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1. Introduction

Functional time series analysis balances functional data and time series analy-
ses. Similar to univariate and multivariate time series, a temporal dependence
structure exists in functional observations. For example, intraday volatility func-
tions are serially dependent and often exhibit long-memory features [25]. Time
series of airway pressure are used to monitor patients undergoing mechanical
ventilation, with series exhibiting periodically strong dependence [4].

In functional time series analysis, most studies assume stationarity over the
short-range temporal dependence (see, e.g., [1, 5, 8, 14, 15, 16, 20, 21]). Only
in recent years has there been some development on long-memory functional
time series models (see, e.g., [22, 23, 24, 33]). The long-memory functional time
series describes processes with greater persistence than short-range dependent
ones, such that, in the stationary case, autocovariances decay very slowly, and
the spectral density is unbounded, especially at frequency zero. While [22, 23]
consider inference and estimation of a long-memory parameter in stationary
curve time series, [24] studies inferential results for nonstationary curve time
series. Based on the mean squared error, [39, 40| evaluate and compare various
long-memory parameter estimators for stationary and nonstationary curve time
series, respectively. In these comparisons, the local Whittle estimator of [32] is
recommended. While [23] presents the asymptotic properties of the local Whittle
estimator, [41] applies a sieve bootstrap method from [30] to nonparametrically
construct the confidence intervals of the memory parameter.

Given the recent surge of interest in functional time series analysis, cointe-
gration methods have been extended to a functional time series setting by [7].
They define cointegration for curve time series and develop statistical methods
based on functional principal component analysis. [2] and [37] provide suitable
notions of cointegration in a Hilbert space and a Bayes Hilbert space, respec-
tively. [2] and [3] study a general solution to a functional autoregressive law of
motion allowing for nonstationarity and cointegration and present extensions
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of the Granger-Johansen representation theorem; see also [9], [34], and [35] for
similar theoretical results in a more general setting.

We study a fractionally cointegrated curve time series by developing infer-
ential and estimation methods for such a time series. The curve time series
consists of nonstationary and stationary components. For each component, we
estimate the long-memory parameter via the local Whittle estimator. Through
a variance-ratio test, we determine the subspaces spanned by nonstationary and
stationary components. We compare our method with the existing one based
on the eigenvalue-ratio estimator by [22]. In addition, this paper develops sta-
tistical methods for the case when the stationary component can further be
decomposed into the long-memory and short-memory components.

In Section 2, we present our notations and preliminaries. In Section 3, we
introduce the fractionally cointegrated functional time series. The estimation
procedure is given in Section 4. Illustrated by a series of simulation studies
in Section 5, we evaluate the estimation accuracy of the proposed method and
compare the result with [24]. The empirical performance of our proposed method
is also validated through application to a Swedish human mortality data set in
Section 5.2 and a Canadian yield curve data set in Section 5.3. In Section 6,
we conclude and present some ideas on how the methodology can be further
extended.

2. Preliminaries

In the subsequent discussion, we assume that the curve-valued time series Z;
of interest takes values in the Hilbert space H of square-integrable functions
defined on [0,1]. We let (h1, h2) denote the inner product of hy, he € H, and
then let ||| denote the norm of h € H, which is defined by (h, h)/2. Given a set
G C H, we let G+ denote the orthogonal complement to G. We denote by Ly
the space of bounded linear operators acting on H equipped with the uniform
norm || A||z,, = supj <1 [[AR|[, and I € L3; denotes the identity operator. The
adjoint A* of a linear operator A € L4 is the unique linear operator satisfying
(Ahy, ha) = (h1, A*hg) for all hy, he € H. We will say that an operator A € Ly
is nonnegative (resp. positive) definite if (Ah,h) > 0 (resp. (Ah, h) > 0) for all
nonzero h € H. We let ® denote the tensor product of elements in #, that is,
hi ® ha(:) denotes the linear map given by (hy,-)ho for any hy, hy € H. We let
the range of A € L4 be denoted by range A. The dimension of range A is called
the rank of A, denoted by rank A. We will consider convergence of a sequence
of random bounded linear operators as the sample size T tends to infinity. For

such a sequence of operators A;, we write A; — A to denote the convergence
P

in probability of A; to A with respect to the uniform operator norm, that is,

Aj —A & HAjiAHL'H — 0.
p p

We define the I(d) property of a time series, taking values in H. As a crucial
building block, we first introduce the I(0) property adopted from [2].
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Definition 1 (I(0)-ness). The time series X; taking values in H is said to be
I(0), and denoted X; € I(0), if (i) it allows the representation

o0
Xy = E Yi€t—j,
i=0

where ¢; € Ly for all j and ¢, is an i.i.d. (independently and identically dis-
tributed) sequence with Ee; = 0 and positive definite covariance C¢, defined as
Ele: ® €¢], and (ii) Z;io ®; is a nonzero element in Lyy.

The I(0) time series is necessarily stationary, and its long-run covariance
>oe JE[Xi—s ® X;] is a well-defined bounded linear operator (see, e.g., [2]).
In this paper, an I(0) time series is also referred to as a short-range dependent
(SRD) process, as in the literature (see, e.g., [22]). Based on the I(0) property,
we define H-valued I(d) processes, which will subsequently be considered as

follows:

Definition 2 (I(d)-ness). For d > 0, the time series Y; is said to be I(d) (or
equivalently, fractionally integrated of order d), and denoted Y; € I(d), if A%Y;
is 1(0), where A9 is a power series of the lag operator defined by

o~ TIG-a
At = jz:;) D(—-d)I'(j + 1)L '

Cointegration is a property of a multivariate nonstationary dynamic system,
indicating the existence of a stationary linear combination of the variables in the
system. Cointegration (or the so-called cointegrating relationship) between the
variables is often interpreted as their stable long-run dynamic relationship, and
various empirical examples have been proposed, especially in studies of macroe-
conomic dynamics. The notion of cointegration has been recently extended to
and studied in a Hilbert space setting by [2], [24], [28], [29], [34] and [36]. Extend-
ing these former notions of cointegration, we may define fractional cointegration
in H as follows:

Definition 3 (Fractional cointegration). Suppose that Y; € I(dy) and there
exists a projection P such that PY; € I(dg) for some dy > 1/2, dg € [0,1/2). We
then say that Y; is (fractionally) cointegrated and call v € range P a (fractional)
cointegrating vector.

If dy > 1/2, an I(dy) time series Y; taking values in H is nonstationary. How-
ever, given that we can find a subspace range P C H such that PY; is stationary

process, Definition 3 suitably extends the conventional notion of cointegration
in a Euclidean space.

3. Fractionally cointegrated functional time series

We consider modeling nonstationary dependent curve-valued observations but
exhibiting stable long-run linear relationships as fractionally cointegrated time
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series. A potential example of such a time series may be yield curves over time;
it turns out that this time series tends to evolve like a nonstationary process
(see the working paper version of [24] and [29]), but due to the expectations hy-
pothesis, many linear functionals of such time series are expected not to exhibit
nonstationarity; see e.g. [11], [12] and [27, Section 6].

Even if Definition 3 gives us a proper notion of H-valued time series allowing
fractional cointegration, the definition itself is, of course, not sufficient for the
inferential methods to be developed. For statistical analysis, we employ the
following assumptions for the observed time series Z;:

Assumption 1. The observed time series Z;, taking values in H, satisfies the
following:

(a) Zy = p+Y; for some u € H.
(b) Forsomedy € (1/2,3/2),ds € [0,1/2), there exists an orthogonal projection
P and an I(0) sequence X; given by X; = Z(;io e, satisfying

AWNP(Y; —Yy) = PX1{t > 1}, (3.1)
A% (I — P)Y, = (I — P)X;, (3.2)

where Z;’;Ojﬂwjﬂg < 00, and &; satisfies that E||e;||” < oo for some 7 >
max{4,2/(2dy — 1)}, and 1{-} denotes binary indicator function.

(c) rank P "2 1 4bj = gy < 0.

Some comments on Assumption 1 are in order. First, in most empirical appli-
cations, a functional time series tends to have a nonzero intercept. Thus, in (a),
we assume that the observed time series is given by the sum of an I(dy) process
Y; and an unobserved intercept 1 € H. Moreover, of course, it might sometimes
be of interest to consider a linear time trend component; even if we do not ex-
plicitly deal with this case, most of the results to be subsequently given may
be extended to accommodate this possibility with moderate modifications. We
describe the cointegrating properties of the stochastic part of the observed time
series Z; in (b) with some other necessary conditions for our mathematical de-
velopment. Here we restrict our interest to the case with dy € (1/2,3/2), which
seems relevant in most empirical applications involving nonstationary fraction-
ally integrated time series. Note that the process given in (3.1) is nonstationary
since dy > 1/2 and thus the trucation operator 1{¢ > 1} needs to be used to
have a well-defined process (see, e.g., Section 4 of [24]). If we let A denote the

truncated fractional difference operator defined by Ai = ZE;E %Lj ,

then (3.1) and (3.2) can be conveniently rewritten as

P(Y; - Yo) = ALV PX,, (3.3)

(I-P)Y,=A9%(-P)X, = Zbet iy (3.4)

where b; Zk 0 %(I — P)4y. Note that we require (I — P)Y; to

be a stationary long-range dependent (LRD) process with ds € (0,1/2), or
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short-range dependent (SRD) process with dg = 0. Given that any orthogonal
projection may be understood as a bipartite decomposition of a Hilbert space,
what (3.3) and (3.4) imply is that our observed time series may be understood
as the sum of two heterogeneous components: the nonstationary component
P(Y; — Yy) and the stationary component (I — P)Y;. Associated with this con-
dition, (c) identifies the collection of the cointegrating vectors as range(I — P);
under this condition, (Y;,v) is stationary if and only if v € range(I — P) (see
Proposition 3.1 of [2]). However, given that (i) our I(ds) property does not
exclude the possibility of an additional memory deduction (on range(l — P))
and (ii) range(I — P) Z;io 1; may not be equal to range(I — P), there may
exist another orthogonal projection @ such that range@ C range(I — P) and
QY; € 1(dy) for d; € [0,ds]. That is, the time series (I — P)Y; is a quite general
stationary process. Given this time series, we are interested in identifying the
nonstationary and stationary components from the observed time series, which
will be discussed in the next section.

Remark 3.1. We assume that the functional time series of interest contains a
finite dimensional nonstationary component. This assumption appears reason-
able in many empirical applications, as evidenced by [7], [28], and [36]. These
studies provide strong statistical evidence supporting the existence of finite di-
mensional I(1) components in various time series, including cross-sectional den-
sities of individual earnings, return densities of a financial asset, age-specific
employment rates, and intraday electricity consumption. Moreover, for certain
economic functional time series, the assumption gy < oo is natural. As a repre-
sentative example, let Y; be a time series of yield curves, which is a well-known
example of nonstationary functional time series. According to the expectations
hypothesis of the term structure of interest rates (see, e.g., Section 6 of [27]), we
can reasonably assume that gy < oo. Specifically, bonds with different maturities
will be nearly perfect substitutes for each other and, thus, their nonstationarity
can reasonably be attributed to a small number of nonstationary components.
This argument can be extended to other examples where Y;(u) and Y;(u') are
substitutes for each other for w,w’ € [0,1].

