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Abstract: This paper proposes estimators for the parameters of an explo-
sive fractional Ornstein-Uhlenbeck process. The asymptotic properties for
the diffusion estimators are developed under the in-fill asymptotic scheme,
while the asymptotic properties for the drift estimators are developed un-
der the double asymptotic scheme for the full range of the Hurst parame-
ter. The double asymptotic distribution of the estimator of the persistency
parameter explicitly depends on the initial condition. Simulation results
demonstrate the effectiveness of the proposed estimators, and the asymp-
totic distributions provide a good approximation in finite samples. An em-
pirical application is presented to demonstrate the model’s usefulness and
the practical value of the asymptotic theory.
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1. Introduction

In recent years, mildly explosive discrete-time models have been utilized to cap-
ture the dynamic behavior of economic and financial time series. This approach
has been explored in various studies such as Phillips and Yu [40], Phillips et al.
[39], Phillips et al. [37, 38], Harvey et al. [20, 21], Chen et al. [12], Lui et al.
[31, 32], and Astill et al. [3].

The mildly explosive model and the asymptotic theory for the least squares
estimator were first introduced in the seminal paper by Phillips and Magdali-
nos [35], where the error terms are assumed to be independent and identically

3931


https://imstat.org/journals-and-publications/electronic-journal-of-statistics/
https://doi.org/10.1214/24-EJS2293
mailto:huijiang@nuaa.edu.cn
mailto:panyajuan@nuaa.edu.cn
mailto:wlxiao@zju.edu.cn
mailto:yangqr66@gmail.com
mailto:junyu@um.edu.mo
https://mathscinet.ams.org/mathscinet/msc/msc2020.html

3932 H. Jiang et al.

distributed (iid). Phillips and Magdalinos [36] extended the model and asymp-
totic theory to include weakly dependent errors, while Magdalinos [33] further
extended it to strongly dependent errors. Lui et al. [32] expanded the model and
asymptotic theory to incorporate anti-persistent errors. In all of these studies, an
initial condition was selected to ensure that it becomes negligible in the asymp-
totic distribution and as a result, the standard Cauchy limiting distribution is
obtained.

Wang and Yu [48] demonstrated that mild explosiveness can be achieved from
an explosive Ornstein-Uhlenbeck (OU) process under the double asymptotic
scheme when the sampling interval approaches zero and the time span becomes
infinite. In this scenario, since the randomness is governed by the standard
Brownian motion,' the error term in the exact discrete-time representation of
the model is iid. Wang and Yu [48] obtained the double asymptotic distribution
of the least squares estimator of the persistency parameter and showed that it
explicitly depends on the initial condition. The reason that the initial condition
is given a prominence in the continuous-time setup is because a bigger initial
condition than what is typically imposed in the discrete-time literature is allowed
in the exact discrete-time representation when the sampling interval shrinks to
ZEro.

In this paper, we extend the OU model of Wang and Yu [48] by replacing the
standard Brownian motion with the fractional Brownian motion (fBm), that is,
an explosive fractional OU process (fOUp). The exact discrete-time represen-
tation of fOUp extends the models considered in Magdalinos [33] and Lui et
al. [32] in four aspects. First, our model allows for the full range of the Hurst
parameter. Second, we permit a larger initial condition in the exact discrete-
time representation of f{OUp than that considered in Magdalinos [33]. Third, we
estimate and examine the asymptotic properties of all four parameters in the
model, not just the persistency parameter. Finally, although the error term in
our model shares the same covariance structure as those in Magdalinos [33] and
Lui et al. [32], it cannot be expressed as a linear combination of martingale dif-
ference sequences. This distinction leads to completely different technical proof
procedures.

We adopt the same estimators of the two diffusion parameters, including the
Hurst parameter, as those proposed in Wang et al. [47], where a stationary
fOUp process is considered. For the drift parameters, including the persistency
parameter, we obtain the estimators via least squares, which have analytical
expressions and are easy to implement. The asymptotic theory for the diffusion
parameters is established under the in-fill asymptotic scheme, while the asymp-
totic theory for the drift parameters is established under the double asymptotic
scheme.

The remainder of the paper is organized as follows. Section 2 introduces the
model and compares it with two other models. Section 3 introduces estimators
and develops the asymptotic properties of the estimators. Section 4 conducts

'In the most general case, Wang and Yu [48] considered the Lévy process instead of the
standard Brownian motion.
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Monte Carlo studies to check the finite sample performance of the proposed es-
timators and asymptotic distributions. Section 5 provides an empirical study to
illustrate the usefulness of our estimators and the asymptotic theory. Section 6
concludes the paper. All proofs of the theorems are collected in the Appendix.
The proofs of Lemmas A.1-A.4 and Proposition A.3, which are useful to prove
the theorems, are collected in the supplementary material [28]. Throughout

the paper, we use -, 3 £>7 i, and ~ to denote convergence in probability,
convergence almost surely, convergence in distribution, equivalence in distri-
bution, asymptotic equivalence, and asymptotic dominance, respectively. We
denote C, (4, Cs, which may change from line to line, positive constants that
depend only on the parameters of fOUp.

