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Abstract: Space-filling designs are widely used in physical and computer
experiments when the model between the response and input factors is
uncertain. Recently, Chen and Tang (2022, Ann. Statist. 50, 2925–2949)
justified the use of strong orthogonal arrays (SOAs) under a broad class of
space-filling criteria. However, when allowable level permutations are ap-
plied to an SOA, a class of SOAs can be obtained with different geometrical
structures and it is not clear which one should be selected for practical use.
In this paper, we address this issue by considering a representative subset
of allowable level permutations, called linear allowable level permutations.
These special level permutations offer theoretical convenience in classifying
various geometrically non-isomorphic SOAs. Based on these results, con-
struction methods are provided to obtain SOAs that are more space-filling
than those in the literature.
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1. Introduction

Space-filling designs are widely employed in various experiments to examine the
relationship between a response and several input factors. The points of these
designs are scattered in the design space in some uniform fashion, which renders
them particularly useful when there is little prior knowledge on the true model
between the response and the inputs, as is the case for computer experiments
(Fang, Li and Sudjianto, 2006; Santner, Williams and Notz, 2018). For phys-
ical experiments, space-filling designs have also been developed for fractional
factorial experiments where each factor has only a few levels (Zhou and Xu,
2014).

The quality of a space-filling design can be evaluated by the criteria of dis-
tance or discrepancy. Two popular such criteria are those of the maximin dis-
tance (Johnson, Moore and Ylvisaker, 1990) and the centered L2-discrepancy
(Hickernell, 1998), where the former aims at maximizing the minimum distance
between the design points and the latter seeks a set of design points with uni-
form empirical distribution function. We refer to Wang, Xiao and Xu (2018),
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Sun, Wang and Xu (2019) and Li, Liu and Tang (2021) for some recent devel-
opments on these topics. Alternatively, space-filling designs can also be found
among those with orthogonal columns; see Steinberg and Lin (2006), Lin et al.
(2010), Georgiou et al. (2014) and Sun and Tang (2017) for the construction of
these designs.

It is a common phenomenon that of all the factors under investigation, only
a small portion is active and really impacts the response (Wu, 2015). Due to
this factor sparsity, designs with space-filling low-dimensional projections are
generally deemed preferable. One attractive class of designs of this kind are
strong orthogonal arrays introduced by He and Tang (2013). These designs
achieve better stratification properties in low dimensions, compared with their
precursors such as Latin hypercubes (McKay, Beckman and Conover, 1979) and
orthogonal array-based designs (Owen, 1992; Tang, 1993). The most economical
strong orthogonal arrays in terms of run sizes are those of strength 2+ (He,
Cheng and Tang, 2018). In this paper, we focus on these designs and refer to
them as SOAs for convenience. For other related work in this field, we refer to
Xiao and Xu (2018), Wang, Yang and Liu (2022), Tian and Xu (2022), Sun and
Tang (2023) and references therein.

To study the performance of SOAs under the aforementioned space-filling
criteria, Chen and Tang (2022) classified orthogonal array-based designs through
allowable level permutations. When allowable level permutations are applied to
columns of an SOA, the resulting designs form a class of SOAs which is space-
filling on average under a broad class of space-filling criteria. However, members
of this class may have different geometrical structures and it is not clear how
to select a specific design for practical applications. One major challenge of this
problem is that the number of allowable level permutations is often too large to
handle, both theoretically and computationally.

In this paper, we address this problem by considering a subset of allowable
level permutations, called linear allowable level permutations (LALPs). We show
that these special level permutations are representative of all allowable ones in
that the average performance of the class of resulting designs remains the same.
Even more desirable is the theoretical convenience they provide for studying
the structures of SOAs. Armed with LALPs, we are able to enumerate geo-
metrically non-isomorphic patterns of SOAs and characterize those with better
space-filling properties. Based on these characterization results, we provide con-
struction methods for SOAs that are more space-filling than the existing ones
in the literature.

The remainder of the paper is organized as follows. The necessary notation
and background are given in Section 2. Then we introduce the concept of LALPs
and study its properties in Section 3. Section 4 applies these level permutations
to SOAs and presents construction methods for SOAs with better space-filling
properties. Finally, the paper is concluded with a discussion in Section 5. All
the proofs are postponed to the Appendix.
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2. Notation and background

We represent a design D of n runs for m factors by an n × m matrix. For
j = 1, . . . ,m, the entries of the jth column are from the integer ring Zsj =
{0, 1, . . . , sj − 1} if the jth factor has sj levels. The design D is said to be
an orthogonal array of strength t and denoted by oa(n, s1 × · · · × sm, t) if
any t columns of D contain all possible level combinations equally often. If
s1 = · · · = sm = s, we also denote the array by oa(n,m, s, t). An oa(sk,m, s, t)
is regular if it can be constructed by first writing down k independent columns,
and then adding m−k interaction columns thereof. We refer to Hedayat, Sloane
and Stufken (1999) for a comprehensive account on orthogonal arrays.

In this paper, we study space-filling designs based on orthogonal arrays. An
oa(n,m, s2, 1) is said to be an orthogonal array-based design, and denoted by
oabds(n, (s2)m) if it can be collapsed into an oa(n,m, s, 2), where collapsing s2

levels into s levels is done by �x/s� for x = 0, 1, . . . , s2. An oabds(n, (s2)m)
is called a strong orthogonal array of strength 2+ (SOA) and denoted by
soas(n, (s2)m) if any two of its columns can be collapsed into an oa(n, s2×s, 2)
as well as an oa(n, s× s2, 2). In other words, any two-dimensional projection of
an oabds(n, (s2)m) is stratified over an s×s grid while that of an soas(n, (s2)m)
achieves stratification over finer s2 × s and s × s2 grids. It is therefore appro-
priate to say that soas(n, (s2)m)’s are superior members in the whole class of
oabds(n, (s2)m)’s. Both oabds(n, (s2)m)’s and soas(n, (s2)m)’s can be charac-
terized in terms of two component arrays A and B as follows (He, Cheng and
Tang, 2018).