Remark 3.2. The nonstationary component P(Y; — YY) may be understood as
a natural extension of the functional autoregressive integrated moving average
(FARIMA) process of order (p,d, q) considered in [22]. Specifically, consider the
following FARIMA(p, 0, ¢) process:

O(L)V: = O(L)e, (3.5)

where ®(L) =1 —-®1L—-- —P®,LP, O(L) =1 —-O1L—---—0,L% and ®; and
©; are all bounded linear operators. We let W, be the process defined by

AW, = V. (3.6)

Ifd € (—1/2,1/2) and V; is stationary 1(0), then W; becomes a FARIMA (p, d, q)
process considered in [22]. On the other hand, if d = 0 (and thus A4 = I) but
®(L) allows a unit root instead, then W; becomes a cointegrated time series
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considered in [3]. Now suppose that d € (—1/2,1/2) and ®(L) allows a unit root,
and the AR operators ®; are compact (note that this compactness assumption
is quite common in the literature). We then know from the Granger-Johansen
representation theorem (see e.g., Theorem 3.1 of [3]) that AV; can be written
as AV, = Ye; + VS — V2, for t > 1, some finite rank operator Y, and an
1(0) stationary sequence V;°. Thus W; defined by ANW, = AV;1{t > 1} for
dy :=d+1 € (1/2,3/2) only contains a finite dimensional I(dy) component;
that is, gv < oo as in our Assumption 1. In fact, this result holds under even
weaker conditions, requiring neither compactness of ®; nor the Hilbert space
structure of H; see, for example, [34] and [35].

Sometimes, practitioners may also be interested in the case where the sta-
tionary part of Y; can be decomposed into the SRD and LRD components. We
will also consider this case by imposing the following additional conditions on
the stationary component:

Assumption 1A. The observed time series Z; satisfies Assumption 1, and
there exists an orthogonal projection @ such that

QP =0
A%QY; = QXy,
(I-Q)I—-P)Y,=(-Q)UI~— P)Xy,

and

o0
rankQZd)j = gg < 00.
j=0

Under Assumption 1A, the time series {Z; };>1 satisfying Assumption 1 can
be decomposed into three different components: gy-dimensional nonstationary,
gs-dimensional LRD and infinite-dimensional SRD components. In empirical
applications involving nonstationary functional time series, even after extract-
ing the nonstationary component, it is reasonable to expect that the resulting
residual time series may still contain an LRD component. Assumption 1A is to
accommodate this possibility to our model. In this case, practitioners may be in-
terested in decomposing the nonstationary component from the stationary com-
ponent (given by the sum of the LRD and SRD components) and in decomposing
the LRD component from the SRD component. Moreover, the memory param-
eters dy and dg may also be of interest in practice. We will discuss these issues.

It is useful to introduce some additional notation and terminology. Under
Assumption 1, we have the bipartite decomposition H = range P ®range(I — P).
As clarified above, the collection of cointegrating vectors is given by range(I—P),
which is called the cointegrating space and denoted by Hg. The orthogonal
complement to Hg is called the dominant subspace (as in [24]) and denoted by
Hy. If Assumption 1A is satisfied, then Hg can also be decomposed into QHg
and (I — Q)Hg, which are called the LRD and SRD subspaces and denoted by
Hrrp and Hgsrp. To sum up, we have

H=HyDHs under Assumption 1,
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H=HND®HLrp ®Hsrp under Assumption 1A,
where, obviously,

Hy = range P, Hg = range(l — P),
Hrrp =rangeQ, Hsrp = range(l —Q)(I — P).

Remark 3.3. The finite dimensionality of the dominant component is a preva-
lent assumption in the literature concerning stationary or nonstationary inte-
grated time series of possibly fractional order; see [7], [22], [28], [29] and [36].
This assumption is incorporated into our context (as reflected in Assumptions 1
and 1A), positioning our paper between existing works and presenting it as an
extension, at least to some extent.

Remark 3.4. As noted by an anonymous referee, to whom we are indebted, it
may be of interest to explore the LRD component QY; with additional potential
memory reduction on Hpgrp, unlike in Assumption 1A. While this could be a
more realistic assumption in practice, developing statistical methods for such a
general LRD component is beyond the scope of the present paper. This topic is
left for future study, pending further theoretical advancements in the literature
on LRD functional time series.

4. Statistical methods

To make our statistical inference invariant with respect to a (possibly) nonzero
intercept p1, we will consider Z? or Z; depending on the context, which is defined
as follows: for t > 1,

T
- 1
Z20=27,—Zy and Zy=Z; — T ;Zt, (4.1)

where we assume that Z is observed. Of course, in practice, Z will be replaced
by Zy — Z1 by putting the first observation aside to initialize the time series.
Thus, no essential restriction is placed by using Z; in analysis.

4.1. Decomposition of Hn and Hs

In this section, we consider the decomposition of the nonstationary and station-
ary components, which essentially boils down to identifying the cointegrating
space Hg or the dominant subspace Hy. As may be deduced from the existing
literature (see, e.g., [7, 24, 28]), the dominant subspace H can be estimated by
the span of the eigenvectors corresponding to the first ¢y largest eigenvalues of
a certain sample operator. For this reason, the estimation of Hg reduces to the
estimation of gy, which will be subsequently discussed. The quantity ¢y itself
may be of interest to practitioners since it represents the number of linearly
independent fractional unit root processes embedded into the time series; in the
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literature considering n-dimensional vector-valued fractionally integrated time
series, the quantity n— gy is commonly called the (fractional) cointegrating rank
and has attracted significant attention. We will develop statistical inference on
qy in this section and obtain the desired decomposition.

4.1.1. FEigenvalue-ratio-based estimation of qy

We will first consider an eigenvalue-ratio-based estimator, similar to the es-
timator of the dimension of the dominant subspace proposed by [24]. In our
Monte Carlo study, this estimator performs worse in finite samples compared to
our second estimator, which is obtained using the proposed sequential testing
procedure. Nevertheless, the subsequent discussion becomes a crucial input to
the aforementioned testing procedure and helps form a deeper understanding of
fractionally cointegrated time series.

Under Assumption 1, an element v included in the dominant subspace Hy
is differentiated with any other element v € Hg in the sense that the sample
variance of (Y;,v) tends to be higher than that of (Y, v); more specifically, we
have

Til Z?:1<th ’U>2
T (YD)

Based on the above intuition combined with Lemma A.1 and the asymptotic
properties of the covariance operator of nonstationary fractionally integrated
functional time series, we may establish the following result:

Proposition 4.1. Suppose that Assumption 1 holds, K is a finite integer satis-
fying K > qn and the (K — qy)-th largest eigenvalue of E[(I — P)Y; ® (I — P)Yy]
is nonzero and distinct from the next one. Let (ji1,. .., k) be the ordered (from
the largest) eigenvalues of the sample covariance operator of Z; given by

M|

N 1L
07: ZZt®Zt
t=1

Then the following holds:

(4) Bi/Rj+1 —> 00 if = v while i/ fije1 = Op(1) if j # av.

(i) The corresponding eigenvectors (Vy, ..., 0, ) satisfy that
an
Aj X Aj — P. (4.2)
i=1 P

Some direct consequences of the results given in Proposition 4.1 are given as
follows:

Corollary 4.1. Let everything be as in Proposition 4.1. Then the following
hold.



Fractionally integrated curve time series 3867

(i) Qv = argmax; ;< (%) ? v -
(i) P:= Zjﬁl v; ®v; — P.
P

Note that Proposition 4.1 requires a careful choice of K satisfying some math-
ematical conditions, which is crucial to achieve the consistency results in Corol-
lary 4.1 (see Remark 4.1). However, such a choice can be obtained without
difficulty (see Remark 4.3). It is also worth emphasizing that our results given
in Proposition 4.1 and Corollary 4.1 require that only the (K — gy)-th eigen-
value of E[(I — P)Y; ® (I — P)Y;] is different from the next one; that is, the
results allow the case where some of the first (K — qy) eigenvalues are tied. Of
course, this requirement does not seem to be restrictive in practice. Given that
any closed subspace of H may be identified as the unique orthogonal projection
onto the space, the result given in Corollary 4.1(ii) may be understood as the
convergence of range P (resp. range(I — 13)) to Hy (resp. Hg), and we thus may
write

range P ;) Hy and range(] — ﬁ) ;) Hs.

Remark 4.1. In our proof of Proposition 4.1, it is shown that, for some Q
which is symmetric and positive definite on H y,

1
T 2N e j-th largest eigenvalue of /0 QW g, (s) @ QW g, (s)ds,  (4.3)

jointly for j < gy, and

fj — j-th largest eigenvalue of E[(I — P)Y; ® (I — P)Y4], (4.4)
P

jointly for j > qy.In (4.3), W, is a demeaned Type II fractional Brownian mo-
tion of order dy defined on H, which will be introduced in detail in Section A.
The results given in Proposition 4.1(i) are consequences of the above conver-
gence results. Moreover, this shows why we require the (K — gy )-th eigenvalue
of E[(I — P)Y; ® (I — P)Y%] to be nonzero in Proposition 4.1; if the (K — gy)-th
eigenvalue is zero, then [ix_1/lix 7 0o, which is not desirable for consistency

of C/]\N.

Remark 4.2. The estimator given in Proposition 4.1 may be understood as a
tailored version of the eigenvalue-ratio estimator of the dimension of the dom-
inant subspace proposed by [24]. It is worth noting two important differences
in theoretical and practical aspects. First, due to cointegration, we can explain
more about the role of K (an upper bound of gy, which needs to be chosen by a
researcher), while its role is not sufficiently discovered in the setting of [24]. Due
to this, the estimator of [24] requires an additional and arbitrary penalty pa-
rameter to suppress the possibility that two small eigenvalues result in a large
ratio and hence may give a misleading estimate. On the other hand, we can
provide a feasible and less arbitrary way to choose K (see Remark 4.3 below).
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Remark 4.3. In Proposition 4.1, K needs to be greater than gy. We know from
Remark 4.1 that the first gy largest eigenvalues of (' have bigger stochastic
orders than the remaining eigenvalues. It thus may not be difficult to conjecture
a slightly bigger integer than ¢y from the estimated eigenvalues, and K can be
set to such an integer. Note that we also require the (K — gy)-th eigenvalue of
E[(I-P)Y;®(I—P)Y;] to be nonzero and distinct from the next one. Given that
we consider a functional time series, E[(I — P)Y; ® (I — P)Y;] tends to allow many
nonzero eigenvalues in most empirical applications. Moreover, violation of this
condition may be avoided by checking if fix — Jix 11 is bounded away from zero;
see (4.4). As an extreme case, if the eigenvalues of E[(1 — P)Y;® (I — P)Y;] are all
nonzero and distinct, we do not require any condition on K in our asymptotic
analysis; that is, K can be any arbitrary finite integer greater than gy.

Even if we can consistently estimate gy (and thus P) based on Proposi-
tion 4.1, practitioners may be more interested in a statistical test for ¢y, which
demonstrates how strongly the data support a certain hypothesis about ¢y. In
the next section, we provide a variance-ratio-type test for gy that can be ap-
plied to our functional time series setting and propose an alternative estimator
gy obtained by sequential application of the test. Our simulation results show
that this new estimator tends to outperform gy.

