section 6.1.1. While outside of the scope of this work, one could
consider the feasibility of estimating the distortion parameters together with ϑ
via pseudo-maximum composite likelihood.

6.3. Simulation study

We assess our proposed inference technique in a simulation study on a range of
different clustered Archimax copula models. Inference on individual clusters has
been extensively studied in Chatelain, Fougères and Nešlehová (2020) and Ng,
Hasan and Tarokh (2022), here the onus is on the evaluation of our method for
inference of the underlying copula Q of the distortion variables.

To remain in realistic scenarii, we perform the moment-based estimation of
the distortion parameters as described in Chatelain, Fougères and Nešlehová
(2020) before applying the pairwise-likelihood estimation method of the previous
section, viz. (6.10). This allows us to take into account the propagation of error
that would also occur in practice. Throughout, we assumed that the families of
Archimedean generators for each clusters were correctly specified, as were the
radial copula Q and the clusters.

It can be the case in certain applications that the clusters do not arise natu-
rally. For each simulated dataset, we therefore also employed several clustering
algorithms with the correct number of clusters specified and computed Rand in-
dex measures. This allowed us to quantify how difficult it is to obtain an accurate
data-driven clustering for each studied clustered Archimax copula configuration.

The class of clustered Archimax models proposed here is very rich due to
the vast number of combinations of cluster configurations, families, parame-
ters and dimensions. In the vein of the illustrations in Section 5, we restrict
ourselves to two types of radial (survival) copulas Q̄ (Gaussian and Gumbel
copulas) and two types of radial families (Joe and Clayton generators). For com-
parison’s sake, we parameterize according to Kendall’s rank correlation for Q̄
(τQ ∈ {1/3, 2/3}) and the radial components (τψ ∈ {1/4, 1/2}). We explore the
effects of the number of clusters (K ∈ {2, 3}) as well as their sizes (dk ∈ {2, 3} for
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Fig 6.1. Boxplots of the fitted values of Kendall’s Tau for the radial copula Q̄ in the Gaussian
case. True values τQ are plotted in dotted lines. The simulation is based on 100 Monte-Carlo
replicates.

k ∈ {1, . . . ,K}) in small samples (n ∈ {50, 150}) motivated by environmental
applications with data-scarcity. In our proposed inference method, the intra-
cluster stdfs {�k}Ki=1 can be estimated, e.g., via the semi-parametric approach
of Chatelain, Fougères and Nešlehová (2020) after having performed inference
on the radial components and their copula. Since the estimation of intra-cluster
stdfs is not the focus of this simulation study, we limit ourselves to the logis-
tic stdf with parameter corresponding to the upper-tail dependence coefficient
λ(k) = 1/3, k ∈ {1, . . . ,K}.

The main results are reported in Figures 6.1 and E.1. As expected, we observe
better performance with a larger sample size, as well as higher dimensional
clusters. This latter behavior is because of the exchangeability of the choices for
Q̄ and the subsequent averaging of parameter estimates. The number of clusters
only affects computational time. For both families, there isn’t a clear effect of
the value of τQ on the estimation performance, although particularly small or
large degrees of dependence were not considered in this simulation study. Across
the board, there seems to be a slight reduction of variance when τψ increases
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from 1/4 to 1/2. The most notable difference pertains to the choice of the radial
families; the performance is better for the Clayton case than for the Joe case.
Note that the presence of outliers in the plot is due to numerical instabilities
that mostly happen for small sample sizes and Joe radial components.

To investigate the difference between these two Archimedean families, we
provide the boxplots of the obtained moment-based estimates in Figure E.2 that
are fed into the inference for Q̄. These results make it clear that the difference
in performance at the radial copula level is due to the propagation of the error
from the estimation of the individual radial components, i.e. of the parameters
θk in Table 5.1. Indeed, we observe superior performance for the Clayton family.
Figure E.3 shows that, unsurprisingly, performance when the model includes a
mix of Clayton and Joe clusters falls between the cases for all clusters being
Clayton (best) and for all clusters being Joe (worst).

Figure E.4 reports the average Rand index values obtained for all configu-
rations of cluster numbers and sizes. As expected, performance increases with
sample size and cluster size while it decreases with the number of clusters. There
is a clear indication that Kendall’s tau provides a better dissimilarity matrix
for determining the correct Archimax clusters than the upper tail dependence
coefficient. Hierarchical clustering algorithms seem to be more suited than the
partitioning around medoids approach; in particular complete linkage performs
best.

7. Data illustration

In this section, we illustrate the proposed methodology through an application
to flood monitoring. The data, provided by Météo France, consists of daily pre-
cipitation amounts measured from 1976 to 2015, inclusively, at d = 23 meteoro-
logical stations in France. As shown in Figure 7.1, the stations are agglomerated
into three clusters centered around the cities of Paris (G1, 9 stations), Lyon (G2,
6 stations) and Montpellier (G3, 8 stations). We thus let G = {G1,G2,G3} be the
partition underlying our model.

Note that our application is purposely similar to that of Chatelain, Fougères
and Nešlehová (2020), who fitted an Archimax copula to precipitation amounts
(monthly maxima) measured at three nearby stations. The greater flexibility
of clustered Archimax copulas allows us to increase the number of variables
considered.

7.1. Data preprocessing

A preliminary analysis of the data reveals the presence of seasonality and tempo-
ral dependence within the univariate series. To mitigate the effect of seasonality,
we consider only the observations from the months of September to December,
inclusively, which encompass most of the extreme precipitation events. Since
our primary focus is on extreme precipitations, we then take monthly maxima
of the series, yielding a total of n = 160 observations per station. The resulting
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Fig 7.1. Left: Geographical position of the stations used in the application of Section 7, along
with their respective cluster label. Right: Pair plots of the scaled componentwise ranks of
monthly maxima of precipitations for the stations around which the clusters were formed.

series show no obvious sign of temporal dependence according to the Ljung-
Box tests (Ljung and Box, 1978); note however that the asymptotic results of
Chatelain, Fougères and Nešlehová (2020) upon which the present work relies
hold for alpha-mixing sequences, meaning that temporal dependence vanishing
with increasing lag is indeed allowed.

The pair plots of the scaled componentwise ranks of monthly maxima of
precipitations involving only the most central station of each cluster are dis-
played in the right panel of Figure 7.1. They suggest a very weak dependence
between precipitation maxima in Lyon and Montpellier, and an even weaker
one, if at all, between any of these and the stations in Paris. In contrast, similar
plots for all pairs of stations within the same cluster (Figures F.1–F.3) indicate
much stronger dependencies. In these latter plots, we also note the presence of
asymmetry; this is particularly pronounced in Figure F.1 (Paris).

