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Abstract: We propose center-outward superquantile and expected short-
fall functions, with applications to multivariate risk measurements, extend-
ing the standard notion of value at risk and conditional value at risk from
the real line to Rd. Our new concepts are built upon the recent definition
of Monge-Kantorovich quantiles based on the theory of optimal transport,
and they provide a natural way to characterize multivariate tail probabil-
ities and central areas of point clouds. They preserve the univariate in-
terpretation of a typical observation that lies beyond or ahead a quantile,
but in a meaningful multivariate way. We show that they characterize ran-
dom vectors and their convergence in distribution, which underlines their
importance. Our new concepts are illustrated on both simulated and real
datasets.
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1. Introduction

1.1. Superquantile, expected shortfall

Modeling the dependency between the components of a random vector is at the
core of multivariate statistics. To that end, one way to proceed is to characterize
the multivariate probability tails. For distributions supported on the real line,
this is often tackled with the use of superquantiles or expected shortfalls, that
complement the information given by the quantiles. Let X be an integrable
absolutely continuous random variable with cumulative distribution function
F . For all α ∈]0, 1[, the quantile Q(α) of level α is given by

Q(α) = inf{x : F (x) ≥ α},
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Fig 1. Illustration of the notions of superquantile S(α) and expected shortfall E(α) for a
univariate Gaussian distribution.

whereas the superquantile S(α) and expected shortfall E(α) are defined by

S(α) = E[X
∣∣X ≥ Q(α)] =

E[X1X≥Q(α)]
P(X ≥ Q(α)) = 1

1 − α
E[X1X≥Q(α)], (1.1)

and

E(α) = E[X
∣∣X ≤ Q(α)] =

E[X1X≤Q(α)]
P(X ≤ Q(α)) = 1

α
E[X1X≤Q(α)]. (1.2)

As illustrated in Figure 1, S(α) focuses on the upper-tail while E(α) targets the
lower-tail. We emphasize that using the terms of superquantile and expected
shortfall is a subjective consideration taken from [1, 54]. Most of the time,
one does not consider the upper and the lower tails together, so that a single
name is required, up to considering the distribution of −X. In this vein, de-
pending on the application, the expected shortfall may refer to the same as the
Conditional-Value-at-Risk, Conditional-Tail-Expectation, see e.g. [2], or even
the superquantile, that aims to be a neutral alternative name in statistics [54].

The main contribution of the present paper is to extend (1.1) and (1.2) to-
wards a notion of multivariate superquantile and expected shortfall. As part
of the difficulty, both the mathematical meanings of “ahead”, “beyond” and
“typical” do not adapt canonically in Rd. We argue that sufficient notions are
provided by the Monge-Kantorovich (MK) quantiles, ranks and signs, intro-
duced in [13, 37]. In particular, the traditional left-to-right ordering is replaced
in our approach by a center-outward one that is more intuitive for a point cloud
[13]. Hence, the two subsets of observations that we are interested in are located
at the outward or near the mean value, which requires to adapt the concepts
of (1.1) and (1.2) in Rd. It is well-known from a simple change of variables in
R that S and E average observations beyond and ahead the quantile of level α,
in the sense that

S(α) = 1
1 − α

∫ 1

α

Q(t)dt and E(α) = 1
α

∫ α

0
Q(t)dt. (1.3)

In Section 2, our definitions generalize the formulation (1.3). If Q stands for
the multivariate MK quantile function instead of the classical univariate one,
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center-outward superquantile and expected shortfall functions are defined, for
any u in the unit ball B(0, 1)\{0}, by

S(u) = 1
1 − ‖u‖

∫ 1

‖u‖
Q
(
t
u

‖u‖
)
dt and E(u) = 1

‖u‖

∫ ‖u‖

0
Q
(
t
u

‖u‖
)
dt.

MK quantiles have already led to many applications, among which lie sta-
tistical tests [31, 39, 47, 57, 58], regression [12, 23], risk measurement [5], or
Lorenz maps [27, 38]. We also refer to the recent review [36] on the concept
of MK quantiles. Importantly, the univariate quantile and related functions are
deeply rooted in risk analysis. On the one hand, risk measures which are both
coherent and regular can be characterized by integrated quantile functions [35].
On the other hand, given a level α, fundamental risk measures are given by Q(α)
and S(α), called Value-at-Risk (VaR) and Conditional-Value-at-Risk (CVaR),
respectively. As a matter of fact, a natural main contribution of the present
paper is to provide meaningful multivariate extensions of VaR and CVaR.

1.2. Background on multivariate risk measurement

MK quantiles and the related concepts have already been applied to multivariate
risk measurement in [5], and, in some sense, in the previous works [26, 29].
The theory in [26] states ideal theoretical properties for coherent regular risk
measures, while the maximal correlation risk measure of [5] furnishes a real-
valued risk measure with these properties. This constitutes, to the best of our
knowledge, the short literature on risk measurement based on the MK quantile
function. In this work, we argue that an adequate procedure of multivariate risk
measurement shall account for all the information on the tails, both in terms
of direction and spreadness. To answer this issue, vector-valued risk measures
are natural candidates. There also exist several extensions of VaR or CVaR to
the multivariate setting, including [3, 11, 14, 15, 32, 40, 50, 59, 60], but none
of them is based on the theory of optimal transportation and its associated
potential benefits. In particular, our concepts do not require any assumption on
the tail behavior of the data, nor any statistical model, because MK quantiles
adapt naturally to the shape of a point cloud. On the real line, the VaR and
the CVaR have a clear interpretation: for a level α ∈ [0, 1], the VaR is the worst
observation encountered with probability 1 − α whereas CVaR is the average
value beyond this worst observation. Such a meaningful definition is surely part
of the reason for their wide use in practice. Under the name of Conditional-Tail-
Expectation, the idea proposed in [15, 24] preserves this interpretation, but
relies on level sets defined from the theory of copulas. Specifically, the obtained
quantile levels do not adapt automatically to the shape of the data. Still, this
notion averages over a certain quantile level, and it returns a tail observation
of the same dimension as the data. Our work is inspired by this approach, as
we aim to give the same information about multivariate tails, but we use the
MK quantile function, which yields, to our opinion, concepts with even better
interpretability.
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1.3. Main contributions

Our main contributions are the definitions of a center-outward superquantile
function and related risk measures, both real-valued and vector-valued. Doing
so, we provide an extension to the multivariate case of the fundamental Value-at-
Risk and Conditional-Value-at-Risk. Furthermore, we provide a center-outward
expected shortfall function, that describes the central areas of a given point
cloud. Our center-outward expected shortfalls and superquantiles are uniquely
defined and characterize convergence in distribution, and they are closely re-
lated to the potential whose gradient gives the MK quantile function. A result
of independent interest is also provided, giving a new family of Monge maps
between known probability distributions. This may motivate changing the ref-
erence distribution under generalized gamma models.

1.4. Outline of the paper

Section 2 details definitions and properties of our new concepts of center-outward
superquantiles and expected shortfalls. It includes our main results and the cru-
cial relation between these functions and Kantorovich potentials. An alternative
class of reference measures, which differ from the standard spherical uniform dis-
tribution on the unit ball, is provided in Section 3. The multivariate definitions
of VaR and CVaR are given in Section 4. Finally, we present in Section 5 a
regularized version of our superquantile and expected shortfall functions, using
entropically regularized optimal transport that has fundamental computional
benefits to estimate the center-outward quantile function. Numerical experi-
ments are also provided to shed some light on the benefits of our new concepts
of MK superquantile, expected shortfall and multivariate VaR and CVaR for
multivariate data analysis. A conclusion and some perspectives are given in
Section 6.

2. Center-outward superquantiles and expected shortfalls

2.1. Main definitions

On the real line, the notion of superquantile and expected shortfall relies heavily
on the one of quantile. It is then natural to make use of the Monge-Kantorovich
(MK) quantile function and its appealing properties in order to define associated
superquantile and expected shortfall functions. By simplicity, we shall restrict
ourselves to the set of integrable probability measures over R

d, that is

P1(Rd) =
{
ν : EX∼ν [‖X‖] < +∞

}
.

Recall that a probability measure ν ∈ P1(Rd) is the push-forward of μ ∈ P1(Rd)
by T : Rd → R

d if T (U) has distribution ν as soon as U is distributed according
to μ. This is denoted by T#μ = ν. The following has been introduced in [37].
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Definition 2.1. The MK quantile function of a multivariate distribution ν,
with respect to a reference distribution μ, is a push-forward map Q#μ = ν such
that there exists a convex potential ψ : Rd → R satisfying ∇ψ = Q μ-almost
everywhere.

