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Abstract: We propose a computationally efficient and sparsity adaptive
procedure for estimating changes in unknown subsets of a high-dimensional
data sequence. Assuming the data sequence is Gaussian, we prove that the
new method successfully estimates the number and locations of change-
points with a given error rate and under minimal conditions for all spar-
sities of the changing subset. Our method has computational complexity
linear up to logarithmic factors in both the length and number of time se-
ries, making it applicable to large data sets. Through extensive numerical
studies we show that the new methodology is highly competitive in terms of
both estimation accuracy and computational cost. The practical usefulness
of the method is illustrated by analysing sensor data from a hydro power
plant, and an efficient R implementation is available.
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1. Introduction

During the last decades, new technology has made it possible to gather data in
larger quantities from an ever wider range of sources. Data can often display
non-stationarities in the form of distributional changes over time, leading to
incorrect statistical inferences if not accounted for. Inference on changepoints
may also be of interest in itself. For instance, Cunen, Hjort and Nygård [6] search
for changes in the number of battle deaths in interstate wars between 1816 and
2007, Gao et al. [8] study monitoring of the temperature of transplant organs,
and Tveten, Eckley and Fearnhead [20] use a changepoint detection algorithm
for condition monitoring of a subsea pump.

In this paper, we study the problem of detecting and estimating an unknown
number of changes in the mean vector of high-dimensional data. By detection,
we refer to testing for the presence of one or more changepoints in the data.
By estimation, we refer to estimation of the location(s) of the detected change-
point(s). This problem is well understood in the literature for univariate data.
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Several computationally efficient algorithms have been proposed during the last
decade, including Pruned Exact Linear Time of Killick, Fearnhead and Eckley
[11], Wild Binary Segmentation of Fryzlewicz [7], Narrowest Over Threshold
of Baranowski, Chen and Fryzlewicz [1] and Seeded Binary Segmentation of
Kovács et al. [12]. Notably, these methods have been shown to achieve near
optimal performance, in a minimax sense, see Wang, Yu and Rinaldo [22].

Several methods for the multivariate change in mean problem have also been
proposed, although this problem is somewhat less studied than the univariate
setting. The Inspect method of Wang and Samworth [21] uses sparse projec-
tions of CUSUM statistics and a variant of Wild Binary Segmentation to detect
and localize multiple sparse changes in the mean. Cho and Fryzlewicz [4] pro-
pose the Sparsified Binary Segmentation algorithm based on thresholding and
aggregating CUSUM statistics over coordinates, in combination with Binary
Segmentation. The Double CUSUM method of Cho [3] uses test statistics based
on ordered CUSUMs, in combination with ordinary Binary Segmentation. The
SUBSET method of Tickle, Eckley and Fearnhead [19] uses a penalized like-
lihood approach, in combination with the Wild Binary Segmentation search
procedure, while the methods of Kaul et al. [10] and Kaul and Michailidis [9]
use a locally refitted least squares estimator.

In this work, we present a novel multiple changepoint estimation algorithm,
which we call ESAC (Efficient Sparsity Adaptive Changepoint estimator). The
method is designed to detect and estimate the locations of an unknown num-
ber of changes in the mean of high-dimensional data sequences. An important
feature of ESAC is that the subset of data components that undergo a change
need not be known — it can be anything from a single changing component to
a small subset to all components. We refer to the size of the changing subset as
the sparsity of the change. ESAC comes with strong theoretical guarantees, and
is in particular adaptive to all sparsities of changes and all distances between
changepoints, both of which are allowed to vary among the changepoints. Still,
the worst-case computational cost of ESAC is linear in the number of observa-
tions, n, as well as the number of components, p, save for logarithmic factors.
Via simulations, we demonstrate that ESAC is highly competitive in terms of
statistical accuracy and run time.

We summarize the novelty of our work in the following:

1. We demonstrate how the single changepoint testing procedure of Liu, Gao
and Samworth [13], which is based on hard-thresholding, can be modified
for multiple changepoint search. This modification is non-trivial, as both
thresholding levels and tuning parameters need to be adjusted appropri-
ately to allow for control over the Type I error.

2. Based on the modified changepoint testing procedure, we construct a novel
estimator of the location of a single changepoint and prove that it has
strong theoretical properties.

3. By combining our proposed test statistic and changepoint estimator, we
propose a novel method, ESAC, for multiple changepoint detection and
estimation. The method uses a variant of Seeded Binary Segmentation
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[12] and Narrowest-over-Threshold [1] for selection of changepoints. The
new method comes with strong statistical and computational theoretical
guarantees, and enjoys a certain kind of optimality.

4. We carry out an extensive simulation study, where we compare our single-
and multiple changepoint estimators to several state-of-the-art methods.
The simulation study evaluates the performance of the competing methods
both with a single and multiple changepoints. We also investigate the
performance of the methods under misspecified models, such as heavy-
tailed noise and temporal and spatial auto-correlation.

5. To illustrate the applicability of ESAC, we apply the method to analyze
sensor data from a Swedish hydro power plant.

ESAC is implemented in an R package HDCD [14], available on The Com-
prehensive R Archive Network (cran.r-project.org). This implementation is
highly optimized and written in the C programming language, allowing for very
fast execution. Efficient implementations of Inspect [21] and the method of [15]
are also available in the package.

Most similar to ESAC is the multiple changepoint detection procedure of
Pilliat, Carpentier and Verzelen [15] for Gaussian changes in mean. The the-
oretical guarantees, for instance, are the same for ESAC and the method of
[15]. Still, there are important distinctions between the two methods. As op-
posed to ESAC, the method proposed by [15] is based on their novel “bottom
up” search. Their approach segments the data into disjoint segments chosen as
narrow as possible from a predefined grid, where for each interval, a test statis-
tic must have detected a changepoint. To ensure a disjoint segmentation, they
merge overlapping segments of equal length whenever a changepoint is detected
in both. From this segmentation, changepoint locations are estimated by taking
midpoints of the segments. Consequently, the method of [15] only requires a
test for a changepoint, and not a location estimator. In practice, this generality
comes at a cost of changepoints being crudely estimated or not being detected
at all, whenever the signal strength is low. This is illustrated in our simulation
studies, which feature empirical comparisons between ESAC, the method of [15]
and other proposed methods.

The paper is organized as follows. In Section 2 we give a formal description of
the model assumed throughout the paper. In Section 3.1 we present a test statis-
tic for a single changepoint that facilitates control over its family-wise error rate.
In Section 3.2 we propose an estimator for the location of a single changepoint,
also stating its finite sample estimation error rate with comparisons to other
methods. In Section 3.3 we propose ESAC, which is our multiple changepoint
estimation procedure. In Section 3.4 we present theoretical results regarding the
statistical and computational properties of ESAC and compare these to other
methods. In Section 4 we study the empirical performance of ESAC and other
methods via simulations, including for misspecified models. In Section 5 we ap-
ply ESAC to sensor data from a Swedish hydro power plant. In Appendix A
we prove our main theoretical results. In the remaining appendices we discuss

https://cran.r-project.org
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implementation of ESAC in practice, provide more simulation results, and prove
auxiliary lemmas for our main results.

We use the following notation throughout the paper. For any vector y ∈ R
d

we let yj denote its jth component, ‖y‖2 denote its Euclidean norm and ‖y‖0
denote the number of nonzero entries in y. For any matrix X ∈ R

p×n we let Xi,v

denote its (i, v)th element, Xv ∈ R
p denote its vth column, Xi,· ∈ R

n denote
its ith row, ‖X‖2

F =
∑p

i=1
∑n

v=1 X
2
i,v denote the squared Frobenius norm of

X, and ‖X‖1 =
∑p

i=1
∑n

v=1 |Xi,v| denote the entry-wise �1 norm of X. For any
pair of matrices X,Y ∈ R

p×n, we let 〈X,Y 〉 = tr(X�Y ) denote their trace inner
product. For any positive integer I we define [I] = {1, . . . , I}. For any pair of
real numbers x, y, we define x ∨ y = max {x, y} and x ∧ y = min {x, y}. For
any pair of random variables X,Y , we let X ≤st Y mean that Y stochastically
dominates X, i.e. P (X ≤ t) ≥ P (Y ≤ t) for all t ∈ R. For any x ∈ R, we let 
x�
denote the largest integer no larger than x, and �x
 denote the smallest integer
no smaller than x.

We also find it useful to adopt the notation of [1] to denote integer intervals.
For any pair of integers s, e such that s ≤ e − 2, we let (s, e) denote the open
integer interval {s + 1, . . . , e − 1} and let (s, e] denote the left-open and right
closed integer interval {s + 1, . . . , e}.

2. Problem description

To motivate our method and facilitate theoretical analysis, we consider the
following model for the remainder of the paper. Note that we assess the perfor-
mance of our model under deviations from this model in Section 4. Suppose we
observe n ≥ 2 independent multivariate Gaussian variables

Xv = μv + Wv, (1)

where μv ∈ R
p and Wv ∼ Np(0, σ2I) for v ∈ [n]. Assume that there are J ≥ 0

changepoints 0 < η1 < · · · < ηJ < n such that

μv �= μv+1 if and only if v = ηj for some j ∈ [J ].

Let θj = μηj+1−μηj denote the change in mean occurring at the jth changepoint,
and let ϕj = ‖θj‖2 be the �2-norm of the mean-change occurring at changepoint
j. Further, let kj = ‖θj‖0 denote the sparsity of the jth changepoint, i.e. the
number of non-zero components of θj . Lastly, let Δj = min (ηj − ηj−1, ηj+1 − ηj)
denote the minimum distance between the jth changepoint and a neighboring
changepoint (where we for convenience take η0 = 0 and ηJ+1 = n). Our goal is
to estimate J , the number of changepoints, and their locations η1 < · · · < ηJ .

In the theoretical analysis to follow, we take σ2 to be known. For compactness
of notation, let X, μ ∈ R

p×n denote the matrices with Xv, μv as their vth
columns, respectively, for v ∈ [n].
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3. Method and results

3.1. Single changepoint detection with family-wise error rate control

We begin by presenting a statistical test for a single change in mean in some
arbitrary interval (s, e) = {s+1, . . . , e−1}, where 0 ≤ s < e ≤ n, and s ≤ e−2.
To simplify the exposition, assume for now that σ = 1, as the data can be
normalized to satisfy this assumption. We seek a test statistic that facilitates
control over the family-wise error rate when testing for changepoints over multi-
ple intervals. This level of control is needed later on, when we define a multiple
changepoint algorithm in Section 3.3.

To construct a test statistic, we build on the work of Liu, Gao and Samworth
[13]. They propose an efficient and minimax rate optimal test statistic for testing
for a single changepoint within an interval. Unfortunately, this test does not
allow for control of the family-wise error rate, and thus needs modification,
presented next. For a direct comparison with the changepoint test in [13], see
the end of this section.

For any candidate changepoint location v such that 0 ≤ s < v < e ≤ n, we
define the CUSUM transformation T v

(s,e](y) of a vector y ∈ R
n as

T v
(s,e](y) =

{
e− v

(e− s)(v − s)

}1/2 v∑
i=s+1

yi −
{

v − s

(e− s)(e− v)

}1/2 e∑
i=v+1

yi. (2)

To simplify notation, we use Cv
(s,e](i) = T v

(s,e](Xi,·) to denote the CUSUM of
the ith component of the data within the integer interval (s, e], evaluated at
candidate changepoint position v.

Given a candidate sparsity level t ∈ [p], and penalizing function γ(t), both
to be discussed later, define

Sv
γ,(s,e](t) =

p∑
i=1

{
Cv

(s,e] (i)
2 − νa(t)

}
1
{
|Cv

(s,e](i)| ≥ a(t)
}
− γ(t), (3)

where the threshold value a(t) is given by

a2(t) = 4 log
(
ep logn

t2

)
1
{
t ≤ (p log n)1/2

}
, (4)

and νa(t) is a mean-centering term defined by taking νa = E
(
Z2 | |Z| ≥ a

)
for

Z ∼ N(0, 1) and a ≥ 0. In (4), we abuse notation slightly, writing e = exp(1) to
mean Euler’s number.

The CUSUM is a linear operation, and thus each of the CUSUMs Cv
(s,e](i)

is the sum of the CUSUMs of the noise and the true means. As is common in
sparse signal detection, the quantity in (3) thresholds these CUSUM in order to
separate the signal from the noise. Here, the signal is made up of the CUSUM
transformations of the true means, each of these being zero when no changepoint
is present, and growing with the size of the change whenever a changepoint is
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present. The thresholding value a(t) is tailored specifically for a given sparsity
level t, chosen just large enough to avoid that a t-sparse change drowns in the
noise, and is decreasing in t. The term νa(t) in (3) serves as a mean-centering
term for the few CUSUM values that spuriously exceed the threshold a(t), and
satisfies a2(t) ≤ νa(t) ≤ a2(t) + 2. In an effort to borrow information across
coordinates, the thresholded CUSUMs are then squared and summed. In spite
of the thresholding and mean-centering taking place, this sum need not be small
even when no changepoint is present, especially when the threshold a(t) is small.
The role of the penalty function γ(t) is therefore to ensure that Sv

γ,(s,e](t) < 0
with high probability whenever no changepoint is present.

We refer to Sv
γ,(s,e](t) as a sparsity-specific penalized score, which heuristically

measures the degree of evidence of a changepoint at v ∈ (s, e) for a fixed spar-
sity t. The true sparsity of the changepoint, however, is not known. To measure
the overall degree of evidence of a changepoint at location v, we consider an
exponentially increasing grid of candidate sparsity levels

T = {1, 2, 4, . . . , 2log2{�
√

(p logn)�}} ∪ {p}. (5)

This approach is also taken by [13], where the grid T is slightly smaller. This
choice of grid is justified as follows. Whenever a changepoint has true sparsity
k < (p logn)1/2, there always exists some t ∈ T such that t/2 ≤ k ≤ t, which
turns out to be sufficient for detecting the changepoint. Conversely, when the
true sparsity k satisfies ≥ (p log n)1/2, it is sufficient to consider t = p.

For a candidate changepoint position s < v < e, define the penalized score
as

Sv
γ,(s,e] = max

t∈T
Sv
γ,(s,e](t), (6)

which heuristically measures the degree of evidence of a changepoint at location
v, regardless of the sparsity.

As our test statistic for a changepoint in the interval (s, e), we take

Sγ,(s,e] = 1

{
max
s<v<e

Sv
γ,(s,e] > 0

}
. (7)

Note that we could also have maximized Sv
γ,(s,e] over a geometric grid of vs, such

as in [13], but this would not have lead to any improvement in performance, save
for a slight decrease in computational cost.

As for the penalty function γ(t), for t ∈ [p] define

r(t) = r(t, n, p) =
{

(p logn)1/2 if t ≥ (p log n)1/2,
t log

(
ep logn

t2

)
∨ logn otherwise.

(8)

With penalty function γ(t) = γ0r(t) for some suitably large constant γ0 > 0, we
obtain the following control over the family-wise error rate.
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Proposition 3.1. Consider the model in Section 2. For all s, e and v such
that 0 ≤ s < v < e ≤ n, assume that the quantity Sγ,(s,e] is computed with
variance-scaled input matrix X̃ = (1/σ)X and penalty function γ(t) = γ0r(t)
for some γ0 > 0. Let I denote the set of all intervals (s, e) ⊆ (0, n) containing
no changepoint, i.e. satisfying ηj /∈ (s, e) ∀j ∈ [J ]. For any ε > 0, there exists a
universal choice of γ0 > 0 (depending only on ε) such that

P

(
max

(s,e)∈I
Sγ,(s,e] > 0

)
≤ ε.

Some remarks are in order. Figure 1 displays plots of a2(t), νa(t) and r(t) as
functions of t, for n = p = 500. As our first remark, we observe that a(t) and
νa(t) are decreasing in t, while r(t) is increasing for all t ≤ (p log(n)/e)1/2, but
with a bulk when t is close to (p logn)1/2. Thus, the CUSUMs are thresholded
more harshly when the candidate sparsity level t decreases, while the penalty
function shrinks, at least when t is not close to (p log n)1/2. Note that several
equivalent monotonic functions can be chosen in the place of r(t), but we have
chosen r(t) due to its simple analytical form. The function r(t) can be seen as the
information theoretic detection boundary in terms of the Signal-to-Noise Ratio
(SNR) for multiple changes in mean of sparsity t in p-dimensional Gaussian
vectors with sample size n (see Section 3.4 or [15]). When p = 1, we recover
the standard penalty used in the univariate changepoint literature for Gaussian
changes in mean [22], as r(1) = logn in this case. As our second remark, the
forms of the threshold a(t) and penalty function γ(t) ∝ r(t) reflect the two
sparsity regimes known in the statistical literature on multivariate mean change
detection. In the sparse case where t ≤ (p log n)1/2, the threshold a(t) is non-
zero and satisfies a2(t) ≈ r(t)/t, which is decreasing with t. Meanwhile, in the
dense case where t > (p log n)1/2, the threshold satisfies a(t) = 0, in which case
no thresholding takes place and all CUSUMs contribute to (3).

Lastly, we discuss the difference between the test in (7) and that of that
of [13]. As the test in (7) is designed to be applied over several intervals, the
thresholding in (7) is more stringent than that in [13]. To facilitate control
over the family-wise error rate, the threshold a(t), the mean-centering term
νa(t), and the penalty function γ(t) = γ0r(t) grow faster with n than their
equivalent counterparts in [13]. To (approximately) recover the test statistic
from [13], one must replace logn by log log(8n) in (3), (4), (5), (6), (7) and (8),
replace the set of candidate v’s with a dyadic grid, and use the penalty function
γ(t) = γ0r(t) with the modified function r(t). To exactly recover the test in [13],
the CUSUM must also be replaced by a CUSUM-like quantity defined in that
paper.

3.2. Single changepoint estimation

We now consider the problem of estimating the location of a single changepoint
within some interval (s, e), assuming the changepoint has already been detected
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Fig 1. Plots of a2(t) (red), νa(t) (green), and r(t) (blue) for n = p = 500. The boundary
between the dense and sparse regimes is given by a vertical dashed line at k = (p logn)1/2.

or is known to be present. As before, we assume that σ = 1, as the data can
be normalized to satisfy this assumption. Without loss of generality, recalling
the model defined in (1), we may assume that J = 1 and [s, e) = [0, n). To
enhance readability, we will in the following suppress [s, e) from the notation.
The problem at hand is to estimate the location η = η1 of a single changepoint,
taking the sparsity k = k1 as unknown.

In Section 3.1, we saw how the penalized score Sv
γ = Sv

γ,(0,n] could be used to
test for a changepoint at a location v in the interval (s, e] = (0, n]. In essence,
this testing procedure is adaptive to the unknown sparsity by testing for a
changepoint over a grid T of candidate sparsity levels, using Sv

γ(t) = Sv
γ,(0,n](t)

as a sparsity-specific test statistic. A novel methodological contribution of this
paper is to recognize and prove that, with a suitable choice of penalty function,
the penalized score also provides an accurate changepoint estimator, regardless
of the true sparsity. As our changepoint estimator, we take the location v that
maximizes the penalized score;

η̂λ = arg max
0<v<n

Sv
λ. (9)

Note here that the penalty function γ is replaced by λ. In practice, we experience
that the optimal choice of penalty function for changepoint estimation is slightly
smaller than for changepoint testing. Thus, mainly for practical purposes, we
allow the penalty function in (9) to be different than in (7). To ensure that
η̂λ is always well defined, we formally set η̂λ be the smallest maximizer of the
objective function, although we suppress this from the notation.

The finite sample properties of η̂λ are given in Theorem 3.2, which holds
whenever λ(t) = λ0r(t) for sufficiently large λ0 > 0. Before stating the Theo-
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rem, we discuss the intuition behind the estimator. An inspection of the proof of
Theorem 3.2 reveals that the penalized score approximately recovers the signal
(the sum of squared CUSUMs) from the affected coordinates. This makes it an
effective estimator, since the sum of squared CUSUMs is always largest when
evaluated at the true changepoint location. The penalized score recovers the
signal from the data as follows. By maximizing the sparsity-specific penalized
score Sv

λ(t) in t, a trade-off occurs between the thresholding value a(t), which
is decreasing in t, and the penalty function λ(t), which is increasing for most
values of t. When λ0 is sufficiently large, the penalty function λ(t) cancels all
contributions to the sum in (3) from coordinates with constant means, leaving
only the squared CUSUMs from the affected coordinates. These remaining con-
tributions are (approximately) maximized when t is of the same order as the
true sparsity k, due to the trade-off occurring between the thresholding and the
penalty function. As a result, Sv

λ approximately recovers the sum of squared
CUSUMs of the affected coordinates up to a bounded error term.

The following finite sample result shows that the estimator η̂λ is adaptive to
the unknown sparsity and gives a high-probability upper bound on the estima-
tion error. Consider the model in Section 2, with only one changepoint η, with
sparsity k and �2 norm ϕ. Let Δ = min (η, n− η). Let η̂λ be as in (9), when
the sparsity-specific penalized score Sv

λ(t) = Sv
λ,(0,n] from (3) is computed with

variance-scaled input matrix X̃ = (1/σ)X and penalty function λ(t) = λ0r(t),
where λ0 > 0. Define

h(t) = h(t, n, p) =
{

[p {logn ∨ log log(ep)}]1/2 if t ≥ (p log n)1/2,
t log

(
ep logn

t2

)
∨ logn otherwise.

(10)

We then have the following.

Theorem 3.2. There exist a universal choice of λ0 > 0 and universal constants
C0, C1 > 0 such that, if

ϕ2Δ
σ2 ≥ C0h(k), (11)

we have that
P

{
|η̂λ − η| ≤ C1

σ2

ϕ2h(k)
}

≥ 1 − 1
n
.

The SNR requirement in (11) implies that the absolute estimation error of
η̂λ is no larger than C1h(k)σ2/ϕ2 ≤ (C1/C0)Δ < Δ whenever the conditions of
the Theorem holds. In particular, in the asymptotic regime where k, p, Δ and
ϕ vary with n, the quantity |η̂λ − η|/Δ converges in probability to 0 as n → ∞
whenever (ϕ2Δ)/{σ2h(k)} diverges with n, which is the notion of consistency
considered in e.g. [22] and [3]. Similarly, if ϕ2/{σ2h(k)} diverges with n, then
η̂λ converges in probability to η as n → ∞. Note that Theorem 3.2 requires that
the penalty function λ(t) has a specific functional form. For practical choices of
the penalty function λ(t), we refer to Appendix B.
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Some performance comparisons with related methods are in order. In the
following we let C > 0 denote a generic constant. The Inspect method [21]
obtains an error rate of (σ2/ϕ2) log logn, which is smaller than the rate in
Theorem 3.2, albeit under the much stronger SNR condition that ϕ2Δ/σ2 ≥
C(n/Δ)k log (p logn). The error rate of the method proposed by [10] is of even
smaller order, σ2/ϕ2, although under the even stronger SNR condition that
ϕ2Δ/σ2 ≥ C{k log(p∨n)}2. For the Double CUSUM algorithm [3, Section 4] in
the single changepoint case where σ = 1, the asymptotic SNR requirement for
consistency implies that ϕ2Δ/(k log2 n) → ∞. By “consistency” we mean that
|η̂DC − η|/Δ converges to 0 in probability, where η̂DC is the Double CUSUM
estimate of η.