Lemma 2.1. Design D is an oabds(n, (s2)m) if and only if there exist A =
(a1, . . . , am) and B = (b1, . . . , bm) such that D = sA + B where A is an
oa(n,m, s, 2) and (aj , bj) is an oa(n, 2, s, 2) for j = 1, . . . ,m. Furthermore,
D is an soas(n, (s2)m) if and only if (ai, aj , bj) is an oa(n, 3, s, 3) for all i �= j.

A permutation σ on Zs2 is s-allowable if for two levels x, y ∈ Zs2 , we have
�x/s� = �y/s� if and only if �σ(x)/s� = �σ(y)/s�. Therefore there are (s!)s+1

s-allowable level permutations for Zs2 in total. Chen and Tang (2022) showed
that the stratification properties of oabds(n, (s2)m)’s and soas(n, (s2)m)’s are
preserved if s-allowable level permutations are applied to the columns of these
designs. This we summarize as a lemma.

Lemma 2.2. Suppose that D is an oa(n,m, s2, 1) and D′ is obtained by apply-
ing s-allowable level permutations to columns of D independently. Then D is an
oabds(n, (s2)m) if and only if D′ is an oabds(n, (s2)m); D is an soas(n, (s2)m)
if and only if D′ is an soas(n, (s2)m).

Remark 1. Tian and Xu (2022) introduced general strong orthogonal ar-
rays (GSOAs). According to their definition, an oabds(n, (s2)m) is a GSOA
of strength 2.

Remark 2. More formally, the stratification properties of an oa(n,m, s2, 1)
can be evaluated by a space-filling pattern introduced by Tian and Xu (2022).
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It can be verified that the space-filling pattern of such a design is invariant under
s-allowable level permutations.

3. Linear allowable level permutations

According to Lemma 2.2, a class of oabds(n, (s2)m)’s can be obtained by ap-
plying s-allowable level permutations to columns of a specific oabds(n, (s2)m).
Despite all of them possessing the same stratification properties, designs within
this class are not equally space-filling. To select a design for practical use, a
brute force search is computationally unwieldy since the number of s-allowable
level permutations is too large even for moderate s. For example, there are 1296
3-allowable level permutations for Z9 and over 2.9 × 1012 5-allowable level per-
mutations for Z25. To meet this challenge, we introduce a subset of allowable
level permutations called linear allowable level permutations.

In the remainder of the paper, we assume that s is a prime number and thus
Zs is a finite field of order s. Note that any element x of Zs2 can be written as
x = sxa + xb, where xa = �x/s� and xb = x− s�x/s�.
Definition 3.1. A permutation σ on Zs2 is called a linear allowable level
permutation (LALP) if for x = sxa + xb ∈ Zs2 , we have σ(x) = sx′

a + x′
b

where x′
a = α0 + α1xa (mod s) and x′

b = β0 + β1xa + β2xb (mod s) for some
α0, β0, β1 ∈ Zs and some α1, β2 ∈ Zs \ {0}.

It can easily be verified by definition that any LALP on Zs2 , as its name
suggests, is indeed an s-allowable level permutation. The next lemma shows that
all such level permutations as a whole enjoy some useful balanced properties.

Lemma 3.2. Suppose x, y ∈ Zs2 . Then when σ ranges over all LALPs on Zs2 ,
(σ(x), σ(y)) contains any pair (x̂, ŷ) satisfying x̂ �= ŷ and �x̂/s� = �ŷ/s� exactly
s(s−1) times if x �= y and �x/s� = �y/s�, and contains any pair (x̂, ŷ) satisfying
�x̂/s� �= �ŷ/s� exactly s− 1 times if �x/s� �= �y/s�.

By Definition 3.1, a linear level permutation is determined by five parameters
α0, α1, β0, β1 and β2. Hence there are s3(s − 1)2 LALPs for Zs2 in total. For
Z4, all the 2-allowable level permutations are LALPs. The two notions of level
permutations are different for s > 2, as illustrated in Example 1.

Example 1. Among the 1296 3-allowable level permutations of Z9, only 33 ×
22 = 108 of them are LALPs. For instance, (8, 7, 6, 4, 3, 5, 0, 2, 1) is an LALP
but (8, 7, 6, 4, 3, 5, 2, 1, 0) is not, where each vector represents a permutation σ
by (σ(0), . . . , σ(8)).

We now study the two-dimensional projections of a design with LALPs. Sup-
pose D = (xij)n×2 is a design of n runs for 2 factors. Then the commonly-used
space-filling criteria such as those of maximin distance, centered L2-discrepancy
and orthogonality can all be written in a general form as

q(D) = γ0 + γ1

n

n∑
i=1

g(xi1)g(xi2) + γ2

n2

n∑
i=1

n∑
j=1

f(xi1, xj1)f(xi2, xj2) (1)
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for some real constants γ0, γ1 and γ2 > 0 and some real functions f and g.
For example, if we take γ0 = γ1 = 0, γ2 = 1 and f(x, y) = rd(x,y), where
d(x, y) is the distance between levels x and y, then, according to Zhou and Xu
(2014), the criterion q(D) =

∑n
i=1

∑n
j=1 r

dij/n2 extends the maximin distance
criterion when r > 0 is sufficiently small, where dij = d(xi1, xj1) + d(xi2, xj2) is
the distance between the ith and jth runs of D. In particular, minimizing q(D)
is equivalent to a criterion that sequentially minimizes B0(D), B1(D), . . ., where
Bl(D) is the number of pairs of runs with distance equal to l. This criterion is a
refinement of the maximin distance criterion whereas the variance of distances
used in Chen and Tang (2022) is just a surrogate for the maximin distance
criterion.