4.1.2. Variance-ratio test on qy

The limiting behavior of the sample covariance operator Cy = T~ S\ Z,®Z,
under the existence of cointegration enables us to implement a statistical test
about gy, which will be discussed in this section.
As the first step to developing our test, we consider a fractionally integrated
variable Z; as follows:
Zy = NT°Z,. (4.5)

The constant a > 0 is user-specific. As will be discussed later, the selection of «
affects the limiting distribution and appears to be important for the finite sample
properties of our test to be detailed. However, from a theoretical perspective, a
is permitted to take any positive real value (see Remark 4.5 for a more detailed
discussion). For any positive integer K, let ﬁK denote the orthogonal projection
given by

K
Px =Y ;@70 (4.6)

j=1
where (01,...,0k) is the eigenvectors corresponding to the first K largest eigen-

values of @7. Let Ap and Bt be defined by

T T
Ap = ZJSKZs ® PxZ;, Br= ZﬁKZt ® P Z;.

t=1 t=1
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We then define the following generalized eigenvalue problem:
/V\jBT’L/l}j = AT@]‘, fl\l < /V\Q <...< I//\K7 7/17]‘ € range ﬁK (47)

Since the domain and the codomain o£ each of Ap and Br are restricted to
the span of the first K eigenvectors of C, we may compute K (almost surely)
positive eigenvalues from (4.7). Our main result in this section is given as follows:
in the proposition below, Bj(s) denotes a gy-dimensional type II fractional
standard Brownian motion defined by Bs(0) = 0 almost surely and Bs(s) =
ﬁ Jo (s = 7)°~tdWy(r) for s > 0 and the standard Brownian motion Wy.

Proposition 4.2. Suppose that Assumption 1 holds, K is a finite integer satis-
fying K > qn and the (K — qn)-th largest eigenvalue of E[(I — P)Y; ® (I — P)Yy]
is nonzero and distinct from the next one, and a > 0. Let (V1,4 .., Vqy,a) be
the ordered eigenvalues (from the smallest) of

( / B sa(9)Bara(s)’ ds)

-1

/0 Bay (5)Buy (5)'ds, (4.8)

where

1
Bay (s) = Bay(s) 7/0 By, (r)dr,

EdN-ﬁ-a(s) = Bay+al(s) — (/01 BdN+a(7“)d7") (/05 %dr) -

Then

Q0 [~ ~
T=*(V1, ..., Vgy) = (V,as -+ Vgya)
and
2o~ .
T VqN_;,_j;)OO, j=1,...,K —qn.

The asymptotic results given in Proposition 4.2 enable us to implement a
more detailed statistical inference on ¢y beyond consistent estimation of it.
Specifically, let us consider the following null and alternative hypotheses:

Hy:qv=¢q vs. Hi:qy<gq. (4.9)

Based on the asymptotic results given in Proposition 4.2, we know that, for
example,

A) ,=T°* max U; and A, =T>" Zﬁj (4.10)

1<j<q

have well-defined limiting distributions under H, while they diverge to infin-
ity under H;. Using these statistics, we may easily evaluate the plausibility of
the null hypothesis. Moreover, as an alternative way to estimate ¢y, we may se-
quentially examine (4.9) for ¢ = ¢max, max — 1, - - ., 1, where gmax is a reasonable
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upper bound. In practice, gmax may be chosen based on the estimated eigenval-
ues of C (see Remark 4.3) or can be set to gy + € using the modified eigenvalue
ratio estimator of [24] and small finite integer e. This sequential procedure is
consistent in the following sense:

Corollary 4.2. Suppose that the assumptions in Proposition 4.2 hold, and let
Gy be the estimator obtained from this sequential procedure with fizved significance
level n > 0. Then,

P(gy =qv) = 1—n-1{qv > 1}.

By lettingn — 0 as T — oo, we have P(qy = qx) — 1 for all possible values
of qn-

Even though the estimator of ¢y in Corollary 4.2 is constructed using se-
quential tests, it is important to note that the testing procedure guarantees
correct size asymptotically. This property has been well-documented in previ-
ous works, such as [18], [27], and [28], which studied similar procedures. Our
proof of Proposition 4.2 also shows that the first ¢y eigenvectors computed
from (4.7) converge to a random orthonormal basis of Hy. Therefore, we can
also obtain the following:

Corollary 4.3. Suppose that the assumptions in Proposition 4.2 hold and let
qn be any consistent estimator of qy. Then,

~

ﬁ: ’I,UJ®7,/U\]—>P.
p

e
=

1

<.
Il

Suppose that practitioners are only interested in consistent estimation of H
or Hg; they then might prefer to use the eigenvalue-ratio estimator gy developed
in Section 4.1.1 since it is much easier to implement. However, our simulation
study shows that g, substantially outperforms gy. Since the estimation of Hy
(or Hg) can be affected by inaccuracy in the estimator of its dimension, this
result supports the use of the testing procedure given in Corollary 4.2 in practice.

Remark 4.4. In Corollary 4.2, quax is required to be a reasonable upper bound
for gx. As suggested by Nielsen et al. [28, Remark 6] for their testing procedure
to determine the number of I(1) stochastic trends, if the testing procedure yields
Ty = Gmax, it is advisable to restart with a higher value of gmax to mitigate the
risk of selecting a value that is too small.

Remark 4.5. The limiting distribution given in Proposition 4.2 depends on o
and dy. Note that dy is an unknown parameter of interest. Therefore, in imple-
menting the proposed test in practice, dy needs to be replaced by a consistent
estimator of dy, such as the local Whittle estimator that we will consider later
in Section 4.3. On the other hand, « is known and needs to be chosen by the
researcher. Even if our asymptotic theory allows for any a > 0, it would be
prudent to use a which is not very close to 0 given the nature of the test. In our
simulation study, we consider an ad-hoc choice & = 0.5 and compute the test
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statistics using T7; for j = 1,...,qy. We find that the test with this choice of «
performs reasonably and present a sensitivity analysis in Tables 11, 13 and 14.

Remark 4.6. If we consider a finite-dimensional Euclidean space setting, our
test based on A} , reduces to the test of [27] developed for fractionally cointe-
grated time series. Even if there are some moderate differences in the cointe-
grating properties assumed in the present paper and that of [27] (e.g., in that
paper, the considered time series is written as the sum of the nonstationary and
asymptotically stationary components), our tests developed in this section may

be viewed as generalizations of Nielsen [27]’s test to some degree.

4.2. Decomposition of Hrrp and Hsrp

We, in this section, consider the estimation of Hyrp and Hggrp in the case where
Hs can be further decomposed as in Assumption 1A; of course, this requires
a consistent estimator of Hg in advance. The variance-ratio test developed in
Section 4.1.2 cannot be directly used for this problem since it requires nonsta-
tionarity of the underlying time series. As an alternative method, we provide a
consistent estimator of gy, similar to the eigenvalue-ratio estimator considered
in Section 4.1.1.

Suppose that P is known. We then know that the long-run variance of (Y, v)
for v € Hprp = range Q(= range Q(I — P)) is unbounded while that of (Y, v)
for v € Hsrp = range(I — Q)(I — P) is bounded (see e.g., Section 2.1 of [22]).
Using this property, we may distinguish v € Hygp from any element in Hggp-
Our proposed estimator of gg is obtained by extending this idea, and then Hyrp
can also be estimated by the span of certain gg eigenvectors as in Section 4.1.1.
Of course, in practical applications, P is unknown. This issue can be addressed
by replacing P with its consistent estimator, as indicated by the subsequent
asymptotic results.

Let Ay denote the operator defined by

A= > E[I-Q)I—-P)Y, & (I-Q)I—-P)Y],

§=—00

which is the population long-run covariance of the SRD component of Y; and
a well-defined bounded linear operator. We also let A be the sample operator

defined by
R T-1 s\ =
A= -G 411
> (-F)e. (a1
s=—T+1
where
O. = T Z,:T:sﬂ Zi s ® Zy, if s >0,
’ T Z?:—s-i—l Zy @ Zyys, if s <O0.

We then establish the following result:
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Proposition 4.3. Suppose that Assumption 1A holds, h = o(T'/?), K is a
finite integer satisfying K > qs and the (K — qg)-th largest eigenvalue of Ag is
nonzero and distinct from the next one. Let (fi1,..., k) be the ordered (from
the largest) eigenvalues of (I — F)K(I —P") for any P 7 P as T — oo. Then

the following hold:
(%) 1/ i+ o if j = as while i /141 = Op(1) if j # gs-

(i) The corresponding eigenvectors (Vy,...,04q) of (I — ﬁ)K(I —P") satisfy
that

as

E ’Uj &® ’Uj — Q
) p
Jj=1

Some direct consequences of Proposition 4.3 are given as follows:

Corollary 4.4. Let everything be as in Proposition 4.3. Then the following
hold.

o i
(i) gs = argmax; ;< (—ﬁjil) ? qs-

(i) Y325 @0 > Q and I~ P~ X0, 5,67 — (1= QU — P),

In Proposition 4.3 and Corollary 4.4, P may be replaced by P or P obtained
earlier. The role of K in the estimation of g5 and () is somewhat similar to that
as described in Remark 4.1, which will be detailed in Remark 4.7 below.

Remark 4.7. In our proof of Proposition 4.3, we show that h~=2s (fiy, . . . s Hgg)
converge in probability to the eigenvalues of a well-defined linear operator while
(ﬁq5+1a ..., lix) converge to some eigenvalues of Ag. This shows why we require
the (K —qs)-th largest eigenvalue of Ay to be distinct from the next one; if there
is no such a distinction, fix_1/lik ? oo, which is not desirable to establish

consistency of ¢s.

4.3. Estimation of the memory parameters

As shown in Section 4.1.2, a consistent estimator of the memory dy is necessary
to implement our variance-ratio test in practice (see Remark 4.5). Moreover,
practitioners may be interested in dy and dg for their own sake. In this section,
we briefly discuss estimation results for these memory parameters via the local
Whittle method. A more detailed discussion of our estimation results can be
found in Appendix B.

For convenience, we let d, w (z:) denote the local Whittle estimator computed
from a time series z; with tuning parameter m (depending on the sample size
T) and a proper range of admissible values (this range depends on z; and will
be detailed in Appendix B). We postpone the detailed discussion on the local
Whittle estimation of the memory parameter to Section B.1.
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4.8.1. Estimation of dy

With a simplifying assumption that ¢¥; = ¢;A for some ¢; € R and A €
L3 (this assumption might look restrictive, but it is still more general than
the assumption, requiring scalar coefficients, in the recent article by [23] that
develops the local Whittle estimator for LRD functional time series) and some
standard regularity conditions imposed on the time series (X, v) for v satisfying
P(v ¢ Hs) = 1, we note that for any v € H, (ZP,v) is I(dy) as long as v ¢
Hs = range(I — P). Given that (Z?,v) is a univariate I(dy) process, our goal
reduces to the estimation of the memory parameter of (Z7, v).
We establish that R
drw ((Z2,v)) = dy (4.12)

for dy € (1/2,1] if m grows with an appropriate rate (see Proposition B.1(i)).
Unfortunately, dzw ((Z2,v)) is not consistent if dy > 1 (see Proposition B.1(ii)),
but in this case, we may use the following result for consistent estimation:

1+ dpw((AZ,v)) — dy, (4.13)

where dy can be all possible values in (1/2,3/2) (see Proposition B.1(iii)).

For the consistency results given in (4.12) and (4.13), v is required not to be
included in Hg with probability one. Choosing such v may not be difficult in
practice since the probability that any v, randomly picked from H, is exactly
orthogonal to H y is zero. In practical implementation, we may conveniently set
v = Z}le ajv; for some orthonormal set {v;}7_,; (e.g., the first .J elements of the
Legendre polynomial basis of %) and nonzero coefficients {a;}7_,. This choice is
valid as long as at least one v; is not exactly orthogonal to H, and thus will be
valid even with a moderate integer .J. If we choose v in this way and thus v ¢ H,
the proposed estimator in (4.12) or (4.13) might underestimate dy in a finite
sample since dy is the maximal memory of the time series (Y;,v), which is as
expected from the discussion in [24] on their infeasible local Whittle estimator
requiring a choice of v € Hy. To avoid this possibility in practice, it seems
prudent to consider a few different choices of v, say v for ¢ = 1,...,L, and
then disregard choices that give us relatively smaller estimates. In our numerical
studies in Section 5, we set v = v(¥), which maximizes drw ((Z?,v¥))) from
a finite set of v(®) constructed from the first few Legendre polynomial basis
functions, and our simulation results show that this approach works well even
though the functional time series is generated by a different basis system; see
Section 5.

