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Abstract: Generalized Bayesian inference replaces the likelihood in the
Bayesian posterior with the exponential of a loss function connecting pa-
rameter values and observations. As a loss function, it is possible to use
Scoring Rules (SRs), which evaluate the match between the observation and
the probabilistic model for given parameter values. In this work, we leverage
this Scoring Rule posterior for Bayesian Likelihood-Free Inference (LFI). In
LFI, we can sample from the model but not evaluate the likelihood; hence,
we use the Energy and Kernel SRs in the SR posterior, as they admit unbi-
ased empirical estimates. While traditional Pseudo-Marginal (PM) Markov
Chain Monte Carlo (MCMC) can be applied to the SR posterior, it mixes
poorly for concentrated targets, such as those obtained with many observa-
tions. As such, we propose to use Stochastic Gradient (SG) MCMC, which
improves performance over PM-MCMC and scales to higher-dimensional
setups as it is rejection-free. SG-MCMC requires differentiating the sim-
ulator model; we achieve this effortlessly by implementing the simulator
models using automatic differentiation libraries. We compare SG-MCMC
sampling for the SR posterior with related LFI approaches and find that
the former scales to larger sample sizes and works well on the raw data,
while other methods require determining suitable summary statistics. On
a chaotic dynamical system from meteorology, our method even allows in-
ferring the parameters of a neural network used to parametrize a part of
the update equations.
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1. Introduction

This work is concerned with performing inference for a model Pθ whose density
p(y|θ) for an observation y is unavailable, but from which it is easy to simulate
for any parameter value θ (such models are known as intractable-likelihood or
simulator models). Given y and a prior π(θ) on the parameters, the standard
Bayesian posterior is π(θ|y) ∝ π(θ)p(y|θ). However, obtaining that explicitly
or sampling from it with Markov Chain Monte Carlo (MCMC) techniques is
impossible without having access to the likelihood.

Traditional Likelihood-Free Inference (LFI) techniques exploit model simu-
lations to approximate the exact posterior distribution when the likelihood is
unavailable, by either estimating an explicit surrogate [71, 1, 77] or weighting
different parameter values according to the mismatch between observed and
simulated data [50, 6].

In this work, we introduce a new LFI approach grounded in the generalized
Bayesian inference framework [10, 41, 45]: given a generic loss �(y, θ) between
a single observation y and parameter θ, the generalized posterior belief on pa-
rameter values can be defined as:

π(θ|y) ∝ π(θ) exp(−w · �(y, θ)); (1)

this allows us to learn about the parameter value minimizing the expected loss
over the data generating process1 and respects Bayesian additivity (namely,
the final posterior distribution does not depend on the order observations are
received). The learning rate w controls how much the posterior concentrates
when increasing the number of observed samples n.

Previous works [34, 52] took �(y, θ) to be a Scoring Rule (SR) S(Pθ, y), which
assesses the performance of Pθ for an observation y. Here, we apply this scoring
rule posterior πS to Bayesian LFI. In particular, we consider scoring rules S such
that S(Pθ, y) can be estimated with samples from Pθ; thus, we can perform LFI
without worrying about the missing likelihood p(y|θ). Two scoring rules allowing
this while having good theoretical properties are the kernel and the energy scores
[35]. When k(·, ·) is a symmetric and positive-definite kernel, the kernel score
for k can be defined as [35]:

Sk(P, y) = E[k(X,X ′)] − 2 · E[k(X, y)], X ⊥⊥ X ′ ∼ P.

The energy score is given by a specific choice of k [35]:

S
(β)
E (P, y) = 2 · E

[
‖X − y‖β2

]
− E

[
‖X −X ′‖β2

]
, X ⊥⊥ X ′ ∼ P,

where β ∈ (0, 2).
1Indeed setting �(y, θ) = − log p(y|θ) and w = 1 recovers the standard Bayes update, which

learns about the parameter value minimizing the KL divergence [10].
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When inserting the kernel score in Eq. (1), the MMD-Bayes posterior [13] is
recovered. The SR posterior can be therefore seen as a generalization of MMD-
Bayes, which was also employed for LFI in the original work [13]. In the present
paper, we discuss the SR posterior for LFI in more generality and employ MCMC
schemes to perform inference (instead of variational inference as in [13]).

Exact sampling from the SR posterior remains impossible; still, a Pseudo-
Marginal (PM) MCMC [4] where simulations from Pθ′ are generated for each
proposed θ′ can be used to sample from a close approximation (whose error
diminishes when the number of simulations at each step increases) for any SR
allowing estimation from samples. While PM-MCMC works well for simple cases
and is applicable to any simulator model, it mixes poorly for concentrated tar-
gets (such as those obtained when many observations are used).

Alternatively, approximate samples from the SR posterior can be obtained
using Stochastic-Gradient (SG) MCMC [59] by leveraging the unbiased esti-
mates of ∇θS(Pθ, y) possible with the energy and the kernel score. The unbi-
ased gradient estimate requires the gradient of the simulated data with respect
to model parameters, which can easily be obtained by implementing the sim-
ulator model with automatic differentiation libraries. In this work, we mostly
employ adaptive stochastic gradient Langevin dynamics [43], which enjoys the-
oretical bounds for its error and results for asymptotic convergence [22, 47, 46];
further, we show empirically that the SG-MCMC target matches well that ob-
tained with PM-MCMC in cases where the latter mixes well while requiring
lower computational effort. Importantly, SG-MCMC has no mixing issues (as
it is rejection-free). To the best of our knowledge, ours is the first application
of gradient-based sampling methods to LFI using an unbiased estimate of the
gradient of the target distribution, which is enabled by the SR posterior and
leads to scalable inference for high-dimensional parameter spaces.

Qualitatively, the properties of the SR posterior are independent of the value
of w in its definition (see Eq. 2). However, the choice of w determines the rate
of contraction of the SR posterior. A large ongoing research effort is devoted
to the selection of w for generalized Bayesian posteriors, resulting in methods
ensuring, for instance, different forms of coverage [54, 76, 57] or other properties
[10, 39, 52]. Several of those methods (and plausibly future ones) apply to our
framework. Hence, we do not delve deep into determining the optimal way to
select w or develop our own, mindful of the fact that this is an area of active
research and that each practical use case is best tackled with a different method.
Still, in our empirical evaluations of the SR posterior, it may be beneficial for
different posteriors to have similar scales. When that is required, we will either
rely on hand-tuning or a previously introduced method which we revisit for our
framework.

We empirically compare the SR posterior with the popular Bayesian Syn-
thetic Likelihood (BSL, 71) approach, which also involves estimating the pos-
terior at each MCMC step via model simulations. However, as BSL does not
provide unbiased gradient estimates, this prevents the use of SG-MCMC, which
hinders the performance of BSL for concentrated and high-dimensional targets.
Next, we consider a real-world meteorological model [53] and infer its param-
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eters with Approximate Bayesian Computation [50] and our SR posterior. We
also use our framework to infer the posterior distribution over the parameters
of a high-dimensional Neural Stochastic-Differential Equation for modelling the
same data, which is unachievable with traditional (non-gradient-based) sampling
methods. Moreover, our method works on the raw data, whereas traditional LFI
methods require determining suitable summary statistics.

To summarise, our contributions are as follows:

• We apply the Scoring Rule posterior [34, 52] to Likelihood-Free Inference
(LFI), study its properties and discuss how it generalizes some existing
LFI methods.

• We leverage stochastic gradient MCMC [59] for sampling from the Scoring
Rule posterior by relying on automatic differentiation of the simulator
models, and show how it performs better than pseudo-marginal MCMC.

• We conduct simulation studies where we compare existing LFI meth-
ods with our approach, which scales to higher-dimensional parameter
space and a larger number of observations, mainly thanks to employing a
gradient-based sampling method enabled by the SR posterior.

The rest of this manuscript is organized as follows. In Sec. 2, we first review
the scoring rules and define the SR posterior; we then discuss and compare the
two sampling methods in Section 3. Simulation studies assessing the performance
of our proposed sampling scheme for scoring rule posterior and comparison with
other LFI approaches are presented in Sec. 4. Finally, we briefly review previous
works in Sec. 5 and conclude and suggest future directions in Sec. 6.

1.1. Notation

We will denote respectively by X ⊆ R
d and Θ ⊆ R

p the data and parameter
space, which we assume to be Borel sets. We will assume the observations are
generated by a distribution P0 and use Pθ and p(·|θ) to denote the distribution
and likelihood of our model. Generic distributions will be indicated by P or
Q, while S will denote a generic scoring rule. Other upper-case letters will de-
note random variables while lower-case ones will denote observed (fixed) values.
We will denote by Y or y the observations (correspondingly random variables
and realizations) and X or x the simulations. Subscripts will denote sample
index and superscripts vector components. Also, we will respectively denote by
Yn = {Yi}ni=1 ∈ Xn and yn = {yi}ni=1 ∈ Xn a set of random and fixed obser-
vations. Similarly, Xm = {Xj}mj=1 ∈ Xm and xm = {xj}mj=1 ∈ Xm denote a
set of random and fixed model simulations. Finally, ⊥⊥ will denote independence
between random variables, while X ∼ P indicates a random variable distributed
according to P .
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2. Bayesian inference using scoring rules

2.1. Background definitions

A Scoring Rule (SR, 35) S is a function of a probability distribution over X
and of an observation in X . For a distribution P and an observation y, we will
denote this as S(P, y). Assuming that y is a realization of a random variable Y
with distribution Q, the expected scoring rule is defined as:

S(P,Q) := EY∼QS(P, Y ),

where we overload notation in the second argument of S. The scoring rule S is
proper relative to a set of distributions P(X ) over X if

S(Q,Q) ≤ S(P,Q) ∀ P,Q ∈ P(X ),

i.e., if the expected scoring rule is minimized in P when P = Q. Moreover, S is
strictly proper relative to P(X ) if P = Q is the unique minimum:

S(Q,Q) < S(P,Q) ∀ P,Q ∈ P(X ) s.t. P �= Q.

The divergence related to a proper scoring rule [18] can be defined as
D(P,Q) := S(P,Q) − S(Q,Q) ≥ 0. Notice that P = Q =⇒ D(P,Q) = 0, but
there may be P �= Q such that D(P,Q) = 0. However, if S is strictly proper,
D(P,Q) = 0 ⇐⇒ P = Q, which is the commonly used condition to define a
statistical divergence (as for instance the Kullback-Leibler, or KL divergence).
Therefore, each strictly proper scoring rule corresponds to a statistical diver-
gence between probability distributions.

The energy score introduced in Sec. 1 is a strictly proper scoring rule for the
class of probability measures P such that EX∼P ‖X‖β < ∞ [35]. The related
divergence is the square of the energy distance, which is a metric between prob-
ability distributions (72; see Appendix D.1)2. We will fix β = 1 in the rest of
this work and we will write SE in place of S(1)

E . Analogously, the kernel score
is proper for the class of probability distributions for which E[k(X,X ′)] is fi-
nite (by Theorem 4 in [35]). Additionally, it is strictly proper under conditions
which ensure that the MMD is a metric for probability distributions on X (see
Appendix D.2). These conditions are satisfied, among others, by the Gaussian
kernel (which we will use in this work):

k(x, y) = exp
(
−‖x− y‖2

2
2γ2

)
,

in which γ is a scalar bandwidth. The divergence corresponding to the kernel
score is the squared Maximum Mean Discrepancy (MMD, 37) relative to the
kernel k (see Appendix D.2).

2The probabilistic forecasting literature [35] use a different convention for the energy score
and the subsequent kernel score, which amounts to multiplying our definitions by 1/2. We
follow here the convention used in the statistical inference literature [72, 13, 60]
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2.2. The scoring rule posterior

Consider now a set of independent and identically distributed observations yn ∈
Xn sampled from a distribution P0. The SR posterior [34, 52] is obtained by
setting �(y, θ) = S(Pθ, y) in the general Bayes update in Eq. (1):

πS(θ|yn) ∝ π(θ) exp
{
−w

n∑
i=1

S(Pθ, yi)
}
. (2)

The standard Bayes posterior is recovered from Eq. (2) by setting w = 1
and S(Pθ, y) = − log p(y|θ). Such choice of S is called the log score, is strictly
proper, and corresponds to the Kullback-Leibler (KL) divergence. With the
same S, w �= 1 yields the fractional posterior [39, 7].

In this work, we focus on the SR posterior obtained with the energy and
kernel scores (Sec. 1), which can be estimated from samples and, as such, make
it suitable for likelihood-free inference. The SR posterior was previously studied
in [34], which fixed w = 1 and adjusted the parameter value so that the posterior
has the same asymptotic covariance matrix as the frequentist minimum scoring
rule estimator (see Sec. 2.3), and in [52], which considered a time-series setting
in which the task is to learn about the parameter value which yields the best
prediction, given the previous observations.
Remark 1 (Bayesian additivity). The posterior in Eq. (2) satisfies Bayesian
additivity (also called coherence, 10): sequentially updating the belief with a set
of observations does not depend on the order the observations are received.
Remark 2 (Non-invariance to change of data coordinates). The SR poste-
rior is in general not invariant to change of the coordinates used for representing
the observations. This is a property common to loss-based frequentist estimators
and to the generalized posterior obtained from them [56]; see Appendix B for
more details.

2.3. Properties of the SR posterior

The SR posterior in Eq. (2) is a form of generalized Bayesian posterior [10]. [58]
obtains asymptotic normality results broadly applicable to generalized Bayesian
posterior, which can be adapted to the SR posterior (see the thesis [61] for more
details). Notice that, for the posterior to concentrate asymptotically, the mini-
mizer of the expected SR needs to be unique. Well-specified model and strictly
proper SR S imply a unique minimizer; however, there are cases where the min-
imizer is unique even when the SR is not strictly proper or the model is not well
specified. Similar asymptotic normality results can be obtained for Bayesian
Synthetic Likelihood [31] and Approximate Bayesian Computation [30]. Notice
however the result in [58] cannot be applied to the target of an MCMC where
the scoring rule S(Pθ, y) is replaced with a sample estimate Ŝ(x(θ)

m , y) (Sec. 3).
Studying the asymptotic normality of such a target would be of interest, but we
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leave it for future work; see [32] for a study on this in the case of Approximate
Bayesian Computation.