Chen and Tang (2022) proved that when all allowable level permutations
are applied to columns of an orthogonal array-based design, the average per-
formance in terms of q is determined by two types of stratification properties.
Thanks to the balanced properties described in Lemma 3.2, the same result
can also be established for LALPs. Some notation is necessary to state the
result. Divide the s2 levels of Zs2 into s groups as Zs2 = ∪s−1

l=0Sl, where Sl =
{sl, sl+1, . . . , sl+s−1} for l = 0, . . . , s−1. Then let Xf =

∑s−1
x=0 f(x, x)/s, Yf =∑s−1

l=0
∑

x,y∈Sl,x �=y f(x, y)/(s2(s−1)) and Zf =
∑

0≤k �=l≤s−1
∑

x∈Sk,y∈Sl
f(x, y)/

(s3(s− 1)), respectively, calculate the average f -value of two levels that are the
same, are distinct but from the same groups, and are from different groups. Let
Ai be the number of generalized words of length i for i = 2 and 3 (Xu and Wu,
2001).

Theorem 3.3. Suppose D = sA+B is an oabds(n, (s2)2), where A = (a1, a2)
and B = (b1, b2). Let q̄(D) be the average of q(D′) s over all designs D′ obtained
by conducting LALPs to columns of D. Then

q̄(D) = γ2

s4 (Yf −Xf )2A2(D) + γ2

s3 (Yf −Xf )(Zf − Yf )μ(D) + C, (2)

where μ(D) = A2(a1, b2) + A2(a2, b1) + A3(a1, a2, b1) + A3(a1, a2, b2) and C is
a constant.

Theorem 3.3 indicates that when LALPs are applied, the average perfor-
mance of the all resulting designs is the same as that under all allowable level
permutations. In this sense, the set of LALPs are representative of all allowable
ones.

Some intuition can be acquired as to why the LALPs are representative
by introducing a distance between level permutations. Let σ1 and σ2 be two
level permutations on Zs2 and define the distance between them as d(σ1, σ2) =∑

x∈Zs2
|σ1(x) − σ2(x)|. If we apply σ1 and σ2 to a design, then intuitively,

the two resulting designs will have similar space-filling properties if d(σ1, σ2)
is small. It is easy to come up with two allowable level permutations with a
distance of 2. For Z9, it can be checked that the minimum distance between
any two of the 108 LALPs is 6. Moreover, the distance from any nonlinear 3-
allowable level permutation to its nearest LALP is either 2 or 4. For Z25, the
minimum distance of two LALPs is 30.
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As discussed in Chen and Tang (2022), superiority of SOAs within the whole
class of orthogonal array-based designs is also reflected in their achieving small
q̄(D) values by making μ(D) = 0. In the next section, we investigate how to
find regular SOAs with even better space-filling properties, through the use of
LALPs.

4. Regular strong orthogonal arrays

4.1. Geometrically non-isomorphic patterns

An SOA, say D = sA+B, is said to be regular if columns of A and B are selected
from a regular orthogonal array. Most SOAs studied in the literature are regular
(He, Cheng and Tang, 2018; Shi and Tang, 2020; Zhou and Tang, 2019). The
aim of this section is to enhance the space-filling properties of regular SOAs by
LALPs. Unless otherwise specified, all SOAs considered in the remainder of the
paper are obtained by applying LALPs to columns of regular SOAs. Lemma 4.1
gives all possible two-dimensional projections of such arrays.

Lemma 4.1. Suppose D = sA + B is an soas(sk, (s2)2). Then D is either
an oa(sk, 2, s2, 2) or a design with A = (α10 + α11e1, α20 + α21e2) and B =
(β10+β11e1+β12e3, β20+β21e2+β22e3) for some α10, α20, β10, β11, β20, β21 ∈ Zs

and α11, α21, β12, β22 ∈ Zs \ {0}, where e1, e2 and e3 are independent columns.

According to Cheng and Ye (2004), two designs are said to be geometri-
cally isomorphic if they can be obtained from each other by permuting columns
and/or reversing the level order in one or more columns. Geometrically iso-
morphic designs have the same space-filling properties. Lemma 4.1 enables us
to enumerate geometrically non-isomorphic two-dimensional projections of an
SOA. Through a computer search, we find that for any k ≥ 3, there are 4 ge-
ometrically non-isomorphic soa2(2k, 42)’s in all, which are displayed in Fig. 1,
and 12 geometrically non-isomorphic soa3(3k, 92)’s in all, which are displayed
in Fig. 2.

For k ≥ 4, each point in the panels of Fig. 1 and Fig. 2 is replicated sk/s3

times, which may be undesirable for computer experiments. One can remove
the replicated points by expanding the s2 levels to sk levels in the same way
as constructing orthogonal array-based Latin hypercubes in Tang (1993). The
resulting designs will inherit the stratification properties of the original designs.
Then every point in these patterns represents a stratum as seen from an s2 × s2

grid.
Notably, some patterns in Fig. 1 and Fig. 2 are more space-filling than others.

In Table 1, the 12 non-isomorphic soa3(3k, 92) patterns are compared under the
criteria of minimum L1-distance between strata (Distance), the centered L2-
discrepancy (CD ×103) and the squared correlation coefficient (Orthogonality),
from which it can be seen that our intuition is in line with that reflected by
the distance criterion: for some patterns the minimum L1-distance between any
two strata is 2, while for others it is only 1. The next theorem characterizes this
distance feature using Lemma 4.1.
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Fig 1. Patterns of geometrically non-isomorphic soa2(2k, 42)’s.