In summary, both Inspect and the method of [10] have smaller error rates than
the estimator in (9), and especially so for larger values of the sparsity k. These
rates are even minimax rate optimal [see Proposition 3 in 21], but come at the
cost of substantially stronger signal strength conditions than in Theorem 3.2. As
such, the estimator in (9) is, at least from a theoretical perspective, better suited
to deal with dense changepoints. To demonstrate this phenomenon, Figure 2
displays the SNR requirement of the changepoint estimator in (9), Inspect,
Double CUSUM and the method of [10] as a function of k, when n = p = 500.
As we seek to illustrate the dependence on k, and the SNRs are only defined up
to constant factors anyways, each SNR requirement in Figure 2 is normalized to
have value 1 for k = 1. In the left plot, the SNRs are plotted as function of k on
linear scale, while on a log scale to the right. The boundary between the dense
and sparse regimes is indicated by the vertical dashed line at k = (p log n)1/2.

Figure 2 displays a dramatic difference in the methods’ SNR requirements
as a function of k, in which the SNR condition of ESAC grows much slower
with k. This phenomenon is also apparent in our simulation studies, in which
the performance of Inspect, the Double CUSUM and the method of [10] all
deteriorate for larger values of k. We emphasize that Figure 2 is only infor-
mative about the dependence on the SNR conditions on the sparsity k, as the
SNR conditions of the methods are only identified up to constant factors. Note
also that the apparent bulk in the SNR requirement of our changepoint estima-
tor is a result of keeping the mathematical expression simple, as remarked in
Section 3.1.

Although the SNR requirement of the estimator in (9) grows slower with
k than the competing estimators, the effect of the sparsity is still substan-
tial. For fixed values of n and p, the function h(k) is increasing for most val-
ues of k, implying that both the SNR condition and the estimation error in-
crease in k. As an example, the error rate for estimating a changepoint with
sparsity k = 1 is (σ2/ϕ2) (logn ∨ log p), while the same error rate becomes
(σ2/ϕ2) [p {logn ∨ log log(ep)}]1/2 for k = p.

Lastly, we remark that Theorem 3.2 hinges upon the assumption that the
noise is isotropic Gaussian with no temporal dependence. In practice, this as-
sumption is unrealistic. In Section 4, we investigate the performance of the es-
timator in (3.2), and other methods, via simulations. Here we consider various
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Fig 2. Normalized SNR conditions of the changepoint estimator in (9) (red), Inspect and
Double CUSUM (green), and the method of [10] (blue), plotted as a function of the sparsity
k, on a linear scale (left) and log scale (right). The boundary between the dense and sparse
regimes is given by a vertical dashed line at k = (p logn)1/2.

model misspecifications, including temporal dependence and light- and heavy-
tailed deviations from the Gaussian model.

3.3. Detection and estimation of multiple changepoints

We now consider the combined problem of detecting and estimating an unknown
number of changepoints in the data X1, . . . , Xn. That is, our goal is to estimate
J , the number of changepoints, and (η1, . . . , ηJ)�, the changepoint locations.

Our proposed test statistic from Section 3.1 and changepoint estimator from
Section 3.2 are designed for segments (s, e] with at most a single changepoint.
Hence, a search procedure is essential to allow for multiple changepoint search.
Our choice of search procedure is a slight variant of Seeded Binary Segmenta-
tion [12]. In essence, the Seeded Binary Segmentation search procedure gener-
ates a deterministic set of intervals (which they call seeded intervals), in each of
which a single changepoint is searched for. As a single changepoint may be de-
tected within several distinct intervals, a choice must be made regarding which
of these intervals is to be used for estimating its location. We have opted for
the Narrowest-Over-Threshold [1] choice of changepoints, using the narrowest
interval in which a changepoint is detected to estimate its location. Our modi-
fication of Seeded Binary Segmentation is minor; in our variant, the generation
of intervals is controlled by two parameters, α and K. The parameter K con-
trols the distance between the centers of two consecutive intervals of the same
length, and the parameter α controls the growth rate of the interval lengths.
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Our algorithm for generating seeded intervals is found in Appendix B (Algo-
rithm 4).

Our proposed multiple changepoint estimation procedure, ESAC, is as fol-
lows. Let M = {(sm, em] ; m ∈ [M ]} denote an enumerated collection of candi-
date intervals. Let γ(t), λ(t) denote the penalty functions used in the sparsity-
specific penalized score (3), for changepoint detection and estimation, respec-
tively. Given data matrix X, our proposed method is initiated by calling the
recursive algorithm ESAC(X, (0, n],M,∅, γ, λ), defined by Algorithm 1.

For the theoretical analysis of ESAC given in Section 3.4, we find it necessary
to consider a slightly modified variant of the algorithm, defined by Algorithm 2
in Appendix B. In this variant, candidate changepoint locations are trimmed
away in the recursive step, discarding them from future use to detect or esti-
mate further changepoints. The trimming of changepoints is introduced as a
necessary technical step for the proof of Theorem 3.3 to go through, specifi-
cally to ensure that previously discovered changepoints are not re-discovered.
In practice, we find trimming to be unnecessary and even weakening of the
performance. An even more modified variant of ESAC, given by Algorithm 3
defined in Appendix B, takes only the midpoint of an interval as the only candi-
date changepoint location when testing for a changepoint, in addition to interval
trimming. In practice, the modification in Algorithm 3 results in a substantial
decrease in run time at the cost of reduced detection power, although the the-
oretical results in the next subsection hold for this variant as well. In practical
application, we thus recommend using Algorithm 1 over Algorithms 2 and 3.
A simulation study comparing the variants of ESAC is found in Appendix D.

Algorithm 1 ESAC(X, (s, e],M,B, γ, λ).
Input: A matrix of observations X ∈ R

p×n, an open integer interval (s, e) in which
candidate changepoints are searched for, an enumerated collection
M = {(sm, em] ; m ∈ [M ]} of M half open integer sub intervals of (0, n], a set of already
detected changepoints B, and penalty functions γ(t), λ(t).
Output: Set B of already detected changepoints.

if e− s ≤ 1
return B

set M(s,e] = {m ∈ [M ] : (sm, em] ⊂ (s, e]}

set O(s,e] =
{
m ∈ M(s,e] : max

sm<v<em
Sv
γ,(sm,em] > 0

}
if O(s,e] = ∅

return B
set l∗ = min

m∈O(s,e]
|em − sm|

set Ol∗ =
{
m ∈ O(s,e] : |em − sm| = l∗

}
set m∗ = argmax

m∈Ol∗
max

sm<v<em
Sv
λ,(sm,em]

set v∗ = argmax
sm∗<v<em∗

Sv
λ,(sm∗ ,em∗ ]

B ← B ∪ {v∗}
B ← ESAC (X, (s, v∗],M,B, γ, λ)
B ← ESAC (X, (v∗, e],M,B, γ, λ)
return B
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3.4. Theoretical results for multiple changepoints

For the variants of ESAC defined by either Algorithm 2 or Algorithm 3 (both
given in in Appendix B), we have the following finite-sample statistical result.
Let X ∈ R

p×n follow the model in Section 2, and let r(t) be defined as in (8).
Let M = {(sm, em] ; m ∈ [M ]} denote the set of candidate intervals generated
from Algorithm 4 with parameters α ≤ 2, K ≥ 2, and let the penalty function
γ(t) be defined as γ(t) = γ0r(t). Then we have the following.

Theorem 3.3. There exists a universal choice of γ0 > 0, such that for some
universal constants C0, C1 > 0, depending only on γ0, and for any choice of
λ(t), if the SNR condition

ϕ2
jΔj

σ2 ≥ C0r(kj) (12)

holds for all j ∈ [J ], we have that

P

{
Ĵ = J ∩ |η̂j − ηj | ≤ C1

σ2

ϕ2
j

r(kj) ∀j ∈ [J ]
}

> 1 − 1
n
.

The explicit values of γ0, C0 and C1 can be found in the proof of Theorem 3.3 in
Appendix A, although we remark that these constants have not been optimized.
Theorem 3.3 implies that the changepoint estimates outputted by ESAC have
errors no larger than C1σ

2r(kj)/ϕ2
j < Δj . In particular, in the asymptotic

regime where J , kj , p, Δj and ϕj vary with n, the quantity maxj∈[J] |η̂j−ηj |/Δj

converges in probability to 0 as n → ∞ whenever (ϕ2
jΔj)/{σ2r(kj)} diverges

with n for all j ∈ [J ]. Similarly, if ϕ2
j/{σ2r(kj)} diverges with n for all j ∈ [J ],

then maxj∈[J] |η̂j − ηj | converges in probability to 0 as n → ∞.
We now clarify the role of the estimation step in ESAC. Notice that The-

orem 3.3 holds for any choice of λ, and that the error rate in Theorem 3.3 is
slightly smaller than in Theorem 3.2 for dense changepoints. This is because the
estimation error rate implied by Theorem 3.3 is a consequence of the testing step
in Algorithm 2 (and in Algorithm 3), and thus the estimation steps in ESAC
does not contribute to the theoretical bound on the estimation error in Theo-
rem 3.3. Indeed, due to the Narrowest-over-Threshold choice of changepoints, it
is sufficient to bound the largest width of a candidate interval, an observation
due to [15], which in our case is of the order of σ2r(kj)/ϕ2

j for the jth change-
point. In particular, Theorem 3.2 is not a corollary of Theorem 3.3. In fact, the
estimation error in Theorem 3.3 is surprisingly lower than in Theorem 3.2, since
h(k) ≥ r(k) whenever k ≥ (p log n)1/2. We consider the discrepancy between the
two rates to be an artifact of our proof techniques. In practice, the estimation
step occurring after the testing step substantially improves the estimation error
of the changepoint locations, in comparison with taking e.g. the midpoint of the
interval in which a changepoint is detected. For more details and an empirical
investigation, we refer to Appendix D.
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To minimize the estimation error of ESAC, we recommend choosing the
penalty functions γ(t) via Monte Carlo simulation or setting λ(t), γ(t) propor-
tional to a slight variant of r(t). In particular, when using λ(t), γ(t) ∝ r(t), our
simulations suggest that the leading constants can be chosen independently of
n and p, when model assumptions are satisfied, at least for the values of n and
p we have considered. The assumptions required in Theorem 3.3 are undeniably
strong, requiring temporally and spatially independent isotropic noise, which
can be difficult to meet in practice. In such cases, we recommend choosing λ(t)
and γ(t) via Monte Carlo simulation, where the errors are sampled from a (pos-
sibly temporally and spatially dependent) heavy-tailed distribution, such as in
the real data example in Section 5. For further details and recommendations
regarding the choice of penalty functions, we refer to Appendix B.

Some performance comparisons to related methods are in order. In the fol-
lowing, we let C > 0 denote a generic constant. To begin, Theorem 3.3 gives
a very similar theoretical guarantee as the method of Pilliat, Carpentier and
Verzelen [15, Corollary 3]. In fact, when the probability of the desired event
in the Corollary is the same as in Theorem 3.3 (i.e. setting δ = 1/n in the
Corollary), the method of Pilliat obtains the same error rate under an up to
constants equal SNR requirement. The Inspect method of [21] obtains an er-
ror rate of (σ2/ϕ2)(n/Δ)4 log(np), where ϕ = minj∈[J] ϕj , Δ = minj∈[J] Δj and
k = maxj∈[J] kj . The error rate of ESAC is therefore smaller than that of Inspect
whenever n/Δ is large (short distance between changepoints) or k is sufficiently
large. The SNR condition needed for the error rate of Inspect to hold is that
ϕ2Δ/σ2 ≥ C log(np){(n/Δ)3 ∨ k}(n/Δ), which is stronger than that of ESAC,
and especially so when k is large or the changepoints are close to each other.
The method of Kaul and Michailidis [9] obtains an error rate of (σ2/ϕ2) log2(n),
which is mostly smaller than that of ESAC. The method requires the SNR con-
dition that ϕ2Δ/σ2 ≥ CJ2k2 log3(n ∨ p), which is substantially stronger than
the SNR condition of ESAC, especially if there are many changepoints or k is
large. For the Double CUSUM algorithm [3], in the case where σ = 1, the error
rate is at least of the order log2(n)kj/ϕ2

j for the jth changepoint, which is larger
than that of ESAC. The SNR condition for the Double CUSUM algorithm is
that ϕ2

jΔj/(n3−5β/2kj log2 n) → 0 and nβ = O(Δj) for all j ∈ [J ], for some
β ∈ (6/7, 1], as well as p being of the same order as nω for some fixed ω > 0,
which is uniformly stronger than that of ESAC.

In summary, the error rate of ESAC is smaller than that of the Double
CUSUM algorithm for all values of k, mostly larger than the method of Kaul
and Michailidis [9], and only smaller than that of Inspect for very small val-
ues of k. These smaller error rates displayed by Inspect and [9] come at a cost
of substantially larger signal strength conditions, which grow much faster with
k. To illustrate this phenomenon, Figure 3 displays the SNR requirements of
ESAC (red), Inspect (green), the Double CUSUM algorithm (blue) and the
method of [9] (black) on a log scale as a function of the sparsity k, plotted for
different values of n and p. In the left plot, the log SNR requirements are plot-
ted for n = 102, 103, 104 with p = 500 fixed. To the right, they are plotted for
p = 500, 1000, 2000, keeping n = 500 fixed. Each SNR requirement is normalized
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to have value 1 for sparsity k = 1 at n = 100 (left) and at p = 500 (right), as the
SNR conditions are only identified up to constant factors anyway. For Inspect,
we have set Δ = n/2, and for the method of [9] we have set J = 1, which is to
these methods’ advantage. Note that in the left plot, the log SNR conditions of
Inspect and Double CUSUM overlap for n = 102. In the right plot, the log SNR
conditions for Inspect and Double CUSUM are very close over all considered
values of p, making them difficult to tell apart. As before, we emphasize that
the curves in Figure 3 only illustrate the dependence of the SNR conditions on
n, p and k, and the curves themselves should not be compared to each other
directly.

Fig 3. Normalized SNR conditions of ESAC (red) and Inspect (green) and the Double CUSUM
algorithm (blue) on a log scale, plotted as a function of the sparsity k, and varying values of
n (left) and p (right).

We now turn to optimality considerations. Observe first that the SNR condi-
tion for ESAC in (12) is up to constants minimal for identifying J , the number
of changepoints. Indeed, for any n, p and k ≤ p, an implication of Theorem 2
in Pilliat, Carpentier and Verzelen [15] is that

sup
P∈Q(n,p,k)

P (|η̂| �= J) ≥ 1/4

for all estimators η̂ = η̂(X1, . . . , Xn) of the changepoint vector η = (η1, . . . , ηJ),
where Q(n, p, k) is the class of all probability distributions of X1, . . . , Xn corre-
sponding to the model given in Section 2 for which kj ≤ k and ϕ2

jΔj/σ
2 ≥ cr(kj)

for all j ∈ [J ] and for some sufficiently small c > 0. In comparison, ESAC is
guaranteed to correctly estimate J with high probability whenever ϕ2

jΔj/σ
2 ≥

Cr(kj) for all j ∈ [J ] and some sufficiently large C > 0. As for the changepoint
location error rate, the minimax rate has been shown by Wang and Samworth
[21] to be at least σ2/(16ϕ2) whenever Δ−1 ≤ ϕ2/σ2 ≤ 1. Hence, at least in
this region of the parameter space, the estimator η̂ from Section 3.2 and the
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full ESAC algorithm have minimax optimal error rates up to factors of h(k)
and r(k), respectively, where k is the sparsity of the changepoint in question.
Note that, while r(k) and h(k) are constant multiples of logn whenever k = 1,
they grow substantially with k. Hence the error rate of ESAC is only close to
minimax rate optimal for small values of the sparsity k.

Finally, we consider the computational cost of ESAC as a function of the
size of the data. The following Proposition shows that ESAC has a log-linear
computational cost.

Proposition 3.4. Consider any input matrix X ∈ R
p×n, penalty functions

γ(t), λ(t) and seeded intervals generated by Algorithm 4 with fixed input pa-
rameters α > 1 and K ∈ N. Then the computational complexity of ESAC
(either Algorithm 1, 2 or 3) measured in floating point operations is of order
O{np log(p logn)} in the best case and O{np logn log(p log n)} in the worst case.

In Proposition 3.4, the best case computational cost of ESAC occurs when
there are n − 1 detected changepoints, and the worst case computational cost
occurs when there are no changepoints detected. In comparison, the compu-
tational complexity of the method of Pilliat, Carpentier and Verzelen [15] is
O{np log(np)}, which is of slightly smaller order than the worst-case complexity
of ESAC. In our simulation study, however, we experience that the computa-
tional costs of ESAC and the method in [15] have very similar dependence on
n and p, with ESAC being faster by a seemingly constant factor. For the other
multiple changepoint methods like the Double CUSUM, Sparsified Binary Seg-
mentation, SUBSET and Inspect, no specific forms of computational cost are
provided in the respective articles. For an empirical comparison of run times,
we refer to the next section.

4. Simulations

We now compare the empirical performance of ESAC and our single changepoint
estimator in (9) with the following state-of-the-art methods for high-dimensional
changepoint detection and estimation: a variant of the Inspect method by Wang
and Samworth [21], the method of Pilliat, Carpentier and Verzelen [15] hereby
called Pilliat, Sparsified Binary Segmentation of Cho and Fryzlewicz [4], the
Double CUSUM algorithm of Cho [3], the SUBSET method by Tickle, Eckley
and Fearnhead [19], and the methods of Kaul et al. [10] and Kaul and Michailidis
[9]. We introduce a slightly modified variant of Inspect, based on Narrowest-
over-Threshold search, mainly to reduce computational cost. The details of our
modified Inspect algorithm can be found in Appendix C. To run the Sparsified
Binary Segmentation and Double CUSUM algorithms, we use the R package
hdbinseg [5]. To run SUBSET, we use the code from the Github repository of
Tickle [18]. To run the methods of [10] and [9], we use the code provided to us by
the first author of these two publications. We have implemented the remaining
methods ESAC, Pilliat and Inspect in the C programming language, which are
found in the R package HDCD [14], available on CRAN. We remark that our
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implementations of Inspect and the Pilliat method are orders of magnitude
faster than their original implementations. Replication code for our simulations
studies can be found in the /inst folder in the package. Whenever run times are
reported, they have been run using R (4.2.1) on a MacOS (12.3) computer with
an (ARM) Apple M1 Pro CPU.

For each method in the simulation study, a choice of penalty parameters must
be made, which is discussed in each subsection. In all simulations, changes in
mean are taken to have magnitudes spread evenly across all affected coordi-
nates. In Appendix E we run the same simulations with uneven and random
magnitudes, giving similar results. In all simulations we assume σ = 1 is un-
known. We estimate σ separately for each of the p coordinates of the observed
time series, and use it to normalize the data before applying each changepoint
detection method. As is commonly done in the changepoint literature, we esti-
mate the noise level by the median absolute deviation of first-order differences
with scaling factor 1.05 for the Gaussian distribution.

4.1. Single changepoint estimation

We first consider the algorithms’ performance when estimating the location of
a single changepoint, assuming that it has already been detected. Our simu-
lations are run with parameters n ∈ {200, 500}, p ∈ {100, 1000, 5000}, k ∈{
1, �p1/3
, �√(p logn)
, p

}
. For each configuration of these parameters, we sim-

ulate 1000 data sets and apply the methods considered in the study. For each
combination of n, p, k, the simulated data sets have a changepoint at η = �n/5

with change-vector θ ∝ (I1, . . . , Ik, 0, . . . , 0)�, where I1, . . . , Ik are drawn inde-
pendently and uniformly from {−1, 1}. For each sample we scale θ such that
Δϕ2 = (n/5) ‖θ‖2

2 = (5/2)2r(k), where k is the sparsity of the change and
Δ = �n/5
. For a simulation study in which the change-vector θ is drawn ran-
domly, see Appendix E.2.

To keep the simulation study simple, we use the authors’ recommended non-
empirical choices of penalty parameters. We take ESAC to be the estimator
given in (9), with penalty function λ̃(t) as defined in Appendix B. As for In-
spect, we use Algorithm 2 in Wang and Samworth [21], with penalty parameter
λ = {log (p logn) /2}1/2. For the Double CUSUM algorithm we set ϕ = −1, cor-
responding to the version presented in Section 4.1 of Cho [3]. For the method of
[10], we use the default parameters provided in code from that paper’s simula-
tion study. For Sparsified Binary Segmentation, a default choice of the threshold
πT is not available, so we take πT to be the maximum value of the CUSUMs
|T v

[0,n)(Zi,·/σ̂i)| over all values of 0 < v < n and i ∈ [p], where Zv,i∼N(0, 1)
independently for i ∈ [p], v ∈ [n], and σ̂i is the median absolute deviation of
the noise level in the ith series, based on 1000 Monte Carlo samples. Whenever
the Sparsified Binary Segmentation estimator is not defined, we set its output
to be 1. For both the Double CUSUM and Sparsified Binary Segmentation al-
gorithm, we specify height = 1 when calling the respective functions to turn
the methods into single changepoint estimators. The Pilliat method is not in-
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cluded in this simulation as there is no straightforward way to modify it into
a single changepoint estimator. The method of [9] is not included either as it
is a multiple changepoint extension of the single changepoint method found in
[10].