In contrast to asymptotic normality for the traditional Bayesian posterior
(Section 4.1.2 in 33), which ensures that the asymptotic covariance matrix
matches that of the empirical maximum likelihood estimator, the asymptotic
covariance matrix of the SR posterior does not match that of the frequentist
minimizer of the SR, implying that asymptotic credible sets do not in general
have correct frequentist coverage, even for strictly proper SR and well-specified
model. This contrasts with Bayesian synthetic likelihood and regression-adjusted
Approximate Bayesian Computation, for which correct frequentist coverage can
be achieved for the asymptotic posterior under some conditions on the summary
statistics [31, 49]. We also point out how a promising recent method for cali-
brating Bayesian inference for misspecified models [29] could be leveraged to fix
this mismatch for the SR posterior; we leave this to future work.

For the energy and kernel score posteriors, a finite-sample bound on the
probability of deviation of the posterior expectation of the divergence from the
minimum divergence achievable by the model can be obtained (see [61] for a
statement), similarly to what was done in [56] for a generalised posterior based
on the kernel Stein discrepancy. Such bound does not require the model to be
well specified nor the minimizer of the divergence to be unique.

Finally, for the energy and kernel score posteriors, it is possible to show an
outlier-robustness result analogous to that obtained in [56] for the SR posterior;
see [61] for a complete derivation.

3. Sampling the scoring rule posterior for LFI

Computing the energy and kernel scores, provided the likelihood is available,
requires solving a double expectation, which is challenging in practice. In the
following, we will show how the availability of samples from simulator models
allows us to get unbiased estimates of the energy and kernel scores. Further, for
differentiable simulator models (for which derivative of the simulated data w.r.t.
to the parameters are available) we can also obtain unbiased estimators of the
gradient of the scoring rules considered here under some regularity conditions.
These derivatives can be effortlessly computed using automatic differentiation
libraries for most simulator models 3.

To sample approximately from the scoring rule posterior, we propose a pseudo-
marginal Monte Carlo Markov chain (PM-MCMC) algorithm using estimators
of scoring rules computed from samples of the simulator model. In addition,
we propose using stochastic gradient Monte Carlo Markov chain (SG-MCMC)
algorithms for differentiable simulator models. When applicable, SG-MCMC
avoids two known drawbacks of PM-MCMC, namely the curse of dimensionality
limiting its application to high-dimensional parameter spaces and the “sticky”
behaviour resulting in poor mixing for concentrated targets.

3Exceptions include simulator models with thresholding involved in their simulation pro-
cess or when the simulated data is discrete.
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3.1. Pseudo-marginal MCMC

Our PM-MCMC algorithm depends upon the existence of an estimate Ŝ(x(θ)
m , y)

of S(Pθ, y), where x(θ)
m = {x(θ)

j }mj=1 is a set of samples x
(θ)
j ∼ Pθ, and Ŝ is such

that Ŝ(X(θ)
m , y) → S(Pθ, y) in probability as m → ∞ (i.e., it estimates the SR

consistently). Unbiased estimates for S(β)
E and Sk can be obtained by unbiasedly

estimating the expectations using samples x(θ)
m as follows:

Ŝ
(β)
E (x(θ)

m , y) = 2
m

m∑
j=1

∥∥∥x(θ)
j − y

∥∥∥β

2
− 1

m(m− 1)

m∑
j,k=1
k �=j

∥∥∥x(θ)
j − x

(θ)
k

∥∥∥β

2
;

Ŝk(x(θ)
m , y) = 1

m(m− 1)

m∑
j,k=1
k �=j

k(x(θ)
j , x

(θ)
k ) − 2

m

m∑
j=1

k(x(θ)
j , y).

Notice how the above estimates can be negative; however, this is not an issue
when employing these in our approximate MCMC methods targeting the SR
posterior, as the above estimates are passed through the exponential defining
the SR posterior, which makes the final target estimate positive.

For each proposed value of θ, we simulate x(θ)
m = {x(θ)

j }mj=1 and estimate the
target in Eq. (2) with:

π(θ) exp
{
−w

n∑
i=1

Ŝ(x(θ)
m , yi)

}
. (3)

This procedure is an instance of pseudo-marginal MCMC [4], with target:

π
(m)
Ŝ

(θ|yn) ∝ π(θ)p(m)
Ŝ

(yn|θ), (4)

where:

p
(m)
Ŝ

(yn|θ) = E

[
exp

{
−w

n∑
i=1

Ŝ(X(θ)
m , yi)

}]
.

For a single draw x(θ)
m , the quantity in Eq. (3) is in fact a non-negative and

unbiased estimate of the target in Eq. (4); this approach is similar to what is
proposed in [24] for inference with auxiliary likelihoods, which has also been used
by [71] for BSL. As it was already the case for the latter, the target π(m)

Ŝ
(θ|yn)

is not the same as πS(θ|yn) and depends on the number of simulations m; in
fact, in general:

E

[
exp

{
−w

n∑
i=1

Ŝ(X(θ)
m , yi)

}]
�= exp

{
−w

n∑
i=1

S(Pθ, yi)
}
,

even if Ŝ(x(θ)
m , y) is an unbiased estimate of S(Pθ, y). However, it is possible to

show that, as m → ∞, π(m)
Ŝ

converges to πS :



Generalized Bayesian likelihood-free inference 3637

Theorem 3.1. Assume the following:

1. Ŝ(X(θ)
m , yi) converges in probability to S(Pθ, yi) as m → ∞ for all i =

1, . . . , n.
2. supm E

[
exp{−(1 + δ)w

∑n
i=1 Ŝ(X(θ)

m , yi)}
]
< ∞ for some δ > 0.

3. infm
∫
Θ p

(m)
Ŝ

(yn|θ)π(θ)dθ > 0 and supm p
(m)
Ŝ

(yn|θ) ≤ g(θ) where∫
Θ g(θ)π(θ)dθ < ∞.

Then,
lim

m→∞
π

(m)
Ŝ

(θ|yn) = πS(θ|yn).

The above result (proven in appendix A) is an extension of the one in [24] for
Bayesian inference with an auxiliary likelihood. If Ŝ(x(θ)

m , yi) ≥ S(P̂θ, yi), where
P̂θ is the empirical distribution determined by x(θ)

m , and S is a proper scoring
rule, Assumption 2 above is automatically verified (see Appendix A.1); however,
notice that, the scoring rule estimates Ŝk and ŜE for the kernel and energy scores
are not lower bounded by the scoring rules of the empirical distribution.

The assumptions and conclusions are stated considering a fixed value of yn;
if the assumptions were to hold almost surely over Yn, the conclusion would
also hold almost surely.

In practice, in place of the vanilla pseudo-marginal approach discussed above,
we use a correlated pseudo-marginal MCMC [17, 20, 68], which reuses the ran-
dom numbers used in model simulations over subsequent proposed parameter
values. This correlates the target estimates at subsequent steps and reduces
the chances of the chain getting stuck due to atypical random number draws.
Specifically, the m simulations used in the posterior estimate (Eq. 3) are split
into G groups; at each MCMC step, a new set of random numbers is proposed
for the simulations in a randomly chosen group (alongside the proposed value
for θ), and accepted or rejected in the standard way. This algorithm still targets
Eq. (4).

3.2. Stochastic gradient MCMC

For the scoring rules used across this work, as well as any weighted sum of those,
we can write S(Pθ, y) = E

X,X′∼Pθ

g (X,X ′, y) for some function g; namely, the

SR is defined through an expectation over (possibly multiple) samples from Pθ.
In the following, we assume random samples from the simulator model Pθ can
be written as X = hθ(Z) where Z follows a base distribution Q independent of
the parameters θ. Now:

∇θS(Pθ, y) = ∇θ E
X,X′∼Pθ

g (X,X ′, y)

= ∇θ E
Z,Z′∼Q

g (hθ(Z), hθ(Z ′), y)

= E
Z,Z′∼Q

∇θg (hθ(Z), hθ(Z ′), y) .
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In the latter equality, the exchange of derivative and expectation is valid if both
g and hθ are differentiable. Moreover, it is also valid with some non-differentiable
hθ; for instance, Theorem 5 in [9] ensures this for hθ being a neural network with
Lipschitz layers (which is the case for the vast majority of neural networks used
in practice), provided Q satisfies a mild moment condition and g is continuously
differentiable and satisfies two growth conditions. This guarantees our method
is applicable to the model we study in Sec. 4.3.3, which is defined by a neural
network.

Based on the above equality, we estimate the gradient of the scoring rule as
follows:

∇̂θS(Pθ, y) = 1
m(m− 1)

m∑
i,j=1
i �=j

∇θg
(
hθ(Zi), hθ(Z ′

j), y
)
, Zi ⊥⊥ Z ′

j ∼ Q.

In practice, this can easily be obtained by implementing the function hθ using
automatic-differentiation libraries [66].

By relying on this construction, we adapt two existing SG-MCMC [59] algo-
rithms (stochastic gradient Noose-Hoover thermostat [22] and Preconditioned
Stochastic Gradient Langevin [48]) to sample from the scoring rule posterior.
As mentioned above, these algorithms are approximate, but the computational
advantage they provide overweights the induced approximation.

Alternatively, Piecewise-Deterministic Markov Processes (PDMP, 27) allow
exact sampling with an unbiased estimate of the log-target gradient; unfortu-
nately, however, the exact implementation of the existing algorithms requires
computing an upper bound of the log-target gradient which is intractable for
most practical use cases. To avoid this, approximate methods [64, 15] are devel-
oped, which are however inconvenient for general target distributions compared
to SG-MCMC methods.

Adaptive Stochastic Gradient Langevin Dynamics (adSGLD) The
earliest known stochastic gradient MCMC algorithm [78] is based upon the
(Overdamped) Langevin Diffusion, defined by the following Stochastic Differen-
tial Equation:

dθ(t) = −1
2∇θU(θ(t))dt + dBt.

For the SR posterior, U(θ) = log π(θ) − w
∑n

i=1 S(Pθ, yi), θ ∈ R
d and Bt ∈

R
d is standard Brownian Motion. Under suitable regularity conditions, this

continuous-time diffusion has πS(θ|yn) as its stationary distribution [73, 69].
In practice, we are unable to simulate this stochastic process exactly. Hence,
numerical integration schemes are used to generate samples. For instance, the
Euler-Maruyama method consists of the following update:

θt+1 ← θt −
ε

2∇θU(θ(t)) +
√
εZ

repeated over t, where Z is a d-dimensional standard normal random vector
and ε is a discretisation step size. Following [78], we propose to use the unbiased
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estimate of the gradient of ∇θU(θ(t)),

∇̂θU(θ) = ∇θ log π(θ) − w

n∑
i=1

∇̂θS(Pθ, yi)

in the above update equation; this method is called Stochastic Gradient Langevin
Dynamics (SGLD). Using a sequence {εi}Ni=1 converging to 0 and taking m →
∞, under some condition, [78] shows that SGLD samples from the scoring rule
posterior.

In practice, however, we do not have εi → 0 or m → ∞. Hence, to ensure
sampling with minimal bias for our noisy gradient scenario, we utilize the adap-
tive Langevin dynamics originally proposed in [43] and later used for Bayesian
inference in [22]. We will refer to this algorithm as adaptive stochastic gradi-
ent Langevin dynamics (adSGLD), which runs on an augmented space (θ, p, ξ),
where θ represents the parameter of interest, p ∈ R

d represents the momentum
and ξ represents an adaptive thermostat controlling the mean kinetic energy
1
nE[p�p], along with a diffusion factor A. Thus, the new dynamics are as fol-
lows: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

dθt = pt dt

dpt = −∇θU(θ(t))dt− ξpt dt +
√

2AN (0, Idt)

dξ =
(

1
n
p�t pt − 1

)
dt.

Theoretical properties and convergence of adSGLD algorithm have been studied
in [22], [47] and [46]. Below, we state the adSGLD algorithm, which requires
fixing the hyperparameters ε (step size) and A.

Algorithm 1 adSGLD Algorithm for scoring rule posterior
Input: A, ε, θ0, N

Output: {θi}Ni=1 samples
1: Initialise P0 ∼ N(0, I) and ξ0 ← A
2: for i = 1 to N do:
3: Estimate ∇̂θU(θi−1)
4: Pi ← Pi−1 − ξi−1Pi−1ε− ∇̂θU(θi−1)ε +

√
2AN(0, ε)

5: θi ← θi−1 + Piε
6: ξi ← ξi−1 +

( 1
n
P�
i Pi − 1

)
ε

7: end for

Preconditioned Stochastic Gradient Langevin Dynamics (pSGLD, 48)
This algorithm preconditions the log-target with a diagonal matrix G(θ) ob-
tained through a running average of the squared gradients using the following
update equations:

G (θt+1) = diag
(
1 �

(
λ1 +

√
V (θt+1)

))
V (θt+1) = αV (θt) + (1 − α)∇̂θU(θt) � ∇̂θU(θt)
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with � and � denoting element-wise matrix division and product respectively.
The hyperparameter λ is a small bias term to avoid the degeneration of the
preconditioner, while α ∈ (0, 1) is a relative weighting between the previous and
current gradients. This algorithm performs well for non-convex posteriors on
high-dimensional space, and in particular for the complicated posteriors char-
acterized by deep neural networks. We state the algorithm for pSGLD below.

Algorithm 2 pSGLD Algorithm for scoring rule posterior
Input: λ, α, ε, θ0, N

Output: {θi}Ni=1 samples
1: Initialise V0 ← 0
2: for i = 1 to N do:
3: Estimate ∇̂θU(θi)
4: V (θi) ← αV (θi−1) + (1 − α)∇̂θU(θi) � ∇̂θU(θi)
5: G (θi) ← diag

(
1
(
λ1 +

√
V (θi)

))
6: θi+1 ← θi + ε

2G (θi)U(θi) + N (0, εG (θi))
7: end for

In practice, we set λ to 10−5 and α to 0.99.

