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Abstract: This paper proposes estimators for the parameters of an explo-
sive fractional Ornstein-Uhlenbeck process. The asymptotic properties for
the diffusion estimators are developed under the in-fill asymptotic scheme,
while the asymptotic properties for the drift estimators are developed un-
der the double asymptotic scheme for the full range of the Hurst parame-
ter. The double asymptotic distribution of the estimator of the persistency
parameter explicitly depends on the initial condition. Simulation results
demonstrate the effectiveness of the proposed estimators, and the asymp-
totic distributions provide a good approximation in finite samples. An em-
pirical application is presented to demonstrate the model’s usefulness and
the practical value of the asymptotic theory.
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1. Introduction

In recent years, mildly explosive discrete-time models have been utilized to cap-
ture the dynamic behavior of economic and financial time series. This approach
has been explored in various studies such as Phillips and Yu [40], Phillips et al.
[39], Phillips et al. [37, 38], Harvey et al. [20, 21], Chen et al. [12], Lui et al.
[31, 32], and Astill et al. [3].

The mildly explosive model and the asymptotic theory for the least squares
estimator were first introduced in the seminal paper by Phillips and Magdali-
nos [35], where the error terms are assumed to be independent and identically
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distributed (iid). Phillips and Magdalinos [36] extended the model and asymp-
totic theory to include weakly dependent errors, while Magdalinos [33] further
extended it to strongly dependent errors. Lui et al. [32] expanded the model and
asymptotic theory to incorporate anti-persistent errors. In all of these studies, an
initial condition was selected to ensure that it becomes negligible in the asymp-
totic distribution and as a result, the standard Cauchy limiting distribution is
obtained.

Wang and Yu [48] demonstrated that mild explosiveness can be achieved from
an explosive Ornstein-Uhlenbeck (OU) process under the double asymptotic
scheme when the sampling interval approaches zero and the time span becomes
infinite. In this scenario, since the randomness is governed by the standard
Brownian motion,1 the error term in the exact discrete-time representation of
the model is iid. Wang and Yu [48] obtained the double asymptotic distribution
of the least squares estimator of the persistency parameter and showed that it
explicitly depends on the initial condition. The reason that the initial condition
is given a prominence in the continuous-time setup is because a bigger initial
condition than what is typically imposed in the discrete-time literature is allowed
in the exact discrete-time representation when the sampling interval shrinks to
zero.

In this paper, we extend the OU model of Wang and Yu [48] by replacing the
standard Brownian motion with the fractional Brownian motion (fBm), that is,
an explosive fractional OU process (fOUp). The exact discrete-time represen-
tation of fOUp extends the models considered in Magdalinos [33] and Lui et
al. [32] in four aspects. First, our model allows for the full range of the Hurst
parameter. Second, we permit a larger initial condition in the exact discrete-
time representation of fOUp than that considered in Magdalinos [33]. Third, we
estimate and examine the asymptotic properties of all four parameters in the
model, not just the persistency parameter. Finally, although the error term in
our model shares the same covariance structure as those in Magdalinos [33] and
Lui et al. [32], it cannot be expressed as a linear combination of martingale dif-
ference sequences. This distinction leads to completely different technical proof
procedures.

We adopt the same estimators of the two diffusion parameters, including the
Hurst parameter, as those proposed in Wang et al. [47], where a stationary
fOUp process is considered. For the drift parameters, including the persistency
parameter, we obtain the estimators via least squares, which have analytical
expressions and are easy to implement. The asymptotic theory for the diffusion
parameters is established under the in-fill asymptotic scheme, while the asymp-
totic theory for the drift parameters is established under the double asymptotic
scheme.

The remainder of the paper is organized as follows. Section 2 introduces the
model and compares it with two other models. Section 3 introduces estimators
and develops the asymptotic properties of the estimators. Section 4 conducts

1In the most general case, Wang and Yu [48] considered the Lévy process instead of the
standard Brownian motion.
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Monte Carlo studies to check the finite sample performance of the proposed es-
timators and asymptotic distributions. Section 5 provides an empirical study to
illustrate the usefulness of our estimators and the asymptotic theory. Section 6
concludes the paper. All proofs of the theorems are collected in the Appendix.
The proofs of Lemmas A.1–A.4 and Proposition A.3, which are useful to prove
the theorems, are collected in the supplementary material [28]. Throughout
the paper, we use p→, a.s.→ , L→, d=, and ∼ to denote convergence in probability,
convergence almost surely, convergence in distribution, equivalence in distri-
bution, asymptotic equivalence, and asymptotic dominance, respectively. We
denote C,C1, C2, which may change from line to line, positive constants that
depend only on the parameters of fOUp.

2. Model

The fOUp is given by the following stochastic differential equation:

dXt = (θXt + μ)dt + σdBH
t , (2.1)

where X0 = Op(1) is independent of BH
t , σ ∈ R

+, μ ∈ R, θ > 0, and BH
t is an

fBm with the Hurst parameter, H ∈ (0, 1), with mean zero and the following
covariance

R(t, s) = E
(
BH

t BH
s

)
= 1

2
(
|t|2H + |s|2H − |t− s|2H

)
∀ t, s ≥ 0. (2.2)

For t > 0, Mandelbrot and van Ness [34] presented the following integral repre-
sentation for BH

t :

BH
t = 1

cH

{∫ 0

−∞

[
(t−u)H−1/2−(−u)H−1/2]dWu+

∫ t

0
(t−u)H−1/2dWu

}
, (2.3)

where Wu is a standard Brownian motion, cH = Γ(H+1/2)√
Γ(2H+1) sin(πH) , B

H
0 = 0 and

Γ(·) denotes the Gamma function.
Obviously, the fBm becomes the standard Brownian motion Wt when H =

1/2. Moreover, the fBm is self-similar in the sense that for any a ∈ R, BH
at

d=
|a|HBH

t . Let LH
t = BH

t − BH
t−1 be the so-called the fractional Gaussian noise

(fGn) which is always stationary. The autocovariance function of fGn is

γ(k) = Cov
(
LH
t , LH

t+k

)
= 1

2
[
|k + 1|2H − 2|k|2H + |k − 1|2H

]
, (2.4)

for k ≥ 0 and γ(k) = γ(−k) for k < 0.
Applying the Taylor expansion to the right-hand side of (2.4), we can see

that if H ∈ (0, 1/2) ∪ (1/2, 1), γ(k) ∼ H(2H − 1)k2H−2 for large k. Hence, for
1
2 < H < 1, it has γ(k) > 0 for all k and

∑∞
k=−∞ γ(k) = ∞. In this case, fGn

has the long memory property and positive (negative) increments are likely to
be followed by positive (negative) increments. For 0 < H < 1

2 , it can be verified
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that γ(k) < 0 for all k 	= 0 and
∑∞

k=−∞ γ(k) = 0. Therefore, the process is
anti-persistent.

When θ < 0, Xt is asymptotically stationary and ergodic with the long-run
mean −μ/θ. In this case, the coefficient θ is the speed of adjustment of Xt

towards its long-run mean. When θ = 0 and μ = 0, Xt = BH
t that is non-

stationary and null recurrent. When θ > 0, |E(Xt|Ft−1)| > |Xt−1|, implying Xt

is non-stationary and explosive, where Ft is the sigma-algebra generated by BH
s

with s ∈ [0, t].
In practice, we often have access to discretely sampled data only. Let {XiΔ}ni=1

denote the discretely sampled data, where n is the sample size and Δ is the
sampling interval. Let T (:= nΔ) be the time span. When Xt is annualized and
observed monthly (weekly or daily), then Δ = 1/12 (1/52 or 1/252) for assets
that are traded five days in a week. The in-fill asymptotics assume Δ → 0 with T
being fixed while the double asymptotics assume Δ → 0, T → ∞. In both cases,
n → ∞. In model (2.1), there are four parameters, two diffusion parameters, H
and σ, and two drift parameters, θ and μ. We would like to estimate these four
parameters based on {XiΔ}ni=0 generated from model (2.1) with θ > 0, that is,
an explosive fOUp.

When θ 	= 0, the strong solution of fOUp is given by

Xt = X0e
θt + μ

θ

(
eθt − 1

)
+ σeθt

∫ t

0
e−θsdBH

s , (2.5)

where the stochastic integral in (2.5) is interpreted as a Young integral [50].
Therefore, the exact discrete-time representation of model (2.1) is

XiΔ = βΔX(i−1)Δ + μ

θ

(
eθΔ − 1

)
+ σεiΔ, βΔ = eθΔ, (2.6)

where

εiΔ =
∫ iΔ

(i−1)Δ
eθ(iΔ−s)dBH

s =
(
BH

iΔ −BH
(i−1)Δ

)
+ Op

(
Δ1+H

)
= Op

(
ΔH

)
.

When θ > 0, βΔ = eθΔ > 1 since Δ > 0. If Δ → 0, βΔ ↘ 1. However, the speed
that βΔ approaches unity depends on whether T is fixed or goes to infinity.

As shown in Wang and Yu [48], under the in-fill asymptotic scheme, model
(2.6) with θ > 0 corresponds to a local-to-unity model with the AR(1) parameter
larger than unity but approaching to unity as Δ → 0. It can be seen that with
a fixed T and Δ → 0, we have

(1 − βΔ)n =
(
1 − eθΔ

)
n =

(
−θΔ + o(Δ)

)
n → −θT,

where −θT is the scale parameter. Whereas, under the double asymptotic
scheme, the exact discrete-time representation of model (2.1) with θ > 0 is
an explosive model with the AR(1) coefficient larger than but approaching to
unity slower than 1/n as Δ → 0. It can be seen that with Δ → 0, T → ∞, we
have

(1 − βΔ)n =
(
1 − eθΔ

)
n =

(
−θΔ + o(Δ)

)
n = −θT + o(T ) → −∞.



Asymptotic theory for explosive FOUP 3935

Using the terminology of Phillips and Magdalinos [35], the model is mildly
explosive.

Since εiΔ = Op(ΔH), to ensure the error term is Op(1), dividing both sides
of equation (2.6) by ΔH , we have

YiΔ = βΔY(i−1)Δ + μ

ΔHθ

(
eθΔ − 1

)
+ σeiΔ, (2.7)

where YiΔ = XiΔ/ΔH , eiΔ = εiΔ/ΔH . Clearly, as Δ → 0 with a fixed T ,
eiΔ = Op(1) and Y0 = X0/ΔH = Op(nH/TH).

Magdalinos [33] considered the following AR(1) model,

Yt = ρnYt−1 + σut, ρn = 1 + c

nα
, α ∈ (0, 1), c > 0, Y0 = op

(
nα(0.5+d)), (2.8)

where ut =
∑∞

j=0 cjvt−j with cj ∼ γjd−1 for some d ∈ (0, 1/2) and vt being
a martingale difference sequence and v2

t is a uniformly integrable sequence.2
He showed that the least squares estimator of ρn follows the standard Cauchy
distribution asymptotically.

His model with n → ∞ is closely linked to model (2.7). To see the connection,
in model (2.7), if Δ → 0, T → ∞, we have

βΔ → 1, (1 − βΔ)n → −∞,E(eiΔe(i+j)Δ) ∼ Cj2H−2 for large j,

where the last part is due to Lemma 2.1 of Cheridito et al. [16]. In model (2.8),
if n → ∞, we have

ρn → 1, (1 − ρn)n → −∞,E(uiui+j) ∼ Cj2d−1 for large j.

If H = 1/2+d, model (2.7) and model (2.8) share the same covariance structure
for large j.

Lui et al. [32] considered the following AR(1) model,

Yt = ρn,mYt−1 + σut, ρn,m = 1 + cm

n
, c > 0, Y0 = op

(
n0.5+d

)
, (2.9)

where ut =
∑∞

j=0 cjvt−j with cj ∼ γjd−1 for some d ∈ (−1/2, 0) and vt being
an iid sequence. They showed that the least squares estimator of ρn,m follows
the standard Cauchy distribution asymptotically.3

Model (2.9) with n → ∞ followed by m → ∞ is also closely linked to model
(2.7). In model (2.9), if n → ∞ followed by m → ∞, we have

ρn,m → 1, (1 − ρn,m)n → −∞,E(uiui+j) ∼ Cj2d−1 for large j.

If H = 1/2 + d, model (2.8) and model (2.9) also share the same covariance
structure for large j.

2The exact assumption in Magdalinos [33] is cj = L(j)j−k for some k ∈ (1/2, 1) where L
is a slowly varying function at infinity in Assumption LP(ii).

3In Remark 3.7, Lui et al. [32] argue that the asymptotic theory continues to hold when
d ∈ (0, 1/2).
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Table 1

Comparison of model (2.7) and the models considered in Magdalinos (2012) and Lui et al.
(2021).

Model (2.7) Model in (2.8) Model in (2.9)
(with Δ → 0, T → ∞) (with n → ∞) (with n → ∞,m → ∞)
βΔ = eθΔ = 1 + θ T

n
+ o(Δ) ρn = 1 + c

nα ρn,m = 1 + cm
n

1 − βΔ ↗ 0, 1 − ρn ↗ 0, 1 − ρn,m ↗ 0,
(1 − βΔ)n → −∞ (1 − ρn)n → −∞ (1 − ρn,m)n → −∞
Y0 = Op(nH/TH) Y0 = op(nαH) Y0 ∼ op(nH)
H ∈ (0, 1) H ∈ (1/2, 1) H ∈ (0, 1/2)

However, there are three important differences between the two existing mod-
els and model (2.7). First, they have different initial conditions. In particular,
since n(α−1)H(log Δ)2 → 0 for any α ∈ (0, 1), the initial condition in model
(2.7) is larger than that in (2.8). It turns out the initial condition enters the
asymptotic distribution in our model but not in the asymptotic distribution ob-
tained in Magdalinos [33]. Since the finite sample distribution should depend on
the initial condition, which is supported by our simulation studies in Section 4,
naturally it is expected our asymptotic distribution delivers more accurate finite
sample approximations. Second, in (2.8) it is assumed that d ∈ (0, 1/2) which is
equivalent to H ∈ (1/2, 1), and hence, a long memory error term is assumed. In
(2.9) it is assumed that d ∈ (−1/2, 0) which is equivalent to H ∈ (0, 1/2), and
hence, an anti-persistent error term is assumed. In model (2.7), a full range of
H ∈ (0, 1) is allowed. That is, both long memory error terms and anti-persistent
error terms are allowed in our model. While some empirical evidence has been
reported to support long memory error terms in the context of the mildly ex-
plosive model for equity prices in the literature (see, for example, Lui et al.,
[31]), some other empirical evidence that supports anti-persistent error terms
has also been reported in the literature (see, for example, Gatheral et al., [18],
Lui et al., [32], Bennedsen et al., [7], Shi and Yu, [41], Wang et al., [47], Bolk et
al., [8]). In practice it is often impossible to have a knowledge about a restricted
range of H ex ante. Table 1 compares the two existing models with model (2.7).
Third, although our model shares the same covariance structure as model (2.7)
and model (2.9), unlike the error terms in their models, our eiΔ in (2.7) cannot
be written as a linear combination of a martingale difference sequence. As a
result, our proof strategy is remarkably different from those in Magdalinos [33]
and Lui et al. [32].