Table 1

Single changepoint estimation MSE.
Parameters Mean Squared Error

n p k η ϕ ESAC Inspect SBS SUBSET DC Kaul et al.
200 100 1 40 1.40 10.4 25.3 83.0 54.2 9.8 59.4
200 100 5 40 2.00 5.8 4.1 389.0 3.0 13.8 9.1
200 100 24 40 1.90 96.5 139.6 1495.8 251.1 931.1 777.0
200 100 100 40 1.90 95.1 425.9 1520.6 250.8 2719.4 13621.7
200 1000 1 40 1.52 6.9 105.8 29.5 33.1 6.5 8.9
200 1000 10 40 2.93 5.1 0.8 130.6 1.2 9.2 0.5
200 1000 73 40 3.37 4.6 64.5 1478.2 8.2 163.7 1.6
200 1000 1000 40 3.37 3.5 796.2 1534.7 7.1 207.5 18379.5
200 5000 1 40 1.60 45.3 413.3 29.1 81.4 142.1 7.9
200 5000 18 40 4.00 9.4 0.6 65.7 3.3 84.2 0.2
200 5000 163 40 5.04 3.6 60.3 1466.2 3.6 7.1 4.3
200 5000 5000 40 5.04 4.4 1453.9 1563.1 4.4 5.3 19780.0
500 100 1 100 0.92 55.4 97.9 120.8 216.4 54.7 63.7
500 100 5 100 1.31 22.9 15.7 1060.1 12.6 100.6 41.5
500 100 25 100 1.25 112.7 323.1 9560.3 2150.5 6420.7 4084.3
500 100 100 100 1.25 284.4 1845.9 9768.9 1959.7 17072.2 121078.1
500 1000 1 100 1.00 30.5 217.7 79.3 190.5 31.0 36.9
500 1000 10 100 1.90 12.3 5.1 233.0 3.7 78.1 3.8
500 1000 79 100 2.22 22.1 122.5 9547.8 66.4 1610.9 3.3
500 1000 1000 100 2.22 15.4 3895.9 9790.4 82.9 2091.1 141517.6
500 5000 1 100 1.05 22.2 1322.6 51.6 95.9 258.0 36.4
500 5000 18 100 2.58 7.9 1.8 103.1 3.2 627.6 1.4
500 5000 177 100 3.32 11.2 175.0 9438.2 11.2 37.5 1.3
500 5000 5000 100 3.32 20.2 8212.5 9799.4 33.7 28.0 146917.9

Average MSE 37.8 821.9 2889.1 230.3 1362.9 19434.9

For each method and each configuration of parameters, Table 1 displays the
average Mean Squared Error (MSE), while Table 2 displays the average run
time in milliseconds. In the tables, the Double CUSUM and Sparsified Binary
Segmentation methods are abbreviated as DC and SBS, respectively. For each
configuration of parameters, the minimum value of both the MSE and the run
time are indicated in boldface. In terms of statistical accuracy, Table 1 demon-
strates that ESAC and SUBSET are the only methods with competitive accu-
racy across the sparsity regimes, although ESAC has a slight edge over SUBSET.
ESAC has the lowest MSE in 11 out of the 24 different combinations of param-
eters (including both dense and sparse regimes), while SUBSET has the lowest
MSE in 5 out of 24, and the method of [10] has the lowest MSE in 7. When
averaging the MSE over all the rows, ESAC is the clear winner, with SUBSET
in second place. In comparison, the estimation accuracy of the method of [10] is
excellent for k ∈ {1, �p1/3
}, but deteriorates for higher sparsity levels, as does
Inspect. The Double CUSUM algorithm displays excellent estimation accuracy
when k = 1, but often not so for dense changepoints (although this seems to
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vary slightly with n and p). Sparsified Binary Segmentation has a decent estima-
tion accuracy for sparse changepoints (especially when k = 1), but the accuracy
deteriorates for dense changepoints.

Table 2

Single changepoint estimation run time.
Parameters Time in milliseconds

n p k η ϕ ESAC Inspect SBS SUBSET DC Kaul et al.
200 100 1 40 1.40 0.4 2.8 13.3 6.0 17.0 57.6
200 100 5 40 2.00 0.3 2.7 11.9 2.4 14.9 49.5
200 100 24 40 1.90 0.3 2.7 11.3 1.9 18.7 47.4
200 100 100 40 1.90 0.3 2.7 11.3 2.1 18.2 46.2
200 1000 1 40 1.52 2.2 57.9 107.8 17.1 149.6 318.9
200 1000 10 40 2.93 2.2 57.5 106.7 16.0 149.9 309.2
200 1000 73 40 3.37 2.2 58.0 105.4 15.8 149.8 305.5
200 1000 1000 40 3.37 2.2 57.8 105.5 16.3 149.2 300.1
200 5000 1 40 1.60 15.4 302.2 548.6 102.3 782.6 1543.4
200 5000 18 40 4.00 15.4 301.6 542.9 96.4 789.9 1529.5
200 5000 163 40 5.04 15.5 298.6 534.8 95.9 778.2 1518.8
200 5000 5000 40 5.04 15.3 301.3 530.5 95.3 778.6 1515.6
500 100 1 100 0.92 0.8 7.4 20.4 4.3 30.6 105.9
500 100 5 100 1.31 0.7 7.4 18.9 4.0 28.0 102.5
500 100 25 100 1.25 0.7 7.6 19.0 4.3 28.5 101.4
500 100 100 100 1.25 0.7 7.4 19.2 4.1 28.0 100.7
500 1000 1 100 1.00 6.2 357.0 174.3 38.6 292.5 713.4
500 1000 10 100 1.90 6.7 356.2 173.2 37.7 293.0 706.8
500 1000 79 100 2.22 7.1 356.1 170.4 38.2 292.0 703.6
500 1000 1000 100 2.22 7.2 356.6 172.2 38.2 291.8 705.1
500 5000 1 100 1.05 38.7 1839.1 895.2 206.8 1726.4 3427.7
500 5000 18 100 2.58 39.0 1829.9 868.0 206.5 1611.3 3420.7
500 5000 177 100 3.32 38.7 1834.6 869.8 202.5 1626.1 3393.5
500 5000 5000 100 3.32 40.6 1848.6 875.3 222.8 1631.2 3510.2

Average run time 10.8 427.2 287.7 61.5 486.5 1022.2

In terms of run time, ESAC is the clear winner, with overall execution time
of around one sixth of SUBSET, the runner up, and down to around 1% of
the execution time of the method of [10]. Note that SUBSET and the method
of [10] are the only methods not implemented in C or C++, giving them a
disadvantage when comparing run times. We also remark that the run time of
scaling the data by the median absolute deviations is not included in the run
times of ESAC, Inspect, SUBSET and the method of [10], as it would otherwise
dominate the run time. The run time of the scaling is included in the running
times of the Double CUSUM and Sparsified Binary Segmentation algorithms,
as the implementations of these algorithms do not offer an option to disable
it.

4.2. Multiple changepoint estimation

We now consider the situation of an unknown number of changepoints. Our
simulations are run with parameters n ∈ {100, 200}, p ∈ {100, 1000} and
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J ∈ {0, 2, 5}. For each simulated data set we take the changepoint locations
η1, . . . , ηJ to be ordered and uniformly drawn samples from {1, . . . , n− 1} with-
out replacement. For each combination of n, p and J , we consider three different
sparsity regimes; dense, sparse and mixed. In the dense and sparse regimes, we
sample k1, . . . , kJ independently and uniformly from {�√(p logn)
, . . . , p} and
{1, . . . , 
√(p log n)�}, respectively. In the mixed regime we sample each kj inde-
pendently from a mixture between the dense and sparse regimes, each with equal
probability. For each combination of n, p, J and sparsity regime, each change-
point has change-vector θj ∝ (Ij,1, . . . , Ij,kj , 0, . . . , 0)�, where Ij,1, . . . , Ij,kj are
drawn independently and uniformly from {−1, 1}, scaled such that Δjϕ

2
j/σ

2
j =

42r(kj). Notice that we have increased the signal strength slightly in compari-
son with the single changepoint case, as multiple changepoint estimation is more
challenging than estimating the position of a single changepoint whose existence
is known. For each combination of n, p, J and sparsity regime we simulate 1000
data sets.

For both ESAC and the modified Inspect algorithm, we generate seeded in-
tervals using Algorithm 4 with parameters α = 3/2 and K = 4. For the Pilliat
method we generate intervals using Algorithm 4 with parameters α = 3/2 and
K = 2, giving very similar intervals as the a-adic grid Ga defined in [15] for
a = 2/3. To run the method of [9], we use the output from Inspect as prelim-
inary estimates of the changepoints, as this is the preliminary estimate used
in the simulation study in [9]. Whenever the code from this article runs into
an error, we set its output to be the preliminary estimates from Inspect. Note
that the computation time of Inspect is included in the reported run time of
the method of [9]. Due to high computational cost, we run SUBSET with only
100 randomly drawn intervals in its Wild Binary Segmentation step. To ensure
comparability with the remaining methods, we have modified the Pilliat method
so that its tests for a changepoint in an integer interval (s, e] are performed by
testing for a changepoint at each candidate position s < v < e, instead of only
the mid-point. In our experience, testing only at the mid-point of an interval
results in substantially lower detection power.

We choose detection thresholds for Sparsified Binary Segmentation and Dou-
ble CUSUM using bootstrapping with B = 100 bootstrap samples. For the re-
maining methods, we choose detection thresholds using Monte Carlo simulations
based on N = 1000 samples, with a target false positive probability of ε = 1/100.
For the ESAC algorithm, we use the penalty functions γ̃(t) and λ̃(t) given in
Appendix B, which is obtained via Monte Carlo simulation and a Bonferroni
correction. For the Pilliat algorithm we choose detection thresholds for the Par-
tial Sum statistic and the dense statistic by Monte Carlo simulating the leading
constant in the theoretical thresholds given in [15], and apply a Bonferroni cor-
rection. For the modified version of Inspect we set λ = {log(p log n)/2}1/2 and
choose the detection threshold ξ to be the Nεth largest sparse projection over all
seeded intervals and over N = 1000 data sets with no changepoints. For SUB-
SET we use the function for choosing thresholds provided by the author, which
is based on Monte Carlo simulation. For Sparsified Binary Segmentation and
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Double CUSUM we use the default parameters when running the algorithms
(except for setting ϕ = −1 for the Double CUSUM algorithm corresponding to
the version presented in Section 4.1 of [3]) and use the default bootstrap pro-
cedures to select detection thresholds. Due to prohibitively high computational
cost, the Double CUSUM algorithm is only run for p = 100.

For each method considered and each configuration of parameters and change-
point regimes, Table 3 displays the average Hausdorff distance between the true
and estimated changepoints, as well as the average absolute estimation error of
J in parenthesis. Note that the Hausdorff distance is only well defined when
the true number of changepoints is nonzero. Note also that the Double CUSUM
and Sparsified Binary Segmentation methods are abbreviated as DC and SBS,
respectively. For each configuration of parameters and changepoint regimes, the
minimum value of each of the two performance measures is indicated in boldface.
In terms of average Hausdorff distance, Table 3 demonstrates that ESAC is the
top performer in the simulation study, obtaining a smallest average Hausdorff
distance in 23 out of the 26 parameter configurations with a changepoint. SUB-
SET obtains a second place, with performance arguably comparable to ESAC.
For estimating J , ESAC is also the clear winner of the study, having the small-
est estimation error in all configurations of the parameters with a changepoint
present. Inspect obtains a second place, and consequently also the method of [9].
Note, however, that the latter method takes the estimated J from Inspect as
an input, which is the reason their method has the same estimation error of J
as Inspect. An extended version of Table 3, also including p = 5000, is given in
Appendix E.1.

As for computational costs, Figure 4 displays the natural logarithm of the
run times (in milliseconds) of the methods as functions of n and p, based on av-
erages over N = 24 runs in the mixed sparsity regime with J = 2 changepoints.
In the left plot, we fix p = 100 and let n ∈ [100, 1000] vary, and in the right
plot we fix n = 100 and let p ∈ [100, 1000] vary. In terms of run time, ESAC
outperforms the competing methods by a significant margin for all considered
values of n and p. The run time of ESAC is smaller than that of the competitors
by a factor seemingly constant in n and p. When not applying a log transform
to the run times (which is omitted for brevity), all methods can be seen to have
an approximately linear computational cost in both n and p.

4.3. Misspecified model

ESAC is designed for data with isotropic Gaussian noise, which can be an un-
realistic assumption in practice. We now investigate the empirical performance
of the changepoint estimator in (9) and the competing methods in the single
changepoint setting under other data generating mechanisms than the model de-
scribed in Section 2. We set n = p = 200. With the changepoint location fixed
at η = �n/5
 = 40, we consider two sparsity regimes, sparse and dense. We
sample k independently and uniformly from {1, . . . , 
√(p log n)�} in the sparse
regime, and from {�√(p logn)
 . . . , p} in the dense regime. In both regimes, we
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Table 3

Multiple changepoints, Hausdorff distance and estimation error of J.
Parameters Hausdorff distance (|Ĵ − J |)

n p Sparsity J ESAC Pilliat Inspect SBS SUBSET DC Kaul et al
100 100 – 0 – (0.01) – (0.00) – (0.01) – (0.02) – (0.04) – (0.01) – (0.01)
100 100 Dense 2 0.76 (0.01) 9.40 (0.40) 2.19 (0.04) 41.77 (1.19) 1.08 (0.08) 45.30 (1.30) 2.19 (0.04)
100 100 Sparse 2 0.63 (0.01) 4.90 (0.19) 1.23 (0.03) 41.07 (1.09) 0.61 (0.04) 15.77 (0.46) 1.16 (0.03)
100 100 Mixed 2 0.53 (0.00) 7.75 (0.31) 2.11 (0.05) 41.01 (1.14) 1.23 (0.06) 32.48 (0.94) 2.26 (0.05)
100 100 Dense 5 0.48 (0.01) 10.53 (1.02) 2.87 (0.14) 45.06 (3.77) 1.35 (0.19) 34.02 (3.24) 2.72 (0.14)
100 100 Sparse 5 0.37 (0.01) 5.26 (0.43) 1.64 (0.11) 46.44 (3.76) 1.06 (0.21) 19.37 (2.13) 1.57 (0.11)
100 100 Mixed 5 0.43 (0.01) 7.75 (0.72) 2.61 (0.14) 45.64 (3.76) 1.19 (0.22) 25.39 (2.67) 2.51 (0.14)
100 1000 – 0 – (0.00) – (0.00) – (0.01) – (0.27) – (0.05) – (–) – (0.01)
100 1000 Dense 2 0.36 (0.00) 5.20 (0.24) 1.58 (0.03) 35.46 (0.98) 0.42 (0.03) – (–) 9.18 (0.03)
100 1000 Sparse 2 0.30 (0.00) 3.88 (0.16) 3.02 (0.10) 39.76 (1.05) 0.38 (0.04) – (–) 3.07 (0.10)
100 1000 Mixed 2 0.48 (0.01) 4.29 (0.18) 2.38 (0.06) 40.65 (1.05) 0.58 (0.10) – (–) 6.20 (0.06)
100 1000 Dense 5 0.25 (0.00) 6.06 (0.56) 2.08 (0.10) 42.13 (3.62) 0.64 (0.17) – (–) 2.19 (0.10)
100 1000 Sparse 5 0.23 (0.00) 3.85 (0.32) 3.09 (0.24) 44.72 (3.71) 0.65 (0.16) – (–) 3.07 (0.24)
100 1000 Mixed 5 0.22 (0.00) 4.41 (0.38) 2.86 (0.19) 46.31 (3.77) 0.78 (0.17) – (–) 2.98 (0.19)
200 100 – 0 – (0.01) – (0.01) – (0.01) – (0.04) – (0.06) – (0.01) – (0.01)
200 100 Dense 2 1.25 (0.01) 16.44 (0.38) 3.10 (0.03) 58.53 (0.89) 2.10 (0.07) 65.00 (0.98) 4.89 (0.03)
200 100 Sparse 2 0.97 (0.00) 7.07 (0.17) 1.87 (0.02) 47.77 (0.67) 1.26 (0.04) 12.07 (0.19) 1.72 (0.02)
200 100 Mixed 2 1.09 (0.00) 10.94 (0.25) 2.76 (0.02) 51.05 (0.75) 1.45 (0.03) 45.49 (0.69) 5.03 (0.02)
200 100 Dense 5 1.14 (0.01) 16.99 (1.01) 4.44 (0.09) 57.71 (3.02) 2.26 (0.19) 51.17 (2.64) 4.07 (0.09)
200 100 Sparse 5 0.89 (0.01) 7.57 (0.35) 2.19 (0.06) 56.82 (2.77) 2.02 (0.22) 21.56 (1.28) 2.02 (0.06)
200 100 Mixed 5 0.74 (0.00) 13.21 (0.69) 2.74 (0.07) 60.62 (2.93) 2.16 (0.20) 39.22 (2.09) 2.42 (0.07)
200 1000 – 0 – (0.00) – (0.00) – (0.01) – (0.31) – (0.05) – (–) – (0.01)
200 1000 Dense 2 1.13 (0.01) 7.93 (0.20) 2.51 (0.02) 49.75 (0.64) 0.90 (0.03) – (–) 34.02 (0.02)
200 1000 Sparse 2 0.88 (0.00) 4.19 (0.09) 5.56 (0.10) 49.73 (0.64) 0.60 (0.04) – (–) 7.70 (0.10)
200 1000 Mixed 2 0.94 (0.00) 6.62 (0.17) 4.05 (0.05) 50.51 (0.65) 0.98 (0.03) – (–) 16.65 (0.05)
200 1000 Dense 5 0.61 (0.00) 9.81 (0.57) 3.51 (0.06) 54.88 (2.83) 1.54 (0.18) – (–) 4.57 (0.06)
200 1000 Sparse 5 0.44 (0.00) 5.12 (0.25) 6.22 (0.24) 55.74 (2.74) 1.52 (0.18) – (–) 6.15 (0.24)
200 1000 Mixed 5 0.50 (0.00) 7.50 (0.39) 4.59 (0.15) 57.64 (2.82) 1.47 (0.21) – (–) 5.13 (0.15)

Average 0.65 (0.01) 7.78 (0.34) 2.97 (0.08) 48.36 (1.82) 1.18 (0.11) 33.90 (1.33) 4.77 (0.08)

take the change-vector θ to satisfy θ ∝ (I1, . . . , Ik, 0, . . . , 0)�, where I1, . . . , Ik
are drawn independently and uniformly from {−1, 1}. Furthermore, we scale θ

such that Δϕ2 = (n/5) ‖θ‖2
2 = 9r(k).

Similar to the simulation study in [21], we consider the following data gen-
erating mechanisms. In model M0 we take the noise vector Wv to satisfy Wv ∼
Np(0, I) independently for v ∈ [n]. In models MUnif and Mtd we take Wi,v ∼
Unif(−√

3,
√

3) and {d/(d − 2)}1/2Wi,v ∼ td, respectively and independently
for all v ∈ [n] and i ∈ [p], where td denotes the Student t distribution with d
degrees of freedom. In model Mcs, loc(ρ) we let the noise vectors W1, . . . ,Wn

have short-ranged spatial correlation, taking Wv ∼ Np (0,Σ(ρ)) independently
for all v ∈ [n], where Σ(ρ)j,k = ρ|j−k| for each j, k ∈ [p]. In the model Mcs(ρ)
we let the noise vectors W1, . . . ,Wn have global spatial correlation by taking
Wv ∼ Np (0,Δ(ρ)) independently for v ∈ [n], where Δ(ρ) = (1−ρ)Ip+ρ/pIpI

�
p .

In the model Mtemp(ρ) we allow for temporal dependence between the noise
vectors W1, . . . ,Wn by letting W1 = W̃1 and Wv =

√
ρW̃v +

√
(1 − ρ)Wv−1

for v = 2, . . . , n, where W̃1, . . . , W̃n ∼ Np(0, Ip), independently. In the models
Masync and Mgradual we allow for changes in the mean to occur asynchronous and
gradual in time, respectively, with noise vectors Wv ∼ Np(0, Ip) independently
for v ∈ [n]. In Masync, for each changepoint ηj , we randomly shift the posi-
tion (in time) of the change in mean in the ith coordinate, where the shifts are
drawn independently from Unif(ηj −
Δj/2�, ηj −
Δj/2�+1, . . . , ηj + 
Δj/2�).
In Mgradual, for each changepoint ηj , any change in mean occurs linearly over
time, starting at position ηj−
Δj/2�+1 and ending at position ηj +
Δj/2�+1.
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Fig 4. run times of the methods as functions of n (left) and p (right) on a logarithmic scale.

Table 4 displays the MSE of the competing methods using the same run-
ning parameters as in Section 4.1, based on N = 1000 runs. Table 4 indi-
cates that ESAC (along with Inspect and SUBSET) is robust to model de-
viations in the form of light-tailed noise and short-ranged spatial correlation.
With global spatial correlation, however, all methods degrade substantially in
performance, with Inspect having a slight edge over the remaining methods.
With auto-correlation, the performance of the methods also degrades markedly,
with ESAC and SUBSET having a slight edge over the remaining methods.
Lastly, ESAC, SUBSET and the method of [10] seem to be slightly more robust
to asynchronous and gradual occurrence of changepoints than the remaining
methods.

5. Real data example

To illustrate how ESAC can be applied in practice, we examine raw sensor
data from a Swedish hydro power plant. The data consists of measurements
from 20 sensors taken every minute for 1800 minutes, so that p = 20 and n =
1800. The sensors measure the magnitude of movements and vibrations (the
latter measured at 1–10 and 10–1000 Hz bands) at various locations along the
shaft connecting the turbine and the generator. During the 1800 minutes we
consider, the mode of operation changes several times, detailed in Table 5. We
take these changes of operation mode as the ground truth regarding the number
of changepoints and their locations.