Asymptotic inference on dy can also be implemented; in particular, under
some additional assumptions to be detailed in Appendix B, we may use the
following result:

m2(1+ dpw ((AZy,v)) — dy) = N(0,1/4); (4.14)

see Proposition B.2. The asymptotic distribution of C,Z\Lw«Z?,U» can also be
obtained, but it turns out to be dependent on the true value of dy, which is not
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desirable in the practical use of the asymptotic result. Therefore, (4.14) may be
more convenient for practitioners.

The simplifying assumption imposed on 1; to obtain the results given in this
section seems to be strong and significantly restricts the data generating process,
but we conjecture that this assumption is not necessarily required; our simula-
tion results show that our estimator performs well even if the assumption is not
satisfied. The assumption is imposed only to ensure that (X, v) is a stationary
linear process. In more general cases where (X¢, v) is allowed to be a stationary
nonlinear process, we may conjecture from the results given by [43] that the
local Whittle estimator will be consistent if some additional assumptions are
satisfied.

Remark 4.8. [24] provided a procedure to consistently estimate dy. Let U7 be
the eigenvector corresponding to the largest eigenvalue of 7! Ethl ARCIAR
Then Theorem 4.2 of [24] implies that the local Whittle estimator computed
from (Z?,0;) with a proper range of admissible values converges to dy if dy €
(1/2,1]; in the case where dy > 1, they proposed an integer-order differencing
algorithm to estimate dy. Even if this estimator can be used in our model, our
simulation results show that our estimator performs better than theirs.

4.8.2. Estimation of dg

Estimation of the memory parameter of the LRD component, dg, requires prior
knowledge of gy or its consistent estimator. However, as shown in the previous
sections, we may construct a consistent estimator of gy, so it is assumed to be
known in this section for simplicity. R

Let {0;}72,, +1 be the eigenvectors of C7 =T -1 Zthl Z:® Z; corresponding
to the eigenvalues except for the first gy largest ones, and let {v; }j‘?‘;qN 41 be the
eigenvectors of E[(I — P)Y; ® (I — P)Y;]. Then we may establish the following
result under a similar set of assumptions employed for estimation of dy: if the
largest eigenvalue of E[(I — P)Y; ® (I — P)Y] is distinct from the second one and
Vgy+1 satisfies certain regularity conditions (to be detailed in Appendix B.2.2),

drw(Zs,Bgy 1)) - ds. (4.15)

Under some additional conditions stated in Assumption 2* of [23], we may also
deduce the following from Theorem 1 of [23]:

mY2[dow (Ze, Dgp 1)) — ds] = N(0,1/4). (4.16)

If the first J largest eigenvalues of E[(I — P)Y; ® (I — P)Y;] are distinct, it can
be shown that v, 11 can be replaced by a linear combination of v, 1 and the
next (J — 1) eigenvectors, such as v = ijl ajVqy+; (see Appendix B.2.2). In
this case, we may also implement estimation of dg by considering a few different
choices of v as in Section 4.3. As will be further discussed in Section 5 with a
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specific example, employing such a linear combination instead of relying solely
on ¥y,4+1 may be beneficial for (i) achieving more accurate estimation of dg
and (ii) enhancing the accuracy of the estimators of the eigen-elements (see
Section 5.1.2).

Remark 4.9. For consistent estimation of dg, we are required to have a consis-
tent estimator of gy. More specifically, we need some vector v; that converges
to a vector of Hrrp (up to sign changes), and such a v; can be determined
from a consistent estimate g, obtained from our testing procedure. In finite
samples, if gy < qn, then we expect that C/i\s, obtained by replacing gy with
Qy, is close to 0.5, which may be used as evidence of underestimation of g,. If
qy > qn, 35 underestimates dg unless dim(Hrrp) = ¢s > Gy — gy + 1 and thus
Vgy+1 converges to a vector v € Hyrp. As will be shown in Tables 1 and 10,
our testing procedure seems to rarely underestimate gy and the magnitude of
overestimation (g, — gy ) is quite small; particularly, note that the reported rel-
ative frequency of the occurrence of 0 < Gy — gn < 1 is close to one for all the
considered sample sizes. Therefore, as long as Hprp is multidimensional (i.e.
qs > 2), ES, obtained by replacing gy with Gy, is expected to perform well.

5. Numerical studies
5.1. Monte Carlo simulation studies
5.1.1. Simulation data generating process (DGP)

Let (v1,...,v2s) form an orthonormal set, where (vy, ..., v,, ) is an orthonormal
basis of Hy, (Vgy+1,--+>Vqy+qg) 18 an orthonormal basis of Hrrp and the
remaining vectors are contained in Hgrp.

We generate the nonstationary part of the time series P(Y; —Yp) = A;dN PX,
as follows:

aN
ATNPX, = AT by, alf, ~ ARMA(L 1),
j=1

where each of the coefficients of ARMA(1,1) processes is a uniform random
variable supported on [—0.15,0.15], with no dependence on any other variables.
The LRD part of the time series (I — P)Y; = A~ (I — P)X, is generated as
follows:

aNt+as+1
ATIS(I-P)X, =A% > afv;, al, ~ ARMA(L 1),
J=ay+1

where ARMA(1,1) processes aﬁt are similarly determined as aj-\ft. The stationary

part X, = (I —Q)(I — P)X; is generated by the following FARMA model with
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banded coefficient operators:
X, = AXy 1 +e + Be,
where A and B are defined as

(vj, Avg) ~ uf e A1{l7 — K| <2} and  (vj, Bup) ~ ujy, p1{lj — k| < 2}
(5.1)

for gy +qs + 1 < j, k < 25, with sequences of uniform random variables uf kA
and uik,B; uf,kA and ui’mB are assumed to be supported on [—0.15,0.15] and
independent across j and k (as well as of any other variables). Moreover, ¢; is
generated by ; = 25021 Vg +qg+j> Where aj ~ N(0,0.97771) for j = 1,...,20.

We set dy = 0.95, dg = 0.3, qv = 3, g5 = 2, and let (vy,...,v25) be the
orthonormal set obtained by first permuting the first 5 Fourier basis functions
and then adding the next 20 basis functions, which are randomly ordered. By
doing so, we fix Hy @& Hrrp to span{vy,...,vs}, but let Hy and Hrrp be
differently realized. In all of our simulation experiments, u is set to the quadratic
function defined by u(s) = —2(s — 1/2)? + 0.5 for s € [0, 1].

5.1.2. Results

We examine finite-sample properties of various estimators and tests that are
considered in the previous sections. We consider the following:

(i) the estimators gy and Gy of gy (Table 1);

ii) the estimator gs of gs (Table 2);

(iii) the local Whittle estimators of dy and dg (Tables 3 and 4);

(iv) the coverage probability difference, which is the absolute difference be-
tween empirical and nominal coverage probabilities, as well as the inter-
val scores (see [10]) of the confidence intervals constructed from (4.14)
and (4.16) (Table 5).

The bandwidth parameter h used to compute the estimator (see Proposition 4.3
and Corollary 4.4) is set to h = [1+T%3] or |14+79]. These are ad-hoc choices
employed to assess the sensitivity of the proposed estimator. In order to obtain
qy, we consider the variance-ratio test with o = 0.5. The test results do not ap-
pear to be sensitive to moderate changes of a from 0.5, as shown in Tables 11, 13
and 14. More detailed information on implementing our statistical methods can
be found in each table. Particularly, for the local Whittle estimation, we adopt
the choice of m as |1 4+ T°5%|, as previously proposed by [24] in their study
of nonstationary fractionally integrated functional time series. Some additional
simulation results, including sensitivity analysis of the local Whittle estimators
to the choice of m and the size-power properties of the variance-ratio test, are
reported in Appendix C.3.

To summarize the results, the estimator g, obtained from our variance-ratio
testing procedure outperforms the eigenvalue-ratio estimator which is similar to



Fractionally integrated curve time series 3877

the estimator of [24]. This performance gap seems huge, particularly in small
samples, which makes g, attractive in practice where we do not always have
sufficiently many observations. Given that ¢y and P characterize the dominant
part of the time series (see, e.g., [24]) and they are used in inferential problems
of other parameters (such as g5 and dg), it may be recommended for practition-
ers to use our testing procedure. Note that gy underestimates gy significantly
in small samples while G, does so only slightly. As may be deduced from Corol-
lary 4.2 and the fact that we are employing a 5% significance level, the relative
frequency of underestimation for gy must approach 0.05 as T increases, as shown
in Table 1. On the other hand, ¢5 does not perform quite as well in small sam-
ples (the relative frequency of correct determination is only around 30% when
T = 200), but Table 2 shows that its performance improves as the sample size
increases. The local Whittle estimator (4.14), which we propose in Section 4.3,
seems to perform better in small samples than the existing competitor devel-
oped by [24]; even if their difference seems to converge as T gets larger, this
result suggests that our estimator may be a better alternative in practice where
the sample size is limited. Table 4 shows the performances of the estimator
dow ((Z,v)) when © = Ty, 41 and 0 is set to a linear combination of Uy 41
and Vg, 2. Our simulation results show that the estimator performs better in
the latter case. This may be because, in the latter case, we use the information
of the other I(ds) component characterized by vy, o in this simulation setup.
Another reason may be found in the observation of [28] in the I(1)/I(0) system;
obtaining v,, 41 in this statistical test may be understood as pre-estimation of
Vgy+1 such that (Y;, vg,41) is I(ds), but this estimation may not be accurate in
a finite sample. Thus, sometimes (Y;, Dy, 414;) for some positive j may behave
more like an I(ds) process than (Y;, Uy, 1) does. Lastly, the empirical coverage
rates and interval scores based on our proposed method for dy or dg overall seem
to be better than those of its supposed competitor. Figure 1 (resp. 2) displays
the histograms of the estimates of dy (resp. dg) obtained from the two methods.
Notably, the histograms for our proposed method tend to be better centered
around the true values and exhibit a decreased occurrence of extreme values,
both for dy and dg. This observation, coupled with the findings from Tables 3
and 4, suggests that our proposed methods are attractive, particularly in small
samples.

5.2. Empirical application — Swedish age-specific mortality rates

We apply our methodology to age- and gender-specific mortality data for Sweden
observed from 1751 to 2021 (T = 271); the data used in this section is available
from the Human Mortality Database at https://www.mortality.org/, and we
specifically use the central mortality rates, which are observed at various ages
from 0 to 110 (and older) for each gender over time. Viewing the mortality
rates at various ages as functional observations as in, for example, [17], [38],
and [42], we may apply our inferential methods to the considered data. As in
the aforementioned literature, we hereafter consider the natural logarithms of
the observed mortality rates for each gender, which are visualized in Figure 3.
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TABLE 1
Finite sample performance of the estimators of qn.