Choice of step size ε For SG-MCMC algorithms, choosing the step-size ε is
critical, as it represents a trade-off between the speed of convergence or mixing
performance and the discretisation error. In practice, SG-MCMC algorithms
are often used with a constant step size due to slow mixing when ε ≈ 0. To
tune ε, we use a modified version of the multi-armed bandit algorithm based on
the kernelized Stein discrepancy proposed in [16]. This algorithm identifies each
arm with a specific hyperparameter configuration, and for a fixed time bud-
get, sequentially eliminates poor hyperparameter configurations based on the
kernelized Stein discrepancy between the samples and the target distribution.

4. Empirical studies

4.1. Comparison between PM-MCMC and SG-MCMC

To compare PM-MCMC and SG-MCMC (specifically, the adSGLD algorithm),
we perform an empirical study on the univariate g-and-k model [70]. The latter
is defined in terms of the inverse of its cumulative distribution function F−1.
Given a quantile q, we define:

F−1(q) = A + B

[
q + 0.81 − e−gz(q)

1 + e−gz(q)

] (
1 + z(q)2

)k
z(q), (5)

where the parameters A, B, g, k are broadly associated with the location, scale,
skewness and kurtosis of the distribution, and z(q) denotes the q-th quantile of
the standard normal distribution N (0, 1). Likelihood evaluation for this model is
costly as it requires numerical inversion of F−1; instead, sampling is immediate
by drawing z ∼ N (0, 1) and inputting it in place of z(q) in the expression above.



Generalized Bayesian likelihood-free inference 3641

Fig 1. Comparison of adSGLD and PM-MCMC to sample from the marginals of the
energy score posterior for the g-and-k model obtained with n = 10. Vertical lines denote true
parameter values. For both, 100000 samples with 10000 burn-in were used.

Fig 2. Kernelized Stein Discrepancy for first 30000 MCMC samples for the energy score
posterior for the g-and-k model, on n = 10 observations, sampled with adSGLD and PM-
MCMC. KSD uses the inverse multi-quadratic kernel, with the gradients estimated using
500 simulated observations from each parameter. adSGLD both converges faster and is more
accurate than the PM-MCMC algorithm.
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Fig 3. Posterior concentration of univariate g-and-k model, illustrated by marginals of
(a) energy score and (b) kernel score posteriors for the different parameters of the univari-
ate g-and-k model, with increasing number of observations (n = 1, 10, 20, . . . , 400). Darker
(respectively lighter) colours denote a larger (smaller) number of observations. The densities
are obtained by kernel density estimator on the MCMC output. The energy and kernel score
posteriors concentrate around the true parameter value (dashed vertical line).
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We use uniform priors on [0, 4]4 on the sets of parameters θ = (A,B, g, k). For
n = 10 observations from true parameter values A� = 3, B� = 1.5, g� = 0.5,
k� = 1.5, we perform inference with the energy score Posterior with w = 1,
setting the number of simulations per parameter value to m = 500 and run
adSGLD and PM-MCMC for 110000 steps. Additional experimental details are
reported in Appendix F.1.1.

Figure 1 shows a kernel density estimate of the samples obtained with the
two methods: the two densities are similar, with the PM-MCMC one slightly
broader. As both sampling methods are asymptotically biased, we cannot rely
on traditional MCMC diagnostics (such as the R-hat and the autocorrelation
function) to quantitatively evaluate sample quality, as those only evaluate prop-
erties of the chain itself and are thus unable to measure the discrepancy between
samples from an approximate sampler and exact target. To this aim, we employ
the kernelized Stein discrepancy (KSD) proposed in [36] which, conveniently, can
be estimated by using MCMC samples and unbiased estimates of the gradient of
the log target (see Appendix C). We compute the KSD with an increasing num-
ber of samples obtained from the two methods, thus allowing us to investigate
which algorithm converges faster. The results can be seen in Fig. 2: the adSGLD
algorithm converges faster than the PM-MCMC algorithm and asymptotically
produces samples that are a better approximation to the target distribution.
Based on the superior performance of the adSGLD algorithm here, we will em-
ploy it for sampling from the SR posterior in the remaining simulation studies as
all our considered simulator models are differentiable unless otherwise specified.
For comparison, results with PM-MCMC for some of the setups considered in
the main body of the paper are reported in Appendix G.

4.2. Posterior concentration of univariate g-and-k model

To empirically evaluate the concentration of the SR posterior, we consider the g-
and-k model introduced in Sec. 4.1 and sample from the energy and kernel score
posteriors for an increasing number of observations (up to n = 400) generated
from A� = 3, B� = 1.5, g� = 0.5, k� = 1.5.

For the same value of w, the scale of the two SR posteriors is different as
it depends on the values taken by the SR itself. As here we aim to compare
the concentration speed of the two posteriors, we set w such that they have
roughly the same scale (for the same number of observations. In other use cases,
as mentioned in the introduction, w can be selected to achieve different goals
(often, to match some frequentist property, see 54, 76, 57).

In practice, we adapt a method proposed in [10] which does not require re-
peated posterior inference and knowledge of the likelihood function. Specifically,
notice that:

log
{

πS(θ|y)
πS (θ′|y)/

π(θ)
π (θ′)

}
︸ ︷︷ ︸

BFS(θ,θ′;y)

= −w {S(Pθ, y) − S(Pθ′ , y)}
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where BFS(θ, θ′; y) denotes the Bayes Factor of θ with respect to θ′ for observa-
tion y. Therefore, w can be determined by fixing BFS(θ, θ′; y) for a single choice
of θ, θ′, y. Consider now another SR posterior πS′(θ|y) with Bayes Factor BFS′ ;
setting:

w = − log BFS′(θ, θ′; y)
S(Pθ, y) − S(Pθ′ , y) ,

ensures BFS′(θ, θ′; y) = BFS(θ, θ′; y). If πS and πS′ are obtained from the same
prior distribution and the latter uses w = 1, that corresponds to

w {S(Pθ, y) − S(Pθ′ , y)} = S′(Pθ, y) − S′(Pθ′ , y).

As we have no reason to prefer a specific choice of (θ, θ′), we set w to be the
median of S′(Pθ,y)−S′(Pθ′ ,y)

S(Pθ,y)−S(Pθ′ ,y) over values of (θ, θ′) sampled from the prior. In doing
so, we ensure the median variation of the SR (multiplied by the corresponding
w between two parameter values sampled from the prior is the same across the
two posteriors. Additionally, if Pθ is an intractable-likelihood model, we estimate
S(Pθ, y) and S′(Pθ, y) by generating data x(θ)

m for each considered values of θ.
Hence, we set w = 1 for the energy score posterior and use the above method

to tune w for the kernel score posterior, yielding w = 28.1; the bandwidth of the
Gaussian kernel was tuned as discussed in Appendix E. Additional experimental
details are reported in Appendix F.1.1. Figure 3 reports the results; with the
chosen values of w, the two posteriors concentrate at roughly the same speed
close to the true parameter values.

In Appendix G.1 we report similar results achieved with PM-MCMC; due to
the stickyness of the chain, those only run satisfactorily up to n = 100.

4.3. Comparison with popular LFI methods

We present here simulation studies to compare our approach with two popu-
lar LFI schemes, Bayesian Synthetic Likelihood (BSL, 71) and Approximate
Bayesian Computation (ABC, 50), and showcase the ability of SG-MCMC to
sample from the scoring rule posterior of models with high-dimensional param-
eter space.

In general, the performance of both ABC and BSL depends on the choice of
a set of summary statistics, which makes the method approximate (unless the
chosen statistics are sufficient, which is seldom the case). On the contrary, our
proposed methodology directly computes the SRs on the raw data and, as such,
avoids the need to determine suitable statistics. Nevertheless, to provide a fair
comparison, we tested BSL and ABC both on the raw data and on summary
statistics, as detailed below. Even so, our method still performs better than
ABC and BSL.

We first study the posterior concentration of the energy and kernel score
posteriors compared to BSL in Sec. 4.3.1 for both well-specified and misspeci-
fied models; next, in Sec. 4.3.2, we consider a meteorological model with high-
dimensional time-series dataset and compare the posterior predictive accuracy
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of the scoring rule posterior with that obtained with SMC-ABC [19]. Finally
in Sec. 4.3.3, we consider a neural extension of the meteorological model con-
sidered in Sec. 4.3.2 with a high-dimensional (> 100) parameter space; there,
SG-MCMC allows us to sample from the high-dimensional SR posterior, thus en-
abling a better posterior predictive accuracy than the lower dimensional model
considered in Sec. 4.3.2.

Throughout, the kernel score uses the Gaussian kernel with bandwidth set
from simulations as illustrated in Appendix E; further, we set w = 1 in the
energy score posterior and set w for the kernel score posterior with the strategy
discussed in Sec. 4.2. Unless specified otherwise, the LFI techniques are run
using the ABCpy Python library [26], code for reproducing all results is available
as Supplementary Material [63].

4.3.1. Comparison with Bayesian synthetic likelihood: multivariate g-and-k
model

Bayesian Synthetic Likelihood (BSL, 71) considers the following approximate
posterior:

πSL(θ|s(yn)) ∝ π(θ)N (s(yn);μs,θ,Σs,θ), (6)

where s is a set of summary statistics, μs,θ and Σs,θ represent the mean and
variance matrix of s at θ and N (·;μs,θ,Σs,θ) denotes the multivariate normal
density with mean vector μs,θ and variance matrix Σs,θ. BSL typically employs
a PM-MCMC where multiple simulated datasets x(θ)

m at each θ value are used
to estimate μs,θ and Σs,θ [71], analogously to what we discussed in Sec. 3.
If suitable summaries are chosen (for instance, the average), the central limit
theorem ensures that the summaries are asymptotically normal. However, the
formulation in Eq. (6) does not satisfy Bayesian additivity [10].

We consider here the multivariate extension [23, 42] of the univariate g-
and-k model introduced earlier. Specifically, we draw a multivariate normal
(Z1, . . . , Z5) ∼ N (0,Σ), where Σ ∈ R

5×5 has a sparse correlation structure:
Σkk = 1, Σkl = ρ for |k − l| = 1 and 0 otherwise; each component of Z is
then transformed as in the univariate case (Eq. (5)). The sets of parameters are
θ = (A,B, g, k, ρ). We use uniform priors on [0, 4]4 × [−

√
3/3,

√
3/3].

For BSL, we adapt the summary statistics from [3], which studied a 3-
dimensional g-and-k model with different marginal parameters for each dimen-
sion and used 4 marginal statistics for each dimension and cross-covariance esti-
mates for each pair of dimensions. In our case, we pool together all dimensions
of each simulated dataset to compute the 4 marginal statistics and we compute
the 10 possible pairs of dimensions cross covariance statistics. This leads to a
total of 14 statistics.

We also attempt using BSL directly on the raw data by considering a separate
likelihood term for each observation yi:

πSL(θ|yn) ∝ π(θ)
n∏

i=1
N (yi;μθ,Σθ), (7)
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where μθ,Σθ are estimates for the mean and variance matrix of x ∼ Pθ; notice
how the posterior in Eq. (7) is a specific case of our SR posterior (Eq. 2) for
w = 1 and the so-called Dawid–Sebastiani scoring rule (Appendix D.3), which
is non-strictly proper (hence, multiple minimizers of the expected score can
exist even for well-specified models, which implies that the posterior may fail to
concentrate asymptotically).

For the SR posteriors, we use adSGLD with m = 500 and with 110000 steps
and 10000 burn-in; additional experimental details for the SR posteriors are
given in Appendix F.1.2. For BSL without summaries, we use correlated PM-
MCMC with m = 500, G = 500 and run for 110000 steps, of which 10000 are
burned in (where G refers to the number of groups in correlated PM-MCMC,
see Section 3.1). Finally, recall how BSL with summaries, at each MCMC step,
requires simulating M datasets with n simulations each [71], so that the overall
number of simulations is m = M ·n. Each of the M datasets is used to estimate
one set of statistics values, and those M values are in turn used to estimate
μs,θ and Σs,θ. Thus, we run MCMC with 5500 steps, of which 1000 are burned
in and used to estimate the proposal covariance matrix for the remainder of
the chain. At each MCMC step, a fixed number of m = 20, 000 simulations are
generated and grouped into M datasets, with M decreasing linearly when n
increases. This choice ensures that the total number of simulations used by BSL
with summaries is equal to that used by the SR posterior4 and is identical for
each value of n, while also making sure that M is still large enough to give a
reliable estimate of μs,θ and Σs,θ even for the largest value of n we tried5. BSL
with summaries is run using the R package bsl [2], which includes the summary
statistics discussed above.

In Appendix G, results obtained using PM-MCMC for the SR posteriors are
provided. The same appendix provides results for BSL without summaries on the
univariate g-and-k model; there, PM-MCMC runs satisfactorily up to n = 100,
showing how it fails to concentrate as it is based on non-strictly proper SRs.

Well-specified case We consider an increasing number of synthetic observa-
tions generated from parameter values A� = 3, B� = 1.5, g� = 0.5, k� = 1.5 and
ρ� = −0.3, up to n = 400. The results are given in Figure 4. With increasing n,
both the energy and kernel score posterior concentrate close to the true value
for all parameters (dashed vertical line), as expected when using strictly proper
SRs. For this example, the PM-MCMC targeting the BSL posteriors with and
without summaries do not converge beyond 50 and 10 observations respectively.
Moreover, BSL with summaries for n = 50 is highly concentrated far from the
true parameter values.

Misspecified setup Next, we consider as data generating process the Cauchy
distribution, which has fatter tails than the g-and-k one. The five components of

4For this, we double the number of simulations to calculate the total budget, to take into
account the gradient computation, which is absent in BSL.