As a final preliminary step, we used the procedure of Kojadinovic, Segers
and Yan (2011) to test the hypothesis that the copula underlying each cluster of
variables is an extreme-value copula. In all three cases, the test clearly rejects the
hypothesis. This may be explained by the presence of masses of points near the
bottom-left corner of many pair plots, combined with the fact that extreme-value
distributions cannot allow lower-tail dependence. In contrast with extreme-value
distributions, clustered Archimax copulas may indeed allow for both lower-tail
and extremal dependence; in particular, letting ψθ be the Clayton generator
leads to (pairwise) lower-tail dependence coefficients equal to 2A(1/2, 1/2)−1/θ,
where A is the Pickands dependence function characterizing the Archimax, as
explained in Chatelain, Fougères and Nešlehová (2020).
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Fig 7.2. Estimated quantities from Section 7.2. Left: Matrix of intra-cluster pairwise upper
tail dependence coefficients (d = 22 stations). Right: Matrix of pairwise distortion parameters
(d = 23 stations).

7.2. Inference for ψ and �

The apparent lack of inter-cluster dependence in the right panel of Figure 7.1
and the presence of lower-tail dependence in the data suggest that the Clay-
ton generators could be good candidates for modeling the distortions, as these
would produce asymptotically independent clusters. We thus begin by formally
testing whether G defines three asymptotically independent clusters. To do so,
we apply the test of independence for random vectors proposed by Kojadinovic
and Holmes (2009). Because we are interested in asymptotic independence, we
apply the test procedure not to our dataset of monthly maxima, but to the
corresponding dataset of yearly maxima, which includes 40 observations per
station; the corresponding matrix of empirical Kendall’s τ correlations is de-
picted in the left panel of Figure F.4 in the Appendix. The test yields a p-value
of 0.16 for the global hypothesis of independence between the three clusters and
a p-value above 0.35 for each of the three hypotheses of pairwise independence.
Although the fact that only 40 observations are available might arguably yield
a test with limited power, we move on with our analysis assuming that the clus-
ters are asymptotically independent and that Clayton generators are reasonable
choices.

The next step is to estimate the parameters θ1, θ2 and θ3 of the three Clay-
ton generators. This involves computing, for each k ∈ {1, 2, 3}, the

(
dk

2
)

pairwise
estimates {θ̂ij : i, j ∈ Gk, i < j}; these are gathered in a dk × dk matrix illus-
trated in the left panel of Figure 7.2. The resulting distortion estimates, defined
in (6.2), are θ̄1 ≈ 1.08 (Paris), θ̄2 ≈ 0.62 (Lyon) and θ̄3 ≈ 1.20 (Montpellier),
suggesting that the hypothesis of different distortions affecting the three clusters
is reasonable.

At this point, one can already suspect a problem with the Montpellier cluster,
as there seems to be strong discrepancies among the entries of its corresponding
matrix in the left panel of Figure 7.2, violating the statement in Remark 6.1.
To check this more formally, we perform the test described in Section 6.1.1 for
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the hypothesis H0 that θij = θk for all k ∈ {1, 2, 3} and i, j ∈ Gk such that
i < j. While the version of the test based on the supremum norm yields an
acceptable p-value (approximately 0.18), the version based on the Euclidean
norm yields an approximate p-value of 0.03, thus rejecting H0 at nominal level
0.05. Three similar cluster-specific tests, each involving only the pairwise distor-
tion estimates from a single cluster, indeed reveal an anomaly with Montpellier;
its corresponding approximate p-values are 0.06 (supremum norm) and < 0.01
(Euclidean norm). A last series of entry-specific tests, each involving a single
pairwise distortion estimate from the Montpellier cluster, strongly suggests that
one particular station, the west-most station of the cluster, is at the root of the
rejection. Concretely, the d3 − 1 = 7 p-values associated with this latter station
are below the nominal level 0.05, with most of them being smaller than 10−3.
From the left panel of Figure 7.1, one can see that it effectively appears isolated
from the other stations of the Montpellier cluster, as it is located on the other
side of the Cévennes montain range. Removing its corresponding column from
the data yields a new distortion parameter θ̄3 ≈ 1.48 for the Montpellier clus-
ter, as well as satisfactory p-values for the tests of H0 and the preceeding test
of asymptotic independence. We thus remove the problematic station from the
data and redefine G to be the ensuing partition of {1, . . . , 22}, assuming that
the variables were re-indexed. Similarly, we now use θ̄3 to refer to the estimate
of θ3 computed without the problematic station.

Given the new partition G, we then construct, for each k ∈ {1, 2, 3}, the semi-
parametric estimate of the stdf �k based on ÂCFG

k defined in (6.6). Note that for
the estimated values of θ1, θ2, θ3, Conditions 4.1 and 4.2 in Chatelain, Fougères
and Nešlehová (2020) used for convergence of ÂCFG

k are met. To better visualize
the strength of the dependence between stations of the same cluster, we also
computed, for each k ∈ {1, 2, 3} and all i, j ∈ Gk such that i �= j, pairwise esti-
mates λ̂ij of the upper tail dependence coefficients λij defined in (5.2). To this
end, we note that when Clayton generators are used, α = 1 in (2.5) and the es-
timator in (6.6) can be slightly modified to obtain an estimator of λij as follows.
Recall the definition of I in (6.1). For all (i, j, k) ∈ I, let �∗ij(1, 1) = �k(e(ij)),
where e(ij) ∈ R

dk has only two non-zero entries, those associated with the ith
and jth stations, equal to one. Then, for any (i, j, k) ∈ I, one can estimate λij

combining the identities λij = 2−�∗ij(1, 1) and �k(x) = ‖x‖Ak(x/‖x‖). Because
the bivariate margins of an Archimax copula are also Archimax (Remark 6.1),
we get that λij = 2 − 2Aij(1/2, 1/2) with Aij(1/2, 1/2) = Ak(e(ij)/2). This
leads to an estimator of λij given by λ̂ij = 2 − 2ÂCFG

ij (1/2, 1/2). The resulting
estimates are shown in the right panel of Figure 7.2. Although this is not re-
quired, we expect many of these estimates to be large; this is clearly the case
for the Paris and Lyon clusters, and still true, perhaps to a lesser extent, for the
Montpellier cluster.
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7.3. Inference for Q

To capture the dependence between the components of R = (R1, R2, R3), we
suppose that their copula Q belongs to the family of Gaussian copulas with
correlation parameters ϑ = (ϑ12, ϑ13, ϑ23), which we estimate by numerically
maximizing (6.10). The resulting estimates are given by ρ̄12 ≈ 0.14 for the
Paris-Lyon pair, ρ̄13 ≈ −0.02 for the Paris-Montpellier pair and ρ̄23 ≈ 0.45
for Lyon-Montpellier pair. The results suggest in particular that the clusters
centered around Paris and Montpellier are nearly independent, which is coherent
with the fact they are the most distant pair of clusters among the three.