3. Estimators, and asymptotics

3.1. Estimators

Our model is the same as that of Wang et al. [47]. The only difference between
the two models is that we assume θ > 0 while Wang et al. [47] assume θ < 0
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in fOUp. Following Wang et al. [47], we also consider a two-stage estimation
method. Our first stage estimation focuses on estimating the two parameters
in the diffusion term following the idea of Wang et al. [47]. In particular, we
estimate the Hurst parameter H based on the second-order differences of Xt at
two different frequencies:4

ĤΔ = 1
2 log2

( 1
n−4

∑n−4
i=1 (X(i+4)Δ − 2X(i+2)Δ + XiΔ)2

1
n−2

∑n−2
i=1 (X(i+2)Δ − 2X(i+1)Δ + XiΔ)2

)
, (3.1)

where log2(·) is the base-2 logarithm.5 We estimate the volatility coefficient σ
using

σ̂Δ =

√√√√∑n−2
i=1 (X(i+2)Δ − 2X(i+1)Δ + XiΔ)2

n(4 − 22Ĥ)Δ2Ĥ
. (3.2)

In the second stage, we consider the estimators of the two drift parameters in
(2.1) based on least squares. Let αΔ = μ

θ (eθΔ −1). Then, (2.6) can be rewritten
as:

XiΔ = βΔX(i−1)Δ + αΔ + σεiΔ, X0 = Op(1).
The least squares estimators of αΔ and βΔ are

β̂Δ =
n
∑n

i=1 XiΔX(i−1)Δ −
∑n

i=1 XiΔ
∑n

i=1 X(i−1)Δ

n
∑n

i=1 X
2
(i−1)Δ − (

∑n
i=1 X(i−1)Δ)2

, (3.3)

α̂Δ =
∑n

i=1 XiΔ
∑n

i=1 X
2
(i−1)Δ −

∑n
i=1 X(i−1)Δ

∑n
i=1 XiΔX(i−1)Δ

n
∑n

i=1 X
2
(i−1)Δ − (

∑n
i=1 X(i−1)Δ)2

. (3.4)

Based on α̂Δ and β̂Δ, we can propose the least squares estimators of θ and μ as

θ̂Δ = 1
Δ log

∑n
i=1 XiΔX(i−1)Δ − 1

n

∑n
i=1 XiΔ

∑n
i=1 X(i−1)Δ∑n

i=1 X
2
(i−1)Δ − 1

n (
∑n

i=1 X(i−1)Δ)2
, (3.5)

μ̂Δ = θ̂Δ
α̂Δ

β̂Δ − 1
. (3.6)

Remark 3.1. Wang et al. [47] use the ergodic property of Xt to construct the
method-of-moment estimators of θ and μ when θ < 0. With θ > 0, the fOUp
is explosive and hence, non-ergodic. Consequently, the estimators for the drift
term of Wang et al. [47] are not applicable when θ > 0.

Remark 3.2. The proposed least squares estimators of θ and μ ignore the de-
pendence structure in the error term and are independent of the two diffusion
parameters. Later we will examine the efficiency loss in the least squares esti-
mators relative to the maximum likelihood estimators (MLE) that take account
of the dependence structure in the error term.

4If H is known to be less than 3/4, a more efficient estimator of H may be obtained from
first-order differences.

5We thank the reference for the estimator of H, by multiplying the numerator by 1
n−4 and

multiplying the denominator by 1
n−2 .
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3.2. Asymptotic properties

In this subsection, we develop the in-fill asymptotic theory for ĤΔ and σ̂Δ and
the double asymptotic theory for μ̂Δ and θ̂Δ. For ĤΔ and σ̂Δ, Theorem 4.1 of
Wang et al. [47] is directly applicable to fOUp with θ > 0. Hence, we state it
here with slightly re-phrasing but without proof.

Theorem 3.1. Let ĤΔ and σ̂Δ be the estimators defined in (3.1) and (3.2) for
model (2.1) with θ > 0. For any H ∈ (0, 1), when Δ → 0 with a fixed T > 0,
(a) ĤΔ

a.s.→ H and

√
n(ĤΔ −H) L→ N

(
0, Σ11 + Σ22 − 2Σ12

(2 log 2)2

)
; (3.7)

(b) σ̂Δ
a.s.→ σ and

√
n

log(Δ)(σ̂Δ − σ) L→ N
(

0, Σ11 + Σ22 − 2Σ12

(2 log 2)2 σ2
)
, (3.8)

where

Σ11 = 2 + 22−4H
∞∑
j=1

(ρj+2 + 4ρj+1 + 6ρj + 4ρ|j−1| + ρ|j−2|)2,

Σ12 = 21−2H

(
4(ρ1 + 1)2 + 2

∞∑
j=0

(ρj+2 + 2ρj+1 + ρj)2
)
,

Σ22 = 2 + 4
∞∑
j=1

ρ2
j ,

with

ρj = −|j + 2|2H + 4|j + 1|2H − 6|j|2H + 4|j − 1|2H − |j − 2|2H
2(4 − 22H) . (3.9)

Remark 3.3. Thanks to the Local Asymptotic Normal property of the likeli-
hoods for the fGn (see, [9]) and the Lipschitz condition of the drift part for the
fOUp, we can obtain the distribution for ĤΔ and σ̂Δ in the explosive fOUp based
on the idea of [9]. First, using Lemma 7.2 of [47] and the Lipschitz condition of
the drift part for the fOUp, we can see that

1√
n

⎛⎜⎜⎝
∑n−4

i=0

[(
XH

(i+4)Δ−2XH
(i+2)Δ+XH

iΔ
ΔH

)2

− 22H(4 − 22H)]
∑n−2

i=0

[(
XH

(i+2)Δ−2XH
(i+1)Δ+XH

iΔ
ΔH

)2

−
(
4 − 22H)]

⎞⎟⎟⎠
L→ N

⎛⎝(
0
0

)
, A0 +

∞∑
j=1

(
Aj + A�

j

)⎞⎠ , (3.10)
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where � denotes the transpose of the inverse matrix

Aj = 2
(
4 − 22H)2 ( 24Hρ2

j,∗ (ρj+2 + 2ρj+1 + ρj)2
(ρj + 2ρ|j−1| + ρ|j−2|)2 ρ2

j

)
,

ρj,∗ = 2−2H(ρj+2 + 4ρj+1 + 6ρj + 4ρ|j−1| + ρ|j−2|),

and ρj is defined by (3.9).
Second, for the joint distribution of ĤΔ and σ̂Δ, let us denote

f(u, v) =
(
h(u, v)
s(u, v)

)
where h(u, v) = 1

2 log2( v
u ), s(u, v) =

√
u

Δ2h(u,v)(4−22h(u,v)) .
Then, direct computations lead to

∂

∂u
f(u, v) =

( ∂
∂uh(u, v)

−s(u, v) log Δ ∂
∂uh(u, v) + g(u, v) ∂

∂uh(u, v) + 1
2s(u,v)w(u,v)

)
,

∂

∂v
f(u, v) =

(
∂
∂vh(u, v)

−s(u, v) log Δ ∂
∂vh(u, v) + g(u, v) ∂

∂vh(u, v)

)
,

where w(u, v) = Δ2h(u,v)(4 − 22h(u,v)), g(u, v) = s(u,v)22h(u,v) log 2
(4−22h(u,v)) .

Third, let ϑ = (H,σ)� and ϑ̂Δ = (ĤΔ, σ̂Δ)�. Choose u� = σ2Δ2H(4 − 22H)
and v� = σ2Δ2H22H(4 − 22H) such that

f
(
u�, v�

)
=
(
H
σ

)
.

Moreover, let ϕn(ϑ) be ϕn(H,σ) defined in Theorem 3.1 of [9]. Let v =
1

n−4
∑n−4

i=1 (X(i+4)Δ − 2X(i+2)Δ + XiΔ)2, u = 1
n−2

∑n−2
i=1 (X(i+2)Δ − 2X(i+1)Δ +

XiΔ)2. Then, using (3.10), the delta method and a standard calculation, we can
see that

ϕ−1
n (ϑ)(ϑ̂− ϑ)

= ϕ−1
n (ϑ)

(
f(u, v) − f

(
u�, v�

))
L→ N

⎛⎝(
0
0

)
,

(
aϑ bϑ
cϑ dϑ

)[
A0 +

∞∑
j=1

(
Aj + A�

j

)](aϑ bϑ
cϑ dϑ

)�
⎞⎠ , (3.11)

where

aϑ = 1
ω

[(
γ̄σ − ᾱ

σ22H log 2
4 − 22H

)
·
(
− 1

2 log 2σ2(4 − 22H)

)
− ᾱ

1
2σ(4 − 22H)

]
,

bϑ = 1
ω

(
γ̄σ − ᾱ

σ22H log 2
4 − 22H

)
·
(

1
2 log 2σ222H(4 − 22H)

)
,
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cϑ = 1
ω

[(
−γσ + α

σ22H log 2
4 − 22H

)
·
(
− 1

2 log 2σ2(4 − 22H)

)
+ α

1
2σ(4 − 22H)

]
,

dϑ = 1
ω

(
−γσ + α

σ22H log 2
4 − 22H

)
·
(

1
2 log 2σ222H(4 − 22H)

)
,

and α, ᾱ, γ and γ̄ are defined by (5) of [9].

In the following, we shall state the main results concerning the strong consis-
tency and the asymptotic distributions of θ̂Δ and μ̂Δ. First, we give the strong
consistency of θ̂Δ and μ̂Δ, as well as the asymptotic theory for θ̂Δ and μ̂Δ.

Theorem 3.2. Let Δ → 0 and log Δ
T → 0. If either (i) H = 1/2, or (ii)

H ∈ (1/2, 1) and T 2HΔ → 0, or (iii) H ∈ (0, 1/2) and T 2H+1Δ → 0, then we
have θ̂Δ

a.s.→ θ and

eθT

2θ (θ̂Δ − θ) L→
σ
√

HΓ(2H)
θH ν

X0 + μ
θ + σ

√
HΓ(2H)
θH ω

, (3.12)

where ν and ω are two independent standard normal variables.6

Theorem 3.3. Let Δ → 0 and (log Δ)3
T 2 → 0. If either (i) H = 1/2, or (ii)

H ∈ (1/2, 1) and T 2HΔ → 0, or (iii) H ∈ (0, 1/2) and T 2H+1Δ → 0, then we
have μ̂Δ

a.s.→ μ.

Second, based on Theorem 3.2, we can develop the following joint distribution
for θ̂Δ and μ̂Δ in the explosive fOUp.

Theorem 3.4. Let Δ → 0 and log Δ
T → 0. If either (i) H = 1/2, or (ii)

H ∈ (1/2, 1) and T 2HΔ → 0, or (iii) H ∈ (0, 1/2) and T 2H+1Δ → 0, then we
have (

eθT

2θ (θ̂Δ − θ), T 1−H(μ̂Δ − μ)
)

L→
(

σ
√

HΓ(2H)
θH ν

X0 + μ
θ + σ

√
HΓ(2H)
θH ω

, ση

)
,

where ν, ω and η are independent standard normal variables.

Remark 3.4. In the case of μ = 0, the least squares estimator of θ under the
continuous observations on [0, T ] is θ̃T =

∫ T
0 XtdXt∫ T
0 X2

t dt
[22]). The consistency and

asymptotic distribution properties of θ̃T have been studied thoroughly in both
the ergodic (θ < 0, [13, 15, 22, 24, 49]) and explosive (θ > 0, [49]) cases. On the
other hand, the discrete version of θ̃T is to replace dXt with (XiΔ −X(i−1)Δ),
and

∫ T

0 X2
t dt by Δ

∑n
i=1 X

2
(i−1)Δ, i.e. θ̃∗Δ = n

∑n
i=1 X(i−1)Δ(XiΔ−X(i−1)Δ)

Δ
∑n

i=1 X2
(i−1)Δ

. If the

fOUP X is ergodic (θ < 0), the asymptotic properties of θ̃∗Δ in the sense of
consistency and asymptotic distribution have been obtained [4, 10, 19, 23, 47].

6It is easy to see that L→ may be replaced with p→ in this theorem and subsequent theorem.
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If X is explosive (θ > 0), one may expect the estimator θ̃∗Δ keeps the asymptotic
distribution of θ̃T , i.e. eθT -rate of convergence in distribution as shown in Xiao
and Yu [49]. However, the answer is negative [6, 17, 25, 30, 42]:

eθT
(
θ̃∗Δ − θ

)
→ ∞,

√
T
(
θ̃∗Δ − θ

)
is tight.

To fix this problem, for explosive OU model driven by the standard Brownian
motion, Shimizu [43], Wang and Yu [48], Jiang et al. [27] introduce the least
squares estimator and consider the associated consistency, asymptotic distri-
bution properties and deviation properties. In our paper, we extend the OU
model of Shimizu [43], Wang and Yu [48] by replacing the standard Brownian
motion (H = 1/2) with the fractional Brownian motion (H ∈ (0, 1)). Moreover,
the parameter μ is also assumed to be unknown in our paper. For more details
on this topic, one can refer to [1, 5, 11, 14, 26, 29, 44, 45, 46] and the references
therein.

Remark 3.5. According to Theorem 3.2, the same asymptotic law holds for
the least squares estimator of θ regardless of H in the explosive fOUp. That
is, the rate of convergence is eθT and, if X0 = μ = 0, the limit distribution is
a standard Cauchy. However, from the technical proofs in the Appendix and
Online Supplement, it can be seen that we need to deal with the cases of H ∈
(1/2, 1), H = 1/2 and H ∈ (0, 1/2) separately. The result in Theorem 3.2
is in sharp contrast with that of the method-of-moments estimator of θ for the
stationary fOUp. Theorem 4.4 in Wang et al. [47] shows that the asymptotic law
for the method-of-moments estimator of θ changes as H passes 3/4. In particular,
when H ∈ (0, 3/4), the rate of convergence is

√
T and the limit distribution is

normal; when H = 3/4, the rate of convergence is
√
T/ log T and the limit

distribution is different normal; when H ∈ (3/4, 1), the rate of convergence is
T 2−2H and the limit distribution is the Rosenblatt random variable.