It follows from McCann’s theorem, [44] that, as soon as μ is absolutely contin-
uous, such a Monge map Q exists and is unique. Moreover, if μ and ν have finite
moments of order two, by the result known in the literature as Brenier’s theorem
[10, 16], Q is characterized as the solution of the following Monge problem of
optimal transport,

Q = argmin
T :T#μ=ν

∫
X
‖u− T (u)‖2dμ(u). (2.1)

Intuitively, the reference distribution μ must be chosen so that a relevant
notion of quantiles can be derived from it, whereas being the gradient of a
convex function ψ is a generalization of monotonicity. For instance, one can
choose the spherical uniform distribution, denoted by μ = Ud. It is given by
the product RΦ between two independent random variables R and Φ, being
drawn respectively from a uniform distribution on [0, 1] and on the unit sphere.
Samples from Ud are distributed from the origin to the outward within the
unit ball, so that the balls of radius α ∈ [0, 1] have probability α while being
nested, as α grows. With this in mind, the hyperspheres of radius α are relevant
quantile contours with respect to μ. Being the gradient of a convex function, Q
adequately transports this center-outward ordering towards the distribution ν.
Thus, when μ = Ud, we shall refer to Q as the center-outward quantile function
of ν. This property is illustrated in Figure 2, where radius, in red, and circles,
in blue, are transported from the unit ball to a banana-shaped distribution
thanks to the mapping Q obtained with the computational approach described
in Section 5.

This relevant ordering clearly catches the geometry of the support of the
target distribution ν, and it comes with quantile regions indexed by a probability
level α ∈ [0, 1], by use of the change of variables formula for push-forward maps.
More details are given in [13, 37]. Hereafter, we use the spherical uniform as
the reference distribution, but other distributions could be chosen, depending
on the applications, [18, 27, 31]. Note that if ν is an empirical measure based on
random observations, it has a finite second order moment, and the estimation
of the quantile map amounts to solve the OT problem (2.1). Following [37], we
assume, without loss of generality, that ψ in Definition 2.1 satisfies ψ(0) = 0
and, for u ∈ R

d such that ‖u‖ = 1,

ψ(u) = lim inf
v→u
‖v‖<1

ψ(v). (2.2)

Moreover, we impose, for all u ∈ Rd such that ‖u‖ > 1,

ψ(u) = +∞. (2.3)
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Fig 2. (Left) center-outward quantiles of the spherical uniform distribution μ = Ud, and
(right) center-outward quantiles of a discrete distribution ν obtained by Q#μ = ν.

This being said, the convex potential ψ is uniquely defined over its domain
Dom(ψ) = {u|ψ(u) < +∞}, that verifies B(0, 1) ⊂ Dom(ψ) ⊂ B(0, 1). Although
ψ is continuous over B(0, 1), [52][Theorem 10.3], the gradient ∇ψ is only defined
almost everywhere. At every u where ψ is not differentiable, one can still define
the subdifferential

∂ψ(u) = {z ∈ R
d : ∀x ∈ R

d, ψ(x) − ψ(u) ≥ 〈z, x− u〉}.

Following the suitable suggestion of an anonymous referee, for all u ∈ B(0, 1),
we can define Q(u) as the average of ∂ψ(u) so that Q is defined everywhere.
In fact, from [28], as soon as ν is a continuous probability measure with non
vanishing density on Rd, ψ can be shown to be differentiable everywhere on
B(0, 1)\{0}. The same result is showed under milder assumptions in [20], that
is presented hereafter.

Assumption 2.1. Let ν be an absolutely continuous measure with probability
density function p defined on its support X . For every R > 0, there exist two
constants 0 < λR < ΛR such that, for all x ∈ X ∩ B(0, R),

λR ≤ p(x) ≤ ΛR.

Assumption 2.2. The support X ⊂ R
d of ν is convex.

Under these assumptions, the next theorem is given in [20].

Theorem 2.1 (Regularity of the center-outward quantile function, [20]). Un-
der Assumptions 2.1 and 2.2, there exists a compact convex set K with Lebesgue
measure 0 such that the center-outward quantile function Q is a homeomorphism
from B(0, 1)\{0} to X\K, with inverse Q−1 the center-outward distribution
function. Moreover, Q−1 = ∇ψ∗ where ψ∗ is the Fenchel-Legendre transform
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of ψ such that Q = ∇ψ,

ψ∗(x) = sup
u∈B(0,1)

{〈x, u〉 − ψ(u)}.

Hereafter, this allows us to properly define quantile contours, ranks and signs.
For the sake of simplicity, we define P∗(Rd) as the set of integrable probability
measures for which Q is a homeomorphism from B(0, 1)\{0} to its image, see
Theorem 2.1. This includes any ν satisfying assumptions 2.1 and 2.2, that is
also integrable, to ensure finiteness of the center-outward superquantiles. We
emphasize that, for any ν ∈ P∗(Rd), Q is defined everywhere on B(0, 1)\{0},
as opposed to almost everywhere on B(0, 1). The next definitions, taken from
[13, 37], gather the main concepts that we use in the following.

Definition 2.2 (Quantile contours, ranks and signs). Let ν ∈ P∗(Rd) with
center-outward quantile function Q and supported on X ⊂ R

d. Then, for the
distribution ν,
(i) the quantile region Cα of order α ∈ [0, 1] is the image by Q of the ball B(0, α).
(ii) the quantile contour Cα of order α ∈ [0, 1] is the boundary of Cα.
(iii) the rank function Rν : X → [0, 1] is defined by Rν(x) = ‖Q−1(x)‖.
(iv) the sign function Dν : X → B(0, 1) is defined by Dν(x) = Q−1(x)/‖Q−1(x)‖.

A few remarks follow from Definition 2.2. The ν-probability of Cα is α, by
the change of variables formula for push-forward maps, which is a first require-
ment for quantile regions. In addition, one may note that the rank and sign
functions require the invertibility of Q. From [37][Section 2], the continuity and
invertibility of Q outside the origin ensures the crucial fact that the quantile
contours are closed and nested. It is the notion of center-outward ranks that
allows to order points in X relatively to ν, consistently with Tukey’s halfspace
depth, as highlighted in [13]. It induces the following weak order.

Definition 2.3. For ν ∈ P∗(Rd) and x, y ∈ X , we denote x ≥R y and say that
y is deeper than x if

‖Q−1(x)‖ ≥ ‖Q−1(y)‖.

The deeper a point is in X , the less extremal it is with respect to ν. For a
fixed u ∈ B(0, 1)\{0}, we can then write x ≥R Q(u) which enables to consider
the observations “beyond” Q(u) in some sense. In a context where the focus is on
the central observations, u �→ E[X|X ≤R Q(u)] has been introduced in [38] as a
center-outward Lorenz function for X, see Section 6.1. The reverse conditional
expectation E[X|X ≥R Q(u)] might be thought of as a natural candidate for
a superquantile concept. Nevertheless, it cannot be understood as a “typical”
observation within outward areas. Indeed, consider the following example.

Example 2.1. Suppose that ν = Ud, so that Q is the identity. For every
u ∈ B(0, 1)\{0}, E [X|X ≥R Q(u)] = E

[
X
∣∣‖X‖ ≥ ‖u‖

]
is the expectation of

a symmetric distribution over an annulus centered at the origin. Therefore, one
has that E[X|X ≥R Q(u)] = 0 and it cannot be thought of as a typical extreme
observation.
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This is caused by a lack of information in E[X|X ≥R Q(u)]. In fact, the
rank function neglects the directional information of X, which lies in the sign
function. In order to overcome this issue, we have to introduce a few notation.
For any u ∈ B(0, 1)\{0}, let

Lu =
{
t
u

‖u‖ : t ∈ [0, 1]
}

(2.4)

be a parametrization of the radius of B(0, 1)\{0} whose direction is u/‖u‖. The
sign curve Cu associated to u is the image of Lu by the center-outward quantile
function, namely

Cu = Q(Lu).

Several sign curves are represented in red at the right-hand side of Figure 2.
Averaging observations less deep that Q(u) along the sign curve Cu induces a
“typical” value “beyond” Q(u) in a meaningful multivariate way.

Definition 2.4. Let ν ∈ P1(Rd) with center-outward quantile function Q. The
center-outward superquantile function of ν is the function S defined, for any
u ∈ B(0, 1)\{0}, by

S(u) = 1
1 − ‖u‖

∫ 1

‖u‖
Q
(
t
u

‖u‖
)
dt,

where the above integral is to be understood component-wise.

Remark 2.1 (Consistency with the univariate case). On the real line, there is
only one sign curve C1 = {Q(t); t ∈ [0, 1]}. Thus, definition (1.3) can be seen
as averaging observations less deep than Q(α), w.r.t. ν, along the sign curve
C1. Nonetheless, note that center-outward quantiles slightly differ from classical
quantiles in dimension d = 1, because U([−1, 1]) �= U([0, 1]), even if they carry
the same information, [37][Appendix B].

By the same token, we can define the center-outward expected shortfall function.

Definition 2.5. Let ν ∈ P1(Rd) with center-outward quantile function Q. The
center-outward expected shortfall function of ν is the function E defined, for any
u ∈ B(0, 1)\{0}, by

E(u) = 1
‖u‖

∫ ‖u‖

0
Q
(
t
u

‖u‖
)
dt,

where the above integral is to be understood component-wise.