5Another option was that of reducing the number of MCMC steps as n increases, but that
impacts the convergence of the chain and renders comparison even harder.
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Fig 4. Posterior concentration of well-specified multivariate g-and-k model, illustrated
by marginals of (a) energy score, (b) kernel score and (c) Bayesian synthetic likelihood posteri-
ors, with increasing number of observations (n = 1, 10, . . . , 400). Darker (respectively lighter)
colours denote a larger (smaller) number of observations. The vertical line represents the true
parameter value. Both the energy and kernel score posteriors (run with adSGLD) concentrate
close to the true parameter value, while the PM-MCMC targeting the BSL posteriors with
and without summaries do not converge beyond 50 and 10 observations respectively.
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Fig 5. Posterior concentration of misspecified multivariate g-and-k model, illustrated by
marginals of (a) energy score, (b) kernel score and (c) Bayesian synthetic likelihood posteri-
ors, with increasing number of observations (n = 1, 10, . . . , 400). Darker (respectively lighter)
colours denote a larger (smaller) number of observations. The vertical line represents the true
parameter value. Both the energy and kernel score posteriors (run with adSGLD) concentrate
close to the true parameter value, while the PM-MCMC targeting the BSL posteriors with
and without summaries do not converge beyond 50 and 10 observations respectively
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Fig 6. Comparison between SMC-ABC and energy score posteriors inferred using
250,000 model simulations, for the linearly parametrized Lorenz96 model. (a) Marginal
posterior distribution of the parameters of SMC-ABC posterior and energy score posterior
using adSGLD, for a single observed set xn (vertical line representing the true parameter θ�).
(b) Energy score between posterior predictive and each time-step of the original observation.
This is repeated for 5 observations xn (each using n = 10 here), and a t-distribution at each
time-step is fitted to the energy score values. The solid line and shaded region respectively
represent the mean and the 95% confidence interval of the fitted t-distribution. A lower energy
score indicates better predictive performance.

each observation are drawn independently from the univariate Cauchy distribu-
tion (i.e., no correlation between components). For the SR posteriors, we use the
values of w which were obtained with our heuristics in the well-specified case;
additional experimental details are reported in Appendix F.1.2. Results are in
Figure 5. We consider an increasing number of observations n up to 200. The
energy and kernel score posteriors concentrate on slightly different parameter
values, corresponding to the unique minimizers of the expected SR (which are
therefore different in these two cases). The PM-MCMC targeting the BSL poste-
riors with and without summaries do not converge beyond 70 and 5 observations
respectively. This shows how the amenability of the SR posterior to SG-MCMC
(which is instead not the case for BSL) is crucial for good performance.

4.3.2. Comparison with approximate Bayesian computation: stochastic
Lorenz96 model

The Lorenz96 model [53] is an important benchmark in meteorology [5] and
was previously studied in the LFI literature [77, 40, 62]. Here, we consider the
stochastic parametrized version introduced by [79], defined by the following set
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of Ordinary Differential Equations (ODEs):

dxk

dt
= −xk−1(xk−2 − xk+1) − xk + 10 − g(xk, t; θ); k = 1, . . . ,K,

where cyclic boundary conditions imply that we take K + 1 = 1 in the indices.
The stochastic forcing term g depends on parameters θ = (b0, b1, σe), and is
defined upon discretizing the ODEs with a time-step Δt:

g(x, t; θ) = b0 + b1x + σeη(t), η(t) ∼ N (0, 1). (8)

In practice, we took K = 8 and integrated the model using the Euler-
Maruyama scheme starting from a fixed initial condition x(0) for 20 additional
time-steps on the interval t ∈ [0, 1.5] (corresponding to Δt = 3/40). We gen-
erate 5 independent sets of observed data xn, each using n = 10 time-series
simulated from the model using θ� = (2, 0.8, 1.7). The integration output is an
8-dimensional time series with 20 time steps. As a prior distribution, we consider
a uniform distribution on the region [1.4, 2.2] × [0, 1] × [1.5, 2.5].

We run inference for the energy score posterior using adSGLD with m = 10
and 25000 MCMC steps, of which 5000 are burned-in. We compare the in-
ferred energy score posterior with the posterior obtained by Sequential Monte
Carlo Approximate Bayesian Computation (SMC-ABC, 19) using the Euclidean
distance between either the full simulated and observed datasets or the sum-
mary statistics suggested in [38] (the temporal mean and variance of xk(t), the
auto-covariance of xk(t) with time lag 1, and the covariance of xk(t) with its
two neighbours xk−1(t) and xk+1(t); averaged over the index k, leading to a
6-dimensional set of statistics) as discrepancy measure. The SMC-ABC algo-
rithm was run for 25 generations with m = 10 simulations for every parameter
value to draw 1000 samples from the posterior distribution; with this setup,
the algorithms each use 250, 000 model simulations. Further details are given in
Appendix F.2. The comparison between these posteriors in Figure 6a illustrates
how the energy score posterior assigns more probability to parameter values
close to θ� than the SMC-ABC posteriors using the full data or the summary
statistics. Moreover, to assess the out-of-sample performance of the inferred pos-
terior, we implement the following posterior predictive check: given draws from a
posterior π(θ|xn), we generate simulations from the model for the corresponding
parameter value, which are therefore samples from the posterior predictive

p(ynew|xn) =
∫

p(ynew|θ)π(θ|xn)dθ;

from these samples, we assess how well the posterior predictive matches the
original observation by computing the energy score between the posterior pre-
dictive distribution and the observations xn at each time step. The results in
Figure 6b show how the energy score posterior predictive matches the original
observation better than the SMC-ABC posterior predictive.
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Fig 7. Comparison between neural and linear stochastic parametrizations for the
Lorenz96 model. The posterior for the neural parametrization is sampled pSGLD algorithm
more suited to high-dimensional spaces than the adSGLD used for the linear one. (a) Energy
score between posterior predictive and each time-step of the original observation. This is re-
peated for 5 observations xn (each using n = 1 here), and a t-distribution at each time-step
is fitted to the energy score values. The solid line and shaded region respectively represent
the mean and the 95% confidence interval of the fitted t-distribution. A lower energy score
indicates better predictive performance. (b) KSD divided by the dimension of parameter space
to assess the convergence of adSGLD for linear stochastic parametrization and pSGLD for
neural stochastic parametrization.

4.3.3. High dimensional neural stochastic parametrization for Lorenz96

The stochastic model considered in the previous section is a simplification of
the original Lorenz96 model [53], which is a chaotic system including interacting
slow and fast variables described by the following differential equations:

dxk

dt = −xk−1 (xk−2 − xk+1) − xk + F − hc

b

kJ∑
j=J(k−1)+1

yj

dyj
dt = − cbyj+1 (yj+2 − yj−1) − cyj + hc

b
Xint[(j−1)/J]+1,

(9)

where k = 1, . . . ,K, and j = 1, . . . , JK, and cyclic boundary conditions are
assumed, so that index k = K + 1 corresponds to k = 1 and similarly for j.

The stochastic model in Eq. (8) was derived by considering the part of the
above ODE dealing with slow variables only and modelling the effect of the fast
variables with the stochastic linear parametrization g(y, t; θ) [80]. To improve on
this, we replace that with a high-dimensional parameterisation using a neural
network:

g(x, t; θ) = f(x; θ) + σeη(t), η(t) ∼ N (0, 1),
where f(x; θ) is a multi-layer perceptron with one hidden layer using a ReLU
activation function. Altogether, this model has 111 parameters, on each of which
we put an independent N (0, 10) prior.

To compare the linear and neural stochastic parametrizations, we simulate
a time series from the full Lorenz96 model in equation (9) and consider this
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as the observed data, by fixing K = 8, J = 32, h = 1, b = 10, c = 10 and
F = 10. We then integrate the above equations with a 4th order Runge-Kutta
integrator with dt = 0.001, starting from xk = yj = 0 for k = 2, . . . ,K and
j = 2, . . . JK and x1 = y1 = 1. We discard the first 2 time units and record the
values of x every Δt = 0.2. This is done for a total of 21 timesteps. We repeat
this process 5 times by perturbing the initial value with Gaussian noise; in this
way, we generate 5 observations which slightly differ for the initial conditions
(there is no other source of randomness as Eq. (9) is deterministic).

For the linearly parametrized Lorenz96 model, we follow the same setup
as in Sec. 4.3.2 and use adSGLD to sample from the energy score posterior.
In contrast, we opt to use pSGLD (Sec. 3.2) for the 111-dimensional neural
Lorenz96 model. For both cases, we use m = 500 and 20000 MCMC steps.
In Figure 7 we compare the inferred Scoring rule posterior via their predictive
performance and convergence using KSD divided by the number of parameters
(as the KSD grows linearly with the number of parameters). From this example,
it is evident how SG-MCMC (more specifically pSGLD) enables sampling over
a very high-dimensional parameter space very efficiently, which allows us to
leverage a more expressive model to improve the representation of the observed
data.

5. Related approaches

Scoring rules have been previously used to generalize Bayesian inference: [34]
considered an update similar to ours, but fixed w = 1 and adjusted the pa-
rameter value (similarly to what was done in 67 and 74) so that the posterior
has the same asymptotic covariance matrix as the frequentist minimum scoring
rule estimator. Instead, [52] considered a time-series setting in which the task is
to learn about the parameter value which yields the best prediction, given the
previous observations. Finally, [41] motivated Bayesian inference using general
divergences (beyond the KL one which underpins standard Bayesian inference)
in an M-open setup, and discussed posteriors which employ estimators of the
divergences from observed data; some of these estimators can be written using
scoring rules. However, none of the above works considered explicitly the LFI
setup.

A parallel work [56] investigates the generalized posterior obtained by us-
ing a kernelized Stein Discrepancy [14, 51]. This posterior is shown to satisfy
robustness and consistency properties and is computationally convenient for
doubly-intractable models (i.e., for which the likelihood is available, but only
up to the normalizing constant). In contrast, our work focuses on models that
do not have an explicit likelihood.

As mentioned before, previous LFI methods such as MMD-Bayes [13] and
BSL [71] fall under our SR posterior framework. So do the semi-parametric
BSL [1] and the ratio-estimation methods [77]; we discuss these methods in
Appendices D.4 and D.5.

Interestingly, [21] introduced a new LFI method which, similar to ours, enjoys
outlier robustness and posterior consistency; however, their method is derived
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from the Bayesian non-parametric learning framework of [55, 28] rather than
the generalized Bayesian posterior of [10].

Finally, [25] also uses Stochastic Gradient MCMC for sampling from a gen-
eralized posterior; however, instead of a reparametrization trick, the unbiased
gradient estimate is obtained through a specific property of the system they
consider (a quantum computer).

6. Conclusion

In this work, we introduced a generalized Bayesian posterior for likelihood-free
inference relying on scoring rules which can easily be estimated with samples
from the simulator model. This scoring rule posterior generalizes previous ap-
proaches [71, 13]. While pseudo-marginal MCMC enables approximate sam-
pling of the posterior for simple cases, it mixes poorly for concentrated targets,
even employing advanced schemes [68]; hence, we adapted Stochastic Gradient
MCMC methods to our framework, by exploiting automatic differentiation to
compute gradients for the simulator model. These new sampling schemes allow
to sample the scoring rule posterior for high-dimensional parameter spaces. Our
comparison with the popular Approximate Bayesian Computation and Bayesian
Synthetic Likelihood showed how the scoring rule posterior enables more infor-
mative parameter inference, scaling to a higher number of samples and parame-
ters. Moreover, it does so by using the raw data, while traditional LFI methods
require determining suitable summary statistics.

We remark once again how the scoring rule posterior does not aim to ap-
proximate the standard Bayesian posterior, as most LFI methods do: it instead
learns about the parameter value minimizing the expected scoring rule.

Appendix A: Proof of Theorem 3.1

We recall here for simplicity the useful definitions. We consider the SR posterior:

πS(θ|yn) ∝ π(θ) exp
{
−w

n∑
i=1

S(Pθ, yi)
}

︸ ︷︷ ︸
pS(yn|θ)

.

Further, we recall the form of the target of the pseudo-marginal MCMC:

π
(m)
Ŝ

(θ|yn) ∝ π(θ)p(m)
Ŝ

(yn|θ),

where:

p
(m)
Ŝ

(yn|θ) = E

[
exp

{
−w

n∑
i=1

Ŝ(X(θ)
m , yi)

}]

=
∫

exp
{
−w

n∑
i=1

Ŝ(x(θ)
m , yi)

}
m∏
j=1

p(x(θ)
j |θ)dx1dx2 · · · dxm.
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In order to prove Theorem 3.1, we extend the proof for the analogous result
for Bayesian inference with an auxiliary likelihood [24]. Our setup is slightly
more general as we do not constrain the update to be defined in terms of a
likelihood; notice that the original setup in [24] is recovered when we consider
S being the negative log likelihood, for some auxiliary likelihood.

We begin by stating a useful property:

Lemma A.1 (Theorem 3.5 in [8]). If Xn is a sequence of uniformly integrable
random variables and Xn converges in distribution to X, then X is integrable
and E[Xn] → E[X] as n → ∞.

Remark 3 (Remark 1 in [24]). A simple sufficient condition for uniform integra-
bility is that for some δ > 0:

sup
n

E[|Xn|1+δ] < ∞.

The result in the main text is the combination of the following two Theorems,
which respectively generalize Results 1 and 2 in [24]:

Theorem A.2 (Generalizes Result 1 in [24]).
Assume that p

(m)
Ŝ

(yn|θ) → pS(yn|θ) as m → ∞ for all θ with positive prior
support; further, assume infm

∫
Θ p

(m)
Ŝ

(yn|θ)π(θ)dθ > 0 and supm p
(m)
Ŝ

(yn|θ) ≤
g(θ) where

∫
Θ g(θ)π(θ)dθ < ∞. Then

lim
m→∞

π
(m)
Ŝ

(θ|yn) = πS(θ|yn).

Furthermore, if f : Θ → R is a continuous function satisfying
supm

∫
Θ |f(θ)|1+δπ

(m)
S (θ|yn)dθ < ∞ for some δ > 0 then

lim
m→∞

∫
Θ
f(θ)π(m)

Ŝ
(θ|yn)dθ =

∫
Θ
f(θ)πS(θ|yn)dθ.

Proof. First, notice that, as infm
∫
Θ p

(m)
Ŝ

(yn|θ)π(θ)dθ > 0 and supm p
(m)
Ŝ

(yn|θ)
≤ g(θ), the denominator of

π
(m)
Ŝ

(θ|yn) =
p
(m)
Ŝ

(yn|θ)π(θ)∫
Θ p

(m)
Ŝ

(yn|θ)π(θ)dθ

is positive and converges by the dominated convergence theorem to∫
Θ π(θ)pS(yn|θ)dθ. This, combines with the fact that the numerator converges

pointwise, proves the first part.
For the second part, if for each m ∈ N, θm is distributed according to

π
(m)
Ŝ

(·|yn) and θ is distributed according to πS(·|yn) then θm converges to θ

in distribution as m → ∞ by Scheffé’s lemma [75]. Since f is continuous, f (θm)
converges in distribution to f(θ) as n → ∞ by the continuous mapping theorem
and we conclude by application of Remark 3 and Lemma A.1.
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The following gives a convenient way to ensure p
(m)
Ŝ

(yn|θ) → pS(yn|θ):

Theorem A.3 (Generalizes Result 2 in [24]). Assume that
exp{−w

∑n
i=1 Ŝ(X(θ)

m , yi)} converges in probability to pS(yn|θ) as m → ∞. If

sup
m

E

[
exp{−w(1 + δ)

n∑
i=1

Ŝ(X(θ)
m , yi)}

]
< ∞

for some δ > 0 then p
(m)
Ŝ

(yn|θ) → pS(yn|θ) as m → ∞.