Remark 3.6. From Theorem 3.4, we can see that the asymptotic law of μ̂Δ
is normal, where the rate of convergence is T 1−H . Theorem 5 in Tanaka et al.
[44] states that the MLE of μ (denoted by μ̂MLE) based on a continuous-time
record is

T 1−H(μ̂MLE − μ) L→ N
(

0, σ2 2HΓ(3 − 2H)Γ(H + 1/2)
Γ(3/2 −H)

)
.

Comparing the above asymptotic theory with Theorem 3.4, we can see that the
rate of convergence of the least squares estimator of μ based on the discrete-
sampled data is identical to that of the MLE of μ based on a continuous-time
record. However, the least squares estimator of μ is less efficient than the MLE
of μ since the variance of MLE is smaller when H ∈ (0, 1/2) ∪ (1/2, 1) (i.e.,
2HΓ(3−2H)Γ(H+1/2)

Γ(3/2−H) < 1). This efficiency loss is expected as the least squares
estimator ignores the dependence in the error term. When H = 1/2, the two
variances are the same (i.e., 2HΓ(3−2H)Γ(H+1/2)

Γ(3/2−H) = 1). This is also expected
because, when H = 1/2, the error term becomes iid.
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Remark 3.7. As stated by [2], when the diffusion parameter is time varying,
(2.1) can be written as

dXt = (θXt + μ)dt + σtdB
H
t , (3.13)

where Hurst parameter H ∈ (0, 1), the volatility σt is a stochastic process with
βσ-Hölder continuous trajectories, where βσ > 1−H. Under this condition on σt,
the stochastic integral

∫ t

0 σsdB
H
s is well defined as a Young integral. It is obvious

that the drift function θXt + μ is Lipschitz continuous. Then Xt in (3.13) has
a unique solution under some boundedness conditions for the drift function. In
this situation, we can also estimate the Hurst parameter, H, by (3.1). However,
the asymptotic properties are complicated and left for future work. Let us also
mention that the time varying σt has no effect on the estimator of μ from (3.6).

Remark 3.8. From Theorem 3.2, we can see that the limiting distribution of
θ̂Δ − θ depends explicitly on the initial condition X0 (as well as μ/θ). This
dependence is the same as that in Wang and Yu [48]. The reason is that when
Δ → 0, the initial condition in model (2.7) is larger than those assumed in
Magdalinos [33] and in Lui et al. [32]. If X0 = −μ

θ in the fOUp, then the
limiting distribution of eθT

2θ (θ̂Δ − θ) is a standard Cauchy distribution, which is
the same as that obtained in Magdalinos [33] and in Lui et al. [32].

Remark 3.9. From Theorem 3.4, if Δ → 0 and log Δ
T → 0, under either (i) H =

1/2, or (ii) H ∈ (1/2, 1) and T 2HΔ → 0, or (iii) H ∈ (0, 1/2) and T 2H+1Δ → 0,
we can easily get

eθT

2θΔ(β̂Δ − βΔ) L→
σ
√

HΓ(2H)
θH ν

X0 + μ
θ + σ

√
HΓ(2H)
θH ω

, (3.14)

T 1−H

Δ (α̂Δ − αΔ) L→ ση, (3.15)

where ν, ω and η are defined by Theorem 3.4. If H = 1/2, the asymptotic theory
given in (3.14) and (3.15) becomes that given in Theorem 3.3 (a)–(b) in Wang
and Yu [48].

Remark 3.10. When H < 3/4, based on first-order differences, we can provide
a more efficient estimator of H as

H̃Δ = 1
2 log2

(∑n−2
i=1 (X(i+2)Δ −XiΔ)2∑n−1
i=1 (X(i+1)Δ −XiΔ)2

)
. (3.16)

Using similar arguments as Theorem 4.1 (a) in Wang et al. [47], we can obtain
H̃Δ

a.s.−→ H for H ∈ (0, 1). Moreover, for 0 < H < 3/4, when Δ → 0 with a fixed
T , we can get

√
n(H̃Δ −H) L→ N

(
0, Ω11 − 21+2HΩ12 + 24HΩ22

24H+2 log2(2)

)
, (3.17)
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Fig 1. Asymptotic variance of
√
n(ĤΔ −H) and

√
n(H̃Δ −H) as functions of H ∈ (0, 3/4).

where

Ω11 = 24H+1 +
∞∑
j=1

24H+2ρ̃2
j,∗, Ω22 = 2 +

∞∑
j=1

4ρ̃2
j ,

Ω12 = Ω21 = 24H−1 +
∞∑
j=1

[
2(ρ̃j+1 + ρ̃j)2 + 2(ρ̃|j−1| + ρ̃j)2

]
,

with

ρ̃j,∗ = 1
22H+1

[
|j − 2|2H + (j + 2)2H − 2j2H],

ρ̃j = 1
2
[
|j − 1|2H + (j + 1)2H − 2j2H].

When H = 1/2, a standard calculation shows that

Ω11 − 21+2HΩ12 + 24HΩ22 = 4.

Consequently, for H = 1/2, when Δ → 0 with a fixed T , we can obtain

√
n(H̃Δ −H) L→ N

(
0, 1

4 log2(2)

)
. (3.18)

Comparing Corollary 4.2 in Wang et al. [47] with (3.18), we can see that H̃Δ
is more efficient than ĤΔ for H = 1/2. Indeed, this conclusion holds true for
0 < H < 3/4. Figure 1 compares the asymptotic variance of

√
n(ĤΔ − H)

and that of
√
n(H̃Δ − H) for 0 < H < 3/4. When 0 < H < 3/4, it is more

efficient to estimate H via the first-order differences than via the second-order
differences. However, when H > 3/4, the central limit theorem of the first-order
differences does not hold. Whereas, we always have the central limit theorem
for the second-order differences.



3944 H. Jiang et al.

Remark 3.11. Remark 3.10 suggests a two-step procedure to estimate the
Hurst parameter for the fOUp. Thus, we first test the hypothesis H0 : H ≥ 3/4
versus H1 : H < 3/4 using the estimator ĤΔ and the asymptotic distribution
of (3.7). Then, if H0 is not rejected, we use the estimator ĤΔ proposed in (3.1).
Otherwise, if H0 is rejected and H1 is accepted, we can use H̃Δ proposed in
(3.16) for the sake of efficiency.

4. Simulation studies

In this section, we conduct Monte Carlo simulations to evaluate the finite sample
performance of the proposed estimator and the derived asymptotic limit theory.
Following Wang and Yu [48] and Chen et al. [12], we first examine the sensitivity
of the Monte Carlo empirical distribution (MCED) of θ̂Δ and β̂Δ with respect
to the initial condition and to μ. We then check the finite sample properties
(3.12) and (3.14).

For this purpose, we simulate 10,000 sample paths from model (2.1) with
θ = 2, σ = 1 and μ = 0. However, we allow H to take different values,
0.15, 0.35, 0.55, 0.75. The first two values imply anti-persistent errors while the
last two values imply long-memory errors. We set the sampling interval Δ =
1/252, 1/52, 1/12, the time span T = 10, the initial value X0 ∈ {0, 3.5, 10}.
For each simulated path, we estimate θ by (3.5) and calculate eθT

2θ (θ̂Δ − θ).
Moreover, we also estimate β by (3.3) and calculate eθT

2θΔ (β̂Δ − β). We report
percentiles at levels {1%, 2.5%, 10%, 90%, 97.5%, 99%} in the limit distributions
of (3.12) and (3.14). Tables 2–4 report the percentiles of the Cauchy asymptotic
distribution, the newly derived asymptotic distributions, and the Monte Carlo
empirical distribution when X0 = 0, 3.5, 10, respectively.

When X0 = 0, since μ = 0, the newly derived asymptotic distribution be-
comes the Cauchy asymptotic distribution. Table 2 only report the percentiles
of the Cauchy asymptotic distribution and the finite sample distributions. It
is clear that the Monte Carlo empirical distributions are close to the Cauchy
asymptotic distribution.

When X0 	= 0, the newly derived asymptotic distribution is different from the
Cauchy asymptotic distribution. From Table 3, when X0 = 3.5, it is clear that
the Monte Carlo empirical distributions are sensitive to the change of the ini-
tial condition and very far away from the Cauchy asymptotic distribution. For
example, the 1 percentile of the Cauchy asymptotic distribution is −31.8205
while the 1 percentiles of the finite sample distribution move around −0.4. In
sharp contrast, the 1 percentile of the newly derived asymptotic distribution
is −0.4388, suggesting the newly derived asymptotic distribution yields good
approximations to the finite sample distributions. From Table 4, when X0 = 10,
the finite sample distributions are even further away from the Cauchy asymp-
totic distribution. Whereas, the newly derived asymptotic distribution yields
good approximations to the Monte Carlo empirical distributions.

Next, we investigate the sensitivity of the Monte Carlo empirical distribution
of θ̂ and β̂ with respect to the value of μ. For this purpose, we set θ = 1, σ = 0.2,
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Table 2

This table reports six percentiles of the Cauchy distribution and the Monte Carlo empirical
distribution of eθT

2θ (θ̂Δ − θ) and eθT

2θΔ (β̂Δ − β) when μ = 0 and X0 = 0.

Percentiles 1% 2.5% 10% 90% 97.5% 99%
Cauchy Asym. −31.8205 −12.7062 −3.0777 3.0777 12.7062 31.8205

H = 0.15

Δ = 1/252 MCEDθ −39.9078 −13.9255 −3.0534 3.0426 11.6275 28.0315
MCEDβ −39.9073 −13.9253 −3.0533 3.0426 11.6273 28.0312

Δ = 1/52 MCEDθ −30.3777 −12.4841 −2.9167 3.1683 12.8068 36.0481
MCEDβ −30.3702 −12.4810 −2.9160 3.1675 12.8037 36.0392

Δ = 1/12 MCEDθ −34.8777 −15.4491 −3.6273 3.6117 15.5121 39.6442
MCEDβ −34.7167 −15.3778 −3.6106 3.5951 15.4405 39.4613

H = 0.35

Δ = 1/252 MCEDθ −24.0441 −12.2667 −3.0488 3.0094 12.8997 32.8611
MCEDβ −24.0438 −12.2666 −3.0487 3.0093 12.8996 32.8607

Δ = 1/52 MCEDθ −28.2827 −11.7502 −2.9669 3.2007 12.2671 29.8610
MCEDβ −28.2757 −11.7474 −2.9662 3.1999 12.2641 29.8536

Δ = 1/12 MCEDθ −35.1576 −14.5487 −3.5612 3.6065 14.4238 37.9829
MCEDβ −34.9954 −14.4816 −3.5448 3.5898 14.3572 37.8076

H = 0.55

Δ = 1/252 MCEDθ −31.6969 −13.8355 −3.0380 2.9457 12.8903 31.5700
MCEDβ −31.6966 −13.8353 −3.0379 2.9456 12.8902 31.5696

Δ = 1/52 MCEDθ −30.6575 −13.2005 −3.1697 3.2053 12.6823 31.7275
MCEDβ −30.6500 −13.1973 −3.1689 3.2045 12.6792 31.7197

Δ = 1/12 MCEDθ −33.2604 −13.7933 −3.4648 3.5866 17.0857 40.2489
MCEDβ −33.1069 −13.7297 −3.4488 3.5700 17.0069 40.0631

H = 0.75

Δ = 1/252 MCEDθ −29.8430 −12.2791 −2.8160 3.1137 13.7555 35.4082
MCEDβ −29.8427 −12.2790 −2.8160 3.1137 13.7553 35.4078

Δ = 1/52 MCEDθ −31.0889 −13.5346 −3.1458 3.3624 13.4632 33.0715
MCEDβ −31.0812 −13.5313 −3.1450 3.3616 13.4599 33.0634

Δ = 1/12 MCEDθ −35.3672 −13.8410 −3.3564 3.7404 14.9353 40.5611
MCEDβ −35.2040 −13.7772 −3.3409 3.7231 14.8664 40.3739

Table 3

The Cauchy distribution, the new asymptotic distribution and the Monte Carlo empirical
distribution of eθT

2θ (θ̂Δ − θ) and eθT

2θΔ (β̂Δ − β) when μ = 0 and X0 = 3.5.

Percentiles 1% 2.5% 10% 90% 97.5% 99%
Cauchy Asym. −31.8205 −12.7062 −3.0777 3.0777 12.7062 31.8205

New Asym. −0.4388 −0.3595 −0.2269 0.2271 0.3593 0.4374

H = 0.15

Δ = 1/252 MCEDθ −0.4129 −0.3442 −0.2178 0.2089 0.3237 0.3918
MCEDβ −0.4129 −0.3442 −0.2178 0.2089 0.3237 0.3918

Δ = 1/52 MCEDθ −0.4013 −0.3335 −0.2138 0.2088 0.3272 0.3977
MCEDβ −0.4012 −0.3335 −0.2138 0.2088 0.3271 0.3976

Δ = 1/12 MCEDθ −0.5114 −0.4090 −0.2602 0.2608 0.4093 0.5026
MCEDβ −0.5090 −0.4071 −0.2590 0.2596 0.4074 0.5003

New Asym. −0.3761 −0.3106 −0.1977 0.1976 0.3100 0.3750

H = 0.35

Δ = 1/252 MCEDθ −0.3240 −0.2667 −0.1697 0.1645 0.2538 0.3060
MCEDβ −0.3240 −0.2667 −0.1697 0.1645 0.2538 0.3060

Δ = 1/52 MCEDθ −0.2958 −0.2502 −0.1620 0.1605 0.2454 0.3014
MCEDβ −0.2957 −0.2501 −0.1619 0.1604 0.2453 0.3013

Δ = 1/12 MCEDθ −0.4283 −0.3529 −0.2254 0.2240 0.3526 0.4463
MCEDβ −0.4263 −0.3513 −0.2243 0.2229 0.3510 0.4442

New Asym. −0.3481 −0.2882 −0.1841 0.1843 0.2881 0.3473

H = 0.55

Δ = 1/252 MCEDθ −0.2715 −0.2251 −0.1448 0.1370 0.2123 0.2507
MCEDβ −0.2715 −0.2251 −0.1448 0.1370 0.2123 0.2507

Δ = 1/52 MCEDθ −0.2417 −0.2044 −0.1328 0.1302 0.1993 0.2387
MCEDβ −0.2416 −0.2043 −0.1328 0.1301 0.1992 0.2386

Δ = 1/12 MCEDθ −0.3958 −0.3259 −0.2091 0.2072 0.3232 0.3983
MCEDβ −0.3940 −0.3244 −0.2081 0.2062 0.3217 0.3965

New Asym. −0.3407 −0.2822 −0.1805 0.1807 0.2822 0.3400

H = 0.75

Δ = 1/252 MCEDθ −0.2447 −0.2016 −0.1293 0.1204 0.1844 0.2206
MCEDβ −0.2447 −0.2016 −0.1293 0.1204 0.1844 0.2206

Δ = 1/52 MCEDθ −0.2159 −0.1792 −0.1154 0.1100 0.1649 0.2025
MCEDβ −0.2159 −0.1792 −0.1154 0.1100 0.1649 0.2024

Δ = 1/12 MCEDθ −0.4022 −0.3268 −0.2068 0.1980 0.3044 0.3595
MCEDβ −0.4003 −0.3253 −0.2058 0.1970 0.3030 0.3579
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Table 4

The Cauchy distribution, the new asymptotic distribution and the Monte Carlo empirical
distribution of eθT

2θ (θ̂Δ − θ) and eθT

2θΔ (β̂Δ − β) when μ = 0 and X0 = 10.

