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Abstract: The volume function V (t) of a compact set S ∈ R
d is just the

Lebesgue measure of the set of points within a distance to S not larger than
t. According to some classical results in geometric measure theory, the vol-
ume function turns out to be a polynomial, at least in a finite interval,
under a quite intuitive, easy to interpret, sufficient condition (called “posi-
tive reach”) which can be seen as an extension of the notion of convexity.
However, many other simple sets, not fulfilling the positive reach condi-
tion, have also a polynomial volume function. To our knowledge, there is
no general, simple geometric description of such sets. Still, the polynomial
character of V (t) has some relevant consequences since the polynomial coef-
ficients carry some useful geometric information. In particular, the constant
term is the volume of S and the first order coefficient is the boundary mea-
sure (in Minkowski’s sense). This paper is focused on sets whose volume
function is polynomial on some interval starting at zero, whose length (that
we call “polynomial reach”) might be unknown. Our main goal is to ap-
proximate such polynomial reach by statistical means, using only a large
enough random sample of points inside S. The practical motivation is sim-
ple: when the value of the polynomial reach, or rather a lower bound for
it, is approximately known, the polynomial coefficients can be estimated
from the sample points by using standard methods in polynomial approxi-
mation. As a result, we get a quite general method to estimate the volume
and boundary measure of the set, relying only on an inner sample of points.
This paper explores the theoretical and practical aspects of this idea.
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1. Introduction

Given a compact set S ⊂ R
d and r > 0, the r-parallel set of S, denoted here

by B(S, r), is the set of all points in R
d for which there is a point of S within a

distance not larger than r; see below in this section for formal definitions.
The “volume function” of S is then defined by V (r) = μ(B(S, r)), where μ

denotes the Lebesgue measure on R
d. As it happens, this function carries a lot

of useful information on the geometry of S. In particular, V (0) = μ(S). Also,
the limit, when it does exist,

L(S) = lim
ε→0+

μ(B(S, ε) \ S)
ε

= lim
ε→0+

V (ε) − V (0)
ε

, (1)

provides a natural way of defining the surface measure of S. The value L(S)
is called the outer Minkowski content of ∂S; see Ambrosio et al. (2008) for a
detailed study of this and other notions of surface measure.

In many important cases the function V is a polynomial of degree at most
d on some interval [0, R]. The best known example is given by the so-called
“sets of positive reach” introduced in a celebrated paper by [17]. The reach of
a compact set S is the supremum of the values r such that any point outside S
has only one metric projection on S; see below for more details.

Of course, when the volume function V of S is a polynomial, the constant
term is V (0) = μ(S) and the coefficient of the first-order term is V ′(0) = L(S).

The purpose of this work
The general aim of this work is to exploit the above mentioned polynomial

assumption for statistical purposes. We follow the lines of [16] where it is shown
that V (r) can be consistently estimated from a random sample of points inside
S. Then, if we denote Vn(r) an estimator of V based on a sample of size n,
the coefficients V (r) can be estimated by a minimal distance procedure, just
approximating Vn from the closest polynomial of degree d on the interval [0, R]
of validity of the polynomial assumption.

The present paper addresses two topics in this framework. First and fore-
most, we consider (from both the theoretical and practical point of view) the
estimation of the “polynomial reach” R, that is, the maximum value of r for
which the polynomial assumption holds on [0, r]. This allows us, as an impor-
tant by-product, to address the statistical estimation of L(S) and μ(S) from a
random sample of points, which remains as the primary motivation of the whole
study. To be more precise, if our main goal is to estimate the coefficients of the
polynomial volume we do not need in fact to estimate the polynomial reach R.
A infra-estimation of this parameter would be enough, and safer than a possible
over estimation which might lead to an erroneous polynomial fit for the volume
function.

The word “reach” is used here by analogy with the ordinary, geometric notion
of Federer’s reach, mentioned above: this is just the the largest (possibly +∞)
value of r such that any point at a distance form S smaller than r has just
one metric projection on S (see below for a formal definition). Such analogy
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is motivated by the fact that, as proved by Federer (1959), if the reach r of a
compact set S is positive, then the volume function of S is a polynomial on
[0, r]. However this sufficient condition is by no means necessary, since many
simple sets with r = 0 have a polynomial volume on some interval. So if we are
just interested in the polynomial volume property we could perhaps focus on R
rather than r.

We will comment at some more detail these statistical aspects in Section 2.
However, let us now advance that

(a) we will assume that our sample information comes just from an inside
sample on S, unlike other approaches that also require sample information
outside S; see Section 2 for details and references.

(b) Our proposal does not require to estimate the set S itself as a preliminary
step.

(c) The conditions imposed on S are lighter than others appearing in the
literature.

Some notation and preliminary definitions
Given a set S ⊂ R

d, we will denote by S̊ and ∂S the interior and boundary
of S, respectively with respect to the usual topology of Rd.

The parallel set of S of radius ε will be denoted as B(S, ε), that is B(S, ε) =
{y ∈ R

d : infx∈S ‖y− x‖ ≤ ε}. If A ⊂ R
d is a Borel set, then μd(A) (sometimes

just μ(A)) will denote its Lebesgue measure. We will denote by B(x, ε) the
closed ball in R

d, of radius ε, centred at x, and ωd = μd(B(x, 1)).
Given two compact non-empty sets A,C ⊂ R

d, the Hausdorff distance or
Hausdorff-Pompei distance between A and C is defined by

dH(A,C) = inf{ε > 0 : such that A ⊂ B(C, ε) and C ⊂ B(A, ε)}. (2)

If I is an interval in R denote by L2(I) the space of real square-integrable
functions defined on I, endowed with the usual norm, ‖f‖L2(I) =

√∫
I
f2(s)ds.

Let us denote V (r) = μ(B(S, r)), for r ≥ 0, the volume function of the set S.
If ℵn = {X1, . . . , Xn} stands for a sample of points Xi on S we will denote by

Vn(r) = μ(B(ℵn, r))

the empirical volume function.
Given r > 0 and a closed interval I in [0,∞), we denote by P I

n,� and P I
� ,

respectively, the best approximations, by polynomials of degree at most � ≥ d,
of Vn and V , with respect to the L2 norm. That is, if Π�(I) denotes the (closed)
subspace of all polynomials of degree at most � ∈ N in L2(I),

P I
n,� = argminπ∈Π�(I)‖Vn − π‖L2(I), and P I

� = argminπ∈Π�(I)‖V − π‖L2(I).
(3)

As indicated below, we are particularly interested on P I
n,d, d being the dimen-

sion of our data points. Let us denote P I
n,d(t) = θ0n+· · ·+θdnt

d for t ∈ I ⊂ [0,R].
In practice, the computation of P I

n,d from (3) is done numerically in a simple
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way: the values θjn are just fitted as the coefficients of a linear regression model
where the response variables are values Vn(ri), calculated, by simulation, with
arbitrary precision, for a given grid of points r1 < · · · < rN in I.

Following the notation in [17], let Unp(S) be the set of points x ∈ R
d with a

unique metric projection on S.
For x ∈ S, let reach (S, x) = sup{r > 0 : B̊(x, r) ⊂ Unp(S)

}
. The reach of S

is then defined by reach(S) = inf
{
reach(S, x) : x ∈ S

}
, and S is said to be of

positive reach if r := reach(S) > 0.