Proof. First, notice that

sup
m

E

⎡⎣∣∣∣∣∣exp{−w

n∑
i=1

Ŝ(X(θ)
m , yi)}

∣∣∣∣∣
1+δ

⎤⎦ = sup
m

E

[
exp{−w(1 + δ)

n∑
i=1

Ŝ(X(θ)
m , yi)}

]
< ∞.

The proof then follows by applying Remark 3 and Lemma A.1.

We are finally ready to prove Theorem 3.1:

Proof of Theorem 3.1. First, notice how the convergence in probability of
Ŝ(X(θ)

m , yi) to S(Pθ, yi) (assumption 1 in Theorem 3.1) and the continuity of the
exponential function imply convergence in probability of exp{−w

∑
i Ŝ(X(θ)

m , yi)}
to pS(yn|θ). That, together with assumption 2 in Theorem 3.1, satisfy the re-
quirements of Theorem A.3. With the latter and assumption 3 in Theorem 3.1,
Theorem A.2 holds, which yields the result.

A.1. Corollary when the SR estimator is lower bounded by the SR
of the empirical distribution

This is a corollary of Theorem 3.1.
Corollary 1. Assume the following:

1. Ŝ(X(θ)
m , yi) converges in probability to S(Pθ, yi) as m → ∞ for all i =

1, . . . , n.
2. Ŝ(x(θ)

m , yi) ≥ S(P̂θ, yi), where P̂θ is the empirical distribution determined
by x(θ)

m , and S is a proper scoring rule on the space of empirical distribu-
tions.

3. infm
∫
Θ p

(m)
Ŝ

(yn|θ)π(θ)dθ > 0 and supm p
(m)
Ŝ

(yn|θ) ≤ g(θ) where∫
Θ g(θ)π(θ)dθ < ∞.

Then,
lim

m→∞
π

(m)
Ŝ

(θ|yn) = πS(θ|yn).
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Proof. We simply need to verify that Assumption 2 of the corollary verifies
Assumption 2 of Theorem 3.1 (as the other two assumptions are preserved).

Let us denote by Q̂ the empirical distribution obtained by y1, . . . , yn. As S
is a proper scoring rule on the space of empirical distributions, it holds that

S(Q̂, Q̂) = 1
n

n∑
i=1

S(Q̂, yi) ≤ S(P̂θ, Q̂) = 1
n

n∑
i=1

S(P̂θ, yi).

Combining this with the inequality in Assumption 2 of the corollary leads to

1
n

n∑
i=1

Ŝ(x(θ)
m , yi) ≥ S(Q̂, Q̂),

which is a lower bound for fixed value of yn; in particular, this implies that

exp{−(1 + δ)w
n∑

i=1
Ŝ(X(θ)

m , yi)} ≤ exp{−(1 + δ)wn · S(Q̂, Q̂)},

which implies Assumption 2.

Notice that Assumption 2 above holds in the special case where the SR
estimator corresponds to the SR of the empirical distribution.

Appendix B: Changing data coordinates

We give here some more details on the behavior of the SR posterior when the
coordinate system used to represent the data is changed, as mentioned in Re-
mark 2.

Frequentist estimator First, we investigate whether the minimum scoring
rule estimator (for a strictly proper scoring rule) is affected by a transformation
of the data. Specifically, considering a strictly proper S, we are interested in
whether θ�Y = arg minθ∈Θ S(PY

θ , QY ) = arg minθ∈Θ D(PY
θ , QY ) is the same as

θ�Z = arg minθ∈Θ S(PZ
θ , QZ) = arg minθ∈Θ D(PZ

θ , QZ), where Z = f(Y ) =⇒
Y ∼ QY ⇐⇒ Z ∼ QZ and Y ∼ PY

θ ⇐⇒ Z ∼ PZ
θ . If the model is well

specified, PY
θ�
Y

= QY , P
Z
θ�
Z

= QZ =⇒ θ�Y = θ�Z . If the model is misspecified,
for a generic SR the minimizer of the expected SR may change according to
the parametrization. We remark how this is not a drawback of the frequentist
minimum SR estimator but rather a feature, as such estimator is the parameter
value corresponding to the model minimizing the chosen expected scoring rule
from the data generating process in that coordinate system, and is therefore
completely reasonable for it to change when the coordinate system is modified.

Notice that a sufficient condition for θ�Y = θ�Z is S(PY
θ , y) = a · S(PZ

θ , z) + b
for a > 0, b ∈ R. This condition is verified when S is chosen to be the log-score,
as in fact:

S(PZ
θ , f(y)) = − ln pZ(f(y)|θ) = S(PZ

θ , y) + ln |Jf (y)|,
where we assumed f to be a one-to-one function and we applied the change of
variable formula to the density pZ .
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Generalized Bayesian posterior For a single observation, let πY
S denote

the SR posterior conditioned on values of Y , while πZ
S denote instead the pos-

terior conditioned on values of Z = f(Y ) for some one-to-one function f ; in
general, πY

S (θ|y) �= πZ
S (θ|f(y)). By denoting as wZ (respectively wY ) and PZ

θ

(respectively PY
θ ) the weight and model distributions appearing in πZ

S (resp.
πY
S ), the equality would in fact require wZS(PZ

θ , f(y)) = wY S(PY
θ , y)+C ∀ θ, y

for some choice of wZ , wY and for all transformations f , where C is a constant
in θ. Notice that this is satisfied for the standard Bayesian posterior (i.e., with
the log-score) with wZ = wY = 1. Instead, for other scoring rules the above
condition cannot be satisfied in general for any choice of wZ , wY . For instance,
consider the kernel SR:

S(PZ
θ , f(y)) = E[k(Z, Z̃)]−E[k(Z, f(y))] = E[k(f(Y ), f(Ỹ ))]−E[k(f(Y ), f(y))];

for general kernels and functions f , the above is different from S(PY
θ , y) =

E[k(Y, Ỹ )] − E[k(Y, f(x))] up to a constant, unless the kernel is redefined as
well. Therefore, the posterior shape depends on the chosen data coordinates.
Considering the expression for the kernel SR, it is clear that is a consequence
of the fact that the likelihood principle is not satisfied (as the kernel SR does
not only depend on the likelihood value at the observation). Similar argument
holds for the energy score posterior as well.

We also remark that this is also the case for BSL [71], as in that case the
model is assumed to be multivariate normal, and changing the data coordi-
nates impacts their normality (in fact it is common practice in BSL to look for
transformations of data which yield distribution as close as possible to a normal
one).

The theoretical semiBSL posterior [1], instead, is invariant with respect to
one-to-one transformation applied independently to each data coordinate, which
do not affect the copula structure. Notice however that different data coordinate
systems may yield better empirical estimates of the marginal KDEs from model
simulations.

Appendix C: Checking convergence of MCMC with the kernelized
Stein discrepancy

As SG-MCMC algorithms in general exhibit an asymptotic bias, we require a
convergence test which accounts for this bias in the stationary distribution. We
thus utilise the method of Kernelized Stein Discrepancy (KSD) proposed in
[36], which is especially applicable in the case of stochastic gradient MCMC as
it depends on the target distribution only through its gradient.

Given the samples of our parameter {θ1, ..., θn} where θi ∈ R
d, we denote

the empirical distribution described by these samples as π̃, and our target dis-
tribution as π. We consider the Integral Probability Metric (IPM) defined over
a class of test function H,

dH(π̃, π) := sup
h∈H

|Eπ̃[h(θ)] − Eπ[h(θ)]| .
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For IPMs such as the Wasserstein distance, we obtain a desirable property that
dH (π̃K , π) → 0 implies π̃K ⇒ π (weak convergence of measures). However, since
π is not available for integration, we instead utilise a class of IPMs called Stein
Discrepancy, constructed such that the test functions give zero mean under π.
We do this by defining a Stein operator, T , which maps functions g: Rd → R

d

from our Stein set, the domain G. This is chosen such that Eπ[(T g)(Z)] = 0 for
all g ∈ G. Then we can define the Stein discrepancy:

S(π̃, T ,G) := dT G(π̃, π) = sup
g∈G

|Eπ̃[(T g)(X)] − Eπ[(T g)(Z)]|

= sup
g∈G

|Eπ̃[(T g)(X)]| .

Thus, such a Stein operator and Stein set must be chosen to fulfil the Stein
discrepancy condition and the desired convergence property. In [36], the Stein
operator is proposed to be the Langevin Stein operator,

(TP g) (x) := 〈g(x),∇ log p(x)〉 + 〈∇, g(x)〉

and the corresponding Stein set, which is defined using a Reproducing Kernel
Hilbert space of function Kk. We denote ‖ · ‖Kk

to be the induced norm from
the inner product in Kk, and k : Rd ×R

d → R be the reproducing kernel of Kk.
This is the kernelized Stein set:

Gk,‖·‖ :=
{
g = (g1, . . . , gd) | ‖v‖∗ ≤ 1 for vj := ‖gj‖Kk

}
where g = (g1, . . . , gd) is a vector-valued function. This combination of the
Langevin Stein operator and the kernelized Stein set is known as the kernelized
Stein Discrepancy (KSD) S

(
μ, TP ,Gk,‖·‖

)
, for a probability measure μ. In [36],

the KSD was proven to have a closed form solution for any ‖ · ‖, which of
particular interest to us is when S

(
π̃, TP ,Gk,‖·‖

)
,

S
(
π̃, TP ,Gk,‖·‖

)
:=

d∑
j=1

√√√√ n∑
i,i′=1

k0
j (θi, θi′)

n2

where the Stein kernel for j ∈ {1, . . . , d} is given by

k0
j (θ, θ′) = (∇θ(j)U(θ)∇θ(j)U (θ′)) k (θ, θ′) + ∇θ(j)U(θ)∇θ′(j)k (θ, θ′)

+ ∇θ′(j)U (θ′)∇θ(j)k (θ, θ′) + ∇θ(j)∇θ(j)k (θ, θ′) ,

where U(θ) is such that π(θ) ∝ e−U(θ). Note that [36] recommended the use

of the inverse multi quadric kernel, k (θ, θ′) =
(
c2 + ‖θ − θ′‖2

2

)β

which gives
desired convergence properties when c > 0 and β ∈ (−1, 0).

In our specific case of the SR posterior, U(θ) = w ·
∑n

i=1 S(Pθ, yi). As for the
energy and kernel scores we cannot exactly evaluate ∇θU(θ), we reaplce it with
an unbiased estimate when computing the KSD.
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Appendix D: More details on related techniques

D.1. Energy distance

The squared energy distance is a metric between probability distributions [72],
and is defined by:

D
(β)
E (P,Q) = 2 · E

[
‖X − Y ‖β2

]
− E

[
‖X −X ′‖β2

]
− E

[
‖Y − Y ′‖β2

]
,

for X ⊥⊥ X ′ ∼ P and Y ⊥⊥ Y ′ ∼ Q.
The probabilistic forecasting literature [35] use a different convention of the

energy score and distance, which amounts to multiplying our definitions by
1/2. We follow here the convention used in the statistical inference literature
[72, 13, 60].

D.2. Maximum Mean Discrepancy (MMD)

We follow here Section 2.2 in [37]; all proofs of our statements can be found
there. Let k(·, ·) : X × X → R be a positive-definite and symmetric kernel;
notice that this implies k(x, x) ≥ 0. Under these conditions, there exists a
unique Reproducing kernel Hilbert space (RKHS) Hk of real functions on X
associated to k.

Now, let’s define the Maximum Mean Discrepancy (MMD).

Definition D.1. Let F be a class of functions f : X → R; we define the MMD
relative to F as:

MMDF (P,Q) = sup
f∈F

[EX∼P f(X) − EY∼Qf(Y )] .

We will show here how choosing F to be the unit ball in an RKHS Hk turns
out to be computationally convenient, as it allows us to avoid computing the
supremum explicitly. First, let us define the mean embedding of the distribution
P in Hk:

Lemma D.2 (Lemma 3 in [37]). If k(·, ·) is measurable and EX∼P

√
k(X,X) <

∞, then the mean embedding of the distribution P in Hk is:

μP = EX∼P [k(X, ·)] ∈ Hk.

Using this fact, the following Lemma shows that the MMD relative to Hk

can be expressed as the distance in Hk between the mean embeddings:

Lemma D.3 (Lemma 4 in [37]). Assume the conditions in Lemma D.2 are
satisfied, and let F be the unit ball in Hk; then:

MMD2
F (P,Q) = ||μP − μQ||2H.
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In general, the MMD is a pseudo-metric for probability distributions (i.e., it
is symmetric, satisfies the triangle inequality and MMDF (P, P ) = 0, 12). For
the probability measures on a compact metric space X , the next Lemma states
the conditions under which the MMD is a metric, which additionally ensures
that MMDF (P,Q) = 0 =⇒ P = Q. Specifically, this holds when the kernel is
universal, which requires that k(·, ·) is continuous, and Hk being dense in C(X )
with respect to the L∞ norm (these conditions are satisfied by the Gaussian
and Laplace kernel).

Lemma D.4 (Theorem 5 in [37]). Let F be the unit ball in Hk, where Hk

is defined on a compact metric space X and has associated continuous kernel
k(·, ·). Then:

MMDF (P,Q) = 0 ⇐⇒ P = Q.