2. Model

The fOUp is given by the following stochastic differential equation:
dX; = (0X; + p)dt + cd B, (2.1)

where Xy = O,(1) is independent of B, o € RT, p € R, § > 0, and B} is an
fBm with the Hurst parameter, H € (0,1), with mean zero and the following
covariance

R(t,s) =E(BIBE) = - (|t]P" + [s|*" — |t — s|*") Vt,s>0. (2.2)

N =

For ¢ > 0, Mandelbrot and van Ness [34] presented the following integral repre-
sentation for Bf:

B = 1{/0 [(tu)HW(u)Hl/Q}dWﬁ/Ot(tu)Hl/Qqu}, (2.3)

CH — oo

where W, is a standard Brownian motion, cy = %, Bé{ =0 and

I'(-) denotes the Gamma function.
Obviously, the fBm becomes the standard Brownian motion Wy when H =

1/2. Moreover, the fBm is self-similar in the sense that for any a € R, B <
la|fBE. Let L = Bf — BE | be the so-called the fractional Gaussian noise
(fGn) which is always stationary. The autocovariance function of fGn is

v(k) = Cov(L{, L)) = = [|k + 127 — 20k + [k — 112H], (2.4)

1
2
for k > 0 and (k) = y(—k) for k < 0.

Applying the Taylor expansion to the right-hand side of (2.4), we can see
that if H € (0,1/2) U (1/2,1), y(k) ~ H(2H — 1)k*#~2 for large k. Hence, for
1 < H <1, it has y(k) > 0 for all k and > ;o __ (k) = co. In this case, {Gn
has the long memory property and positive (negative) increments are likely to
be followed by positive (negative) increments. For 0 < H < %, it can be verified
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that y(k) < 0 for all k # 0 and Y po _ ~(k) = 0. Therefore, the process is
anti-persistent.

When 6 < 0, X; is asymptotically stationary and ergodic with the long-run
mean —p /6. In this case, the coefficient 6 is the speed of adjustment of X
towards its long-run mean. When # = 0 and u = 0, X; = B} that is non-
stationary and null recurrent. When 6 > 0, [E(X|F;—1)| > | X;—1]|, implying X,
is non-stationary and explosive, where F; is the sigma-algebra generated by B
with s € [0, ¢].

In practice, we often have access to discretely sampled data only. Let {X;a}
denote the discretely sampled data, where n is the sample size and A is the
sampling interval. Let T'(:= nA) be the time span. When X, is annualized and
observed monthly (weekly or daily), then A = 1/12 (1/52 or 1/252) for assets
that are traded five days in a week. The in-fill asymptotics assume A — 0 with T’
being fixed while the double asymptotics assume A — 0,7 — oco. In both cases,
n — oo. In model (2.1), there are four parameters, two diffusion parameters, H
and o, and two drift parameters, 6 and p. We would like to estimate these four
parameters based on {X;a}7, generated from model (2.1) with § > 0, that is,
an explosive f{OUp.

When 6 # 0, the strong solution of f{OUp is given by

t
X, = Xoelt + %(eet -1)+ o’eet/ e %dBH (2.5)
0

where the stochastic integral in (2.5) is interpreted as a Young integral [50].
Therefore, the exact discrete-time representation of model (2.1) is

Xia = BaX—a + %(GM —1) + o€, Ba = €2, (2.6)

where

iA
€in = / "08=dBH = (BIL — B{{_,)A) + 0,(A" ) = 0,(A").
(i—1)A
When 6 > 0, Ba = €2 > 1 since A > 0. If A = 0, Sa \, 1. However, the speed
that Sa approaches unity depends on whether T is fixed or goes to infinity.

As shown in Wang and Yu [48], under the in-fill asymptotic scheme, model
(2.6) with 6 > 0 corresponds to a local-to-unity model with the AR(1) parameter
larger than unity but approaching to unity as A — 0. It can be seen that with
a fixed T'and A — 0, we have

(1= Ba)n=(1-e)n=(—0A+o(A))n — —0T,

where —60T is the scale parameter. Whereas, under the double asymptotic
scheme, the exact discrete-time representation of model (2.1) with § > 0 is
an explosive model with the AR(1) coefficient larger than but approaching to
unity slower than 1/n as A — 0. It can be seen that with A — 0,7 — oo, we
have

(1—Ba)n=(1—e")n = (—0A +o(A))n = —0T + o(T) — —c0.
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Using the terminology of Phillips and Magdalinos [35], the model is mildly
explosive.

Since €;a = O,(AH), to ensure the error term is O,(1), dividing both sides
of equation (2.6) by Af, we have

— K 6A
Yia = BaYi—1)a + A—Hﬁ(e - 1) +oein, (2.7)

where Yo = X;a/AH ) ein = e;a/AH. Clearly, as A — 0 with a fixed T,
ein = 0p(1) and Yy = Xo/AH = O, (nf1 /TH).

Magdalinos [33] considered the following AR(1) model,

Y =ppYio1 +ou,pn =1+ n%va € (Ov 1)7C >0,Yy = Op(na(O.S-l-d)), (28)

where u; = 7% ¢jvi—j with ¢; ~ vj47! for some d € (0,1/2) and v; being
a martingale difference sequence and v? is a uniformly integrable sequence.?
He showed that the least squares estimator of p, follows the standard Cauchy
distribution asymptotically.

His model with n — oo is closely linked to model (2.7). To see the connection,
in model (2.7), if A — 0,7 — oo, we have

Ba — 1,(1 = Ba)n — —o0,E(ejae(iyjya) ~ C§*1=2 for large j,

where the last part is due to Lemma 2.1 of Cheridito et al. [16]. In model (2.8),
if n — oo, we have

pn — 1,(1 — pp)n — —o0, E(ujuiy;) ~ C§2471 for large j.

If H=1/2+d, model (2.7) and model (2.8) share the same covariance structure
for large j.
Lui et al. [32] considered the following AR(1) model,

cm
Y, = Pn,mY%ﬂ + oUt, Prym = 1+ 7, c>0,Yy = op(n0'5+d), (29)

where u, = 3272 ¢jvp—; with ¢; ~ 7§41 for some d € (—1/2,0) and v; being
an iid sequence. They showed that the least squares estimator of p,, ,, follows
the standard Cauchy distribution asymptotically.?