Percentiles 1% 2.5% 10% 90% 97.5% 99%
Cauchy Asym. −31.8205 −12.7062 −3.0777 3.0777 12.7062 31.8205

New Asym. −0.1421 −0.1192 −0.0777 0.0777 0.1192 0.1417

H = 0.15

Δ = 1/252 MCEDθ −0.1379 −0.1129 −0.0745 0.0717 0.1088 0.1291
MCEDβ −0.1378 −0.1129 −0.0745 0.0717 0.1088 0.1291

Δ = 1/52 MCEDθ −0.1330 −0.1127 −0.0733 0.0717 0.1084 0.1325
MCEDβ −0.1329 −0.1127 −0.0733 0.0717 0.1084 0.1324

Δ = 1/12 MCEDθ −0.1642 −0.1383 −0.0896 0.0899 0.1374 0.1621
MCEDβ −0.1634 −0.1377 −0.0892 0.0895 0.1367 0.1613

New Asym. −0.1243 −0.1043 −0.0681 0.0680 0.1043 0.1240

H = 0.35

Δ = 1/252 MCEDθ −0.1087 −0.0902 −0.0587 0.0565 0.0863 0.1018
MCEDβ −0.1087 −0.0902 −0.0587 0.0565 0.0863 0.1018

Δ = 1/52 MCEDθ −0.1002 −0.0853 −0.0560 0.0557 0.0839 0.1010
MCEDβ −0.1001 −0.0853 −0.0560 0.0557 0.0838 0.1009

Δ = 1/12 MCEDθ −0.1411 −0.1209 −0.0778 0.0771 0.1192 0.1421
MCEDβ −0.1405 −0.1203 −0.0774 0.0767 0.1186 0.1415

New Asym. −0.1160 −0.0974 −0.0636 0.0635 0.0974 0.1157

H = 0.55

Δ = 1/252
MCEDθ −0.0907 −0.0768 −0.0498 0.0478 0.0728 0.0863
MCEDβ −0.0907 −0.0768 −0.0498 0.0478 0.0728 0.0863

Δ = 1/52 MCEDθ −0.0817 −0.0712 −0.0458 0.0455 0.0690 0.0816
MCEDβ −0.0817 −0.0712 −0.0458 0.0455 0.0690 0.0816

Δ = 1/12 MCEDθ −0.1310 −0.1103 −0.0729 0.0712 0.1094 0.1309
MCEDβ −0.1304 −0.1098 −0.0725 0.0708 0.1089 0.1303

New Asym. −0.1138 −0.0955 −0.0624 0.0623 0.0955 0.1135

H = 0.75

Δ = 1/252 MCEDθ −0.0807 −0.0690 −0.0444 0.0425 0.0648 0.0753
MCEDβ −0.0807 −0.0690 −0.0443 0.0425 0.0648 0.0753

Δ = 1/52 MCEDθ −0.0728 −0.0607 −0.0399 0.0386 0.0583 0.0713
MCEDβ −0.0727 −0.0607 −0.0398 0.0386 0.0583 0.0713

Δ = 1/12 MCEDθ −0.1303 −0.1089 −0.0702 0.0698 0.1064 0.1265
MCEDβ −0.1297 −0.1084 −0.0698 0.0695 0.1059 0.1259

X0 = 0, μ = −0.7. Table 5 reports the percentiles of the Monte Carlo empir-
ical distribution, the Cauchy asymptotic distribution, and the new asymptotic
distribution. Compared with Table 2, Table 5 suggests that the Monte Carlo em-
pirical distributions are sensitive to the change of μ and far away to the Cauchy
asymptotic distribution. Whereas, the newly derived asymptotic distribution
yields good approximations to the Monte Carlo empirical distributions.

Thirdly, we conduct Monte Carlo simulations to evaluate the finite sample
performance of the derived asymptotic distributions of ĤΔ, μ̂Δ and σ̂Δ. In
particular, we obtain the Monte Carlo empirical distributions of the following
statistics:

Φ
ĤΔ

=
√
n(ĤΔ −H), Φσ̂Δ =

√
n

log(Δ)(σ̂Δ − σ), Φμ̂Δ = T 1−H(μ̂Δ − μ). (4.1)

To simulate data, we set θ = 0.2, σ = 0.2 and μ = −1 and allow H to take
different values in the range of (0, 1). For convenience, we choose the sampling
interval Δ = 1/252 and the time span T = 10 with 10,000 simulated sample
paths from model (2.1). We then report the mean, variance, skewness and kur-
tosis of the Monte Carlo empirical distributions of Φ

ĤΔ
, Φσ̂Δ and Φμ̂Δ and those

of the asymptotic standard normal distributions (i.e., N (0, 1)) in Table 7. As
we can see from Table 7, the derived asymptotic distributions well approximate
the Monte Carlo empirical distributions for all three parameters.
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Table 5

The Cauchy asymptotic distribution, the new asymptotic distribution and the Monte Carlo
empirical distribution of eθT

2θ (θ̂Δ − θ) and eθT

2θΔ (β̂Δ − β) when μ = −0.7 and X0 = 0.
Percentiles 1% 2.5% 10% 90% 97.5% 99%

Cauchy Asym. −31.8205 −12.7062 −3.0777 3.0777 12.7062 31.8205

H = 0.15

New Asym. −0.4981 −0.4052 −0.2529 0.2540 0.4065 0.4980

Δ = 1/252 MCEDθ −0.4972 −0.4154 −0.2692 0.2730 0.4379 0.5303
MCEDβ −0.4972 −0.4154 −0.2692 0.2730 0.4379 0.5303

Δ = 1/52 MCEDθ −0.4679 −0.3919 −0.2484 0.2575 0.4309 0.5121
MCEDβ −0.4679 −0.3918 −0.2484 0.2575 0.4309 0.5120

Δ = 1/12 MCEDθ −0.5212 −0.4326 −0.2814 0.2945 0.4784 0.5960
MCEDβ −0.5206 −0.4321 −0.2811 0.2942 0.4778 0.5954

H = 0.35

New Asym. −0.5021 −0.4082 −0.2546 0.2557 0.4094 0.5020

Δ = 1/252 MCEDθ −0.4407 −0.3700 −0.2385 0.2486 0.4001 0.4907
MCEDβ −0.4407 −0.3700 −0.2385 0.2486 0.4001 0.4907

Δ = 1/52 MCEDθ −0.4011 −0.3414 −0.2206 0.2322 0.3753 0.4605
MCEDβ −0.4011 −0.3413 −0.2206 0.2321 0.3752 0.4605

Δ = 1/12 MCEDθ −0.5097 −0.4187 −0.2731 0.3011 0.4910 0.6077
MCEDβ −0.5091 −0.4183 −0.2728 0.3007 0.4904 0.6070

H = 0.55

New Asym. −0.5495 −0.4438 −0.2746 0.2757 0.4451 0.5495

Δ = 1/252 MCEDθ −0.4051 −0.3355 −0.2192 0.2414 0.3822 0.4775
MCEDβ −0.4051 −0.3355 −0.2192 0.2414 0.3822 0.4775

Δ = 1/52 MCEDθ −0.3635 −0.3015 −0.2001 0.2102 0.3467 0.4197
MCEDβ −0.3634 −0.3015 −0.2001 0.2102 0.3467 0.4197

Δ = 1/12 MCEDθ −0.5142 −0.4193 −0.2746 0.3147 0.5312 0.6669
MCEDβ −0.5136 −0.4188 −0.2743 0.3144 0.5306 0.6661

H = 0.75

New Asym. −0.6460 −0.5142 −0.3126 0.3139 0.5155 0.6462

Δ = 1/252 MCEDθ −0.3563 −0.2932 −0.1950 0.2209 0.3552 0.4257
MCEDβ −0.3563 −0.2932 −0.1950 0.2209 0.3552 0.4257

Δ = 1/52 MCEDθ −0.3037 −0.2620 −0.1710 0.1842 0.3025 0.3641
MCEDβ −0.3037 −0.2620 −0.1710 0.1842 0.3025 0.3640

Δ = 1/12 MCEDθ −0.4819 −0.4023 −0.2627 0.3191 0.5614 0.7115
MCEDβ −0.4814 −0.4018 −0.2624 0.3187 0.5608 0.7106

For testing the influence of the sampling interval, we choose the sampling
interval Δ = 1/52 and Δ = 1/12. Moreover we set H ∈ {0.1, 0.3, 0.6, 0.8} and
other parameters are the same as those in Table 7. Table 6 provides mean,
variance, skewness and kurtosis of the Monte Carlo empirical distributions of
Φ

ĤΔ
, Φσ̂Δ and Φμ̂Δ and those of the asymptotic standard normal distributions.

From Table 6, we can see that both Φ
ĤΔ

and Φσ̂Δ is a little different from the
standard normal distribution. Hence, we can obtain that the smaller of Δ, more
accurate of ĤΔ, σ̂Δ and μ̂Δ.

Finally, we investigate the effect of the time varying diffusion parameter on
estimates of μ̂Δ proposed by (3.6) and ĤΔ proposed by (3.1). To simulate data,
we set θ = 0.2, μ = −1 and H ∈ {0.1, 0.3, 0.6, 0.8}. The time varying diffusion
parameters used are σt =

√
t and σt = sin(t). For convenience, we choose the

sampling interval Δ = 1/252 and the time span T = 10 with 10,000 simulated
sample paths from model (2.1). Similarly, we provide the mean, variance, skew-
ness and kurtosis of the Monte Carlo empirical distributions of Φ

ĤΔ
and Φμ̂Δ

and those of the asymptotic standard normal distributions (i.e., N (0, 1)) in Ta-
ble 8. As we can see from Table 8, the derived asymptotic distributions well
approximate the Monte Carlo empirical distributions for time varying diffusion
parameters.

5. Empirical studies

To illustrate the usefulness of the proposed model and the derived limit distri-
bution in practice, we consider an empirical study. Our study is motivated from
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Table 6

Mean, variance, skewness and kurtosis of Φ
ĤΔ

, Φσ̂Δ , Φμ̂Δ in (4.1) and the standard
normal limiting distribution with Δ = 1/252.

Value of H Statistics Mean Variance Skewness Kurtosis
N (0,1) 0 1 0 3

H = 0.1
Φ

ĤΔ
−0.017311 0.923305 −0.013949 3.024885

Φσ̂Δ 0.022569 0.888150 −0.091405 3.176769
Φμ̂Δ 0.0315831 1.062469 −0.163131 3.570116

H = 0.2
Φ

ĤΔ
−0.019234 0.953352 −0.007881 2.991773

Φσ̂Δ 0.064560 0.927148 −0.087279 3.172227
Φμ̂Δ 0.044777 0.938544 0.108009 3.096121

H = 0.3
Φ

ĤΔ
−0.020780 0.925791 −0.006025 2.978431

Φσ̂Δ 0.029536 0.933122 −0.086998 3.168624
Φμ̂Δ 0.033007 0.952455 −0.096756 3.131023

H = 0.4
Φ

ĤΔ
−0.022140 0.929721 −0.007054 2.979255

Φσ̂Δ 0.030560 1.085842 −0.089672 3.268379
Φμ̂Δ −0.015380 0.915075 0.058212 2.962478

H = 0.5
Φ

ĤΔ
−0.011831 0.934033 −0.029452 3.108228

Φσ̂Δ −0.065678 1.022217 −0.035021 3.207613
Φμ̂Δ −0.140621 0.922738 −0.084704 3.231211

H = 0.6
Φ

ĤΔ
−0.022225 0.942600 −0.014839 2.991179

Φσ̂Δ 0.075118 0.911895 −0.053187 3.217130
Φμ̂Δ −0.029949 1.036335 −0.083410 3.278550

H = 0.7
Φ

ĤΔ
−0.013036 0.952611 −0.021022 2.991612

Φσ̂Δ 0.081108 0.942304 −0.051543 3.299545
Φμ̂Δ −0.018987 1.039631 −0.070227 2.896728

H = 0.8
Φ

ĤΔ
0.039712 0.967824 −0.027516 2.986774

Φσ̂Δ 0.061376 0.945947 −0.167950 3.281394
Φμ̂Δ −0.016915 1.056022 0.040067 2.856668

Phillips et al. [39] where explosiveness is found in the monthly Nasdaq between
January 1990 to June 2000 when a pure AR(1) model is fitted. In our study,
Model (2.1) is fitted to the monthly price-dividend ratio of Nasdaq between
January 1990 to June 2000 with Δ = 1/12, T = 10.5, n = 126, and X0 = 1.7753
(which is the price-dividend ratio of Nasdaq in December 1989).7

We estimate H,σ, θ, μ using (3.1), (3.2), (3.5) and (3.6), respectively. The
point estimates and their corresponding 90% confidence intervals based on
the derived asymptotic distributions are reported in Table 9. Since the es-
timated θ is greater than zero, model (2.1) is relevant and the asymptotic
theory developed in this paper is applicable. From Table 9, we can see that
the 90% confidence interval of θ excludes zero, which implies explosiveness.
Moreover, the point estimate of H is much smaller than 0.5, implying anti-
persistence in the error term. The evidence of anti-persistence is statistically
significant.

7The data are obtained from https://www.nasdaq.com/market-activity/index/comp

https://www.nasdaq.com/market-activity/index/comp
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Table 7

Mean, variance, skewness and kurtosis of Φ
ĤΔ

, Φσ̂Δ , Φμ̂Δ in (4.1) and the standard
normal limiting distribution with Δ = 1/52 and Δ = 1/12.