This result can be generalized to more general spaces X , by considering the
notion of characteristics kernel, for which the mean map is injective; it can be
shown that the Laplace and Gaussian kernels are characteristics [37], so that
MMD for those two kernels is a metric for distributions on R

d.
Additionally, the form of MMD for a unit-ball in an RKHS allows easy esti-

mation, as shown next:

Lemma D.5 (Lemma 6 in [37]). Assume that the form for MMD given in
Lemma D.3 holds; say X ⊥⊥ X ′ ∼ P , Y ⊥⊥ Y ′ ∼ Q, and let F be the unit ball in
Hk. Then, you can write:

MMD2
F (P,Q) = E[k(X,X ′)] + E[k(Y, Y ′)] − 2E[k(X,Y )].

D.2.1. Equivalence between MMD-Bayes posterior and πSk

[13] considered the following posterior, termed MMD-Bayes:

πMMD(θ|yn) ∝ π(θ) exp
{
−β ·Dk

(
Pθ, P̂n

)}
where β > 0 is a temperature parameter and Dk

(
Pθ, P̂n

)
denotes the squared

MMD between the empirical measure of the observations P̂n = 1
n

∑n
i=1 δyi and

the model distribution Pθ.
From the properties of MMD (see Appendix D.2), notice that:

Dk

(
Pθ, P̂n

)
= EX,X′∼Pθ

k(X,X ′) + 1
n2

n∑
i,j=1

k(yi, yj) −
2
n

n∑
i=1

EX∼Pθ
k(X, yi)

= 1
n

(
n · EX,X′∼Pθ

k(X,X ′) − 2
n∑

i=1
EX∼Pθ

k(X, yi)
)

+ 1
n2

n∑
i,j=1

k(yi, yj)

= 1
n

(
n∑

i=1
Sk(Pθ, yi)

)
+ 1

n2

n∑
i,j=1

k(yi, yj),



Generalized Bayesian likelihood-free inference 3661

where we used the expression of the SR scoring rule Sk, and where the second
term is independent on θ. Therefore, the MMD-Bayes posterior is equivalent to
the SR posterior with kernel scoring rule Sk, by identifying w = β/n.

D.3. The Dawid–Sebastiani score

As mentioned in Sec. 4.3.1, the BSL posterior can be seen as a scoring rule
posterior with w = 1 considering the Dawid–Sebastiani (DS) score, which is
defined as:

SDS(P, y) = ln |ΣP | + (y − μP )TΣ−1
P (y − μP ),

where μP and ΣP are the mean vector and covariance matrix of P . The DS
score is the negative log-likelihood of a multivariate normal distribution with
mean μP and covariance matrix ΣP , up to some constants. Therefore, it is
equivalent to the log score when P is a multivariate normal distribution. For a
set of distributions P(X ) with well-defined second moments, this SR is proper
but not strictly so: several distributions of that class may yield the same score,
as long as the two first moments match [35]. It is strictly proper if distributions
in P(X ) are determined by their first two moments, as it is the case for the
normal distribution.

D.4. Semi-parametric synthetic likelihood

We review here the semiBSL approach [1].

Copula theory First, recall that a copula is a multivariate Cumulative Den-
sity Function (CDF) such that the marginal distribution for each variable is
uniform on the interval [0, 1]. Consider now a multivariate random variable X =
(X1, . . . , Xd), for which the marginal CDFs are denoted by Fj(x) = P(Xj < x);
then, the multivariate random variable built as:

(U1, U2, . . . , Ud) = (F1(X1), F2(X2), . . . , Fd(Xd))

has uniform marginals on [0, 1].
Sklar’s theorem exploits copulas to decompose the density h of X6; specifi-

cally, it states that the following decomposition is valid:

h(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd))f1(x1) · · · fd(xd),

where fj is the marginal density of the j-th coordinate, and c is the density of
the copula.

We now review definition and properties of the Gaussian copula, which is
defined by a correlation matrix R ∈ [−1, 1]d×d, and has cumulative density
function:

CR(u) = ΦR(Φ−1(u1), . . . ,Φ−1(ud)),
6Provided that the density exists in the first place; a more general version of Sklar’s theorem

is concerned with general random variables, but we restrict here to the case where densities
are available.
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where Φ−1 is the inverse cdf (quantile function) of a standard normal, and ΦR

is the cdf of a multivariate normal with covariance matrix R and 0 mean. If
you define as U the random variable which is distributed according to CR, it
can easily be seen that R is the covariance matrix of the multivariate normal
random variable Z = Φ−1(U), where Φ−1 is applied element-wise. In fact:

P (Z ≤ η) = P (U ≤ Φ(η)) = CR(Φ(η)) = ΦR(η),

where the inequalities are intended component-wise.
By defining as η a d-vector with components ηk = Φ−1(uk), the Gaussian

copula density is:

cR(u) = 1√
|R|

exp
{
−1

2η
� (

R−1 − Id
)
η

}
,

where Id is a d-dimensional identity matrix, and | · | denotes the determinant.

Semiparametric Bayesian Synthetic Likelihood (semiBSL) SemiBSL
assumes that the likelihood for the model has a Gaussian copula; therefore, the
likelihood for a single observation y can be written as:

psemiBSL (y|θ) = cRθ
(Fθ,1(y1), . . . , Fθ,d(yd))

d∏
k=1

fθ,k
(
yk

)
,

where yk is the k-th component of y, fθ,k is the marginal density of the k-th
component and Fθ,k is the CDF of the k-th component.

In order to obtain an estimate for it, we exploit simulations from Pθ to esti-
mate Rθ, fθ,k and Fθ,k; this leads to:

p̂semiBSL (y|θ) = cR̂θ
(F̂θ,1(y1), . . . , F̂θ,d(yd))

d∏
k=1

f̂θ,k
(
yk

)
= 1√

|R̂θ|
exp

{
−1

2 η̂
�
y

(
R̂−1

θ − Id
)
η̂y

} d∏
k=1

f̂θ,k
(
yk

)
,

where f̂θ,k and F̂θ,k are estimates for fθ,k and Fθ,k, η̂y = (η̂1
y, . . . , η̂

d
y), η̂ky =

Φ−1(ûk), ûk = F̂θ,k(yk). Moreover, R̂θ is an estimate of the correlation matrix.
We discuss now how the different quantities are estimated. First, a Kernel

Density Estimate (KDE) is used for the marginals densities and cumulative
density functions. Specifically, given samples x1, . . . , xm ∼ Pθ, a KDE estimate
for the k-th marginal density is:

f̂θ,k(yk) = 1
m

m∑
j=1

Kh(yk − xk
j ),
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where Kh is a normalized kernel which is chosen to be Gaussian in the original
implementation [1]. The CDF estimates are obtained by integrating the KDE
density.

Next, for estimating the correlation matrix, [1] proposed to use a robust
procedure based on the ranks (grc, Gaussian rank correlation, 11); specifically,
given m simulations x1, . . . , xm ∼ Pθ, the estimate for the (k, l)-th entry of Rθ

is given by:

[
R̂grc

θ

]
k,l

=

∑m
j=1 Φ−1

(
r
(
xk
j

)
m+1

)
Φ−1

(
r
(
xl
j

)
m+1

)
∑m

j=1 Φ−1
(

j
m+1

)2 ,

where r(·) : R → A, where A = {1, . . . ,m} is the rank function.

Copula scoring rule Finally, we write down the explicit expression of the
copula scoring rule SGc, associated to the Gaussian copula. We show that this
is a proper, but not strictly so, scoring rule for copula distributions. Specifically,
let C be a distribution for a copula random variable, and let u ∈ [0, 1]d. We
define:

SGc(C, u) = 1
2 log |RC | +

1
2
(
Φ−1(u)

)T (R−1
C − Id)Φ−1(u),

where Φ−1 is applied element-wise to u, and RC is the correlation matrix as-
sociated to C in the following way: define the copula random variable V ∼ C
and its transformation Φ−1(V ); then, Φ−1(V ) will have a multivariate normal
distribution with mean 0 and covariance matrix RC .

Similarly to the Dawid–Sebastiani score (see Appendix D.3), this scoring rule
is proper but not strictly so as it only depends on the first 2 moments of the
distribution of the random variable Φ−1(V ) (the first one being equal to 0). To
show this, assume the copula random variable U has an exact distribution Q
and consider the expected scoring rule:

SGc(C,Q) = EU∼QSGc(C,U)

= 1
2 log |RC | + EU∼Q

[(
Φ−1(U)

)T (R−1
C − Id)Φ−1(U)

]
;

now, notice that Φ−1(U) is a multivariate normal distribution whose marginals
are standard normals. Therefore, let us denote as RQ the covariance matrix
of Φ−1(U), which is a correlation matrix. From the well-known form for the
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expectation of a quadratic form7, it follows that:

SGc(C,Q) = 1
2 log |RC | +

1
2Tr

[
(R−1

C − Id) ·RQ

]
= 1

2 log |RC | +
1
2Tr

[
R−1

C ·RQ

]
− 1

2Tr [RQ]

= 1
2

{
log |RC |

|RQ|
− d + Tr

[
R−1

C ·RQ

]}
︸ ︷︷ ︸

DKL(ZQ||ZC)

+1
2 logRQ + d

2 − 1
2Tr [RQ] ,

where DKL(ZQ||ZC) is the KL divergence between two multivariate normal
distributions ZQ and ZC of dimension d, with mean 0 and covariance matrix RQ

and RC respectively. Further, notice that the remaining factors do not depend
on the distribution C. Therefore, SGc(C,Q) is minimized whenever RC is equal
to RQ; this happens when C = Q, but also for all other choices of C which share
the associated covariance matrix with Q. This implies that the Gaussian copula
score is a proper, but not strictly so, scoring rule for copula distributions.

D.5. Ratio estimation

The standard Bayes posterior can be written as π(θ|y) = π(θ) · r(y; θ), with
r(y; θ) = p(y|θ)

p(y) . The Ratio Estimation (RE) approach [77] builds an approximate
posterior by estimating log r(y; θ) with some function ĥθ(y) and considering
πre(θ|y) ∝ π(θ) exp(ĥθ(y)).

[77] run an MCMC where, for each proposed θ, m samples x(θ)
m are generated

from Pθ. These, together with a set of m reference samples x(r)
m = {x(r)

j }mj=1
from the marginal data distribution8, are used to fit a logistic regression yielding
ĥθ(y). Logistic regression is an optimization problem in which the best function
of X in distinguishing between the two sets of samples is selected. If m → ∞ and
all scalar functions are considered, the optimum hθ

� is equal to log r(y; θ). For
finite data, however, the corresponding optimum ĥθ

m is only an approximation
of the ratio (as discussed in Appendix D.5). RE is therefore a specific case of
our SR posterior framework with w = 1 and:

ŜRE(x(θ)
m ,x(r)

m , y) = −ĥθ
m(y)

which, differently from the other SR estimators considered previously, also de-
pends on the reference samples. Due to what we discussed above, ŜRE converges
in probability to the log-score (up to a constant term in θ) for m → ∞.

7
E
[
XT ΛX

]
= tr [ΛΣ]+μT Λμ, for a symmetric matrix Λ, and where μ and Σ are the mean

and covariance matrix of X (which in general does not need to be normal, but only needs to
have well defined second moments).

8Which are obtained by drawing θj ∼ p(θ), xj ∼ p(·|θj), and discarding θj .
In general, the number of reference samples and samples from the model can be different, see
Appendix D.5; we make this choice here for the sake of simplicity.
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The above argument relies on optimizing over all functions in logistic re-
gression; in practice, the optimization is restricted to a set of functions H (for
instance, a linear combination of predictors). In this case, the infinite data op-
timum hθ

H�(y) does not correspond to log r(y; θ) (see Appendix D.5), but to
the best possible approximation in H in some sense. Therefore, Ratio Estima-
tion with a restricted set of functions H cannot be written exactly under our
SR posterior framework. However, very flexible function classes (as for instance
neural networks) can produce reasonable approximations to the log score for
large values of m.

Appendix E: Tuning the bandwidth of the Gaussian kernel

Consider the Gaussian kernel:

k(x, y) = exp
(
−‖x− y‖2

2
2γ2

)
;

inspired by [65], we fix the bandwidth γ with the following procedure:

1. Simulate a value θj ∼ π(θ) and a set of samples xjk ∼ Pθj , for k =
1, . . . ,mγ .

2. Estimate the median of {||xjk − xjl||2}mγ

kl and call it γ̂j .
3. Repeat points 1) and 2) for j = 1, . . . ,mθ,γ .
4. Set the estimate for γ as the median of {γ̂j}mθ,γ

j=1 .

Empirically, we use mθ,γ = 1000 and we set mγ to the corresponding value
of m for the different models.

Appendix F: Further details on simulation studies reported in the
main text

F.1. The SR posterior on the g-and-k model

We report here additional experimental details on the g-and-k model experi-
ments.

F.1.1. The SR posterior on univariate g-and-k

SG-MCMC and PM-MCMC comparison We ran our inference with ob-
servations of n = 10. Both energy score posteriors for PM-MCMC and SG-
MCMC was set to w = 1.

• For the SR posterior with SG-MCMC, we utilised the adSGLD algorithm,
with the step-size ε tuned with the Multi-Armed Bandit algorithm [16] as
discussed previously. The chain was initialized at a parameter value of 0.
This resulted in ε = 3 × 10−3.

• For the SR posterior with PM-MCMC, we utilised a proposal size of σ = 1.
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Concentration study For our concentration study, we ran our inference with
increasing observations of n = 1, 10, 20, 50, 70, 100, 200. Generally, we ran the
chain with the Multi-Armed Bandit algorithm [16] as discussed previously. The
chains were started from an initial optimization step of 250 iterations ran with
the Adam optimizer [44]. In Table 1, we report the final step-size determined
by the Multi-Armed Bandit algorithm for different values of n. We detail below
the settings for the different SR posteriors.

• The energy score posteriors were set to w = 1.
• For the kernel score posteriors, we set w using our heuristic procedure

discussed in Sec. 4.2 with the energy score posterior as a reference, result-
ing in w = 28.1. The Gaussian kernel bandwidth γ, was tuned using the
procedure detailed in Appendix E, resulting in γ = 5.47.

Table 1

Step-sizes for the two SR posteriors in the univariate g-and-k model, determined with the
Multi-Armed Bandit algorithm of [16].