Remark 2.2. For ν ∈ P∗(Rd), Q is neither defined at the origin nor at the
boundary of the unit ball, unless the support of ν is compact. Hence the integrals
in S(u) and E(u) are improper and they shall be understood respectively as

lim
r→1−

∫ r

‖u‖
Q
(
t
u

‖u‖
)
dt and lim

r→0+

∫ ‖u‖

r

Q
(
t
u

‖u‖
)
dt.
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However, note that they are convergent as soon as ν ∈ P1(Rd). In fact, the
necessary assumption is rather the following integrability along sign curves,∫ 1

0

∥∥∥∥Q(t u

‖u‖ )
∥∥∥∥ dt < ∞. (2.5)

By the change of variables formula for push-forwards maps and by definition of
Ud, Eν [‖X‖] = EUd

[‖Q(U)‖] = E(R,Φ)[‖Q(RΦ)‖]. In other words, denoting by
PS the uniform probability measure on the sphere S

d−1 = {ϕ ∈ R
d : ‖ϕ‖ = 1},

Eν [‖X‖] =
∫
Sd−1

∫ 1

0
‖Q(tϕ)‖dt dPS(ϕ).

Thus, one can see by contradiction that, as soon as Eν [‖X‖] < ∞, (2.5) holds
for almost all ϕ ∈ Sd−1, thus S and E must be finite almost everywhere.

The following naturally extends Definition 2.2.

Definition 2.6 (Superquantile and expected shortfall regions and contours).
Let ν ∈ P1(Rd) with center-outward superquantile function S and expected short-
fall E. Then,
(i) the superquantile (resp. expected shortfall) region Cs

α (resp. Ce
α) of order

α ∈ [0, 1] is the image by S (resp. E) of the ball B(0, α).
(ii) the superquantile (resp. expected shortfall) contour Cs

α (resp. Ce
α) of order

α ∈ [0, 1] is the boundary of Cs
α (resp. Ce

α).
(iii) averaged sign curves by E or S are respectively defined by E(Lu) and S(Lu)
for any u ∈ B(0, 1)\{0}.

These concepts describe point clouds through periphery or central areas, and
are illustrated in the numerical experiments carried out in Section 5.

2.2. Invariance properties

The two following lemmas are immediate consequences of [31, Lemmas A.7,A.8].

Lemma 2.1. Assume that X ∈ R
d is an integrable random vector. Suppose

that a > 0, b ∈ R
d and Y = aX + b. Denote by SX , SY and EX , EY their

center-outward superquantile and expected shortfall functions. Then, for u ∈
B(0, 1)\{0},

SY (u) = aSX(u) + b and EY (u) = aEX(u) + b.

Proof. We only detail SY , as one can deduce EY identically. From [31][Lemma
A.7],

SY (u) = 1
1 − ‖u‖

∫ 1

‖u‖
QY (t u

‖u‖ )dt,

= 1
1 − ‖u‖

∫ 1

‖u‖

(
aQX(t u

‖u‖ ) + b
)
dt = aSX(u) + b. �
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Lemma 2.2. Assume that X ∈ R
d is an integrable random vector. Let SX , SY

and EX , EY be the center-outward superquantile and expected shortfall functions
associated respectively with X and Y = AX, for A an orthonormal matrix.
Then, for u ∈ B(0, 1)\{0},

SY (u) = ASX(ATu) and EY (u) = AEX(ATu).

Proof. Again, we only detail SY , as the proof for EY is identical. Combining
[31][Lemma A.8] with the fact that ‖ATu‖ = ‖u‖ for an orthogonal matrix,

SY (u) = 1
1 − ‖u‖

∫ 1

‖u‖
QY (t u

‖u‖ )dt,

= 1
1 − ‖u‖

∫ 1

‖u‖
AQX(tAT u

‖u‖ )dt = ASX(ATu). �

2.3. Main results

Quoting Rockafellar & Royset in [54],
“the superquantile function [...] is as fundamental to a random variable as the
distribution and quantile functions”.

This assertion is partially motivated by the fact that the distribution, quantile
and superquantile functions are uniquely determined one to another, and by
the fact that pointwise convergence of these functions metrizes convergence in
distribution. Such properties hold for our integrated concepts and are stated
hereafter. First of all, we shall make repeated use of the fact that the center-
outward superquantile and expected shortfall functions are two sides of the same
coin, that is, for u ∈ B(0, 1)\{0},∫ 1

0
Q
(
t
u

‖u‖
)
dt = ‖u‖E(u) + (1 − ‖u‖)S(u). (2.6)

This is a generalization of the immediate property that, for the univariate setting
given in the introduction with (1.1) and (1.2), we have for all α ∈]0, 1[,

E[X] = αE(α) + (1 − α)S(α).

Our first main result is as follows.

Theorem 2.2. Let ν1, ν2 ∈ P1(Rd) with respective center-outward quantile, su-
perquantile and expected shortfall functions denoted by Q1, S1, E1 and Q2, S2, E2.
Then, the following are equivalent.

(i) ν1 = ν2
(ii) Q1 = Q2 Ud-a.e.
(iii) S1 = S2 Ud-a.e.
(iv) E1 = E2 Ud-a.e.
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Proof. First of all, it is already known that (i) ⇔ (ii). Indeed, with the choice
of Ud as the reference distribution, McCann’s theorem [44] ensures that (i) ⇒
(ii). Obviously, (ii) ⇒ (i), from the very definition of push-forward measures
that is ν1(A) = Ud(Q−1

1 (A)) and ν2(A) = Ud(Q−1
2 (A)). Hereafter, we proceed

through the implication loop (ii) ⇒ (iii) ⇒ (iv) ⇒ (ii). Let PS be the uniform
probability measure on S

d−1 = {ϕ ∈ R
d : ‖ϕ‖2 = 1}. Let R and ϕ be drawn

uniformly on [0, 1] and S
d−1, respectively. Suppose that they are independent, so

that their joint distribution is given by dP(R,ϕ)(r, ϕ) = dPR(r)dPS(ϕ). There, by
definition, if f : (r, ϕ) �→ rϕ on [0, 1]×Sd−1, then Ud = f#P(R,ϕ). Hence, from the
change of variables formula for push-forwards, for any Borel set A = f(B ×C),
for B ⊂ [0, 1], C ⊂ S

d−1,∫
A

(S1 − S2)(u)dUd(u) =
∫
B

∫
C

(S1 − S2)(rϕ)dPS(ϕ)dr,

=
∫
B

∫
C

( 1
1 − r

∫ 1

r

(Q1 −Q2)(tϕ)dt
)
dPS(ϕ)dr. (2.7)

Nonetheless, for any r ∈ B, by the same change of variables,∫
C

∫ 1

r

(Q1 −Q2)(tϕ)dtdPS(ϕ) =
∫
f(C×[r,1])

(Q1 −Q2)(u)dUd(u). (2.8)

Note that Ud(f(C × [r, 1])) = (1 − r)PS(C), which is positive since r < 1.
Obviously, (2.8) vanishes as soon as Q1 = Q2 Ud-a.e. It implies that (2.7) also
vanishes, which justifies that (ii) ⇒ (iii). Furthermore, we claim that (iii) ⇒
(iv). Indeed, we have∫ 1

0
Q1(t

u

‖u‖ )dt = lim
r→0+

S1(r
u

‖u‖ ) and
∫ 1

0
Q2(t

u

‖u‖ )dt = lim
r→0+

S2(r
u

‖u‖ ).

Consequently, if we assume that S1 = S2 Ud-a.e., we obtain that∫ 1

0
(Q1 −Q2)(t

u

‖u‖ )dt = 0. (2.9)

Using (2.6), the desired result follows, (iii) ⇒ (iv). Finally, assume that E1 = E2
Ud-a.e. Consequently, for all r ∈]0, 1[ and for all ϕ ∈ S

d−1,∫ r

0
Q1(tϕ)dt =

∫ r

0
Q2(tϕ)dt.

Using that
∫ b

a
=

∫ b

0 −
∫ a

0 , for any 0 ≤ a ≤ b ≤ 1,∫ b

a

Q1(tϕ)dt =
∫ b

a

Q2(tϕ)dt. (2.10)

For any measurable B ⊂ S
d−1, by integrating (2.10) w.r.t. PS,∫

B

∫ b

a

Q1(tϕ)dPR(t)dPS(ϕ) =
∫
B

∫ b

a

Q2(tϕ)dPR(t)dPS(ϕ).
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By use of Ud = f#P(R,ϕ), a change of variables above yields, for any A ⊂
B(0, 1)\{0}, ∫

A

Q1(u)dUd(u) =
∫
A

Q2(u)dUd(u),

and the result follows.

Interestingly enough, our proposed integrated quantile functions are both
simply related to the Kantorovich potential. Somehow, this development gener-
alizes the work of [55] where the distribution function is related to the univariate
superquantile by the way of the surexpectation function, which is nothing more
than a particular primitive of the distribution function.