The data generating mechanism of the data is undeniably in violation of sev-
eral underlying assumptions of ESAC. Importantly, the data are highly cross-
correlated and auto-regressive. Moreover, the measurements in the data set are
influenced by contextual variables such as power output, guide vane opening,
and other (human controlled) running conditions in a complex manner. This de-
pendence on contextual variables should ideally be modeled carefully, although
such modeling is outside the scope of this paper. As a remedy, we instead trans-
form the observed data by right multiplying each observed data point Xi by
Σ̂−1/2. Here, Σ̂ is the estimated variance-covariance matrix of Xi, estimated
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Table 4

Single changepoint estimation under misspecified model.
Parameters MSE

Model Sparsity ESAC Inspect SBS SUBSET DC Kaul et. al 2021
M Sparse 1.2 1.0 506.1 1.1 25.4 2.1
M Dense 1.6 84.5 1507.9 1.6 762.6 4206.8

MUnif Sparse 1.0 1.2 666.7 0.9 17.7 15.3
MUnif Dense 7.5 141.3 1506.1 23.4 977.6 6594.8
Mt3 Sparse 1373.5 405.7 3038.7 1379.4 12.7 181.2
Mt3 Dense 1561.6 1184.0 12187.7 1642.9 1368.1 1035.8
Mt10 Sparse 2.3 1.5 649.5 1.4 32.6 0.7
Mt10 Dense 2.1 54.6 2045.5 2.1 967.6 2745.3

Mcs, loc(ρ = 0.1) Sparse 1.1 0.9 479.2 1.0 14.6 1.0
Mcs, loc(ρ = 0.1) Dense 2.1 98.7 1517.5 2.1 760.1 3860.5
Mcs, loc(ρ = 0.4) Sparse 1.4 0.9 501.0 1.0 23.4 0.6
Mcs, loc(ρ = 0.4) Dense 4.8 130.8 1508.9 4.8 1016.8 4414.8
Mcs(ρ = 0.1) Sparse 169.5 3.2 490.3 74.2 14.6 20.1
Mcs(ρ = 0.1) Dense 297.7 167.2 1509.0 297.7 953.1 4377.3
Mcs(ρ = 0.4) Sparse 3978.0 94.8 520.3 3918.1 64.8 192.3
Mcs(ρ = 0.4) Dense 5384.2 1383.5 1519.5 5387.8 2142.3 5779.7
MAR(ρ = 0.1) Sparse 148.0 77.1 193.9 148.0 189.9 1676.3
MAR(ρ = 0.1) Dense 40.6 461.7 3023.6 40.6 2395.2 1511.7
MAR(ρ = 0.4) Sparse 979.9 1648.6 1209.3 979.9 1968.5 1442.0
MAR(ρ = 0.4) Dense 1274.3 1994.0 2556.8 1274.3 4406.8 1641.4

Masync Sparse 83.1 99.0 603.8 81.2 212.5 43.9
Masync Dense 75.8 288.3 1521.7 79.4 1464.4 4707.8
Mgrad Sparse 50.3 54.5 794.5 49.2 162.6 49.4
Mgrad Dense 67.7 231.3 1524.4 92.2 1762.9 4527.0

Average MSE 646.2 358.7 1732.6 645.2 904.9 2042.8

Table 5

Operation modes of the hydro power plant.

Time period Operation mode
1–529 running

530–537 stopping
538–1307 off
1308–1310 starting
1311–2000 running

from an independent data set with 5992 observations, in which running condi-
tions are stable (i.e. with no changes in operation mode). Moreover, we choose
the penalty function γ(t) empirically as described in Appendix B, using false
probability rate ε = 0.01 and letting each of the N = 1000 Monte Carlo sam-
ples X(j) have independent entries following a t5 distribution. This choice of
penalty function ensures that ESAC is rather conservative in declaring change-
points.

The Monte Carlo simulation for generating the penalty function λ(t) took
2 minutes and 2 seconds. Applying ESAC to the data took 0.035 seconds, re-
sulting in six estimated changepoints, at locations 531, 533, 974, 1067, 1308,
and 1330. Figure 5 displays the 20 transformed sensor measurements over the
sampling period, with estimated changepoint locations indicated by red ticks
on the x axis. The gray rectangle in the plot indicate the times at which the
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Fig 5. Transformed sensor measurements with detected changepoints indicated by red ticks.
Grey areas indicate time intervals in which the plant is starting, stopping or off.

plant is either starting, stopping, or off. From the Figure, we clearly see that
the first, second and fifth and sixth identified changepoint are associated with
a change in operation mode of the plant. Interestingly, the other two change-
points, located at time points 974, 1067, are not associated with a change in
running conditions. These changepoints are likely declared by ESAC due to the
sudden shift in the yellow curves occurring at time 974 and reverting back again
at time 1067.

Appendix A: Proofs of main results

Proof of Proposition 3.1. Set c1 = 6 + 2 log(8/ε)/ log(2), c2 = 12 +
2(log(1/ε))1/2 + 2 log(1/ε) and γ0 = 9(c1 + c

1/2
1 exp(−1)) + c2. Note first that

I has cardinality no larger than n3. By a union bound, it thus suffices to show
that P(Sγ,(s,e] > 0) ≤ εn−3 for any (s, e) ⊆ I.

So fix any (s, e) ⊆ I. Let t ∈ T \ {p} (the case t = p is handled later), and fix
xt > 0 (to be specified shortly). Since (s, e) does not contain any changepoint,
we must have Cv

(s,e](i)
i.i.d.∼ N(0, 1) for all i ∈ [p]. By Lemma F.2 we have that

p∑
i=1

{
Cv

(s,e](i)2 − νa(t)

}
1
{∣∣∣Cv

(s,e](i)
∣∣∣ > a(t)

}
≥ 9

[{
pe−a(t)2/2xt

}1/2
+ xt

]
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with probability at most e−xt . Now set xt = c1
{p log2(n)

t2 ∧ r(t)
}

for all t. Then,∑
t∈T \{p}

e−xt ≤
∑

t∈T \{p}
exp

{
−c1

p log2(n)
t2

}
+

∑
t∈T \{p}

exp {−c1r(t)} .

For the first sum, we have∑
t∈T \{p}

exp
{
−c1

p log2(n)
t2

}
≤

∞∑
k=0

exp
{
−c1log(n)4k

}
=

∞∑
k=0

(
1
nc1

)4k

≤ n−c1 + n−c1

∞∑
k=1

(
1
nc1

)3k

= 2n−c1 .

For the second sum, noting that c1r(t) = c1
{
t log

(
ep logn

t2

)
∨ logn

}
≥

(c1/2)t log
(
ep logn

t2

)
+ (c1/2) logn, we have

∑
t∈T \{p}

exp {−c1r(t)} ≤ n−c1/2 exp(−c1/2)
∑

t∈T \{p}

(
t2

ep logn

)c1t/2

≤ n−c1/2 exp(−c1/2)
(

1 +
∞∑
k=1

4−c1t/2

)
≤ 2n−c1/2.

With this choice of xt, we thus have that∑
t∈T \{p}

e−xt ≤ 4n−c1/2,

using that c1 > 1. Moreover, using that a2(t) = 4 log
(
ep logn

t2

)
, we have that

9
[{

pe−a2(t)/2xt

}1/2
+ xt

]
= 9

[{
p

t4

e2p2 log2 n
xt

}1/2

+ xt

]

≤ 9
{
tc

1/2
1
e

+ c1r(t)
}

≤ 9
(
c
1/2
1 exp(−1) + c1

)
r(t),

where we used that xt ≤ c1r(t) and xt ≤ c1p log2(n)/t2, as well as the fact
that t ≤ r(t) whenever t ≤ (p logn)1/2. Recalling that γ(t) = γ0r(t), since
γ0 > 9

(
c1 + c

1/2
1 exp(−1)

)
, a union bound gives

P
(
∃t ∈ T \ {p} ; Sγ,(s,e](t) ≥ 0

)
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= P

[
∃t ∈ T \ {p} ;

p∑
i=1

{
Cv

(s,e](i)2 − νa(t)

}
1
{
|Cv

(s,e](i)| > a(t)
}
≥ γ0r(t)

]
≤4n−c1/2

≤4n−3−log(8/ε)/ log(2)

≤4n−3 exp (− log(8/ε) log(n)/ log(2))
≤n−3ε/2,

where we in the last inequality used that n ≥ 2.
Now consider the case where t = p. If p ≤ (p log n)1/2, then similarly as above

we have that

P
(
Sγ,(s,e](p) ≥ 0

)
≤ n−3ε/2.

If we instead have p > (p logn)1/2 (in which case a(p) = 0 and νa(p) = 1),
then

p∑
i=1

{
Cv

(s,e](i)2 − νa(p)

}
1
{
|Cv

(s,e](i)| > a(p)
}

=
p∑

i=1
Cv

(s,e](i)2 − p.

As
∑p

i=1 C
v
(s,e](i)2 ∼ χ2

p, we obtain from Lemma F.4 that

P

{
p∑

i=1
Cv

(s,e](i)2 − p > 2(p log(2n3/ε))1/2 + 2 log(2n3/ε)
}

≤ n−3ε/2.

Now,

2(p log(2n3/ε))1/2 + 2 log(2n3/ε)
≤ 2(p log(n4/ε))1/2 + 2 log(n4/ε)
≤ 4(p logn)1/2 + 2(p log(1/ε))1/2 + 8 logn− 2 log(ε)

≤ r(p)
(
12 + 2(log(1/ε))1/2 + 2 log(1/ε)

)
= c2r(p)
< γ0r(p),

using that n ≥ 2, r(p) ≥ 1, and r(p) = (p log n)1/2 ≥ logn whenever p ≥
(p logn)1/2. Hence,

P

{
p∑

i=1
Cv

(s,e](i)2 − p > γ0r(p)
}

≤ n−3ε/2.

We conclude that

P

(
max

(s,e)∈I
Sγ,(s,e] > 0

)
≤ n3

P
(
∃t ∈ T ; Sγ,(s,e](t) ≥ 0

)
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≤ n3 (n−3ε/2 + n−3ε/2
)

= ε,

and we are done.

Proof of Theorem 3.2. Let λ0 ≥ 63, λ(t) = λ0r(t), C1 = 2
{
2 (4λ0 + 242)1/2 +

2λ0 + 123
}

and C0 > C1. Let η̂ ∈ arg max
0<v<n

Sv
λ, where Sv

λ is defined as in (6),

and let Sv(t) be defined as in (3). Let the CUSUM transformation T v
(s,e](·)

be defined as in (2), and for ease of notation, let T v(·) = T v
(0,n](·). Let K =

{i ; μi,η+1 − μi,η �= 0} denote the set of coordinates for which there is a change
in mean, and for any 0 < v < n let βv =

∑
i∈K

{
T η(μi,·)2 − T v(μi,·)2

}
. Let

k denote the smallest element in T such that k ≥ k. We may without loss of
generality take σ = 1, as we can otherwise normalize the data matrix X and
replace the squared norm of the change in mean ϕ2 by ϕ2/σ2.

Consider the event E = E1 ∩ E2 ∩ E3 ∩ E4 as defined in Lemma F.5, for
which we know that P (E) ≥ 1 − 1

n . On the event E , we will show that any
0 < v < n such that |v − η| > C1h(k)/ϕ2 must satisfy Sη

λ > Sv
λ, which implies

that |η̂λ − η| ≤ C1h(k)/ϕ2.
Fix some 0 < v < n and let t∗ ∈ arg max

t∈T
Sv
λ(t), so that Sv

λ = Sv
λ(t∗). We

claim that
Sη
λ − Sv

λ ≥ βv − 2 {2βvh(k)}1/2 − (119 + 2λ0)h(k). (13)

To see this, suppose first that k ≤ (p log n)1/2. We have that
Sη
λ − Sv

λ ≥ Sη
λ(k) − Sv

λ(t∗)

=
p∑

i=1

[(
Cη(i)2 − νa(k)

)
1
{
|Cη(i)| > a(k)

}
−
(
Cv(i)2 − νa(t∗)

)
1{|Cv(i)| > a(t∗)}

]
− λ0r(k) + λ0r(t∗).

For any x ∈ R and any t ∈ T , we have x2 − νa(t) ≤
(
x2 − νa(t)

)
1{|x| > a(t)} ≤

x2, and so

Sη
λ − Sv

λ ≥
∑
i∈K

[
Cη(i)2 − Cv(i)2

]
− kνa(k)

+
∑

i∈[p]\K

[(
Cη(i)2 − νa(k)

)
1
{
|Cη(i)| > a(k)

}
−
(
Cv(i)2 − νa(t∗)

)
1{|Cv(i)| > a(t∗)}

]
− λ0r(k) + λ0r(t∗).

On the event E1 ∩ E2 ∩ E3 ⊇ E we therefore have that

Sη
λ − Sv

λ ≥βv − 2 {2βv logn}1/2 − 16r(k) − 35r(k)
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− (63 − λ0)r(t∗) − λ0r(k) − kνa(k)

≥βv − 2 {2βvr(k)}1/2 − (92 + 2λ0)r(k),

where we have used that λ0 ≥ 63, logn ≤ r(k), r(k) ≤ 2r(k), and for k ≤
(p logn)1/2, we have kνa(k) ≤ k

(
2 + a2(k)

)
≤ 2k+ka2(k) ≤ 6r(k). Since r(k) ≤

h(k) for all k ∈ [p], the claim (13) holds whenever k ≤ (p log n)1/2.
Now suppose k > (p log n)1/2. By the definition of E4, we have that Sv

λ(t∗)−
Sv
λ(p) ≤ 5h(p) + 63r(t∗) − λ0r(t∗) + λ0r(p). Hence,

Sη
λ − Sv

λ ≥ Sη
λ(p) − Sv

λ(t∗)
= Sη

λ(p) − Sv
λ(p) + Sv

λ(p) − Sv
λ(t∗)

≥ Sη
λ(p) − Sv

λ(p) − 5h(p) − 63r(t∗) + λ0r(t∗) − λ0r(p)

=
p∑

i=1

{
Cη(i)2 − Cv(i)2

}
− 5h(p) − 63r(t∗) + λ0r(t∗) − λ0r(p).

On the event E we thus have that

Sη
λ − Sv

λ ≥ βv − 2 {2βv logn}1/2 − 16r(p) − 63r(p) − 35r(p) − 5h(p)
− 63r(t∗) + λ0r(t∗) − λ0r(p)

≥ βv − 2 {βvh(p)}1/2 − (119 + λ0)h(p),

where we in the last inequality used that r(k) ≤ h(k) for all k and λ0 ≥ 63.
Hence (13) holds whenever k > (p logn)1/2. Solving the quadratic inequality (13)
with respect to βv, we obtain that Sη

λ − Sv
λ > 0 if

βv >
{

2 (4λ0 + 242)1/2 + 2λ0 + 123
}
h(k). (14)

Without loss of generality we may assume v ≥ η (the converse case is similar).
By Lemma F.11 we have that

βv =
∑
i∈K

{
T η(μi,·)2 − T v(μi,·)2

}
= |v − η|η

|v − η| + η
ϕ2

≥ 1
2 min (|v − η| , η)ϕ2,

and therefore (14) is satisfied if

min (|v − η| , η) > 2
{

2 (4λ0 + 242)1/2 + 2λ0 + 123
} h(k)

ϕ2

= C1
h(k)
ϕ2 . (15)
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By the assumption C0 > C1, η is strictly larger than the right hand side of (15).
Therefore (14) is satisfied if

|v − η| > C1
h(k)
ϕ2 .

Hence, if |η−v| > C1h(k)/ϕ2, we must have Sη
λ > Sv

λ, and the proof is complete.

Proof of Theorem 3.3. Let γ0 ≥ 82, γ(t) = γ0r(t) and define C1 = 32
{
γ0+170+

8 (2γ0 + 276)1/2
}

and C0 = 2C1. We may without loss of generality take σ = 1,
as we can otherwise normalize the data matrix X and replace the squared norm
of the change in mean ϕ2 by ϕ2/σ2. Let M = {(sm, em] ; m ∈ [M ]} denote
the (enumerated) collection of seeded intervals generated by Algorithm 4. In the
following, we will use the name ESAC to refer to either Algorithm 2 or 3. We
work on the event E = E5 ∩ E6 as defined in Lemma F.6, for which we know
that P(E) ≥ 1 − 1/n. The proof goes as follows. In step 1 we show that each
changepoint ηj will be detected using a seeded interval with certain properties.
In step 2, by an inductive argument, we show that ESAC detects all changepoints
within the given error-rate.

Step 1. We first claim that, for each j in [J ], there exists a seeded interval
(sm̃, em̃] = (v − l, v + l] ∈ M such that the following holds

(P1) C1r(kj)/(4ϕ2
j ) ≤ l ≤ C1r(kj)/(2ϕ2

j ) ∨ 1;
(P2) |ηj − v| ≤ l/2;
(P3) sm̃ ≥ ηj − (Δj/2 ∨ 1);
(P4) em̃ ≤ ηj + (Δj/2 ∨ 1);
(P5) Sv

γ,(sm̃,em̃] ≥ 0.

To see this, fix any j ∈ [J ], and let h = C1r(kj)/(2ϕ2
j ). Now let (sm̃, em̃] =

(v − l, v + l] denote the seeded interval from Lemma F.7. Then properties (P1)
and (P2) follow immediately. Moreover, as ϕ2

jΔj ≥ C0r(kj) (by the SNR as-
sumption (12) in Theorem 3.3) and C0 ≥ 2C1, we have h ≤ Δj/4. The proper-
ties (P3) and (P4) then follow from Lemma F.7. To show the last property (P5),
observe first that

Sv
γ,(sm̃,em̃] ≥ βv

(sm̃,em̃] − 8
{

2βv
(sm̃,em̃]r(kj)

}1/2
− (γ0 + 106) r(kj),

on the event E , where βv
(sm̃,em̃] =

∑p
i=1 T

v
(sm̃,em̃](μi,·)2. By solving the quadratic

inequality, we obtain that Sv
γ,(sm̃,em̃] ≥ 0 whenever

βv
(sm̃,em̃] ≥

{
γ0 + 170 + 8 (2γ0 + 276)1/2

}
r(kj)

= C1/32r(kj).

Assume without loss of generality that ηj ≤ v (the converse case is similar). By
the definition of the CUSUM, and using that |ηj − v| ≤ l/2, we get that

βv
(sm̃,em̃] = v − sm̃

(em̃ − s)(em̃ − v) (em̃ − ηj)2ϕ2
j
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≥ 1
2l (l/2)2ϕ2

j

= lϕ2
j/8.

Since l ≥ C1r(kj)/(4ϕ2
j ), we must have that βv

(sm̃,em̃] ≥ C1/32r(kj), which
implies (P5).

Step 2. We continue the proof as follows. By induction, with some slight
abuse of notation, it suffices to consider any integer interval (s, e] ⊆ (0, n] such
that

ηh−1 ≤ s < ηh < · · · < ηh+q < e ≤ ηq+h+1,

for some q ≥ −1, and, whenever q > −1,

s ≤ ηh − Δh/2;
e ≥ ηh+q + Δh+q/2.

Note that q = −1 corresponds to there being no changepoint in the open integer
interval (s, e). We consider this case first. For any seeded interval (sm, em] ⊆
(s, e] and any sm < v < em, we will have that Sv

γ,(sm,em] < 0, due to the
definition of the event E . Hence no changepoint will be declared by ESAC in
this case.

Now consider the case where q > −1. Note first that a changepoint will
be declared by the ESAC algorithm. Indeed, for the hth changepoint we may
take (sm̃, em̃] as in step 1, for which the properties (P3) and (P4) imply that
(sm̃, em̃] ⊆ (s, e], due to the inductive hypothesis. By property (P5), we know
that Sv

γ,(sm̃,em̃] ≥ 0, and hence a changepoint will be detected in (s, e). This
implies that O(s,e], as defined in the ESAC algorithm, satisfies O(s,e] �= ∅. Now
let m∗, v∗ and l∗ be as defined in the ESAC algorithm. Note that (sm∗ , em∗)
must contain a changepoint, say ηj , as we by the definition of E otherwise would
have had Sv

γ,(sm∗ ,em∗ ] < 0 for any sm∗ < v < em∗ . Further, since ESAC uses the
narrowest possible seeded interval to estimate a changepoint, we must have that
l∗ = (em∗ − sm∗) satisfies l∗ ≤ em̃ − sm̃ ≤ C1r(kj)/(ϕ2

j ) ∨ 2, where (sm̃, em̃] is
the seeded interval as in the claim for ηj . Since sm∗ < v∗ < em∗ , it then follows
that

|v∗ − ηj | ≤
{
C1r(kj)/ϕ2

j ∨ 2
}
− 2 ≤ C1

r(kj)
ϕ2
j

.

It remains to show that the two new segments in the recursive step, (s, sm∗+1]
and (em∗ − 1, e] satisfy the inductive hypothesis. Without loss of generality
consider (s, sm∗ +1] (the argument for the other interval is similar), and suppose
that j ≥ h+ 1 (otherwise there is nothing to show). To show that the inductive
hypothesis holds for (s, sm∗ +1], it suffices to show that sm∗ +1 ≥ ηj−1+Δj−1/2.
As ηj ∈ (sm∗ , em∗), we must have em∗ ≥ ηj + 1. Hence

sm∗ + 1 = em∗ + 1 − l∗
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≥ ηj + 2 −
{
C1r(kj)/ϕ2

j ∨ 2
}

= ηj−1 + (ηj − ηj−1) −
{
C1r(kj)/ϕ2

j − 2 ∨ 0
}

≥ ηj−1 + (ηj − ηj−1) − Δj/2
≥ ηj−1 + (ηj − ηj−1)/2
≥ ηj−1 + Δj−1/2,

where we in the first inequality used that l∗ = (em∗−sm∗) ≤ C1r(kj)/ϕ2
j ∨2 and

in the second inequality used that the SNR condition (12) implies C1r(kj)/ϕ2
j ≤

Δj/2. Hence the inductive hypothesis holds for (s, sm∗ + 1].

Proof of Proposition 3.4. Let M denote the set of seeded intervals generated
from Algorithm 4. Note first that computing and storing the cumulative sum
of all rows of X requires O(np) FLOPs. Once these are stored, the number of
FLOPs required to compute Cv

(s,e](j) as in (2) for some (s, e] ∈ M and some
s < v < e is of order O(p). Hence, the number of FLOPs required to compute
Sv
λ,(s,e] is of order p |T | = O{p log(p log n)}. In the best case there are n − 1

changepoints detected by the ESAC algorithm using all n−1 intervals (s, e] ∈ M
such that e − s = 2. In this case, the total number of FLOPs executed before
ESAC terminates is of order O {np + np log(p logn)} = O{np log(p log n)}. In
the worst case there are no changepoints detected by ESAC, in which case Sv

λ,(s,e]
has to be computed over each triple of integers s, v, e such that s < v < e and
(s, e] ∈ M. By Lemma F.9, there are at most O(n logn) distinct such triples.
Hence the number of FLOPs executed before ESAC terminates in this case is
of order O{np log n log(p log n)}.

Appendix B: Implementation details

To apply ESAC in practice, a choice must be made regarding the penalty func-
tions λ, γ, estimation of σ, as well as the parameters α and K controlling the
generation of seeded intervals. In this subsection we discuss these issues in turn,
but first, we define two variants of ESAC as well as our algorithm for generating
seeded intervals.

B.1. Slight modifications to ESAC

Algorithm 2 is a variant of the ESAC algorithm which features interval trim-
ming. Here, the recursive step in the algorithm (the third and second last lines)
differ from those found in 1. When Algorithm 2 declares a changepoint at lo-
cation v∗, detected in the interval (s∗, e∗), the remaining elements in interval
(s∗, e∗) are never again used to detect or estimate changepoints.