When reconducting the analysis using the simpler estimation method de-
scribed in Remark 6.2, we obtained virtually identical parameters. This sug-
gests that in some cases the simpler method may be used as a viable alternative
to maximizing (6.10). The pairwise Pearson correlations computed during the
process, and whose inter-cluster averages are used as final estimates, are shown
in the right panel of Figure F.4 in the Appendix.

This application to rainfall illustrates some of the strengths of clustered
Archimax copulas. Namely, we are able to model the dependence of multi-
dimensional data that consists of groups of variables which are asymptotically
dependent. Within each cluster, dependence is modeled in a fully flexible way, al-
lowing for asymmetry. Inter-cluster dependence is modeled more parsimoniously
while maintaining the possibility for both asymptotic dependence and indepen-
dence. Finally, the proposed copula family allows to fit data at a pre-asymptotic
level while boasting flexibility at the extreme level.

8. Discussion

The clustered Archimax model studied in this paper is related to several other
articles in the literature. Hierarchical constructions based on Archimax copulas
were proposed by Hofert, Huser and Prasad (2018). Specifically, their construc-
tion is based on the frailty representation of Archimax copulas, which only holds
for completely monotone generators. Hierarchies can be induced via the frail-
ties, the stdf, or both. Introducing hierarchies through the stdf alone leads to an
Archimax copula again, but introducing hierarchies through the frailties leads
to a hierarchical model which would be interesting to compare to the clustered
Archimax construction proposed here. Notably, it would be interesting to estab-
lish the attractor of the model of Hofert, Huser and Prasad (2018) and compare
it to that of the clustered Archimax copula advocated here. Unfortunately, the
Hofert, Huser and Prasad (2018) hierarchical model with hierarchies induced
through frailties is not, to the best of our knowledge, supplemented with in-
ference techniques; the recent methodology of Górecki and Hofert (2023) only
considers hierarchies induced through the stdf. Therefore, performance compar-
isons with our proposed clustered Archimax copula model are not yet possible.

The extremal dependence structure of Liouville copulas is established in
Belzile and Nešlehová (2017). The stochastic representation of Liouville copulas
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is similar to that of Archimax copulas, as they are survival copulas of vectors
of the form RD, with R a nonnegative random variable and D a Dirichlet ran-
dom vector. The work presented in this paper differs from this by replacing the
Dirichlet component by a vector S characterized by an stdf and by allowing
for multiple distorting random variables R1, . . . , RK , thus inducing a hierarchy
(or clustering). Finally, Engelke, Opitz and Wadsworth (2019) establish the ex-
tremal dependence of bivariate vectors of the form R×(W1,W2) for an extensive
combination of asymptotic behaviors of both R and (W1,W2). The attractor of
the bivariate Archimax copula is in particular obtained as a special case of their
Proposition 1 and Equation (6), see Sections 2.1 and 4 therein.

A. Proofs of Section 4

This section contains the proofs of the results from Section 4. We begin with
auxiliary results in Section A.1; Theorem 4.1 and its Corollaries are proved in
Sections A.2 and A.3, respectively.

A.1. Auxiliary results

The following proposition is used to prove Theorem 4.1 but is also of independent
interest.

Proposition A.1. Let S = (S1, . . . , Sd) be a random vector with joint survival
function Ḡd as in (2.4) for some stdf �. Then 1/S belongs to the maximum do-
main of attraction of a multivariate extreme-value distribution with unit Fréchet
margins and stdf �.

Proof of Proposition A.1. For the margins, recall that for each i ∈ {1, . . . , d},
Si ∼ Beta(1, d − 1). The survival function of 1/Si is thus given by F̄1/Si

(s) =
1 − (1 − 1/s)d−1; it is easily seen that F̄1/Si

∈ R−1. Now set cn = {1 − (1 −
1/n)1/(d−1)}−1. From Equation 3.13 in Embrechts, Klüppelberg and Mikosch
(1997), for all si ∈ R, it then holds that Pr(1/Si ≤ cnsi) → Φ1(si) as n →
∞. Thus 1/S is in the domain of attraction of a multivariate extreme-value
distribution with unit Fréchet margins and stdf � if and only if for all s ∈ R

d
+,

lim
n→∞

n {1 − Pr(1/S1 ≤ cns1, . . . , 1/Sd ≤ cnsd)}

= lim
n→∞

n
[
1 − Ḡd

{
1/(cns1), . . . , 1/(cnsd)

}]
= �(1/s1, . . . , 1/sd).

To show this, fix an arbitrary s ∈ R
d
+ and observe that because cn → ∞ as

n → ∞,

Ḡd

{
1/(cns1), . . . , 1/(cnsd)

}
=
{
1 − (1/cn)�(1/s1, . . . , 1/sd)

}d−1

for all n sufficiently large. Now note that as n → ∞, n/ckn converges to 0 for all
k ∈ {2, . . . , d− 1} and to 1/(d− 1) for k = 1. Consequently,



338 S. Chatelain et al.

lim
n→∞

n
[
1 −
{
1 − (1/cn)�(1/s1, . . . , 1/sd)

}d−1
]

= lim
n→∞

d−1∑
k=1

(
d− 1
k

)
(−1)k+1 n

ckn
�k(1/s1, . . . , 1/sd) = �(1/s1, . . . , 1/sd)

as claimed.

The following lemma determines the normalizing sequences needed for the
proof of Theorem 4.1.

Lemma A.1. Let CG,ψ,�,Q be a clustered Archimax copula such that Assump-
tions 4.1 and 4.2 are satisfied. Then the following hold:

(i) For each k ∈ D1 and i ∈ {1, . . . , dk}, 1/(RkSki) ∈ M(Φρk
). Recall that for

k ∈ D1, bk = E{1/Zρk

k } where Zk ∼ Beta(1, dk−1). Moreover, there exists
a sequence of positive constants {ank} such that for all x > 0, nPr(1/Rk >

ankx) → x−ρk as n → ∞ and nPr(1/(RkSki) > ankb
1/ρk

k x) → x−ρk as
n → ∞.