A set S ⊂ R
d is said to be standard with respect to a Borel measure ν if

there exists λ > 0 and δ > 0 such that, for all x ∈ S,

ν(B(x, ε) ∩ S) ≥ δμd(B(x, ε)), 0 < ε ≤ λ. (4)

Informally speaking, this condition prevents the set S from being “too spiky”
with respect to the measure ν. See, e.g., [11] and references therein for details
on the use of the standardness condition in set estimation.

In addition to the outer Minkowski content (1), an alternative way of mea-
suring is the two-side version, simply known as Minkowski content,

L0(S) = lim
ε→0+

μ(B(∂S, ε))
2ε . (5)

The relation of this notion with its one-sided version (1) and with the, perhaps
more popular, concept of (d−1)-dimensional Hausdorff measure Hd−1(∂S) (that
will be mentioned below in the proof of Lemma 1) is analyzed in [4].

Organization of this work
In the following section the notion of polynomial reach is formally introduced.

Also, some perspective and motivation are given in order to show the usefulness
of such notion. The estimation of the polynomial reach from a random sample
of points is considered in Section 3. Two methods are proposed: one of them
is asymptotically consistent to the true value of the reach, but not that useful
in practice; the other one provides a infra-estimation, which is enough for most
practical purposes. Convergence rates for the estimation of the polynomial coef-
ficients are derived in Section 4. Some numerical experiments are commented in
Section 5. Finally, a few conclusions are briefly commented in Section 6, a few
technical proofs are included in Appendix A and some tables with numerical
outputs are provided in Appendix B.

2. Some perspective and motivation. The notion of polynomial reach

As mentioned above, our aim here is exploiting a geometric idea to address some
statistical problems in the setup of set estimation. The general purpose of this
theory is to reconstruct a (compact) set S from the information provided by a
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random sample of points. A brief survey can be found in [12]. See, e.g., [10] and
[1] for more recent references, including connections to manifold learning and
other relevant topics.

In many cases one is mostly interested in estimating a functional of S, typ-
ically the Lebesgue measure μ(S) or the outer Minkowski content (boundary
measure) L(S) as defined in (1). Such problems have been addressed in the
literature from different strategies, which we next summarize.

A) Plug-in approaches, based on a shape assumption on S. For example, if S
is assumed to be convex it would be quite natural to use the volume or the
boundary measure of the convex hull of the sample ℵn = {X1, . . . , Xn} as
an estimator of the values μ(S) and L(S), respectively. See, e.g., [5] for
a recent reference on the plug-in estimation of μ(S) under convexity. In
[14] and [3] the analogous plug-in estimation of L(S) and μ(S) under the
wider assumption of r-convexity is considered. In this case, the plug-in
estimators of L(S) and μ(S) would be L(Sn) and μ(Sn), Sn being the
r-convex hull of the sample

B) Methods based on two-samples. In some cases, one may assume that one
has two samples, one inside and the other outside S. This extra information
might allow for estimators of L(S) essentially based on nearest neighbors
ideas; see, for example, [13] and [20].

C) Indirect methods, based on auxiliary functions or formulas involving the
surface area. This is the case of [16] or [2]. Also the results on the asymp-
totic distribution of the Hausdorff distance between a random sample and
its support provided by [21] are of potential interest in this regard.

The present paper fits in the item C) of this list. More specifically we follow
the lines of [16]. However, whereas in that paper the interval of validity [0,R]
of the polynomial assumption is assumed to be known, we consider here the
non-trivial problem of estimating such interval. The motivation for this is to
use the polynomial character of V (t) in that interval to estimate the polynomial
coefficients which, as commented above, have a relevant geometric interest. This
can be seen as a sort of “algebraic counterpart” of the estimation of Federer’s
reach parameter defined above. Nevertheless, it is important to note that the
assumption of positive reach (which is very relevant in many other aspects) is
not needed or used here at all. Of course, if we assume that S has a positive reach
r > 0, the polynomial volume assumption would be ensured in the interval [0, r].
Therefore, any method to estimate Federer’s reach r (see, e.g., [9]) would be
useful to exploit the polynomial volume assumption. The point is that there are
many extremely simple sets for which Federer’s reach is 0 and, still, polynomial
volume assumption does hold. These include a “pacman-type” set such as the
closed unit disk in R

2 excluding an open sector, the union of two disjoint squares,
or a simple set such as [−1, 1]2 \(−1

2 ,
1
2 )2. In all these cases, and in many others,

the following definition applies

Definition 2.1. A compact set S ⊂ R
d is said to fulfil the polynomial volume
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property if there exist constants θ0, . . . , θd ∈ R and R > 0 such that

V (r) = θ0 + θ1r + . . . + θdr
d, for all r ∈ [0, R]. (6)

When this condition holds, a natural strategy to follow is to estimate V (r)
by its empirical counterpart Vn(r), as defined in the previous section and, in
turn, to approximate Vn(r) by a polynomial of degree d, whose coefficients θ0n,
and θ1n can be seen as estimators of μ(S) and L(S), respectively.

The above definition leads in a natural way to the following notion of poly-
nomial reach, which is the central concept of the present work.
Definition 2.2. Given a compact set S ∈ R

d with volume function V , we will
define the polynomial reach R of S as

R = sup{r ≥ 0 : V is a polynomial of degree at most d on [0, r]}. (7)

When the set S possesses positive reach (as defined above in the Section 1),
it is established in [17] that in (6), θ0 equals μd(S), θ1 is the boundary measure
L(S), θ2 represents the integrated mean curvature, and θd is ωdχ(S), where
χ(S) denotes the Euler-Poincaré characteristic of S. These geometric interpre-
tations for the polynomial coefficients still hold true for θ0 and θ1 when we just
assume positive polynomial reach. However, they do not necessarily apply for
the other coefficients related to curvatures and Euler’s characteristic. On the
other hand, the relation between Federer’s reach r and polynomial reach R is
not straightforward. Of course, as shown in [17], r ≤ R, but it is not obvious
when r = R; this is the case, for example, when S is te union of two points.
See [6] for additional details and examples on the positive polynomial reach
condition.

3. Consistent estimation of the polynomial reach

The aim of this section is to show that, under some conditions, one can obtain
either a consistent estimator (subsection 3.1) or, asymptotically, a lower bound
(subsection 3.2) of the polynomial reach R. Note that, somewhat paradoxically,
a lower bound might be even preferable and “safer” since, in order to use the
polynomial volume assumption to estimate the relevant geometric quantities
(area, perimeter,...) all we need is an interval where the polynomial expression
does hold. Thus, we do not need in fact the whole interval [0,R]: we may more
easily afford some underestimation of R rather than an error by excess in the
estimation of this quantity.