A faster variant of Algorithm 2 is given by Algorithm 3. Algorithm 3 reduces
the execution time by modifying step 3 in Algorithm 2 to only evaluate Sv

γ,(sm,em]
at the mid-point vm = (sm + em)/2 of any seeded interval. Interestingly, the
theoretical guarantees given by Theorem 3.3 also hold for this variant of ESAC,
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unlike Algorithm 1. Note that the same modification can naturally be made
to Algorithm 1 as well. In practice, we have experienced that Algorithm 3 has
much lower power for detecting changepoints compared to 1. We therefore only
recommend using Algorithm 3 when the consequent reduction in computational
cost is necessary.

Algorithm 2 ESAC’(X, (s, e],M,B, γ, λ).
Input: Matrix of observations X ∈ R

p×n, left open and right closed integer interval (s, e] in
which candidate changepoints are searched for, an enumerated collection
M = {(sm, em] ; m ∈ [M ]} of M half open integer sub intervals of {0, . . . , n}, a set of
already detected changepoints B, and penalty functions γ(t), λ(t).
Output: Set B of detected changepoints.

if e− s ≤ 1:
stop

set M(s,e] = {m ∈ [M ] : (sm, em] ⊂ (s, e]}

set O(s,e] =
{
m ∈ M(s,e] : max

sm<v<em
Sv
γ,(sm,em] > 0

}
if O(s,e] = ∅

stop
set l∗ = min

m∈O(s,e]
|em − sm|

set Ol∗ =
{
m ∈ O(s,e] : |em − sm| = l∗

}
set m∗ = argmax

m∈Ol∗
max

sm<v<em
Sv
λ,(sm,em]

set v∗ = argmax
sm∗<v<em∗

Sv
λ,(sm∗ ,em∗ ]

B ← B ∪ {v∗}
B ← ESAC’ (X, (s, sm∗ + 1],M,B, γ, λ)
B ← ESAC’ (X, (em∗ − 1, e],M,B, γ, λ)
return B

B.2. Efficient implementation of ESAC

The ESAC Algorithms 1, 2 and 3 are based on Narrowest-Over-Threshold se-
lection of changepoints. Once a changepoint is detected in some seeded interval,
say of length l∗, the changepoint location is estimated based only on intervals
of length l∗. To minimize run time, any version of ESAC should therefore iter-
ate through the seeded intervals {(sm, em] : m ∈ [M ]} in the (increasing) order
of their width. This computational trick gives significant speed improvements
whenever changepoints can be detected by short seeded intervals.

B.3. Choice of α and K

The choice of α and K entails a trade-off between computational cost and sta-
tistical performance. As either α−1 or K increase, more seeded intervals are gen-
erated from Algorithm 4, increasing both the chance of detecting a changepoint
and the run time of ESAC. After some experimentation, we have experienced
that α = 3/2 and K = 4 give a decent balance between run time and statistical
accuracy.
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Algorithm 3 ESAC′′ (X, (s, e],M,B, γ, λ).
Input: Matrix of observations X ∈ R

p×n, left open and right closed integer interval (s, e] in
which candidate changepoints are searched for, an enumerated collection
M = {(sm, em] ; m ∈ [M ]} of M half open integer sub intervals of {0, . . . , n}, a set of
already detected changepoints B, and penalty parameters γ, λ.
Output: Set B of detected changepoints.

if e− s ≤ 1
stop

set M(s,e] = {m ∈ [M ] : (sm, em] ⊂ (s, e]}
set vm =

⌊
sm+em

2

⌋
for all m = 1, . . . ,M

set O(s,e] =
{
m ∈ M(s,e] : Svm

γ,(sm,em] > 0
}

if O(s,e] = ∅

stop
set l∗ = min

m∈O(s,e]
|em − sm|

set Ol∗ =
{
m ∈ O(s,e] : |em − sm| = l∗

}
set m∗ = argmax

m∈Ol∗
max

sm<v<em
Sv
λ,(sm,em]

set v∗ = argmax
sm∗<v<em∗

Sv
λ,(sm∗ ,em∗ ]

B ← B ∪ {v∗}
B ← ESAC′′ (X, (s, sm∗ + 1],M,B, γ, λ)
B ← ESAC′′ (X, (em∗ − 1, e],M,B, γ, λ)
return B

B.4. Variance re-scaling

In the theoretical analysis of this paper, the noise level σ of each time series
is assumed known and common across all p time series. In practice, this is an
unrealistic assumption. As is common in the changepoint literature, we suggest
estimating the noise level separately for each time series by the (scaled) Median
Absolute Deviation (MAD) of first-order differences, as in e.g. [21]. If it is rea-
sonable to assume that each time series has approximately the same noise level,
the common noise level σ can be estimated for instance by taking a mean or
median of the MAD estimates for each time series. Once estimates of the noise
levels are obtained, the time series need only to be re-scaled by their estimated
noise levels before applying ESAC.

B.5. Analytical choice of penalty functions

Recall that λ(t) and γ(t) are the penalty functions used in the sparsity-specific
penalized score for changepoint localization and detection, respectively. The
proofs of Theorems 3.2 and 3.3 provide suggestions for analytical choices of
these penalty functions. However, we believe the leading constants are overly
conservative. To obtain more practical choices of analytical penalizing functions,
we have run simulations for combinations of n up to 1000 and p up to 5000.
We have experienced that replacing n with n4 in a(t) (4) and r(t) (8) gives a
slightly better balance between the two terms t log

(
ep logn

t2

)
and logn in r(t).
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As default values in our R package, as well as in the simulation study, we have
replaced n with n4 in a(t) and r(t). For changepoint estimation, we recommend
using the penalty function

λ̃(t) =

⎧⎨⎩
3
2

{(
p logn4)1/2 + logn4

}
if t ≥ (p log n)1/2,

t log
(

ep logn4

t2

)
+ logn4 otherwise.

This recommendation is independent of whether each time series is re-scaled
by Median Absolute Deviation (MAD) estimates. The choice of the two leading
constants in λ̃ are the result of minimizing the Mean Squared Error (MSE) of the
estimator (9) over a rough grid of n, p, η and k, where n has ranged from 200 to
1000 and p has ranged from 100 to 5000. For changepoint detection one can also
use γ(t) = λ̃(t), which in our experience gives a false positive rate of less than
1/n. If the variance of each time series is re-scaled by MAD estimates, however,
we recommend choosing the penalty function γ(t) for changepoint detection
using Monte Carlo simulation.

B.6. Empirical choice of penalty functions

To obtain exact control over the probability of a false changepoint being detected
by ESAC, one can choose the penalty function γ(t) by Monte Carlo simulation.
Consider any false positive probability ε > 0 and Monte Carlo sample size N .
A naive choice of empirical penalty function, denoted by γ̂ε(t), is given by the fol-
lowing. Let M denote the collection of seeded intervals to be used by ESAC. Sim-
ulate N data sets

(
X(j))N

j=1 following model (1) with no changepoints, in which
each row is re-scaled by MAD estimates if applicable. If the data to be analyzed
is expected to breach model assumptions, such as having heavy tailed noise, the
X(j) can be simulated accordingly. For each t ∈ T , let γ̂ε(t) denote the �N(1−
ε)
 largest value of max

(s,e]∈M
max
s<v<e

Sv
0,(s,e]

(
X(j)) (t) over j = 1, . . . , N , where

Sv
0,(s,e]

(
X(j)) (t) is the sparsity-specific penalized score from (3) computed over

the seeded interval (s, e] with input matrix X(j) and with penalty function 0.
Due to multiple testing, the approximate false positive probability when using

the naive penalty function γ̂ε can only be upper bounded by |T | ε. To adjust
for multiple testing, a Bonferroni correction can easily be applied by replacing ε
by ε/ |T | in the definition of γ̂ε(t). In our experience, though, such a Bonferroni
correction is too conservative. An alternative approach to handle the multiple
testing is to use the empirical penalty function γ̂∗(t) = r(t) max

s∈T
γ̂ε(s)/r(s), in

which the functional form is specified and only the leading constant is chosen
by Monte Carlo simulation. In our experience, this approach also leads to an
overly conservative penalty function, as the functional form of γ̂ε(t) does not
match the theoretical counterpart r(t) exactly. We therefore recommend to use
the following penalty function γ̃(t), in which we introduce three separate leading
constants for different segments of T (and consequently a Bonferroni correction)
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for slightly more flexibility. Let γ̃(t) be defined by

γ̃(t) =

⎧⎪⎨⎪⎩
γ̃1r(t), for t ≤ logn ∧ (p log n)1/2

γ̃2r(t), for logn < t ≤ (p logn)1/2

γ̂ε/3(p), for t = p,

where γ̃1 and γ̃2 are defined by

γ̃1 = max
t∈T ;t≤logn

γ̂ε/3(t)/r(t),

γ̃2 = max
t∈T ;logn<t≤√

(p logn)
γ̂ε/3(t)/r(t).

The penalty function γ̃(t) ensures that the approximate probability of a false
positive using ESAC is at most ε. We remark that the upper boundary of the
first segment (logn) is chosen somewhat ad hoc, while the second segment is the
remaining region of the sparse regime, and the last segment is the dense regime.
The empirical penalty function γ̃(t) can also be used for changepoint estimation,
i.e. setting λ(t) = γ̃(t), although we have experienced that the analytical penalty
function λ̃(t) gives better performance in terms of MSE for Gaussian data.

B.7. Generation of seeded intervals

Given some sample size n ≥ 2 and parameters α > 1 and K > 1, Algorithm 4
generates a set of seeded intervals.

Algorithm 4 Seeded Interval Generation(α,K).
Input: Parameters α and K controlling the number of generated intervals
Output: Set of seeded intervals

Intervals ← {}
l ← 1
while l ≤ n

2 :
set s = max

{
1, � l

K
�
}

for i = 0, . . . , n−2l
s

:
Intervals ← Intervals ∪ {(is, is + 2l]}

Intervals ← Intervals ∪ {(n− 2l, n]}
l ← max {l + 1, �αl�}

Return Intervals.

Appendix C: A narrowest-over-threshold variant of inspect

We have modified the Inspect algorithm [21], given by Algorithm 4. Instead
of using Wild Binary Segmentation as search procedure, the methodology of
Kovács et al. [12] is used. More specifically, the collection of integer sub-intervals
is generated by Algorithm 4 instead of the random draws. Moreover, the location
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of any detected changepoint is determined using only the narrowest intervals in
which a changepoint is detected. We have given this modified version of Inspect
the name NOTInspect, which is short for Narrowest-Over-Threshold Inspect.
Formally, NOTInspect is defined as follows. For any 0 ≤ s < e ≤ n, let H(s,e]

denote the p× (e− s− 1) matrix in which the (i, j)th element is given by

H
(s,e]
i,j = T s+j

(s,e](Xi,·),

i.e. the CUSUM of the ith row of X computed over the interval (s, e] and
evaluated at position s+ j. For ease of notation, let H

(s,e]
v denote the (v− s)th

column of H(s,e]. Given λ > 0, let v̂
(s,e]
λ denote the leading left singular vector

of the matrix

M̂λ = arg max
M∈S2

(〈
H(s,e],M

〉
− λ ‖M‖1

)
,

where S2 =
{
M ∈ R

p×(e−s−1) : ‖M‖F ≤ 1
}
.

Given an enumerated set M = {(sm, em]}Mm=1 of M half open integer sub
intervals of 0, . . . , n, observations X ∈ R

p×n, and tuning parameters λ, ξ > 0, the
NOTInspect algorithm is initiated by calling NOTInspect(X, (s, e],M,∅, λ, ξ),
and defined by Algorithm 5.

Algorithm 5 NOTInspect(X, (s, e],M,B, λ, ξ).
Input: Matrix of observations X ∈ R

p×n, left open and right closed integer interval (s, e] in
which candidate changepoints are searched for, an enumerated collection
M = {(sm, em] ; m ∈ [M ]} of M half open integer sub intervals of {0, . . . , n}, a set of
already detected changepoints B, and penalization parameters λ, ξ > 0.
Output: A set B of detected changepoints.

if e− s ≤ 1:
stop

set M(s,e] = {m : (sm, em] ⊂ (s, e]}
set O(s,e] =

{
m ∈ M(s,e] : max

sm<b<em

(
v̂
(sm,em]
λ

)�
H

(sm,em]
bm

> ξ
}

if O(s,e] = ∅:
stop

set l∗ = min
m∈O(s,e]

|em − sm|

set Ol∗ = O(s,e]
⋂

{m : |em − sm| = l∗}
set m∗ = argmax

m∈Ol∗
max

sm<b<em

(
v̂
(sm,em]
λ

)�
H

(sm,em]
b

set b∗ = argmax
sm∗<b<em∗

(
v̂
(sm∗ ,em∗ ]
λ

)�
H

(sm∗ ,em∗ ]
b

B ← B ∪ {b∗}
B ← NOTInspect (X, (s, b∗],M,B, λ, ξ)
B ← NOTInspect (X, (b∗, e],M,B, λ, ξ)
return B
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Appendix D: Empirical comparison between different variants of
ESAC

In the following we compare the empirical performance of different variants
of the ESAC algorithm. In all versions, seeded intervals are generated using
Algorithm 4 with parameters α and K specified. The variants and configurations
considered are:

ESAC A: Algorithm 3 without interval trimming and with α = 2, K = 4;
ESAC B: Algorithm 1 with α = 2, K = 4;
ESAC C: Algorithm 1 with α = 3/2, K = 4;
ESAC D: Algorithm 2 with α = 3/2, K = 4;
ESAC E: Algorithm 1 without Narrowest-Over-Threshold choice of changepoint

location and α = 3/2, K = 4;
ESAC F: Algorithm 1 with mid-point estimation and α = 3/2, K = 4.

ESAC A is a mix of Algorithm 3 and Algorithm 1, in the sense that it tests
for a changepoint at the midpoint of each seeded interval, but does not trim
away intervals once a changepoint is detected. With ESAC E, a changepoint
location is estimated by considering all seeded intervals in which a changepoint
is detected, and not only the narrowest seeded intervals. This is achieved by
replacing Ol∗ by O(s,e] in Algorithm 1. In ESAC F, the estimated changepoint
location v∗ is replaced by v∗ = 
(em∗ + sm∗)/2�.

We have run a simulation with the exact same configuration as in Section 4.2.
For changepoint detection, we have chosen the empirical penalty function λ̃(t)
as in Appendix B separately for each variant of ESAC. For changepoint estima-
tion we have used the analytical penalty function λ̃(t) as given in Appendix B.
For each variant of ESAC and each configuration of parameters and changepoint
regimes, Table 6 displays the average Hausdorff distance, average absolute esti-
mation error of J and average run time in milliseconds. For each configuration
of parameters and changepoint regimes, the minimum (and best) value of each
of the performance measures is indicated in boldface.

Comparing ESAC A and B, one observes that testing only for a changepoint
at the midpoint of a seeded interval results in a substantial improvement of run
time but with a cost to statistical accuracy. The run time of ESAC B is roughly
three to four times that of ESAC A, while the average Hausdorff distance and
absolute estimation error of K of ESAC B are generally significantly larger than
those of ESAC A, independently of the model configuration. This is likely due
to ESAC A having lower power in detecting changepoints than ESAC B, as is
indicated by ESAC A having higher estimation error of K. Comparing ESAC B
and C, one observes a similar effect of decreasing α from 2 to 3/2. ESAC C has
a run time almost twice that of ESAC B, while the average Hausdorff distance
over all simulation setups is around half that of ESAC B. Comparing ESAC
C and D, one observes that interval trimming substantially reduces statistical
performance, with virtually no gain in terms of computational cost. Importantly,
the estimation error of K is markedly higher for ESAC D, which indicates that
interval trimming reduces power in detecting changepoints.
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Table 6. Multiple changepoint estimation with different variants of ESAC.
Parameters Hausdorff distance

∣∣∣Ĵ − J
∣∣∣ Time in miliseconds

n p Sparsity K A B C D E F A B C D E F A B C D E F
200 100 – 0 – – – – – – 0.000 0.000 0.000 0.000 0.000 0.000 2.494 8.122 13.202 13.291 13.429 13.254
200 100 Dense 2 29.557 7.248 7.197 19.046 7.046 12.934 0.453 0.104 0.088 0.414 0.093 0.110 2.720 8.088 12.539 12.329 13.826 12.549
200 100 Sparse 2 5.172 1.615 1.658 6.885 1.525 5.886 0.085 0.020 0.012 0.150 0.019 0.025 2.822 7.838 12.347 12.036 13.794 12.580
200 100 Mixed 2 17.593 5.016 5.006 13.105 5.087 9.727 0.274 0.065 0.054 0.280 0.067 0.068 2.615 7.857 12.385 12.130 13.766 12.474
200 100 Dense 5 24.954 10.901 6.476 20.446 6.747 10.947 1.107 0.345 0.194 1.246 0.225 0.254 2.695 7.133 11.089 10.747 14.609 11.043
200 100 Sparse 5 7.042 3.584 1.585 9.954 1.748 5.156 0.236 0.088 0.028 0.483 0.058 0.052 2.699 7.056 10.710 10.719 14.382 10.906
200 100 Mixed 5 17.453 8.030 4.609 16.320 4.565 8.727 0.734 0.231 0.128 0.882 0.137 0.157 2.774 7.083 10.964 10.580 14.536 10.942
200 1000 – 0 – – – – – – 0.002 0.001 0.000 0.000 0.000 0.000 21.873 80.721 132.741 132.657 132.787 132.845
200 1000 Dense 2 8.523 2.200 1.731 11.782 1.482 6.582 0.144 0.029 0.016 0.285 0.021 0.025 23.498 75.455 121.002 118.612 134.114 121.129
200 1000 Sparse 2 1.772 1.166 0.972 4.981 0.751 4.916 0.024 0.011 0.004 0.121 0.009 0.008 23.417 73.991 119.314 116.363 133.431 118.794
200 1000 Mixed 2 4.570 2.151 1.779 9.092 1.564 6.183 0.081 0.024 0.015 0.210 0.019 0.021 23.233 74.204 119.315 116.722 133.449 119.462
200 1000 Dense 5 11.205 3.319 2.201 16.493 1.929 6.409 0.412 0.090 0.043 0.919 0.059 0.053 23.379 65.516 103.870 100.549 139.538 103.803
200 1000 Sparse 5 3.561 1.982 0.933 9.515 0.736 4.507 0.092 0.045 0.011 0.429 0.025 0.021 23.647 65.101 101.906 98.008 136.001 101.782
200 1000 Mixed 5 8.422 3.099 1.754 14.095 1.373 5.419 0.274 0.072 0.033 0.682 0.040 0.052 23.416 65.203 102.504 99.180 138.009 102.491
200 5000 – 0 – – – – – – 0.000 0.002 0.003 0.003 0.003 0.003 110.148 425.285 700.419 700.541 698.719 702.664
200 5000 Dense 2 6.299 1.293 1.150 5.607 0.747 5.082 0.107 0.010 0.005 0.130 0.009 0.007 118.414 385.540 619.304 599.710 702.220 619.071
200 5000 Sparse 2 1.586 0.909 0.812 2.787 0.406 4.261 0.022 0.005 0.001 0.049 0.003 0.009 117.881 380.432 607.773 591.900 702.059 608.943
200 5000 Mixed 2 5.353 1.105 1.081 5.124 0.668 5.067 0.085 0.007 0.005 0.115 0.007 0.016 119.099 382.842 615.231 595.623 698.241 613.451
200 5000 Dense 5 8.858 2.516 0.836 9.285 0.544 4.386 0.290 0.054 0.006 0.448 0.016 0.021 118.777 334.106 516.330 498.218 712.661 517.062
200 5000 Sparse 5 3.073 1.200 0.680 4.043 0.341 3.737 0.080 0.019 0.001 0.160 0.007 0.015 118.780 328.529 507.473 486.259 703.117 507.189
200 5000 Mixed 5 6.073 1.582 0.706 7.221 0.453 4.124 0.190 0.032 0.004 0.321 0.014 0.019 118.770 330.622 511.869 489.977 705.463 511.883
500 100 – 0 – – – – – – 0.001 0.000 0.001 0.001 0.001 0.001 6.205 24.287 40.742 40.820 40.817 40.840
500 100 Dense 2 67.900 29.573 10.152 42.356 10.293 22.459 0.384 0.148 0.047 0.379 0.062 0.053 6.580 23.749 38.286 37.800 41.399 38.353
500 100 Sparse 2 21.915 8.268 2.361 9.141 2.005 11.876 0.119 0.035 0.001 0.075 0.007 0.008 6.589 23.215 37.525 36.811 41.112 37.503
500 100 Mixed 2 49.745 17.831 5.829 27.407 6.041 17.855 0.277 0.087 0.021 0.240 0.032 0.036 6.526 23.268 37.893 37.271 41.240 37.939
500 100 Dense 5 48.052 21.964 11.901 50.218 12.038 22.616 0.820 0.272 0.125 1.265 0.148 0.176 6.665 21.533 34.640 33.852 43.034 34.689
500 100 Sparse 5 18.105 7.235 2.312 17.084 2.506 10.364 0.266 0.071 0.007 0.334 0.046 0.032 6.652 21.166 33.671 32.940 42.543 33.844
500 100 Mixed 5 34.329 14.720 6.449 33.383 6.254 15.993 0.567 0.174 0.056 0.755 0.086 0.086 6.708 21.385 34.159 33.330 43.037 34.114
500 1000 – 0 – – – – – – 0.000 0.003 0.000 0.000 0.000 0.000 58.259 241.550 408.466 410.328 408.340 411.164
500 1000 Dense 2 35.257 6.585 4.104 24.037 3.594 14.977 0.203 0.026 0.014 0.254 0.018 0.021 62.356 231.143 378.515 371.903 410.607 379.165
500 1000 Sparse 2 6.619 2.473 1.603 7.812 1.050 10.553 0.034 0.004 0.000 0.078 0.006 0.001 62.345 227.051 372.265 363.301 411.828 371.272
500 1000 Mixed 2 21.890 6.052 2.034 15.490 1.473 12.472 0.117 0.023 0.002 0.150 0.008 0.006 62.723 228.743 372.856 366.669 410.545 374.385
500 1000 Dense 5 28.396 7.049 2.960 39.687 2.806 12.167 0.438 0.066 0.017 0.912 0.040 0.025 63.259 207.844 336.695 327.587 427.493 335.335
500 1000 Sparse 5 8.535 3.037 1.769 14.935 1.211 9.094 0.096 0.020 0.003 0.278 0.025 0.011 63.527 204.245 328.075 317.877 416.863 326.975
500 1000 Mixed 5 17.612 4.813 3.147 26.652 2.371 11.192 0.274 0.034 0.017 0.572 0.033 0.025 63.396 205.635 333.017 323.492 423.150 332.866
500 5000 – 0 – – – – – – 0.000 0.000 0.000 0.000 0.000 0.000 316.528 1328.522 2242.270 2245.298 2249.252 2236.030
500 5000 Dense 2 16.733 5.984 2.294 13.965 1.390 11.295 0.088 0.023 0.002 0.132 0.007 0.003 336.784 1262.177 2023.982 1994.241 2267.927 2031.555
500 5000 Sparse 2 4.798 1.625 1.951 3.990 0.859 10.402 0.024 0.001 0.002 0.022 0.003 0.008 334.060 1241.024 2009.202 1957.339 2269.248 1999.724
500 5000 Mixed 2 14.071 5.259 1.946 8.262 1.092 11.044 0.068 0.018 0.002 0.068 0.009 0.009 331.958 1250.821 2026.691 1978.321 2270.342 2019.991
500 5000 Dense 5 13.681 5.718 2.015 20.418 1.283 10.137 0.182 0.054 0.003 0.408 0.029 0.018 335.042 1118.323 1771.210 1701.822 2302.847 1761.599
500 5000 Sparse 5 3.990 2.460 1.726 6.917 0.877 8.494 0.038 0.012 0.006 0.098 0.019 0.020 334.404 1085.380 1720.665 1656.142 2260.874 1714.863
500 5000 Mixed 5 9.622 4.317 1.925 14.145 0.908 9.686 0.120 0.036 0.001 0.255 0.021 0.021 331.365 1095.025 1731.004 1666.874 2258.874 1733.001

Average 16.453 5.941 2.990 15.602 2.660 9.631 0.210 0.056 0.023 0.324 0.034 0.036
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Comparing ESAC C and E, one observes that using a Narrowest-over-Thresh-
old method to estimate changepoints (as opposed to considering seeded intervals
of all widths) has a mixed effect on statistical performance and a positive effect
on the computational cost. In terms of Hausdorff distance, ESAC E tends to
slightly outperform ESAC C, while the converse is true when considering esti-
mation error of K. In terms of run time, ESAC C slightly outperforms ESAC E,
especially when there are many changepoints. Lastly, comparing ESAC C and
F, one observes that estimating changepoints using the penalized score improves
estimation accuracy compared to estimating changepoints by taking a mid-point
of a seeded interval. For ESAC C, The average Hausdorff distance over all sim-
ulations is around one third that of ESAC F. Somewhat less pronounced is the
difference in estimation error of K, where ESAC C also outperforms ESAC F.