Fig 2. Patterns of geometrically non-isomorphic soa3(3k, 92)’s.

Theorem 4.2. Suppose D = sA + B is an soas(sk, (s2)2) with A = (α10 +
α11e1, α20 + α21e2) and B = (β10 + β11e1 + β12e3, β20 + β21e2 + β22e3) for
some independent columns e1, e2 and e3. Let dmin be the minimum L1-distance
between any two strata. Then we have:

(i) If α11 �= β11 and α21 �= β21, then dmin > 1.
(ii) If exactly one of α11 = β11 and α21 = β21 holds, then dmin = 1 and there

are s(s− 1) pairs of strata achieving dmin.
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Table 1

Space-filling measures of the 12 nonisomorphic soa3(3k, 92)’s in Fig. 2
Pattern 1(a) 1(b) 1(c) 1(d) 1(e) 1(f) 2(a) 2(b) 2(c) 2(d) 3(a) 3(b)
Distance 2 2 2 2 2 2 1 1 1 1 1 1
CD ×103 2.40 2.35 2.36 2.36 2.36 2.36 2.36 2.36 2.36 2.36 2.36 2.36

Orthogonality 0.12 0.052 0 0 0 0 0 0 0 0 0 0

(iii) If α11 = β11 and α21 = β21, then dmin = 1 and there are 2s(s− 1) pairs
of strata achieving dmin.

Theorem 4.2 shows that if an soas(sk, (s2)2) is not an oa(sk, 2, s2, 2), then it
must be one of the three types: (i) the distance of any two strata is greater than
1, as shown in Pattern 1 of Fig. 1 and Patterns 1(a) to 1(f) of Fig. 2; (ii) there
are s(s− 1) pairs of strata with distance 1, as shown in Pattern 2 of Fig. 1 and
Patterns 2(a) to 2(d) of Fig. 2; and (iii) there are 2s(s− 1) pairs of strata with
distance 1, as shown in Patterns 3(a) and 3(b) of Fig. 1 and Fig. 2. Obviously,
we prefer type (i) over type (ii) and type (ii) over type (iii).

We conclude this subsection with a remark on the relationship between level
permutations and geometrically non-isomorphic patterns.

Remark 3. While there are 12 patterns of soa3(3k, 92)’s obtained from LALPs,
there are 1017 geometrically non-isomorphic soa3(3k, 92)’s when all 3-allowable
level permutations are considered. Among these 1017 patterns, 805 of them
have dmin = 1 and 212 of them have dmin = 2. Hence, the 12 soa3(3k, 92)’s
from LALPs do include designs with the best performance under the maximin
distance criterion. This demonstrates the usefulness of LALPs in reducing the
complexity of the problem.

4.2. Construction results

For an SOA, it is desirable to eliminate the two-dimensional projections of type
(iii), type (ii) and type (i) sequentially. Given an soas(sk, (s2)m), say D, let
F1(D), F2(D) and F3(D) be the frequencies of two-dimensional projections that
are of type (i), type (ii) and type (iii), respectively. Then clearly, F1(D) =
F2(D) = F3(D) = 0 if and only if D is an oa(sk,m, s2, 2), which exists only
when m ≤ (sk − 1)/(s2 − 1).

The next best things to an oa(sk,m, s2, 2) are soas(sk, (s2)m)’s with F2(D) =
F3(D) = 0. We now present a construction method for such designs. Suppose
e1, . . . , ek are the k independent columns of a saturated regular oa(sk, (sk −
1)/(s − 1), s, 2) where k ≥ 3. Let A = (a1, . . . , am) where m = (sk−1 −
1)/(s − 1) collect e1, . . . , ek−1 and all their possible interaction columns. Let
B = (b1, . . . , bm) where bi = βiai + ek (mod s) for i = 1, . . . ,m. Then we have
the following result on D = sA + B.

Theorem 4.3. The design D constructed above is an soas(sk, (s2)m) with
F2(D) = F3(D) = 0 if βi �= 1 for i = 1, . . . ,m. Furthermore, the number of
factors m = (sk−1 − 1)/(s− 1) reaches the maximum value when s = 2.
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The design D in Theorem 4.3 can also be regarded as obtained by applying
LALPs to a column-orthogonal strong orthogonal array constructed in Zhou
and Tang (2019). A design is said to be column-orthogonal if the correlation
coefficient of any two columns is exactly zero. However, before level permutation,
all the two-dimensional projections of their designs are of type (iii), and are
isomorphic to Pattern 3(a) of Fig. 1 for s = 2 and to Pattern 3(a) of Fig. 2 for
s = 3. After level permutation, all the two-dimensional projections are of type
(i). We illustrate this construction method by Example 2.

Example 2. For s = 5 and k = 3, choose βi = 2 for i = 1, · · · , 6 and then let
A = (e1, e2, e1 +e2, e1 +2e2, e1 +3e2, e1 +4e2) (mod 5) and B = (2e1 +e3, 2e2 +
e3, 2e1 + 2e2 + e3, 2e1 + 4e2 + e3, 2e1 + e2 + e3, 2e1 + 3e2 + e3) (mod 5). Then
D = 5A + B is an soa5(125, (25)6) with F2(D) = F3(D) = 0.

Remark 4. While all the two-dimensional projections are of type (i) so long
as βi �= 1 for i = 1, . . . ,m, different choices of βi’s may lead to different type (i)
patterns. For example, for s = 3 and k = 3, (3e1+b1, 3e2+b2) with bi = βiei+e3
(mod 3) for i = 1, 2 will be isomorphic to Pattern 1(a) of Fig. 2 if β1 = β2 = 0,
to Pattern 1(c) if β1 = 0 and β2 = 2, and to Pattern 1(e) if β1 = β2 = 2. Exactly
how the coefficients βi’s are related to various type (i) patterns for general s ≥ 3
is an interesting problem that deserves further investigation, especially if certain
type (i) patterns are deemed more preferable than others. In this paper, we focus
on the elimination of patterns of types (ii) and (iii), as they are clearly worse
than those of type (i).