(ii) For each k ∈ D2 and i ∈ {1, . . . , dk}, 1/(RkSki) ∈ M(Φ1). Moreover,
there exists a sequence of positive constants {ank} such that for all x > 0,
nPr(1/Ski > ankx) → x−1 as n → ∞ and nPr(1/(RkSki) > ankbkx) →
x−1 as n → ∞, where bk = E(1/Rk).

Proof of Lemma A.1. (i) Let k ∈ D1 and i ∈ {1, . . . , dk}. We then have (1/Rk) ∈
M(Φρk

) by assumption and 1/Ski ∈ M(Φ1) owing to the fact that Ski ∼
Beta(1, d − 1). By Proposition 3.1.1 in Embrechts, Klüppelberg and Mikosch
(1997), there exists a sequence of positive constants {ank} such that for all x > 0,
nPr(1/Rk > ankx) → x−ρk as n → ∞. Because ρk < 1, E(1/Ski)ρk+ε < ∞ for
some ε sufficiently small. Using the lemma of Breiman (1965) and the fact that
bk = E{1/Sρk

ki }, we then have, for all x > 0 and with ζkn = ankb
1/ρk

k ,

lim
n→∞

nPr
( 1
RkSki

> ζknx
)

= lim
n→∞

nPr
( 1
Rk

> ζknx
)Pr
(

1
RkSki

> ζknx
)

Pr
(

1
Rk

> ζknx
)

= (xb1/ρk

k )−ρkbk = x−ρk .

Indeed, nPr(1/Rk > ankb
1/ρk

k x) → (xb1/ρk

k )−ρk as n → ∞ by the choice of
normalizing constants {ank}. The convergence of the fraction in the above dis-
play is due to Breiman’s lemma. The Fisher-Tippett-Gnedenko Theorem (Fisher
and Tippett, 1928; Gnedenko, 1943) implies that since 1/Rk ∈ M(Φρk

) and
ρk ∈ (0, 1), F̄1/Rk

∈ R−ρk
. We also have that 1/Ski and 1/Rk are inde-

pendent, positive, and E(1/Sγ
ki] < ∞ for γ ∈ (ρk, 1). By Breiman’s lemma,

1/(RkSki) ∈ M(Φρk
) and

Pr
(

1
RkSki

> ankb
1/ρk

k x
)

Pr
(

1
Rk

> ankb
1/ρk

k x
) → E(1/Sρk

ki ) = bk
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as n → ∞.

(ii) Let k ∈ D2 and i ∈ {1, . . . , dk}. The proof of the result relies again on
Breiman’s lemma; see also Proposition 2(b) of Belzile and Nešlehová (2017).
Since 1/Ski ∈ M(Φ1), Proposition 3.1.1 in Embrechts, Klüppelberg and Mikosch
(1997) implies that there exist sequences of positive constants {ank} such that
for all x > 0, nPr(1/Ski > ankx) → x−1 as n → ∞, and this for all i = 1, . . . , dk.
Recall that bk = E(1/Rk). Similarly to the proof of part (i), Breiman’s lemma
then implies that for all x > 0 and with ζkn = ankbk,

lim
n→∞

nPr
( 1
RkSki

> ζknx
)

= lim
n→∞

nPr
( 1
Ski

> ζknx
)Pr
(

1
RkSki

> ζknx
)

Pr
(

1
Ski

> ζknx
)

= (xbk)−1bk = x−1 .

The convergence of the first part of the above is due to the choice of the nor-
malizing constants {ank}. For the convergence of the second term, note that
F̄1/Ski

∈ R−1 and by assumption, E{1/R1+εk
k } for some εk > 0. Finally, since

1/Ski and 1/Rk are independent and positive, Breiman’s lemma implies that
1/(RkSki) ∈ M(Φ1) and that

Pr
(

1
RkSki

> ankbkx
)

Pr
(

1
Ski

> ankbkx
) → E(1/Rk) = bk

as n → ∞. This completes the proof.

The lemma below establishes asymptotic independence between clusters in
D1 and clusters in D2.

Lemma A.2. Suppose that k ∈ D1, l ∈ D2, i ∈ {1, . . . , dk} and j ∈ {1, . . . , dl}.
Let {ank} and {anj} be normalizing sequences as in Lemma A.1. As in Lemma
A.1 (ii), let bl = E(1/Rl). Then for all x, y > 0,

lim
n→∞

nPr{1/(RkSki) > ankb
1/ρk

k x, 1/(RlSlj) > anlbly} = 0 .

Proof. Fix x, y > 0 and recall that ρk ∈ (0, 1). The probability of interest can
be written as follows, for ζnk = ankb

1/ρk

k and ηnl = anlbl,

nPr {1/(RkSki) > ζnkx, 1/(RlSlj) > ηnly}

=
∫
R2

+

nPr (1/Ski > ζnkxrk, 1/Slj > ηnlyrl) dFRk,Rl
(rk, rl)

=
∫
R2

+

nPr{1/Ski > ζnkxrk}Pr{1/Slj > ηnlyrl}dFRk,Rl
(rk, rl) ,

where the first equality is due to the independence between (Rk, Rl) and (Ski, Slj)
and the last equality is due to the independence of Ski and Slj . Next, consider
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the integrand as a sequence of functions {fn} defined on R
2
+. Observe that for

each rk, rl > 0,
fn(rk, rl) ≤ gn(rk, rl) ,

where {gn} is itself a sequence of functions on R
2
+ defined by

gn(rk, rl) = gn(rl) = nPr{1/Slj > anlblyrl} .

From the choice of {anl}n∈N, for all rk, rl > 0, limn→∞ gn(rk, rl) = g(rk, rl),
where g(rk, rl) = 1/(blyrl). Moreover,∫

R2
+

g(rk, rl)dFRk,Rl
(rk, rl) =

∫
R2

+

1
blyrl

dFRk,Rl
(rk, rl) = 1

y
,

and ∫
R2

+

gn(rk, rl)dFRk,Rl
(rk, rl) = nPr{1/(RlSlj) > anlbly} → 1

y

as n → ∞. We therefore have a sequence of nonnegative functions {gn} bounding
{fn} from above such that

lim
n→∞

∫
R2

+

gn(rk, rl)dFRk,Rl
(rk, rl) =

∫
R2

+

lim
n→∞

gn(rk, rl)dFRk,Rl
(rk, rl) .

Finally, note that

fn(rk, rl) = nPr{1/Ski > ankb
1/ρk

k xrk}Pr{1/Slj > anlblyrl} → 0

as n → ∞ since

Pr{1/Ski > ankb
1/ρk

k xrk} → 0 and nPr{1/Slj > anlblyrl} → 1/(blyrl)

as n → ∞. The desired result then follows by the generalized Lebesgue domi-
nated convergence theorem (see Theorem 1.21 in Kallenberg (2002), for exam-
ple).