Let us start with two technical lemmas with some independent interest, whose
proofs are given in Appendix A.
Lemma 3.1. Let S ⊂ R

d be a compact set such that V (0) > 0 and the right-
hand side derivative V +(0) does exists and is finite. Let ℵn = {x1, . . . , xn} ⊂ S
be a sequence of finite sets such that γn = dH(ℵn, S) → 0 and 2γn < b < +∞.
Then, for all n large enough,

sup
s∈[2γn,b]

|V (s) − Vn(s)| ≤ C max
p∈∂S

d(p,ℵn), where C = ess sups∈[0,b]|V ′(s)|, (8)
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As a consequence, given the compact interval In = [2γn, b] we have that, for all
n large enough,

‖V − Vn‖L2(In) ≤
√
bC max

p∈∂S
d(p,ℵn) ≤

√
bCγn. (9)

Moreover given the compact interval I = [0, b], we have that, for all n large
enough,

‖V − Vn‖L2(I) ≤ 2
√

2V (0)γ1/2
n +

√
bC max

p∈∂S
d(p,ℵn). (10)

Lemma 3.2. Let ℵn = {X1, . . . , Xn} be an iid sample on a compact set S,
that comes from a distribution PX standard with respect to Lebesgue measure.
Assume further that the boundary Minkowski content of S fulfils L0(S) < ∞.

Then with probability one,

lim sup
n→∞

( n

logn

)1/d
max
p∈∂S

d(p,ℵn) ≤
( 2
δωd

)1/d
, (11)

being δ the standardness constant of PX .

3.1. A consistent estimator

The main focus of this subsection is to show in Proposition 3.3 that the poly-
nomial reach can be estimated consistently from a sample. While this result
has some conceptual interest, it suffers from some practical limitations: on the
one hand, the estimator R̃ we propose below might have (as suggested by some
numerical experiments: see subsection 5.3) a rather poor accuracy except for
very large sample sizes. In the second place it could provide in some cases
an overestimation which could entail some practical drawbacks commented at
the beginning of the following subsection. Let ℵn = {X1, . . . , Xn} ⊂ S a se-
quence of finite sets such that γn := dH(ℵn, S) → 0. Let us denote by simplicity
P t
n := P

[γn,t]
n,d , P t := P

[γn,t]
d the best polynomial approximation (in L2) of degree

at most d for Vn and V , respectively, on [γn, t], where we assumed that n is
large enough such that γn < t. Define

Gn(t)=‖Vn−P t
n‖t = ‖Vn−P t

n‖L2[γn,t], and G(t) = ‖V−P t‖t := ‖V−P t‖L2[γn,t].

Note that Gn(t) is the polynomial approximation error for the estimate vol-
ume Vn and G(t) is the polynomial approximation error for the true volume V .
Then G(t) = 0 whenever t ≤ R. Also, note that R = limε→0 inf{t : G(t) > ε}.
Theorem 3.3. Under the assumptions of Lemma 3.1, let S ⊂ R

d be compact
and ℵn = {x1, . . . , xn} ⊂ S a sequence of finite sets such that γn := dH(ℵn, S) →
0. Take a sequence εn > 0 such that εn → 0 and

γn = o(εn), as n → ∞,

then R̃ = inf{t ≥ γn : Gn(t) > εn} fulfils that, for n large enough,

0 ≤ R̃ − R ≤ εn. (12)
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Proof. Let 0 < γn < t < b. Let us denote πt
n the orthogonal L2 projection

onto the space of polynomials of degree at most d on [γn, t]. Then, using the
contractive property for the projections on convex sets in Hilbert spaces, we
have

sup
t∈[γn,b]

‖P t
n − P t‖t = sup

t∈[γn,b]
‖πt

n(Vn) − πt
n(V )‖t ≤ sup

t∈[γn,b]
‖Vn − V ‖t.

From (9) supt∈[γn,b] ‖Vn − V ‖t = O(γn). From the triangular inequality we
have that, with probability one,

sup
t∈[γn,b]

∣∣∣‖Vn − P t
n‖t − ‖V − P t‖t

∣∣∣ ≤ sup
t∈[γn,b]

(
‖Vn − V ‖t + ‖P t − P t

n‖t
)

= O(γn),

(13)
as n → ∞. This proves that for all b > γn,

sup
s∈[γn,b]

|Gn(s) −G(s)| = O(γn) (14)

Let us first assume that R > 0, thus G(t) = ‖V − P t‖t = 0 for al 0 ≤ t ≤ R.
Then from (13) and γn = o(εn) we have, for n large enough,

sup
s∈[γn,R]

Gn(s) < εn. (15)

This together with (15) proves that for n large enough,

R̃ = inf{t ≥ γn : Gn(t) > εn} ≥ R. (16)

Observe that if R = +∞ (16) proves that R̃ = +∞. Assume now that 0 ≤ R <
∞, then G(t) > 0 for all t > R. Let δn = inf{t > γn : G(t) > εn/2}, observe
that δn → R+. Using (14) for b > δn we have, |Gn(δn) − G(δn)| = O(γn) as
n → ∞. Then, since γn = o(εn), we have for n large enough,

R̃ = inf{t ≥ γn : Gn(t) > εn} ≤ R + εn.

Thus, eventually,
0 ≤ R̃ − R ≤ εn (17)

This in particular proves that if R = 0, R̃ → 0 as n → ∞. From (16) and (17)
it follows (12).

Remark 1. Observe that when ℵn is an iid sample under the assumptions of
Lemma 3.2, the rate of γn = (logn/n)1/d, so that εn in the above result could
be a sequence slightly larger (in order) than γn.
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3.2. An algorithm for a lower bound of the polynomial reach

Let us note that a consistent (in the statistical, asymptotic sense) estimator of
R, as that proposed in the previous subsection, tends to eventually provide an
over-estimation of the polynomial reach R. This might be particularly harmful in
practice since, in the over estimation case, the polynomial volume condition for
V is not fulfilled on [0, R̃] which might lead to poor estimation of the polynomial
coefficients. From this point of view it is safer to look for a infra-estimation of R.
This is the purpose of the estimation algorithm we propose in this subsection.

This algorithm (whose convergence will be proved below) works as follows

Inputs and notation. A finite set ℵn = {X1, . . . , Xn} ⊂ S. An arbitrarily
small, η > 0. A grid of K values 0 < r1 < r2 < · · · < rK . A sequence
Un = (logn/n)1/2d−η. A positive integer value � ≥ d to be used as the
degree of the approximating polynomials.
Let us define Ii = [0, ri] and Ji = [ri, rK ] for all i = 1, . . . ,K − 1, let P Ii

n,d

(resp. P Ji

n,�) be the best polynomial approximation of Vn of degree d on
the interval Ii (resp. of degree � ≥ d on Ji).
Step 0. Put i = 0. If ‖Vn − P I1

n,d‖L2(I1) > Un then the output is R̂ = 0
and the algorithm stops. Otherwise, put i ← i+ 1 and go to the following
step.
Step 1 Define for i = 1, . . . ,K − 1

ci =
‖Vn − P Ii

n,d‖L2(Ii)

‖Vn − P Ji

n,�‖L2(Ji)
.

Output. If the algorithm does not stop at Step 0, let i be the first index
such that ci > 1 The output of the algorithm is R̂ = ri−1. If there is no
such i, we just define the output of the algorithm as R̂ = rK−1.

This algorithm is studied in the following result which relies on two assump-
tions, denoted H1 and H2. In Theorem 3.5 below we will show precise conditions
under which H1 and H2 hold when ℵn comes from a random sample whose sup-
port is S.

Theorem 3.4. Let R be the polynomial reach of the compact set S ⊂ R
d. Let us

consider the above algorithm, based on a grid 0 = r0 < r1 < r2 < · · · < rK when
applied to any sequence of sets ℵn = {X1, . . . , Xn} ⊂ S such that dH(S,ℵn) → 0.
Assume

H1. For some η > 0 we have ‖Vn − P Ii
n ‖L2(Ii) < Un := (logn/n) 1

2d−η for all
i > 0 such that Ii ⊂ [0,R], for all n large enough.