Model (2.9) with n — oo followed by m — oo is also closely linked to model
(2.7). In model (2.9), if n — oo followed by m — oo, we have

Prnm = 1, (1 — prm)n = —o00, E(uuyj) ~ Cj2%1 for large j.

If H =1/2+ d, model (2.8) and model (2.9) also share the same covariance
structure for large j.

2The exact assumption in Magdalinos [33] is ¢; = L(j)j ~* for some k € (1/2,1) where L
is a slowly varying function at infinity in Assumption LP(ii).

3In Remark 3.7, Lui et al. [32] argue that the asymptotic theory continues to hold when
de(0,1/2).



3936 H. Jiang et al.

TABLE 1
Comparison of model (2.7) and the models considered in Magdalinos (2012) and Lui et al.

(2021).

Model (2.7) Model in (2.8) Model in (2.9)

(with A — 0,7 — o0) (with n — o) (with n — oo, m — 00)

Pa=e"=1407 +0(8) pn=1+ % prm =1+

1718A/(07 1*Pn/(07 17pn,m/(07

(1-B8a)n — —c© (1—pn)n— —00 (1= pnm)n — —0

Yo = Op(nf /TH) Yo = op(n®) Yo ~ op(n'h)

H € (0,1) He(1/2,1) H € (0,1/2)

However, there are three important differences between the two existing mod-
els and model (2.7). First, they have different initial conditions. In particular,
since n(*~ D (log A)2 — 0 for any a € (0,1), the initial condition in model
(2.7) is larger than that in (2.8). It turns out the initial condition enters the
asymptotic distribution in our model but not in the asymptotic distribution ob-
tained in Magdalinos [33]. Since the finite sample distribution should depend on
the initial condition, which is supported by our simulation studies in Section 4,
naturally it is expected our asymptotic distribution delivers more accurate finite
sample approximations. Second, in (2.8) it is assumed that d € (0,1/2) which is
equivalent to H € (1/2,1), and hence, a long memory error term is assumed. In
(2.9) it is assumed that d € (—1/2,0) which is equivalent to H € (0,1/2), and
hence, an anti-persistent error term is assumed. In model (2.7), a full range of
H € (0,1) is allowed. That is, both long memory error terms and anti-persistent
error terms are allowed in our model. While some empirical evidence has been
reported to support long memory error terms in the context of the mildly ex-
plosive model for equity prices in the literature (see, for example, Lui et al.,
[31]), some other empirical evidence that supports anti-persistent error terms
has also been reported in the literature (see, for example, Gatheral et al., [18],
Lui et al., [32], Bennedsen et al., [7], Shi and Yu, [41], Wang et al., [47], Bolk et
al., [8]). In practice it is often impossible to have a knowledge about a restricted
range of H ex ante. Table 1 compares the two existing models with model (2.7).
Third, although our model shares the same covariance structure as model (2.7)
and model (2.9), unlike the error terms in their models, our e;a in (2.7) cannot
be written as a linear combination of a martingale difference sequence. As a
result, our proof strategy is remarkably different from those in Magdalinos [33]
and Lui et al. [32].

3. Estimators, and asymptotics
3.1. Estimators

Our model is the same as that of Wang et al. [47]. The only difference between
the two models is that we assume 6 > 0 while Wang et al. [47] assume 6 < 0
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in fOUp. Following Wang et al. [47], we also consider a two-stage estimation
method. Our first stage estimation focuses on estimating the two parameters
in the diffusion term following the idea of Wang et al. [47]. In particular, we
estimate the Hurst parameter H based on the second-order differences of X; at
two different frequencies:*

LS N X s — 2X o)A + Xm)2> (3.1)

n—2
5 3 (XA — 2X (41 + Xia)?

where log,(+) is the base-2 logarithm.> We estimate the volatility coefficient o
using

~ 1
Hx = 210g2<

oA = E?:_12(X(i+2)A —2X(i41)a + Xia)?
n(4 — 22H)A2H '

(3.2)

In the second stage, we consider the estimators of the two drift parameters in
(2.1) based on least squares. Let an = &(e?2 —1). Then, (2.6) can be rewritten
as:

Xin = BaX—1a +aa +oein, Xo = Op(1).

The least squares estimators of aa and Sa are

5 > XiaXaya — iy Xia 2o Xi-pa

Ba = T 7 5 , (3.3)
n Ei:l X(i_1)A - (Zi:l X(ifl)A)

X Xaa Y XE A — Xin Xa-na i XiaX(i-1)a

an n 2 n
ndic X(—pa — iz Xi-na)?
Based on aa and BA, we can propose the least squares estimators of 6 and p as

~ 1, Y XiaXi—npa— =3 Xia > Xa-)a

(3.4)

0r = —log - n ) (3.5)
A 21:1 X(Qz;l)A - %(Zi:l X(i—l)A)2
=R ~
Gn = a0A (3.6)
A — 1

Remark 3.1. Wang et al. [47] use the ergodic property of X; to construct the
method-of-moment estimators of § and p when 6 < 0. With 8 > 0, the fOUp
is explosive and hence, non-ergodic. Consequently, the estimators for the drift
term of Wang et al. [47] are not applicable when 6 > 0.

Remark 3.2. The proposed least squares estimators of 6 and p ignore the de-
pendence structure in the error term and are independent of the two diffusion
parameters. Later we will examine the efficiency loss in the least squares esti-
mators relative to the maximum likelihood estimators (MLE) that take account
of the dependence structure in the error term.