We are now ready to prove Theorem 4.1.

A.2. Proof of Theorem 4.1

A random vector (Y1, . . . , Yd) is in the maximum domain of attraction of the
extreme-value distribution H with Fréchet margins if and only if there exist
sequences of positive constants (ani) ∈ (0,∞), i ∈ {1, . . . , d}, so that, for all
(y1, . . . , yd) ∈ R

d
+,

lim
n→∞

n {1 − Pr (Y1 ≤ an1y1, . . . , Yd ≤ andyd)} = − lnH(y1, . . . , yd) .

This is a multivariate extension of Proposition 3.1.1 in Embrechts, Klüppel-
berg and Mikosch (1997), as used in Belzile and Nešlehová (2017). For each
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k ∈ {1 . . . ,K}, set the sequences {ank} as done in Lemma A.1. Then the fact
that the marginals of H are Fréchet follows from the said Lemma. With the
normalizing constants now set, the limit of interest is, for any fixed x ∈ R

d
+

and, for convenience, let J = {(k, i) : k = 1, . . . ,K, i = 1 . . . , dk},

lim
n→∞

n

⎡
⎣1 − Pr

⎛
⎝ ⋂

(k,i)∈J

{
1

RkSki
≤ ankb

1/ρk

k xki

}⎞⎠
⎤
⎦ , (A.1)

where for k ∈ D2, bk = E(1/Rk) as in Lemma A.1 (ii) and for ease of notation,
ρk = 1. Letting P(J ) denote the power set of J , (A.1) can be rewritten as

lim
n→∞

n
∑

p∈P(J )

(−1)|p|+1 Pr

⎛
⎝ ⋂

(k,i)∈p

{
1

RkSki
> ankb

1/ρk

k xki

}⎞⎠ . (A.2)

We now consider the subset P(J )|D1,D2 of P(J ) such that p ∈ P(J )|D1,D2

if and only if there exists (k, i), (l, j) ∈ p so that k ∈ D1 and l ∈ D2. As it
turns out, the summands in (A.2) for which p ∈ P(J )|D1,D2 are asymptotically
negligible. To see this, fix an arbitrary p ∈ P(J )|D1,D2 and pick (k, i), (l, j) ∈ p

so that k ∈ D1 and l ∈ D2. Then for all {xca : (c, a) ∈ p} ∈ R
|p|
+ ,

nPr

⎛
⎝ ⋂

(c,a)∈p

{
1

RcSca
> ancb

1/ρc
c xca

}⎞⎠
≤ nPr{1/(RkSki) > ankb

1/ρk

k xki, 1/(RlSlj) > anlb
1/ρl

l xlj} → 0

as n → ∞ by Lemma A.2.
Now, let P(J )|D1 be the subset of P(J ) such that p ∈ P(J )|D1 if and only

if (c, a) ∈ p implies that c ∈ D1. In other words, P(J )|D1 contains only sets of
indices (c, a) with c ∈ D1. Let N1 =

∑
k∈D1

dk, define S(1) = (Sk : k ∈ D1),
and rewrite the summands in (A.2) with p ∈ P(J )|D1 as follows:

n
∑

p∈P(J )|D1

(−1)|p|+1 Pr
( ⋂

(c,a)∈p

{
1

RcSca
> ancb

1/ρc
c xca

})

= n

[
1 − Pr

( ⋂
k∈D1

⋂
1≤i≤dk

{
1

RkSki
≤ ankb

1/ρk

k xki

})]

=
∫

[0,1]N1
n

[
1 − Pr

( ⋂
k∈D1

⋂
1≤i≤dk

{
1
Rk

≤ ankb
1/ρk

k xkiski

})]
dFS(1)(s(1))

=
∫

[0,1]N1
n

[
1 − Pr

( ⋂
k∈D1

{
1
Rk

≤ ankb
1/ρk

k min
1≤i≤dk

(xkiski)
})]

dFS(1)(s(1)) ,

where s(1) ∈ [0, 1]N1 is indexed so that s(1) = (ski : k ∈ D1, 1 ≤ i ≤ dk).
Now consider the integrand as a sequence of functions {fn} defined on [0, 1]N1
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and observe that for each n ∈ N, 0 ≤ fn ≤ gn, where gn is given, for each
s(1) ∈ [0, 1]N1 as above, by

gn(s(1)) = n
∑
k∈D1

dk∑
i=1

Pr
(
1/Rk > ankb

1/ρk

k xkiski

)

Clearly, gn(s(1)) → g(s(1)) as n → ∞, where

g(s(1)) =
∑
k∈D1

dk∑
i=1

1
bk{xkiski}ρk

with ∫
[0,1]N1

g(s(1))dFS(1)(s(1)) =
∑
k∈D1

dk∑
i=1

x−ρk

ki .

Moreover,
∫

[0,1]N1
gn(s(1))dFS(1)(s(1)) = n

{∑
k∈D1

dk∑
i=1

Pr
(
1/(RkSki) > ankb

1/ρk

k xki

)}

→
∑
k∈D1

dk∑
i=1

x−ρk

ki

as n → ∞. Therefore, we have a sequence of majorants {gn} for which the
identity limn→∞

∫
gn =

∫
limn→∞ gn is satisfied. Now recall that the vector

of reciprocal distortions 1/R has a limiting stdf �1/R defined in terms of the
positive, unit-mean variables W1, . . . ,WK in Assumption 4.2. Therefore, fn → f
pointwise, where for all s(1) ∈ [0, 1]N1 ,

f(s(1)) = E
{

max
k∈D1

Wk

bk min
1≤i≤dk

(xkiski)ρk

}
.

Now, integrating over the s(1) yields∫
[0,1]N1

f(s(1))dFS(1)(s(1)) = E
{

max
k∈D1

1≤i≤dk

Wk

bk(Skixki)ρk

}
.