H2. For all ε > 0, there exists a degree � = �(ε), such that ‖Vn−P Ji

n,�‖L2(Ji) < ε,
for all i = 1, . . . ,K − 1, for all n large enough.

Then, there exists � such that the output R̂ of the algorithm fulfils

(i) If 0 ≤ R < r1 then R̂ = 0 for all n large enough. If R ≥ rK then
r1 ≤ R̂ ≤ rK−1 for all n large enough.
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(ii) If ri0 < R < ri0+1 for some 0 < i0 < K then R̂ = ri0 for all n large
enough.

(iii) If R = ri0 for some 1 ≤ i0 < K then R̂ ≤ ri0 , moreover if R = ri0 > r1,
then R̂ ∈ {ri0−1, ri0}, for all n large enough.

Proof. (i) Assume first that 0 ≤ R < r1, let us prove that the algorithm stops
in step 0. From the definition of R, V is not a polynomial on the closed interval
I1. Then,

lim
n

‖P I1
n,d − Vn‖L2(I1) = ‖P I1

d − V ‖L2(I1) > 0. (18)

Indeed, ‖P I1
n,d−P I1

d ‖L2(I1) → 0, as a consequence of the continuity of the projec-
tions in a Hilbert space. On the other hand, we must have ‖P I1

d −V ‖L2(I1) > 0.
To prove this observe that V is polynomial of degree d on [0,R] and not on
[0, r1]. So we must have ‖P I1

d − V ‖L2(I1) > 0. Let n large enough to guarantee
that Un < ‖P I1

d − V ‖L2(I1)/2. We conclude (18) and, in particular, that, for all
n large enough,

‖P I1
n,d − Vn‖L2(I1) > Un.

So, the algorithm will stop at step 0 for all n large enough, when 0 ≤ R < r1
and then 0 = R̂ ≤ R for all n large enough as desired.

Now, if R > rK assumption H1 entails that, for all n large enough, the
algorithm does not stop at the initial step. So, necessarily r1 ≤ R̂ ≤ rK−1.

Before proving (ii), assume that ri0 ≤ R < ri0+1 for some i0 ∈ {1, . . . ,K−2}
and let us first prove that there exists � large enough such that ci0+1 > 1 for all
n large enough. Indeed, reasoning as we did with I1, we conclude that for all n
large enough, ‖P Ii0+1

n,d − Vn‖L2(Ii0+1) > ‖P Ii0+1
d − V ‖L2(Ii0+1)/2 > 0. Thus,

ci0+1 =
‖Vn − P

Ii0+1
n,d ‖L2(Ii0+1)

‖Vn − P
Ji0+1
n,� ‖L2(Ji0+1)

≥
1
2‖P

Ii0+1
d − V ‖L2(Ii0+1)

‖Vn − P
Ji0+1
n,� ‖L2(Ji0+1)

.

By assumption H2 we can take � such that for all n large enough,

‖Vn − P
Ji0+1
n,� ‖L2(Ji0+1) <

1
2‖P

Ii0+1
d − V ‖L2(Ii0+1) (19)

so that ci0+1 > 1. This in particular proves that if R = ri0 for some 0 < i0 <

K − 1 then R̂ ≤ ri0 .
Let us now prove (ii). So, assume that ri0 < R < ri0+1 for i0 ∈ {1, . . . ,K−1}.

Take � fixed but large enough to guarantee that (19) holds. Let us prove that
ci < 1 for all 1 ≤ i ≤ i0. First observe that

lim
n→∞

‖Vn−P
[ri0 ,ri0+1]
n,� ‖L2([ri0 ,ri0+1]) = ‖V −P

[ri0 ,ri0+1]
� ‖L2([ri0 ,ri0+1]) a.s. (20)

Let us prove that V is not a polynomial of degree at most � in [ri0 , ri0+1]. Assume
by contradiction that V (t) =

∑�
i=0 ait

i for some a0, . . . , a� and t ∈ [ri0 , ri0+1].
Since ri0 < R < ri0+1 V is a polynomial of degree at most d in [ri0 ,R] and



On the notion of polynomial reach: A statistical application 3447

then ad+1 = · · · = a� = 0. But then V is a polynomial of degree at most d in
[0, ri0+1] from where it follows that R ≥ ri0+1 which is a contradiction. Since
V is not a polynomial of degree at most � in [ri0 , ri0+1]

‖V − P
[ri0 ,ri0+1]
� ‖L2([ri0 ,ri0+1]) > 0.

From (20) it follows that for all n large enough,

‖Vn − P
[ri0 ,ri0+1]
n,� ‖L2([ri0 ,ri0+1]) >

1
2‖V − P

[ri0 ,ri0+1]
� ‖L2([ri0 ,ri0+1]) > 0

but for all i ≤ i0,

‖Vn − P Ji

n,�‖L2(Ji) ≥ ‖Vn − P
[ri0 ,ri0+1]
n,� ‖L2([ri0 ,ri0+1])

>
1
2‖V − P

[ri0 ,ri0+1]
� ‖L2([ri0 ,ri0+1]) > 0.

(21)

Since
‖Vn − P

Ii0
n,d‖L2(Ii0 ) → 0

it follows from (21) that ci → 0 for all 1 ≤ i ≤ i0 because the right-hand side
of (21) does not depend on n and � is fixed, in particular ci < 1 for all i ≤ i0 < K.
This in particular proves that if rK−1 < R < rK then R̂ = rK−1. To conclude
the proof of (ii) let us consider the case ri0 < R < ri0+1 for i0 < K − 1; we
have proved above that, in this situation we have ci0+1 > 1 for i0 < K − 1,
eventually. Note that, in this case, the value R̂ is eventually constant, R̂ = ri0 .

Finally, to prove (iii) we must see that if R = ri0 > r1, then R̂ ∈ {ri0−1, ri0},
eventually almost surely. As we have already proved R̂ ≤ ri0 for all n large
enough, it suffices to prove that ci0−1 < 1 (since, reasoning as in (21), we
conclude ci < 1 for all i < i0 − 1). First observe that, for all � > 0 fixed, for all
n large enough

‖Vn − P
Ji0−1
n,� ‖L2(Ji0+1) >

1
2‖V − P

Ji0−1
� ‖L2(Ji0+1) > 0.

Also, ‖Vn−P
Ii0−1
n,d ‖L2(Ii0−1) → 0 for all n large enough. Then ci0−1 → 0. So, for

all n large enough R̂ ≥ ri0−1.

3.3. On the assumptions H1 and H2 of Theorem 3.4

We now address an obvious question: under which conditions on the set S can
we guarantee that assumptions H1 and H2 in Theorem 3.4 are fulfilled, when
ℵn is an iid sample? The answer is given in the next result.

Theorem 3.5. Under the assumptions of Lemmas 3.1 and 3.2 the algorithm de-
fined in Subsection 3.2 with Un = (logn/n) 1

2d−η and η > 0, provides, eventually
with probability one, a lower bound for R.
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Proof. Let us prove that this choice of Un fulfils condition H1 of Theorem 3.4.
We have to show that if R ≥ b then for a fixed η > 0, ‖Vn − P I

n‖L2(I) < Un

where I = [0, b] with R ≥ b. Indeed,

‖Vn − P I
n,d‖L2(I) ≤ ‖V − Vn‖L2(I).