4If H is known to be less than 3/4, a more efficient estimator of H may be obtained from
first-order differences.
5We thank the reference for the estimator of H, by multiplying the numerator by ﬁ and

multiplying the denominator by ﬁ
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3.2. Asymptotic properties

In this subsection, we develop the in-fill asymptotic theory for H A and oA and
the double asymptotic theory for fian and 5. For Ha and oa, Theorem 4.1 of
Wang et al. [47] is directly applicable to fOUp with 6 > 0. Hence, we state it
here with slightly re-phrasing but without proof.

Theorem 3.1. Let Hx and G be the estimators defined in (3.1) and (3.2) for

model (2.1) with 8 > 0. For any H € (0,1), when A — 0 with a fized T > 0,
(a) Hxn*3 H and

= P Y11+ o2 — 2810
HAr — H) > 0 ; 3.7
Vilfis - ) % x0T Z 2 ), (3.7
(b) a3 o and
NP L Y1+ Yo — 2812 4
Tog(A) (6a —0) SN0, Blog2)? o” ), (3.8)
where
Si=242274 Z(mn +4pjt1 + 6p; + 4ppi1) + ppi—2)’,
J=1
Spp =272 (4(P1 +1)% 42D (pja2+2pj41 + Pj)2> ;
=0
Yoy =2+4 Z p3,
j=1
with
R RS (G VT T (G T LA
/ 2(4 — 22H) ' '

Remark 3.3. Thanks to the Local Asymptotic Normal property of the likeli-
hoods for the fGn (see, [9]) and the Lipschitz condition of the drift part for the
fOUp, we can obtain the distribution for H A and 7 in the explosive fOUp based
on the idea of [9]. First, using Lemma 7.2 of [47] and the Lipschitz condition of
the drift part for the fOUp, we can see that

2
n—a| [ X{liaa—2X{ 0)a +X7A 2H oH
1 2o AT — 22H(4 — 227)

2
i | (gt o)

AN (8) ,AO+§:(Aj +A0)], (3.10)

j=1
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where T denotes the transpose of the inverse matrix
24H . 20 )2
Aj :2(47221{)2 ( Pj x ) (P;+2+ p%+1+pj) > ’
(P + 20511 + Plj—2)) Pj
piv =2 (pjro +4pjy1+6p; +4pjj_1| + plj—2))

and p; is defined by (3.9).
Second, for the joint distribution of H A and oa, let us denote

where h(u,v) = IOgZ( ), s(u,v) = \/Azh(u,u)(r,gzh(u,v>)~
Then, direct computations lead to

fluv) = —h(u v)
o) (W) = —s(u,v) logAauh(u v) + g(u, v)a‘zh(um) + m )

D 8 Foh(u,v)
8vf( v) = (—s(u v) 10gAauh(“ v) + g(u, ”)gjh(“’”» ’

where w(u, v) = A0 (4 — 2K040)), g(y, p) = 2RI doa2

Third, let ¥ = (H,0)" and 9 = (Ha,5a)7. Choose u* = g2 A2H (4 — 22H)
and v* = o2 A2H22H (4 — 22H) guch that

Moreover let ¢, (9) be ¢,(H,o) defined in Theorem 3.1 of [9]. Let v =
LS (X raa — 2Xpa + Xia)? u = 5 SR (X ro)a — 2X()a +
Xin)?. Then, using (3.10), the delta method and a standard calculation, we can
see that

naye _02*H1og 2 1 _ 1
W\ T em 2log 202(4 — 221 ) ~ Yo (4 — 92H) |’

B 1/ _02%H Jog 2 1
L e Y 21og 20222H (4 — 22H) )
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. nars +aa22Hlog2 _ 1 ta 1
P\ T T T e 21og 202(4 — 22H) 204 — 22H) |’

d Ry +a022Hlog2 1
P\ T T T e 2log 202220 (4 — 22H) )’

and «, &, v and 7 are defined by (5) of [9].

In the following, we shall state the main results concerning the strong consis-
tency and the asymptotic distributions of 6 and fia. First, we give the strong
consistency of 6a and fia, as well as the asymptotic theory for 6o and fia.

Theorem 3.2. Let A — 0 and % — 0. If either (i) H = 1/2, or (ii)
H € (1/2,1) and T*" A — 0, or (ii) H € (0,1/2) and T**1A — 0, then we

have O “5 0 and

eGT ~ L UinFP(IQH)U
g (02 —0) = GJW : (3.12)
X0+%+0'97Hw

where v and w are two independent standard normal variables.
Theorem 3.3. Let A — 0 and (10§_2A)3 — 0. If either (i) H = 1/2, or (ii)
H e (1/2,1) and T*’ A — 0, or (iii) H € (0,1/2) and T*"+1A — 0, then we
have fia 3 p.

Second, based on Theorem 3.2, we can develop the following joint distribution

for Oa and fia in the explosive fOUp.

Theorem 3.4. Let A — 0 and % — 0. If either (i) H = 1/2, or (i)
H e (1/2,1) and T*" A — 0, or (iii) H € (0,1/2) and T*"T1A — 0, then we
have

0T o YHLCH)
e_(eA - 9)7T1_H(ﬁA - M) £> o7 ,omn |,
20 XO + % + J—\/HF(ZH)W

0H

where v, w and n are independent standard normal variables.

Remark 3.4. In the case of u = 0, the least squares estimator of 6 under the
JF XedX,

continuous observations on [0,7] is 87 = T zar
0 t

[22]). The consistency and
asymptotic distribution properties of §T have been studied thoroughly in both
the ergodic (0 < 0, [13, 15, 22, 24, 49]) and explosive (6 > 0, [49]) cases. On the
other hand, the discrete version of 67 is to replace dX; with (X;a — X(;—1)a),

and [ X2dt by A X2 A, e O3 = "25;1fii;ifgf({i‘)f“*>ﬂ. If the

fOUP X is ergodic (f < 0), the asymptotic properties of gz in the sense of
consistency and asymptotic distribution have been obtained [4, 10, 19, 23, 47].