Proposition 2.1. The center-outward expected shortfall function of ν ∈ P1(Rd)
satisfies, for any u ∈ B(0, 1)\{0},

〈E(u), u〉 = ψ(u). (2.11)

Moreover, the center-outward superquantile function of a compactly supported
probability measure ν ∈ P∗(Rd) verifies, for every u ∈ B(0, 1)\{0},

〈S(u), u〉 = ‖u‖
1 − ‖u‖

(
ψ( u

‖u‖ ) − ψ(u)
)
. (2.12)

Proof. Fix u ∈ B(0, 1)\{0} and let f(t) = ψ(tu). Then f is a finite and convex
function on ]−a, a[ for some a > 1, so that one can apply [52][Corollary 24.2.1].
Combined with a.e. differentiability, [52][Theorem 25.3], this yields

ψ(u) =
∫ 1

0
〈∇ψ(tu), u〉dt, (2.13)

which can be rewritten as

ψ(u) = 〈
∫ 1

0
Q(tu)dt, u〉 = 〈E(u), u〉,

from a simple change of variables, leading to our first point (2.11). Moreover,
denote for any u ∈ B(0, 1)\{0},

f(t) = ψ(t u

‖u‖ ).

This function is finite on [0, 1] but not on a larger interval anymore. But, because
ν ∈ P∗(Rd), f is differentiable everywhere on ]0, 1[, and we have by the chain
rule formula,

f ′(t) = 〈Q(t u

‖u‖ ), u

‖u‖〉.

Since f ′(t) is a non-decreasing function from R to [−∞,+∞] finite at t = ‖u‖,
[52][Theorem 24.2] ensures that the function F , defined for all x ∈ R, by

F (x) =
∫ x

‖u‖
f ′(t)dt,
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is a well-defined closed proper convex function on R. We emphasize that F (x)
takes infinite values as soon as x > 1, while, for x = 1, F is well-defined as a
Lebesgue integral, or as a limit of Riemann integrals, as explained in the proof
of [52][Theorem 24.2], and it may take finite or infinite values. In addition,
the latter theorem tells us that F (x) = f(x) + α for some α ∈ R everywhere.
But F (‖u‖) = 0 and f(‖u‖) = ψ(u), so F (x) = f(x) − ψ(u). Assuming that
the support X of ν is compact, ψ must be lipschitz continuous, [45][Lemma
2], a fortiori bounded and the subdifferential ∂ψ(K) must also be bounded,
see e.g. [53]. As a byproduct, ψ(u/‖u‖) and Q(u/‖u‖) are finite. In this case,
F (1) = f(1) − ψ(u) is finite and can be rewritten as

F (1) =
∫ 1

‖u‖
〈Q(t u

‖u‖ ), u

‖u‖〉dt = ψ( u

‖u‖ ) − ψ(u),

which implies (2.12), completing the proof of Proposition 2.1.

Thanks to this relation between the potential ψ whose gradient gives Q and
the center-outward expected shortfall function, we are now able to character-
ize the convergence in distribution for a sequence of random vectors through
superquantiles and expected shortfalls. For that purpose, we rely on existing
results on the relation between convergence in distribution and center-outward
quantile functions.

Lemma 2.3. Let (X,Xn) be a sequence of random vectors with distributions ν
and νn respectively, in P∗(Rd). Then,

Xn
L→ X ⇔ ∀u ∈ B(0, 1), lim

n→∞
ψn(u) = ψ(u), (2.14)

⇔ lim
n→∞

sup
u∈K

|ψn(u) − ψ(u)| = 0, (2.15)

⇔ lim
n→∞

sup
u∈K

‖Qn(u) −Q(u)‖ = 0, (2.16)

for every compact K ⊂ B(0, 1)\{0}. In fact, uniform convergence of ψn towards
ψ even holds on every compact K ⊂ B(0, 1).

Proof. On the one hand, assume that (Xn) converges in distribution to X. Then,
the right-hand side of (2.16) is the main result of [31][Theorem 4.1] when Qn and
Q are homeomorphisms between convex sets, with uniform convergence on any
compact subset. But, with reference distribution Ud, center-outward quantile
maps are not, because of the discontinuity at the origin, see [37][Remark 3.4].
Nonetheless, as highlighted in the proof of [37][Proposition 3.3], the assumption
that Xn

L→ X for νn, ν ∈ P∗(Rd) is sufficient to apply Theorem 2.8 in [22]. As
a consequence, ψn(u) converges towards ψ(u) for every u ∈ B(0, 1), that is the
right-hand side of (2.14). Being finite and convex functions, [52][Theorem 10.8]
ensures that such pointwise convergence implies the right-hand side of (2.15).
Since ψn and ψ are differentiable on B(0, 1)\{0} as soon as νn, ν ∈ P∗(Rd), one
can apply [52][Theorem 25.7] on any open and convex set K ′ ⊂ B(0, 1)\{0}. This
gives us the uniform convergence of Qn towards Q for any compact K included
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in an open and convex set K ′ ⊂ B(0, 1)\{0}. To extend this to any compact K,
we use that, by compacity, one can extract from the open cover {B(x, δ);x ∈ K}
a finite cover. Consequently, it exists N ∈ N and x1, · · · , xN ∈ K such that

sup
u∈K

‖Qn(u) −Q(u)‖ ≤
N∑

k=1

sup
u∈B(xk,δ)

‖Qn(u) −Q(u)‖. (2.17)

Here, the closure of each ball B(xk, δ) is a compact set, which, because of the
choice of δ, is a subset of some open and convex set K ′ ⊂ B(0, 1)\{0}. But we
already know that Qn uniformly converges towards Q on such a set, thus the
right-hand side of (2.17) vanishes when n → 0, which yields the right-hand side
of (2.16). It only remains to prove that Xn

L→ X as a direct consequence. This
last claim relies on the Portmanteau theorem which says that (Xn) converges
in distribution to X iff for any bounded and continuous function f ,

lim
n→+∞

E[f(Xn)] = E[f(X)]. (2.18)

However, we clearly have for any bounded and continuous function f ,

E[f(Xn)] =
∫
Rd

f(x)dνn(x) =
∫
B(0,1)

f(Qn(u))dUd(u).

using the change of variables νn = Qn#Ud. Hence, as f ◦ Qn is uniformly
bounded, the dominated convergence theorem leads to (2.18).

Theorem 2.3. Let (X,Xn) be a sequence of random vectors with distributions
ν and νn respectively, in P∗(Rd). Then,

Xn
L→ X ⇔ ∀u ∈ B(0, 1)\{0}, lim

n→+∞
En(u) = E(u), (2.19)

⇔ lim
n→∞

sup
u∈K

‖En(u) −E(u)‖ = 0, (2.20)

for every compact K ⊂ B(0, 1)\{0}.
Proof. On the one hand, assume that (Xn) converges in distribution to X.
Then, it follows from (2.16) that (Qn) converges uniformly to Q on any compact
K ⊂ B(0, 1)\{0}. For any u ∈ B(0, 1)\{0}, we have from Definition 2.5 that

‖En(u) − E(u)‖ ≤ 1
‖u‖

∫ ‖u‖

0
Rn(t u

‖u‖ )dt,

where Rn(v) = ‖Qn(v) −Q(v)‖. Fix a compact K ⊂ B(0, 1)\{0} such that for
every u ∈ K, C < ‖u‖ < D for some positive constants C,D. Then, we clearly
have

sup
u∈K

‖En(u) − E(u)‖ ≤ 1
C

∫ D

0
sup
u∈K

Rn(t u

‖u‖ )dt.
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Consequently, for any ξ ∈ R such that 0 ≤ ξ < D,

sup
u∈K

‖En(u) − E(u)‖ ≤ 1
C

(∫ ξ

0
sup
u∈K

Rn(t u

‖u‖ )dt +
∫ D

ξ

sup
u∈K

Rn(t u

‖u‖ )dt
)
. (2.21)

On the one hand, for all t ∈ [ξ,D] and u ∈ K, tu/‖u‖ lies inside a compact
K ′ ⊂ B(0, 1)\{0}, so that the second term in (2.21) satisfies∫ D

ξ

sup
u∈K

Rn(t u

‖u‖ )dt ≤ (D − ξ) sup
v∈K′

Rn(v) ≤ sup
v∈K′

Rn(v), (2.22)

which vanishes when n → +∞. On the other hand,∫ ξ

0
sup
u∈K

Rn(t u

‖u‖ )dt ≤ ξ sup
v∈B(0,D)

Rn(v). (2.23)

We now claim that supv∈B(0,D) Rn(v) is bounded by a constant. Recall that,
for any v ∈ B(0, D), Qn(v) and Q(v) belong to the subdifferentials ∂ψn(v) and
∂ψ(v), by definition. Because S = B(0, D) is a compact subset of the open unit
ball, and because, for any u ∈ S, ψn(u) is convergent and a fortiori bounded, see
Lemma 2.3, we are in position to apply [52][Theorem 10.6]. It directly implies
that the sequence (ψn) is uniformly bounded and equi-Lipschitz on S. How-
ever, it is well-known that any L-lipschitz convex function φ on S must have
a bounded subdifferential ∂φ(S), see e.g. [53]. Indeed, for any u ∈ S and any
ξ ∈ ∂φ(S), consider δ > 0 such that y = u − δξ belongs to S. By definition of
∂φ(S) and the lipschitz constant L,

Lδ‖ξ‖ ≥ φ(y) − φ(u) ≥ 〈ξ, y − u〉 = δ‖ξ‖2.