So we will prove that if R > b then for any fixed η > 0, ‖V − Vn‖L2(I) < Un.
This follows from Theorem 3 in [11], which proves that with probability one, for
all n large enough,

dH(ℵn, S) ≤
( 2
δωd

logn
n

) 1
d

,

together with Lemmas 3.1 and 3.2.
Let us prove that hypothesis H2 of Theorem 3.4 holds. By Theorem 1 in [23]

Vn is absolutely continuous, then by Lemma 3 in [19], with probability one, for
all n,

‖Vn − P Ji

n,�‖L2(Ji) ≤
√

2π
2(� + 1)‖V

′
n‖L2(Ji)

for all i = 1, . . . ,K − 1, where � is even. To bound ‖V ′
n‖L2(Ji) we will use

again Rataj and Winter [22, p. 1665]: in the points t where V ′
n(t) exists, it

holds that V ′
n(t) = Hd−1(∂B(ℵn, t)) ≤ dVn(t)/t for t > 0. Since for all t > 0,

0 ≤ Vn(t) ≤ V (t) it follows that

‖Vn−P Ji

n,�‖L2(Ji) ≤
√

2π
2(� + 1)dV (rK)

√∫ rK

ri

1/t2dt ≤
√

2π
2(� + 1)dV (rK)

√
1
r1

− 1
rK

and then H2 holds.

Remark 2. Regarding the choice of η observe that we can replace Un by any
sequence (logn/n) 1

2d ρn → 0, with ρn → ∞.

4. Estimation of the polynomial coefficients: convergence rates

Theorem 1 in [16] states that the coefficients of the best polynomial approxi-
mation of the estimated volume function Vn, are consistent estimators of the
coefficients of V . In this section we obtain the rates of convergence for those
estimators. First we will assume that either R is known, or we have an under-
estimation.

In order to do that, we will use the following result.

Lemma 4.1. Let [a, b] ⊂ R. There exists a constant κd > 0 such that for any
pair of polynomials f(t) =

∑d
i=0 αit

i and g(x) =
∑d

i=0 βit
i defined on [a, b],

|αi − βi| ≤ κd‖f − g‖L2([a,b]).

Moreover, κd depends only on d and [a, b].
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Proof. This is an immediate consequence of the fact that ‖α‖∞ and ‖
∑d

i=0 αix
i

‖L2([a,b]) are two norms on R
d+1. Hence they are equivalent.

The following two results provide the convergence rates for the estimation of
the polynomial coefficients. Not surprisingly, these rates are of “non-parametric
type” with orders O((log n/n)1/d) depending on the dimension.
Proposition 4.2. Let S ⊂ R

d be compact such that the Hausdorff dimension of
S is and integer value d′ with 0 < d′ ≤ d. Let X be a random variable with
support S. Assume that the distribution PX of X fulfils PX(B(x, r)) ≥ δrd

′

for all x ∈ S and small enough r. Assume further that S has polynomial reach
R > 0. Let ℵn be an iid sample of X. Let P I

n,d(t) be as in (3), for t ∈ I ⊂ (0,R].
Then, there exists κd > 0 such that, with probability one,

lim sup
n→∞

(
n

logn

)1/d′

max
i

|θi − θin| ≤ 2κdC

(
2

δωd

)1/d′

(22)

δ being the standardness constant given by (4), and C > 0.

Proof. Given s > 0 we have that, for n large enough,

B(S, s− dH(ℵn, S)) ⊂ B(ℵn, s) ⊂ B(S, s).

This follows from the fact that for any z ∈ B(S, s − dH(ℵn, S)) and x ∈ S,
if we denote z∗ the closest point to z in S, d(z,ℵn) ≤ d(z, z∗) + d(z∗,ℵn) ≤
s− dH(ℵn, S) + dH(ℵn, S) = s. Then,

V (s) − Vn(s) ≤ V (s) − V (s− dH(ℵn, S)).

Now, using that V is Lipschitz on I (see the proof of Lemma 3.1 for details)
‖V − Vn‖L2(I) ≤ CdH(ℵn, S), for some C > 0. Now, it can be proved, following
the same ideas used in the proof of Theorem 3 in [11] that, with probability one,

lim
n→∞

(
n

logn

)1/d′

dH(ℵn, S) ≤
(

2
δωd

)1/d′

.

From Lemma 4.1,

max
i

|θi − θin| ≤ κd‖V − P I
n,d(t)‖L2(I)

≤ κd‖V − Vn‖L2(I) + κd‖Vn − P I
n,d(t)‖L2(I) ≤ 2κd‖V − Vn‖L2(I)

which proves (22).

Remark 3. Observe that the assumption PX(B(x, r)) ≥ δrd
′ for all x ∈ S

and small enough r, is essentially the standardness condition (4), for ν = PX ,
replacing μd as the “reference measure” by the d′-dimensional Hausdorff measure
on S.
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Moreover, since the output of the algorithm given in subsection 3.2 is constant
for n large enough, we can obtain the rates of convergence for the estimators of
the coefficients as given by the next result.

Theorem 4.3. Under the assumptions of Proposition 4.2, let R̂ be the output
of the algorithm given in subsection 3.2. Assume ri0 < R < ri0+1 for some
i0 ∈ {1, . . . .K − 1}. Let P [r1,R̂]

n,d (t) =
∑d

i=0 θint
i for t ∈ [r1, R̂] as in (3). Then,

with probability one,

max
i

|θi − θin| = O
(( logn

n

)1/d′)
.

Proof. In the proof of Theorem 3.4 it is shown that in the case ri0 < R < ri0+1
the output R̂ of the algorithm is eventually constant, almost surely and a lower
bound of the true value R. Then this result is a direct consequence of Lemma 4.1
and the fact that ‖V − Vn‖L2(I) ≤ CdH(ℵn, S).

Remark 4. When S is full-dimensional and we only have an iid sample in the
set, the estimation rate for θ1 −the Minkowski content of the boundary of
S- achieved in Theorem 4.3 matches the one derived in [2] using Crofton’s
formula, where it is assumed that ∂S is C2 (hence it has positive Federer’s
reach), together with the assumption that there is an upper bound for the
number of points in the intersection of any straight line and ∂S. As shown in [2]
this rate can be further improved to C(logn/n)2/(d+1) for sets with C2 boundary,
using as a plug-in estimator of θ1 the d−1-dimensional Hausdorff measure of the
boundary of the r-convex hull of the sample. However, to our knowledge, there
is currently no practical algorithm for computing this estimator when d > 2.

5. Computational aspects. Numerical experiments

In this section we will study the performance of the algorithm presented in
subsections 3.1 and 3.2 for three examples of polynomial volume sets in the
plane:

1 The “Pacman set”, defined as SP = B(0, 1)∩Hc where H = {(x, y) : x >
0 and y > 0}. This set is shown in Figure 1 together with two parallel sets,
B(ℵn, 0.08) and B(ℵn, 0.3), of a sample ℵn drawn on S. It can be shown
that in this case the polynomial reach is R = 1 and its volume function,
for 0 ≤ t ≤ 1, is the polynomial

V (t) = (5π/4 − 1)t2 + 2(1 + 3π/4)t + 3π/4.