Remark 5. As noted by Zhou and Tang (2019), one can replace ai by ai +
ek (mod 2) when s = 2. The resulting design achieves additional 2 × 2 × 2
stratification in all three-dimensions.

The SOA given in Theorem 4.3 requires that the number m of factors be
no greater than (sk−1 − 1)/(s− 1). A recursive construction can be utilized to
obtain SOAs with more factors. Suppose D = sA+B is an soas(sk, (s2)m). Let
e1 and e2 be two independent columns of oa(sk+2, (sk+2 − 1)/(s− 1), s, 2) that
do not occur in oa(sk, (sk − 1)/(s− 1), s, 2). For s = 2, let

Ã = (A, e1 + A, e2 + A, e1 + e2 + A, e1 + e2),
B̃ = (B, e1 + e2 + B, e1 + B, e2 + B, e1) (mod 2).

For s ≥ 3, let

Ã = (Ã0,0, . . . , Ãs−1,s−1, e1), B̃ = (B̃0,0, . . . , B̃s−1,s−1, e2) (mod s), (3)

where Ãα,β = αe1 + βe2 + A, B̃α,β = βve1 + αe2 + B for α, β ∈ Zs and v ∈ Zs

is such that v �= u2 for any u ∈ Zs. Then we have the following result on
D̃ = sÃ + B̃.

Theorem 4.4. Design D̃ is an soas(sk+2, (s2)ms2+1) with Fi(D̃) = s2Fi(D)
for i = 1, 2, 3.
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We note that A2(D) is proportional to
∑3

i=1 Fi(D), and thus we have A2(D̃) =
s2A2(D). Chen and Tang (2022) noticed this property for s = 2 and 3, and use
these special cases to obtain strong orthogonal arrays with small A2 values. The
construction presented in Theorem 4.4 is more general as it works for any prime
number of levels. More importantly, we show that Fi(D̃) is completely deter-
mined by Fi(D) and thus the construction is useful for generating large designs
with small F2 and F3 values.

Remark 6. The element v used in the construction is known as a quadratic
nonresidue in Zs. As shown in Theorem A.23 in Hedayat, Sloane and Stufken
(1999), there are (s− 1)/2 such elements in Zs for any odd prime s.

The small designs to be used in Theorem 4.4 can be obtained via a com-
puter search. Suppose D = sA + B is a regular soas(sk, (s2)m), where A =
(a1, . . . , am) and B = (b1, . . . , bm). To sequentially minimize F3, F2 and F1
by LALPs, Theorem 4.2 indicates only s special level permutations need to be
considered for the ith column of D, and are given by replacing bi by βiai + bi
(mod s) where βi ∈ Zs for i = 1, . . . ,m. Therefore, there are a total of sm per-
muted designs from an initial soas(sk, (s2)m). Nonetheless, there are still too
many soas(sk, (s2)m)’s that can be used as initial designs. Hence, we restrict
ourselves to SOAs with small A2 values. According to Theorem 3.3, these designs
are attractive under a broad class of space-filling criteria. In addition, since A2 is
proportional to

∑3
i=1 Fi, these designs tend to have small Fi values for i = 1, 2, 3

as well. Chen and Tang (2022) tabulated some soa2(16, 4m)’s, soa2(32, 4m)’s,
soa3(27, 9m)’s and soa3(81, 9m)’s with small A2 values; all these designs are
available online at https://github.com/gz-chen/SOA. Starting from these de-
signs, we apply LALPs to sequentially minimize F3, F2 and F1 values. All the
permuted designs are evaluated if sm is less than 10 million, otherwise we ran-
domly select 10 million designs and document the best one. The (F3, F2, F1)’s
of the obtained designs are displayed in Table 2. The detailed constructions of
these designs are available upon request.

We note that by Theorem 4.3, we can construct designs with F3(D) =
F2(D) = 0 when m ≤ (sk−1 − 1)/(s − 1). The designs presented in Table 2
may have nonzero F2(D) entries for these cases, but they have smaller A2 val-
ues and thus a higher proportion of projections that are oa(sk, 2, s2, 2). We
conclude this section with an illustration of Theorem 4.4.

Example 3. Table 2 records an soa3(81, 913), say D = 3A+B, with F3(D) = 0,
F2(D) = 5 and F1(D) = 7. Note that the only quadratic nonresidue of Z3 is
v = 2. Let Ãα,β = αe1 +βe2 +A and B̃α,β = βve1 +αe2 +B. Then D̃ = 3Ã+B̃,
where Ã and B̃ are given in (3), is an soa3(729, 9118) with F3(D̃) = 0, F2(D̃) =
45 and F1(D̃) = 63. Moreover, by the results of Chen and Tang (2022), this
design also has the minimum A2 value among all soa3(729, 9118)’s.

https://github.com/gz-chen/SOA
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Table 2