This immediately gives us the existence of a uniform bound on the family of sub-
differentials (∂ψn(S))n. Because ∂ψ(S) is also bounded, by lipschitz regularity
of ψ on S,

sup
v∈B(0,D)

Rn(v) ≤ sup
v∈B(0,D)

‖Qn(v)‖ + ‖Q(v)‖ ≤ M < +∞. (2.24)

Therefore the right-hand side of (2.23) can be bounded by ξM for M given
in (2.24). Then it follows from (2.21) and (2.22) that, for any ξ ∈ [0, D[, it
exists n1 ∈ N such that, for all n ≥ n1,

sup
u∈K

‖En(u) −E(u)‖ ≤ 1
C

(
ξM + sup

v∈K′
Rn(v)

)
.

Thus, for any ξ ∈ [0, D[,

lim
n→+∞

sup
u∈K

‖En(u) −E(u)‖ ≤ ξM

C
.
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which leads to the right-hand side of (2.20) as ξ goes to zero. In addition, the
right-hand side of (2.20) immediately implies the right-hand side of (2.19). On
the other hand, assume that the right-hand side of (2.19) holds. Then, we obtain
from (2.11) that ∀u ∈ B(0, 1),

lim
n→+∞

ψn(u) = ψ(u).

Thus, the desired result follows from Lemma 2.3, which completes the proof of
Theorem 2.3.

Our last result requires some uniform integrability assumption on the se-
quence (Xn).

Theorem 2.4. Let (X,Xn) be a sequence of random vectors with distributions
ν and νn respectively, in P∗(Rd). In addition, suppose that there exists a random
variable Z greater than 1 such that E[Z ln(Z)] < +∞ and for all n ∈ N,

‖Xn‖ ≤ Z a.s. (2.25)

Then,
Xn

L→ X ⇔ lim
n→∞

Sn(u) = S(u), (2.26)

for almost all u ∈ B(0, 1).

Remark 2.3. One can observe that if the support of every νn is bounded by
some constant M , (2.25) is no longer needed. Under this restrictive assumption,
there is no mass going out to infinity in any direction and one can easily check
that

Xn
L→ X ⇔ lim

n→∞
sup
u∈K

‖Sn(u) − S(u)‖ = 0,

for every compact K ⊂ B(0, 1)\{0}.
Proof. On the one hand, assume that (Xn) converges in distribution to X. We
clearly have from (2.25) that, if Φ(x) = x ln(x), then

E[ sup
n∈N

Φ(Xn)] ≤ E[Z ln(Z)] < +∞.

Hence, using the same change of variables as in the proof of Theorem 2.2, we
obtain that

E[ sup
n∈N

Φ(Xn)] =
∫
Sd−1

∫ 1

0
sup
n∈N

‖Qn(tϕ)‖ ln(‖Qn(tϕ)‖)dtdPS(ϕ) < +∞, (2.27)

where we recall that S
d−1 = {ϕ ∈ R

d : ‖ϕ‖2 = 1}. Consequently, we deduce
from (2.27) that for almost all ϕ ∈ Sd−1,

sup
n∈N

∫ 1

0
‖Qn(tϕ)‖ ln(‖Qn(tϕ)‖)dt ≤

∫ 1

0
sup
n∈N

‖Qn(tϕ)‖ ln(‖Qn(tϕ)‖)dt < +∞.

(2.28)
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It clearly leads to the uniform integrability of (Qn) along sign curves, see [9][The-
orem 4.5.9]. However, we already saw from Lemma 2.3 that the convergence in
distribution of (Xn) to X implies the pointwise convergence of Qn to Q on
B(0, 1)\{0}. Therefore, it follows from the Lebesgue-Vitali theorem [9][Theorem
4.5.4] that for almost all ϕ ∈ S

d−1,

lim
n→+∞

∫ 1

0
Qn(tϕ)dt =

∫ 1

0
Q(tϕ)dt,

which means that for almost all u ∈ B(0, 1)\{0},

lim
n→+∞

∫ 1

0
Qn

(
t
u

‖u‖
)
dt =

∫ 1

0
Q
(
t
u

‖u‖
)
dt. (2.29)

Hereafter, we already saw from (2.6) that

Sn(u) − S(u) = 1
1 − ‖u‖

(∫ 1

0
(Qn −Q)

(
t
u

‖u‖
)
dt− ‖u‖

(
En(u) − E(u)

))
.

(2.30)
Finally, the right-hand side of (2.26) follows from (2.19) together with (2.29)
and (2.30). On the other hand, assume that the right-hand side of (2.26) holds.
We have for almost all u ∈ B(0, 1)\{0},

lim
n→+∞

∫ 1

‖u‖
Qn

(
t
u

‖u‖
)
dt =

∫ 1

‖u‖
Q
(
t
u

‖u‖
)
dt. (2.31)

Hence, we obtain from (2.31) that for almost every r ∈]0, 1[ and ϕ ∈ S
d−1,

lim
n→+∞

∫ 1

r

Qn(tϕ)dt =
∫ 1

r

Q(tϕ)dt. (2.32)

Obviously, for almost all r ∈]0, 1[ and almost all ϕ ∈ S
d−1,

lim
n→+∞

∫ 1

0
(Qn −Q)(tϕ)dt = lim

n→+∞

(∫ r

0
(Qn −Q)(tϕ)dt +

∫ 1

r

(Qn −Q)(tϕ)dt
)
,

= lim
n→+∞

∫ r

0
(Qn −Q)(tϕ)dt.

In addition, this integral is always finite since (2.5) holds for integrable proba-
bility measures. As the left-hand side does not depend on r,

lim
n→+∞

∫ 1

0
(Qn −Q)(tϕ)dt = lim

r→0
lim

n→+∞

∫ r

0
(Qn −Q)(tϕ)dt. (2.33)

From the uniform integrability of (Qn) along sign curves, we obtain that

lim
r→0

lim
n→+∞

∫ r

0
‖Qn(tϕ) −Q(tϕ)‖dt = 0.
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Hence, by use of (2.33), we find that

lim
n→+∞

∫ 1

0
Qn(tϕ)dt =

∫ 1

0
Q(tϕ)dt.

It ensures that for almost all u ∈ B(0, 1)\{0},

lim
n→+∞

∫ 1

0
Qn

(
t
u

‖u‖
)
dt =

∫ 1

0
Q
(
t
u

‖u‖
)
dt. (2.34)

Consequently, we deduce from (2.30) and (2.34) that for a.e. u ∈ B(0, 1)\{0},

lim
n→+∞

En(u) = E(u) (2.35)

Finally, it follows from (2.35) together with (2.19) that (Xn) converges in dis-
tribution to X, which completes the proof of Theorem 2.4.

3. A class of reference measures

Until now, the concepts of MK quantiles, superquantiles and expected shortfalls
strongly rely on the choice of the reference distribution, and one may question
the choice of Ud. This issue is discussed hereafter, with explicit MK quantile
functions for generalized gamma models, by calibrating the reference distribu-
tion. Ultimately, one obtains nested regions indexed by their probability content.
The choice of the reference distribution μ is a major tool to adapt MK quantiles,
ranks and signs to any task encountered. Notably, the uniform distribution over
the unit hypercube has advantages concerning marginal independence, [19, 31],
whereas orthogonal invariance only holds with a spherical reference distribution,
[31, 38]. Ud plays a specific role for the interpretation of quantile regions indexed
by a probability content level. This section deals with an alternative class of
reference measures defined by α-level sets on the p-unit ball, that preserve the
interpretability of Ud. We also consider the restriction of Ud to Rd

+, with a left-to-
right ordering that might be preferred in the subsequent risk applications to the
center-outward one. Denote by S

d,p the unit sphere S
d,p = {ϕ ∈ R

d : ‖ϕ‖p = 1}
with

‖ϕ‖pp =
d∑

k=1
|ϕk|p,

and S
d,p
+ = S

d,p ∩ R
d
+. Moreover, let q be the Hölder conjugate of p, given by

1
p

+ 1
q

= 1.

Definition 3.1. The q-spherical conjugate distribution Ud,q is defined as the
product RΦ between two independent random variables R and Φ where

• R has uniform distribution on [0, 1],
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• the distribution of Φ ∈ S
d,q is given by Φ = Ψ⊗(p−1) for Ψ uniformly

drawn on S
d,p, and ⊗ the component-wise exponent.

The restriction of Ud,q to the convex cone R
d
+ is denoted by U+

d,q.

With reference measure Ud,q, the MK quantile function Qq can always be
defined almost everywhere from a convex potential ψ by Definition 2.1, for which
we can always assume that ψ(0) = 0. At any point u of non differentiability of
ψ, one can still define Qq(u) as the average of the subdifferential ∂ψ(u), so that
Qq is defined everywhere on the q-unit ball. The interpretability of the quantile
concepts remains the same among this class, as the Ud,q-probability of the q-ball
of radius α ∈ [0, 1] is α,

P(‖RΦ‖q ≤ α) = P(R ≤ α) = α.