Using the generalized Lebesgue dominated convergence theorem, we can thus
conclude that for all x(1) = (xk : k ∈ D1) ∈ R

N1
+ ,

lim
n→∞

n
∑

p∈P(J )|D1

(−1)|p|+1 Pr
( ⋂

(c,a)∈p

{1/(RcSca) > anbb
ρc
c xca}

)

= E
{

max
k∈D1

1≤i≤dk

Wk

bk(Skixki)ρk

}
.
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Analogously to P(I)|D1 , let P(I)|D2 contain only sets of indices (c, a) with
c ∈ D2. Let K2 = |D2| and N2 =

∑
k∈D2

dk, define R(2) = (Rk : k ∈ D2), and
recall that ρk = 1 for all k ∈ D2. Next, for x(2) = (xk : k ∈ D2) ∈ R

N2
+ , rewrite

the summands of (A.2) with p ∈ P(I)|D2 as follows:

n
∑

p∈P(I)|D2

(−1)|p|+1 Pr
( ⋂

(c,a)∈p

{1/(RcSca) > ancb
1/ρc
c xca}

)

= n

[
1 − Pr

( ⋂
k∈D2

⋂
1≤i≤dk

{1/(RkSki) ≤ ankbkxki

)]

=
∫
R

K2
+

n

[
1 − Pr

( ⋂
k∈D2

⋂
1≤i≤dk

{1/Ski≤ankbkxkirk}
)]

dFR(2)(r) ,

where r(2) = (rk : k ∈ D2) is indexed as R(2). Now consider the integrand as
a sequence of functions {fn} defined on R

K2
+ and observe that for each n ∈ N,

0 ≤ fn ≤ gn, where gn is given, for all r(2) ∈ R
K2
+ , by

gn(r(2)) = n
{∑
k∈D2

dk∑
i=1

Pr
(
1/Ski > ankbkxkirk

)}

Clearly, for all r(2) ∈ R
K2
+ and as n → ∞,

gn(r(2)) → g(r(2)) =
∑
k∈D2

dk∑
i=1

1
bkxkirk

.

Furthermore,
∫
R

K2
+

g(r(2))dFR(2)(r(2)) =
∑
k∈D2

dk∑
i=1

1
xki

and, as n → ∞,
∫
R

K2
+

gn(r(2))dFR(2)(r(2)) = n
{∑
k∈D2

dk∑
i=1

Pr
(
1/(RkSki) > ankbkxki

)}

→
∑
k∈D1

dk∑
i=1

1
xki

.

Analogously to the treatment of P(I)|D1 , we have a sequence of majorants {gn}
such that limn→∞

∫
gn =

∫
limn→∞ gn. It remains to determine the limit of the

sequence of functions {fn} defined for all r(2) ∈ R
K2
+ by

n

[
1 − Pr

( ⋂
k∈D2

⋂
1≤i≤dk

{1/Ski > ankbkxkirk}
)]

.
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By assumption, Sk and Sl are independent if k �= l and are therefore asymp-
totically independent as well. Using Proposition A.1 and the fact that 1/Ski ∈
M(Φ1) for all k ∈ {1, . . . ,K} and i ∈ {1, . . . , dk}, one has that fn → f point-
wise, where for all r(2) ∈ R

K2
+ ,

f(r(2)) =
∑
k∈D2

�k
{
(bkxk1rk)−1, . . . , (bkxkdk

rk)−1}
=
∑
k∈D2

(bkrk)−1�k
(
x−1
k1 , . . . , x

−1
kdk

)
.

Integrating the limit f yields∫
R

K2
+

f(r(2))dFR(2)(r(2)) =
∑
k∈D2

�k
(
x−1
k1 , . . . , x

−1
kdk

)
.

Thus for all x ∈ R
d
+, the limit (A.1) is equal to

E
{

max
k∈D1

1≤i≤dk

Wk

bk(Skixki)ρk

}
+
∑
k∈D2

�k
(
x−1
k1 , . . . , x

−1
kdk

)
.

Recalling that 1/(RkSki) ∈ M(Φρk
), one obtains (4.1) by plugging in the ap-

propriate Fréchet margins.

A.3. Proofs of Corollaries 4.1 and 4.2

Proof of Corollary 4.1. Let K1 = |D1| and recall that E[maxk∈D1 ykWk] is the
limiting stdf of {1/Rk : k ∈ D1}, defined for all (y1, . . . , yK1) ∈ R

K1
+ . Letting

{Wk : k ∈ D1} be a (uniformly) random permutation of (K1, 0, . . . , 0) yields the
independence stdf E[maxk∈D1 ykWk] = y1 + . . .+ yK1 . Due to the fact that, for
all k, l ∈ {1, . . . , d} and i ∈ {1, . . . , dl}, Wk is independent of Sli, plugging this
into (4.1) yields, for all x ∈ R

d
+,

�G,ψ,�,Q(x) =
∑
k∈D1

E
(

max
i=1,...,dk

xki

bkS
ρk

ki

)
+
∑
k∈D2

�k(xk) .

By Proposition 6.1 in Charpentier et al. (2014), as mentioned in the Section 1,
for each k ∈ D1,

E
(

max
1≤i≤dk

xki

bkS
ρk

ki

)
= �ρk

k (x1/ρk

k ) .

This completes the proof.

Proof of Corollary 4.2. Observe first that by Assumption 4.2 and the fact that
the variables Wk have unit mean,

�1/R(x′) = E
{

max
1≤k≤K

(x′
kWk)

}
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≤ E
{
max
k∈D1

(x′
kWk) +

∑
k∈D2

x′
kWk

}
= E
{
max
k∈D1

(x′
kWk)

}
+
∑
k∈D2

x′
k. (A.3)

Next, note that �G,ψ,�,Q(x) = A(x′) + B(x′), where

A(x′) =
∑
k∈D2

�k
(
xk) =

∑
k∈D2

xik =
∑
k∈D2

x′
k

and

B(x) = E
(

max
k∈D1

1≤j≤dk

xkjWk

bkS
ρk

kj

)
= E
(

max
k∈D1

x′
kWk

bkS
ρk

kj

)
.

Because for each k ∈ D1, bk = E(1/Sρk

kj ), we have that for any w ∈ R
K
+ and

k ∈ D1,

E
(

max
k∈D1

x′
kwk

bkS
ρk

kj

)
≥ E
(
x′
kwk

bkS
ρk

kj

)
= x′

kwk ,

so that

E
(

max
k∈D1

x′
kwk

bkS
ρk

kj

)
≥ max

k∈D1
(x′

kwk) .

This implies that

B(x′) ≥ E
{

max
k∈D1

(x′
kWk)

}
,

which together with (A.3) yields the desired result.

B. Jackknife estimation of the covariance matrix of T

Here, we provide a consistent estimator of the asymptotic variance Σ of
√
nT ,

where T is as in (6.3). Recall the definition of I in (6.1). For each ν ∈ {1, . . . , n}
and (i, j, k) ∈ I, let θ̂ijν be a version of θ̂ij based on all but the νth observation;
θ̄kν be the average of all θ̂ijν such that, given k, (i, j, k) ∈ I; Tijkν = θ̂ijν − θ̄kν ;
and Tν = (Tιν)ι∈I . In particular, Tν is a version of T based on all but the
νth observation. It then follows from Theorem 9 of Arvesen (1969) that, for
T ∗
ν = nT − (n− 1)Tν and T ∗

• = (1/n)
∑n

ν=1 T
∗
ν ,

Σ̂ = 1
n− 1

n∑
ν=1

(T ∗
ν − T ∗

• )(T ∗
ν − T ∗

• )	 (B.1)

is a consistent estimator of Σ.
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C. Conjectured extension of Theorem 4.1

As it is stated, Theorem 4.1 does not account for the boundary case when 1/Rk ∈
M(Φ1), which can occur. It would thus be desirable to replace Assumption 4.1
of Theorem 4.1 by the following requirement.