The (F3(D), F2(D), F1(D))’s of the soas(sk, (s2)m)’s before and after LALPs

(F3(D), F2(D), F1(D)) (F3(D), F2(D), F1(D))
s sk ×m Before LALPs After LALPs s sk ×m Before LALPs After LALPs
2 16 × 6 (1, 1, 1) (0, 0, 3) 3 27 × 5 (2, 4, 4) (0, 4, 6)
2 16 × 7 (1, 4, 1) (0, 5, 1) 3 27 × 6 (2, 7, 6) (0, 9, 6)
2 16 × 8 (2, 8, 2) (1, 8, 3) 3 81 × 11 (0, 1, 3) (0, 0, 4)
2 16 × 9 (3, 12, 3) (3, 12, 3) 3 81 × 12 (1, 3, 4) (0, 0, 8)
2 16 × 10 (8, 14, 8) (5, 20, 5) 3 81 × 13 (1, 5, 6) (0, 5, 7)
2 32 × 10 (0, 1, 0) (0, 0, 1) 3 81 × 14 (4, 5, 7) (0, 6, 10)
2 32 × 11 (0, 1, 2) (0, 0, 3) 3 81 × 15 (3, 9, 9) (0, 10, 11)
2 32 × 12 (2, 3, 0) (0, 3, 2) 3 81 × 16 (3, 13, 11) (0, 13, 14)
2 32 × 13 (2, 5, 1) (0, 5, 3) 3 81 × 17 (8, 11, 15) (0, 17, 17)
2 32 × 14 (2, 7, 2) (0, 9, 2) 3 81 × 18 (5, 17, 20) (0, 24, 18)
2 32 × 15 (5, 4, 5) (0, 13, 1) 3 81 × 19 (8, 21, 22) (0, 32, 19)
2 32 × 16 (4, 11, 4) (1, 16, 2) 3 81 × 20 (11, 21, 31) (1, 36, 26)
2 32 × 17 (7, 12, 7) (3, 17, 6) 3 81 × 21 (16, 18, 41) (2, 44, 29)
2 32 × 18 (8, 18, 7) (5, 22, 6) 3 81 × 22 (12, 33, 50) (4, 47, 44)
2 32 × 19 (10, 25, 8) (7, 28, 8) 3 81 × 23 (13, 46, 58) (6, 52, 59)
2 32 × 20 (12, 29, 13) (9, 34, 11) 3 81 × 24 (20, 58, 64) (8, 60, 74)
2 32 × 21 (18, 31, 23) (12, 42, 18) 3 81 × 25 (19, 70, 76) (10, 70, 85)
2 32 × 22 (27, 44, 27) (18, 50, 30)

5. Discussion

Strong orthogonal arrays enjoy attractive stratification properties in low dimen-
sions. Under allowable level permutations, the stratification properties of SOAs
are preserved but the geometrical structure may be altered. In this paper, we
select a space-filling SOA among those obtained by linear allowable level per-
mutations (LALPs). The LALPs not only are representative but also offer con-
venience in characterizing various two-dimensional patterns. We then provide
construction methods for more space-filling SOAs based on the characterization
results.

Section 4 selects SOAs based on the maximin L1-distance criterion. When
polynomial models are considered appropriate, SOAs with orthogonal columns
may also be desirable. Propositions 5.1 and 5.2 below show how such SOAs can
be obtained from LALPs.

Proposition 5.1. The design D in Theorem 4.3 has orthogonal columns as
long as βi �= 0 for i = 1, . . . ,m.

As a construction method, Proposition 5.1 itself is not surprising, since the
design D in Theorem 4.3 can be viewed as obtained from the column-orthogonal
SOA in Zhou and Tang (2019). What makes the result interesting is that com-
bining with Theorem 4.3, we are able to obtain an SOA which enjoys both
the properties of F2(D) = F3(D) = 0 and column orthogonality by choosing
βi �= 0, 1 for i = 1, . . . ,m. For instance, the soa5(125, (25)6) obtained in Exam-
ple 2 has orthogonal columns in addition to F2(D) = F3(D) = 0.

With the aid of LALPs, we can further establish a relationship between col-
umn orthogonality and the property of F3(D) = 0. Suppose A = (a1, . . . , am)
and B = (b1, . . . , bm) are such that D = sA + B is an SOAs(sk, (s2)m). For
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i = 1, . . . ,m, let b′i = (s − 1)ai + bi (mod s) and B′ = (b′1, . . . , b′m). Then we
have the following result on D and D′ = sA + B′.

Proposition 5.2. We have F3(D) = 0 if and only if B′ is an oa(sk,m, s, 2)
and D′ is a column orthogonal SOAs(sk, (s2)m).

According to Proposition 5.2, a column-orthogonal SOAs(sk, (s2)m) is im-
mediately available from an SOAs(sk, (s2)m) with F3(D) = 0. For example,
the SOA3(81, 919) shown in Table 2 has F3(D) = 0 after LALPs and hence
a column-orthogonal SOA3(81, 919) can be obtained. Using the recursive con-
struction in Theorem 4.4, we can obtain an SOA3(729, 9172) with F3(D̃) = 0
and thus a column-orthogonal SOA3(729, 9172). In comparison, the method of
Zhou and Tang (2019) can only yield column-orthogonal SOA3(81, 913) and
SOA3(729, 9121) for the corresponding run sizes.

Some directions are open for future research. In this paper, we focus on the
case where the number of levels is the square of a prime number s. The concept of
LALPs can also be extended to the case of s being a prime power by making use
of the Galois field. A Galois field gf(s) is a finite field with s elements equipped
with operations of addition and multiplication, and exists for any prime power
s. Let φ be a bijection from gf(s) to Zs. Then a LALP σ on Zs2 can be defined
as one such that for x = sxa + xb ∈ Zs2 , we have σ(x) = sx′

a + x′
b where

x′
a = φ(α0 + α1φ

−1(xa)) and x′
b = φ(β0 + β1φ

−1(xa) + β2φ
−1(xb)) for some

α0, β0, β1 ∈ gf(s) and some α1, β1 ∈ gf(s) \ {0}. It can be verified that the
results of Lemma 3.2 and Theorem 3.3 still hold for LALPs defined as above.
However, the characterization result in Theorem 4.2 may no longer be valid. It
is of practical interest to examine how to select more space-filling SOAs in this
situation.