Crucially for us, our definitions and properties of superquantiles and expected
shortfalls naturally adapt. Definition 2.4 as well as Definition 2.5 extend, for all
u ∈ B(0, 1), to

Sq(u) = 1
1 − ‖u‖q

∫ 1

‖u‖q

Qq(t
u

‖u‖q
)dt

and

Eq(u) = 1
‖u‖q

∫ ‖u‖q

0
Qq(t

u

‖u‖q
)dt.

We now develop on how to sample uniformly on p-spheres S
d,p. Let Γ stand

for the Euler Gamma function and denote by Lp the probability distribution
with density function

fp(x) = p

Γ(p−1) exp(−xp)IR+(x).

A random variable X on R+ is drawn from Lp if and only if Xp follows a Gamma
distribution with shape and scale parameters 1/p and 1. The following lemma
indicates how to sample uniformly on p-spheres when p > 0.

Lemma 3.1 ([4, 56]). For any real p > 0, the components of a random vector
X ∈ R

d
+ are independent with distribution Lp if and only if the random variables

‖X‖p and ‖X‖−1
p X are independent where

- ‖X‖−1
p X is uniformly distributed on S

d,p
+ ,

- ‖X‖pp has Gamma distribution with shape and scale parameters d/p and 1.

For p = 2, Lp corresponds to |Z| where Z is drawn from a N (0, 1) distribution.
The MK distribution function with reference Ud (or Ud,2) has been obtained in
[13][Section 2.4]. Here, we use similar arguments to find gradient-of-convex maps
for our alternative class of reference measures. We emphasize that such maps are
invariant to shifts, see [31][Lemma A.7], whereas invariance to rotations requires
a spherically symmetric reference measure, [31][Lemma A.8].
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Proposition 3.1. Suppose that the components of a random vector X ∈ R
d
+

are independent with Lp distribution for p > 1, and let q = p/(p− 1). Then, the
MK distribution function with respect to U+

d,q has the explicit formulation

Fq(x) = (‖x‖−1
p x)⊗(p−1)G(‖x‖p), (3.1)

where ⊗ stands for the component-wise exponent and G is the univariate distri-
bution function of ‖X‖p. Its inverse, the MK quantile function, is given, for all
u ∈ R

d
+ such that ‖u‖q ≤ 1, by

Qq(u) = (‖u‖−1
q u)⊗(q−1)G−1(‖u‖q). (3.2)

The MK superquantile and expected shortfall functions are respectively given,
for all u ∈ R

d
+ such that ‖u‖q ≤ 1, by

Sq(u) = (‖u‖−1
q u)⊗(q−1)S(‖u‖q), (3.3)

Eq(u) = (‖u‖−1
q u)⊗(q−1)E(‖u‖q), (3.4)

where S and E are the univariate superquantile and expected shortfall functions
associated with the distribution of ‖X‖p.
Proof. Denote by G the probability distribution function of ‖X‖p. Moreover,
for z ∈ R, let

Ψ(z) =
∫ z

−∞
G(t)dt,

and ϕ(x) = Ψ(‖x‖p). Then, ϕ is convex by the composition between the non-
decreasing function Ψ and ‖·‖p, both convex, see [54][Theorem 5.1]. In addition,
∇ϕ(x) = Fq(x), which means that Fq is the gradient of a convex function. It re-
mains to show that Fq(X) follows the distribution U+

d,q. From Lemma 3.1, Fq(X)
is the product of two independent random variables, G(‖X‖p) and (‖X‖−1

p

X)⊗(p−1). On the one hand, G(‖X‖p) is uniformly distributed on [0, 1], by defi-
nition of G. On the other hand, the distribution of ‖X‖−1

p X is uniform on S
d,p
+ ,

which implies (3.1). In order to compute Qq = F−1
q , it remains to invert (3.1).

If u = (‖x‖−1
p x)⊗(p−1)G(‖x‖p),

‖u‖qq = G(‖x‖p)q
d∑

k=1

( xk

‖x‖p

)p

.

Thus, ‖u‖q = G(‖x‖p) which yields ‖u‖−1
q u = (‖x‖−1

p x)⊗(p−1). This rewrites
‖u‖−1

q u‖x‖p−1
p = x⊗(p−1), where ‖x‖p−1

p = G−(p−1)(‖u‖q), so

‖u‖−1
q uG−(p−1)(‖u‖q) = x⊗(p−1).

Finally, (3.2) follows by applying the exponent q − 1 = 1/(p − 1), which im-
plies (3.3) and (3.4), completing the proof of Proposition 3.1.
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Remark 3.1. It is well-known that in the special case p = 2, the distribution
of (‖X‖−1

p X)⊗(p−1) is uniform on S
d,q
+ where q = p = 2, see [13]. One may

wonder if this property holds true for other choices of p > 1. This is actually
not the case as we shall see now. As q is the Hölder conjugate of p, we clearly
have ‖X‖p−1

p = ‖X⊗(p−1)‖q which implies that(
X

‖X‖p

)⊗(p−1)

= X⊗(p−1)

‖X⊗(p−1)‖q
.

All the components of X share the same Lp distribution. Consequently, each
Xp

i has a Gamma distribution with shape and scale parameters 1/p and 1. It
implies that Xp−1

i = X
p/q
i is the power 1/q of a Gamma distribution. We im-

mediately deduce from Lemma 3.1 that, as soon as p �= 2, (‖X‖−1
p X)⊗(p−1) is

not uniformly distributed on S
d,q
+ .

Figure 3 illustrates Proposition 3.1. Each column contains the reference mea-
sure U+

d,q for q = p/(p− 1) in the first line, and the associated distribution with
i.i.d. components Xi ∼ Lp below. Reference contours of orders 0.25, 0.5, 0.75 are
represented as well as the explicit MK quantile contours. Whereas the center-
outward ordering intrinsic to Ud is natural for elliptical models, [13][Section
2.4], the left-to-right ordering may be more relevant under generalized Gamma
models in R

d
+.

4. Multivariate values and vectors at risk

Considering several univariate risks separately leads to neglecting the correlation
structure between the components of a random vector. Hence, studying a notion
of risk in a multivariate way is of major importance. We refer to [26][Section
2.1] for motivations for intrinsically multivariate risk analysis problems. The
risk framework considers a vector of dependent losses X ∈ R

d
+, where each com-

ponent is a positive measure whose unit may be different from one to another.
Naturally, the larger the value of a component, the greater the associated risk.
On the one hand, we argue that real-valued risk measures are not sufficient in
such setting. With real-valued random variables, real-valued risk measures are
able to catch all the information needed. But, with the increase of the dimension,
one may need vectors in R

d to get the directional information of the multivariate
tails. With this in mind, we make here a proposal for vector-valued risk mea-
sures, namely Vectors-at-Risk and Conditional-Vectors-at-Risk, which aim to
sum up the relevant information contained in the center-outward quantiles and
superquantiles. Related to these vector-valued measures, we define multivariate
values-at-risk and multivariate conditional-values-at-risk which are measures of
the form of ρ : Rd

+ → R able to compare X and Y by ρ(X) > ρ(Y ). Importantly,
the computation of these real-valued measures gives the vector-valued ones, hit-
ting two targets with one shot without added complexity. On the other hand,
a multivariate extension of the concepts of VaR and CVaR shall have the same
interpretation as in R. In dimension d = 1, the VaR of some risk at a level α is
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Fig 3. (First line) Reference measures U+
d,q for indices q conjugate with p. (Second line)

Generalized Gamma distributions Lp and explicit quantile contours and sign curves.

simply the quantile of order α. Accordingly, the CVaR is the superquantile of
order α. These are to be understood respectively as the worst risk encountered
with ν-probability α, and as the averaged risk beyond this quantile. Being an
observation from the underlying distribution, it shall be vector-valued in our
multivariate framework.

By construction, the MK quantile contour of order α ∈ [0, 1] contains the
points having the most outward position with ν-probability α. Hence, we ar-
gue that a Vector-at-Risk of order α should belong to this contour. Even if it
is always adapted to the geometry of ν, a MK quantile contour can either de-
scribe a central or a bottom-left area, by changing the reference measure. We
explore both these possibilities, leaving it to the reader to decide which tool
to adopt. In what follows, we rely on Ud and U+

d , its restriction to Rd
+. Of

course, other p-spherical uniform distributions could be used, but we do not
know if this would induce any benefit. Starting from the choice between central
or bottom-left areas for MK quantile contours, the worst vectors of losses are the
furthest from the origin in our context. Then, we suggest to select points from
the center-outward quantile contour of order α with maximal norm, using Def-
inition 2.2. Conditional-Vectors-at-Risk (CVaRs) are defined in the same way,
but considering the center-outward superquantiles, with Definition 2.6.
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Definition 4.1. The Vector-at-Risk at level α is defined by

VaRα(X) ∈ argsup { ‖X‖1 ; X ∈ Cα } .
Similarly, the Conditional-Vector-at-Risk is defined by

CVaRα(X) ∈ argsup { ‖X‖1 ; X ∈ Cs
α } .