61t is easy to see that 5\ may be replaced with 2 in this theorem and subsequent theorem.
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If X is explosive (6 > 0), one may expect the estimator 53 keeps the asymptotic

distribution of §T7 i.e. e?T-rate of convergence in distribution as shown in Xiao
and Yu [49]. However, the answer is negative [6, 17, 25, 30, 42]:

T (52 —6) = oo, \/T(éz — 0) is tight.

To fix this problem, for explosive OU model driven by the standard Brownian
motion, Shimizu [43], Wang and Yu [48], Jiang et al. [27] introduce the least
squares estimator and consider the associated consistency, asymptotic distri-
bution properties and deviation properties. In our paper, we extend the OU
model of Shimizu [43], Wang and Yu [48] by replacing the standard Brownian
motion (H = 1/2) with the fractional Brownian motion (H € (0,1)). Moreover,
the parameter p is also assumed to be unknown in our paper. For more details
on this topic, one can refer to [1, 5, 11, 14, 26, 29, 44, 45, 46] and the references
therein.

Remark 3.5. According to Theorem 3.2, the same asymptotic law holds for
the least squares estimator of 6 regardless of H in the explosive fOUp. That
is, the rate of convergence is €7 and, if Xo = pu = 0, the limit distribution is
a standard Cauchy. However, from the technical proofs in the Appendix and
Online Supplement, it can be seen that we need to deal with the cases of H €
(1/2,1), H = 1/2 and H € (0,1/2) separately. The result in Theorem 3.2
is in sharp contrast with that of the method-of-moments estimator of 6 for the
stationary fOUp. Theorem 4.4 in Wang et al. [47] shows that the asymptotic law
for the method-of-moments estimator of § changes as H passes 3/4. In particular,
when H € (0,3/4), the rate of convergence is v/T and the limit distribution is
normal; when H = 3/4, the rate of convergence is VT /logT and the limit
distribution is different normal; when H € (3/4,1), the rate of convergence is
T?72H and the limit distribution is the Rosenblatt random variable.

Remark 3.6. From Theorem 3.4, we can see that the asymptotic law of fia
is normal, where the rate of convergence is T'~#. Theorem 5 in Tanaka et al.
[44] states that the MLE of p (denoted by fiarrr) based on a continuous-time
record is

T' " (finre — 1) A _/\/(07 o? 2HT(3 —2H)I'(H + 1/2))

r'(3/2—H)

Comparing the above asymptotic theory with Theorem 3.4, we can see that the
rate of convergence of the least squares estimator of p based on the discrete-
sampled data is identical to that of the MLE of u based on a continuous-time
record. However, the least squares estimator of y is less efficient than the MLE
of p since the variance of MLE is smaller when H € (0,1/2) U (1/2,1) (i.e.,

QHF(?’;(?’Z)E%IH/ 2 < 1). This efficiency loss is expected as the least squares

estimator ignores the dependence in the error term. When H = 1/2, the two

variances are the same (i.e., 2HF(31:(§512)L(£+1/2) = 1). This is also expected

because, when H = 1/2, the error term becomes iid.
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Remark 3.7. As stated by [2], when the diffusion parameter is time varying,
(2.1) can be written as

dX, = (0X, + p)dt + o, dBF (3.13)

where Hurst parameter H € (0, 1), the volatility o; is a stochastic process with
B-Holder continuous trajectories, where 3, > 1—H. Under this condition on oy,
the stochastic integral fot os,dBH is well defined as a Young integral. It is obvious
that the drift function 6X; + p is Lipschitz continuous. Then X; in (3.13) has
a unique solution under some boundedness conditions for the drift function. In
this situation, we can also estimate the Hurst parameter, H, by (3.1). However,
the asymptotic properties are complicated and left for future work. Let us also
mention that the time varying o, has no effect on the estimator of u from (3.6).

Remark 3.8. From Theorem 3.2, we can see that the limiting distribution of
Oa — 0 depends explicitly on the initial condition Xy (as well as p/6). This
dependence is the same as that in Wang and Yu [48]. The reason is that when
A — 0, the initial condition in model (2.7) is larger than those assumed in
Magdalinos [33] and in Lui et al. [32]. If Xy = —% in the fOUp, then the

0
limiting distribution of E;—;(HA —6) is a standard Cauchy distribution, which is

the same as that obtained in Magdalinos [33] and in Lui et al. [32].

Remark 3.9. From Theorem 3.4, if A — 0 and 10§A — 0, under either (i) H =
1/2, or (i) H € (1/2,1) and T*! A — 0, or (iii) H € (0,1/2) and T?7+1A — 0,
we can easily get

AT P 07\/1”15237),/
m(ﬁA - BA) - L \/m ) (314)
XO + % + 0'071{(&)
Tl—H R C
A (@a —aa) = on, (3.15)

where v, w and 7 are defined by Theorem 3.4. If H = 1/2, the asymptotic theory
given in (3.14) and (3.15) becomes that given in Theorem 3.3 (a)—(b) in Wang
and Yu [48].