Value of H Statistics Mean Variance Skewness Kurtosis
N (0,1) 0 1 0 3

Δ = 1/52

H = 0.1
Φ

ĤΔ
−0.027001 0.933378 −0.033449 3.073117

Φσ̂Δ 0.065119 0.903888 −0.066673 3.703790
Φμ̂Δ −0.062120 0.932149 0.028473 3.004746

H = 0.3
Φ

ĤΔ
0.073222 0.932350 −0.030244 3.024067

Φσ̂Δ 0.089004 0.879408 −0.182250 4.322952
Φμ̂Δ −0.005251 0.892314 0.023862 2.981330

H = 0.6
Φ

ĤΔ
0.060516 1.187440 0.041642 2.998527

Φσ̂Δ −0.066142 1.150020 −0.258197 4.639454
Φμ̂Δ 0.000291 0.939629 0.020138 2.999654

H = 0.8
Φ

ĤΔ
0.043335 1.271114 0.043377 2.850611

Φσ̂Δ −0.089881 1.105603 0.162334 2.936305
Φμ̂Δ 0.000233 0.970088 0.015274 3.013257

Δ = 1/12

H = 0.1
Φ

ĤΔ
−0.012826 0.928770 −0.112388 2.965402

Φσ̂Δ −0.050260 0.940998 −0.231826 4.880821
Φμ̂Δ −0.016434 0.981458 0.030186 3.018325

H = 0.3
Φ

ĤΔ
0.079236 0.922651 −0.092458 2.925360

Φσ̂Δ −0.095521 0.940193 −0.121790 5.061145
Φμ̂Δ −0.031046 0.960453 0.030111 2.940064

H = 0.6
Φ

ĤΔ
0.164374 0.990257 −0.082454 3.001363

Φσ̂Δ −0.068967 0.977749 −0.543642 5.026407
Φμ̂Δ −0.002422 0.968370 0.056569 3.075413

H = 0.8
Φ

ĤΔ
0.026784 1.106585 0.080360 2.598159

Φσ̂Δ 0.026791 1.290227 0.872756 7.735156
Φμ̂Δ 0.007610 0.963467 0.232312 3.951518

Table 8

Mean, variance, skewness and kurtosis of Φ
ĤΔ

, Φμ̂Δ and the standard normal limiting
distribution with σt =

√
t and σt = sin(t).

Value of H Statistics Mean Variance Skewness Kurtosis
N (0,1) 0 1 0 3

σt =
√
t

H = 0.1 Φ
ĤΔ

−0.011914 1.067501 −0.035781 2.953839
Φμ̂Δ −0.081175 1.098299 0.057418 3.036918

H = 0.3 Φ
ĤΔ

−0.014314 1.065272 −0.031240 2.969305
Φμ̂Δ 0.093090 1.084782 −0.033541 3.177708

H = 0.6 Φ
ĤΔ

−0.018544 1.081048 −0.029286 3.005216
Φμ̂Δ 0.055843 1.077630 0.063124 2.947798

H = 0.8 Φ
ĤΔ

−0.003935 1.108419 −0.034659 2.991984
Φμ̂Δ −0.001668 1.082284 −0.105158 3.037013

σt = sin(t)

H = 0.1 Φ
ĤΔ

0.008673 1.114837 0.031816 3.035688
Φμ̂Δ 0.083700 0.976268 −0.083029 3.196050

H = 0.3 Φ
ĤΔ

0.005612 1.109477 −0.014354 3.072120
Φμ̂Δ 0.069933 1.121313 −0.027690 3.066687

H = 0.6 Φ
ĤΔ

0.003653 1.106876 −0.010307 3.066465
Φμ̂Δ 0.029138 1.037571 −0.059882 3.174537

H = 0.8 Φ
ĤΔ

0.025356 1.056075 −0.017431 3.042485
Φμ̂Δ 0.002881 0.980997 0.111312 3.124255
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Table 9

Empirical results for the monthly price-dividend ratio of Nasdaq.

Ĥ σ̂ μ̂ θ̂
0.1206 0.9879 0.8759 0.0521

(−0.1429, 0.3842) (0.8831, 1.0927) (0.6293, 1.1225) (0.0460, 0.0582)

6. Conclusions

In recent years, the fOUp has been used to model the realized volatility in
financial time series. Moreover, the discrete-time representation of fOUp has
been used to model equity price (Lui et al. [31, 32]). In this paper, we introduce
estimators for all four parameters in fOUp. The estimators of two diffusion
parameters are the same as those in Wang et al. [47]. The estimators of two
drift parameters are based on the least squares method. The asymptotic theory
for the diffusion estimators are established under the in-fill asymptotic scheme.
The asymptotic theory for the drift estimators are established under the double
asymptotic scheme for explosive fOUp with a full range of the Hurst parameter.

Our double asymptotic theory contributes to the literature in two aspects.
First, our theory permits explicit consideration of the effects from the initial
condition. Monte Carlo evidence suggests that the new asymptotic theory pro-
vides a better approximation to the Monte Carlo empirical distribution than
the limit theory that is independent of the initial condition. Second, our theory
works for the full range value of H ∈ (0, 1). Our asymptotic distribution for θ
is the same whether H < 1/2 or H > 1/2.

Our simulation studies show that the Monte Carlo empirical distribution
of θ is indeed very sensitive to the change of the initial condition and that
our asymptotic distribution can well approximate the Monte Carlo empirical
distribution not only for θ but also for other parameters in the model.

Appendix A: Proofs of Theorems 3.2–3.4

In order to give the proofs to Theorems 3.2–3.4, we first establish some crucial
useful lemmas and propositions.

A.1. Technical lemmas

Let αH = H(2H−1). The following four lemmas relate to the explicit fractional
calculus, which will play an important role in our analysis. They may have
independent interests. The proofs of Lemma A.3 and A.4 are postponed to the
supplementary material file [28] for the readability of the paper.

Lemma A.1. Assume H ∈ (1/2, 1). Let Δ → 0 and T → ∞. Then we have

αH

n∑
i=1

n∑
j=1

e−2θT e2θiΔe2θjΔ
∫ iΔ

(i−1)Δ

∫ jΔ

(j−1)Δ
e−θte−θs|t−s|2H−2dtds → HΓ(2H)

θ2H .

(A.1)
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Proof. A standard calculation shows

αH

n∑
i,j=1

∑
j �=i

e−2θT e2θiΔe2θjΔ
∫ iΔ

(i−1)Δ

∫ jΔ

(j−1)Δ
e−θte−θs|t− s|2H−2dtds

= 2αH

n∑
i=1

n∑
j=i+1

e−2θT eθ(i+j+2)Δ
∫ Δ

0

∫ Δ

0
e−θte−θs|t− s + jΔ − iΔ|2H−2dtds

∼ 2αH

n∑
i=1

n∑
j=i+1

e−2θT eθiΔeθjΔe2θΔ
∫ Δ

0

∫ Δ

0
|t− s + jΔ − iΔ|2H−2dsdt

=
n∑

i=1

n+1∑
j=i+2

e−2θT eθiΔeθjΔeθΔ(jΔ − iΔ)2H

− 2
n∑

i=1

n∑
j=i+1

e−2θT eθiΔeθjΔe2θΔ(jΔ − iΔ)2H

+
n∑

i=1

n−1∑
j=i+1

e−2θT eθiΔeθjΔe3θΔ(jΔ − iΔ)2H

=
n∑

i=1

n∑
j=i+1

e−2θT eθiΔeθjΔeθΔ
(
1 + e2θΔ − 2eθΔ

)
(jΔ − iΔ)2H

−
n∑

i=1
e−2θT e2θiΔe2θΔΔ2H +

n∑
i=1

e−θT eθiΔe2θΔ(nΔ + Δ − iΔ)2H

−
n∑

i=1
e−θT eθiΔe3θΔ(nΔ − iΔ)2H

=
n∑

i=1

n∑
j=i+1

e−2θT eθiΔeθjΔeθΔ
(
1 + e2θΔ − 2eθΔ

)
(jΔ − iΔ)2H

− e4θΔ(1 − e−2θT )
e2θΔ − 1 Δ2H +

n∑
i=1

e−θiΔe3θΔ(iΔ)2H −
n−1∑
i=1

e−θiΔe3θΔ(iΔ)2H

=
n∑

i=1

n∑
j=i+1

e−2θT eθiΔeθjΔeθΔ
(
1 + e2θΔ − 2eθΔ

)
(jΔ − iΔ)2H

− e4θΔ(1 − e−2θT )
e2θΔ − 1 Δ2H + e−θT e3θΔT 2H

∼ θ2
n∑

i=1

n∑
j=i+1

e−2θT eθiΔeθjΔ(jΔ − iΔ)2HΔ2 − 1 − e−2θT

2θ Δ2H−1 + e−θTT 2H

∼ θ2
∫ T

0

∫ T

s

e−2θT eθteθs(t− s)2Hdtds + o(1),

where for the first ‘∼’, e−θte−θs is approximated as 1, which is because e−2θΔ ≤
e−θte−θs ≤ 1 for t, s ∈ [0,Δ].
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Furthermore, we can obtain

θ2
∫ T

0

∫ T

s

e−2θT eθteθs(t− s)2Hdtds

= θ2
∫ T

0

∫ T−s

0
e−2θT eθte2θst2Hdtds

= θ2
∫ T

0

∫ T−t

0
e−2θT eθte2θst2Hdsdt

= θ

2

∫ T

0
e−2θT (e2θT e−2θt − 1

)
eθtt2Hdt

= θ

2

∫ T

0
e−θtt2Hdt− θ

2e
−2θT

∫ T

0
eθtt2Hdt

∼ θ

2

∫ T

0
e−θtt2Hdt− 1

2e
−θTT 2H → HΓ(2H)

θ2H , as T → ∞ and Δ → 0.

When j = i, it is easy to see that

αH

n∑
i=1

e−2θT e4θiΔ
∫ iΔ

(i−1)Δ

∫ iΔ

(i−1)Δ
e−θte−θs|t− s|2H−2dtds

= αH

n∑
i=1

e−2θT e2θiΔe2θΔ
∫ Δ

0

∫ Δ

0
e−θte−θs|t− s|2H−2dtds

∼
n∑

i=1
e−2θT e2θiΔe2θΔΔ2H = O

(
Δ2H−1).

Hence, the proof of this lemma is completed.

Lemma A.2. Assume H ∈ (0, 1/2). Let Δ → 0 and T → ∞. Then we have
n∑

i=1

n∑
j=1

e−2θT e2θ(i+j)Δ
(
θ

∫ jΔ

(j−1)Δ

∫ iΔ

(i−1)Δ
e−θte−θs ∂R(t, s)

∂t
dtds

+
∫ iΔ

(i−1)Δ
e−θt

(
e−θjΔ ∂R(t, jΔ)

∂t
− e−θ(j−1)Δ ∂R(t, (j − 1)Δ)

∂t

)
dt

)
→ HΓ(2H)

θ2H , (A.2)

where R(t, s) is defined by (2.2).

Proof. Firstly, we can see that

θ

∫ jΔ

(j−1)Δ

∫ iΔ

(i−1)Δ
e−θte−θs ∂R(t, s)

∂t
dtds

+
∫ iΔ

(i−1)Δ
e−θt

(
e−θjΔ ∂R(t, jΔ)

∂t
− e−θ(i−1)Δ ∂R(t, (j − 1)Δ)

∂t

)
dt
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= θ

∫ Δ

0

∫ Δ

0
e−θ(t+(i−1)Δ)e−θ(s+(j−1)Δ) ∂R(t + (i− 1)Δ, s + (j − 1)Δ)

∂t
dtds

+
∫ Δ

0
e−θ(t+(i−1)Δ)e−θjΔ ∂R(t + (i− 1)Δ, jΔ)

∂t
dt

−
∫ Δ

0
e−θ(t+(i−1)Δ)e−θ(j−1)Δ ∂R(t + (i− 1)Δ, (j − 1)Δ)

∂t
dt

= θe−θ(i+j−2)Δ
∫ Δ

0

∫ Δ

0
e−θ(t+s) ∂

1
2 (|t+(i−1)Δ|2H−|t−s+iΔ−jΔ|2H)

∂t
dtds

+ e−θiΔe−θjΔeθΔ
∫ Δ

0
e−θt ∂

1
2 (|t + (i− 1)Δ|2H − |t + iΔ − jΔ − Δ|2H)

∂t
dt

− e−θiΔe−θjΔe2θΔ
∫ Δ

0
e−θt ∂

1
2 (|t + (i− 1)Δ|2H − |t + iΔ − jΔ|2H)

∂t
dt

= e−θiΔe−θjΔe2θΔ
∫ Δ

0
e−θt ∂

1
2 |t + iΔ − jΔ|2H

∂t
dt

− e−θiΔe−θjΔeθΔ
∫ Δ

0
e−θt ∂

1
2 |t + iΔ − jΔ − Δ|2H

∂t
dt

− θe−θiΔe−θjΔe2θΔ
∫ Δ

0

∫ Δ

0
e−θte−θs ∂

1
2 |t− s + iΔ − jΔ|2H

∂t
dtds. (A.3)

Using (A.3), we can obtain
n∑

i=1

n∑
j=1

e−2θT e2θ(i+j)Δ
(
θ

∫ jΔ

(j−1)Δ

∫ iΔ

(i−1)Δ
e−θte−θs ∂R(t, s)

∂t
dtds

+
∫ iΔ

(i−1)Δ
e−θt

(
e−θjΔ ∂R(t, jΔ)

∂t
− e−θ(j−1)Δ ∂R(t, (j − 1)Δ)

∂t

)
dt

)
=

n∑
i=1

n∑
j=1

e−2θT eθiΔeθjΔe2θΔ
∫ Δ

0
e−θt ∂

1
2 |t + iΔ − jΔ|2H

∂t
dt

−
n∑

i=1

n∑
j=1

e−2θT eθiΔeθjΔeθΔ
∫ Δ

0
e−θt ∂

1
2 |t + iΔ − jΔ − Δ|2H

∂t
dt

− θ

n∑
i=1

n∑
j=1

e−2θT eθiΔeθjΔe2θΔ
∫ Δ

0

∫ Δ

0
e−θte−θs ∂

1
2 |t− s + iΔ − jΔ|2H

∂t
dtds

=
n∑

i=1

n∑
j=1

e−2θT eθiΔeθjΔe2θΔ
∫ Δ

0
e−θt ∂

1
2 |t + iΔ − jΔ|2H

∂t
dt

−
n∑

i=1

n+1∑
j=2

e−2θT eθiΔeθjΔ
∫ Δ

0
e−θt ∂

1
2 |t + iΔ − jΔ|2H

∂t
dt

− θ

n∑
i=1

n∑
j=1

e−2θT eθiΔeθjΔe2θΔ
∫ Δ

0

∫ Δ

0
e−θte−θs ∂

1
2 |t− s + iΔ − jΔ|2H

∂t
dtds
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=
n∑

i=1

n∑
j=1

e−2θT eθiΔeθjΔ
(
e2θΔ − 1

) ∫ Δ

0
e−θt ∂

1
2 |t + iΔ − jΔ|2H

∂t
dt

−
n∑

i=1
e−θT eθiΔeθΔ

∫ Δ

0
e−θt ∂

1
2 |t + iΔ − nΔ − Δ|2H

∂t
dt

+
n∑

i=1
e−2θT eθiΔeθΔ

∫ Δ

0
e−θt ∂

1
2 |t + iΔ − Δ|2H

∂t
dt

− θ

n∑
i=1

n∑
j=1

e−2θT eθiΔeθjΔe2θΔ
∫ Δ

0

∫ Δ

0
e−θte−θs ∂

1
2 |t− s + iΔ − jΔ|2H

∂t
dtds

= −
n∑

i=1
e−θiΔe2θΔ

∫ Δ

0
e−θt ∂

1
2 | − t + iΔ|2H

∂t
dt

+
n−1∑
i=0

e−2θT eθiΔe2θΔ
∫ Δ

0
e−θt ∂

1
2 |t + iΔ|2H

∂t
dt

+
n∑

i=1

n∑
j=1

e−2θT eθiΔeθjΔ
(
e2θΔ − 1

) ∫ Δ

0
e−θt ∂

1
2 |t + iΔ − jΔ|2H

∂t
dt

− θ

n∑
i=1

n∑
j=1

e−2θT eθiΔeθjΔe2θΔ
∫ Δ

0

∫ Δ

0
e−θte−θs ∂

1
2 |t− s + iΔ − jΔ|2H

∂t
dtds

=: J1n + J2n + J3n, (A.4)

where

J1n = −
n∑

i=1
e−θiΔe2θΔ

∫ Δ

0
e−θt ∂

1
2 | − t + iΔ|2H

∂t
dt

+
n−1∑
i=0

e−2θT eθiΔe2θΔ
∫ Δ

0
e−θt ∂

1
2 |t + iΔ|2H

∂t
dt,

J2n =
n∑

i=1

n∑
j=1

e−2θT eθiΔeθjΔ
(
e2θΔ − 1

) ∫ Δ

0
e−θt ∂

1
2 |t + iΔ − jΔ|2H

∂t
dt,

J3n = −θ

n∑
i=1

n∑
j=1

e−2θT eθ(i+j+2)Δ
∫ Δ

0

∫ Δ

0
e−θ(t+s) ∂

1
2 |t− s + iΔ − jΔ|2H

∂t
dtds.

