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Abstract: We investigate the problem of clustering bipartite graphs using
a simple spectral method within the framework of the Bipartite Stochastic
Block Model (BiSBM), a popular model for bipartite graphs having a com-
munity structure. Our focus lies in the high-dimensional setting where the
number n1 of rows, and n2 of columns, of the associated adjacency matrix
differ significantly. A recent study by [4] has established a sufficient and nec-
essary condition related to the sparsity level pmax of the bipartite graph,
enabling the recovery of the latent partition of the rows. In their work,
[4] introduces an iterative method that extends the approach proposed by
[26] to achieve the stated recovery goal. However, empirical results suggest
that the subsequent refinement algorithm does not significantly enhance the
performance of the spectral method, indicating that the spectral method
achieves exact recovery within the same regime as the refinement method.
We establish this claim by deriving new entrywise bounds on the eigenvec-
tors of the similarity matrix utilized by the spectral method. Our analysis
extends the framework of [23], which is limited to symmetric matrices with
restricted dependencies. As a critical technical step, we also derive an im-
proved concentration inequality tailored for similarity matrices.
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1. Introduction

Bipartite graphs are a convenient way to represent the relationships between
objects of two types. One can find examples of applications in many fields, such
as e-commerce with customers and products [20], finance with investors and
assets [28], and biology with plants of pollinators networks [31]. These networks
are often large and sparse, characterized by an associated adjacency matrix
with a notable imbalance between the number of rows and columns (e.g., one
can have a dataset with far more products than customers).

To extract meaningful insights from these networks, clustering methods are
commonly employed. Spectral Clustering (SC) is a particularly popular ap-
proach due to its efficiency in terms of computational complexity and statistical
accuracy. However, existing consistency guarantees for SC are weak, requiring
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stronger conditions on the sparsity level of the bipartite graph than the prov-
ably optimal algorithms analyzed by [4] and [26]. Despite this, experimental
results in the aforementioned works show that SC performs almost as well as
the provably optimal algorithms, even with worse theoretical guarantees.

In this work, we address this gap by showing that SC achieves exact recov-
ery under the BiSBM, an asymmetric extension of the Stochastic Block Model
(SBM) commonly used to evaluate the performance of clustering algorithms for
bipartite graphs. We demonstrate that SC achieves exact recovery whenever the
sparsity level of the bipartite graph pmax (i.e., the maximal probability of ob-
serving an edge in the bipartite graph) satisfies p2

max � logn1
n1n2

. According to [4],
this is a necessary and sufficient condition to recover the rows partition exactly.
Hence, SC is optimal, up to a constant factor. We leave the characterization of
the precise constant necessary for exact recovery as future work.

1.1. Main contributions

Our primary contributions are summarized below:

• We demonstrate that the spectral method achieves exact recovery of the
rows partition whenever p2

max � logn1
n1n2

, establishing its optimality, up to a
constant factor. To accomplish this, we extend to similarity matrices the
entrywise concentration bounds for eigenvectors of [23], originally devel-
oped for matrices with independent entries or limited dependencies.

• Central to our proof is an improved concentration bound for similarity
matrices. We derive this result by adapting the combinatorial argument
presented by [16], demonstrating the concentration of adjacency matrices
sampled from the generalized Erdös-Renyi model.

• Our analysis applies to the rank-deficient connectivity matrices, allowing
for the partial removal of the “spectral gap condition. This condition,
common in the analysis of spectral methods, typically requires that the
matrices of interest satisfy a rank condition to ensure the existence of a
spectral gap. Our approach aligns with recent works by [25] and [32].

1.2. Related work

Bipartite graphs and spectral clustering The recent work of [4] confirmed
the conjecture of [26] that p2

max � logn1
n1n2

is both a necessary and sufficient condi-
tion for exact recovery of the rows partition under the high-dimensional BiSBM,
where n1 � n2. This threshold can be attained through the use of general-
ized power methods proposed in the aforementioned articles. However, existing
strong consistency guarantees for spectral clustering (SC) require stronger as-
sumptions. For instance, when specialized to the setting of [26] (a special case
of our more general model), the result of [5] holds only when the sparsity level
satisfies p2

max � log2 n1
n1n2

. In cases where p2
max � logn1

n1n2
, SC is only guaranteed to

achieve a weak form of consistency, see Proposition 1 in [4]. The work of [17]
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also demonstrated that when p2
max � 1

n1n2
, it is possible to recover a propor-

tion of the row clusters through an SBM reduction. However, this represents
the weakest existing recovery guarantee, and our focus is on achieving exact
recovery. The recent work of [32] proposed an improved analysis of the spectral
method for asymmetric matrices with independent entries, but their bound be-
comes trivial in the high-dimensional regime n1 � n2 that we are interested in.
This regime where n2/n1 → ∞ was also considered in the recent work of [29]
for matrix completion in the challenging regime where only partial recovery is
possible.

Entrywise concentration bounds for eigenvectors In recent years, spec-
tral algorithms have demonstrated success in achieving exact recovery in var-
ious community detection tasks across diverse settings. Examples include the
Stochastic Block Model (SBM) [3], the Contextual SBM [2], the Censored Block
Model [12], Hierarchical SBM [24], and uniform Hypergraph SBM [18]. Spec-
tral methods have also found applications in other estimation problems, such as
group synchronization [11], ranking [8], or planted subgraph detection [13].

To establish these results, it is typically crucial to derive entrywise eigenvector
concentration bounds. In this work, we adopt the framework developed by [23],
which integrates techniques for obtaining deterministic perturbation bounds
[15, 6, 10] with methods relying on certain stochastic properties of the noise
[3, 7, 14].

1.3. Notations

We use lowercase letters (ε, a, b, . . .) to denote scalars and vectors, except for
universal constants that will be denoted by c1, c2, . . . for lower bounds, and
C1, C2, . . . for upper bounds and some random variables. Occasionally, we em-
ploy the notation an � bn (or an � bn) for sequences (an)n≥1 and (bn)n≥1
if there is a constant C > 0 such that an ≤ Cbn (resp. an ≥ Cbn) for all
n. If the inequalities only hold for n large enough, we will use the notation
an = O(bn) (resp. an = Ω(bn)). If an � bn (resp. an = O(bn)) and an � bn
(resp. an = Ω(bn)), then we write an � bn (resp. an = Θ(bn)).

Matrices will be denoted by uppercase letters. The i-th row of a matrix A
will be denoted as Ai:. The column j of A will be denoted by A:j , and the
(i, j)th entry by Aij . The transpose of A is denoted by A� and A�

:j corresponds
to the j-th row of A� by convention. Ik denotes the k × k identity matrix. For
matrices, we use || · || to denote the spectral norm (or Euclidean norm in the
case of vectors), and || · ||F to denote the Frobenius norm. The set of vectors
x ∈ R

d such that ‖x‖ = 1 is denoted by S
d−1. The number of non-zeros entries

of a matrix A will be denoted by nnz(A).
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2. Model and algorithm description

2.1. The bipartite stochastic block model (BiSBM)

The BiSBM is a direct extension of the SBM [19] to bipartite graphs. The model
depends on the following parameters.

• A set of nodes of type I, N1 = [n1], and a set of nodes of type II, N2 = [n2].
• A partition of N1 into K communities C1, . . . , CK and a partition of N2

into L communities C′
1, . . . , C′

L.
• Membership matrices Z1 ∈ Mn1,K and Z2 ∈ Mn2,L where Mn,K denotes

the class of membership matrices with n nodes and K communities. Each
membership matrix Z1 ∈ Mn1,K (resp. Z2 ∈ Mn2,L) can be associated
bijectively with a partition function z : [n] → [K] (resp. z′ : [n] → [L])
such that z(i) = zi = k (resp. z′(i) = z′i = l) where k (resp. l) is the
unique column index satisfying (Z1)ik = 1 (resp. (Z2)il = 1).