2 The “Union-of-squares”: SU = [2, 4] × [−1, 1] ∪ [−1, 1]2. Its polynomial
reach is R = 1 and its volume function, for 0 ≤ t ≤ 1, is the polynomial
V (t) = 2πt2 + 16πt + 8. In Figure 2 it is shown the set, and two parallel
sets of the samples B(ℵn, 0.1) and B(ℵn, 0.7).
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Fig 1. In blue solid line, the boundary of the “Pacman set”; in red solid line the boundary
of the corresponding dilation (parallel set) with radius 0.3. The dilations, with radii 0.08 and
0.3, of a sample of size n = 1000 correspond to the light blue region and the light blue+orange
region, respectively.

3 The “Frame” set SF = [−1, 1]2 \ M where M ⊂ (−1, 1)2 is a square
with side length F < 1. Its polynomial reach is R = F/2 and its volume
function is

V (t) =
{

4 − F 2 + 4(F + 2)t + (π − 4)r2 t ∈ [0, F/2]
4 + 8r + πr2 t > F/2

.

We took F = 1 for the simulations.

In the previous section we have studied the problem of the estimation of the
coefficients when the polynomial is adjusted in the interval [0, R̂], R̂ being the
output of our algorithm.

It is easy to demonstrate that the volume function for SP is differentiable
at t = 1, while the volume function for SU is not differentiable at t = 1. This
makes SP a more challenging example for estimating its polynomial reach, as
we have to detect a smoother change point.

For both SP and SU we have applied the algorithm using three different grids
of values 0 < rg1 < · · · < rgKg

for g = 1, 2, 3, denoted by gr1, gr2 and gr3. In the
three cases rK = 1.98. For g = 1 and g = 3, we took rgj − rgj−1 = 0.4 for all j =
2, . . . , r2

K2
, r1

1 = 0.2 and r3
1 = 0.3. For gr2 r2

j − r2
j−1 = 0.3 for all j = 2, . . . , rgKg

and r2
1 = 0.3. The grid choice is a crucial point in the algorithm. Our numerical

experiments suggest to avoid small values of the increments rgj − rgj−1, which
could lead to numerical instabilities associated with the estimation of the L2

norms.
In the case of SF , where R is obviously smaller than in the other examples

(in fact it is R = 0.5) we have used other different grids (denoted again g1, gr2
and gr3) with values 0 < rg1 < · · · < rgKg

for g = 1, 2, 3. In this case gr1 is a grid
from r1

1 = 0.1 to r1
K1

= 1.5 and the grid step is 0.2, gr2 is a grid from r2
1 = 0.1
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Fig 2. In red solid line the boundary of the parallel set of radius 0.7. In light blue it is shown
the dilatation of a sample of size n = 3000, of radius 0.1, and the region in orange plus the
region in light blue is the dilatation of the sample of radius 0.7 for the union of squares.

to r2
K2

= 1.5 and the grid step is 0.25 and gr3 goes from r3
1 = 0.2 to r3

K3
= 1.5

with a grid step of 0.3.
The computations of P Ii

n,d and P Ji

n,� are performed by using Bernstein poly-
nomials. The norms are evaluated over grids with step 0.001.

As a consequence of the use of three grids, for each simulation run, we have
obtained three values of R̂. In all cases, the calculation of Vn has been done by
a Monte-Carlo approximation using a sample of one million points on a square
containing the sets.

The outputs for R̂ in SP , SU and SF are summarized in Tables 1, 2 and 3,
respectively (see Appendix B).

These results suggest that, in all instances, the increase in the parameter �,
reduces the number of cases where R is overestimated though, as we will see
below, this does not always improves the coefficient estimation. On the other
hand, the number of overestimations depends on the grid, ranging from 0 to 49,
even with 4000 data points (see Table 2). As expected, the estimation of the
reach for “frame set” SF is a more challenging problem than for the SP or SU ,
since the reach is smaller, which requires use of finer grids and larger sample
sizes. This is also seen in the coefficients estimation.

5.1. The case where R is small

To demonstrate the algorithm’s performance when R is small, we have con-
sidered the “Union-of-squares” set SU , where both squares are separated by a
distance of 2λ (thus, R = λ). When r1 > 2λ (with λ = 0.01, 0.05), the algo-
rithm should halt at step 0. For Un, we set η = 1/10. As shown in Table 4,
the algorithm generally stops at case 0. Intuitively, this happens because the
empirical volume Vn significantly deviates from a polynomial of degree 2 even
over small intervals starting at 0.
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5.2. Estimation of the coefficients

To assess the coefficient estimation, we run the algorithm 1000 times. The co-
efficients are estimated by least squares over a grid from 0.1 to R̂ with a grid
step 0.01. The reason to start at 0.1 is to avoid the obvious infra-estimation of
V (s) provided by Vn(s) when s is small (recall that Vn(0) = 0). Also, we have
excluded in the least squares estimation process those runs where R̂ coincides
with the minimum possible value r1 (see the algorithm above), in order to avoid
use of too small intervals leading to inaccurate estimations. The outputs are
given in Tables 5 and 6 for SP , Tables 7 and 8 for SU , and in Tables 9 and 10
for SF .

The results show that the estimation of the first two polynomial coefficients,
which are our main target here, are more accurate than the estimation of the
highest degree coefficient. Also, as expected, the estimations are better in those
grids where the algorithm estimates R with a higher average value. Again, the
case of the SF set is harder and requires more data.

5.3. Some results for the estimator R̃ given in subsection 3.1

In all three scenarios—SP , SU , and SF—we choose γn = (logn/n)1/2 = εn.
This is due to the impracticality of exact computation for each sample dH(S,ℵn)
and the significant computational cost associated with approximation. Although
Theorem 1 suggests selecting γn = o(εn), doing so led to a substantial overes-
timation of R. Therefore, we opted to maintain εn equal to γn. To calculate
the infimum of Gn(t), we set t within a range from γn to 1.9 for SP and SU ,
incrementing by 0.01. For SF , the range is from γn to 1.55, also with increments
of 0.01. Table 11 displays the mean, standard deviation, and Mean Absolute
Deviation (MAD) across 1,000 replications for SP , for three distinct values of
n. Similar data for SU and SF are detailed in Tables 12 and 13, respectively.
As anticipated and demonstrated in previous simulations, SP poses a consider-
ably more challenging problem, requiring significantly larger n values than those
for SU and SF . It can be seen that, even for large sample sizes (see Table 11)
the estimator tends to provide significant overestimations which is a particularly
harmful situation when estimating the polynomial reach. So, in practice it seems
a better choice the “conservative” strategy of looking for an underestimation of
R.

6. Some conclusions

We place ourselves in the, quite broad, context of sets S having a polynomial
volume function on some interval [0, r] We deal with the estimation of the poly-
nomial reach, that is, the supremum R of the values r for which the polynomial
condition holds. The available information is just a random sample inside the
set S of interest.
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Some plausible consistent estimators, as that considered in Theorem 3.3
might have a poor practical performance. Thus, since the interval [0,R] of poly-
nomial reach is mainly used in practice to estimate the relevant coefficients
of the polynomial volume, a conservative infra-estimation, as that analyzed in
Theorem 3.4, might be enough.