First, for J1n, we have

−
n∑

i=1
e−θiΔe2θΔ

∫ Δ

0
e−θt ∂

1
2 | − t + iΔ|2H

∂t
dt

+
n−1∑
i=0

e−2θT eθiΔe2θΔ
∫ Δ

0
e−θt ∂

1
2 |t + iΔ|2H

∂t
dt
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∼ 1
2

n∑
i=1

e−θiΔe2θΔ[(iΔ)2H − (iΔ − Δ)2H
]

+ 1
2

n−1∑
i=0

e−2θT eθiΔe2θΔ[(iΔ + Δ)2H − (iΔ)2H
]

= 1
2

n∑
i=1

e−θiΔe2θΔ(iΔ)2H − 1
2

n−1∑
i=1

e−θiΔeθΔ(iΔ)2H

− 1
2

n∑
i=1

e−2θT eθiΔeθΔ(iΔ)2H + 1
2

n∑
i=1

e−2θT eθiΔe2θΔ(iΔ)2H

= 1
2

n∑
i=1

e−θiΔeθΔ
(
eθΔ − 1

)
(iΔ)2H + 1

2e
−θT eθΔT 2H

− 1
2

n∑
i=1

e−2θT eθiΔeθΔ
(
eθΔ − 1

)
(iΔ)2H + 1

2e
−θT e2θΔT 2H

∼ θ

2

∫ T

0
e−θtt2Hdt− θ

2e
−2θT

∫ T

0
eθtt2Hdt + o(1)

= θ

2

∫ T

0
e−θtt2Hdt + o(1) → HΓ(2H)

θ2H . (A.5)

Second, for J2n, we can see that
n∑

i=1

n∑
j=1

e−2θT eθiΔeθjΔ
(
e2θΔ − 1

) ∫ Δ

0
e−θt ∂

1
2 |t + iΔ − jΔ|2H

∂t
dt

= H

n∑
i=1

i−1∑
j=1

e−2θT eθiΔeθjΔ
(
e2θΔ − 1

) ∫ Δ

0
e−θt(t + iΔ − jΔ)2H−1dt

+ H

n∑
i=1

e−2θT e2θiΔ(e2θΔ − 1
) ∫ Δ

0
e−θtt2H−1dt

−H

n∑
i=1

n∑
j=i+1

e−2θT eθiΔeθjΔ
(
e2θΔ − 1

) ∫ Δ

0
e−θt(−t + jΔ − iΔ)2H−1dt

∼ H
n∑

i=1

i−1∑
j=1

e−2θT eθiΔeθjΔ
(
e2θΔ − 1

) ∫ Δ

0
(t + iΔ − jΔ)2H−1dt

+ H

n∑
i=1

e−2θT e2θiΔ(e2θΔ − 1
) ∫ Δ

0
t2H−1dt

−H
n∑

i=1

n∑
j=i+1

e−2θT eθiΔeθjΔ
(
e2θΔ − 1

) ∫ Δ

0
(−t + jΔ − iΔ)2H−1dt

= 1
2

n∑
i=1

i−1∑
j=1

e−2θT eθiΔeθjΔ
(
e2θΔ − 1

)[
(iΔ − jΔ + Δ)2H − (iΔ − jΔ)2H

]
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+ 1
2e

2θΔ(1 − e−2θT )Δ2H

− 1
2

n∑
i=1

n∑
j=i+1

e−2θT eθiΔeθjΔ
(
e2θΔ − 1

)[
(jΔ − iΔ)2H − (jΔ − iΔ − Δ)2H

]
= 1

2

n∑
i=1

n∑
j=i+1

e−2θT eθiΔeθjΔ
(
e2θΔ − 1

)[
(jΔ − iΔ + Δ)2H − 2(jΔ − iΔ)2H

+ (jΔ − iΔ − Δ)2H
]
+ 1

2e
2θΔ(1 − e−2θT )Δ2H

= 1
2

n∑
i=1

n∑
j=i+1

e−2θT eθiΔeθjΔe−θΔ(e2θΔ − 1
)(

1 + e2θΔ − 2eθΔ
)
(jΔ − iΔ)2H

+ 1
2

n∑
i=1

e−θiΔeθΔ
(
e2θΔ − 1

)
(iΔ)2H − 1

2

n−1∑
i=1

e−θiΔeθΔ
(
e2θΔ − 1

)
(iΔ)2H

∼ θ3
n∑

i=1

n∑
j=i+1

e−2θT eθiΔeθjΔe−θΔ(jΔ − iΔ)2HΔ3 + 1
2e

−θT eθΔ
(
e2θΔ − 1

)
T 2H

= o(1). (A.6)

Third, for J3n, it follows that

− θ

n∑
i=1

n∑
j=1

e−2θT eθiΔeθjΔe2θΔ
∫ Δ

0

∫ Δ

0
e−2θΔ ∂ 1

2 |t− s + iΔ − jΔ|2H
∂t

dtds

≤ −θ

n∑
i=1

n∑
j=1

e−2θT eθiΔeθjΔe2θΔ
∫ Δ

0

∫ Δ

0
e−θte−θs ∂

1
2 |t− s + iΔ − jΔ|2H

∂t
dtds

≤ −θ

n∑
i=1

n∑
j=1

e−2θT eθiΔeθjΔe2θΔ
∫ Δ

0

∫ Δ

0

∂ 1
2 |t− s + iΔ − jΔ|2H

∂t
dtds

here, the first term equals to

− θH

n∑
i=1

i−1∑
j=1

e−2θT eθiΔeθjΔe2θΔ
∫ Δ

0

∫ Δ

0
e−θte−θs(t− s + iΔ − jΔ)2H−1dtds

+ θH
n∑

i=1

n∑
j=i+1

e−2θT eθiΔeθjΔe2θΔ
∫ Δ

0

∫ Δ

0
e−θte−θs(−t + s + jΔ − iΔ)2H−1dtds

− θ

n∑
i=1

e−2θT e2θiΔe2θΔ
∫ Δ

0

∫ Δ

0
e−θte−θs ∂

1
2 |t− s|2H

∂t
dtds

∼ −θH

n∑
i=1

i−1∑
j=1

e−2θT eθiΔeθjΔe2θΔ
∫ Δ

0

∫ Δ

0
(t− s + iΔ − jΔ)2H−1dtds

+ θH

n∑
i=1

n∑
j=i+1

e−2θT eθiΔeθjΔe2θΔ
∫ Δ

0

∫ Δ

0
(−t + s + jΔ − iΔ)2H−1dtds
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= −θ

2

n∑
i=1

i−1∑
j=1

e−2θT eθiΔeθjΔe2θΔ[(iΔ − jΔ + Δ)2H+1 − 2(iΔ − jΔ)2H+1

+ (iΔ − jΔ − Δ)2H+1]
+ θ

2

n∑
i=1

n∑
j=i+1

e−2θT eθiΔeθjΔe2θΔ[(jΔ − iΔ + Δ)2H+1 − 2(jΔ − iΔ)2H+1

+ (jΔ − iΔ − Δ)2H+1]
= 0. (A.7)

The last term also equals to 0. By Sandwich Theorem, we have J3 ∼ 0. Together
with (A.4)–(A.6), we complete the proof of this lemma.

Lemma A.3. Assume H ∈ (1/2, 1). Let Δ → 0 and T → ∞. Then we have the
following results

(i) αH

n∑
i=1

n∑
j=1

e−θT e2θiΔ
∫ iΔ

(i−1)Δ

∫ jΔ

(j−1)Δ
e−θte−θs|t− s|2H−2dtds

∼ θT 2HΔ + Te−θTΔ2H−1 + o(1), (A.8)

(ii) αH

n∑
i=1

n∑
j=1

eθ(i+j)Δ
∫ iΔ

(i−1)Δ

∫ jΔ

(j−1)Δ
e−θ(t+s)|t− s|2H−2dtds

∼ T 2H + o
(
T 2H), (A.9)

(iii) αH

n∑
i=1

n∑
j=1

eθiΔ
∫ iΔ

(i−1)Δ

∫ jΔ

(j−1)Δ
e−θ(t+s)|t− s|2H−2dtds

∼ θ

2T
2HΔ + θHT 2H−1 + O(1), (A.10)

(iv) αH

n∑
i=1

n∑
j=1

e−θT eθ(i+2j)Δ
∫ iΔ

(i−1)Δ

∫ jΔ

(j−1)Δ
e−θ(t+s)|t− s|2H−2dtds

∼ θ

2T
2HΔ + θHT 2H−1 + O(1). (A.11)

Lemma A.4. Assume H ∈ (0, 1/2). Let Δ → 0 and T → ∞. Then we have the
following statements

(i)
n∑

i=1

n∑
j=1

e−θT e2θiΔ
(
θ

∫ jΔ

(j−1)Δ

∫ iΔ

(i−1)Δ
e−θte−θs ∂R(t, s)

∂t
dtds

+
∫ iΔ

(i−1)Δ
e−θt

(
e−θjΔ ∂R(t, jΔ)

∂t
− e−θ(j−1)Δ ∂R(t, (j − 1)Δ)

∂t

)
dt

)
∼ − θ2

2H + 1T
2H+1Δ + θ

2T
2HΔ + o(1), (A.12)

(ii)
n∑

i=1

n∑
j=1

eθ(i+j)Δ
(
θ

∫ jΔ

(j−1)Δ

∫ iΔ

(i−1)Δ
e−θte−θs ∂R(t, s)

∂t
dtds



3958 H. Jiang et al.

+
∫ iΔ

(i−1)Δ
e−θt

(
e−θjΔ ∂R(t, jΔ)

∂t
− e−θ(j−1)Δ ∂R(t, (j − 1)Δ)

∂t

)
dt

)
∼ T 2H + o

(
T 2H), (A.13)

(iii)
n∑

i=1

n∑
j=1

eθiΔ
(
θ

∫ jΔ

(j−1)Δ

∫ iΔ

(i−1)Δ
e−θte−θs ∂R(t, s)

∂t
dtds

+
∫ iΔ

(i−1)Δ
e−θt

(
e−θjΔ ∂R(t, jΔ)

∂t
− e−θ(j−1)Δ ∂R(t, (j − 1)Δ)

∂t

)
dt

)
∼ − θ

2(2H + 1)T
2H+1Δ + O(1), (A.14)

(iv)
n∑

i=1

n∑
j=1

e−θT eθ(i+2j)Δ
(
θ

∫ jΔ

(j−1)Δ

∫ iΔ

(i−1)Δ
e−θte−θs ∂R(t, s)

∂t
dtds

+
∫ iΔ

(i−1)Δ
e−θt

(
e−θjΔ ∂R(t, jΔ)

∂t
− e−θ(j−1)Δ ∂R(t, (j − 1)Δ)

∂t

)
dt

)
= O

(
T 2H+1Δ

)
+ O(1). (A.15)

A.2. Useful lemmas, propositions and their proofs

Now, we rewrite θ̂Δ and μ̂Δ as

θ̂Δ = θ + 1
Δ log

(
1 + e−θΔUT

VT

)
, (A.16)

μ̂Δ = μ + (θ̂Δ − θ)
(
μ

θ
+ MT

NT

)
+ θ

MT

NT
, (A.17)

where

UT = σ

n∑
i=1

εiΔX(i−1)Δ − σ
1
n

n∑
i=1

εiΔ

n∑
i=1

X(i−1)Δ, (A.18)

VT =
n∑

i=1
X2

(i−1)Δ − 1
n

(
n∑

i=1
X(i−1)Δ

)2

, (A.19)

MT = σ

n∑
i=1

εiΔ

n∑
i=1

X2
(i−1)Δ + σ

μ

θ

n∑
i=1

εiΔ

n∑
i=1

X(i−1)Δ

− σ
μ

θ
n

n∑
i=1

εiΔX(i−1)Δ − σ
n∑

i=1
X(i−1)Δ

n∑
i=1

εiΔX(i−1)Δ, (A.20)

NT = n
(
eθΔ − 1

) n∑
i=1

X2
(i−1)Δ −

(
eθΔ − 1

)( n∑
i=1

X(i−1)Δ

)2

− σ
n∑

i=1
εiΔ

n∑
i=1

X(i−1)Δ + σn
n∑

i=1
εiΔX(i−1)Δ. (A.21)
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Moreover, let

ŨT = σ

n∑
i=1

e−θ(n−i)ΔεiΔ = σ

n∑
i=1

e−θT e2θiΔ
∫ iΔ

(i−1)Δ
e−θsdBH

s , (A.22)

X̃T = e−θTXT = X0 + μ

θ

(
1 − e−θT

)
+ σ

∫ T

0
e−θsdBH

s , (A.23)

ΞT = T−H
n∑

i=1
εiΔ. (A.24)

Then, in Proposition A.1, we present further expansions for the terms UT ,
VT , MT and NT , which play crucial roles in our analysis.