• A connectivity matrix of probabilities between communities

Π = (πkk′)k∈[K],k′∈[L] ∈ [0, 1]K×L.

Let us write

P = (pij)i∈[n1],j∈[n2] := Z1Π(Z2)� ∈ [0, 1]n1×n2 .

A graph G is distributed according to BiSBM (Z1, Z2,Π) if the entries of the
corresponding bipartite adjacency matrix A ∈ {0, 1}n1×n2 are generated by

Aij
ind.∼ B(pij), i ∈ [n1], j ∈ [n2],

where B(p) denotes a Bernoulli distribution with parameter p. Hence the prob-
ability that two nodes are connected depends only on their community mem-
berships. The sparsity level of the graph is denoted by pmax = maxi,j pij . We
make the following assumptions on the model.

Assumption A1 (Approximately balanced communities). The communities
C1, . . . , CK , (resp. C′

1, . . . , C′
L) are approximately balanced, i.e., there exists a

constant α ≥ 1 such that for all k ∈ [K] and l ∈ [L] we have
n1

αK
≤ |Ck| ≤

αn1

K
and n2

αL
≤ |C′

l | ≤
αn2

L
.

We will consider throughout this work the parameters α,K and L as con-
stants. We won’t keep track in the stated bounds of the dependencies in these
parameters.

We will rely on the following assumption to ensure the communities are well
separated.

Assumption A2 (Communities are well separated). Let U∗Λ∗(U∗)� be the
spectral decomposition of PP�. All the communities are well separated if the
following assumptions are satisfied.
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1. The smallest non zero eigenvalue of ΠΠ�, denoted by λmin(ΠΠ�), satisfies
λmin(ΠΠ�) � p2

max.
2. There exists a constant c1 > 0 such that for all i, j ∈ [n1] with zi �= zj we

have
∥∥U∗

i: − U∗
j:
∥∥ ≥ c1√

n
.

Remark 1. This assumption doesn’t require that ΠΠ� is full rank contrary to
classical assumptions used for analyzing spectral clustering. For example, con-
sider the setting where K = 2 = L, the communities are exactly balanced and

Π = Π� =
(
p cp
cp c2p

)
where p is the sparsity parameter and c > 0 is a constant. Observe that

PP� = n2

2 Z1ΠΠ�Z�
1 = n1n2

4 WΠΠ�W�

where W =
√

2
n1

Z1 has orthonormal columns. The SVD decomposition of ΠΠ�

is given by (1+c2)2p2V V � where V = ( 1√
1+c2

, c√
1+c2

)�. Hence, PP� = UΛU�

where U∗ = WV and Λ = n1n2(1 + c2)2p2/4 corresponds to the only non-zero
singular value of PP�. It is easy to check that for i ∈ C1 and j ∈ C2 we have

∥∥U∗
i: − U∗

j:
∥∥ = 2|1 − c|√

(1 + c2)n1
.

The quality of the clustering is evaluated through the misclustering rate r
defined by

r(ẑ, z) = 1
n

min
π∈S

∑
i∈[n]

1{ẑ(i) �=π(z(i))}, (2.1)

where S denotes the set of permutations on [K]. We say that an estimator ẑ
achieves exact recovery if r(ẑ, z) = 0 with probability 1 − o(1) as n tends to
infinity. It achieves weak consistency (or almost full recovery) if P(r(ẑ, z) =
o(1)) = 1−o(1) as n tends to infinity. A more complete overview of the different
types of consistency and the sparsity regimes where they occur can be found
in [1].

2.2. Algorithm description

In the high-dimensional and sparse setting where n1 � n2 and n1n2p
2
max is of

order logn1, there is no hope of recovering the columns partition Z2. To see
that, observe that the probability that all the elements of a given column are
zero is of order (1 − pmax)n1 ≈ e−n1pmax and is close to one in the considered
sparsity regime. So, it is natural to form the similarity matrix AA� and compute
the top-K eigenspace of this similarity matrix1. Unfortunately, the diagonal

1Note that similarity matrices are semi-definite positive and eigenvalues correspond to
singular values.
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elements of AA� create an important bias: (AA�)ii is typically of order n2pmax

while the diagonal entries of the corresponding population similarity matrix
are of order n2p

2
max. To avoid this issue, one can remove the diagonal of AA�

and obtain a matrix B. In this work, we consider a slightly different variant of
the spectral methods proposed by [4, 26, 17]. See Algorithm 1 for a complete
description of the method.

Algorithm 1 Spectral method on H(AA�) (Spec)
Input: The number of communities K, the rank r of ΠΠ� and the adjacency matrix A.
1: Form the diagonal hollowed Gram matrix B := H(AA�) where H(X) = X − diag(X).
2: Compute the matrix U ∈ Rn1×r whose columns correspond to the top r-eigenvectors of

B.
3: Apply approximate (1 + 2/e + ε) approximate k-medians on the rows of U and obtain a

partition z(0) of [n1] into K communities.
Output: A partition of the nodes z(0).

When the rank of ΠΠ� is not known, we propose AdaSpec (see Algorithm 2),
an adaptive version of Algorithm 1.

Algorithm 2 Adaptive spectral method on H(AA�) (AdaSpec)
Input: The number of communities K, a threshold T > 0, and the adjacency matrix A.
1: Form the diagonal hollowed Gram matrix B := H(AA�) where H(X) = X − diag(X).
2: Let r̂ ∈ [K] be the largest index such that the difference between two consecutive

eigenvalues are larger than some threshold T

r̂ := arg max{r ∈ [K] : λr(B) − λr+1(B) > T}.

3: Compute the matrix U ∈ Rn1×r whose columns correspond to the top r-eigenvectors of
B.

4: Apply (1 + 2/e + ε) approximate k-medians on the rows of U and obtain a partition z(0)

of [n1] into K communities.
Output: A partition of the nodes z(0).

Computational complexity The cost of computing B is O(n1nnz(A)) and
for U is2 O(n2

1K logn1). Applying the (1 + 2/e + ε) approximate k-medians
has a complexity O(f(K, ε)nO(1)

1 ) where f(K, ε) = (ε−2K logK)K , see [9]. Here
we used (approximate) k-medians because it can be linked easily with �2→∞
perturbation bounds (see Lemma 5.1 in [23]). But we could also apply (approx-
imate) k-means as a rounding step and use results from [30], Section 2.4 for the
analysis. Depending on the rounding step used, the dependencies in some model
parameters such as the number of communities K can change.

2The logn1 term comes from the number of iterations needed when using the power method
to compute the largest (or smallest) eigenvector of a given matrix.
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3. Main results

First, we derive a new concentration bound for the similarity matrix B. It im-
proves the upper-bound

√
n1n2p2

max ∨ logn1 used in [4] to
√
n1n2p2

max when
n1n2p

2
max � logn1. This improvement of a

√
logn1 factor is essential to show

that Spec achieves exact recovery in the challenging parameter regime where
n1n2p

2
max is of order logn1.