Remark 3.10. When H < 3/4, based on first-order differences, we can provide
a more efficient estimator of H as

n—2 2

1 (X ip2a — Xia

Ha = 5 IOgQ (Zn_ll( (+2)4 )2>
Yo (X(irna — Xia)

(3.16)

Using similar arguments as Theorem 4.1 (a) in Wang et al. [47], we can obtain

Ha %% H for H € (0,1). Moreover, for 0 < H < 3/4, when A — 0 with a fixed
T, we can get

Rl 1) {0 B2 20

3.17
24H+2]0g%(2) (3:17)
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Asymptotic Variance

Value of H

Fic 1. Asymptotic variance of /n(Ha — H) and v/n(Ha — H) as functions of H € (0,3/4).

where
Q=2 4 Z24H+2Z7?7*, Qoo =2+ 24;3?,
Jj=1 j=1
_ CoH1 | Nfo ~\2 ~ ~\2
g = Q21 =2 +) 28541 + 55)% + 251 + 7))
i=1
with
~ 1 ) . .
Pix = SamE41 (17 — 22" + (5 +2)27 —252H],

I . .
pi =i =127 + (G + 1)* = 2577].

When H = 1/2, a standard calculation shows that
Q11 - 21+2HQl2 + 24H922 =4,

Consequently, for H = 1/2, when A — 0 with a fixed T', we can obtain

Vn(Ha —H) S N(o, 410;2(2)) (3.18)

Comparing Corollary 4.2 in Wang et al. [47] with (3.18), we can see that Ha
is more efficient than Ha for H = 1 /2. Indeed, this conclusion holds true for
0 < H < 3/4. Figure 1 compares the asymptotic variance of \/ﬁ(ﬁ A — H)
and that of \/n(Ha — H) for 0 < H < 3/4. When 0 < H < 3/4, it is more
efficient to estimate H via the first-order differences than via the second-order
differences. However, when H > 3/4, the central limit theorem of the first-order
differences does not hold. Whereas, we always have the central limit theorem
for the second-order differences.
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Remark 3.11. Remark 3.10 suggests a two-step procedure to estimate the
Hurst parameter for the fOUp. Thus, we first test the hypothesis Ho : H > 3/4
versus H; : H < 3/4 using the estimator Ha and the asymptotic distribution
of (3.7). Then, if Hy is not rejected, we use the estimator H proposed in (3.1).
Otherwise, if H is rejected and H;p is accepted, we can use Ha proposed in
(3.16) for the sake of efficiency.

4. Simulation studies

In this section, we conduct Monte Carlo simulations to evaluate the finite sample
performance of the proposed estimator and the derived asymptotic limit theory.
Following Wang and Yu [48] and Chen et al. [12], we first examine the sensitivity
of the Monte Carlo empirical distribution (MCED) of O and Ba with respect
to the initial condition and to p. We then check the finite sample properties
(3.12) and (3.14).

For this purpose, we simulate 10,000 sample paths from model (2.1) with
0 =2 0 =1and p = 0. However, we allow H to take different values,
0.15,0.35,0.55,0.75. The first two values imply anti-persistent errors while the
last two values imply long-memory errors. We set the sampling interval A =
1/252,1/52,1/12, the time span T = 10, the initial value X, € {0,3.5,10}.
For each simulated path, we estimate 6 by (3.5) and calculate %(ék —0).

Moreover, we also estimate 8 by (3.3) and calculate ;Z—Z(BA — B). We report
percentiles at levels {1%, 2.5%, 10%, 90%, 97.5%,99%} in the limit distributions
of (3.12) and (3.14). Tables 2—4 report the percentiles of the Cauchy asymptotic
distribution, the newly derived asymptotic distributions, and the Monte Carlo
empirical distribution when Xy = 0, 3.5, 10, respectively.

When Xy = 0, since p = 0, the newly derived asymptotic distribution be-
comes the Cauchy asymptotic distribution. Table 2 only report the percentiles
of the Cauchy asymptotic distribution and the finite sample distributions. It
is clear that the Monte Carlo empirical distributions are close to the Cauchy
asymptotic distribution.

When X # 0, the newly derived asymptotic distribution is different from the
Cauchy asymptotic distribution. From Table 3, when Xy = 3.5, it is clear that
the Monte Carlo empirical distributions are sensitive to the change of the ini-
tial condition and very far away from the Cauchy asymptotic distribution. For
example, the 1 percentile of the Cauchy asymptotic distribution is —31.8205
while the 1 percentiles of the finite sample distribution move around —0.4. In
sharp contrast, the 1 percentile of the newly derived asymptotic distribution
is —0.4388, suggesting the newly derived asymptotic distribution yields good
approximations to the finite sample distributions. From Table 4, when X, = 10,
the finite sample distributions are even further away from the Cauchy asymp-
totic distribution. Whereas, the newly derived asymptotic distribution yields
good approximations to the Monte Carlo empirical distributions.

Next, we investigate the sensitivity of the Monte Carlo empirical distribution
of § and [3 with respect to the value of u. For this purpose, we set § =1, 0 = 0.2,
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TABLE 2
This table reports six percentiles of the Cauchy distribution and the Monte Carlo empirical
distribution of e;—GT(HA —0) and ;Z—Z(BA — B) when =0 and Xo = 0.
Percentiles 1% 2.5% 10% 90% 97.5% 99%

Cauchy Asym. —31.8205 —12.7062 —3.0777 3.0777 12.7062 31.8205
A=1/252 MCED? —39.9078 —13.9255 —3.0534 3.0426 11.6275 28.0315
MCED? —39.9073 —13.9253 —3.0533 3.0426 11.6273 28.0312
H=015 A=1/52 MCED?Y —30.3777 —12.4841 —2.9167 3.1683 12.8068  36.0481
MCED? —30.3702 —12.4810 —2.9160 3.1675 12.8037 36.0392
A=1/12 MCEDY —34.8777 —15.4491 -3.6273 3.6117 15.5121  39.6442
MCED? —34.7167 —15.3778 —3.6106 3.5951  15.4405 39.4613
A=1/252 MCED? —24.0441 —12.2667 —3.0488 3.0094 12.8997 32.8611
MCED? —24.0438 —12.2666 —3.0487 3.0093 12.8996  32.8607
; MCEDY —28.2827 —11.7502 —2.9669 3.2007 12.2671  29.8610