Observations n = 1 n = 10 n = 20 n = 50 n = 70 n = 100 n = 200 n = 400

Energy score 3 × 10−2 3 × 10−2 3 × 10−3 3 × 10−4 1 × 10−3 1 × 10−4 1 × 10−4 3 × 10−6

Kernel score 1 × 10−1 3 × 10−2 1 × 10−2 1 × 10−3 1 × 10−3 1 × 10−4 3 × 10−5 3 × 10−5

F.1.2. The SR posterior on multivariate g-and-k

Similar to the univariate model, we ran our inference with increasing observa-
tions of n = 1, 10, 20, 50, 70, 100, 200, 400 and with the Multi-Armed Bandit
algorithm [16] as discussed previously. The chains were started from an initial
optimization step of 250 iterations ran with the Adam optimizer [44]. In Ta-
ble 2 and Table 3, we report the final step-size determined by the Multi-Armed
Bandit algorithm for different values of n for the well-specified case and the
misspecified case respectively.

We detail below the settings for the different SR posteriors and for the BSL
posterior.

Well-specified case

• The energy score posteriors were set to w = 1.
• For the kernel score posteriors, we set w using our heuristic procedure

discussed earlier with the energy score posterior as a reference, resulting in
w = 191. The Gaussian kernel bandwidth γ, was tuned using the procedure
detailed in E, resulting in γ = 45.

• For the BSL posteriors, we set σ = 1. However, the chain was unable
to converge for any n > 10, and so we ran the BSL posterior with an
additional n = 5 observations.
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Table 2

Step-sizes for the two SR posteriors in the multivariate g-and-k model with well-specified
observations, determined with the Multi-Armed Bandit algorithm of [16].

Observations n = 1 n = 10 n = 20 n = 50 n = 70 n = 100 n = 200 n = 400

Energy score 1 × 10−1 3 × 10−3 1 × 10−3 1 × 10−3 1 × 10−4 3 × 10−5 1 × 10−5 3 × 10−6

Kernel score 1 × 10−1 3 × 10−4 3 × 10−4 1 × 10−4 1 × 10−5 3 × 10−6 1 × 10−5 1 × 10−6

Misspecified case Due to the misspecified model, for certain values of n, the
SG-MCMC algorithm resulted in proposal values that were outside our specified
parameter range. For these cases, we manually tuned the step-size such that the
SG-MCMC algorithm ran successfully. These cases are indicated in Table 3 with
an asterisk (∗).

• The energy score posteriors were set to w = 1.
• For the kernel score posteriors, in order to have coherent results with

respect to the well-specified case, we use here the values determined in
the well-specified case. (w = 191, γ = 45)

• For the BSL posteriors, we set σ = 1. However, the chain was unable to
converge for any n > 5, and so we ran the BSL posterior with an additional
n = 5 observations.

Table 3

Step-sizes for the two SR posteriors in the multivariate g-and-k model with misspecified
observations, determined with the Multi-Armed Bandit algorithm of [16].

Observations n = 1 n = 10 n = 20 n = 50 n = 70 n = 100 n = 200 n = 400

Energy score 1 × 10−1 1 × 10−2 3 × 10−3 1 × 10−3 1 × 10−3 1 × 10−4 1 × 10−4 3 × 10−5

Kernel score 5 × 10−2 (*) 1 × 10−2 3 × 10−3 3 × 10−3 3 × 10−3 3 × 10−3 1 × 10−4 (*) 6 × 10−5 (*)

F.2. The Lorenz96 model

In both comparisons, we utilize the energy score posterior with w = 1, except
for the case where the SMC-ABC algorithm is used.

Comparison with ABC We ran the inference using the adSGLD algorithm,
and the SMC-ABC algorithm, both with observations of n = 10. For the energy
score posterior, a step size of ε = 3× 10−2 was set, and the chain was initialised
at a parameter value of 0.

High dimensional neural stochastic parametrization We ran the infer-
ence using both the adSGLD algorithm with the linear stochastic parametriza-
tion and the pSGLD algorithm with the high dimensional neural parametriza-
tion, both with observations of n = 1 which was first standardised. For both
cases, chains were started from an initial optimization step of 250 iterations
ran with the Adam optimizer [44]. For the adSGLD algorithm, a step size of
ε = 1×10−4 was set, while for the pSGLD algorithm this was set to ε = 1×10−7.
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Appendix G: Results with pseudo-marginal MCMC on g-and-k
model

We report here some parallel results to those in the main text of the paper
obtained with pseudo-marginal (PM) MCMC. To obtain these results, we use
the correlated pseudo-marginal MCMC [17, 20, 68] mentioned in Sec. 3.1 with
independent normal proposals on each component of the parameter space; we
indicate by σ the standard deviation of the normal proposal distribution, which
we report below. In all cases, whenever the parameter space is bounded, we run
PM-MCMC on a transformed unbounded space obtained via a logistic transfor-
mation. Therefore, the proposal sizes refer to that unbounded space.

Besides our SR posteriors, we consider here the BSL and the semi-parametric
BSL (Appendix D.4). When performing these studies, we aimed at comparing
the performance of our SR posteriors with BSL. BSL was run both with and
without summaries (see Section 4.3.1), while semi-parametric BSL was only run
without summaries. Both semi-parametric BSL and BSL with summaries were
only run for the multivariate case (notice that the former is only well-defined for
multivariate models). However, in this appendix, we only discuss results with
summary-free BSL. Hence, we set the value of w for the energy and kernel score
posteriors with the strategy discussed in Sec. 4.2 using BSL as a reference.

G.1. Well-specified setup

For both univariate and multivariate case, we consider synthetic observations
generated from parameter values A� = 3, B� = 1.5, g� = 0.5, k� = 1.5 and
ρ� = −0.3 (notice ρ is not used in the univariate case).

We first present results and discuss specific settings below. For the univariate
g-and-k, Fig. 8 reports the marginal posterior distributions for each parameter
at different number of observations for the considered methods. With increasing
n, the BSL posterior does not concentrate (except for the parameter k); the
energy score posterior concentrates close to the true value for all parameters
(green vertical line), while the kernel score posterior performs slightly worse,
not being able to concentrate for the parameter g (albeit this may happen with
an even larger n, which we did not consider here). The poor performance of
BSL is due to violation of the underlying normality assumption (which is to
say, the scoring rule used by BSL is not strictly proper for this example), while
the concentration of the energy and kernel score posteriors are in line with them
being strictly proper SRs.

Similar results for the multivariate g-and-k are reported in Fig. 9. For this
example, the PM-MCMCs targeting the semiBSL and BSL posteriors do not
converge beyond respectively 1 and 10 observations; instead, with the Kernel
and energy scores we do not experience such a problem. The energy score con-
centrates well on the exact parameter value in this case too, while the kernel
score is able to concentrate well for some parameters (g and k) and some con-
centration can be observed for ρ; however, the kernel score posterior marginals
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Fig 8. Marginal posterior distributions for the different parameters for the well-specified uni-
variate g-and-k model, with increasing number of observations (n = 1, 5, 10, 15, . . . , 100), with
PM-MCMC. Darker (respectively lighter) colors denote a larger (smaller) number of obser-
vations. The densities are obtained by KDE on the MCMC output thinned by a factor 10.
The energy and kernel score posteriors concentrate around the true parameter value (green
vertical line), while BSL does not.

for A and B are flatter and noisier (it may be that larger n leads to more
concentrate posterior for A and B as well, but we did not research this further).

We use the following settings for the SR posteriors:

• For the energy score posterior, our heuristic procedure (Sec. 4.2) for setting
w using BSL as a reference resulted in w ≈ 0.35 for the univariate model
and w ≈ 0.16 for the multivariate one.

• For the kernel score posterior, we first fit the value of the Gaussian kernel
bandwidth parameter as described in Appendix E, which resulted in γ ≈
5.50 for the univariate case and γ ≈ 52.37 for the multivariate one. Then,
the heuristic procedure for w using BSL as a reference resulted in w ≈
18.30 for the univariate model and w ≈ 52.29 for the multivariate one.

Next, we discuss the proposal sizes for PM-MCMC; recall that we use inde-
pendent normal proposals on each component of θ, with standard deviation σ.
We report here the values for σ used in the experiments; we stress that, as the
PM-MCMC is run in the transformed unbounded parameter space (obtained
applying a logit transformation), these proposal sizes refer to that space.

For the univariate g-and-k, the proposal sizes we use are the following:
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Fig 9. Marginal posterior distributions for the different parameters for the well-specified mul-
tivariate g-and-k model, with increasing number of observations (n = 1, 5, 10, 15, . . . , 100),
with PM-MCMC. Darker (respectively lighter) colors denote a larger (smaller) number of ob-
servations. The densities are obtained by KDE on the MCMC output thinned by a factor 10.
The energy score posterior concentrates well around the true parameter value (green vertical
line), with the kernel score one performing slightly worse. For BSL, we were able to run the
inference for n = 1, 5, 10, while we were only able to do so for n = 1 for semiBSL.

• For BSL, we use σ = 1 for all values of n.
• For energy and kernel scores, we take σ = 1 for n from 1 up to 25 (in-

cluded), σ = 0.4 for n from 30 to 50, and σ = 0.2 for n from 55 to 100.

For the multivariate g-and-k:

• For BSL and semiBSL, we use σ = 1 for all values of n for which the
chain converges. We stress that we tried decreasing the proposal size, but
that did not solve the non-convergence issue (discussed in the main text
in Sec. 4.3.1).

• For energy and kernel scores, we take σ = 1 for n from 1 up to 15 (in-
cluded), σ = 0.4 for n from 20 to 35, σ = 0.2 for n from 40 to 50 and
σ = 0.1 for n from 55 to 100.

In Table 4, we report the acceptance rates the different methods achieve for
all values of n, with the proposal sizes mentioned above. We denote by “/” the



Generalized Bayesian likelihood-free inference 3671

Table 4

Acceptance rates for the univariate and multivariate g-and-k experiments with different
values of n, with the PM-MCMC proposal sizes reported in Appendix G.1. “/” denotes

experiments for which PM-MCMC did not run satisfactorily.

N. obs. Univariate g-and-k Multivariate g-and-k

BSL Kernel score Energy score BSL semiBSL Kernel score Energy score

1 0.362 0.507 0.420 0.216 0.190 0.468 0.445
5 0.221 0.329 0.375 0.069 / 0.136 0.224
10 0.133 0.252 0.272 0.036 / 0.127 0.216
15 0.109 0.253 0.217 / / 0.077 0.154
20 0.100 0.154 0.207 / / 0.151 0.278
25 0.092 0.149 0.208 / / 0.126 0.233
30 0.085 0.218 0.343 / / 0.124 0.222
35 0.080 0.172 0.315 / / 0.076 0.166
40 0.076 0.152 0.293 / / 0.119 0.246
45 0.070 0.130 0.256 / / 0.103 0.223
50 0.062 0.121 0.220 / / 0.103 0.219
55 0.060 0.189 0.317 / / 0.139 0.297
60 0.059 0.185 0.324 / / 0.129 0.286
65 0.057 0.173 0.314 / / 0.133 0.273
70 0.052 0.172 0.289 / / 0.119 0.256
75 0.048 0.161 0.273 / / 0.123 0.247
80 0.048 0.159 0.267 / / 0.117 0.233
85 0.045 0.150 0.252 / / 0.098 0.213
90 0.044 0.143 0.247 / / 0.087 0.198
95 0.044 0.136 0.244 / / 0.089 0.198
100 0.042 0.129 0.236 / / 0.076 0.190

experiments for which we did not manage to run PM-MCMC satisfactorily. We
remark how the energy score achieves a larger acceptance rates in all experiments
compared to the kernel score.

G.1.1. Investigating the poor PM-MCMC performance for BSL and semiBSL

The correlated pseudo-marginal MCMC for BSL and semiBSL performed poorly
for the multivariate g-and-k example, not being able to converge when using
more than respectively 1 and 10 observations We investigate now this poor
performance, by fixing n = 20 and running PM-MCMC with 10 different ini-
tializations, for 10000 MCMC steps with no burn-in, for BSL and semiBSL,
with m = 500. The chains look “sticky” and, after a short transient, get stuck
in different regions of Θ (see Fig. 10).

In order to understand the reason for this result, we investigate whether
the poor performance is due to large variance in the estimate of the target;
as increasing the number of simulations reduces such variance, we study the
effect of this on the PM-MCMC performance. Therefore, we report here the
results of a study increasing the number of simulations for a fixed number
of observations n = 20 for the g-and-k model. Specifically, we tested m =
500, 1000, 1500, 2000, 2500, 3000, 30000; as discussed in Appendix G.1, we used
a proposal size σ = 0.4, with which the energy and kernel score posteriors per-
formed well. We report traceplots in Fig. 11 and corresponding acceptance rates
in Table 5; from this experiment, we note that BSL achieves acceptance rate
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Fig 10. Traceplots for semiBSL and BSL for n = 20 for 10 different initializations (different
colors), with 10000 PM-MCMC steps (no burn-in); the green dashed line denotes the true
parameter value. It can be seen that the chains are very sticky, and that they explore different
parts of the parameter space.

Fig 11. Traceplots for BSL and semiBSL and BSL for n = 20 using different number of
simulations m, reported in the legend for each row; green dashed line denotes the true param-
eter value. There is no improvement in the mixing of the chain for increasing the number of
simulations.

as large as few percentage points with larger m values, but there is no con-
stant trend (for instance, acceptance rate with m = 3000 is smaller than with
m = 2000), which means that the method is still prone to getting stuck. For
semiBSL, the acceptance rate is abysmal even for very large m.

Additionally, while the BSL assumptions are unreasonable for this model,
the multivariate g-and-k fulfills the assumptions underlying semiBSL: in fact,
applying a one-to-one transformation to each component of a random vector
does not change the copula structure, which is Gaussian in this case. It is there-
fore surprising that the performance of semiBSL degrades so rapidly when n
increases.



Generalized Bayesian likelihood-free inference 3673

Table 5

Acceptance rates for BSL and semiBSL and BSL for n = 20 using different number of
simulations m; there is no improvement in the acceptance rate for increasing number of

simulations. We recall that we were not able to run semiBSL for m = 30000 due to its high
computational cost.