Theorem 1. Let B = H(AA�) where A ∼ BiSBM(n1, n2,K, L,Π) with
p2
max = cn1

n1n2
where logn1 � cn1 � log2 n1, n2 � n1 log2 n1cn1 , and n2 = O(nβ

1 )
for some constant β > 0. Then with probability at least 1 − n

−Θ(1)
1

‖B − E(B)‖ �
√

n1n2p2
max.

Remark 2. By comparison with the concentration inequality established in [4],
the only interesting sparsity regime is when pmax �

√
cn1
n1n2

where logn1 �

cn1 � log2 n1. Note that in this case, n1pmax =
√

n1cn1
n2

= O(log−1 n1) since
n2 � n1 log2 n1cn1 . Similarly, n2p

2
max � cn1

n1
= o(1). These two facts will be

used repeatedly in the proofs. In particular, the condition n1pmax = O(log−1 n1)
is critical to ensure that for all l ∈ [n2], ‖A:l‖2 ≤ C w.h.p. We, however, believe
that the condition n2 ≥ log2 n1cn1 is an artifact of the proof and could be relaxed
for example by removing, or pruning, the columns of A that have a large norm.

Remark 3. By using this concentration inequality, one could improve the con-
ditions of applicability of Proposition 1 and Theorem 2 in [4]. For example,
Proposition 1 requires that n1n2p

2
max ≥ C logn1 for a constant C > 0 large

enough. But by using the concentration inequality of Theorem 1, we would only
require n1n2p

2
max ≥ c logn1 for an arbitrary constant c > 0. See also Remark 8

in [4].

Finally, we show that Spec achieves exact recovery by proving an �2→∞
concentration bound for the top −r eigenspace U of B. Let us denote the �2→∞
distance between two matrices of eigenvectors U and U∗ ∈ R

n×r by

d2→∞(U,U∗) = inf
O∈Rr×r,O�O=I

‖UO − U∗‖2→∞

where ‖A‖2→∞ = max‖x‖=1 ‖Ax‖∞.

Theorem 2. Assume that A ∼ BiSBM(n1, n2,K, L,Π) with p2
max = cn1

n1n2

where logn1 � cn1 � log2 n1, n2 � n1 log2 n1cn1 , and n2 = O(nβ
1 ) for some

constant β > 0. Let UΛU� (resp. U∗Λ∗U∗�) be the spectral decomposition of
B = H(AA�) (resp. B∗ = PP�). Then there exists a constant c > 0 (that can
be made arbitrarily small if C is chosen large enough) such that with probability
at least 1 − n−Θ(1)

d2→∞(U,U∗) ≤ c√
n1

.
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Corollary 1. Under the assumptions of Theorem 2, Spec achieves exact re-
covery with probability at least 1 − n−Θ(1).

Corollary 2. Under the assumptions of Theorem 2, AdaSpec achieves exact
recovery with probability at least 1 − n−Θ(1), with T = n1n2p

2
max/ log logn1.

4. Proof of Theorem 1

The proof strategy is based on the combinatorial argument developed by [16].
Let us denote

E =

⎧⎨
⎩max

l∈[n2]

∑
i∈[n1]

Ail ≤ Ccol

⎫⎬
⎭

where Ccol > 0 is a constant appropriately large. By Chernoff bound (additive
form) and a union bound, we obtain

P(Ec) ≤ n2e
− C2

col
2n1pmax ≤ elogn2−C2

colΩ(logn1) ≤ e−Ω(logn1)

since by assumptions logn2 ≤ β logn1 and (n1pmax)−1 �
√

n2
n1 logn1

� logn1.
By choosing Ccol large enough, we can ensure that E occurs with probability at
least 1 − n−3

1 .

Step 1 A standard ε− net argument with the Euclidean norm (see e.g. Lemma
2 and 3 in [21]) shows that for all 0 < ε < 1/2 there exists a ε− net N of Sn1−1

such that |N | ≤ (1 + 2
ε )

n1 and

‖B − E(B)‖ ≤ 1
1 − 2ε sup

x∈N

∣∣x�(B − E(B))x
∣∣ .

In the following, we will fix ε = 1/4, in particular |N | ≤ 9n1 .

Step 2 To bound the previous quantity, let us introduce for all x ∈ S
n1−1 the

set of “light pairs”

L(x) = {(i, j) ∈ [n1] × [n1] : |xixj | ≤
√

n2

n1
pmax}

and the set of “heavy pairs”

H(x) = [n1] × [n1] \ L(x).

When clear from the context, we will omit the dependency in x in the notations
of the previous sets and write L and H instead of L(x) and H(x)

We have

sup
x∈N

∣∣x�(B − E(B))x
∣∣ ≤ sup

x∈N

∣∣∣∣∣∣
∑

(i,j)∈L
xixjBij − x�

EBx

∣∣∣∣∣∣︸ ︷︷ ︸
(T1)

+ sup
x∈N

∣∣∣∣∣∣
∑

(i,j)∈H
xixjBij

∣∣∣∣∣∣︸ ︷︷ ︸
(T2)

.
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Step 3 We are going to bound (T1) w.h.p. Observe that

(T1) ≤

∣∣∣∣∣∣
∑

(i,j)∈L
xixj(Bij − EBij)

∣∣∣∣∣∣︸ ︷︷ ︸
(E1)

+

∣∣∣∣∣∣
∑

(i,j)∈H
xixjEBij

∣∣∣∣∣∣︸ ︷︷ ︸
(E2)

.

It is easy to bound the deterministic quantity (E2)

(E2) ≤
∑

(i,j)∈H
EBij

(xixj)2

|xixj |

≤
√

n1

n2
p−1
maxn2p

2
max

∑
(i,j)∈H

(xixj)2

≤ √
n1n2pmax

∑
i∈[n1]

x2
i

∑
j∈[n1]

x2
j

=
√
n1n2pmax.

The upper-bound of (E1) follows from Lemma 6 (see the appendix) that gives

P

⎛
⎝E ∩ {|

∑
(i,j)∈L

xixj(Bij − EBij)| ≥ C1
√
n1n2pmax}

⎞
⎠ ≤ e−11n1

for some constant C1 > 1 large enough. Since |N | ≤ e9n1 according to Step 1,
we obtain by a union bound argument that

P

⎛
⎝E ∩ sup

x∈N

∣∣∣∣∣∣
∑

(i,j)∈L
xixjBij − x�

EBx

∣∣∣∣∣∣ > 2C1
√
n1n2pmax

⎞
⎠

≤ P

⎛
⎝E ∩ sup

x∈N

∣∣∣∣∣∣
∑

(i,j)∈L
xixj(Bij − EBij)

∣∣∣∣∣∣ > C1
√
n1n2pmax

⎞
⎠

≤ |N |e−11n1 ≤ e−2n1 .

Step 4 We will now bound the term involving the heavy pairs (T2). First, one
needs to control the sum of the entries of each row and column of B.

Lemma 1. Under the assumptions of Theorem 1, there exists a constant C2 > 0
such that

P

⎛
⎝E ∩ {max

i∈[n1]

∑
j∈[n1]

Bij = max
j∈[n1]

∑
i∈[n1]

Bij ≥ C2n2n1p
2
max}

⎞
⎠ ≤ e−Θ(n1n2p

2
max).
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Proof. Fix i ∈ [n1]. We have S =
∑

j Bij = 〈Ai:,
∑

j �=i Aj:〉. One can use a
similar approach as in Lemma 7 (see the appendix) with sets I = {i} and
J = [n1] \ I and apply Bennett’s inequality. We conclude by using a union
bound and the fact that n1e

−Θ(n1n2p
2
max) = e−Θ(n1n2p

2
max) since n1n2p

2
max �

logn1. Furthermore, B is symmetric; hence, the row sums correspond to column
sums.