Propostion A.1. Let UT , VT , MT , NT , ŨT , X̃T and ΞT be defined by
(A.18)–(A.24), respectively. Then, we have

e−θ(T+Δ)UT = e−2θΔŨT X̃T + R1n, (A.25)(
1 − e−2θΔ)e−2θTVT = e−2θΔX̃2

(n−1)Δ −R2n, (A.26)

T−H
(
1 − e−2θΔ)e−2θTMT = σe−2θΔΞT X̃

2
(n−1)Δ −R3n, (A.27)(

n
(
eθΔ − 1

))−1(1 − e−2θΔ)e−2θTNT = e−2θΔX̃2
(n−1)Δ −R4n, (A.28)

where the remainder terms R1n, R2n, R3n and R4n are defined as

R1n = σe−2θΔ
n∑

i=1
e−θ(T−iΔ)εiΔ(X̃(i−1)Δ − X̃T )

− σ
e−θ(T+Δ)

n

n∑
i=1

εiΔ

n∑
i=1

X(i−1)Δ, (A.29)

R2n = e−2θΔ
n∑

i=2
e−2θ(T−iΔ+Δ)(X̃2

(i−1)Δ − X̃2
(i−2)Δ

)
+ e−2θΔe−2θT X̃2

0

+ (1 − e−2θΔ)e−2θT

n

(
n∑

i=1
X(i−1)Δ

)2

, (A.30)

R3n = σΞT

[
e−2θΔ

n∑
i=2

e−2θ(T−iΔ+Δ)(X̃2
(i−1)Δ − X̃2

(i−2)Δ
)

+ e−2θΔe−2θT X̃2
0

]

− σ
μ

θ

(
1 − e−2θΔ)e−2θTΞT

n∑
i=1

X(i−1)Δ + e−2θΔe−2θT X̃2
0

+ σ
μ

θ
nT−H

(
1 − e−2θΔ)e−2θT

n∑
i=1

εiΔX(i−1)Δ

+ σT−H
(
1 − e−2θΔ)e−2θT

n∑
i=1

X(i−1)Δ

n∑
i=1

εiΔX(i−1)Δ, (A.31)
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R4n = e−2θΔ
n∑

i=2
e−2θ(T−iΔ+Δ)(X̃2

(i−1)Δ − X̃2
(i−2)Δ

)
+ e−2θΔe−2θT X̃2

0

+ 1
n

(
1 − e−2θΔ)e−2θT

(
n∑

i=1
X(i−1)Δ

)2

+ σ
(1 − e−2θΔ)e−2θT

n(eθΔ − 1)

n∑
i=1

εiΔ

n∑
i=1

X(i−1)Δ

− σ
(1 − e−2θΔ)e−2θT

eθΔ − 1

n∑
i=1

εiΔX(i−1)Δ. (A.32)

Proof. Firstly, we can write

σe−θ(T+Δ)
n∑

i=1
εiΔX(i−1)Δ

= e−2θΔŨT X̃T + σe−2θΔ
n∑

i=1
e−θ(T−iΔ)εiΔ(X̃(i−1)Δ − X̃T ), (A.33)

where ŨT and X̃T are defined by (A.22) and (A.23), respectively. Then, together
with (A.18) and (A.33), we can easily obtain (A.25). We can see that

(
1 − e−2θΔ)e−2θT

n∑
i=1

X2
(i−1)Δ

= e−2θΔX̃2
(n−1)Δ − e−2θΔ

n∑
i=2

e−2θ(n−i+1)Δ(X̃2
(i−1)Δ − X̃2

(i−2)Δ
)
. (A.34)

Together with (A.19), we have (A.26). Furthermore, combining (A.20), (A.21)
and (A.26), we can obtain (A.27) and (A.28) easily.

The following four lemmas characterize the relationship between ŨT , X̃T and
ΞT , whose proofs are postponed to the supplementary material file [28] for the
readability of this paper.

Lemma A.5. Let Δ → 0, T → ∞. If (i) H = 1/2, (ii) H ∈ (1/2, 1) and
T 2HΔ → 0, or (iii) H ∈ (0, 1/2) and T 2H+1Δ → 0, then we have E(ŨT X̃T )→0.

Proof. Case 1: H ∈ (0, 1/2). By Lemma A.4 and T 2H+1Δ → 0, we can get

E(ŨT X̃T )

= σ2
n∑

i=1

n∑
j=1

e−θT e2θiΔ
E

(∫ iΔ

(i−1)Δ
e−θsdBH

s

∫ jΔ

(j−1)Δ
e−θsdBH

s

)

= σ2
n∑

i=1

n∑
j=1

e−θT e2θiΔ
(
θ

∫ jΔ

(j−1)Δ

∫ iΔ

(i−1)Δ
e−θte−θs ∂R(t, s)

∂t
dtds
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+
∫ iΔ

(i−1)Δ
e−θt

(
e−θjΔ ∂R(t, jΔ)

∂t
− e−θ(j−1)Δ ∂R(t, (j − 1)Δ)

∂t

)
dt

)
→ 0. (A.35)

Case 2: H = 1/2. By (A.22) and (A.23), we have

E(ŨT X̃T ) = E

(
σ2

n∑
i=1

e−θT e2θiΔ
(∫ iΔ

(i−1)Δ
e−θsdBs

)2
)

= σ2
n∑

i=1
e−θT e2θiΔ

∫ iΔ

(i−1)Δ
e−2θsds

= σ2

2θ

n∑
i=1

e−θT
(
e2θΔ − 1

)
→ 0, (A.36)

as T → ∞ and Δ → 0.
Case 3: H ∈ (1/2, 1). From (A.22), (A.23), Lemma A.3 and T 2HΔ → 0, we

can write the following result immediately,

E(ŨT X̃T )

= σ2
n∑

i=1

n∑
j=1

e−θT e2θiΔ
E

(∫ iΔ

(i−1)Δ
e−θsdBH

s

∫ jΔ

(j−1)Δ
e−θsdBH

s

)

= σ2αH

n∑
i=1

n∑
j=1

e−θT e2θiΔ
∫ iΔ

(i−1)Δ

∫ jΔ

(j−1)Δ
e−θ(s+r)|s− r|2H−2dsdr

→ 0. (A.37)

Using (A.35)–(A.37), we complete the proof of this lemma.

Lemma A.6. Let Δ → 0 and T → ∞. If (i) H = 1/2, (ii) H ∈ (1/2, 1) and
THΔ → 0, or (iii) H ∈ (0, 1/2) and TH+1Δ → 0, then we have E(ΞT X̃T ) → 0.

Proof. Case 1: H ∈ (0, 1/2). By Lemma A.4 and TH+1Δ → 0, it holds that

E(ΞT X̃T )

= σT−H
n∑

i=1

n∑
j=1

E

(
eθiΔ

∫ iΔ

(i−1)Δ
e−θsdBH

s

∫ jΔ

(j−1)Δ
e−θsdBH

s

)

= σT−H
n∑

i=1

n∑
j=1

eθiΔ
(
θ

∫ jΔ

(j−1)Δ

∫ iΔ

(i−1)Δ
e−θte−θs ∂R(t, s)

∂t
dtds

+
∫ iΔ

(i−1)Δ
e−θt

(
e−θjΔ ∂R(t, jΔ)

∂t
− e−θ(j−1)Δ ∂R(t, (j − 1)Δ)

∂t

)
dt

)
→ 0, (A.38)
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Case 2: H = 1/2. Straightforward calculations lead to

E(ΞT X̃T ) = σT−1/2
n∑

i=1
eθiΔE

(∫ iΔ

(i−1)Δ
e−θsdBs

)2

= σT−1/2
n∑

i=1
eθiΔ

∫ iΔ

(i−1)Δ
e−2θsds

= σ
T−1/2

2θ
(e2θΔ − 1)(1 − e−θT )

eθΔ − 1 → 0, (A.39)

as T → ∞ and Δ → 0.
Case 3: H ∈ (1/2, 1). By Lemma A.3 and THΔ → 0, it holds

E(ΞT X̃T )

= σT−H
n∑

i=1

n∑
j=1

E

(
eθiΔ

∫ iΔ

(i−1)Δ
e−θsdBH

s

∫ jΔ

(j−1)Δ
e−θsdBH

s

)

= σαHT−H
n∑

i=1

n∑
j=1

eθiΔ
∫ iΔ

(i−1)Δ

∫ jΔ

(j−1)Δ
e−θ(s+r)|s− r|2H−2dsdr

→ 0,

which together with (A.38) and (A.39) completes the proof of this lemma.

Lemma A.7. Let Δ → 0 and T → ∞. If (i) H = 1/2, (ii) H ∈ (1/2, 1) and
THΔ → 0, or (iii) H ∈ (0, 1/2) and TH+1Δ → 0, then we have E(ΞT ŨT ) → 0.

Proof. Case 1: H ∈ (0, 1/2). By Lemma A.4 and TH+1Δ → 0, it holds that

E

(
ΞT

n∑
j=1

e−θ(n−j)ΔεjΔ

)

= T−H
n∑

i=1

n∑
j=1

e−θT eθ(i+2j)Δ
E

(∫ iΔ

(i−1)Δ
e−θsdBH

s

∫ jΔ

(j−1)Δ
e−θsdBH

s

)

= T−H
n∑

i=1

n∑
j=1

e−θT eθ(i+2j)Δ
(
θ

∫ jΔ

(j−1)Δ

∫ iΔ

(i−1)Δ
e−θte−θs ∂R(t, s)

∂t
dtds

+
∫ iΔ

(i−1)Δ
e−θt

(
e−θjΔ ∂R(t, jΔ)

∂t
− e−θ(j−1)Δ ∂R(t, (j − 1)Δ)

∂t

)
dt

)
→ 0. (A.40)

Case 2: H = 1/2. It follows that

E(ΞT ŨT ) = σE

(
T−1/2

n∑
i=1

εiΔ

n∑
j=1

e−θ(n−j)ΔεjΔ

)
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= σT−1/2
n∑

i=1
e−θT e3θiΔ

E

(∫ iΔ

(i−1)Δ
e−θsdWs

)2

= σ
eθΔ

2θ T−1/2 e
2θΔ − 1
eθΔ − 1

(
1 − e−θT

)
= O

(
T−1/2). (A.41)

Case 3: H ∈ (1/2, 1). By Lemma A.3 and TH+1Δ → 0, we have

E

(
ΞT

n∑
j=1

e−θ(n−j)ΔεjΔ

)

= T−H
n∑

i=1

n∑
j=1

e−θT eθ(i+2j)Δ
E

(∫ iΔ

(i−1)Δ
e−θsdBH

s

∫ jΔ

(j−1)Δ
e−θsdBH

s

)

= αHT−H
n∑

i=1

n∑
j=1

e−θT eθ(i+2j)Δ
∫ iΔ

(i−1)Δ

∫ jΔ

(j−1)Δ
e−θ(s+r)|s− r|2H−2dsdr

→ 0. (A.42)

Together with (A.40), (A.41) and (A.42), we complete the proof of this lemma.

Lemma A.8. Let Δ → 0 and T → ∞. Then for any m < 1, we have

Tm 1
n
e−θT

n∑
i=1

X(i−1)Δ
a.s.→ 0.

Proof. First, using (2.6), we can write

X(i−1)Δ = X0e
θ(i−1)Δ + μ

θ

(
eθ(i−1)Δ−1

)
+σeθ(i−1)Δ

∫ (i−1)Δ

0
e−θsdBH

s . (A.43)

It is obvious that
n∑

i=1
X(i−1)Δ −

[(
X0 + μ

θ

)
1 − eθT

1 − eθΔ
− μ

θ
n

]
∼ N

(
0, σ2∑n

i=1 X(i−1)Δ

)
, (A.44)

where σ2∑n
i=1 X(i−1)Δ

= E(
∑n

i=1 σe
θ(i−1)Δ ∫ (i−1)Δ

0 e−θsdBH
s )2.

Case 1: H = 1/2. We can deduce that, as n → ∞

σ2∑n
i=1 X(i−1)Δ

= σ2
n∑

i=1
e2θ(i−1)Δ

∫ (i−1)Δ

0
e−2θsds

+ 2σ2
n∑

i=1

n∑
j=i+1

eθ(i−1)Δeθ(j−1)Δ
∫ (i−1)Δ

0
e−2θsds
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= σ2

2θ

n∑
i=1

e2θ(i−1)Δ(1 − e−2θ(i−1)Δ)
+ σ2

θ

n∑
i=1

n∑
j=i+1

eθ(i−1)Δeθ(j−1)Δ(1 − e−2θ(i−1)Δ)
= σ2

2θ

(
1 − e2θT

1 − e2θΔ − n

)
+ σ2

θ(eθΔ − 1)

[
eθT

(
1 − eθT

1 − eθΔ
− 1 − e−θT

1 − e−θΔ

)
− (1 − e2θT )eθΔ

1 − e2θΔ + neθΔ
]

≤ Ce2θTΔ−2. (A.45)

Case 2: H ∈ (0, 1/2) ∪ (1/2, 1). Using the Cauchy-Schwarz inequality, we
have

σ2∑n
i=1 X(i−1)Δ

= σ2
n∑

i=1

n∑
j=1

eθ(i−1)Δeθ(j−1)Δ
E

(∫ (i−1)Δ

0
e−θsdBH

s

∫ (j−1)Δ

0
e−θsdBH

s

)

≤ σ2
n∑

i=1

n∑
j=1

eθ(i−1)Δeθ(j−1)Δ
E

∣∣∣∣∫ (i−1)Δ

0
e−θsdBH

s

∫ (j−1)Δ

0
e−θsdBH

s

∣∣∣∣
≤ σ2

n∑
i=1

n∑
j=1

eθ(i−1)Δeθ(j−1)Δ
(
E

(∫ (i−1)Δ

0
e−θsdBH

s

)2)1/2

·
(
E

(∫ (j−1)Δ

0
e−θsdBH

s

)2)1/2

≤ σ2
n∑

i=1

n∑
j=1

eθ(i−1)Δeθ(j−1)Δ
(
E

(∫ ∞

0
e−θsdBH

s

)2)

= σ2HΓ(2H)
θ2H

(
1 − eθT

1 − eθΔ

)2
≤ Ce2θTΔ−2. (A.46)

Using (A.45) and (A.46), for H ∈ (0, 1), we have

σ2∑n
i=1 X(i−1)Δ

≤ Ce2θTΔ−2. (A.47)

Note that

Tm 1
n
e−θT

n∑
i=1

X(i−1)Δ

= Tm 1
n
e−θTσ∑n

i=1 X(i−1)Δ

1
σ∑n

i=1 X(i−1)Δ

·
{

n∑
i=1

X(i−1)Δ −
[(

X0 + μ

θ

)
1 − eθT

1 − eθΔ
− μ

θ
n

]}
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+ Tm 1
n
e−θT

[(
X0 + μ

θ

)
1 − eθT

1 − eθΔ
− μ

θ
n

]
(A.48)

and by (A.47), we can get

Tm 1
n
e−θTσ∑n

i=1 X(i−1)Δ ≤ CTm−1,

Tm 1
n
e−θT

[(
X0 + μ

θ

)
1 − eθT

1 − eθΔ
− μ

θ
n

]
≤ CTm−1 − CTme−θT .