H =0.35 A=1/52 3
MCEDF —28.2757 —11.7474 —2.9662 3.1999 12.2641  29.8536
A=1/12 MCED{’ —35.1576  —14.5487 —3.5612 3.6065 14.4238  37.9829
MCED? —34.9954 —14.4816 —3.5448 3.5898 14.3572  37.8076
A=1/252 MCED? —31.6969 —13.8355 —3.0380 2.9457 12.8903 31.5700
MCED? —31.6966 —13.8353 —3.0379 29456 12.8902 31.5696
H =055 A=1/52 MCEfo —30.6575 —13.2005 —3.1697 3.2053 12.6823 31.7275
MCED? —-30.6500 —13.1973 —3.1689 3.2045 12.6792 31.7197
A=1/12 MCEDY —33.2604 —13.7933 —3.4648 3.5866 17.0857  40.2489
MCED? —33.1069 —13.7297 —3.4488 3.5700 17.0069  40.0631
A=1/252 MCED? —29.8430 —12.2791 —2.8160 3.1137 13.7555  35.4082
MCED? —29.8427 —12.2790 —2.8160 3.1137 13.7553  35.4078
H=075 A=1/52 MCEDY —31.0889 —13.5346 —3.1458 3.3624 13.4632 33.0715
MCED? —31.0812 —13.5313 —3.1450 3.3616 13.4599 33.0634
A=1/12 MCEDY —35.3672 —13.8410 —3.3564 3.7404 14.9353  40.5611
MCED? —35.2040 —13.7772 —3.3409 3.7231 14.8664 40.3739

TABLE 3

The Cauchy distribution, the new asymptotic distribution and the Monte Carlo empirical
-~ ) -~
distribution of %(GA —0) and %(,BA — B) when p =0 and Xog = 3.5.

Percentiles 1% 2.5% 10% 90% 97.5% 99%
Cauchy Asym. —31.8205 —12.7062 —3.0777 3.0777 12.7062 31.8205
New Asym. —0.4388 —0.3595  —0.2269 0.2271  0.3593 0.4374
A=1/252 MCEDY —0.4129 —0.3442 —0.2178  0.2089 0.3237 0.3918
MCED? —0.4129 —0.3442 —0.2178  0.2089 0.3237 0.3918
H=015 A=1/52 MCED? —0.4013 —0.3335  —0.2138  0.2088  0.3272 0.3977
MCED? —0.4012 —0.3335 —0.2138  0.2088 0.3271 0.3976
A=1/12 MCED? —0.5114 —0.4090 —0.2602  0.2608 0.4093 0.5026
MCED? —0.5090 —0.4071 —0.2590 0.2596  0.4074 0.5003
New Asym. —0.3761 —0.3106  —0.1977 0.1976  0.3100 0.3750
A=1/252 MCEDY —0.3240 —0.2667 —0.1697  0.1645 0.2538 0.3060
MCED? —0.3240 —0.2667 —0.1697  0.1645 0.2538 0.3060
_ . MCED? —0.2958 —0.2502 —0.1620  0.1605 0.2454 0.3014
H =035 A=1/52 MCED? —0.2957 —0.2501 —0.1619  0.1604 0.2453 0.3013
A=1/12 MCED? —0.4283 —0.3529 —0.2254  0.2240 0.3526 0.4463

MCED#? —0.4263 —0.3513 —0.2243  0.2229 0.3510 0.4442

New Asym. —0.3481 —0.2882 —0.1841 0.1843 0.2881 0.3473
A=1/252 MCEDY —0.2715 —0.2251 —0.1448  0.1370 0.2123 0.2507
MCED? —0.2715 —0.2251 —0.1448  0.1370 0.2123 0.2507

) 0

H=05  8=1/5 MOEDS 0216 02048 013 0101 01902 0238
A=1/12 l\{CED? —0.3958 —0.3259 —0.2091  0.2072 0.3232 0.3983

MCED? —0.3940 —0.3244  —0.2081 0.2062  0.3217 0.3965
New Asym. —0.3407 —0.2822 —0.1805 0.1807 0.2822 0.3400

A=1/252 MCEDY —0.2447 —0.2016 —0.1293  0.1204 0.1844 0.2206

MCED? —0.2447 —0.2016 —0.1293  0.1204 0.1844 0.2206

H =075 A=1/52 I\/[CEDZ —0.2159 —0.1792 —0.1154  0.1100 0.1649 0.2025
MCEDF —0.2159 —0.1792 —0.1154  0.1100 0.1649 0.2024

A=1/12 MCED? —0.4022 —0.3268  —0.2068 0.1980  0.3044 0.3595

MCED? —0.4003 —0.3253  —0.2058 0.1970  0.3030 0.3579
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TABLE 4
The Cauchy distribution, the new asymptotic distribution and the Monte Carlo empirical

distribution of e;—QT(GAA —0) and SZ—Z(BA — B) when p =0 and Xo = 10.