Then, we need to show that the matrix B satisfies w.h.p. the discrepancy
property defined below, with appropriate parameters.

Definition 1. Let M be a n × n matrix with non-negative entries. For every
S, T ⊂ [n], let eM (S, T ) denote the number of edges between S and T

eM (S, T ) =
∑
i∈S

∑
j∈T

Mij .

We say that M obeys the discrepancy property DP (δ, κ1, κ2) with parameters
δ > 0, κ1 > 0 and κ2 ≥ 0 if for all non-empty S, T ⊂ [n], at least one of the
following properties hold

1. eM (S, T ) ≤ κ1δ|S||T |;
2. eM (S, T ) log eM (S,T )

δ|S||T | ≤ κ2 (|S| ∨ |T |) log en1
|S|∨|T | .

If one can show that B satisfies w.h.p. DP (δ, κ1, κ2) where κ1, κ2 > 0 are
absolute constants and δ = n2p

2
max, then Lemma B.4 in [21] would imply that

w.h.p.
(T2) � √

n1n2pmax.

Consequently, to bound (T2) on the event E , it is sufficient to show that w.h.p.
B satisfies DP (δ, κ1, κ2). W.l.o.g., one can assume that |S| ≤ |T |. If |T | ≥ n1

e
then Lemma 1 leads to

eB(S, T )
δ|S||T | ≤ |S|C2n2n1p

2
max

n2p2
max|S|n1/e

≤ C2e

with probability at least 1−eΘ(n1n2p
2
max). Let us write eB(S, T ) =

∑
i,j wij〈Ai:,

Aj:〉 where wii = 0 and wij = 1i∈S1j∈T . Following the proof of Theorem 5.2
in [22] (see also Lemma 4.2 in the supplementary material of [22]), for a given
constant c∗ > 0 let us define t(T, S) as the unique solution of

t log t = c∗
|T | log en1

|T |
δ|S||T | .

Let C∗ > 0 a given constant and define

k(T, S) = max (t(T, S), C∗) .

We have by Lemma 7 in the appendix

P (E ∩ {eB(S, T ) ≥ k(T, S)δ|S||T |}) ≤ e−
c
2 |T | log en1

|T |
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and thus
P ({∃S, T ⊂ [n1], |S| ≤ |T | : eB(S, T ) ≥ k(T, S)δ|S||T |} ∩ E)

≤
∑

I,J:|I|≤|J|<n1/e

e−
c
2 |T | log en1

|T |

≤
∑

s≤t≤n1/e

∑
|S|=s,|T |=t

e−
c
2 |T | log en1

|T |

≤
∑

s≤t≤n1/e

(
n1

s

)(
n1

t

)
e−

c
2 t log en1

t

≤
∑

s≤t≤n1/e

(en1

s

)s (en1

t

)t

e−
c
2 t log en1

t

≤
∑

s≤t≤n1/e

e−
c
2 t log en1

t +t+s+t log n1
t +s log n1

s

≤
∑

s≤t≤n1/e

e−
c
2 t log en1

t +2t+2t log n1
t

≤
∑

s≤t≤n1/e

e−
c−8
2 t log en1

t

≤
∑

s≤t≤n1/e

n
− c−8

2
1

≤ n
− c−12

2
1

by using repeatedly the fact that t log n1
t is increasing on [1, n1

e ]. By choosing a
constant c > 12, we can show by using the same argument as in Lemma 4.2 in
[22] that w.h.p. B satisfies DP (n2p

2
max, κ1, κ2) for some constants κ1 and κ2.

Conclusion We have shown that
P(‖B − EB‖ �√

n1n2pmax) ≤ P(E ∩ {‖B − EB‖ � √
n1n2pmax}) + n−3

1

≤ P(E ∩ { sup
x∈N

∣∣x�(B − E(B))x
∣∣ � √

n1n2pmax}) + n−3
1

≤ n
−Ω(1)
1

by Step 1, Step 2, Step 3, and Step 4.

5. Entrywise analysis of the spectral method

To show that the spectral method achieves exact recovery, we need to derive
�2→∞ eigenspace perturbation bound. Unfortunately, existing results only ap-
ply to symmetric matrices with independent entries or weak dependencies (see
Section 7 in [23]) and cannot be directly applied to our setting. We propose an
extension of the main result of [23] to the hollowed Gram matrix B considered
in this work. We believe that our result can be extended to more general Gram
matrices or kernel matrices.
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5.1. Notations and preliminary results

First, let us introduce some notation. Let B̃∗ = H(PP�) and B∗ = PP�. Let
λ1 ≥ . . . ≥ λr (resp. λ∗

1 ≥ . . . ≥ λ∗
r) be the top −r eigenvalues of B (resp. B∗)

and U (resp. U∗) the corresponding matrix of eigenvectors.
The spectral decomposition of the matrices B and B∗ is given by

B = UΛU�, B∗ = U∗Λ∗U∗�

where U (resp. U∗) is the matrix formed by the eigenvectors of B (resp. B∗)
and Λ = diag(λ1, . . . , λr) (resp. Λ∗ = diag(λ∗

1, . . . , λ
∗
r)) is the diagonal matrix

of non-zero eigenvalues of B (resp. B∗). The noise E = B − B∗ can be further
decomposed as

H((A− P )(A− P )�)︸ ︷︷ ︸
Ẽ

+H(P (A− P )� + (A− P )P�)︸ ︷︷ ︸
E′

+ B̃∗ −B∗︸ ︷︷ ︸
E′′

.

First, let us establish analogous results to the Conditions (A2) and (A3) in
[23].

Lemma 2. Under the assumption of Theorem 2, there is an absolute constant
C1 > 0, such that for any W ∈ R

n×r, the following inequalities hold with
probability at least 1 − n

−Θ(1)
1 .

1. ‖Λ − Λ∗‖ ≤ C1
√

n1n2p2
max,

2. ‖E‖2→∞ ≤ C1
√
n1n2p2

max,
3. ‖EU∗‖ ≤ C1

√
n1n2p2

max,
4. maxi ‖Ei:W‖ ≤ b∞(δ) ‖W‖2→∞ + b2(δ) ‖W‖, where b∞(δ) = C1

R(δ)
logR(δ)

and b2(δ) = C1

√
n2p2

maxR(δ)
logR(δ) with R(δ) = log(n1/δ) + r and δ = n−c

1 for
some constant c > 0.

5. maxi ‖Ei:U
∗‖ � ‖U‖2→∞ logn1 +

√
pmax logn1.

Proof. By Theorem 1, we have with probability at least 1 − n
−Θ(1)
1∥∥Ẽ + E′∥∥ =

∥∥H(AA�) −H(PP�)
∥∥ �

√
n1n2p2

max.

Also, by definition, maxi ‖Pi:‖2 ≤ n2p
2
max so

‖E′′‖ = max
i

‖Pi:‖2 = o(
√

n1n2p2
max).

By consequence, we have shown that

‖E‖ �
√
n1n2p2

max. (5.1)

Proof of 1 This is a direct consequence of Weyl’s inequality and (5.1):

‖Λ − Λ∗‖ ≤ ‖B −B∗‖ �
√

n1n2p2
max.
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Proof of 2 It follows from the fact that ‖E‖2→∞ ≤ ‖E‖.

Proof of 3 It is a direct consequence of the sub-multiplicativity of the norm
and the fact that ‖U∗‖ ≤ 1.