Appendix E: Some more simulations

E.1. Extended table from Section 4.2

Tables 7 and 8 display the results from running the simulation study conducted
in Section 4.2 also for p = 5000, so that p ranges over {100, 1000, 5000}.

E.2. Simulations with randomly drawn changes in mean

Table 9 and Tables 10, 11 respectively display the results of re-running the
simulations in Sections 4.1 and 4.2 with the modification that the changes in
the mean-vector are drawn randomly. More specifically, for each changepoint we
have taken the change in mean θ to satisfy θ1:k ∝ (Z�, 0�p−k) where Z ∼ Nk(0, 1).
Apart from this modification, the simulation setups are identical to the ones in
Sections 4.1 and 4.2, including the magnitudes of the changes in mean.

In the single changepoint case, ESAC displays a slightly larger variability
in performance compared to the simulation where changes in mean are evenly
spread across the affected coordinates. Averaging over all values of n, p and
k, one observes that the MSE of ESAC has increased slightly in comparison
with Table 1. Meanwhile, the opposite is true for the competing methods.
Still, Table 9 shows that the performance of ESAC is competetive also when
the change in the mean vector is not evenly spread across the affected coordi-
nates.

The same conclusions hold in the multiple changepoint case. Tables 10 and 11
show that the performance of ESAC is slightly worse than in Table 3. Still, the
performance of ESAC is competitive.

E.3. Single changepoint detection

Here we investigate the power of each method when testing for the presence of a
single changepoint. It is assumed known that there is at most one changepoint in
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Table 7

Multiple changepoints, Hausdorff distance.
Parameters Hausdorff distance

n p Sparsity J ESAC Pilliat Inspect SBS SUBSET DC Kaul et al
100 100 – 0 – – – – – – –
100 100 Dense 2 0.76 9.40 2.19 41.77 1.08 45.30 2.19
100 100 Sparse 2 0.63 4.90 1.23 41.07 0.61 15.77 1.16
100 100 Mixed 2 0.53 7.75 2.11 41.01 1.23 32.48 2.26
100 100 Dense 5 0.48 10.53 2.87 45.06 1.35 34.02 2.72
100 100 Sparse 5 0.37 5.26 1.64 46.44 1.06 19.37 1.57
100 100 Mixed 5 0.43 7.75 2.61 45.64 1.19 25.39 2.51
100 1000 – 0 – – – – – – –
100 1000 Dense 2 0.36 5.20 1.58 35.46 0.42 – 9.18
100 1000 Sparse 2 0.30 3.88 3.02 39.76 0.38 – 3.07
100 1000 Mixed 2 0.48 4.29 2.38 40.65 0.58 – 6.20
100 1000 Dense 5 0.25 6.06 2.08 42.13 0.64 – 2.19
100 1000 Sparse 5 0.23 3.85 3.09 44.72 0.65 – 3.07
100 1000 Mixed 5 0.22 4.41 2.86 46.31 0.78 – 2.98
100 5000 – 0 – – – – – – –
100 5000 Dense 2 0.46 4.20 1.99 36.29 0.57 – 18.24
100 5000 Sparse 2 0.49 3.16 6.16 39.51 0.28 – 6.34
100 5000 Mixed 2 0.40 3.82 3.48 37.96 0.30 – 9.04
100 5000 Dense 5 0.16 5.04 2.77 41.28 0.75 – 3.80
100 5000 Sparse 5 0.33 2.97 5.12 42.84 0.58 – 5.12
100 5000 Mixed 5 0.17 3.88 3.87 42.86 0.66 – 4.56
200 100 – 0 – – – – – – –
200 100 Dense 2 1.25 16.44 3.10 58.53 2.10 65.00 4.89
200 100 Sparse 2 0.97 7.07 1.87 47.77 1.26 12.07 1.72
200 100 Mixed 2 1.09 10.94 2.76 51.05 1.45 45.49 5.03
200 100 Dense 5 1.14 16.99 4.44 57.71 2.26 51.17 4.07
200 100 Sparse 5 0.89 7.57 2.19 56.82 2.02 21.56 2.02
200 100 Mixed 5 0.74 13.21 2.74 60.62 2.16 39.22 2.42
200 1000 – 0 – – – – – – –
200 1000 Dense 2 1.13 7.93 2.51 49.75 0.90 – 34.02
200 1000 Sparse 2 0.88 4.19 5.56 49.73 0.60 – 7.70
200 1000 Mixed 2 0.94 6.62 4.05 50.51 0.98 – 16.65
200 1000 Dense 5 0.61 9.81 3.51 54.88 1.54 – 4.57
200 1000 Sparse 5 0.44 5.12 6.22 55.74 1.52 – 6.15
200 1000 Mixed 5 0.50 7.50 4.59 57.64 1.47 – 5.13
200 5000 – 0 – – – – – – –
200 5000 Dense 2 0.83 7.64 3.62 51.81 0.60 – 52.87
200 5000 Sparse 2 0.66 3.63 10.41 58.17 0.43 – 12.53
200 5000 Mixed 2 0.76 5.93 6.30 54.42 0.46 – 25.45
200 5000 Dense 5 0.51 9.64 3.73 51.95 1.17 – 9.91
200 5000 Sparse 5 0.58 4.67 9.60 54.29 1.41 – 9.65
200 5000 Mixed 5 0.53 7.06 6.34 52.05 1.01 – 8.43

Average 0.60 6.90 3.74 47.89 1.01 33.90 7.13

the simulated data, and thus no multiple changepoint search method like Binary
Segmentation or Seeded Binary Segmentation is used for any of the methods.
Instead, we have for each method computed the corresponding test statistic for
a single changepoint on the whole generated data set X, using e.g. Sv

γ,(0,n] in (3)
for ESAC. Our simulations are run with the same setup as in Section 4.1, with
the exception of a slightly lower signal strength to avoid 0% testing error. We
adjust ϕ such that Δϕ2 = n ‖θ‖2

2 /5 = 1.82r(k) for each combination of n, p and
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Table 8

Multiple changepoints, estimation of J.

Parameters
∣∣∣Ĵ − J

∣∣∣
n p Sparsity J ESAC Pilliat Inspect SBS SUBSET DC Kaul et al
100 100 – 0 0.01 0.00 0.01 0.02 0.04 0.01 0.01
100 100 Dense 2 0.01 0.40 0.04 1.19 0.08 1.30 0.04
100 100 Sparse 2 0.01 0.19 0.03 1.09 0.04 0.46 0.03
100 100 Mixed 2 0.00 0.31 0.05 1.14 0.06 0.94 0.05
100 100 Dense 5 0.01 1.02 0.14 3.77 0.19 3.24 0.14
100 100 Sparse 5 0.01 0.43 0.11 3.76 0.21 2.13 0.11
100 100 Mixed 5 0.01 0.72 0.14 3.76 0.22 2.67 0.14
100 1000 – 0 0.00 0.00 0.01 0.27 0.05 – 0.01
100 1000 Dense 2 0.00 0.24 0.03 0.98 0.03 – 0.03
100 1000 Sparse 2 0.00 0.16 0.10 1.05 0.04 – 0.10
100 1000 Mixed 2 0.01 0.18 0.06 1.05 0.10 – 0.06
100 1000 Dense 5 0.00 0.56 0.10 3.62 0.17 – 0.10
100 1000 Sparse 5 0.00 0.32 0.24 3.71 0.16 – 0.24
100 1000 Mixed 5 0.00 0.38 0.19 3.77 0.17 – 0.19
100 5000 – 0 0.01 0.01 0.02 1.36 0.09 – 0.02
100 5000 Dense 2 0.01 0.17 0.04 0.78 0.09 – 0.04
100 5000 Sparse 2 0.01 0.14 0.18 0.85 0.03 – 0.18
100 5000 Mixed 2 0.01 0.15 0.10 0.80 0.03 – 0.10
100 5000 Dense 5 0.00 0.51 0.17 3.53 0.17 – 0.17
100 5000 Sparse 5 0.01 0.25 0.41 3.61 0.15 – 0.41
100 5000 Mixed 5 0.00 0.35 0.29 3.62 0.17 – 0.29
200 100 – 0 0.01 0.01 0.01 0.04 0.06 0.01 0.01
200 100 Dense 2 0.01 0.38 0.03 0.89 0.07 0.98 0.03
200 100 Sparse 2 0.00 0.17 0.02 0.67 0.04 0.19 0.02
200 100 Mixed 2 0.00 0.25 0.02 0.75 0.03 0.69 0.02
200 100 Dense 5 0.01 1.01 0.09 3.02 0.19 2.64 0.09
200 100 Sparse 5 0.01 0.35 0.06 2.77 0.22 1.28 0.06
200 100 Mixed 5 0.00 0.69 0.07 2.93 0.20 2.09 0.07
200 1000 – 0 0.00 0.00 0.01 0.31 0.05 – 0.01
200 1000 Dense 2 0.01 0.20 0.02 0.64 0.03 – 0.02
200 1000 Sparse 2 0.00 0.09 0.10 0.64 0.04 – 0.10
200 1000 Mixed 2 0.00 0.17 0.05 0.65 0.03 – 0.05
200 1000 Dense 5 0.00 0.57 0.06 2.83 0.18 – 0.06
200 1000 Sparse 5 0.00 0.25 0.24 2.74 0.18 – 0.24
200 1000 Mixed 5 0.00 0.39 0.15 2.82 0.21 – 0.15
200 5000 – 0 0.01 0.00 0.03 2.02 0.02 – 0.03
200 5000 Dense 2 0.01 0.21 0.03 0.51 0.03 – 0.03
200 5000 Sparse 2 0.00 0.09 0.16 0.56 0.05 – 0.16
200 5000 Mixed 2 0.00 0.15 0.08 0.53 0.02 – 0.08
200 5000 Dense 5 0.00 0.54 0.08 2.42 0.18 – 0.08
200 5000 Sparse 5 0.01 0.22 0.39 2.57 0.19 – 0.39
200 5000 Mixed 5 0.00 0.37 0.23 2.50 0.15 – 0.23

Average 0.01 0.30 0.10 1.82 0.11 1.33 0.10

k. Note that the method of [9] is not included, as this method only serves as a
“post-detection” estimator.

Similar to the version of ESAC given in Algorithm 3, the Pilliat method
only tests for a changepoint in the midpoint of any seeded interval (s, e). This
time saving trick does not affect the theoretical guarantees of neither ESAC nor
Pilliat in the multiple changepoint situation because intervals for both methods



Efficient sparsity adaptive changepoint estimation 4017

Table 9

Single changepoint estimation MSE.
Parameters Mean Squared Error

n p k η ϕ ESAC Inspect SBS SUBSET DC Kaul et al.
200 100 1 40 1.40 10.1 25.7 70.4 39.2 9.4 48.4
200 100 5 40 2.00 4.6 2.4 40.0 2.6 6.4 4.1
200 100 24 40 1.90 46.6 20.3 977.3 125.1 144.4 157.0
200 100 100 40 1.90 53.0 147.2 1507.2 307.4 1561.1 244.3
200 1000 1 40 1.52 5.1 95.2 34.9 27.5 5.2 13.1
200 1000 10 40 2.93 1.4 0.6 2.5 0.5 3.3 0.5
200 1000 73 40 3.37 6.1 2.0 510.3 4.9 14.3 0.5
200 1000 1000 40 3.37 3.7 544.8 1546.1 3.7 195.2 11200.0
200 5000 1 40 1.60 38.9 481.5 19.3 47.6 143.7 8.9
200 5000 18 40 4.00 1.1 0.5 0.9 0.6 1.3 0.1
200 5000 163 40 5.04 3.4 0.7 286.1 3.4 17.6 0.1
200 5000 5000 40 5.04 3.8 1299.5 1548.5 3.8 5.8 16390.4
500 100 1 100 0.92 48.8 86.9 130.1 242.1 48.0 49.3
500 100 5 100 1.31 14.2 13.3 49.8 12.5 39.0 11.7
500 100 25 100 1.25 223.3 63.7 5044.6 746.3 662.8 412.3
500 100 100 100 1.25 446.9 727.1 9526.7 1953.2 8495.3 1579.3
500 1000 1 100 1.00 30.1 200.6 30.0 125.3 29.3 49.6
500 1000 10 100 1.90 4.7 4.3 11.4 2.7 14.7 3.9
500 1000 79 100 2.22 14.6 10.5 1854.2 13.3 132.7 2.8
500 1000 1000 100 2.22 22.4 2083.8 9755.1 63.5 2258.4 99661.6
500 5000 1 100 1.05 26.4 1290.1 36.0 75.3 266.4 39.2
500 5000 18 100 2.58 2.2 1.4 6.9 1.2 9.1 1.4
500 5000 177 100 3.32 13.9 1.9 812.9 13.9 109.1 0.5
500 5000 5000 100 3.32 14.9 6546.6 9921.2 14.9 24.7 136207.7

Average MSE 43.3 568.8 1821.8 159.6 591.6 11087.0

are generated such that any changepoint will be close to a midpoint of some
interval (s, e). In this section, however, we are concerned with testing for a
changepoint over a single interval (i.e. (s, e) = (0, n)), in which case testing only
for a changepoint in the midpoint can lead to great efficiency losses whenever
the true changepoint is far from the midpoint. To obtain fair and meaningful
power comparisons with the remaining methods in the simulation study, we have
modified the test statistic from the Pilliat method to test for a changepoint in
all time points v = 1, . . . , n− 1.

For any testing procedure, there is a trade-off between Type I and Type II
errors. In order to have precise control over the Type I error of each method, we
have run the competing methods with empirically chosen penalty parameters.
Each method is calibrated to have Type I error at most 1% based on N = 1000
Monte Carlo simulations. The methods ESAC and Pilliat, unlike the remain-
ing methods, combine several test statistics to test for a changepoint, resulting
in a multiple testing situation. For ESAC we have adjusted for the multiple
testing by using the empirical penalty function γ̃ as defined in Appendix B.
Similarly, we have for the Pilliat method chosen thresholds for two of its three
constituent tests by Monte Carlo simulating the leading constant in the theo-
retical thresholds and applied a Bonferroni correction. For the last test statistic
used in the Pilliat method (the Berk Jones statistic), we have used the theoret-
ical threshold provided in the paper. For Inspect, we have chosen the detection
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Table 10

Multiple changepoints, Hausdorff distance.
Parameters Hausdorff distance

n p Sparsity J ESAC Pilliat Inspect SBS SUBSET DC Kaul et al
100 100 – 0 – – – – – – –
100 100 Dense 2 0.81 10.45 1.51 38.41 1.35 29.30 1.45
100 100 Sparse 2 0.47 4.21 1.42 42.27 0.64 13.94 1.41
100 100 Mixed 2 0.49 7.41 1.70 41.37 0.96 23.77 1.72
100 100 Dense 5 0.59 10.46 2.58 45.82 1.44 26.70 2.50
100 100 Sparse 5 0.38 4.34 1.73 45.50 1.03 17.66 1.72
100 100 Mixed 5 0.42 7.12 2.02 46.36 1.30 22.44 1.98
100 1000 – 0 – – – – – – –
100 1000 Dense 2 0.39 5.37 0.95 38.13 0.30 – 3.26
100 1000 Sparse 2 0.20 2.05 3.56 39.28 0.29 – 3.59
100 1000 Mixed 2 0.33 3.58 2.68 37.90 0.52 – 4.09
100 1000 Dense 5 0.20 5.54 1.35 42.06 0.92 – 1.37
100 1000 Sparse 5 0.29 2.00 3.80 45.90 0.76 – 3.81
100 1000 Mixed 5 0.18 3.74 2.84 44.10 0.77 – 2.87
100 5000 – 0 – – – – – – –
100 5000 Dense 2 0.41 4.51 1.40 37.89 0.61 – 10.60
100 5000 Sparse 2 0.58 1.12 6.19 38.06 0.26 – 6.11
100 5000 Mixed 2 0.57 2.81 4.53 37.60 0.34 – 7.52
100 5000 Dense 5 0.19 4.47 1.92 39.72 0.62 – 2.47
100 5000 Sparse 5 0.30 1.04 6.07 42.51 0.74 – 6.07
100 5000 Mixed 5 0.30 2.75 3.95 42.89 0.74 – 4.28
200 100 – 0 – – – – – – –
200 100 Dense 2 1.25 17.11 2.32 48.00 1.97 30.40 2.56
200 100 Sparse 2 0.86 4.74 2.06 45.19 1.22 10.58 1.95
200 100 Mixed 2 1.22 11.59 2.24 49.75 1.52 21.51 3.06
200 100 Dense 5 0.89 17.18 2.71 53.54 2.27 31.61 2.43
200 100 Sparse 5 0.62 5.32 2.35 58.81 2.02 20.02 2.30
200 100 Mixed 5 0.78 11.14 2.60 56.26 1.93 28.61 2.39
200 1000 – 0 – – – – – – –
200 1000 Dense 2 0.88 10.04 1.48 45.40 1.31 – 12.69
200 1000 Sparse 2 0.60 2.10 7.67 41.98 0.74 – 7.78
200 1000 Mixed 2 0.60 4.88 3.80 48.10 0.66 – 9.56
200 1000 Dense 5 0.70 10.09 1.90 52.75 1.63 – 2.00
200 1000 Sparse 5 0.40 2.15 6.45 54.24 1.61 – 6.42
200 1000 Mixed 5 0.52 6.51 4.19 53.14 1.46 – 4.45
200 5000 – 0 – – – – – – –
200 5000 Dense 2 0.70 7.01 3.09 55.55 0.41 – 30.90
200 5000 Sparse 2 0.94 1.69 12.00 55.36 0.78 – 12.23
200 5000 Mixed 2 0.57 4.15 7.58 55.47 0.52 – 19.30
200 5000 Dense 5 0.61 9.67 2.85 48.13 1.34 – 5.65
200 5000 Sparse 5 0.34 1.40 12.25 54.68 1.26 – 12.19
200 5000 Mixed 5 0.57 5.27 7.14 51.84 1.16 – 8.67

Average 0.56 5.97 3.75 46.50 1.04 23.04 5.08

threshold ξ to be the 10th largest sparse projection max
0<b<n

(
v̂
(0,n]
λ

)�
T

(0,n]
b , where

λ = {log (p logn) /2}1/2 (see Appendix C), over N = 1000 data sets with no
changepoints. For SUBSET we have used the function for choosing the penalty
parameter β provided by the author, with the remaining penalty parameters at
their recommended values, also using the 10th largest value out of N = 1000
Monte Carlo samples. For Sparsified Binary Segmentation we have chosen the
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Table 11

Multiple changepoints, estimation of J.