The minimum-distance estimators of the polynomial coefficients yield, as a
by-product, estimators of the volume and the surface measure of the set S.
It is important to note that, unlike other volume and surface area estimators
available in the literature (see some references below), this procedure requires
only an inside sample, rather than two samples, inside and outside the set.
Also, it holds under very general conditions for the set S: no convexity or r-
convexity is assumed, no positive reach or rolling condition is imposed. Finally,
the estimation method does not essentially relies on a smoothing parameter
(though some tuning parameters are unavoidably involved in the algorithm).
For some references and background on volume/surface area estimation see [3],
[5], [13], [12], [14], [14] and [20].

Quite predictably, given the nature of the problems at hand, the proposed
methods only work in practice with large samples sizes (around 5000 sample
points) which is not a serious limitation in cases where we adopt a Monte Carlo
approach, based on simulated samples, to estimate the geometric parameters
(polynomial reach, volume, surface area) and the set is in fact known.

As an interesting open problem (which is in fact and ongoing work) we could
mention the use of the polynomial volume assumption in the development of
statistical methods to estimate the dimension (in the Minkowski sense) of S.

Appendix A: Proofs of Lemmas 1 and 2

Proof of Lemma 3.1. Observe that for all n large enough, maxp∈∂S d(p,ℵn) <
γn < b/2. Let us prove that, for all s ∈ [2γn, b],

B
(
S, s− max

p∈∂S
d(p,ℵn)

)
⊂ B(ℵn, s) ⊂ B(S, s). (23)

We have to prove only the first inclusion, the second one follows from ℵn ⊂ S.
Let z ∈ B(S, s − maxp∈∂S d(p,ℵn)). Since s ≥ 2dH(S,ℵn), S ⊂ B(ℵn, s). So if
z ∈ S we have z ∈ B(ℵn, s). Let us consider the case z /∈ S. Let z∗ ∈ ∂S the
projection onto ∂S of z. Since z /∈ S, d(z, z∗) ≤ s − maxp∈∂S d(p,ℵn). Since
z∗ ∈ ∂S there exists Xi ∈ ℵn such that d(z∗, xi) ≤ maxp∈∂S d(p,ℵn). Then

d(z,ℵn) ≤ d(z, z∗) + d(z∗,ℵn) ≤ s− max
p∈∂S

d(p,ℵn) + max
p∈∂S

d(p,ℵn) ≤ s,

and we conclude that z ∈ B(ℵn, s). This proves (23) and, for s ∈ [2γn, b],

V (s)−Vn(s) ≤ μ

[
B(S, s)\B

(
S, s−max

p∈∂S
d(p,ℵn)

)]
= V (s)−V

(
s−max

p∈∂S
d(p,ℵn)

)
.

(24)
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Let us now prove that V is Lipschitz. First, recall that, as V is monotone, the
derivative V ′(t) exists except for a countable set of points t. Also, when V ′(t)
does exist, it coincides with, Hd−1(∂B(S, t)), the d − 1-dimensional Hausdorff
measure of the boundary of the parallel set B(S, t), see Rataj and Winter [22,
Cor. 2.5]. But, as shown in Rataj and Winter [22, p. 1665], Hd−1(∂B(S, t)) ≤
d(V (t) − V (0))/t for t > 0.

Now, as we are assuming that V +(0) is finite, the upper limit of Hd−1

(∂B(S, t)), as t → 0 is also finite, so that Hd−1(∂B(S, t)) must be finite al-
most everywhere in a neighborhood [0, χ] for some χ > 0. Therefore, there is a
constant L1 such that |V ′(t)| < L1 on [0, χ]. On the other hand, according to
Theorem 1 in Stacho, L. L. [23], for all ε > 0, the volume function V is absolutely
continuous on [ε, b] and its derivative can be expressed, almost everywhere, as
td−1α(t), for some monotone decreasing function α. As a consequence there is a
positive constant C such that |V ′(t)| < C almost everywhere on [0, b]. We thus
conclude that V is Lipschitz continuous on [0, b] with Lipschitz constant C.

Now, if we restrict ourselves to the interval [0, 2γn],

‖V − Vn‖L2([0,2γn]) ≤ (V (2γn)22γn)1/2

=
(
V (0) + V +(0)2γn + o(2γn)

)
(2γn)1/2 ≤ 2V (0)(2γn)1/2,

This, together with and (24) and the Lipschitz property of V , yields

‖V − Vn‖L2([0,b]) ≤‖V − Vn‖L2([0,2γn]) + ‖V − Vn‖L2([2γn,b])

≤2V (0)(2γn)1/2 +
√
bC max

p∈∂S
d(p,ℵn)

for all n large enough.

Proof of Lemma 3.2. Let us prove that from L0(∂S) < ∞ it follows that there
exist ε0 small enough such that we can cover ∂S by 6L0(∂S)/(ωdε

d−1) balls
of radius 3ε centered at ∂S for all 0 < ε < ε0. To prove this let us cover
∂S with a minimal covering of radius 3ε centred at points {x1, . . . , xk} ⊂ ∂S.
Then B(xi, ε) ⊂ B(∂S, ε) and B(xi, ε) ∩ B(xj , ε) = ∅ for all i �= j. Then
μ(B(∂S, ε)) ≥ kωdε

d. Thus, for ε small enough, μ(B(∂S, ε))/(2ε) ≤ 2L0(∂S)
and k ≤ 6L0(∂S)/(ωdε

d−1).
Now note that, given ε > 0 small enough, maxp∈∂S d(p,ℵn) > ε entails that

at least one of the balls B(xi, ε) does not contain any sample point, thus

P

(
max
p∈∂S

d(p,ℵn) > ε
)
≤ k

(
1 − δωdε

d
)n

≤ 6L0(∂S)
ωdεd−1

(
1 − δωdε

d
)n

(25)

Let us denote ζn = (n/ logn)1/d, and κ = (2/(δωd))1/d. Using (25) for ε = κ/ζn,
we have

P

(
ζn max

p∈∂S
d(p,ℵn) > κ

)
≤ ζd−1

n 6L0(∂S)
ωdκd−1

(
1 − 2

ζdn

)n

= ζd−1
n 6L0(∂S)

ωdκd−1

(
1 − logn2

n

)n

≤ ζd−1
n 6L0(∂S)

ωdκd−1
1
n2

The result follows now from Borel-Cantelli’s lemma.
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Appendix B: Tables

Table 1

Mean and standard deviation of R̂ for SP over 1000 replications, for each of the three grids
considered. We took � = 8 for rows 1,2,3 and � = 10 for rows 4,5,6. In rows 3 and 6 we

show the number of times in the 1000 replications where the algorithm provides an
overestimation of the true value R = 1.

n = 2000 n = 3000 n = 4000
gr1 gr2 gr3 gr1 gr2 gr3 gr1 gr2 gr3

Mean 0.6212 0.7692 0.7196 0.606 0.7431 0.7104 0.6024 0.738 0.704
S.d. 0.2880 0.15 0.0877 0.0519 0.1496 0.0632 0.03 0.1493 0.0387

0 2 50 0 0 26 0 0 10
Mean 0.6096 0.7398 0.7096 0.6024 0.7149 0.7044 0.6016 0.6954 0.7024
S.d. 0.0656 0.1507 0.2236 0.04 0.1456 0.1516 0.0245 0.1396 0.03