Proof of 4 By Proposition 2.2 in [23], if we can show that for any δ ∈ (0, 1)
and vector w ∈ R

n1 there exist a∞(δ), a2(δ) > 0 such that with probability at
least 1 − δ, for each i ∈ [n1]

Ei:w ≤ a∞(δ) ‖w‖∞ + a2(δ) ‖w‖ ,
then we obtain the stated result for b∞(δ) = 2a∞( δ

5rn1
) and b2(δ) = 2a2( δ

5rn1
).

Fix w ∈ R
n1 , i ∈ [n1] and let us denote R = A − P . Consider S = Ẽi:w =∑

j∈[n2]\{i}〈Ri:, Rj:〉wj . Conditionally on Ri:, this is a sum of independent and
centered r.v.s. By using Lemma F.3 in [23] with weights w̃jl = Rilwj we obtain
that conditionally on Ri the following holds with probability at least 1 − δ

S ≤ f(δ)

⎛
⎝‖w̃‖∞ +

√∑
j,l

w̃2
jlpjl

⎞
⎠

where f(δ) = 2 log(1/δ)
F−1(2 log(1/δ) and F (t) = t2et. But ‖w̃‖∞ ≤ ‖w‖∞ and

‖w̃‖2
F =

∑
j,l

R2
ilw

2
j = ‖w‖2 ‖Ri:‖2

.

Besides, with probability at least 1− eΘ(n2pmax), ‖Ri:‖2 ≤ Cn2pmax by Hoeffd-
ing’s inequality. Therefore with probability at least 1 − δ − e−Θ(n2pmax)

S ≤ f(δ)
(
(‖w‖∞ +

√
n2p2

max ‖w‖
)
.

It remains to bound S′ = E′
i:w =

∑
j∈[n2]\{i}(〈Ri:, Pj:〉 + 〈Pi:, Rj:〉)wj and

S′′ = E′′
i:w. We have

S′′ = ‖Pi:‖2
wi ≤ ‖w‖∞ n2p

2
max = o(‖w‖∞).

Also observe that =
∑

j∈[n2]\{i}〈Ri:, Pj:〉wj =
∑

j �=i,l RjlwjPil, so we can apply
Lemma F.3 in [23] with weights (wjPil)j �=i,l. We obtain

S′′ ≤ f(δ)pmax (‖w‖∞ + ‖w‖√n2pmax)

with probability at least 1−δ. A similar result holds for S′ =
∑

j �=i,l〈Pi:, Rj:〉wj :
we can apply again Lemma F.3 in [23] with weights (Pjlwj)j,l and obtain

S′ ≤ f(δ)pmax (‖w‖∞ + ‖w‖√n2pmax) .

So we can choose a∞(δ) = f(δ) and a2(δ) = f(δ)
√

n2p2
max. One can check

that, as in Lemma 3.1 in [23], b∞(δ) = 4R(δ)
logR(δ) and b2(δ) = 4

√
n2p2

maxR(δ)
logR(δ) .

Also note that n2pmax � logn1 by assumption so if we choose δ = n−c
1 for an

appropriate constant c > 0, the term e−Θ(n2pmax) will be negligible compared
to δ.
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Proof of 5 It also relies on Proposition 2.2 in [23] but with a different choice
of γ ≈ log−1 n1 to obtain a trade-off between b∞(δ) ‖U∗‖2→∞ ≈ b∞(δ)√

n1
and

b2(δ) ‖U∗‖ = b2(δ). See also Lemma 3.3 in [23]. Since the proof is similar to the
previous point, we omitted it.

5.2. A new decoupling argument

The main difficulty to adapting Theorem 2.3 and 2.5 in [23] comes from their
decoupling assumption (A1) which requires the existence of a matrix B(i) (typ-
ically obtained by replacing the i-th row and column of B by zeros or the
expectation of the entries) such that for any δ ∈ (0, 1)

dTV (P(Bi,B(i)),PBi × PB(i)) ≤ δ

n
. (5.2)

If the matrix B had independent entries it would be straightforward to satisfy
this condition, but in our setting, it is not clear how to obtain such a general
result. Consequently, we adopted a different approach that avoids bounding the
total variation distance between two probability distributions.

Let us define B(i) ∈ R
n1×n1 the matrix obtained by replacing the i-th row

and columns of B by zeros. We have∥∥∥B(i) −B
∥∥∥ ≤ ‖Bi:‖ ≤ ‖Ei:‖ + ‖B∗

i:‖ �
√

n1n2p2
max

with probability at least 1− eΘ(n1n2p
2
max), since ‖B∗

i:‖ ≤ √
n1n2p

2
max, n2p

2
max =

o(1), and ‖Ei:‖ ≤ ‖E‖ ≤
√

n1n2p2
max. We also have by definition∥∥∥(B(i) −B)U)
∥∥∥ ≤ ‖Bi:U‖ +

∥∥U�
i: Bi:

∥∥
≤ ‖Bi:U‖ + ‖Bi:‖ ‖Ui:‖
≤ ‖(BU)i:‖ + ‖Bi:‖ ‖Ui:‖
≤ ‖Ui:Λ‖ + ‖Bi:‖ ‖Ui:‖
≤ (‖Λ‖ + ‖Bi:‖) ‖Ui:‖ .

Thanks to assumptions A1 and A2 we have λ∗
r � n1n2p

2
max. By consequence,

we have w.h.p.∥∥(B(i) −B)U)
∥∥

λ∗
r

� (1 + 1√
n1n2p2

max

) ‖Ui:‖ � ‖U‖2→∞ .

The previous inequalities correspond to the Condition (C0) used in the proof
of Theorem 2.3 in [23] (cf. section A.2). They are summarized in the following
lemma.

Lemma 3. The following inequalities hold with probability at least 1 −
eΘ(n1n2p

2
max)



2812 G. Braun

1.
∥∥B(i) −B

∥∥ �
√

n1n2p2
max,

2.
∥∥∥(B(i)−B)U)

∥∥∥
λ∗
r

� ‖Ui:‖ � ‖U‖2→∞ .

Steps I and II of the proof of Theorem 2.3 [23] are deterministic and still hold
in our setting (see the discussion in Section 5.3). The only step that uses the
decoupling argument is step III where one needs to bound

∥∥Ei:(U (i)H(i) − U∗)
∥∥

where U (i) is the matrix formed by the eigenvectors of B(i) and H(i) ∈ R
r×r is

the orthogonal matrix that best aligns U (i) and U∗ (i.e. minimizes
∥∥U (i)H−U∗∥∥).

Lemma 4. Let W (i) ∈ R
n1×K be a matrix that only depends on B(i). Under

the assumptions on Theorem 2, it holds with probability at least 1 − n−c′

1 for
some constant c′ > 0 that for all i ∈ [n1]∥∥∥Ei:W

(i)
∥∥∥ � logn1

log logn1

∥∥∥W (i)
∥∥∥

2→∞
+

√
n2pmax logn1

log logn1

∥∥∥W (i)
∥∥∥ .

Proof. Recall that E = Ẽ + E′ + E′′. By triangular inequality∥∥∥Ei:W
(i)

∥∥∥ ≤
∥∥∥Ẽi:W

(i)
∥∥∥ +

∥∥∥E′
i:W

(i)
∥∥∥ +

∥∥∥E′′
i:W

(i)
∥∥∥ .

We will first handle the first term. Let us denote R = A− P and consider

S = Ẽi:w
(i) =

∑
j∈[n1]\{i},l∈[n2]

RilRjlw
(i)
j

where w(i) ∈ R
n1 depends on A−i = (Ai′j)i′ �=i,j∈[n2].