N. simulations m 500 1000 1500 2000 2500 3000 30000

Acc. rate BSL 6.0 · 10−3 1.1 · 10−2 3.3 · 10−2 9.9 · 10−3 1.8 · 10−2 7.5 · 10−3 5.1 · 10−2

Acc. rate semiBSL 7.0 · 10−3 3.4 · 10−3 3.7 · 10−3 2.8 · 10−3 4.2 · 10−3 3.6 · 10−3 9.2 · 10−3

G.2. Misspecified setup

The observations are here generated by a Cauchy distribution. For the univariate
case, the univariate Cauchy is used; for the multivariate case, the observations
are generated as in Sec. 4.3.1 (i.e., no correlation between components).

In order to have coherent results with respect to the well-specified case, we
use here the values of w and γ determined in the well-specified case (reported
in Appendix G.1)

For the univariate g-and-k, we report the marginal posteriors in Fig. 12. The
energy and kernel score posteriors concentrate on a similar parameter value;
the BSL posterior concentrates as well (differently from the well-specified case),
albeit on a slightly different parameter value (especially for B and k). Therefore,
with this kind of misspecification, θ� is unique both when using the strictly
proper Kernel and energy scores, as well as the non-strictly proper Dawid–
Sebastiani Score (corresponding to BSL).

For the multivariate g-and-k, we experienced the same issue with PM-MCMC
as in the well-specified case for BSL and semiBSL; therefore, we do not report
those results. Marginals for the energy and kernel score posteriors can be seen
in Fig. 13; both posteriors concentrate for all parameters except for ρ (which
describes correlation among different components in the observations, here ab-
sent). For the other parameters, the two methods concentrate on very similar
parameter values, with slightly larger difference for k, for which the kernel score
posterior does not concentrate very well.

The above resuts are obtained with the following proposal sizes for PM-
MCMC (which is run with independent normal proposals on each component
of θ with standard deviation σ, in the same way as in the well-specified case,
after applying a logit transformation to the parameter space).

• For the univariate g-and-k, for all methods (BSL, energy and kernel scores),
we take σ = 1 for n from 1 up to 25 (included), σ = 0.4 for n from 30 to
50, and σ = 0.2 for n from 55 to 100.

• For the multivariate g-and-k, recall that we did not report results for BSL
and semiBSL here as we were not able to sample the posteriors with PM-
MCMC for large n, as already experienced in the well-specified case. For
the remaining techniques, we used the same values of σ as in the well-
specified experiments (Appendix F.1.2).

In Table 6, we report the acceptance rates the different methods achieve for
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Fig 12. Marginal posterior distributions for the different parameters for the univariate g-and-
k model, with increasing number of observations (n = 1, 5, 10, 15, . . . , 100) generated from the
Cauchy distribution, with PM-MCMC. Darker (respectively lighter) colors denote a larger
(smaller) number of observations. The densities are obtained by KDE on the MCMC output
thinned by a factor 10. The energy and kernel score posteriors concentrate around the same
parameter value, while BSL concentrates on slightly different one (specially for B and k).

Fig 13. Marginal posterior distributions for the different parameters for the multivariate g-
and-k model, with increasing number of observations (n = 1, 5, 10, 15, . . . , 100) generated from
the Cauchy distribution, with PM-MCMC. Darker (respectively lighter) colors denote a larger
(smaller) number of observations The densities are obtained by KDE on the MCMC output
thinned by a factor 10. Both energy and kernel score posteriors concentrate on a very similar
parameter value, with slightly larger difference for k.
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all values of n, with the proposal sizes discussed above. We remark how the
energy score achieves a larger acceptance rates in all experiments compared to
the kernel score.

Table 6

Acceptance rates for the misspecified univariate and multivariate g-and-k experiments with
different values of n, with the PM-MCMC proposal sizes reported in Appendix G.2.

N. obs. Misspecified univariate g-and-k Misspecified multivariate g-and-k

BSL Kernel score Energy score Kernel score Energy score

1 0.457 0.482 0.521 0.472 0.470
5 0.302 0.436 0.454 0.324 0.373
10 0.193 0.450 0.425 0.362 0.330
15 0.146 0.441 0.390 0.361 0.276
20 0.102 0.264 0.311 0.544 0.410
25 0.093 0.288 0.314 0.530 0.377
30 0.153 0.426 0.471 0.536 0.359
35 0.144 0.349 0.448 0.537 0.336
40 0.134 0.340 0.440 0.631 0.432
45 0.130 0.344 0.429 0.523 0.373
50 0.125 0.255 0.393 0.383 0.343
55 0.167 0.318 0.501 0.471 0.436
60 0.176 0.303 0.490 0.412 0.407
65 0.164 0.293 0.481 0.389 0.391
70 0.164 0.276 0.455 0.372 0.374
75 0.156 0.272 0.445 0.278 0.329
80 0.157 0.262 0.436 0.232 0.306
85 0.153 0.254 0.430 0.247 0.300
90 0.147 0.231 0.415 0.239 0.299
95 0.152 0.226 0.410 0.235 0.291
100 0.141 0.223 0.407 0.232 0.277

Appendix H: Effect of m on pseudo-marginal MCMC

Here, we consider the univariate and multivariate g-and-k, both well-specified
and misspecified, and study the impact of varying m in the resulting PM-MCMC
target. As we span from very small to large values of m, we use here the vanilla
pseudo-marginal MCMC of [4] instead of the correlated pseudo-marginal MCMC
which was used for all other simulations. In this Appendix, we only consider the
summary-free version of BSL (see Section 4.3.1).

The choice of m has two different impacts on the PM-MCMC:

1. first, it changes the pseudo-marginal MCMC target, as discussed in Sec-
tion 3 in the main text; recall how, there, we proved that, for m → ∞,
the pseudo-marginal MCMC target converges to the original SR posterior
defined in Eq. (2) in the main text. Therefore, we expect, for large enough
m, the pseudo-marginal MCMC target to be roughly constant.

2. Additionally, smaller values of m imply that the target estimate has a
larger variance. Therefore, we expect sampling to be harder for small m,



3676 L. Pacchiardi et al.

in terms of acceptance rate of the MCMC, and easier for large m (albeit
that is more computationally intensive).

In our simulation study below, we consider m values from 10 to 1000. Our
results empirically verify our expectations above. In particular, we find that, for
m larger than a threshold which is typically few hundreds, the pseudo-marginal
MCMC target is roughly constant. Additionally, very small values of m (few
tens) make sampling impractical.

Moreover, our empirical results suggest that larger values of m are required for
the PM-MCMC for semiBSL to be stable. For the other methods, the required
m seem to be fairly similar, with slightly larger values for BSL for some models.

Typically, we found m values in the few hundreds to strike a good balance
between larger computational cost and improved acceptance rate with larger
m. Additionally, this consideration depends also on how quickly the simulation
cost scales with m: even when not parallelizing model simulations across different
processors, if the implementation is vectorized, the computational cost can scale
sub-linearly in m, which means a better PM-MCMC efficiency is reached for a
larger m. A more extensive study considering for instance the effective sample
size per CPU time could be carried out.

In all experiments, except where said otherwise, we use the value of w found
via our heuristics strategy (Section 4.2 in the main text) and reported above.

H.1. Univariate g-and-k

Here, we report results considering n = 10 observations.

Table 7

Acceptance rate and trace of the posterior covariance matrix for different values of m for
the well-specified univariate g-and-k, for the BSL, Kernel and energy score posteriors.

m
BSL Kernel score Energy score

Acc. rate Tr [Σpost] Acc. rate Tr [Σpost] Acc. rate Tr [Σpost]

10 0.104 4.5245 0.011 3.6030 0.063 3.9822
20 0.122 4.4439 0.035 3.6679 0.115 3.9642
50 0.129 4.3778 0.098 3.3803 0.179 3.6105
100 0.134 4.4095 0.157 3.2220 0.219 3.5335
200 0.136 4.1753 0.204 3.1628 0.243 3.4730
300 0.135 4.2261 0.220 3.1181 0.252 3.3537
400 0.135 4.1769 0.229 3.0716 0.257 3.3553
500 0.132 4.1702 0.234 3.1079 0.262 3.4362
600 0.130 4.2095 0.239 3.0295 0.259 3.2612
700 0.133 4.2417 0.243 3.0536 0.265 3.3629
800 0.132 4.2421 0.247 3.0216 0.265 3.3077
900 0.132 4.1084 0.248 3.0477 0.267 3.3815
1000 0.137 4.2930 0.253 3.1181 0.269 3.3570

H.2. Misspecified univariate g-and-k

Here, we report results considering n = 10 observations.
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Fig 14. Univariate posterior marginals for different m values for the well-specified univari-
ate g-and-k distribution, for the BSL, Kernel and energy score posteriors, with PM-MCMC.
Lighter (respectively darker) colors denote smaller (resp. larger) values of m. For small val-
ues of m, the marginals are spiky, which is due to unstable PM-MCMC. The densities are
obtained by KDE on the MCMC output thinned by a factor 10.

Table 8

Acceptance rate and trace of the posterior covariance matrix for different values of m for
the misspecified univariate g-and-k, for the BSL, Kernel and energy score posteriors.

m
BSL Kernel score Energy score

Acc. rate Tr [Σpost] Acc. rate Tr [Σpost] Acc. rate Tr [Σpost]

10 0.038 3.3664 0.047 3.4141 0.164 3.8095
20 0.072 2.3207 0.069 3.2060 0.216 3.4900
50 0.130 1.9729 0.184 2.6690 0.306 2.9483
100 0.159 2.0145 0.298 2.4529 0.364 2.7232
200 0.179 1.8829 0.359 2.4037 0.391 2.7153
300 0.187 2.0198 0.389 2.3623 0.402 2.6055
400 0.188 1.9498 0.405 2.3403 0.410 2.6164
500 0.189 1.9092 0.412 2.3756 0.413 2.5579
600 0.191 1.8259 0.422 2.3461 0.414 2.5704
700 0.186 1.9207 0.430 2.3452 0.417 2.5484
800 0.184 1.9509 0.432 2.3810 0.419 2.6276
900 0.190 1.9475 0.434 2.4472 0.423 2.6468
1000 0.194 1.9763 0.436 2.3434 0.425 2.6386

H.3. Multivariate g-and-k

Here, we report results considering n = 10 observations.
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Fig 15. Univariate posterior marginals for different m values for the misspecified univari-
ate g-and-k distribution, for the BSL, Kernel and energy score posteriors, with PM-MCMC.
Lighter (respectively darker) colors denote smaller (resp. larger) values of m. The densities
are obtained by KDE on the MCMC output thinned by a factor 10.

Table 9

Acceptance rate and trace of the posterior covariance matrix for different values of m for
the well-specified multivariate g-and-k, for the BSL, semiBSL, Kernel and energy score

posteriors.

m
BSL semiBSL Kernel score Energy score

Acc. rate Tr [Σpost] Acc. rate Tr [Σpost] Acc. rate Tr [Σpost] Acc. rate Tr [Σpost]

10 <0.001 1.0566 <0.001 0.4227 0.006 3.6061 0.070 4.5255
20 <0.001 0.3674 <0.001 0.6383 0.023 4.0455 0.123 3.9212
50 0.003 2.8320 <0.001 0.6331 0.055 3.8924 0.170 3.8571
100 0.002 2.3666 <0.001 0.6131 0.078 4.1250 0.194 3.8126
200 0.001 0.7140 0.001 0.8603 0.099 3.9624 0.206 3.7142
300 0.008 2.8229 0.002 2.2184 0.108 4.2766 0.208 3.9078
400 0.009 2.5694 0.001 0.6885 0.113 3.9710 0.212 3.8284
500 0.009 3.3583 0.002 1.2885 0.116 4.0250 0.217 3.8383
600 0.013 2.9646 0.005 1.3359 0.120 3.9632 0.216 3.7698
700 0.010 3.7043 0.005 0.6511 0.119 4.0173 0.214 3.7437
800 0.016 3.3017 0.006 0.6679 0.122 3.9607 0.214 3.7512
900 0.022 2.9915 0.005 0.6411 0.126 4.1293 0.216 3.9202
1000 0.017 3.1304 0.006 0.5892 0.122 3.9757 0.216 3.7959

For this model, small m lead to extremely small acceptance rates for BSL and
semiBSL (Table 9); in those cases, the trace of the posterior covariance matrix
is also very small due to the chain being almost still. Additionally, even large
m values lead to small acceptance rate for semiBSL; that is consequence of the
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Fig 16. Univariate posterior marginals for different m values for the well-specified multi-
variate g-and-k distribution, for the BSL, semiBSL, Kernel and energy score posteriors, with
PM-MCMC. Lighter (respectively darker) colors denote smaller (resp. larger) values of m.
For small values of m, the marginals are spiky, which is due to unstable MCMC. The densities
are obtained by KDE on the MCMC output thinned by a factor 10.

Table 10

Acceptance rate and trace of the posterior covariance matrix for different values of m for
the misspecified multivariate g-and-k, for the Kernel and energy score posteriors.

m
Kernel score Energy score

Acc. rate Tr [Σpost] Acc. rate Tr [Σpost]

10 0.017 4.5045 0.174 3.4306
20 0.108 3.6950 0.252 3.2373
50 0.243 3.4612 0.300 3.0291
100 0.308 3.4759 0.316 3.0081
200 0.344 3.4666 0.323 2.9303
300 0.348 3.4583 0.321 2.9160
400 0.355 3.4158 0.331 3.0031
500 0.359 3.4047 0.332 2.9743
600 0.363 3.3847 0.330 2.9321
700 0.360 3.3485 0.329 2.9249
800 0.361 3.3505 0.332 2.9854
900 0.363 3.3627 0.331 3.0155
1000 0.363 3.3307 0.330 2.9277

issues discussed in Appendix G.1.1. We report nevertheless the results here.
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Fig 17. Univariate posterior marginals for different m values for the misspecified multivariate
g-and-k distribution, for the Kernel and energy score posteriors, with PM-MCMC. Lighter
(respectively darker) colors denote smaller (resp. larger) values of m. For small values of m,
the marginals are spiky, which is due to unstable MCMC. The densities are obtained by KDE
on the MCMC output thinned by a factor 10.

H.4. Misspecified multivariate g-and-k

Here, we report results considering n = 10 observations. We do not report results
for BSL and semiBSL as those were unable to run satisfactorily for that number
of observations, for all considered values of m.
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