We apply LALPs to regular SOAs in this paper and thus the run sizes of
the designs obtained are prime powers. If more flexible run sizes are needed,
one could consider using LALPs to general orthogonal array-based designs. A
complete enumeration of two-dimensional patterns may be difficult in this sit-
uation since the base designs are nonregular, but LALPs should still provide
some computational convenience due to their representativeness.

This paper concentrates on strong orthogonal arrays of strength two plus
and their two-dimensional projections. If more resources are available, we could
consider the use of strong orthogonal arrays of higher strengths. Suppose D =
(xij)n×l is an l-dimensional projection of a design. Then similar to (1), the space-
filling measures such as those of maximin distance and centered L2-discrepancy
can be written as

q(D) = γ0 + γ1

n

n∑
i=1

l∏
k=1

g(xik) + γ2

n2

n∑
i=1

n∑
j=1

l∏
k=1

f(xik, xjk) (4)

for some real constants γ0, γ1 and γ2 > 0 and real functions f and g. Following
similar arguments to those in the proof of Theorem 3.3, one can show that
in terms of q(·) in (4), the average performance of resulting designs obtained
from all allowable level permutations is the same as that obtained from LALPs.
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Therefore, it would be interesting to study higher-dimensional projections of
SOAs with higher strengths under LALPs and find those that are most space-
filling.

Appendix: proofs

Proof of Lemma 3.2. Write x = sxa+xb and y = sya+yb with 0 ≤ xb, yb ≤ s−1.
Similarly, write x̂ = sx̂a + x̂b and ŷ = sŷa + ŷb with 0 ≤ x̂b, ŷb ≤ s − 1.
By Definition 3.1, applying a LALP σ to x and y gives σ(x) = sx′

a + x′
b and

σ(y) = sy′a + y′b, where x′
a = α0 +α1xa, x′

b = β0 + β1xa + β2xb, y′a = α0 +α1ya
and y′b = β0 + β1ya + β2yb.

(i). If x �= y and �x/s� = �y/s�, then we have xa = ya and xb �= yb. Similarly,
x̂ �= ŷ and �x̂/s� = �ŷ/s� imply that x̂a = ŷa and x̂b �= ŷb. It can be easily seen
that for each α1 ∈ Zs \ {0}, there exists a unique α0 ∈ Zs such that x′

a = x̂a

and y′a = ŷa. On the other hand, we have xb − yb �= 0 due to xb �= yb. Since
Zs \ {0} forms a multiplicative group, we know that there must exist a unique
β2 ∈ Zs \ {0} such that β2(xb − yb) = x̂b − ŷb. With this β2, it is clear that for
each β1 ∈ Zs, there exists a unique β0 ∈ Zs such that x′

b = x̂b and y′b = ŷb.
Therefore, there are a total of s(s − 1) choices of (α0, α1, β0, β1, β2) such that
σ(x) = x̂ and σ(y) = ŷ.

(ii). If �x/s� �= �y/s�, then we have xa �= ya. Similarly, �x̂/s� �= �ŷ/s� implies
x̂a �= ŷa. Then there exists a unique α1 ∈ Zs\{0} such that α1(xa−ya) = x̂a−ŷa.
With this α1, there exists a unique α0 ∈ Zs such that x′

a = x̂a and y′a = ŷa. Note
that xa �= ya. It can be shown with similar arguments that for each β2 ∈ Zs\{0},
there exists a unique β0 ∈ Zs and a unique β1 ∈ Zs such that x′

b = x̂b and
y′b = ŷb. As a result, there are s − 1 choices of (α0, α1, β0, β1, β2) such that
σ(x) = x̂ and σ(y) = ŷ. This completes the proof.

Proof of Theorem 3.3. Let D be the set of all D′ s obtained by applying LALPs
to columns of D and |D| be its cardinality. Also denote the ith row of D′ by
(x′

i1, x
′
i2). Then we have

q̄(D) = 1
|D|

∑
D′∈D

⎧⎨
⎩γ0 + γ1

n

n∑
i=1

g(x′
i1)g(x′

i2) + γ2

n2

n∑
i=1

n∑
j=1

f(x′
i1, x

′
j1)f(x′

i2, x
′
j2)

⎫⎬
⎭

= γ0 + γ1

{
1
s

s−1∑
x=0

g(x)
}2

+ γ2

n2

n∑
i=1

n∑
j=1

{
1
|D|

∑
D′∈D

f(x′
i1, x

′
j1)f(x′

i2, x
′
j2)

}
.

If xi1 = xj1, then x′
i1 = x′

j1 and we have
∑

D′∈D f(x′
i1, x

′
j1)/|D| = Xf . If

�xi1/s� = �xj1/s� and xi1 �= xj1, then �x′
i1/s� = �x′

j1/s� and x′
i1 �= x′

j1,
and by results of Lemma 3.2 we have

∑
D′∈D f(x′

i1, x
′
j1)/|D| = Yf . Similarly,

if �xi1/s� �= �xj1/s� then �x′
i1/s� �= �x′

j1/s� and by Lemma 3.2 we have∑
D′∈D f(x′

i1, x
′
j1)/|D| = Zf . Hence we have

q̄(D)=γ0+γ1

{
1
s

s−1∑
x=0

g(x)
}2

+ γ2

n2

n∑
i=1

n∑
j=1

X
δij(D)
f Y

δij(�D/s�)−δij(D)
f Z

2−δij(�D/s�)
f ,
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where δij(�D/s�) and δij(D) are the number of coincidences between the ith
and jth runs of �D/s� = (�xij/s�) and D respectively. The remainder of the
proof is similar to that of Theorem 2 of Chen and Tang (2022).