Conditionally on A−i, S is a weighted sum of independent and centered
Bernoulli’s r.v. Hence, by Lemma F.3 in [23] with δ = n−c

1 , and weights w̃jl =
Rjlw

(i)
j we obtain

P

(
S � logn1

log logn1
(‖w̃‖∞ + √

pmax ‖w̃‖F )
∣∣∣∣A−i

)
≤ n−c.

Since Rjl ≤ 1, we have ‖w̃‖∞ ≤ ‖w‖∞. By definition we have

‖w̃‖2
F =

∑
j �=i,l

R2
jl(w

(i)
j )2.

Fact With probability at least 1 − e−Θ(n2pmax)

max
j �=k

∑
l

R2
jl � n2pmax.

Proof of the Fact.. We have R2
jl ≤ 1 and Var(

∑
l R

2
jl) ≤ 2n2pmax. Hence by

Bernstein inequality,

P

(∣∣∣∣∑
l

R2
jl −

∑
l

ER2
jl

∣∣∣∣ � n2pmax

)
≤ e−Θ(n2pmax).

We can conclude by a union bound and the fact that n2pmax � logn1 by
assumptions on the sparsity level pmax and n2 � n1 log2 n1.
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Let us denote by Ω1 the event under which the inequality of the previous fact
holds. Note that this event only depends on A−i. We have P(Ωc

1) ≤ e−Θ(n2pmax).
Observe that under Ω1 we have

‖w̃‖ � √
n2pmax

∥∥∥w(i)
∥∥∥ .

By consequence,

P

(
S � logn1

log logn1

(∥∥∥w(i)
∥∥∥
∞

+
√
n2pmax

∥∥∥w(i)
∥∥∥))

≤ P

(
S � logn1

log logn1

(∥∥∥w(i)
∥∥∥
∞

+
√
n2pmax

∥∥∥w(i)
∥∥∥)∣∣∣∣Ω1

)
+ e−Θ(n2pmax)

≤ EΩ1P

(
S � logn1

log logn1

(∥∥∥w(i)
∥∥∥
∞

+
√
n2pmax

∥∥∥w(i)
∥∥∥)∣∣∣∣A−i

)
+ e−Θ(n2pmax)

≤ EΩ1P

(
S � logn1

log logn1
(‖w̃‖∞ + √

pmax ‖w̃‖F )
∣∣∣∣A−i

)
+ e−Θ(n2pmax)

≤ n−c
1 + e−Θ(n2pmax)

where EΩ1 denotes the expectation over A−i conditioned on Ω1.
The other terms E′

i:w
(i) and E′′

i:w
(i) can be handled in a similar way. They

are easier to treat because one doesn’t need to use a conditioning argument
since E′

i:, E′′
i: are independent of A−i.

We have by definition

E′′
i:w

(i) ≤ n2p
2
max

∥∥∥w(i)
∥∥∥
∞

� logn1

log logn1

∥∥∥w(i)
∥∥∥
∞

.

Also we can decompose

E′
i:w

(i) =
∑
j �=i,l

RilPjlw
(i)
j︸ ︷︷ ︸

S1

+
∑
j �=i,l

PilRjlw
(i)
j︸ ︷︷ ︸

S2

.

S1 is a sum of n2 weighted independent Bernoulli’s r.v. with weights given by
wl =

∑
j �=i Pjlw

(i)
j . Lemma F.3 in [23] gives with probability at least 1 − n−c

1

S1 � logn1

log logn1
(‖w‖∞ + √

pmax ‖w‖)

� logn1

log logn1

(
n1pmax

∥∥∥w(i)
∥∥∥
∞

+
√
n1pmax

∥∥∥w(i)
∥∥∥) .

By a similar argument, we can show that with probability at least 1 − n−c
1

S2 � logn1

log logn1

(
pmax

∥∥∥w(i)
∥∥∥
∞

+
√
n2p

1.5
max

∥∥∥w(i)
∥∥∥) .
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Consequently, with probability at least 1 −O(n−c
1 ),

Ei:w
(i) � logn1

log logn1

(∥∥∥w(i)
∥∥∥
∞

+
√
n2pmax

∥∥∥w(i)
∥∥∥) .

Then, by using Proposition 2.2 (ε-net argument) in [23] we obtain that with
probability at least 1 −O(n−c

1 )
∥∥∥Ei:W

(i)
∥∥∥ � logn1

log logn1

∥∥∥W (i)
∥∥∥

2→∞
+

√
n2pmax logn1

log logn1

∥∥∥W (i)
∥∥∥ . (5.3)

Once we have obtained this inequality, the proof of Step III is the same as in
[23].

5.3. Proof of Theorem 2

First, we will extend Theorem 2.3 in [23]. We will use the same notations as
in [23] to make the adaptation easier. Let Δ∗ = λ∗

min be the effective eigengap
(it corresponds with the definition in [23], with s = 0). In our setting, the
condition number κ̄ only depends on K and L and hence is considered as a
constant. We have shown in Section 5.1 and 5.2 that the following conditions
(partially matching the assumptions (A1)-(A4) in [23]) hold with δ = n−q

1 for
some constant q > 0.

Condition C1. There exists a constant C1 > 0 such that with probability at
least 1 −O(n−q

1 ) the following conditions hold

1.
∥∥B(i) −B

∥∥ ≤ L1(δ) := C1
√

n1n2p2
max,

2.
∥∥∥(B(i)−B)U)

∥∥∥
λ∗
r

≤ C1 ‖U‖2→∞.

The above inequalities show that in the notation of Assumption (A1) in [23],
we may choose L2(δ), L3(δ), and κ (Λ∗) = κ̄ as bounded functions.

Condition C2. There exists a constant C2 > 0 such that with probability at
least 1 −O(n−q

1 ) the following inequalities hold

1. ‖Λ − Λ∗‖ ≤ λ−(δ) := C2
√
n1n2p2

max,
2. ‖EU∗‖ ≤ E+(δ) := C2

√
n1n2p2

max,
3. ‖E‖2→∞ ≤ E∞(δ) = C2

√
n1n2p2

max.

Condition C3. For any i ∈ [n1] and fixed matrix W ∈ R
n1×r,

‖Ei:W‖ ≤ b∞(δ) ‖W‖2→∞ + b2(δ) ‖W‖ , with probability at least 1 −O(n−q
1 )

where b∞(δ) � logn1
log logn1

and b2(δ) �
√
n2pmax logn1
log logn1

.

Condition C4. We have Δ∗ ≥ 4(σ(δ)+L1(δ)+λ−(δ)) where σ(δ) = E∞(δ)+
b∞(δ) + b2(δ) + E+(δ).
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Theorem 3. Let δ = n−q
1 for some constant q > 0. Then under conditions

C1-C4 and the assumptions of Theorem 2, there exists a constant C3 > 0 such
that with probability at least 1 −O(n−q

1 )

d2→∞(U,BU∗(Λ∗)−1) ≤C3

Δ∗σ(δ)
(
‖U∗‖2→∞ +

‖EU∗‖2→∞
λ∗
min

)

+ C3

Δ∗

(
E+(δ)b2(δ)

λ∗
min

+ E+(δ)√
n1

)
.

Proof. We cannot directly apply Theorem 2.3 in [23] because Condition C1
doesn’t include the condition stated in (5.2). But this condition is only used in
the Step III. of Theorem 2.3 where one needs to control

∥∥Ei:(U (i)H(i) − U∗)
∥∥.