Parameters |Ĵ − J |
n p Sparsity J ESAC Pilliat Inspect SBS SUBSET DC Kaul et al
100 100 – 0 0.01 0.00 0.01 0.02 0.04 0.01 0.01
100 100 Dense 2 0.01 0.43 0.04 1.08 0.08 0.87 0.04
100 100 Sparse 2 0.01 0.16 0.04 1.12 0.05 0.37 0.04
100 100 Mixed 2 0.00 0.27 0.04 1.12 0.05 0.68 0.04
100 100 Dense 5 0.01 1.07 0.14 3.76 0.21 2.72 0.14
100 100 Sparse 5 0.01 0.35 0.12 3.73 0.20 1.97 0.12
100 100 Mixed 5 0.01 0.65 0.12 3.74 0.21 2.38 0.12
100 1000 – 0 0.01 0.00 0.01 0.28 0.03 – 0.01
100 1000 Dense 2 0.00 0.24 0.02 1.01 0.02 – 0.02
100 1000 Sparse 2 0.00 0.07 0.11 1.05 0.05 – 0.11
100 1000 Mixed 2 0.00 0.13 0.07 0.99 0.03 – 0.07
100 1000 Dense 5 0.00 0.55 0.05 3.62 0.19 – 0.05
100 1000 Sparse 5 0.01 0.12 0.27 3.73 0.17 – 0.27
100 1000 Mixed 5 0.00 0.30 0.19 3.66 0.18 – 0.19
100 5000 – 0 0.01 0.01 0.03 1.32 0.11 – 0.03
100 5000 Dense 2 0.01 0.18 0.03 0.79 0.13 – 0.03
100 5000 Sparse 2 0.02 0.03 0.19 0.79 0.05 – 0.19
100 5000 Mixed 2 0.02 0.10 0.13 0.78 0.03 – 0.13
100 5000 Dense 5 0.00 0.47 0.11 3.52 0.16 – 0.11
100 5000 Sparse 5 0.01 0.06 0.50 3.60 0.18 – 0.50
100 5000 Mixed 5 0.01 0.22 0.30 3.60 0.17 – 0.30
200 100 – 0 0.01 0.00 0.01 0.04 0.11 0.02 0.01
200 100 Dense 2 0.00 0.38 0.02 0.69 0.09 0.46 0.02
200 100 Sparse 2 0.01 0.10 0.03 0.62 0.06 0.16 0.03
200 100 Mixed 2 0.01 0.24 0.03 0.68 0.06 0.30 0.03
200 100 Dense 5 0.00 0.97 0.05 2.76 0.24 1.77 0.05
200 100 Sparse 5 0.01 0.22 0.08 2.81 0.25 1.20 0.08
200 100 Mixed 5 0.01 0.54 0.06 2.78 0.26 1.59 0.06
200 1000 – 0 0.00 0.00 0.01 0.34 0.07 – 0.01
200 1000 Dense 2 0.01 0.25 0.01 0.57 0.05 – 0.01
200 1000 Sparse 2 0.01 0.03 0.12 0.60 0.09 – 0.12
200 1000 Mixed 2 0.00 0.11 0.05 0.62 0.03 – 0.05
200 1000 Dense 5 0.00 0.59 0.03 2.69 0.20 – 0.03
200 1000 Sparse 5 0.00 0.06 0.25 2.72 0.19 – 0.25
200 1000 Mixed 5 0.00 0.28 0.14 2.71 0.18 – 0.14
200 5000 – 0 0.01 0.01 0.03 1.98 0.01 – 0.03
200 5000 Dense 2 0.00 0.18 0.02 0.53 0.03 – 0.02
200 5000 Sparse 2 0.01 0.02 0.20 0.56 0.04 – 0.20
200 5000 Mixed 2 0.00 0.09 0.11 0.52 0.04 – 0.11
200 5000 Dense 5 0.00 0.56 0.06 2.39 0.17 – 0.06
200 5000 Sparse 5 0.01 0.02 0.49 2.55 0.18 – 0.49
200 5000 Mixed 5 0.01 0.23 0.26 2.48 0.17 – 0.26

Average 0.01 0.25 0.11 1.78 0.12 1.04 0.11

threshold πT in the same way as in Section 4.1, also using the 10th largest
among N = 1000 Monte Carlo samples. For the Double CUSUM algorithm we
have used the input parameter ϕ = −1 and chosen the threshold value to be
the 10th largest double CUSUM statistic over N = 1000 Monte Carlo simulated
data sets without any changepoints.
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For each method considered and each configuration of parameters, Table 12
displays the average detection rate and average running time in milliseconds.
For each configuration of parameters, the best value of the detection rate and
the run time is indicated in boldface (when there are no changepoints, boldface
indicates the detection rate closest to 1% from below). In terms of statistical
power, Table 12 demonstrates that ESAC, Pilliat and SUBSET are the only
methods with competitive power across all sparsity regimes and combinations
of n and p. Pilliat has the highest power in seven out of the 24 different combi-
nations of parameters with a changepoint, while the same number is three for
ESAC and one for SUBSET. Averaging over the 24 combinations of parameters,
Pilliat and ESAC have the highest over-all power. The Pilliat method has a
slight edge over ESAC, and SUBSET in third place. In comparison, Inspect has
high detection power only for k = �p1/3
, and with performance seemingly dete-
riorating when p grows. Double CUSUM has excellent power for detecting dense
changepoints, but fails to detect sparse changepoints, especially when k = 1 or p
is large. Sparsified Binary Segmentation has high power for sparse changepoints
(especially when k = 1), but fails completely to detect dense changepoints. In
terms of run time, ESAC is again the clear winner, with Pilliat as the runner-up.
We remark again that SUBSET is the only method not implemented in C or
C++, giving the other methods an advantage when comparing run times. We
also remark that the run time of the noise level scaling by MAD estimates is
not included in the run times of ESAC, Inspect, Pilliat and SUBSET, as the
run time of the scaling dominates the run time of ESAC, SUBSET and Pil-
liat. The run time of the MAD scaling is however included in the run times
of the Double CUSUM and Sparsified Binary Segmentation algorithms, as the
implementations of these algorithms do not offer an option to disable the MAD
scaling.

It is interesting to note that the power of ESAC, Pilliat and SUBSET seems
to grow with n. This might be due to the SNR of the simulated changepoints
being proportional to the detection boundary for multiple changepoints, which
grows faster with n than the minimax testing rate for a single changepoint, see
Liu, Gao and Samworth [13].

Appendix F: Auxiliary lemmas

Lemma F.1. For any a ≥ 0, define νa = E
(
Z2 | |Z| ≥ a

)
where Z ∼ N(0, 1).

Then
a2 + 1 ≤ νa ≤ a2 + 2.

Proof. The second inequality follows from Lemma 4 in Liu, Gao and Samworth
[13]. For the first inequality, let Φ(x) =

∫∞
x

ϕ(t)dt, where ϕ(·) denotes the
density function of a standard normal distribution. If a > 0, we have that

νa − 1 − a2 = a
ϕ(a)
Φ(a)

− a2
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Table 12

Single changepoint detection.
Parameters Detection rate Time in milliseconds

n p k η ϕ ESAC Pilliat Inspect SBS SUBSET DC ESAC Pilliat Inspect SBS SUBSET DC
200 100 – – – 0.016 0.013 0.008 0.015 0.017 0.007 0.2 0.8 2.2 11.2 2.1 9.5
200 100 1 n/5 1.12 0.849 0.815 0.232 0.892 0.886 0.082 0.1 0.3 2.1 9.8 1.7 8.6
200 100 5 n/5 1.60 0.952 0.965 0.911 0.690 0.962 0.775 0.1 0.2 2.0 9.4 1.6 8.6
200 100 24 n/5 1.52 0.696 0.749 0.666 0.075 0.567 0.813 0.1 0.4 2.0 12.6 1.6 8.5
200 100 100 n/5 1.52 0.675 0.740 0.550 0.038 0.543 0.819 0.1 0.4 2.1 9.4 1.7 8.8
200 1000 – – – 0.008 0.009 0.010 0.006 0.010 0.008 1.8 10.6 42.8 88.2 12.5 87.5
200 1000 1 n/5 1.22 0.809 0.796 0.003 0.853 0.841 0.018 1.1 4.0 42.5 88.4 13.8 89.0
200 1000 10 n/5 2.35 0.994 0.995 0.498 0.649 0.987 0.299 0.9 2.2 42.4 88.1 12.7 90.3
200 1000 73 n/5 2.70 0.823 0.880 0.645 0.046 0.788 0.900 1.1 3.3 42.4 88.0 13.0 89.6
200 1000 1000 n/5 2.70 0.805 0.868 0.390 0.014 0.783 0.918 1.1 3.4 42.5 87.7 13.3 89.1
200 5000 – – – 0.007 0.008 0.003 0.012 0.012 0.012 11.6 65.4 216.7 449.8 78.0 458.9
200 5000 1 n/5 1.28 0.782 0.775 0.000 0.856 0.797 0.018 7.1 26.0 215.9 447.3 77.7 455.9
200 5000 18 n/5 3.20 0.996 1.000 0.011 0.698 0.997 0.182 5.6 17.4 215.0 446.0 78.0 454.6
200 5000 163 n/5 4.03 0.911 0.925 0.249 0.038 0.898 0.911 6.7 18.5 214.9 441.5 79.1 457.1
200 5000 5000 n/5 4.03 0.897 0.893 0.119 0.013 0.868 0.934 8.8 20.8 214.2 440.8 78.6 457.9
500 100 – – – 0.007 0.005 0.007 0.015 0.015 0.008 0.5 2.1 5.6 16.0 4.2 16.0
500 100 1 n/5 0.74 0.944 0.897 0.288 0.973 0.968 0.069 0.2 0.6 5.4 16.5 3.8 15.7
500 100 5 n/5 1.04 0.978 0.988 0.973 0.882 0.987 0.821 0.2 0.5 5.4 16.7 3.6 15.5
500 100 25 n/5 1.00 0.809 0.785 0.755 0.120 0.718 0.852 0.3 0.8 5.4 15.9 3.6 15.5
500 100 100 n/5 1.00 0.796 0.776 0.627 0.062 0.699 0.853 0.3 0.8 5.4 16.0 3.7 15.8
500 1000 – – – 0.004 0.004 0.005 0.014 0.010 0.008 4.4 26.4 261.9 147.0 32.8 163.2
500 1000 1 n/5 0.80 0.924 0.876 0.000 0.963 0.942 0.026 2.5 8.8 259.7 147.4 32.4 163.4
500 1000 10 n/5 1.52 0.994 0.998 0.551 0.860 0.994 0.357 2.3 5.7 259.0 148.1 32.4 164.7
500 1000 79 n/5 1.78 0.936 0.926 0.711 0.073 0.868 0.925 2.8 7.6 260.5 148.6 32.5 165.2
500 1000 1000 n/5 1.78 0.927 0.920 0.466 0.023 0.877 0.965 2.5 8.1 260.4 149.1 32.3 165.6
500 5000 – – – 0.006 0.002 0.010 0.008 0.006 0.011 25.9 158.2 1343.5 769.4 182.0 955.7
500 5000 1 n/5 0.84 0.939 0.890 0.000 0.958 0.947 0.017 13.7 46.6 1341.9 762.7 184.3 908.5
500 5000 18 n/5 2.06 1.000 1.000 0.010 0.907 1.000 0.204 12.0 28.3 1341.4 763.1 185.4 908.1
500 5000 177 n/5 2.66 0.964 0.959 0.455 0.045 0.951 0.956 12.8 37.7 1342.3 762.1 184.1 908.7
500 5000 5000 n/5 2.66 0.953 0.956 0.243 0.009 0.956 0.982 13.0 37.5 1342.8 757.8 179.5 907.7

Average detection rate 0.890 0.891 0.390 0.447 0.868 0.571

= a

{
ϕ(a)
Φ(a)

− a

}
≥ 0,

using that ϕ(a)/Φ(a) > a for all a > 0 [see e.g. 16]. For a = 0, we have that
νa = E(Z2) = 1, and the claim follows.

The following Lemma is due to Liu, Gao and Samworth [13].

Lemma F.2 (Liu, Gao and Samworth 13, Lemma 5). Let Zi
i.i.d.∼ N(0, 1) for

i ∈ [p], where p ∈ N. Let a ≥ 0 and define νa = E
(
Z2 | |Z| ≥ a

)
. Then for all

x > 0,

P

[
p∑

i=1
(Z2

i − νa)1(|Zi| ≥ a) ≥ 9
{(

pe−a2/2x
)1/2

+ x

}]
≤ e−x.

The following Lemma is analogous to Lemma F.2, and gives a corresponding
lower bound.

Lemma F.3. Let Zi
i.i.d.∼ N(0, 1) for i ∈ [p], where p ∈ N. Let a ≥ 1 and define

νa = E
(
Z2

1 | |Z1| ≥ a
)
. Then for all x > 0,

P

[
p∑

i=1
(Z2

i − νa)1(|Zi| ≥ a) ≤ −5
{(

pe−a2/2x
)1/2

+ x

})
≤ e−x.

Proof. The proof is similar to the proof of Lemma 5 in Liu, Gao and Samworth
[13]. Let X =

(
Z2 − νa

)
1(|Z| ≥ a), where Z ∼ N(0, 1). Let λ ∈ (0, 1

2 ]. Then, as
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E(X) = 0, we have that

E
(
e−λX

)
= 1 + E

(
e−λX − 1 + λX

)
,

By the deterministic bound

e−y − 1 + y ≤

⎧⎪⎨⎪⎩
y2, if y > 0,
y2, if − 1 ≤ y ≤ 0,
e−y, if y ≤ −1,

we obtain that

E
(
e−λX

)
≤1 + λ2

E
{
X21(X > 0)

}
+ λ2

E

{
X21

(
− 1
λ
≤ X ≤ 0

)}
+ E

{
e−λX1

(
X < − 1

λ

)}
.

We bound each term separately. Let p(x) denote the density function of the χ2
1

distribution. For the second term, we have that

E
{
X21(X > 0)

}
=

∫ ∞

νa

(x− νa)2p(x)dx

=
∫ ∞

νa

(x− νa)2
1

(2πx)1/2
e−x/2dx

≤ 16
(2πνa)1/2

e−νa/2,

using that 1 + a2 ≤ νa ≤ a2 + 2 (Lemma F.1) and a ≥ 1. For the third term,
using that X ≥ a2 − νa ≥ −2 whenever X ≤ 0, we have that

E

{
X21

(
− 1
λ
≤ X ≤ 0

)}
≤ E

{
221

(
− 1
λ
≤ X ≤ 0

)}
≤ 4E {1(|Z| ≥ a)}
≤ 8e−a2/2/(2πa2)1/2

≤ 8e−a2/2/(2π)1/2,

where we in the penultimate step used the standard bound P(Z > a) ≤
e−a2/2/(2πa2)1/2 for all a > 0. For the last term, as λ ≤ 1/2, we have that
P(X < − 1

λ ) ≤ P(X < −2) = 0, because X ≥ a2 − νa ≥ −2. Therefore,
E
{
e−λX1(X < −1/λ)

}
= 0. Hence,

E
(
e−λX

)
≤ 1 + λ2

{
8

(2π)1/2
+ 16e− 1

2

2
√
π

}
e−a2/2

≤ 1 + 6λ2e−a2/2
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≤ exp
(
6λ2e−a2/2

)
.

By a Chernoff Bound we obtain that, for any t > 0,

P

{
n∑

i=1
(Z2

i − νa)1(|Zi| ≥ a) < −t

}
= P

{
−

n∑
i=1

(Z2
i − νa)1(|Zi| ≥ a) > t

}
≤ inf

0<λ≤ 1
2

e−λt
{
E
(
e−λX

)}p

≤ inf
0<λ≤ 1

2

exp
(
−λt + 6λ2pe−a2/2

)
≤ exp

{
−
(
t2ea

2/2

24p ∧ t

4

)}
.

Now take t = 5
{(

pe−a2/2x
)1/2 + x

}
to obtain the result.

The following Lemma is due to Birgé [2].

Lemma F.4 (Birgé 2, Lemma 8.1). Let Y ∼ χ2
p(Ψ) have a non-central Chi

Square distribution with p degrees of freedom and non-centrality parameter Ψ ≥
0. Then, for any x > 0, we have that

P

[
Y ≥ p + Ψ + 2 {x(p + 2Ψ)}1/2 + 2x

]
≤ e−x,

and,

P

[
Y ≤ p + Ψ − 2 {x(p + 2Ψ)}1/2

]
≤ e−x,

Lemma F.5. Consider the model from Section 2, with one and only one change-
point η, and suppose n ≥ 3 and σ = 1. Let K = {i : μi,η+1 − μi,η �= 0} denote
the set of coordinates for which there is a change in mean, let r(t) be defined as
in (8), and let h(t) be defined as in (10). Let the CUSUM transformation T v

(s,e](·)
be defined as in (2), and for ease of notation, let T v(·) = T v

(0,n](·). Let k =
‖μη+1 − μη‖0, and define βv =

∑
i∈K

{
T η(μi,·)2 − T v(μi,·)2

}
. Define the events

E1 =
{
∀0 < v < n,

∑
i∈K

{
Cη(i)2 − Cv(i)2

}
≥ βv − 2 (2βv logn)1/2 − 16r(k)

}
,

E2 =
{
∀0 < v < n,∀t ∈ T ,

∑
i∈[p]\K

{
Cv(i)2 − νa(t)

}
1{|Cv(i)| > a(t)} ≤ 63r(t)

}

E3 =
{
∀0 < v < n,∀t ∈ T ,

∑
i∈[p]\K

{
Cv(i)2 − νa(t)

}
1{|Cv(i)| > a(t)} ≥ −35r(t)

}

E4 =
{
∀0 < v < n,∀t ∈ T , t < (p log n)1/2 ;



4024 P. A. J. Moen et al.

p∑
i=1

[{
Cv(i)2 − νa(t)

}
1{|Cv(i)| > a(t)} − Cv(i)2 + 1

]
≤ 5h(p) + 63r(t)

}

Then P (E1 ∩ E2 ∩ E3 ∩ E4) ≥ 1 − 1
n .

Proof. By a union bound it suffices to consider each event separately.

Step 1. We first show that P (Ec
1) ≤ 1

3n . As the CUSUM is a linear operation
and X = μ+W , we have for any 0 < v < n and i ∈ [p] that Cv(i) = T v(μi,·) +
T v(Wi,·). Hence, for any v, we have that∑

i∈K

{
Cη(i)2 − Cv(i)2

}
= βv +

∑
i∈K

{
T η(Wi,·)2 − T v(Wi,·)2

}
+ 2

∑
i∈K

{
T η(Wi,·)T η(μi,·) − T v(Wi,·)T v(μi,·)

}
.

We construct high-probability bounds on the two last terms separately. For the
first term, note that since Wi,j

i.i.d.∼ N(0, 1), for any fixed v we have T v(Wi,·)∼
N(0, 1) independently for all i ∈ [p]. Hence

∑
i∈K T η(Wi,·)2 ∼ χ2

k and∑
i∈K T v(Wi,·)2 ∼ χ2

k. By Lemma F.4 and a union bound we therefore have that

P

[∑
i∈K

{
T η(Wi,·)2 − T v(Wi,·)2

}
≤ −4{log(9n2)k}1/2 − 2 log(9n2)

]
≤ 2

9n2 .

Using that n ≥ 3 and the definition of r(k), we obtain that

P

[∑
i∈K

{
T η(Wi,·)2 − T v(Wi,·)2

}
≤ −16r(k)

]
≤ 2

9n2 . (16)

To see this, consider first the case k < (p logn)1/2. Then k ≤ r(k) and logn ≤
r(k), so 4

{
log(9n2)k

}1/2 ≤ 4 {4 log(n)k}1/2 ≤ 8r(k) and 2 log(9n2) ≤ 8 logn ≤
8r(k). For the case k ≥ (p log n)1/2, we must have that p ≥ logn, and hence
4{log(9n2)k}1/2 ≤ 8(p logn)1/2 = 8r(k) and 2 log(9n2) ≤ 8 log(n) ≤
8(p logn)1/2 = 8r(k).

For the second term, we make use of the fact that the CUSUM transforma-
tion T v(y) of any vector y can be expressed as an inner product. More precisely,
define the n-dimensional vector Ψv ∈ R

n to have lth element given by

Ψv(l) =

⎧⎨⎩
(
n−v
nv

)1/2 for l = 1, . . . , v,

−
(

v
n(n−v)

)1/2
for l = v + 1 . . . , n.

Then for any vector y ∈ R
n, we have that

T v(y) = 〈y,Ψv〉,
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see Baranowski, Chen and Fryzlewicz [1]. Hence, for any i ∈ K,

T η(μ·,i)T η(W·,i) − T v(μ·,i)T v(W·,i)
= 〈μi,·,Ψη〉〈Wi,·,Ψη〉 − 〈μi,·,Ψv〉〈Wi,·,Ψv〉
= 〈Wi,·, 〈μi,·,Ψη〉Ψη〉 − 〈Wi,·, 〈μi,·,Ψv〉Ψv〉
= 〈Wi,·, 〈μi,·,Ψη〉Ψη − 〈μi,·,Ψv〉Ψv〉 .

As Wi,·
ind∼ Nn (0, I) for all i ∈ K, we get that

T η(μ·,i)T η(W·,i) − T v(μ·,i)T v(W·,i)
ind∼ N

(
0, ‖〈μi,·,Ψη〉Ψη − 〈μi,·,Ψv〉Ψv‖2

2

)
,

for i ∈ K. By Lemma F.11, we have that ‖〈μi,·,Ψη〉Ψη − 〈μi,·,Ψv〉Ψv‖2
2 =

T η(μi,·)2 − T v(μi,·)2. We therefore have that∑
i∈K

{T η(Xi,·)T η(μi,·) − T v(Xi,·)T v(μi,·)} ∼ N(0, βv) .

By the standard Gaussian tail bound P(Z > t) ≤ e−t2/2 for Z ∼ N(0, 1) and
t > 0, we obtain

P

[∑
i∈K

{T η(Xi,·)T η(μi,·) − T v(Xi,·)T v(μi,·)} < −2(2βv logn)1/2
]
≤ 1

9n2 , (17)

again using that n ≥ 3. Combining (16) and (17) by a union bound, we have
for any 0 < v < n that

P

[ ∑
i∈K

{
Cη(i)2 − Cv(i)2

}
≥ βv − 2(2βv logn)1/2 − 16r(k)

]
≤ 1

3n2 .

By another union bound (over v), we obtain that P(Ec
1) ≤ 1

3n .

Step 2. We now show that P (Ec
2) ≤ 1/6n. Fix 0 < v < n and any t ∈ T such

that t ≤ (p logn)1/2. Fix xt > 0, to be determined later. As Cv(i) i.i.d.∼ N(0, 1)
for all i ∈ Kc, we have by Lemma F.2 that∑

i∈Kc

{
Cv(i)2 − νa(t)

}
1{|Cv(i)| > a(t)} ≤ 9

[{
pe−a(t)2/2xt

}1/2
+ xt

]
(18)

with probability at least 1 − e−xt . By a union bound, (18) holds for all 0 <
v < n and t ∈ T such that t ≤ (p log n)1/2, with probability at least 1 −
n
∑

t∈T \{p} e
−xt . Now set xt = 6

{
p log2(n)/t2 ∧ r(t)

}
. Then

∑
t∈T \{p}

e−xt ≤
∑

t∈T \{p}
exp

{
−6p log2(n)

t2

}
+

∑
t∈T \{p}

exp {−6r(t)} .
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For the first sum, we have

∑
t∈T \{p}

exp
{
−6p log2(n)

t2

}
≤

∞∑
k=0

exp
{
−6log(n)4k

}
=

∞∑
k=0

(
1
n6

)4k

≤ 1
n6 + 1

n6

∞∑
k=1

(
1
n6

)3k

= 1
n6

(
1 + 1

n18 − 1

)
.