Relative frequency of correct determination of gy

gmax or K Method T = 200 T = 350 T = 500 T = 1000

4 Proposed 0.800 0.914 0.933 0.945
LRS-type 0.348 0.621 0.775 0.924

5,6 Proposed 0.796 0.914 0.933 0.945
LRS-type 0.348 0.621 0.775 0.924

Relative frequency of underestimation of gy

gmax or K Method T = 200 T = 350 T = 500 T = 1000

4,5, 6 Proposed 0.022 0.029 0.040 0.052
LRS-type 0.651 0.380 0.225 0.076

Notes: Based on 2,000 Monte Carlo replications. The proposed estimator is obtained from the
sequential application of the variance-ratio test based on Ag,a with a = 0.5 and significance
level n = 0.05. Moreover, K is set to ¢ + 2 for each Hp : gy = ¢, and Hp : gv = @max 1S
first examined in this procedure. The LRS-type estimator is the eigenvalue-ratio estimator
with tuning parameter K, which is considered in Proposition 4.1. As noted in Remark 4.2,
the eigenvalue-ratio estimator given in Proposition 4.1 is not identical to the estimator in [24],
but the two are very similar and can be equivalent under some choice of tuning parameters.
The reported frequencies are rounded to the third decimal place, and the results are reported
in the same row if there are no differences in these rounded numbers.

TABLE 2
Finite sample performance of the estimator of qs.

Relative frequency of correct determination of gg

h K T = 200 T = 350 T = 500 T = 1000
14703 4 0.326 0.422 0.512 0.657

5 0.262 0.369 0.481 0.643

6 0.234 0.358 0.472 0.645
[1+T094) 4 0.340 0.456 0.570 0.740

5 0.276 0.425 0.538 0.742

6 0.262 0.411 0.540 0.753

Relative frequency of underestimation of gg

h K T = 200 T = 350 T = 500 T = 1000
14703 4 0.398 0.332 0.270 0.151

5 0.376 0.336 0.255 0.164

6 0.378 0.353 0.285 0.186
[1+4 704 4 0.402 0.331 0.257 0.127

5 0.380 0.322 0.256 0.133

6 0.376 0.340 0.276 0.150

Notes: Based on 2,000 Monte Carlo replications. P is set to Zgll U @5 (see (4.2)). h is the
bandwidth parameter used in (4.11) and K is a positive integer introduced in Proposition 4.3.
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TABLE 3
Simulated bias and variance of the proposed estimators of dy.

m = |1+ 70963 Method T = 200 T = 350 T = 500 T = 1000
Mean Bias Proposed —0.0413 —0.0262 —0.0207 —0.0084
LRS-type —0.1111 —0.0684 —0.0507 —0.0240
Variance Proposed 0.0103 0.0064 0.0050 0.0028
LRS-type 0.0240 0.0146 0.0102 0.0042
MSE Proposed 0.0120 0.0071 0.0055 0.0029
LRS-type 0.0364 0.0192 0.0128 0.0048

Notes: Based on 2,000 Monte Carlo replications. The proposed estimator is constructed from
v = v® which maximizes drw ((Z9,v®)) for v = Z?:I aj ¢pj, where aj o ~ N(1,1) for
£ =1,...,20, p; is the Legendre polynomial of order j — 1, and a;, is independent across
7 and £. The LRS-type estimator is (ELW((Z?, v1)), where v1 with the leading eigenvector of
Ty, 20 © 2.

TABLE 4
Simulated bias and variance of the proposed estimators of ds.

m=|1+7T063] Method T = 200 T = 350 T = 500 T = 1000
Mean Bias Proposed —0.0718 —0.0442 —0.0332 —0.0210
LRS-type —0.1304 —0.0867 —0.0704 —0.0498
Variance Proposed 0.0128 0.0083 0.0061 0.0035
LRS-type 0.0154 0.0115 0.0086 0.0046
MSE Proposed 0.0179 0.0102 0.0072 0.0039
LRS-type 0.0325 0.0190 0.0135 0.0071

Notes: Based on 2,000 Monte Carlo replications. The estimator is given by dr, ((Z¢,)), where
U = Vgy+1 (LRS-type) or v is set to a linear combination of ¥y 1 and Ugy 42 (Proposed);
more specifically, in order to consider such a linear combination, we first define 00 = Ugy+1+
ayVqy+2 (where ap ~ N(0,1) for £ =1,...,20 and ay is independent of £) and then v is set
to v(® maximizing drw ((Zs,v(®)), which is as we do for our proposed estimator of dy in
Table 3. gy +1 and Ug, +2 denote the eigenvectors of 7'~1 Zthl Z1 ® Zy corresponding to the
(gv + 1)-th and (gn + 2)-th largest eigenvalues, respectively.

For our statistical analysis, we first represent the observed mortality rates at
various ages for each gender with 40 Legendre polynomial basis functions; we
conducted a sensitivity analysis by varying the number of basis functions from 35
to 55 with an increment of 5, and found that the estimates obtained from our
proposed methods are not sensitive to changes in the number of basis functions
within this range (only the estimate of gg for the male data slightly changes from
3 to 5 as the number of basis functions changes). We first estimate the memory
parameter dy of the time series for each gender. The top rows of Table 6 report
the local Whittle estimation results. As is not uncommon in many empirical
applications, the memory of each time series is far greater than 1/2 and quite
close to unity. This not only implies that both time series of mortality rates
are nonstationary but also justifies, to some degree, the conventional use of the



3880 W.-K. Seo and H. L. Shang

TABLE 5
Coverage performance of the pointwise confidence intervals of the memory parameter
estimated by the local Whittle estimators with 95% nominal level.

Coverage probability differences

m Target Method T = 200 T = 350 T =500 T = 1000
(147096 dy Proposed 0.0885 0.0630 0.0600 0.0400
LRS-type 0.3370 0.2660 0.2070 0.1660
ds Proposed 0.2090 0.1450 0.1125 0.0705
LRS-type 0.3965 0.2995 0.2695 0.2265
1+ . N ropose: . 5 . 5 . 5 .
T0-65 d P d 0.099 0.078 0.063 0.0470
LRS-type 0.3180 0.2575 0.2160 0.1710
ds Proposed 0.1600 0.0990 0.0975 0.0370
LRS-type 0.3470 0.2415 0.2010 0.1460
+ . N ropose: . . . .
14107 d P d 0.1175 0.1085 0.0935 0.0980
LRS-type 0.3245 0.2780 0.2500 0.2080
ds Proposed 0.1410 0.0995 0.0645 0.0305
LRS-type 0.3200 0.2060 0.1710 0.1190
Interval scores
m Target Method T = 200 T = 350 T = 500 T = 1000
[1+ 796 dy Proposed 0.7854 0.5861 0.4967 0.3677
LRS-type 2.6169 1.8270 1.3248 0.6999
ds Proposed 1.0122 0.7729 0.6264 0.4283
LRS-type 1.7899 1.4861 1.2139 0.8609
|1+ 7065 dy Proposed 0.7012 0.5169 0.4454 0.3322
LRS-type 2.6460 1.8466 1.3519 0.7165
ds Proposed 0.8450 0.5899 0.4663 0.3201
LRS-type 1.6781 1.1657 0.9037 0.5591
[14707] dy Proposed 0.6848 0.5266 0.4305 0.3453
LRS-type 2.7783 2.0358 1.5571 0.9048
ds Proposed 0.7606 0.5007 0.3736 0.2571
LRS-type 1.5874 0.9978 0.7199 0.4395

Notes: Based on 2,000 Monte Carlo replications. The estimators are computed as in Tables 3
and 4. The reported number in each case is computed as the absolute value of the difference
between the computed coverage rate and the nominal level 0.95. The interval score in each
case is computed as in Gneiting and Raftery [10, Section 6.2] with the quantiles 0.025 and
0.975. An estimator with smaller interval scores is regarded as better.

random walk model for mortality in the literature. We then apply our variance-
ratio testing procedure to estimate the dimension ¢y of the dominant subspace
for each time series. Of course, to implement the proposed testing procedure, the
asymptotic null distribution of the test statistic, which depends on dy, needs to
be approximated by a feasible estimate of dy (see Remark 4.5). This is done by
replacing dy with the relevant estimate obtained by our proposed local Whittle
method (see Table 6).

The testing results are reported in the top rows of Table 7, and for compari-
son, we also report the eigenvalue-ratio estimates (qy), which are considered in
Section 4.1. The estimated dimension of the dominant subspace by our proposed
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Notes: The histograms are computed from the Monte Carlo replications used in Table 3.

Fic 1. Histograms of estimates of dy .
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(a) Male data (b) Female data

Notes: The data for a specific year and gender is given by a 111-dimensional vector of mortality
rates from age 0 to 110 (and older), and each of such vectors is plotted as a function of age.
Zero mortality rates are reported once (resp. six times) in the male (resp. female) data over
the entire time span and all ages, which are replaced by 10~° in order to have bounded
log-mortality rates.

Fic 3. Log-mortality rates at various ages.

TABLE 6
Local Whittle estimation-Swedish mortality data.

Target Method Male Female

dy Proposed 0.962 0.989
LRS-type 0.956 0.978

ds Proposed 0.424 0.433
LRS-type 0.402 0.275

Notes: The proposed and LRS-type estimators of dy are given as in Table 3, and the bandwidth
m is set to |1+ 7965 |. The estimators of ds are given as in Table 4 with m = |1+79-%%] but
Ugy 4, and ﬁ‘IN+2 are replaced by 65N+1 and 6‘7N+2 , where gy1 is the estimator obtained by
our variance-ratio testing procedure.

TABLE 7
Dimension estimation-Swedish mortality data.

Target Method Male Female

qn Proposed 5 5
LRS-type 1 1

qs Proposed 5 1

Notes: The proposed estimator of gy is obtained by our variance-ratio testing procedure as in
Table 1, and K = q + 2, for each Hp : gv = q, n = 0.05, and gmax is set to 6. The LRS-type
estimator of gy is the same as that in Table 1, and the tuning parameter K is set to 6. The
proposed estimator of gs is given as in Table 2, and h is set to |1+ T°4].

testing procedure is 5 for each case, but the eigenvalue-ratio estimate is given
by 1 for each case. As may be deduced from the simulation studies in [24] con-
sidering a similar eigenvalue-ratio estimator (see Section 5 of their paper), this
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estimator tends to underestimate gy in small samples, and our unreported simu-
lation results also support this; for example, in Table 1 based on our simulation
setting with gy = 3, the relative frequency of underestimation is 0.651 when T =
200. Given this evidence and our earlier observation that the proposed variance-
ratio testing procedure performs better in our simulation studies, we are inclined
to conclude that gy = 5. Then, the dominant subspace may be estimated by
the span of the eigenvectors corresponding to the first five largest eigenvalues
of the sample covariance operator, as discussed in the previous sections.
Assuming that the additional conditions given in Assumption 1A hold, we
may also estimate dg and g5 using the proposed methods, which are, respectively,
reported in the bottom rows of Tables 6 and 7. Of course, these results might not
be meaningful if Assumption 1A is not satisfied, and, moreover, it may be hard
to check if this assumption holds in practice. On top of all these estimation
results, we report the time series of (ZP,7;) for a few selected values of j in
Figure 4, where 7} is the eigenvector corresponding to the j-th largest eigenvalue
of T—1 Z;T:l 79 ® Z%; specifically, j is chosen so that each time series has a
different integration order based on our estimation results given in Table 7 (see
Section 3 of [24]). From the previous estimation results, we expect that, in
Figure 4, the persistence of the time series tends to be higher in the left panel
((a) and (d)) and lower in the right panel ((c) and (f)). It is quite clear that
the time series reported in the left panel tend to be more persistent than those
in the other panels, but it is less clear if the time series in the middle panel are
more persistent than those in the right panel. This may be due to violation of
the additional assumptions given in Assumption 1A (i.e., the SRD component
may not be clearly distinguishable by a single projection operator ) as assumed
in Assumption 1A) or insufficient sample size that does not guarantee good
performance of our proposed statistical methods for dg and ¢s (see Section 5.1.2).