We used a different argument to control this quantity in Section 5.2 and we
obtained by equation (5.3)∥∥∥Ei:(U (i)H(i) − U∗)

∥∥∥≤b∞(δ)
∥∥∥(U (i)H(i) − U∗)

∥∥∥
2→∞

+b2(δ)
∥∥∥(U (i)H(i) − U∗)

∥∥∥ .
This concludes Step III in Theorem 2.3 in [23].

Corollary 3. Under the same assumption as in Theorem 3, there is a constant
c > 0 (possibly depending on q) such that with probability at least 1 −O(n−q

1 )

d2→∞(U,U∗) ≤ c√
n1

.

Proof. By triangular inequality

d2→∞(U,U∗) ≤ d2→∞(U,BU∗(Λ∗)−1) + d2→∞(BU∗(Λ∗)−1, U∗).

Notice that U∗ = B∗U∗(Λ∗)−1, so

d2→∞(BU∗(Λ∗)−1, U∗) ≤
∥∥(B −B∗)U∗(Λ∗)−1∥∥

2→∞ ≤ ‖EU∗‖2→∞
λ∗
min

.

We can bound ‖EU∗‖2→∞ by using inequality 5) in Lemma 2. We obtain that
with probability at least 1 − n−q

1

‖EU∗‖2→∞ � logn1 ‖U∗‖2→∞ +
√
pmax logn1.

Hence, with probability at least 1 − n−q
1 ,

‖EU∗‖2→∞
λ∗
min

� logn1

n1n2p2
max

1√
n1

.

It is easy to check that

σ(δ) = o(logn1)
E+(δ)b2(δ)

Δ∗λ∗
min

= o

(
1√
n1

)
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E+(δ)
Δ∗√n1

= o

(
1√
n1

)
.

By consequence, triangular inequality and Theorem 3 implies that w.h.p.

d2→∞(U,U∗) ≤ c√
n1

for a constant c > 0 that can be made small enough if the constant C such that
n1n2p

2
max ≥ C logn1 is chosen large enough.

5.4. Proof of Corollary 1

The proof is standard, but for completeness, we outline it. First, we need to
relate the k-medians algorithm with the �2→∞ perturbation bounds. It can be
done by the following lemma.

Lemma 5 ([23]). Let U,U∗ ∈ R
n×r be two matrices with orthonormal columns.

Then the k-medians algorithm exactly recovers the clusters C1, . . . , CK if

d2→∞(U,U∗) ≤ 1
6α min

i,j∈[n1]:zi �=zj

∥∥U∗
i: − U∗

j:
∥∥ .

Since by Theorem 2 we have d2→∞(U,U∗) ≤ c√
n1

and by Assumption A2
mini,j∈[n1]:zi �=zj

∥∥U∗
i: − U∗

j:
∥∥ ≥ c1√

n1
, the assumption of Lemma 5 holds whenever

c1/6α > c.

5.5. Proof of Corollary 2

It is sufficient to show that w.h.p. we have r̂ = r. But this is a straightforward
consequence of Weyl’s inequality and the fact that ‖B −B∗‖ �

√
n1n2p2

max.

Appendix A: General concentration inequalities

In this section, we provide proof of the lemmas stated in the main text.

Lemma 6. Assume that the assumption of Theorem 1 are satisfied. Let us de-
note S =

∑
i,j∈[n1] wij〈Ai:, Aj:〉 where wii = 0 for all i, and wij = xixj1(i,j)∈L(x)

where ‖x‖ = 1 and L(x) is the set of light pairs as defined in the proof of The-
orem 1. In particular, ‖w‖ ≤ 1, ‖w‖∞ ≤

√
n2
n1

pmax. Recall that

E =

⎧⎨
⎩max

l∈[n2]

∑
i∈[n1]

Ail ≤ Ccol

⎫⎬
⎭ .

We have
P (E ∩ {|S − ES| � √

n1n2pmax}) ≤ e−11n1 .
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Proof. We will use a similar decoupling approach as the one used in the proof
of Hanson-Wright inequality, see [27]. Let (δi)i∈[n1] be independent Bernoulli’s
r.v. with parameter 1/2 and let us define the set of indices

Λδ = {i ∈ [n1] : δi = 1}

and the random variable

Sδ =
∑
i,j

δi(1 − δj)wij〈Ai:, Aj:〉 =
∑
i∈Λδ

〈
Ai:,

∑
j∈Λc

δ

wijAj:

〉
.

Note that EδSδ = S/4. To simplify the notations we will denote by EΛc(.) (resp.
EΛ(.)) the expectation over (Ai:)i∈Λc

δ
conditionally on δ and (Ai:)i∈Λδ

, Sδ (resp.
the expectation over (Ai:)i∈Λδ

conditionally on δ and (Ai:)i∈Λc
δ
, Sδ).

Upper bound of the m.g.f. of Sδ conditionally on Λδ Conditionally on
δ and (Ai:)i∈Λδ

, Sδ is a weighted sum of independent Bernoulli’s r.v:

Sδ =
∑
l∈[n2]

∑
j∈Λc

δ

Ajl

⎛
⎝∑

i∈Λδ

wijAil

⎞
⎠ .

Hence, for all t > 0 we have

logEΛc

(
et(Sδ−EΛc (Sδ))

)
=

logEΛc

(
etSδ

)
−

∑
i∈Λδ

∑
j∈Λc

δ

∑
l∈[n2]

wijtAilpjl

=
∑
j∈Λc

δ

∑
l∈[n2]

⎛
⎝log(et

∑
i∈Λδ

wijAilpjl + 1 − pjl) − t
∑
i∈Λδ

wijAilpjl

⎞
⎠

≤
∑
j∈Λc

δ

∑
l∈[n2]

⎛
⎝pjl(et

∑
i∈Λδ

wijAil − 1) − t
∑
i∈Λδ

wijAilpjl

⎞
⎠

(log(1 + x) ≥ x, for all x > −1)

≤ pmaxt
2
∑
j∈Λc

δ

∑
l∈[n2]

et‖A:l‖2‖w‖∞

2

⎛
⎝∑

i∈Λδ

Ailwij

⎞
⎠2

.

(by Taylor-Lagrange formula)

In order to upper-bound this m.g.f, it is necessary to control
∑

i∈[n1] Ail for each
l. Let us define the event

E1 =

⎧⎨
⎩max

l∈Λδ

∑
i∈[n1]

Ail ≤ Ccol

⎫⎬
⎭ .
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We have

1E1 logEΛc

(
et(Sδ−EΛc (Sδ))

)
≤ 0.5pmaxt

2e
tCcol

√
n2
n1

pmax

×
∑
l∈[n2]

∑
j∈Λc

δ

1{
∑

i Ail≤Ccol}

(∑
i∈Λδ

Ailwij

)2

. (A.1)

Let us denote Zl =
∑

j∈Λc
δ
1{

∑
i Ail≤Ccol}(

∑
i∈Λδ

Ailwij)2.