The choice of ‖ · ‖1 in the above definition depends on how to compare different
risks. We emphasize that this choice is very distinct to the one of the reference
measure: this consideration takes place once the contours are fixed. Without
added information, we believe that two observations of same 1-norm shall be
considered of same importance. Intuitively, when comparing multivariate risks,
the risks per component add up. For example, if

x1 =
(

1
0

)
and x2 =

(
0.5
0.5

)
belong to the same quantile contour of level α, choosing ‖ · ‖2 instead of ‖ · ‖1
in Definition 4.1 would induce to consider that x1 is worst than x2. This choice
is coherent with the common practice of computing univariate VaR and CVaR
on the random variable ‖X‖1 in financial applications, but a major difference is
that it encodes the multivariate joint probability of the vector X before applying
the sum. Thus, it takes into account the correlations, while providing more
information, because typical values for component-wise risks can be retrieved
through our Vectors-at-Risk. With this in mind, the Vector-at-Risk of order α is
to be understood as the “worst” risk encountered with probability α, whereas the
Conditional-Vector-at-Risk is the average risk beyond this “worst” observation,
where the notion of “worst” is characterized here by ‖ ·‖1 and the focus is either
on central or on bottom-left areas. Thus, this generalizes the understanding of
univariate VaR and CVaR. We displayed in Figure 4 the VaRα and CVaRα

with quantile and superquantile contours estimated via the numerical scheme
presented in Section 5.1 for ε = 10−3. Each red point is the worst observation
inside the corresponding quantile or superquantile regions.

Intuitively, Definition 4.1 already gives a real-valued risk measure. Note that
the set { ‖X‖1 ; X ∈ Cα } is the same as { ‖QX(u)‖1 ; ‖u‖2 = α } for both the
reference distribution Ud and its restriction U+

d to R
d
+.

Definition 4.2. The multivariate value-at-risk at level α is defined as

ρQα (X) = sup
u

{ ‖QX(u)‖1 ; ‖u‖2 = α } .

Similarly, the multivariate conditional value-at-risk is defined as

ρSα(X) = sup
u

{ ‖SX(u)‖1 ; ‖u‖2 = α } .

These multivariate (conditional) values-at-risk indicate on the spreadness of
the point cloud drawn from a vector of losses, and contain information about its
centrality and the correlations between its components. Empirical experiments
have been conducted in Section 5.2 where they are compared with the maximal
correlation risk measure from [5].
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Fig 4. Gaussian distribution with VaRα and CVaRα in red and associated MK quantile and
superquantile contours in blue, for α = 0.5.

5. Numerical experiments

5.1. On the choice of the empirical quantile map

Hereafter, we chose to use the entropic map as a regularized empirical map,
as advocated in [8, 12, 43]. Regularizing the quantile function enables to reach
a smooth function T : u �→ T (u) in practice, and has been the concern of
several works, including [5, 37]. Our regularization choice is thus motivated by
the known computational advantages of entropic optimal transport, [17, 30],
with a very recent line of work focusing on the entropic map [33, 48, 49, 51].
A relaxed version of Monge problem (2.1) is the Kantorovich problem, see the
introduction of [61]. This allows for easier computations, even more so when one
uses entropically regularized optimal transport. We only state here the semi-dual
formulation of Kantorovich regularized problem, that one can find for instance
in [30]. The notation differ from traditional ones in optimal transport theory,
to be consistent with the context of center-outward quantiles. Let C(X ) be the
space of continuous functions from X to R. Let ε > 0 be the regularization
parameter, which must be low in order to approximate better the true OT. For
μ, ν ∈ P2(Rd) with finite second-order moments and with respective supports
U ,X , and for a given x0 ∈ X , the semi-dual problem has a unique solution and
writes

max
v∈C(X ):v(x0)=0

∫
U
vc,ε(u)dμ(u) +

∫
X
v(x)dν(x) − ε, (5.1)

where vc,ε ∈ C(U) is the smooth c-transform of v

∀u ∈ U , vc,ε(u) = −ε log
(∫

X
exp

(v(x) − 1
2‖u− x‖2

ε

)
dν(x)

)
. (5.2)
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In practice, ν, the law whose we consider the quantiles, is not known and is
approached by its empirical counterpart, so it always has a finite moment of
order 2. On the contrary, μ, the reference law, is known and absolutely continu-
ous. In this semi-discrete setting, one can use stochastic algorithms [7, 8, 30] to
solve (5.1) and obtain the optimal Kantorovich potential v. From this, one can
deduce the entropic map, [49], an approximation of the Monge map partially
legitimated by an entropic analog of Brenier’s theorem, [10, 16]

Qε(u) = ∇
(1

2‖u‖
2 − vc,ε(u)

)
.

Additionally, neither Assumption 2.1 nor Assumption 2.2 are necessary to its
definition or to ensure its continuity. Using (5.2), one has the analytic formula

Qε(u) =
∫
X
xgε(u, x)dν(x), (5.3)

where

gε(u, x) =
exp

(
vε(x)− 1

2‖u−x‖2

ε

)
∫
X exp

(
vε(z)− 1

2‖u−z‖2

ε

)
dν(z)

= exp
(vc,εε (u) + vε(x) − 1

2‖u− x‖2

ε

)
.

This formula can be read as a conditional expectation of ν w.r.t. the conditional
law associated with the transport plan dπε(u, x) = gε(u, x)dν(x)dμ(u), which
appears to be solution of the Kantorovich regularized problem, [30]. Plugging
Qε into Definitions 2.4 and 2.5 induces the entropic analogs

Sε(u) = 1
1 − ‖u‖

∫ 1

‖u‖
Qε

(
t
u

‖u‖
)
dt (5.4)

and

Eε(u) = 1
‖u‖

∫ ‖u‖

0
Qε

(
t
u

‖u‖
)
dt. (5.5)

The empirical counterparts Q̂ε,n, Ŝε,n and Êε,n of definitions (5.3) and (5.4)
are obtained by plug-in estimators of the problem (5.1) for the empirical mea-
sure ν̂n = 1

n

∑n
i=1 δXi and for the reference distribution μ. In the experiments

of the next section, we use the stochastic Robbins-Monro algorithm taken from
[7]. The entropic map Q̂ε,n defined in (5.3) is considered as a regularized em-
pirical quantile function with ε = 10−3, and the integrals in (5.4) are estimated
by Riemann sums. Because the entropic map is continuous and it is the gradi-
ent of a convex function, even empirically, it shall provide nested and smooth
contours. Moreover, estimating Monge maps is known to suffer from the curse
of dimensionality, see [41, 49]. But, when the objective is the entropic map, for
any ε > 0, convergence rates independent from d were obtained in [51]. Fur-
thermore, the empirical version of the entropic map approaches the true Monge
map (ε = 0) with a rate independent from d if ν is assumed to be discrete, see
[48]. Note that, even for low ε, the entropic map does not exactly push-forward
the reference distribution onto ν, and is rather an approximation of it.
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Fig 5. Center-outward expected shortfall and superquantile contours of levels α in
{0.1, 0.3, 0.5, 0.7, 0.9} in blue and averaged sign curves Cu in red.

5.2. Empirical study on simulated data

5.2.1. Descriptive plots for quantiles and superquantiles

Descriptive plots associated with Definition 2.6 are given in Figure 5, to describe
all the information contained in our new concepts. The continuous reference
distribution Ud is transported to the discrete banana-shaped measure ν with
support of size n = 5000, via our empirical center-outward expected shortfall
(resp. superquantile) function. Note how the data splits into a central area
and a periphery area by the range of points covered by both maps. These are
satisfying estimators for the well-suited ε = 10−3, that is to say the first column
of Figure 5. As the regularization parameter ε for Eε and Sε grows, the contours
concentrate around the mean vector of ν, which is a known feature of entropic
optimal transport. One can observe that our regularized approach yields smooth
interpolation between image points. For visualization purposes, the red points
of averaged sign curves are linked by straight paths. The blue points are not, to
illustrate how the contours capture the empty space in the middle of the non
convex point cloud.
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5.2.2. Risk measurements on toy examples

In dimension d = 2, an empirical distribution can be represented with a scatter
plot and the riskiest observations are visible with the naked eye: they are located
furthest from the origin. From this principle, we selected easy-to-handle situa-
tions to evaluate our risk measures in Figure 6. Each row refers to a situation
where a blue scatter plot (first column) is to be compared with an orange one
(second column). For each situation, our (Conditional) Vectors-at-Risk of order
α = 0.75 is illustrated on each scatter plot. Moreover, the associated ρQα and ρSα
are computed and compared to the maximal correlation risk mesure ρC from
[5] in the third column. The higher the bar, the riskier the corresponding vector
of losses. In view of their comparison, the measurements ρ ∈ {ρQα , ρSα, ρC} are
rescaled. For Y1 the distribution of the blue scatter plot and Y2 the orange one,
one considers, for the height of the bars,

ρ(Y1)/max
(
ρ(Y1), ρ(Y2)

)
and ρ(Y2)/max

(
ρ(Y1), ρ(Y2)

)
.