Therefore, we have

P

(∣∣∣∣∣Tm 1
n
e−θT

n∑
i=1

X(i−1)Δ

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

{
−Cε2T 2−2m},

which implies that

∞∑
n=1

P

(∣∣∣∣∣Tm 1
n
e−θT

n∑
i=1

X(i−1)Δ

∣∣∣∣∣ ≥ ε

)
< ∞.

By the Borel-Cantelli lemma, we complete the proof of this lemma.

Propostion A.2. Let Δ → 0 and T → ∞. Then, we have

ŨT
L→ σ

√
HΓ(2H)
θH

ν, X̃T
a.s.→ X̃∞, ΞT

L→ η. (A.49)

Moreover, if (i) H = 1/2, (ii) H ∈ (1/2, 1) and T 2HΔ → 0, or (iii) H ∈ (0, 1/2)
and T 2H+1Δ → 0„ then we have

(ŨT , X̃T ,ΞT ) L→
(
σ

√
HΓ(2H)
θH

ν,X0 + μ

θ
+ σ

√
HΓ(2H)
θH

ω, η

)
, (A.50)

where ν, ω and η are independent standard normal variables, and X̃∞ = X0 +
μ
θ + σ

∫∞
0 e−θsdBH

s .

Proof. (i). We first consider the limiting distribution for ŨT . Since ŨT is a
Gaussian process, for any n and Δ > 0, we have ŨT

d= σŨT
N (0, 1), where σŨT

denotes the standard deviation of ŨT . Thus, it is sufficient to show as Δ →
0, T → ∞

σ2
ŨT

= σ2
n∑

i=1

n∑
j=1

e−2θT e2θ(i+j)Δ
E

(∫ iΔ

(i−1)Δ
e−θsdBH

s

∫ jΔ

(j−1)Δ
e−θsdBH

s

)

→ σ

√
HΓ(2H)
θH

.
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Case 1: H ∈ (0, 1/2). Using Lemma A.2, as Δ → 0, T → ∞, we get

σ2
ŨT

= σ2
n∑

i=1

n∑
j=1

e−2θT e2θ(i+j)Δ
E

(∫ iΔ

(i−1)Δ
e−θsdBH

s

)(∫ jΔ

(j−1)Δ
e−θsdBH

s

)

= σ2
n∑

i=1

n∑
j=1

e−2θT e2θ(i+j)Δ
(
θ

∫ jΔ

(j−1)Δ

∫ iΔ

(i−1)Δ
e−θte−θs ∂R(t, s)

∂t
dtds

+
∫ iΔ

(i−1)Δ
e−θt

(
e−θjΔ ∂R(t, jΔ)

∂t
− e−θ(j−1)Δ ∂R(t, (j − 1)Δ)

∂t

)
dt

)
→ σ2HΓ(2H)

θ2H .

The first equation is from (8) in Chen and Li [15], which is a modification of
(2.3) in Hu et al. [22]; see also Hu et al. [24].
Case 2: H = 1/2. As Δ → 0, T → ∞,

σ2
ŨT

=σ2
n∑

i=1
e−2θT e4θiΔ

∫ iΔ

(i−1)Δ
e−2θsds = σ2

2θ e
2θΔ(1 − e2θT ) → σ2

2θ .

Case 3: H ∈ (1/2, 1). Using Lemma A.1, we can get as Δ → 0, T → ∞,

σ2
ŨT

= σ2αH

n∑
i=1

n∑
j=1

e−2θT e2θiΔe2θjΔ
∫ iΔ

(i−1)Δ

∫ jΔ

(j−1)Δ
e−θte−θs|t− s|2H−2dtds

→ σ2HΓ(2H)
θ2H .

Therefore, we have ŨT
L→ σ

√
HΓ(2H)
θH ν, as Δ → 0, T → ∞.

(ii). Now, we consider the limiting distribution for X̃T . Recall that

X̃∞ = X0 + μ

θ
+ σ

∫ ∞

0
e−θsdBH

s .

Then, using (A.23), we have

E|X̃T − X̃∞| = E

∣∣∣∣−μ

θ
e−θT − σ

∫ ∞

T

e−θsdBH
s

∣∣∣∣
≤ |μ|

θ
e−θT + σ

(
E

(∫ ∞

T

e−θsdBH
s

)2)1/2

.

Case 1: H ∈ (0, 1/2). Straightforward calculations lead to

E|X̃T − X̃∞|

≤ |μ|
θ
e−θT +σ

(
θ

∫ ∞

T

∫ ∞

T

e−θ(t+s) ∂R(t, s)
∂t

dtds+e−θT

∫ ∞

T

e−θt ∂R(t, s)
∂t

dt

)1/2
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= |μ|
θ
e−θT + σ

(
He−2θT

∫ ∞

0
e−θuu2H−1du

)1/2
= |μ|

θ
e−θT + σ

(
HΓ(2H)

θ2H e−2θT
)1/2

≤ Ce−θT .

Case 2: H = 1/2. Using the Itô isometry formula, we obtain

E|X̃T − X̃∞| ≤ |μ|
θ
e−θT + σ

1√
2θ

e−θT ≤ Ce−θT .

Case 3: H ∈ (1/2, 1). It follows that

E|X̃T − X̃∞| ≤ |μ|
θ
e−θT + σ

(
αH

∫ ∞

T

∫ ∞

T

e−θ(s+r)|s− r|2H−2dsdr

)1/2

= |μ|
θ
e−θT + σ

(
2αH

∫ ∞

T

∫ r−T

0
e−2θreθuu2H−2dudr

)1/2

= |μ|
θ
e−θT + σ

(
2αHe−2θT

∫ ∞

0

∫ v

0
e−2θveθuu2H−2dudv

)1/2

= |μ|
θ
e−θT + σ

(
HΓ(2H)

θ2H e−2θT
)1/2

≤ Ce−θT .

Hence, for H ∈ (0, 1), it holds that E|X̃T − X̃∞| ≤ Ce−θT , and then we have
P(|X̃T − X̃∞| ≥ ε) ≤ Cε−1e−θT . Consequently, by the Borel-Cantelli lemma, we
have X̃T

a.s.→ X̃∞.
(iii). In this part, we prove ΞT = T−H

∑n
i=1 εiΔ

L→ N (0, 1). In fact, using
the definition of εiΔ, we can easily obtain

∑n
i=1 εiΔ

d= σ∑n
i=1 εiΔN (0, 1). Here

σ∑n
i=1 εiΔ denotes the standard deviation of

∑n
i=1 εiΔ, which will be calculated

as follows.

Case 1: H ∈ (0, 1/2). By (A.13) in Lemma A.4, we have

σ2∑n
i=1 εiΔ

= E

(
n∑

i=1
eθiΔ

∫ iΔ

(i−1)Δ
e−θsdBH

s

)2

=
n∑

i=1

n∑
j=1

eθ(i+j)Δ
(
θ

∫ jΔ

(j−1)Δ

∫ iΔ

(i−1)Δ
e−θte−θs ∂R(t, s)

∂t
dtds

+
∫ iΔ

(i−1)Δ
e−θt

(
e−θjΔ ∂R(t, jΔ)

∂t
− e−θ(j−1)Δ ∂R(t, (j − 1)Δ)

∂t

)
dt

)
∼ T 2H + o

(
T 2H).

Case 2: H = 1/2. Using the Itô isometry formula, we can see that

σ2∑n
i=1 εiΔ

=
n∑

i=1
e2θiΔ

E

(∫ iΔ

(i−1)Δ
e−θsdWs

)2
= 1

2θ

n∑
i=1

(
e2θΔ − 1

)
∼ T.
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Case 3: H ∈ (1/2, 1). Using (A.9) in Lemma A.3, we have

σ2∑n
i=1 εiΔ

= E

(
n∑

i=1
eθiΔ

∫ iΔ

(i−1)Δ
e−θsdBH

s

)2

= αH

n∑
i=1

n∑
j=1

eθ(i+j)Δ
∫ iΔ

(i−1)Δ

∫ jΔ

(j−1)Δ
e−θ(s+r)|s− r|2H−2dsdr ∼ T 2H .

Therefore, we have T−Hσ∑n
i=1 εiΔ → 1, which implies ΞT

L→ N (0, 1).
(iv). Finally, we show (A.50). In fact, it holds (ŨT , X̃T − X0,ΞT )� d=

N (−→a ∗, B∗), where � denotes the vector transposition. Here, −→a ∗ and B∗ have
the following representation −→a ∗ = (EŨT ,E(X̃T −X0),EΞT )� and

B∗ =

⎛⎜⎝ σ2
ŨT

Cov(ŨT , X̃T ) Cov(ŨT ,ΞT )
Cov(X̃T , ŨT ) σ2

X̃T
Cov(X̃T ,ΞT )

Cov(ΞT , ŨT ) Cov(ΞT , X̃T ) σ2
ΞT

⎞⎟⎠ .

Notice that EΞT = 0, EŨT = 0 and E(X̃T −X0) → μ
θ . Then B∗ can written as

B∗ =

⎛⎜⎝ σ2
ŨT

E(ŨT X̃T ) E(ŨTΞT )
E(X̃T ŨT ) σ2

X̃T
E(X̃TΞT )

E(ΞT ŨT ) E(ΞT X̃T ) σ2
ΞT

⎞⎟⎠ .

By (A.49) and Lemmas A.5–A.7, we can obtain (A.50). The proof of this propo-
sition is completed.

Finally, in Proposition A.3, we can see the remainders R1n, R2n, R3n and R4n
are negligible in the asymptotic analysis.

Propostion A.3. Let R1n, R2n, R3n and R4n be defined by (A.29)–(A.32),
respectively. Then, as Δ → 0 and log Δ

T → 0, we have R1n
a.s.→ 0, R2n

a.s.→ 0,
R3n

L→ 0, R4n
a.s.→ 0.

In particular, as Δ → 0 and (log Δ)3
T 2 → 0, we get TH−1R3n

a.s.→ 0.

For the sake of the length and readability of this paper, we delegate it to the
supplementary material [28].

A.3. Proofs of Theorems 3.2–3.4

Proof of Theorem 3.2. (i). We first prove the strong consistency of θ̂Δ. By Propo-
sition A.1, we have

e−θΔ

Δ
UT

VT
= e−θΔΔ−1(1 − e−2θΔ)e−2θTUT

(1 − e−2θΔ)e−2θTVT
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= Δ−1(1 − e−2θΔ)e−2θΔe−θT ŨT X̃T + Δ−1(1 − e−2θΔ)e−θTR1n

e−2θΔX̃2
(n−1)Δ −R2n

.

Using the fact E|e−θT ŨT X̃T | ≤ e−θT (EŨ2
T )1/2(EX̃2

T )1/2 ≤ Ce−θT , and the
Borel-Cantelli lemma, we obtain that

e−θT ŨT X̃T
a.s.→ 0. (A.51)

Moreover, Proposition A.3 gives that

e−θTR1n
a.s.→ 0, R2n

a.s.→ 0, e−2θΔX̃2
(n−1)Δ

a.s.→ X̃2
∞. (A.52)

From (A.51) and (A.52), it follows that e−θΔ

Δ
UT

VT

a.s.→ 0, which together with
(A.16) implies θ̂Δ − θ

a.s.→ 0.
(ii). Now, we turn to prove the asymptotic distribution of θ̂Δ, that is, (3.12).

By (A.16), Proposition A.1, Proposition A.3, we can get

ΔeθT

1 − e−2θΔ (θ̂Δ − θ) = eθT

1 − e−2θΔ log
(

1 + e−θΔUT

VT

)
= e−θ(n+1)ΔUT

(1 − e−2θΔ)e−2θTVT

(
1 + o(1)

)
= e−2θΔŨT X̃T + R1n

e−2θΔX̃2
(n−1)Δ −R2n

(
1 + o(1)

)
= ŨT X̃T

X̃2
(n−1)Δ

(
1 + op(1)

)
,

(A.53)
where UT and VT are defined by (A.18) and (A.19), respectively. Consequently,
from Propositions A.2, it follows that

eθT

2θ (θ̂Δ − θ) L→
σ
√

HΓ(2H)
θH ν

X0 + μ
θ + σ

√
HΓ(2H)
θH ω

,

which completes the proof of this theorem.

Proof of Theorem 3.3. Note that θ̂Δ
a.s.→ θ and

μ̂Δ = μ + (θ̂Δ − θ)
(
μ

θ
+ MT

NT

)
+ θ · MT

NT
. (A.54)

To verify the strong consistency of μ̂Δ, it is sufficient to show MT

NT

a.s.→ 0, as
Δ → 0 and T → ∞.

In fact, using (A.28), Proposition A.2 and Proposition A.3, we have(
n
(
eθΔ − 1

))−1(1 − e−2θΔ)e−2θTNT
a.s.→ X̃2

∞, Δ → 0, T → ∞. (A.55)

Moreover, using (iii) in the proof of Proposition A.2, we obtain TH−1ΞT ∼
N (0, T−2 + o(T−2)). Then, Borel-Cantelli lemma gives that TH−1ΞT

a.s.→ 0,
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as Δ → 0, T → ∞. Therefore, under the condition Δ → 0 and T 2

(logn)3 → ∞, by
(A.27), Proposition A.2 and Proposition A.3, we obtain(

n
(
eθΔ − 1

))−1(1 − e−2θΔ)e−2θTMT
a.s.→ 0,

which together with (A.55) implies MT

NT

a.s.→ 0.

Proof of Theorem 3.4. Using (A.53) and (A.54), we can write

eθT

2θ (θ̂Δ − θ) = ŨT X̃T

X̃2
(n−1)Δ

+ op(1),

T 1−H(μ̂Δ − μ) = eθT

2θ (θ̂Δ − θ)
(

2μe−θTT 1−H + 2e−θT T−HMT

(θnΔ)−1NT

)
+ T−HMT

(θnΔ)−1NT
.

(A.56)

Together with Proposition A.1 and Proposition A.3, we can obtain

T 1−H(μ̂Δ − μ) = σΞT + op(1). (A.57)

From (A.56) and (A.57), we have(
eθT

2θ (θ̂Δ − θ), T 1−H(μ̂Δ − μ)
)

=
(

ŨT X̃T

X̃2
(n−1)Δ

, σΞT

)
+ op(1).

Using Proposition A.2, we can complete the proof of this theorem.
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