Assumption C.1. For a clustered Archimax copula as in Definition 3.1, as-
sume that {1, . . . ,K} is the union of disjoint sets D1, D2, and D3 such that

(i) k ∈ D1 if and only if 1/Rk ∈ M(Φρk
) for some ρk ∈ (0, 1).

(ii) k ∈ D2 if and only if there exists an εk > 0 such that E{1/R1+εk
k } < ∞.

(iii) k ∈ D3 if and only if 1/Rk ∈ M(Φ1) and E(1/Rk) = ∞.

We conjecture that the variables whose distortions are in D3 have the same
asymptotic behavior as those whose distortions are in D2. More precisely, we
surmise that the following statement holds.

Conjecture C.1. Let CG,ψ,�,Q be a clustered Archimax copula such that As-
sumptions C.1 and 4.2 hold. For k ∈ D1, let bk = E(1/Zρk

k ), Zk ∼ Beta(1, dk −
1). Then 1/X ∈ M(H) with 1/Xki ∈ M(Hki), where Hki = Φρk

for k ∈ D1
and i ∈ {1, . . . , dk} and Hki = Φ1 for k ∈ D2 ∪D3 and i ∈ {1, . . . , dk}. The stdf
of H is given for all x ∈ R

d
+ by

�G,ψ,�,Q(x) = E

⎛
⎝ max

k∈D1
1≤i≤dk

xkiWk

bkS
ρk

ki

⎞
⎠+

∑
k∈D2∪D3

�k(xk) . (C.1)

One part of Conjecture C.1 is clear, namely that Hki = Φ1 for k ∈ D3. Indeed,
for any such k, the Corollary to Theorem 3 in Embrechts and Goldie (1980)
implies that 1/(RkSki) ∈ M(Φ1). So one can again find a sequence {ank} of
positive constants ensuring that for all x ∈ R+, nPr{1/(RkSki) > ankx} → 1/x
as n → ∞. The main difficulty in establishing the validity of Conjecture C.1 is
the fact that, for k ∈ D3 and i ∈ {1, . . . , dk}, the relation between the above
normalizing sequence {ank} and the normalizing sequences for 1/Rk and 1/Ski

is unclear. In order to prove the conjectured result, it suffices to prove three
sister lemmas which are reported below. The first two, Lemmas C.1 and C.2,
are analogous to Lemma A.2 and are proved therein. The third, Conjecture C.2,
that states asymptotic independence between different clusters in D3, is the
missing result that if established would prove Conjecture C.1.

Lemma C.1. Under the hypothesis of Conjecture C.1, suppose that k ∈ D1,
l ∈ D3, i ∈ {1, . . . , dk} and j ∈ {1, . . . , dl}. Let {ank} be a sequence of positive
constants such that for all x > 0, nPr(1/Rk > ankx) → x−ρk as n → ∞ and
nPr{1/(RkSki) > ankb

1/ρk

k x} → x−ρk as n → ∞. Furthermore, let {anl} be a
sequence of positive constants so that for all x > 0, nPr(1/(RlSlj) > anlx) →
1/x as n → ∞. Then for all x, y ∈ R+,

lim
n→∞

nPr{1/(RkSki) > ankb
1/ρk

k x, 1/(RlSlj) > anly} = 0 .
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Proof of Lemma C.1. The proof is quite similar to the one of Lemma A.2.
Observe first that the assumed sequences {ank} and {anl} indeed exist, by
Lemma A.1 and the discussion in the paragraph following Conjecture C.1. Fix
some arbitrary x, y > 0 and recall that ρk ∈ (0, 1). The probability of interest
can be written as follows

nPr{1/(RkSki) > ankb
1/ρk

k x, 1/(RlSlj) > anlbly}

=
∫

(0,1)2
nPr{1/Rk > ankb

1/ρk

k xski, 1/Rl > anlyslj}dFSki,Slj
(ski, slj) .

Consider the integrand as a function fn defined on (0, 1)2 and note that for all
n ∈ N, 0 ≤ fn ≤ gn, where gn is given, for all (ski, slj) ∈ (0, 1)2 by

gn(ski, slj) = gn(ski) = nPr(1/Rk > ankb
1/ρk

k xski) .

As in the proof of Lemma A.2, for all (ski, slj) ∈ (0, 1)2,

lim
n→∞

gn(ski, slj) = g(ski, slj) = 1/{bk(xski)ρk} .

Moreover, ∫
(0,1)2

g(ski, slj)dFSki,Slj
(ski, slj) = 1

xρk

and∫
(0,1)2

gn(ski, slj)dFSki,Slj
(ski, slj) = nPr{1/(RkSki) > ankb

1/ρk

k x} → 1
xρk

as n → ∞. We therefore have a sequence of functions {gn} bounding {fn} from
above such that

lim
n→∞

∫
(0,1)2

gn(ski, slj)dFSki,Slj
(ski, slj)

=
∫

(0,1)2
lim
n→∞

gn(ski, slj)dFSki,Slj
(ski, slj) .

Finally, note that

fn(ski, slj) = nPr{1/Rk > ankb
1/ρk

k xski, 1/Rl > anlb
1/ρl

l yslj} → 0

as n → ∞ since nPr{1/Rk > ankb
1/ρk

k xski} → {b1/ρk

k xski}−ρk and Pr{1/Rl >

anlb
1/ρl

l yslj} → 0 as n → ∞. The desired result then follows from the generalized
Lebesgue dominated convergence theorem.