Proof of Lemma 4.1. Suppose that D0 = sA0 +B0 is a regular soas(sk, (s2)2),
where A0 = (a10, a20) and B0 = (b10, b20). Since A0 and B0 are regular, their
columns can be seen as points in the projective geometry PG(k−1, s). Consider
two lines L1 = (a10, b10, a10 + b10, . . . , a10 + (s− 1)b10) and L2 = (a20, b20, a20 +
b20, . . . , a20 +(s− 1)b20) in PG(k− 1, s). Then there are two possibilities for L1
and L2: (i) L1 and L2 do not intersect; (ii) L1 and L2 intersect at one point.
In case (i), D0 forms an oa(sk, 2, s2, 2) and level permutations do not affect
this combinatorial orthogonality. In case (ii), let e3 be the intersection point,
e1 = a10 and e2 = a20. Then e1, e2, e3 must be independent columns since
(a10, a20, e3) has strength 3. Applying LALPs to columns of D0 gives rise to D
with A and B as specified in Lemma 4.1.

Proof of Theorem 4.2. Consider two distinct points p(1) = (p(1)
1 , p

(1)
2 ) and p(2) =

(p(2)
1 , p

(2)
2 ) of D, where

p
(1)
1 = s(α10 + α11x1) + (β10 + β11x1 + β12z1),

p
(1)
2 = s(α20 + α21y1) + (β20 + β21y1 + β22z1),

p
(2)
1 = s(α10 + α11x2) + (β10 + β11x2 + β12z2),

p
(2)
2 = s(α20 + α21y2) + (β20 + β21y2 + β22z2).

Note that all operations within brackets are modulo s. If p(1)
1 �= p

(2)
1 and p

(1)
2 �=

p
(2)
2 , then the distance between p(1) and p(2) must be greater than 1. Consider

the case p
(1)
1 = p

(2)
1 and thus x1 = x2 = x, z1 = z2 = z. Then y1 �= y2 since

p(1) and p(2) are distinct. Let y′1 = α20 + α21y1 (mod s) and y′2 = α20 + α21y2
(mod s). If y′1−y′2 �= ±1, then the distance between p(1) and p(2) must be greater
than 1. Suppose y′2 = y′1 + 1. Then the distance between p(1) and p(2) equals to
1 if and only if {

β20 + β21y1 + β22z = s− 1 (mod s),
β20 + β21y2 + β22z = 0 (mod s).

(5)

Note that y′2 = y′1 + 1 implies that α20 + α21y1 �= 0 (mod s) and that y2 =
y1 + α−1

21 . Combining this with (5), we conclude that the distance between p(1)

and p(2) equals to 1 if and only if α21 = β21. In addition, since x can take any
element of Zs and y1 can take any element such that α20 + α21y1 �= 0 (mod s),
there are a total of s(s−1) such pairs of points. The same arguments also apply
to p

(1)
1 and p

(2)
1 . Therefore, if both α11 = β11 and α21 = β21, there will be

2s(s − 1) pairs of points with distance being 1. If α11 �= β11 and α21 �= β21,
then any pair of points would have distance greater than 1. This completes the
proof.
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Proof of Theorem 4.3. Clearly, any two-dimensional projection of D is in the
form given in Theorem 4.2 and satisfy the condition in part (i) of the theorem.
Therefore, we have dmin > 1 and F2(D) = F3(D) = 0. Next, we show that
if D = sA + B is an soa2(2k, 4m) with F2(D) = F3(D) = 0 then we must
have m ≤ 2k−1 − 1. Suppose A = (a1, . . . , am) and B = (b1, . . . , bm). Then
according to Theorem 4.2, (a1, . . . , am, a1 + b1, . . . , am + bm) (mod 2) must be
an oa(2k, 2m, 2, 2). Thus 2m ≤ 2k−1, from which we conclude m ≤ 2k−1−1.

Proof of Theorem 4.4. The proof for s = 2 can be done by a direct verification.
Consider the case s ≥ 3. For u ∈ Zs, let uÃ+B̃ = (uÃ0,0+B̃0,0, . . . , uÃs−1,s−1+
B̃s−1,s−1, ue1+e2). Note that uÃα,β+B̃α,β = (αu+βv)e1+(βu+α)e2+uA+B.
Since v �= u2 for any u ∈ Zs, there exists a unique solution (α, β) to{

αu + βv = α′ (mod s),
βu + α = β′ (mod s)

for any α′ ∈ Zs and β′ ∈ Zs. The fact that this holds for any u ∈ Zs implies
Fi(D̃) = s2Fi(D) for i = 1, 2, 3 according to Theorem 4.2 and Proposition 2 of
Chen and Tang (2022). This completes the proof.

To prove Propositions 5.1 and 5.2, the following result from Theorem 1 of
Zhou and Tang (2019) is useful.

Lemma A.3. Suppose that D = sA + B is an soas(n, (s2)m). Then D has
orthogonal columns if B is an oa(n,m, s, 2).

Proof of Proposition 5.1. Note that the columns of B, which are given by bi =
βiai + ek (mod s) for i = 1, . . . ,m, must be distinct columns of a saturated
regular oa(sk, (sk − 1)/(s − 1), s, 2) as long as βi �= 0 for i = 1, . . . ,m. The
result follows immediately from Lemma A.3.

Proof of Proposition 5.2. Note that B′ being an oa(sk,m, s, 2) is sufficient for
D′ being a column orthogonal SOAs(sk, (s2)m) according to Lemma A.3. Hence,
without loss of generality, it suffices to show that the projection of D onto the
first two dimensions, i.e. (sa1 + b1, sa2 + b2) is of type (iii) if and only if (b′1, b′2)
is not an oa(sk, 2, s, 2). This is straightforward from Theorem 4.2.
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