5.3. Empirical application — Canadian yield curves

In this section, we apply our methodology to the end-of-month Canadian zero-
coupon bond yield curve data for the period spanning January 1991 to April
2023 (T = 388); the data used in this section is publicly available at https://
www.bankofcanada.ca/rates/interest-rates/bond-yield-curves/. Each
observation consists of zero-coupon bond yields at 120 regularly spaced ma-
turities varying from 0.25 to 30 (years). As in the previous section, we view
yields at various maturities as functional observations as in, for example, [13]
and [26], and then apply our inferential methods to the considered data. The
yield curves (Y;) and their mean-corrected versions (Y; — 7! 23;1 Y:) are vi-
sualized in Figure 5.

In our statistical analysis, we represent the observed yield curves as functions,
similar to the approach used in the previous mortality example; we conducted
a sensitivity analysis as in Section 5.2 by varying the number of basis functions
and found that the reported results remained largely unchanged, with only mi-
nor variations. We first estimate the memory parameter dy of the time series.


https://www.bankofcanada.ca/rates/interest-rates/bond-yield-curves/
https://www.bankofcanada.ca/rates/interest-rates/bond-yield-curves/
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Fic 4. Sets of estimated principal component scores for the Swedish female and male age-
specific mortality rates.

TABLE 8
Local Whittle estimation — Canadian yield curve.

Target Method Estimate

dn Proposed 0.997
LRS-type 0.984

ds Proposed 0.384
LRS-type 0.377

Notes: The estimators considered in this table are equivalent to those in Table 6.

The top rows of Table 8 report the local Whittle estimates. As observed in the
literature (e.g., [6] and [24]), the time series exhibits a high degree of persistence,
with the memory close to unity, leading to the conclusion that the time series
is nonstationary. We then apply the proposed testing procedure to estimate the
dimension of the dominant subspace for the yield curves. The testing results,
along with the eigenvalue-ratio estimates (¢y) for comparison, are reported in
Table 9. The estimated dimension of the dominant subspace from the proposed
testing procedure is 6 while the eigenvalue-ratio estimate is 1. As in Section 5.2,
we are also inclined to conclude that gy = 6 due to the overall superior perfor-
mance of our testing procedure observed in the previous simulation study. Then,
the dominant subspace may be estimated by the span of the eigenvectors corre-
sponding to the first six largest eigenvalues of the sample covariance operator.

Assuming that the additional conditions given in Assumption 1A are satisfied,
ds and ¢g can also be estimated by using the proposed methods. The bottom
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Fic 5. Canadian yield curves.

Notes: The data for a specific month is given by a 120-dimensional vector of yields at various
maturities from age 0.25 to 30 (years), and each of such vectors is plotted as a function of
maturity.

TABLE 9
Dimension estimation — Canadian yield curve.

Target Method Estimate
qn Proposed 6
LRS-type 1
qs Proposed 5
Notes: The estimators considered in this table are equivalent to those in Table 7 with
Gmax = 7.

rows of Tables 8 and 9 report the estimates. As in Section 5.2, these results might
not be that meaningful if Assumption 1A is violated. In parallel to Section 5.2,
in Figure 6, we report the time series of (Z?,%;) for a few different values of j,
which are selected so that they exhibit different behaviors. While we can find
strong evidence of nonstationarity from panel (a), it is unclear if Assumption 1A
holds and/or if the estimate of gg is reliable. This uncertainty arises from the
observation that the time series in panel (¢) does not appear to exhibit short-
range dependence. This may be due to inaccuracy of our proposed estimator of
¢s in finite samples as discussed in Section 5.1.

6. Conclusion

This article has introduced a fractionally cointegrated curve time series with
long-range dependence and derived some relevant asymptotic theorems. The
functional dependence structure is specified via the projections of the curve
process onto different subspaces spanned by additive orthonormal functions.
The subspaces can be split into nonstationary and stationary components. The
determination of the dimensions of the subspaces is carried out via our pro-
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posed tests, which outperform the modified eigenvalue ratio estimator in terms
of correct identification. We have shown that the projection of the curve-valued
process onto the subspaces retains most of the sample information from the orig-
inal process. We also present a local Whittle estimator to estimate the memory
parameter. The methodologies are illustrated via simulation and empirical ap-
plications to Swedish age-specific mortality rates and Canadian yield curves.

The article might be extended in two directions: (i) nonstationary cointegra-
tion and (ii) cointegration in long-range dependent processes. In this paper, we
only consider the case with dy > 1/2 and dg < 1/2. However, it is also possible
to have dy > 1/2 and 1/2 < dg < dy, which corresponds to the case with
nonstationary cointegration. As may be expected from the recent paper by [19],
this research direction will require a new theoretical approach. Considering the
case where dy < 1/2 but 0 < ds < dy may also be interesting. Given that the
memory of a certain linear combination of the original time series is strictly
smaller than the highest memory, this may be understood as a cointegration
in long-range dependent processes. It is reasonable to assume that functional
time series exhibiting long-range dependence may allow this kind of memory
reduction while relevant theoretical results are currently absent.
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Appendix A: Mathematical Appendix

It will be convenient to define some notation for the subsequent discussion. We
first define

*

Sl Y v P (A1)
j=0 j=0

and let {5, u; };”l | be the eigenvalues and the eigenvectors of Q2. The square-
root operator of Q2 is well-defined and it is simply denoted by Q. We then let
Way and Wy, 1 denote Type II fractional Brownian motions of order dy and
dy + « taking values in ‘Hy = range P driven by the common Brownian motion
whose covariance operator is given by Z;”;l u; @ uj. Define

Way (1) = Way (r / Wiy (s

vt ([ o) ([ £55)

We first provide a useful lemma that will be used in the subsequent sections.
Lemma A.l. Suppose that Z; and Z; are defined as in (4.1) and (4.5) for
a > 0, and the time series Z; satisfies Assumption 1. Then

TY2INZ ) = QW gy, (1), (A.2)
Tl/Q_dN_a’ZVLTTJ = QWdNJ,_a(T),

where = denotes the weak convergence in D0, 1] of Hn-valued functions.

Proof. We first show (i). Note that

T
TYV2ING gy = T2 N PY iy = T2 N PY, + TV27N (1 = P)Y
t=1
T

TN N (1 - P)Y, (A.3)
t=1
where T'/2=4N (I — P)Y |7, —0 uniformly in 7 € [0,1] and 712~ ST (71—
P)Y; — 0 since (I — P)Y; is stationary and dy > 1/2. We thus only consider
p

the first term of (A.3). We apply Proposition 2.1 of [24] and the continuous
mapping theorem to find that

T1/2 dNZLTJ:>Q<WdN / Wd\ >
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We next show (ii). Note that

T
T1/2_dN_aZLTrJ _ T1/2_dN_aAjraY[TrJ _ T1/2_dN_aA;aT_1 Z Y. (A4)

t=1

Given that A;aAjrdNY} = AIdN*aYt and dy + a > 1/2, we find that the first
term of (A.4) satisfies that

T2 AN ALY 1) = QW ha(T). (A.5)

On the other hand, let Y = 7! Zthl Y;. Then the second term of (A.4) is
equal to

L)
T1/2—dN—aA;a?T _ T1/2—dN—a Z WLTrjfk(a)?Ta (A6)
k=1
where 7, (a) = % Note that

1
TV/2=dNY 7 Q/ Wiy ta(s)ds
0

and
[Tr]

- T @ Ti(r_s)ad s

where the convergence result given in (A.7) may be deduced from equation
(35) of [27]. An application of Slutsky’s theorem (see e.g., p. 35 of [45]) and
the continuous mapping theorem, along with (A.5)—(A.7), yields the following
convergence result:

T2 N F ) = Q (WdNJra(?“) - /01 Way+a(s)ds (/OT %Cﬁ))

as desired. O

Remark A.1. Suppose that y = 0 and thus Z; = Y;. Under some appropriate
conditions similar to ours, [24] shows that T'/2= PZ 1| = QW (r). In the
case where p = 0, (A.2) is slightly different from their result because P does
not appear on the left-hand side.

Proofs of the main results

Proof of Proposition 4.1. We first deduce from Lemma A.1 and the continuous
mapping theorem that

T 1
T—2dy Z PZ ® PZt ;) / QWdN(S) ® QWdN (s)ds. (A8)
0

t=1
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Note that Z; = V; — Y, where Yo = T 321 ¥} and (I — P)Y; is stationary.
From the law of large numbers of stationary ergodic sequences, we find that

T
7'y (I-P)Zi® (I - P)Z; = E[(I - P)Y; ® (I - P)Yy. (A.9)

p

Define Py as in (4.6), i.e., Py = Z]K:l

vectors corresponding to the first K largest eigenvalues of 67. We may deduce
from (A.8), the Skorohod representation theorem, and Lemma 4.3 of [5] that

U; ®U;, where (01,...,0x) are the eigen-

the first gy eigenvectors (vy,...,7,, ) converge to a random orthonormal basis
of range P; this proves (4.2). Note also that (v, 11,...,7k) are the eigenvalues

of (I — Py )Cy(I — B,,). Since I — P, — (I — P) and (I — P)Cx(I — P) —
p p
E[(I — P)Y; ® (I — P)Y3] (see (A.9)), we have

(I = Poy)Cr(I = Pyy) 2 E(I = P)Y; @ (I = P)Yi].

Since the (K — qy)-th largest eigenvalue of E[(I - P)Y; ® (I P)Y;] is distinct

from the next one, the projection Z NP @ v (where vf is the eigenvector
corresponding to the j-th largest elgenvalue) is a well-defined fixed bounded
linear operator regardless of if any j-th eigenvalue for j < K — qy is repeated
(and thus v? is not uniquely determined) or not. Moreover, in this case, we may

j
deduce from Lemma 4.4 of [5] that

K K—qn
Px—Pp= Y 0 ©0; — > v ey (A.10)
j=an+1 j=1

We now consider the limiting behavior of 771 23;1 ]3K7t ® 13K7t of which (al-
most surely) nonzero eigenvalues are given by (ii1,..., k). As will be shown
later in our proof of Proposition 4.2, (A.8)—(A.10) imply that the first ¢y eigen-
values, multiplied by 7' =24~ | converge to positive (and almost surely bounded)
random eigenvalues while the remaining eigenvalues converge to fixed and pos-
itive eigenvalues as long as E[(I — P)Y; ® (I — P)Y;] allows K — gy nonzero
eigenvalues; in particular, see (A.20). This proves the desired results. U

Proof of Proposition 4.2. We will first show the limiting behaviors of two ran-
dom operators given by Ap = 23:1 Z:® Z; and Bp = 23:1 Z ® Z when
they are understood as the maps acting on range ﬁK (the span of the first K
elgenvectors (v1,...,7;) of Ar). In our proof of Proposition 4.1, we showed that
PqN = Z 105 @ U; —> P. Combining this with (A.10), we find that

Kq]\/
Py = Py, + (P — PqN)—>P+Zv®v =: Py,
j=1

where Pk is a well-defined and fixed projection.
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Let ﬁ;yd: PxP, PS = Px(I — P), PY = PgP, PS = Pg(I — P) and

D = (T oN h T_10/2I ), where I; and I are the relevant identity maps of rank
2

qy and K — gy, respectively. Given that By = Px By Pk and Py = P}g + P;?
holds, we may understand T2 Dy Br Dy as the following operator matrix:

T**DyBrDr =

TN PRZi@PRZ, TNVl PRZ @ PRZ,
T-dn-1/2=2a T PNZ @ PSZ, Tyl PSZ,e@PSZ, )

Note that ]3K — Pg and
p

T T
T—2dy—2a Z ]SI]}]Zt ® ]SIZ(VZ = ISK <T2dN2a Z PZt ® PZt) ]SK-
t=1 t=1

We thus deduce from Lemma A.1 that

T 1
ST NG PRy [ OWaeals) © QWi als)ds. (A1)
=1 0

Combining these results, we find that

T 1
T—2dNy—2a Z PII}[Zt & PIJ}IZt 7 / QWdN-i-a(S) & QWdN+a(S)dS. (A.12)
0

t=1

Using the isomorphism between RX and any K-dimensional Hilbert space and
the arguments used in the proof of Lemma 6(f) of [27], we may deduce the
following:

T
TNV (log T)"MY=120 Y " PRZy @ PR Z, = 0,(1),
t=1
where ¥ = max{ds + «, 1/2}. Note that ¢ < 1/2+« and Py — Py, from which
P

we find that .