For the second sum, noting that 6r(t) = 6
{
t log

(
ep logn/t2

)
∨ logn

}
≥

3t log
(
ep logn/t2

)
+ 3 logn, we have

∑
t∈T \{p}

exp {−6r(t)} ≤ 1
n3

∑
t∈T \{p}

(
t2

ep logn

)3t

≤ 1
n3e3

(
1 +

∞∑
k=1

4−3k

)
.

With our choice of xt, using that a2(t) = 4 log
(
ep logn/t2

)
, we have that

9
[{

pe−a2(t)/2xt

}1/2
+ xt

]
= 9

[{
p

t4

e2p2 log2 n
xt

}1/2

+ xt

]

≤ 9
{
t
√

6
e

+ 6r(t)
}

≤ 63r(t),

where we used that xt ≤ 6r(t) and xt ≤ 6p log2(n)/t2, as well as the fact that
t ≤ r(t) whenever t ≤ (p logn)1/2. Hence, using that n ≥ 3,

P

[
∃0 < v < n,∃t ∈ T , t ≤ (p log n)1/2 ;∑
i∈Kc

{
Cv(i)2 − νa(t)

}
1{|Cv(i)| > a(t)} > 63r(t)

]

≤ 1
n6

(
1 + 1

n18 − 1

)
+ 1

n3e3

(
1 +

∞∑
k=1

4−3k

)

≤ 1
18n2 . (19)
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Now consider the case where t = p. If p ≤ (p log n)1/2, then a(p) > 0 and
similarly as above we have that

P

[
∃0 < v < n ;

∑
i∈Kc

{
Cv(i)2 − νa(p)

}
1{|Cv(i)| > a(p)} > 63r(p)

]

≤ 1
18n2 . (20)

If we instead have p > (p logn)1/2, in which case a(p) = 0 and νa(p) = 1, then
for any 0 < v < n, we have∑

i∈Kc

{
Cv(i)2 − νc(p)

}
1{|Cv(i)| > c(p)} =

∑
i∈Kc

{
Cv(i)2

}
− p + k.

As
∑

i∈Kc Cv(i)2 ∼ χ2
p−k, we obtain from Lemma F.4 that∑

i∈Kc

{
Cv(i)2

}
− p + k > 2

{
p log(12n2)

}1/2 + 2 log(12n2),

with probability at most 1/(12n2). Using that n ≥ 3 and r(p) ≥ logn, we obtain
by a union bound that

P

[
∃0 < v < n;

∑
i∈Kc

{
Cv(i)2 − νc(p)

}
1{|Cv(i)| > c(p)} > 15r(t)

]
≤ 1

12n. (21)

Combining (19), (20) and (21) by a union bound, we have that P(Ec
2) ≤ 1/(6n).

Step 3. We show that P (Ec
3) ≤ 1/6n. Fix 0 < v < n and any t ∈ T such

that t ≤ (p logn)1/2. Fix xt > 0, to be determined later. As Cv(i) i.i.d.∼ N(0, 1)
for all i ∈ Kc, we have by Lemma F.3 that∑

i∈Kc

{
Cv(i)2 − νa(t)

}
1{|Cv(i)| > a(t)} ≥ −5

[{
pe−a(t)2/2xt

}1/2
+ xt

]
(22)

with probability at least 1 − e−xt . By a union bound, (22) holds for all 0 <
v < n and t ∈ T such that t ≤ (p log n)1/2, with probability at least 1 −
n
∑

t∈T \{p} e
−xt . Now set xt = 6

{
p log2(n)/t2 ∧ r(t)

}
. Similar to Step 2, we

obtain that

P

[
∃0 < v < n,∃t ∈ T , t ≤ (p log n)1/2 ;∑
i∈Kc

{
Cv(i)2 − νa(t)

}
1{|Cv(i)| > a(t)} < −35r(t)

]
≤ 1

18n2 .
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Also similar to Step 2, we have that

P

[
∃0 < v < n ;

∑
i∈Kc

{
Cv(i)2 − νa(p)

}
1{|Cv(i)| > a(p)} < −35r(p)

]

≤ 1
12n2 .

It then follows that P (Ec
3) ≤ 1/(6n) by a union bound.

Step 4. Lastly we show that P (Ec
4) ≤ 1/(3n). Fix any 0 < v < n and t ∈ T

such that t < (p log n)1/2. By Lemma F.8 and Theorem 1.A.3(b) in Shaked and
Shanthikumar [17], we have that

p∑
i=1

[{
Cv(i)2 − νa(t)

}
1{|Cv(i)| > a(t)} − Cv(i)2 + 1

]
≤st

p∑
i=i

[{
Y 2
i − νa(t)

}
1{|Yi| > a(t)} − Y 2

i + 1
]
,

where Yi
i.i.d.∼ N(0, 1) for i ∈ [p]. Hence,

P (Ec
4) ≤

∑
0<v<n

∑
t∈T \{p}

P

[
p∑

i=1

{
Y 2
i − νa(t)

}
1{|Yi| > a(t)} ≥ 63r(t)

]

+
∑

0<v<n

∑
t∈T \{p}

P

{
p∑

i=1

{
Y 2
i − 1

}
≤ −5h(p)

}

≤ 1
18n + n log2(p)P

{
p∑

i=1

(
Y 2
i − 1

)
≤ −5h(p)

}
,

where we for the first sum used the same arguments as in Step 2. For the second
sum, we have by Lemma F.4 that

P

[
p∑

i=1
(Y 2

i − 1) ≤ −2p1/2 {log(6n2) + log log2 p
}1/2

]
≤ 1

6n2 log2 p
.

Now,

2p1/2 {log(6n2) + log log2 p
}1/2 ≤ 2 [6 {logn ∨ log log(ep)}]1/2

≤ 5h(p).

Hence P (Ec
4) ≤ 1/(18n) + 1/(6n) ≤ 1/(3n), and the proof is complete.

The following Lemma gives high-probability control over the penalized score
Sv
γ,(s,e] in (6) used as a test statistic.
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Lemma F.6. Consider the model from Section 2, and assume σ = 1. Let r(t)
be defined as in (8). For any integer v such that s < v < e, let T b

(s,e](·) be defined
as in (2), and define

βv
(s,e] =

p∑
i=1

T v
(s,e](μi,·)2,

and

k(s,e] =
p∑

i=1
1
{
T v

(s,e](μi,·)2 = 0
}
.

Note that if βv
(s,e] = 0 for some v, then the open integer interval (s, e) contains

no changepoint. Define the events

E5 : =
{
∀0 ≤ s < v < e ≤ n, βv

(s,e] = 0 ; Sv
γ,(s,e] < 0

}
,

E6 : =
{
∀0 ≤ s < v < e ≤ n ; Sv

γ,(s,e] ≥ β(s,e] − 8
{

2βv
(s,e]r(k(s,e])

}1/2

− (γ + 106) r(k(s,e])
}
.

If γ ≥ 82, then P (E5 ∩ E6) ≥ 1 − 1/n.

Proof.
Step 1. We first show that P (Ec

5) ≤ 1/(2n). Consider any integer triple of s, e, v
such that 0 ≤ s < v < e ≤ n and βv

(s,e] = 0. Fix any t ∈ T \ {p} (the case t = p

is handled later), and fix xt > 0, to be specified later. As βv
(s,e] = 0, the open

integer interval (s, e) contains no changepoint, and thus Cv
(s,e](i)

i.i.d.∼ N(0, 1) for
all i ∈ [p]. By Lemma F.2 we have that

p∑
i=1

{
Cv

(s,e](i)2 − νa(t)

}
1
{∣∣∣Cv

(s,e](i)
∣∣∣ > a(t)

}
≥ 9

[{
pe−a(t)2/2xt

}1/2
+ xt

]
(23)

occurs with probability at most e−xt . Note that there are at most n3 unique
choices of the triple (s, e, v). By a union bound, (23) holds for some 0 ≤ s < v <
e ≤ n and some t ∈ T \ {p} with probability at most n3 ∑

t∈T \{p} e
−xt . Now

set xt = 8
{p log2(n)

t2 ∧ r(t)
}

for all t. Then,∑
t∈T \{p}

e−xt ≤
∑

t∈T \{p}
exp

{
−8p log2(n)

t2

}
+

∑
t∈T \{p}

exp {−8r(t)} .

For the first sum, we have∑
t∈T \{p}

exp
{
−8p log2(n)

t2

}
≤

∞∑
k=0

exp
{
−8log(n)4k

}
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=
∞∑
k=0

(
1
n8

)4k

≤ 1
n8 + 1

n8

∞∑
k=1

(
1
n8

)3k

= 1
n8

(
1 + 1

n24 − 1

)
.

For the second sum, noting that 8r(t) = 8
{
t log

(
ep logn

t2

)
∨ logn

}
≥

4t log
(
ep logn

t2

)
+ 4 logn, we have

∑
t∈T \{p}

exp {−8r(t)} ≤ 1
n4

∑
t∈T \{p}

(
t2

ep logn

)4t

≤ 1
n4e4

(
1 +

∞∑
k=1

4−4k

)
.

Hence, using that n ≥ 2,

n3
∑

t∈T \{p}
e−xt ≤ 1

n5

(
1 + 1

n24 − 1

)
+ 1

ne4

(
1 +

∞∑
k=1

4−4k

)

≤ 1
10n.

With this choice of xt, using that a2(t) = 4 log
(

ep logn
t2

)
, we have that

9
[{

pe−c2(t)/2xt

}1/2
+ xt

]
= 9

[{
p

t4

e2p2 log2 n
xt

}1/2

+ xt

]

≤ 9
{
t
√

8
e

+ 8r(t)
}

≤ 82r(t),

where we used that xt ≤ 8r(t) and xt ≤ 8p log2(n)/t2, as well as the fact that
t ≤ r(t) whenever t ≤ (p logn)1/2. Hence,

P

[
∃0 ≤ s < v < e ≤ n,∃t ∈ T \ {p} ;

p∑
i=1

{
Cv

(s,e](i)2 − νa(t)

}
1
{
|Cv

(s,e](i)| > a(t)
}
≥ 82r(t)

]

≤ 1
10n. (24)
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Now consider the case where t = p. If p ≤ (p log n)1/2, then similarly as above
we have that

P

[
∃0 ≤ s < v < e ≤ n, ;

p∑
i=1

{
Cv

(s,e](i)2 − νa(p)

}
1
{
|Cv

(s,e](i)| > a(p)
}
≥ 82r(p)

]

≤ 1
10n. (25)

If we instead have p > (p log n)1/2 (in which case a(p) = 0 and νa(p) = 1), then
for any 0 ≤ s < v < e ≤ n, we have

p∑
i=1

{
Cv

(s,e](i)2 − νc(p)

}
1
{
|Cv

(s,e](i)| > c(p)
}

=
p∑

i=1
Cv

(s,e](i)2 − p.

As
∑p

i=1 C
v
(s,e](i)2 ∼ χ2

p, we obtain from Lemma F.4 that

p∑
i=1

{
Cv

(s,e](i)2
}
− p ≥ 2

{
p log(4n4)

}1/2 + 2 log(4n4),

occurs with probability at most 1/(4n4). Using that n ≥ 2 and r(p) ≥ logn, we
obtain by a union bound that

P

[
∃0 ≤ s < v < e ≤ n ;

p∑
i=1

{
Cv

(s,e](i)2 − νc(p)

}
1
{
|Cv

(s,e](i)| > c(p)
}
≥ 17r(t)

]

≤ 1
4n, (26)

Combining (24), (25) and (26) by a union bound, and using that γ ≥ 82, we get
that P(Ec

5) ≤ 1/(2n).

Step 2. Now we show that P (Ec
6) ≤ 1/(2n). Consider any 0 ≤ s < v <

e ≤ n. Without loss of generality, assume that T v
(s,e](μ1,·)2 ≥ T v

(s,e](μ2,·)2 ≥
. . . T v

(s,e](μp,·)2. Let z denote the smallest integer in T no smaller than k(s,e],
where we suppress the dependence of z on s, e in the notation. For z ≤ (p log n)1/2,
observe that

p∑
i=1

{
Cv

(s,e](i)2 − νa(z)

}
1
{
|Cv

(s,e](i)| > a(z)
}

≥
k(s,e]∑
i=1

{
Cv

(s,e](i)2 − νa(z)

}
+

p∑
i=k(s,e]+1

{
Cv

(s,e](i)2 − νa(z)

}
1
{
|Cv

(s,e](i)| > a(z)
}
.

(27)
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We lower bound the two sums separately. For each i ∈ [p] we have that Cv
(s,e] =

T v
(s,e](μi,·) + T v

(s,e](Wi,·)
ind∼ N(T v

(s,e](μi,·), 1). Let xt = 8
{
p log2(n)/t2 ∧ r(t)

}
for all t ∈ [p], as in Step 1. For the first sum, noting that

∑k(s,e]
i=1 Cv

(s,e](i)2 ∼
χ2
k(s,e]

(βv
(s,e]) (a non-central Chi Square distribution with k(s,e] degrees of free-

dom and non-centrality parameter βv
(s,e]), we have by Lemma F.4 that

P

⎡⎣k(s,e]∑
i=1

{
Cv

(s,e](i)2 − νa(z)

}
< k(s,e] − k(s,e]νa(z)

+ βv
(s,e] − 2

{
xz

(
z + 2βv

(s,e]

)}1/2
⎤⎦ ≤ e−xz .

Note that, since k(s,e] ≤ z ≤ (p log n)1/2, we have z ≤ r(z) and k(s,e] ≤ r(k(s,e]).
Moreover, by Lemma F.1, we have ν2

a(z) ≤ 2 + a2(z) ≤ 2 + a2(k(s,e]), where we
for the last inequality used that z ≥ k(s,e] and that t �→ a2(t) is decreasing.
Since z ≤ 2k(s,e], it also holds that r(z) ≤ 2r(k(s,e]). Hence,

P

⎡⎣k(s,e]∑
i=1

{
Cv

(s,e](i)2 − νa(z)

}
< βv

(s,e] − 8
{

2βv
(s,e]r(k(s,e])

}
− 14r(k(s,e])

⎤⎦ ≤ e−xz .

For the second sum, we obtain from Lemma F.3 that

P

⎡⎣ p∑
i=k(s,e]+1

{
Cv

(s,e](i)2 − νa(t)

}
1
{
|Cv

(s,e](i)| > a(z)
}

≤ −5
[{

pe−b2(z)/2xz

}1/2
+ xz

]⎤⎦ ≤ e−xt .

By the definition of xz, we have that

5
[{

pe−b2(z)/2xz

}1/2
+ xz

]
≤ 46r(z)

≤ 92r(k(s,e]).

By a union bound over the two sums in (27), we have that
p∑

i=1

{
Cv

(s,e](i)2 − νa(z)

}
1
{
|Cv

(s,e](i)| > a(z)
}

< βv
(s,e] − 8

{
2βv

(s,e](z)r(k(s,e])
}1/2

− 106r(k(s,e]) (28)

occurs with probability at most 2e−xt .
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Now suppose that z > (p log n)1/2. Then,
p∑

i=1

{
Cv

(s,e](i)2 − νa(z)

}
1
{
|Cv

(s,e](i)| > a(z)
}

=
p∑

i=1

{
Cv

(s,e](i)2
}
− p.

Using that
∑p

i=1 C
v
(s,e](i)2 ∼ χ2

p(βv
(s,e]), we have by Lemma F.4 that

p∑
i=1

{
Cv

(s,e](i)2
}
− p < βv

(s,e] − 2
{

log(4n4)(p + 2βv
(s,e])

}1/2

occurs with probability at most 1/(4n4). In particular, since logn ≤ r(t) for all
t, we have r(z) = r(

√
(p log n)) ≤ 2r(k(s,e]) and n ≥ 2, this implies that (28)

occurs probability at most 1/(4n4) whenever z ≥ (p logn)1/2. By a union bound
over 0 ≤ s < v < e ≤ n, we obtain that

P (Ec
6) ≤ n3

⎛⎝ 1
4n4 + 2

∑
t∈T \{p}

e−xt

⎞⎠
≤ 1

4n + 1
5n

≤ 1
2n,

where we used the same approach as in Step 1 to bound
∑

t∈T \{p} e
−xt . The

proof is complete.

Lemma F.7. Let M denote the collection of seeded intervals generated by Algo-
rithm 4 with parameters α ∈ (1, 2] and K ≥ 2. Then for all real numbers h > 0
such that h ≤ n/2, and all integers η such that 3h/2 ∨ 1 ≤ η ≤ n− (3h/2 ∨ 1),
there exists integers l ≥ 1 and v such that the following holds.

(P1) (v − l, v + l] ∈ M;
(P2) h/2 ≤ l ≤ h ∨ 1;
(P3) |v − η| ≤ l/K ≤ l/2.

In particular, (v − l, v + l] ⊆ (η − (3/2h ∨ 1), η + (3/2h ∨ 1)].

Proof. Define the recursive sequence (lj)j∈N by l1 = 1, and lj+1 =
max {lj + 1, 
αlj�} for j ∈ N. Let H = max{j ∈ N : lj ≤ n/2}. Formally,
the set M of seeded intervals generated by Algorithm 4 is given by

S =
⋃

l∈{l1,...,lH}
Il,

where

Il = {(n− 2l, n]} ∪

⌊
n−2l
sl

⌋⋃
i=0

{(isl, isl + 2l]} ,
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sl = max
{

1,
⌊

l

K

⌋}
.

Note that, for any j ∈ [H − 1], it holds that lj+1/lj ≤ max{2, α} = 2. Hence,
there must exist an integer j ∈ [H] such that h/2 ≤ lj ≤ h∨1. Moreover, by the
definition of Ilj , there must exist an integer v such that |v−η| ≤ 
lj/K� ≤ lj/2
and (v − lj , v + lj ] ∈ Ilj . This proves the first three claims. For the last claim,
note that

v − lj = v − η + η − lj

≥ −
lj/K� + η − lj

≥ η − (3/2h ∨ 1).

Similarly, we have that v + lj ≤ η + (3/2h ∨ 1).

Lemma F.8. Let Y ∼ N(θ, 1), θ ∈ R, a > 0 and νa = E
(
Y 2 | |Y | ≥ a

)
.

Let A =
(
Y 2 − νa

)
1(|Y | ≥ a) and B = Y 2 − 1. Then A − B is stochastically

decreasing in |θ|.

Proof. It is equivalent to show that B−A is stochastically increasing in |θ|. Note
first that Y 2 has a Chi Square distribution with non-centrality parameter θ2,
which is stochastically increasing in |θ|. Further, we have that B −A = f(Y 2),
where the function f is given by

f(x) =
{
x− 1, if x < a2

νa − 1, otherwise.

Since νa ≥ a2, f is an increasing function. By Shaked and Shanthikumar [17,
Theorem 1.A.3(a)], B −A must be stochastically increasing in |θ|.

Lemma F.9. Let M denote the set of candidate intervals generated from Algo-
rithm 4 with fixed input parameters α > 1, K > 1 and n ∈ N. Then the number
of distinct triples of integers s, e, v such that (s, e] ∈ M and s < v < e is of
order O(n log n).

Proof. Let α and K be given, and define the recursive sequence (lj)j∈N by l1 = 1,
and lj+1 = max (lj + 1, 
αlj�) for j ∈ N. Let H = sup{j ∈ N : lj ≤ n/2}.
Formally, the set M of seeded intervals generated by Algorithm 4 is given by

S =
⋃

l∈{l1,...,lH}
Il,

where

Il = {(n− 2l, n]} ∪

⌊
n−2l
sl

⌋⋃
i=0

{(isl, isl + 2l]} ,
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and

sl = max
{

1,
⌊

l

K

⌋}
.

For any (s, e] ∈ Il, there are precisely 2l−1 < 2l integers v such that s < e < v.
Hence, the number N of distinct triples of integers s, e, v such that (s, e] ∈ M
and s < v < e therefore satisfies

N <
∑

l∈{l1,...,lJ}
2l|Il|.

For all l < K, we have that |Il| ≤ n, and so 2l|Il| ≤ 2ln < 2Kn. For l ≥ K we
have that 
l/K� ≥ l/(2K), and so 2l|Il| ≤ 4Kn. Therefore,

N <
∑

l∈{l1,...,lJ}
4Kn

= 4HKn.

Noting that H ≤ � 1
α−1
 + logα n, we thus get

N < 4
(
� 1
α− 1
 + logα n

)
Kn

= O(n log n),

which gives the desired result.

In the following we restate some useful Lemmas from Baranowski, Chen and
Fryzlewicz [1].

Lemma F.10 (Baranowski, Chen and Fryzlewicz 1, Lemma 2).
Consider the model from Section 2, assuming that p = 1. Let the CUSUM
transformation T v

(s,e](·) be defined as in (2). Suppose s < e are such that ηj−1 ≤
s < ηj < e ≤ ηj+1 for some j ∈ [J ]. Then,

max
s<v<e

T v
(s,e](μ)2 = T

ηj

(s,e](μ)2
{
≥ 1

2Δjθ
2
j

≤ Δjθ
2
j .

Given an n ∈ N and any integer 0 < v < n, define the n-dimensional vector
Ψv ∈ R

n to have lth element given by

Ψv(l) =

⎧⎨⎩
(
n−v
nv

)1/2
, for l = 1, . . . , v,

−
(

v
n(n−v)

)1/2
, for l = v + 1 . . . , n.

Lemma F.11 (Baranowski, Chen and Fryzlewicz 1, Lemma 4). Consider the
model from Section 2, assuming that p = 1. Let the CUSUM transformation
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T v
(s,e](·) be defined as in (2). Pick any interval (s, e] ⊂ (0, n] such that the open

integer interval (s, e) contains precisely one changepoint ηj. Pick any integer v
such that s < v < e. Define ρ = |ηj − v|, δL = ηj − s, and δR = e− ηj. Then,∥∥∥Ψηj

(s,e]〈μ,Ψ
ηj

(s,e]〉 − Ψv
(s,e]〈μ,Ψv

(s,e]〉
∥∥∥

2
= T

ηj

(s,e](μ)2 − T v
(s,e](μ)2.

Moreover,

(1) for any ηj ≤ v < e, T
ηj

(s,e](μ)2 − T v
(s,e](μ)2 = ρδL

ρ + δL
θ2
j ;

(2) for any s < v ≤ ηj , T
ηj

(s,e](μ)2 − T v
(s,e](μ)2 = ρδR

ρ + δR
θ2
j .
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