Control of
∑

l Zl Conditionnaly on δ, (Zl)l are independent r.v., so one can
use Bernstein inequality to control the deviation of these r.v. from their expec-
tation. First, observe that

E(Zl|δ) ≤
∑
i,j,i′

E(AilAjl)|wijwi′j |

≤ p2
maxn

3
1
n2

n1
p2
max + pmaxn

2
1
n2

n1
p2
max (‖w‖2

∞ ≤ n2
n1

p2
max)

� n1n2p
2
max. (n1pmax = o(1))

Similarly, one can control the variance of Zl by developing the square

E(Z2
l |δ) ≤ E

⎛
⎝∑

j,j′

(
∑
i∈Λδ

Ailwij)2(
∑
i′∈Λδ

Ailwij′)2
⎞
⎠

≤
∑
j,j′

∑
i1,i′1

∑
i2,i′2

E(Ai1lAi′1lAi2lAi′2l)|wi1jwi2jwi′1jwi′2j |

�
(√

n2

n1
pmax

)4 (
p4
maxn

6
1 + p3

maxn
5
1 + p2

maxn
4
1 + pmaxn

3
1
)

�
(√

n2

n1
pmax

)4

pmaxn
3
1

� n1n
2
2p

5
max.

Also, notice that the positive r.v. (Zl)l can be bounded as follows

Zl ≤ 1{
∑

i Ail≤Ccol}
∑

i,i′,j∈[n1]

AilAi′l|wijwi′j |

≤ 1{
∑

i Ail≤Ccol}
n2

n1
p2
max

∑
i,i′,j∈[n1]

AilAi′l

≤ C2
coln2p

2
max.

By Bernstein’s inequality, we obtain

P

(∣∣∣∣∑
l

Zl − E(Zl)
∣∣∣∣ � n1n2p

2
max

∣∣∣∣∣δ
)
≤e

−Ω
(
min

(
n2
1n2

2p4
max

n1n2
2p5

max
,

n1n2p2
max

C2
col

n2p2
max

))
≤e−Ω(n1).

Let us denote the event E2 = {
∑

l Zl � n1n2p
2
max}.
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Control of the m.g.f of Sδ conditionally on Λδ By plugin the previous
step into (A.1), we obtain that on the event E1 ∩ E2

logEΛc

(
et(Sδ−EΛc (Sδ))

)
�

(
pmaxt

2e
tCcol

√
n2
n1

pmax
n1n2p

2
max

)
.

For the choice t =
√

n1
n2p2

max
this upper bounds simplifies to

EΛc

(
et(Sδ−EΛc (Sδ))

)
≤ eO(n2

1pmax) ≤ eo(n1) (A.2)

since n2
1pmax = o(n1).

Control of EΛcSδ − EASδ Let us define the event

E3 = {|EΛcSδ − EASδ| ≤ C2
√
n1n2pmax} .

We have for all t > 0

logE(et(EΛcSδ−EASδ)|δ) =
∑
i,j.l

log(etwijpjlpil + 1 − pil) − twijpjlpil

≤ n2p
3
max

2 t2e
t
√

n2
n1

p2
max .

By using Chernoff bound and the choice t = 1
p2
max

√
n1
n2

we obtain P(Ec
3 |δ) ≤

e−cn1 for some constant c > 0 that can be made large enough depending on the
choice of C2.

Conclusion Note that for all δ, E ⊂ E1 where E1 only depends on (Ai:)i∈Λδ
.

For any fixed δ, we have for t =
√

n1
n2p2

max
and C2 > 0 large enough

P({Sδ − EASδ ≥ 2C2
√
n1n2pmax} ∩ E|δ)

= E(PΛδ
({Sδ − EASδ ≥ 2C2

√
n1n2pmax} ∩ E)|δ)

≤ E(1E1PΛδ
({Sδ − EASδ ≥ 2C2

√
n1n2pmax}|δ)

≤ E(1E1∩E2∩E3PΛδ
(Sδ − EASδ ≥ 2C2

√
n1n2pmax)|δ) + e−cn1

≤ E(1E1∩E2∩E3PΛδ
(Sδ − EΛcSδ ≥ C2

√
n1n2pmax)|δ) + e−cn1

≤ E

(
1E1∩E2∩E3e

−tC2
√
n1n2pmaxEΛcet(Sδ−EΛcSδ)

∣∣∣δ) + e−cn1

(by using Chernoff bound)
≤ e−tC2

√
n1n2pmaxe0.01n1 + e−cn1 (by using (A.2))

≤ e−C2n1+0.01n1 + e−cn1 (by replacing t by its value)
� e−cn1 .

By a union bound we obtain

P (∃δ, E ∩ {Sδ − EASδ ≤ 2C2
√
n1n2pmax}) � 2n1e−cn1 � e−c′n1
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for a constant c′ > 0. It follows that, on E , with probability at least 1 − e−c′n1

S − E(S) = 4Eδ(Sδ − EASδ) ≤ 8C2
√
n1n2pmax.

The stated result of the Lemma follows by the symmetry of S (one can replace
wij by −wij). Note that the value of c′ depends only on the constants in the
events we conditioned on. So, we obtain c′ > 11 by choosing such constants
large enough.

Lemma 7. Assume that the assumptions of Theorem 1 are satisfied. Let I, J ⊂
[n1] with 0 < |I| ≤ |J |. Consider S =

∑
i,j∈[n1] wij〈Ai:, Aj:〉 where wii = 0 for

all i, and wij = 1i∈I1j∈J . Let c∗, C∗ > 0 large enough constants. Recall that

κ(I, J) = max (t(I, J), C∗)

where t(I, J) is the unique solution of the equation

t log t = c∗
|J | log en1

|J|
δ|I||J | .

Then there exists a constant c > 0 that can be chosen large enough such that

P
(
E ∩ {S ≥ κ(I, J)|I||J |n2p

2
max}

)
≤ e−

c
2 |J| log(

en1
|J| ).

Proof. On the event E , we can rewrite S as a sum of n2 independent r.v. as
follows

S =
∑
l

1{
∑

i Ail≤Ccol}
∑

i∈I,j∈J
i �=j

AilAjl

︸ ︷︷ ︸
Zl

.

Notice that
∑

l E(Zl) ≤ |I||J |n2p
2
max, so to prove the lemma, it is sufficient

to show that
∑

l Zl concentrates at an appropriate rate around its expectation.
Toward this end, we will apply Bennett’s inequality. By definition, Zl is bounded
by C2

col. Moreover, we have

E(Z2
l ) ≤

∑
i �=j,i′ �=j′

E(AilAjlAi′lAj′l)

� |I|2|J |2p4
max + |I||J |2p3

max + |I||J |p2
max � |I||J |p2

max.

By consequence,
P (S − E(S) ≥ t) ≤ e−

σ2
a h( at

σ2 )

where a = C2
col, σ2 =

∑
l E(Zl − EZl)2 � n2p

2
max|I||J | = δ|I||J | and h(u) =

(u + 1) log(u + 1) − u. For the choice t = k(I, J)δ|I||J | we obtain

P (S − E(S) ≥ t) ≤ e−
c
2 |J| log(

en1
|J| ).
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Indeed, first consider the case where t = t(I, J)δ|I||J |. W.l.o.g. we can assume
that C2

col is large enough so that at(I, J)δ|I||J |/σ2 ≥ t(I, J). Since h is increas-
ing we obtain h(at/σ2) ≥ h(t(I, J)). By definition of t, in this case t(I, J) ≥ C∗.
Hence

h(t(I, J)) � g(t(I, J)) = c∗
|J | log en1

|J|
δ|I||J |

where g(u) = u log u. By consequence, σ2

a h( at
σ2 ) � c∗|J | log en1

|J| . The case where
t = C∗δ|I||J | is similar. We have h(at/σ2) that is of constant order (the constant
can be made large enough if C∗ is large), so

σ2

a
h

(
at

σ2

)
� δ|I||J |.

But by definition of t, we have δ|I||J | ≥ c∗|J | log en1
|J| .
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