T-IN=12=20N"PEZ, @ PR Z, — 0. (A.13)

t=1 P

With nearly identical arguments, we also find that
T ~ ~
T—dN—1/2-20 Z PYZ, @ PRZ, — 0.
t=1 P

Lastly, we note that Zle 13]‘32 ® ISIS(Z = 0,(T7') if ds + @ < 1/2. On the
other hand, if ds + o > 1/2, it can be shown from Lemma 6(e) of [27] that
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S PEZ,®@ PEZ, = O,(T~2 (log T)~1¥=1/2}). Note that 2¢» < 1+ 2« since
ds < 1/2, we thus find that

T
TN " PRZ @ PRZ, —0. (A.14)
t=1

Combining (A.12)—(A.14), we find that

. _
T~>*DrBrDr — (fo QWi ta(s) g@ QWi ta(s)ds 8) . (A.15)

We next consider Dy ArDr. Given that Ay = ﬁKATﬁK holds, we may under-
stand T~2*Dy A1 Dy as the following operator matrix:

sy TR T L e i)
TATUT = o~ o~ o~ A~ — .
T-in-125 " PSZ @ PNZ, T VY|, PiZ,® PiZ,

Similarly as in (A.11), we find that

T 1
TN PRZy @ PRZi— /O QW (s) ® QWqy, (s)ds.

t=1

Since T_2dN Z;'F:I ﬁi’(VZt@ﬁi’(VZt = ﬁK(T_miN Ethl P7t®P7t)ﬁK and ﬁK —
P

Py, we conclude that
T R 1
T72dN ZPI](VZt (29 PIJ(VZt 7 / QWdN(S) X QWdN(S)dS. (A].G)
t=1 0

Moreover, from similar arguments used in the proof of Lemma 6(c) in [27], we
may deduce that Y1, PSZ; © PNZ; = O,(T%~'/2) and thus

T
T-WTV2N"PRZ, @ PRZy — 0, (A.17)
t=1 P
T
T2 PRZ, @ PR Zy — 0. (A.18)
p

t=1
Lastly, we deduce the following from the law of large numbers of stationary
ergodic sequences:
T
T'Y PRZi® PRZ; — B[PRY, ® PRY;] = PkE[(I — P)Y; ® (I — P)Y;] Pk.
P
t=1

(A.19)
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Combining (A.16)—(A.19), we find that

[ QW ay (s) @ QW gy (s)ds 0
DrArDr = ( 0 PRE[(I - P)Y; ® (I - P)Y,|Px )

(A.20)
Consider the eigenvalue problem given by
7jDrArDrvg = T7**DpBrDrv;, 71> T2 > ... > Tk,

where T%°7; = 7A'j_1 holds. Then we know from (A.15) and (A.20) that 7; — 0
P
if j > gy while (71,...,7,,) converge to the eigenvalues of A;\{AdNJra, where

1 1

Ay sa = / Wy 40 (5) Wy a(s)ds, Ay = / T 4, ()00 (5)ds.
0 0

(A.21)

From these results, we find that 72% (7, . .. , Uqy ) converge in distribution to the

eigenvalues of AJ; +oAdy; moreover, we know from the properties of the eigen-

values that these eigenvalues are distributionally equivalent to those of (4.8)
(see also Remark 5 of [28]). O

Proof of Corollary 4.2. The desired result immediately follows from Proposi-
tion 4.2. The details are omitted. O

Proof of Corollary 4.3. In our proof of Proposition 4.2, we showed that the first
gy eigenvalues, multiplied by T2¢, converge to the eigenvalues of A;;Ad]era

(see (A.21)). From this result and the fact that the eigenvalues of A;}é Ady +a are
almost surely distinct from each other, we may deduce that the corresponding
eigenvectors converge to those of AJ;AdN+a (Lemma 4.3 of [5]). This completes
the proof. O

Proof of Proposition 4.3. We first note that I — P — I — P and, from the
P

asymptotic result given in Proposition 2(i) of [23] (see also Proposition 2 of
[22]), we know that h=24s(I — P)A(I — P) — A of rank gg, whose eigenvectors
P

span range (. Combining all these results, we observe that
h24s(1 — PYA(I — P) — A
P

and thus find that (fi1,...,%4) and the associated eigenvectors (v1,...,7,)
satisfy the following:

h=24s[i; — j-th largest eigenvalue of A if j < gs, (A.22)
P
~ a3
= U, QU; — Q. A.23
0= %@ > Q (A.23)
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We next note that (vyg11,...,0k) are the eigenvectors of (I — Qo)(I — F)K(I -
P)(I - Qo) and

(I-Q) = P)A(I = P)(I - Q)
T-1
- > (1-M)e-au-rea-nu-o

s=—T+1

where the convergence in probability follows from Theorem 4.2 of [14] and that

~

(I —Q)I — P)A(I — P)(I — Q) is the sample long-run covariance operator
of the SRD component. Combining this result with (A.23) and the fact that
I — P — I— P, we find that

P

~ ~

(I~ Qu)I = P)A(I ~P)(I - Qo) - Ao.

This implies that (figg+1,-- .,k ) converge to the eigenvalues of Ay (see Lemma
4.2 of [5]). Combining this with (A.22), the desired results are obtained. O

Proof of Corollary 4.4. The desired result immediately follows from Proposi-
tion 4.3. The details are omitted. O

Appendix B: Local Whittle estimation
B.1. A brief introduction to the local Whittle estimator

We first briefly introduce the local Whittle estimator. More detailed discussion
can be found in e.g., [23] and [24]. Let z; be a univariate I(d) process with the
spectral density f, ~ G624 in a vicinity of the origin; for our purpose, it will
be sufficient to deal with the cases with d € (—1/2,1/2) and d € (1/2,3/2). We
consider the following Gaussian objective function:

m

= i n —2d M
Q(G,d) = — ; {1 (G672 + o6 } (B.1)

where I,.(0;) denotes the sample periodogram defined by the square of discrete
Fourier transform of the scores, §; = 27wi/T, i = 1,...,m and m is a positive
integer satisfying m = o(T); customarily, the choice m = 1+ [7°:%%| can be
used as in [24]. Let (G, d) be the minimizer of (B.1) such that
(G,d)=  argmin  Q(G,d), (B.2)
Ge(0,00),de[A1,A2]

where —1/2 < Ay < Ay and Ay < 1/2 if we consider the case d € (—1/2,1/2)
and Ay < 0o otherwise. We call d be the local Whittle estimator.
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B.2. Statistical inference on dn and dg

We employ the following assumptions associated with time series satisfying As-
sumption 1 and for an element v € H.

Assumption LW. 1; and the spectral density f,()) of the time series (X, v)
for v € H satisfy the following:

(i) 1 = ¢p;A for ¢; € Rand A € Ly.
(ii) P(v € Hg) = 0.
(iii) f,(A) is differentiable in a neighborhood of zero, and d% log f,(\) = O(A™1)
as A — 0+.

For convenience we let A7, A5, AN and AY be real numbers satisfying that
—1/2 <A <A <1/2 and —1/2 <AV < AY < .

We will consider the local Whittle estimator that can be computed from the
time series Z?, AZ; or Z; on the range of admissible values given by [A7, AS]
or [AN,AY] depending on the context.

B.2.1. Inference on dy

We first establish the following:

Proposition B.1. Suppose that Assumptions 1 and LW hold. Then the follow-
ing holds as 1/m +m/T — 0.

(i) Fordy € (1/2,1) and dy € [AN, AY], dpw ((Z°,0)) = dy.
(ii) For dy € [1,3/2) and dy € [AN, AY], dpw ((22,0)) — 1.
p
(iii) For dy € (1/2,3/2) and dy —1 € [AS AS], dow ((AZy, v)) — dy — 1.
p

Proof. First, initialization (Z; + ZY) does not affect the periodogram. Since
Pv ¢ Hs) = 0 and rankPZ;iO Y; = qn, we find that the long-run variance

of {X;,v) is equal to <v,P (Z;io 1/1]-) C. (Z;io wj) Pv>, which is nonzero
almost surely if Assumption LW (ii) is true. Moreover, under Assumption LW (i),
we have (Xy,v) = (372 ¥ier—j,v) = Do olet—j, ¥5v) = D2 ¢jus—j, where
up = (g4, A*v) which is an i.i.d. sequence with mean zero and positive variance.
Combining these results with Assumption LW(iii), one can verify that (Z7, v)
satisfies all the assumptions employed in Section 3 of [31]. Then the desired
results (i) and (ii) immediately follow from Theorems 3.1 and 3.2 of [31]. From
similar arguments, we may also deduce (iii) from Theorem 3.1 of [44]. O

Of course, if the time series (Z7,v) satisfies some additional conditions em-
ployed in Section 4 of [31], we then may establish the asymptotic distribution
of JLW(Z?,U) for dy € (1/2,1]. However, as shown by [31], this asymptotic
distribution depends on values of dy. A more convenient result is given below:
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Proposition B.2. Suppose that Assumptions 1 and LW hold with f,(\) =
Go(1 4+ O0\%) (as A — 0+) for some G, € (0,00) and B € (0,2], the power
transfer function ¢(\) = Z;io p;e¥ is differentiable around the origin with

Y jon 05 = O(1/1log (M + 1)) and Yo 5y 32770 dibi4k = O(1/ log* (M + 1))
uniformly in M = 1,2,.... Moreover, assume that

d o
aqs(x)‘_ou ) as A— 0+.

Then, for dy € (1/2,3/2) and dy — 1 € [AF, AS], we have
m?(dpw (AZy,v) — (dy — 1)) — N(0,1/4).

as 1/m +m!+2A(logm)?/T? — 0 and T — oo.

Proof. We note that (X;,v) = >°7° ¢jur—j, where uy = (g, Av) is an i.id.
sequence. We thus have 3 -\ E[(X¢, v)(Xiqr,v)] = O(1/log*(M +1)). Then
one can easily verify that all the assumptions employed in Shimotsu and Phillips

[44, Section 4] are satisfied, and then we may deduce the desired result from
their Theorem 4.1. O

B.2.2. Inference on dg

We then provide our estimation results for dg. In this section, the following

preliminary result will be used: if Assumption 1 holds and the first K largest
eigenvalues of E[(I — P)Y; ® (I — P)Y;] are distinct, then v = Z?Jl;\ﬁ_l a;0;
with agy 41 # 0 (where U; is defined in Section 4.3.2) satisfies that

|v — sgn (v, v)v]| = 0 (B.3)
P

for some fixed element v with (I — P)v # 0. In this section, the asymptotic
results given by Proposition 1 and Theorem 1 in [23] are crucial inputs. In
this regard, it is worth mentioning that even if ¢, = ¢;I is assumed by [23],
unlike in the present paper, their results can be extended to the case where
Assumption LW (i) is satisfied with only a slight modification.