0 0 24 0 0 13 0 0 6

Table 2

Mean and standard deviation of R̂ for SU over 1000 replications, for each of the three grids
considered. We took � = 8 for rows 1,2,3 and � = 10 for rows 4,5,6. In rows 3 and 6 we

show the number of times in the 1000 replications that the algorithm provides an
overestimation of the true value R = 1.

n = 2000 n = 3000 n = 4000
gr1 gr2 gr3 gr1 gr2 gr3 gr1 gr2 gr3

Mean 0.5984 0.696 0.7116 0.5948 0.6735 0.6956 0.602 0.7026 0.7084
S.d. 0.0819 0.1432 0.1044 0.0630 0.1311 0.0917 0.0866 0.1435 0.1077

0 3 49 0 2 21 0 1 47
Mean 0.5956 0.6792 0.698 0.5856 0.6624 0.6884 0.5828 0.648 0.6828
S.d. 0.0843 0.1357 0.1049 0.0917 0.1237 0.0877 0.0849 0.1140 0.0954

0 2 32 0 0 10 0 0 8

Table 3

Mean and standard deviation of R̂ for SF over 1000 replications, for each of the three grids
considered. We took � = 30 for rows 1,2,3 and � = 50 for rows 4,5,6. In rows 3 and 6 we

show the number of times in the 1000 replications that the algorithm provides an
overestimation of the true value R = 0.5.

n = 5000 n = 7000 n = 9000
gr1 gr2 gr3 gr1 gr2 gr3 gr1 gr2 gr3

Mean 0.511 0.4265 0.494 0.5232 0.432 0.4973 0.5242 0.4415 0.5012
S.d. 0.1073 0.1180 0.0625 0.1025 0.1183 0.0663 0.0985 0.1215 0.0465

171 309 192 330 20 10 187 366 14
Mean 0.4698 0.387 0.4709 0.4766 0.3865 0.4739 0.4816 0.398 0.4823
S.d. 0.1128 0.0982 0.0898 0.1054 0.0926 0.0887 0.1004 0.1041 0.0732

95 162 1 87 152 4 84 201 2

Table 4

Number of times, in 1000 replications, that the algorithm wrongly does not stop at step 0 for
the “Union of squares” with distance 2λ between both squares.

n = 1000, λ = 0.1 n = 1500, λ = 0.05 n = 1800, λ = 0.05
r1 = 0.15 0.2 0.25 0.12 0.15 0.20 0.12 0.15 0.20

64 0 0 118 0 0 0 0 0
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Table 5

Mean, standard deviation (S.d.) and median absolute deviation (MAD) of the estimated
polynomial coefficients for SP , over 1000 replications with n = 5000 and � = 8. Last column

provides the true values.
gr1 gr2 gr3 true values

Mean S.d. MAD Mean S.d. MAD Mean S.d. MAD
2.3117 0.1989 0.1599 2.2916 0.1908 0.1520 2.3133 0.1946 0.1576 2.3562
6.7734 1.1055 0.8831 6.9120 0.9415 0.7355 6.7616 0.9610 0.7695 6.7124
2.8358 1.5069 1.2089 2.6411 1.1829 0.8903 2.8536 1.1547 0.9374 2.9270

Table 6

Mean, standard deviation (S.d.) and median absolute deviation (MAD) of the estimated
polynomial coefficients for SP , over 1000 replications, with n = 7000 and � = 8. Last

column provides the true values.
gr1 gr2 gr3 true values

Mean S.d. MAD Mean S.d. MAD Mean S.d. MAD
2.3280 0.1685 0.1348 2.3149 0.1665 0.1326 2.3334 0.1666 0.1338 2.3562
6.8039 0.9296 0.7344 6.8939 0.8400 0.6679 6.7627 0.8102 0.6469 6.7124
2.7740 1.2886 1.0202 2.6493 1.0897 0.8265 2.8385 0.9802 0.7753 2.9270

Table 7

Mean, standard deviation (S.d.) and median absolute deviation (MAD) of the estimated
polynomial coefficients for SU , over 1000 replications, with n = 5000 and � = 8. Last

column provides the true values.
gr1 gr2 gr3 true values

Mean S.d. MAD Mean S.d. MAD Mean S.d. MAD
7.7389 0.5237 0.4182 7.7240 0.5159 0.4140 7.7438 0.5268 0.4211 8
16.3034 2.6660 2.1703 16.3761 2.6315 2.1187 16.2319 2.4377 1.9510 16
5.7662 3.5644 2.8850 5.6585 3.3860 2.7323 5.8778 2.8724 2.3105 6.2832

Table 8

For the union of squares: mean, standard deviation (S.d.) and MAD of the estimated
polynomial coefficients, over 1000 replications, for n = 7000 and � = 8. Last column

provides the true values.
gr1 gr2 gr3 true values

Mean S.d. MAD Mean S.d. MAD Mean S.d. MAD
7.7651 0.4452 0.3571 7.7539 0.4485 0.3597 7.7704 0.4394 0.3490 8
16.2247 2.2649 1.8021 16.2884 2.2669 1.8081 16.1809 2.0020 1.5940 16
5.8222 3.1254 2.4874 5.7306 3.0447 2.4010 5.9165 2.3929 1.9001 6.2832

Table 9

Mean, standard deviation (S.d.) and median absolute deviation (MAD) of the estimated
polynomial coefficients for SF , over 1000 replications, with n = 5000 and � = 8. Last

column provides the true values.
gr1 gr2 gr3 true values

Mean S.d. MAD mean S.d. MAD Mean S.d. MAD
2.8962 0.2497 0.1943 2.9062 0.2562 0.2032 2.9096 0.2197 0.1756 3
12.3068 2.0234 1.4270 12.1894 2.1690 1.6791 12.1477 1.4384 1.1379 12
-1.4260 4.1637 2.5378 −1.1316 4.5367 3.3791 −1.0473 2.2401 1.7620 −0.8584
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Table 10

Mean, standard deviation (S.d.) and median absolute deviation (MAD) of the estimated
polynomial coefficients for SF , over 1000 replications, with n = 7000 and � = 30. Last

column provides the true values.
gr1 gr2 gr3 true values

Mean S.d. MAD Mean S.d. MAD Mean S.d. MAD
2.9329 0.2098 0.1661 2.9201 0.2197 0.1750 2.9350 0.1987 0.1585 3
12.1758 1.5169 1.1275 12.2945 1.7744 1.3836 12.1525 1.2276 0.9920 12
-1.1706 2.9214 1.9174 −1.4192 3.6725 2.7676 −1.1160 1.9110 1.5321 −0.8584

Table 11

Mean MAD and standard deviation of R̃ (R = 1) for SP over 1000 replications.
n = 30000 n = 35000 n = 40000

Mean 1.3775 1.3663 1.3063
MAD 0.2255 0.2541 0.244
S.d. 0.2705 0.207 0.2852

Table 12

Mean MAD and standard deviation of R̃ (R = 1) for SU over 1000 replications.
n = 3000 n = 4000 n = 5000

Mean 1.8516 1.3643 1.0755
MAD 0.0353 0.3017 0.3807
S.d. 0.1266 0.2184 0.3908

Table 13

Mean MAD and standard deviation of R̃ (R = 0.5) for SF over 1000 replications.
n = 4000 n = 5000 n = 6000

Mean 0.673 0.656 0.6488
MAD 0.0276 0.0283 0.0294
S.d. 0.035 0.0406 0.0417
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