Lemma C.2. Under the hypothesis of Conjecture C.1, suppose that k ∈ D2,
l ∈ D3, i ∈ {1, . . . , dk} and j ∈ {1, . . . , dl}. Let {ank} such that for all x > 0,
nPr(1/Ski > ankx) → x−1 as n → ∞ and nPr{1/(RkSki) > ankbkx} → x−1

as n → ∞. Furthermore, let {anl} be a sequence of positive constants so that for
all x > 0, nPr{1/(RlSlj) > anlx} → x−1 as n → ∞. Then for all x, y ∈ R+,

lim
n→∞

nPr{1/(RkSki) > ankb
1/ρk

k x, 1/(RlSlj) > anly} = 0 .
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Proof of Lemma C.2. This proof is almost exactly the same as the proof of
Lemma A.2. Again, the existence of the norming constants {ank} and {anl}
follows from Lemma A.1 and the discussion in the paragraph following Conjec-
ture C.1. Fix some arbitrary x, y > 0. We are interested in the limit as n → ∞
of

nPr{1/(RkSki) > ankbkx, 1/(RlSlj) > anly}

=
∫
R2

+

nPr{1/Ski > ankbkxrk}Pr{1/Slj > anlyrl}dFRk,Rl
(rk, rl) .

Consider the integrand as a function fn defined on R
2
+. Observe that for each

n ∈ N, 0 ≤ fn ≤ gn where for all (rk, rl) ∈ R
2
+,

gn(rk, rl) = gn(rk) = nPr{1/Ski > ankbkxrk} .

From the choice of {ank}, for all (rk, rl) ∈ R
2
+,

lim
n→∞

gn(rk, rl) = g(rk, rl) = 1/(bkxrk) .

Moreover, since bk = E(1/Rk),∫
R2

+

g(rk, rl)dFRk,Rl
(rk, rl) =

∫
R2

+

1
bkxrk

dFRk,Rl
(rk, rl) = 1

x
.

and ∫
R2

+

gn(rk, rl)dFRk,Rl
(rk, rl) = nPr{1/(RkSki) > ankbkx} → 1

x

as n → ∞. We therefore have a sequence of functions {gn} bounding {fn} from
above such that

lim
n→∞

∫
R2

+

gn(rk, rl)dFRk,Rl
(rk, rl) =

∫
R2

+

lim
n→∞

gn(rk, rl)dFRk,Rl
(rk, rl) .

Finally, note that

fn(rk, rl) = nPr{1/Ski > ankbkxrk}Pr{1/Slj > anlyrl} → 0

as n → ∞ since

nPr{1/Ski > ankbkxrk} → 1/{bkxrk} and Pr{1/Slj > anlyrl} → 0

as n → ∞. Using the generalized Lebesgue dominated convergence theorem
concludes the proof.

Conjecture C.2. Under the hypothesis of Conjecture C.1, suppose that k, l ∈
D3, i ∈ {1, . . . , dk} and j ∈ {1, . . . , dl}. Let {ank} and {anl} be sequences of
positive constants such that for all x > 0, nPr(1/(RkSki) > ankx) → x−1 and
nPr(1/(RlSlj) > anlx) → x−1 as n → ∞. Then for all x, y ∈ R+,

lim
n→∞

nPr{1/(RkSki) > ankb
1/ρk

k x, 1/(RlSlj) > anly} = 0 .
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D. Additional figures for Section 5

Fig D.1. (Model A) Pairwise plots of a sample of size n = 1000 from the copula
CG,ψ,�,Q where G = {G1,G2,G3} = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}. ψ = {ψθ1 , ψθ2 , ψθ3} with
(θ1, θ2, θ3) = (1.5, 1.5, 2) where ψθ1 is Clayton while ψθ2 , ψθ3 are Joe. � = {�ϑ1 , �ϑ2 , �ϑ3}
with (ϑ1, ϑ2, ϑ3) = (1.25, 2, 1.5) where �ϑ1 , �ϑ2 , �ϑ3 are Gumbel-Hougaard. The radial survival
copula D̄ is trivariate Gaussian with correlations all equal to 0.5. Upper: linear correlation,
Lower: contour density, Diagonal: univariate histogram.
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Fig D.2. (Model B) Pair plots of a sample of size n = 1000 from the copula CG,ψ,�,Q where
G = {G1,G2,G3} = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}. ψ = {ψθ1 , ψθ2 , ψθ3} with (θ1, θ2, θ3) =
(1.5, 1.5, 2) where ψθ1 is Clayton while ψθ2 , ψθ3 are Joe. � = {�ϑ1 , �ϑ2 , �ϑ3} with (ϑ1, ϑ2, ϑ3) =
(1.25, 2, 1.5) where �ϑ1 , �ϑ2 , �ϑ3 are Gumbel-Hougaard. The radial survival copula D̄ is trivari-
ate Gumbel-Hougaard with parameter ϑR = 4. Upper: linear correlation, Lower: contour den-
sity, Diagonal: univariate histogram.
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Fig D.3. Pair chi plots for the sample from Model A (left) and Model B (right). The full
black line is the empirical estimate of (5.1), the dotted lines are 95% confidence intervals and
the red lines represent the true values of limq→1 χij(q) for each pair (i, j). The samples used
for the empirical estimates are those of Figures D.1 and D.2.
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E. Additional figures for the simulation study of Section 6

Fig E.1. Boxplots of the fitted values of Kendall’s Tau for the radial copula Q̄ in the Gumbel
case. True values τQ are plotted in dotted lines. The simulation is based on 100 Monte-Carlo
replicates.

Fig E.2. Boxplots of the fitted values of Kendall’s Tau for the radial components. True values
τψ are plotted in dotted lines.
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Fig E.3. Boxplots of the fitted values of Kendall’s Tau for the radial copula Q̄ in the cases
where clustered Archimax copula contained both Clayton and Joe clusters. True values τQ are
plotted in dotted lines. The simulation is based on 100 Monte-Carlo replicates.

Fig E.4. Average Rand indices obtained for each cluster size and number configuration ac-
cording to sample size. Four clustering algorithms were considered with dissimilarity matrices
built from estimates of either Kendall’s tau or the upper tail dependence coefficient. Notation:
hc denotes hierarchical clustering with average, complete and single linkage while pam denotes
the partition around medoids method.
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F. Additional figures for the data illustration of Section 7

Fig F.1. Pair plots of the scaled componentwise ranks of monthly maxima of precipitations
for the nine stations of the Paris cluster considered in the application of Section 7.



Clustered Archimax copulas 355

Fig F.2. Pair plots of the scaled componentwise ranks of monthly maxima of precipitations
for the six stations of the Lyon cluster considered in the application of Section 7.
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Fig F.3. Pair plots of the scaled componentwise ranks of monthly maxima of precipitations for
the eight original stations of the Montpellier cluster considered in the application of Section 7.
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Fig F.4. Estimated quantities from Section 7.3 (d = 22 stations). Left: Matrix of pairwise
Kendall correlations associated with the (yearly) data used to perform the test of Kojadinovic
and Holmes (2009). Right: Matrix of pairwise Pearson correlations involved in the simpler
estimation procedure for Q described at the end of Section 6.2.
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