Proposition B.3. Suppose that Assumption 1 holds and the first K largest
eigenvalues of E[(I — P)Y; ® (I — P)Y;] are distinct. Moreover, we suppose that
Assumption LW holds for v satisfying (B.3) and dg € [AY, AS]. Then, as 1/m+
m/T — 0,

drw ((Z¢,0)) - ds» (B.4)

q

T=SwEE S
where v =3 ;1 "1 a;v; and agy4q1 # 0.

Proof of Proposition B.3. If the first K largest eigenvalues of E[(I — P)Y; ®
(I — P)Y;] are distinct, we know from Proposition 4.1 and Lemma 4.3 of [5]
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that ¥y, 4, converges to the eigenvector vy, +; corresponding to the j-th largest
eigenvalue of E[(I — P)Y; ® (I — P)Y;] in the following sense:

[Vagn+i — s80((Vgy+5> Vay+5))Vay+ill > 0, forj=1,...,min{gs, K}. (B.5)

As may be deduced from the fact that the periodogram is not affected by
demeaning and the proof of Theorem 1 in [23], replacing the periodogram
associated with (Z;,7) with that of (Z;,v) causes only negligible changes if

v — sgn({v,v))v|]| — 0, and thus the difference between ELW«Zg,ﬁ)) and
P

&\LW(<7t,fu>) becomes negligible. Note that we may write v = ¥; + U2, where

v = ?Q:}gil a;v; and vy = Zf:q]vﬂsﬂ a;v;. (B.5) implies that, for k =
~ ~ _ _ _ +qq _

1 and 2, || — sgn((Vk, Uk))Tk|| ry 0, where 7; = Zgﬁq;i_l a;v; and Ty =

Zf:qNJrqSH ajvj. We thus find that (Y;,v) for v = Ty + Ty is not only sta-

tionary I(ds) but also satisfies all the requirements for Proposition 1(i) of [23]
under Assumption LW. We thus conclude that dpw ({(Z;,v)) — dy, which com-
p

pletes the proof given that the distance between JLW(<7t, v)) and c/i\LW(<7t, v))
is negligible. O

Note that (4.15) is a special case of (B.4) when K = 1. If some additional con-
ditions given by Assumption 2* in [23] hold, the following may also be deduced
from the proof of Theorem 1 of [23]:

mM2(dpw (Z4,0)) — ds) - N(0,1).

A detailed proof of this result is omitted since it is, in fact, similar to that of
Proposition B.3; under all of the aforementioned assumptions, one may show
that (i) the time series (Y, v) becomes an I(ds) stationary linear process, (ii)
m2(dpw ((Z1,v)) — ds) = N(0,1) (Proposition 1 of [23]) and (iii) replacing v

with v only has a negligible impact (Theorem 1 and Remark 4 of [23]).

Appendix C: Additional simulation results

C.1. Supplementary results

TABLE 10
Finite sample performance of the estimators of qn.

Relative frequency of gy = 3 or 4 (the true value + 1)

Qqmax or K Method T =200 T = 350 T = 500 T = 1000

4 Proposed 0.978 0.971 0.960 0.948
LRS-type 0.348 0.621 0.775 0.924

5,6 Proposed 0.962 0.969 0.960 0.948
LRS-type 0.348 0.621 0.775 0.924

Notes: This table provides additional information on the results reported in Table 1.
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TABLE 11
Finite sample performance of the estimators of qn for different tuning parameters.
Relative frequency of correct determination of gy
e Gmax or K Method T = 200 T = 350 T = 500 T = 1000
0.4 4 Proposed 0.839 0.936 0.949 0.945
5,6 Proposed 0.838 0.936 0.949 0.945
0.6 4 Proposed 0.748 0.877 0.910 0.937
5 Proposed 0.743 0.877 0.910 0.937
6 Proposed 0.742 0.877 0.910 0.937

Notes: This table provides additional information on the results reported in Table 1, where
the test statistics are computed with a = 0.5.

C.2. Size-power properties of the variance-ratio test

In Tables 12-14, we report the size-power properties of the variance-ratio test.

TABLE 12

Size and power of the variance-ratio test, o = 0.5.

@max Method Hypothesis T = 200 T = 350 T = 500 T = 1000
4 max-test Size 0.021 0.028 0.038 0.052
Power 0.781 0.934 0.967 0.997
trace-test Size 0.020 0.025 0.033 0.046
Power 0.734 0.921 0.968 0.998
5 max-test Size 0.020 0.028 0.036 0.051
Power 0.749 0.928 0.966 0.996
trace-test Size 0.019 0.024 0.032 0.046
Power 0.700 0.911 0.965 0.998
6 max-test Size 0.018 0.026 0.035 0.051
Power 0.723 0.923 0.965 0.996
trace-test Size 0.016 0.024 0.031 0.045
Power 0.667 0.903 0.964 0.998

Notes: Based on 2,000 Monte Carlo replications. The reported power is computed by testing
Ho : gv = 4 under the simulation DGP. The tests are implemented based on A9 , (max-test)

and A;a (trace-test), respectively, with & = 0.5, K = ¢ + 2 and significance level n = 0.05.

TABLE 13
Size and power of the variance-ratio test, a = 0.4.
Qmax Method Hypothesis T = 200 T = 350 T = 500 T = 1000
4 max-test Size 0.024 0.032 0.041 0.053
Power 0.832 0.964 0.988 0.999
trace-test Size 0.020 0.028 0.034 0.047
Power 0.753 0.940 0.983 0.999
5 max-test Size 0.022 0.030 0.040 0.053
Power 0.803 0.960 0.987 0.999
trace-test Size 0.018 0.027 0.032 0.046
Power 0.725 0.934 0.981 0.999
6 max-test Size 0.020 0.030 0.039 0.053
Power 0.777 0.953 0.985 0.999
trace-test Size 0.017 0.026 0.032 0.046
Power 0.700 0.928 0.980 0.999

Notes: The tests are implemented as in Table 12, but with a = 0.4.
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TABLE 14
Size and power of the variance-ratio test, o = 0.6.

@max Method Hypothesis T = 200 T = 350 T = 500 T = 1000
4 max-test Size 0.020 0.030 0.035 0.050
Power 0.733 0.890 0.944 0.986
trace-test Size 0.020 0.026 0.033 0.048
Power 0.700 0.884 0.946 0.994
5 max-test Size 0.020 0.028 0.034 0.049
Power 0.697 0.875 0.937 0.986
trace-test Size 0.018 0.025 0.032 0.048
Power 0.664 0.874 0.942 0.992
6 max-test Size 0.018 0.027 0.034 0.049
Power 0.658 0.865 0.931 0.985
trace-test Size 0.017 0.023 0.032 0.048
Power 0.621 0.864 0.938 0.992

Notes: The tests are implemented as in Table 12, but with oo = 0.6.

C.3. Sensitivity analysis and coverage performance of the Local

Whittle estimators

In Tables 15 and 16, we study sensitivity analysis of the local Whittle esti-
mators. The accuracy of the confidence intervals of the memory parameters is

documented in Table 17.

TABLE 15

Finite-sample performance of the Local Whittle estimators of d.

m=[1+T096] Method T = 200 T = 350 T =500 T = 1000
Mean Bias Proposed —0.0496 —0.0349 —0.0258 —0.0112
LRS-type —0.1298 —0.0874 —0.0645 —0.0344
Variance Proposed 0.0125 0.0078 0.0063 0.0036
LRS-type 0.0246 0.0148 0.0106 0.0050
MSE Proposed 0.0149 0.0090 0.0070 0.0038
LRS-type 0.0415 0.0224 0.0147 0.0062
m=[1+T°7] Method T = 200 T = 350 T = 500 T = 1000
Mean Bias Proposed —0.0427 —0.0306 —0.0244 —0.0124
LRS-type —0.1061 —0.0672 —0.0472 —0.0229
Variance Proposed 0.0089 0.0055 0.0041 0.0025
LRS-type 0.0240 0.0149 0.0104 0.0045
MSE Proposed 0.0107 0.0064 0.0047 0.0027
LRS-type 0.0353 0.0194 0.0127 0.0050

Notes: Based on 2,000 Monte Carlo replications. The estimates are computed as in Table 3.
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TABLE 16
Finite-sample performance of the Local Whittle estimators of ds.

m=[14T%F| Method T = 200 T = 350 T = 500 T = 1000
Mean Bias Proposed —0.1034 —0.0746 —0.0585 —0.0403
LRS-type —0.1590 —0.1211 —0.1002 —0.0774

Variance Proposed 0.0145 0.0106 0.0081 0.0048

LRS-type 0.0158 0.0133 0.0111 0.0067

MSE Proposed 0.0252 0.0162 0.0115 0.0065

LRS-type 0.0410 0.0279 0.0212 0.0126
m=[1+T%7] Method T = 200 T = 350 T = 500 T = 1000
Mean Bias Proposed —0.0537 —0.0294 —0.0194 —0.0107
LRS-type —0.1077 —0.0662 —0.0498 —0.0325

Variance Proposed 0.0110 0.0067 0.0046 0.0025

LRS-type 0.0149 0.0096 0.0068 0.0035

MSE Proposed 0.0139 0.0076 0.0050 0.0026

LRS-type 0.0264 0.0140 0.0093 0.0046

Notes: Based on 2,000 Monte Carlo replications. The estimates are computed as in Table 4.

TABLE 17

Coverage performance of the pointwise confidence intervals of the memory parameter

estimated by the local Whittle estimators with the 80% nominal level.

Coverage probability differences

m Target Method T = 200 T = 350 T = 500 T = 1000
[1+7%9) dy Proposed 0.1450 0.0960 0.0740 0.0590
LRS-type 0.3500 0.2870 0.2515 0.2015
ds Proposed 0.2545 0.1990 0.1485 0.1175
LRS-type 0.4310 0.3370 0.3135 0.2950
[1+ 7165 dy Proposed 0.1425 0.1075 0.0890 0.0655
LRS-type 0.3295 0.2715 0.2385 0.1885
ds Proposed 0.2080 0.1345 0.1080 0.0600
LRS-type 0.3765 0.2800 0.2405 0.2080
[1+7%7) dy Proposed 0.1555 0.1490 0.1370 0.1125
LRS-type 0.3100 0.2775 0.2495 0.2135
ds Proposed 0.1820 0.1370 0.0855 0.0445
LRS-type 0.3505 0.2375 0.2015 0.1650
Interval scores
m Target Method T = 200 T = 350 T = 500 T = 1000
[1+71°¢) dy Proposed 0.5109 0.3944 0.3427 0.2601
LRS-type 1.1273 0.8195 0.6354 0.4037
dg Proposed 0.6528 0.4961 0.4069 0.2959
LRS-type 0.9718 0.7610 0.6417 0.4745
[1+ 7995 dy Proposed 0.4577 0.3493 0.3014 0.2249
LRS-type 1.0650 0.7695 0.5995 0.3698
ds Proposed 0.5303 0.3798 0.3132 0.2227
LRS-type 0.8501 0.5988 0.4844 0.3288
[1+7%7) dy Proposed 0.4292 0.3385 0.2863 0.2244
LRS-type 1.0493 0.7841 0.6212 0.3971
ds Proposed 0.4629 0.3272 0.2559 0.1814
LRS-type 0.7614 0.5001 0.3885 0.2580

Notes: Based on 2,000 Monte Carlo replications. The estimates are computed as in Table 5,
and the reported number in each case is computed as the absolute value of the difference
between the computed coverage rate and the nominal level 0.8. The interval score in each case
is computed with the quantiles 0.1 and 0.9.
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