For each situation, our VaR and CVaR provide typical observations in the mul-
tivariate tails. The maximal-correlation risk measure ρC performs as well as
expected, while our CVaR succeeds in more situations. Indeed, ρC benefits from
several theoretical properties but only measures the riskiness of X−E(X), hence
it neglects the shift effects.

Figure 6(a) contains two Gaussian distributions with identical mean vectors
and covariance matrices related through the multiplication by a positive real.
This is well tackled by each real-valued risk measurement. The existence of more
outliers must be taken into account similarly, as in figure 6(b), where the two
scatter plots originate from the same underlying distribution, but some outliers
are added to the orange one. The CVaR is much more sensitive to these outliers
than the VaR, as in dimension d = 1. Note that ρC ignores the outliers and
leads to the wrong decision in the sense than the blue distribution is considered
as the riskiest one. In the situation of Figure 6(c), the orange scatterplot is
identical to the blue one, but shifted to the right side, so that it must be the
riskiest. As ρC ignores this shift, it induces the wrong decision. Finally, in the
last example of Figure 6(d), making a decision on the relative risk between the
underlying distributions requires a preference for one of the components. Here,
the two situations reveal risks of same intensity but directed towards different
directions. To inform on the underlying directional information, vector-valued
risk measures such as our VaRs and CVaRs are needed in complement.

5.3. Risk measurements on wind gusts data

In this section, we illustrate our new multivariate risk measures on the analysis
of a real dataset provided by the ExtremalDep R package, [6], and dedicated
to the study of strong wind gusts. This dataset has previously been studied in
[25, 32, 42] in a context of risk measurement. The three variables are hourly wind

https://cran.r-project.org/web/packages/ExtremalDep/ExtremalDep.pdf
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Fig 6. VaRs (+) and CVaRs (×) on toy examples. Third column : real-valued risk measure-
ments for the point clouds of the same line.
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Fig 7. Three dimensional wind gust data set.

gust (WG) in meters per second, wind speed (WS) in meters per second, and
air pressure at sea level (DP) in millibars, recorded at Parcay-Meslay (France)
between July 2004 and July 2013. We consider the 1450 weekly maximum of
each measurement. Because the variables are of different nature, it is the precise
framework where multivariate risk analysis is useful, rather than the aggregation
of several variables.

Figure 7 represents our three-dimensional dataset with pair scatterplots un-
der the diagonal and Pearson correlation values above. The diagonal represents
empirical density functions of each variable. Upper-right dependence can be
observed and has physical explanations. Strong wind gusts occur with stormy
weather, during which strong wind speed and high air pressure are frequently
recorded.

Figure 8 represents the three dimensional empirical distribution in red to-
gether with our vectorial risk measures. With the increase of the dimension,
such representative plots are no longer convenient. Rather, these measurements
can be retrieved as in Table 1.

Table 1

Components of (Conditional) Vectors-at-Risk for several risk levels.

V aR0.25 V aR0.5 V aR0.75

WS 8.21 9.98 12.36
WG 15.06 18.45 21.58
DP 11.92 13.65 17.84

CV aR0.25 CV aR0.5 CV aR0.75

WS 11.40 12.37 14.26
WG 21.28 22.43 26.24
DP 16.68 19.86 23.15

This summarizes the targeted information contained in the dataset. For in-
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Fig 8. Vectors-at-Risk and Conditional-Vectors-at-Risk.

stance, with a given probability 0.25, 0.5 or 0.75, one shall expect, at worst, wind
gusts of respective speed 15.06, 18.45, 21.58 m/s. With respectively same prob-
ability, averaged observations beyond these worst cases shall lie around 21.28,
22.43, 26.24 m/s. As in [42], we interpret these results thanks to the Beau-
fort scale. Note that this scale does not capture the speed of wind gusts, as it
usually averages over 10 minutes, by convention. Values between 13.9 and 17.1
m/s can be considered as high winds. Strong winds begin with 17.2 m/s, with
severely strong winds above 20.7 m/s up to 24.4 m/s. Severely strong winds
can cause slight structural damage, but less than storms for values around 24.5-
28.4 m/s. Above and up to 32.6 m/s, violent storms are very rarely experienced
and cause widespread damage. Wind speeds greater than 32.7 m/s correspond
to hurricanes. Thanks to Table 1, with probability 0.75, the worst scenarios in
Parcay-Meslay for wind gusts are severely strong winds. Moreover, along the
tail events corresponding to 25% of occurrences, one shall expect wind gusts
of same speed as storms. Also, to illustrate the fact that considering univariate
measures leads to underestimating the risk, we display in Figure 2 traditional
univariate Values-at-Risk of WG, the wind gusts. For example, its median is
11.80, (strong breeze), and must be compared with 18.45, (strong winds), the
second coordinate of V aR0.5.

Table 2

Univariate quantiles of our variable WG.
Min 1st quartile Median 3rd quartile Max
4.10 9.80 11.80 14.90 34

Such differences have statistical foundings. The median depends on the uni-
variate empirical distribution of WG to describe a probability of 1/2. Conversely,
our multivariate V aR0.5 encodes the multivariate joint probability of the whole
point cloud (WG,WS,DP). This can be summarized by the fact that univariate
risk measures neglect the correlations, which legitimates the use of multivariate
risk analysis.
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6. Conclusion and perspectives

In this paper, we provided new concepts of superquantiles and expected short-
falls, in a meaningful multivariate way, based on the Monge-Kantorovich quan-
tiles. We expect that our definitions allow the extension of the univariate appli-
cations to the multivariate case. Also, we introduced new transport-based risk
measures, extending the concepts of Value-at-Risk and Conditional-Value-at-
Risk to the dimension d > 1. The definitions of this paper are mainly motivated
by practical concerns and the coherence of the proposed concepts with respect to
their interpretation in dimension d = 1. Interestingly, from our center-outward
expected shortfall function, one can retrieve Lorenz functions defined in [38].
This is discussed in Section 6.1, and other perspectives are also presented in
Section 6.2.

6.1. On the class of integrated quantile functions

The role of integrated quantile functions in dimension d = 1 has been highlighted
in [35]. Obviously, we belong to the line of works trying to extend such functions
to the setting d > 1. In Section 4 of [38], two different approaches are discussed,
in view of generalizing

α �→
∫ α

0
Q(t)dt. (6.1)

Hereafter, we bridge their concepts with ours, namely Definition 2.5 that ex-
tends (6.1). Recall that S

d−1 = {ϕ ∈ R
d : ‖ϕ‖2 = 1} and PS is the uniform

probability measure on S
d−1. There, the (absolute) center-outward Lorenz func-

tion from [38][Definition 4] writes as

LX± : α �→ E[X1X∈Cα ] =
∫
Sd−1

αE(αϕ)dPS(ϕ). (6.2)

This being said, we believe that our proposed concepts of integration along sign
curves contain more information, namely directional. When characterizing the
contributions of central regions to the expectation, LX± provides meaningful
concepts of Lorenz curves, but this approach is insufficient for superquantiles
and multivariate tails, as illustrated in Example 2.1.

Another important generalization of (6.1) is the one from [27] about multi-
variate Lorenz curves. A main difference between the concepts of [27] and [38]
is the reference distribution, either the uniform on the unit hypercube or the
spherical uniform. Here, Lorenz curves aim to visualize inequalities within a
given population. In this context, one could focus either on the contribution of
middle classes as in [38], or on the one of the bottom of the population as in
[27], in a way that these works are in fact complementary. Furthermore, an-
other approach is proposed in [38][Definition 6], that is real-valued, namely the
(absolute) center-outward Lorenz potential function, for ϕ ∈ S

d−1,

α �→ Eϕ[ψ(αϕ)]. (6.3)
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This is quite natural because, at the core of the univariate considerations of
[35], one can retrieve the property that the quantile function is the gradient of a
convex potential, that is the definition of the center-outward quantile function
Q. Also, it has a physical interpretation, with a measurement of the work of
the quantile function. There, one might note that our center-outward expected
shortfall function draws a connection between [38][Definition 4] and [38][Defini-
tion 6], through (6.2) and (2.11). Somehow, this strengthens the relation between
LX± and the potential function ψ. Studying deeper such connections between
existing notions might lead to interesting results, but is left for further work.

6.2. Other perspectives

Perspectives are both theoretical and practical. Statistical tests associated with
our real-valued measures would be of great interest, to automatically detect
when to use the vector-valued ones. Also, these risk measures appeal for be-
ing used in practical settings. Extending our definitions to extreme quantile
levels and building related procedures is another line of study. For instance,
[18][Theorem 4.3] ensures the existence of a MK quantile map which is stable
as moving further to the tail contours, which is not the case with the spherical
uniform Ud. Our proposed center-outward superquantiles can be defined with
other spherical reference measures, thus one can also calibrate these superquan-
tiles as the work of [18] suggests. In addition, the many applications of the
univariate superquantile function in other fields than risk measurement, such as
superquantile regression or optimization with a superquantile loss, appeal for
further work, even more so with Theorems 2.3 and 2.4. Finally, the convergence
of empirical entropic optimal transport towards its population counterpart is
an active field, [21, 34, 46, 49], and it remains to study to what extent existing
results adapt to the convergence of Ŝε,n and Êε,n.
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