Percentiles 1% 2.5% 10% 90% 97.5% 99%
Cauchy Asym. —31.8205 —12.7062 —3.0777 3.0777 12.7062 31.8205
New Asym. —0.1421 —0.1192 —0.0777  0.0777  0.1192 0.1417
A=1/252 MCEDY —0.1379 —0.1129 —0.0745 0.0717 0.1088 0.1291
I\/ICED’g —0.1378 —0.1129 —0.0745 0.0717  0.1088 0.1291
P e MCED —0.1330 —0.1127  —0.0733  0.0717  0.1084 0.1325
H =015 A=1/52 MCED? —0.1329 —0.1127 —0.0733  0.0717 0.1084 0.1324
A=1/12 I\'TCED? —0.1642 —0.1383 —0.0896  0.0899 0.1374 0.1621
MCED? —0.1634 —0.1377  —0.0892  0.0895  0.1367 0.1613
New Asym. —0.1243 —0.1043 —0.0681  0.0680 0.1043 0.1240
A=1/252 MCEDY —0.1087 —0.0902 —0.0587  0.0565 0.0863 0.1018
MCED? —0.1087 —0.0902 —0.0587  0.0565 0.0863 0.1018
H =035 A=1/52 I\’ICEDz —0.1002 —0.0853 —0.0560  0.0557 0.0839 0.1010
MCEDf —0.1001 —0.0853 —0.0560  0.0557 0.0838 0.1009
A= 1/12 I\'TCED? —0.1411 —0.1209 —0.0778  0.0771 0.1192 0.1421
MCED? —0.1405 —0.1203 —0.0774  0.0767 0.1186 0.1415
New Asym. —0.1160 —0.0974 —0.0636  0.0635 0.0974 0.1157
MCEDY —0.0907 —0.0768 —0.0498  0.0478 0.0728 0.0863
A =1/252 I\/ICEDZ‘ —0.0907 —0.0768  —0.0498 0.0478  0.0728 0.0863
e MOEDS 00817 _0OTIo 0085 00is5 0060 00818
A=1/12 I\/ICED? —0.1310 —0.1103  —0.0729 0.0712  0.1094 0.1309
MCED? —0.1304 —0.1098 —0.0725 0.0708 0.1089 0.1303
New Asym. —0.1138 —0.0955 —0.0624  0.0623 0.0955 0.1135
A=1/252 MCED? —0.0807 —0.0690 —0.0444  0.0425 0.0648 0.0753
I\/TCEDZ —0.0807 —0.0690  —0.0443 0.0425  0.0648 0.0753
H=0T A= MOEDS 00727 006 008 003 0058 00713
A=1/12 MCED? —0.1303 —0.1089  —0.0702 0.0698  0.1064 0.1265
MCED? —0.1297 —0.1084 —0.0698  0.0695 0.1059 0.1259

Xo =0, u = —0.7. Table 5 reports the percentiles of the Monte Carlo empir-
ical distribution, the Cauchy asymptotic distribution, and the new asymptotic
distribution. Compared with Table 2, Table 5 suggests that the Monte Carlo em-
pirical distributions are sensitive to the change of  and far away to the Cauchy
asymptotic distribution. Whereas, the newly derived asymptotic distribution
yields good approximations to the Monte Carlo empirical distributions.

Thirdly, we conduct Monte Carlo simulations to evaluate the finite sample
performance of the derived asymptotic distributions of Ha, fin and oa. In
particular, we obtain the Monte Carlo empirical distributions of the following
statistics:

Vn

(I)ﬁA = \/ﬁ(ﬁA - H), Q5 = m(?@ — 0), (I)ﬁA = TlfH(/’]A — /i). (4.1)

To simulate data, we set § = 0.2, 0 = 0.2 and ¢ = —1 and allow H to take
different values in the range of (0, 1). For convenience, we choose the sampling
interval A = 1/252 and the time span 7" = 10 with 10,000 simulated sample
paths from model (2.1). We then report the mean, variance, skewness and kur-
tosis of the Monte Carlo empirical distributions of @z , ®5, and ®;, and those
of the asymptotic standard normal distributions (i.e., N'(0,1)) in Table 7. As
we can see from Table 7, the derived asymptotic distributions well approximate
the Monte Carlo empirical distributions for all three parameters.
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TABLE 5
The Cauchy asymptotic distribution, the new asymptotic distribution and the Monte Carlo
0T ~ 0T  ~
empirical distribution of %g-(0a — 0) and S5x(Ba — B) when p = —0.7 and Xo = 0.

Percentiles 1% 2.5% 10% 90% __ 975% 99%
Cauchy Asym. —31.8205 —12.7062 —3.0777 _ 3.0777 _12.7062 _ 31.8205

New Asym. —0.4981 _ —0.4052 _ —0.2529 0.2540 _ 0.4065 __ 0.4980

A—1/25 MCED” —0.4972  —0.4154 —0.2692 02730 0.4379 _ 0.5303

MCED? —0.4972 04154 —0.2692 0.2730  0.4379  0.5303

H =015 A= 150 MCED? —0.4679  —0.3919  —0.2484 0.2575 04309  0.5121
= MCED? —0.4679  —0.3918  —0.2484 0.2575 0.4309  0.5120

A=1/12 MCED? —0.5212  —04326 —0.2814 0.2945 04784  0.5960

MCED? —0.5206  —0.4321  —0.2811 0.2042  0.4778  0.5954

New Asym. —0.5021  —0.4082 _ —0.2546 0.2557 _ 0.4094 _ 0.5020

A 1252 MCED? —0.4407  —0.3700 —0.2385 0.2486  0.4001  0.4907

MCED? —0.4407  —0.3700  —0.2385 0.2486  0.4001  0.4907

H =035 A= 152 MCED? —0.4011  —0.3414 —0.2206 0.2322 03753  0.4605
- MCED#? —0.4011  —0.3413  —0.2206 0.2321  0.3752  0.4605

A=1j12 MCED —0.5097  —0.4187  —0.2731 0.3011  0.4910  0.6077

MCED? —0.5091  —0.4183  —0.2728 0.3007 _ 0.4904  0.6070

New Asym. —0.5495  —0.4438 _ —0.2746_ 0.2757 _ 0.4451 __ 0.5495

A= 1252 MCED? —0.4051  —0.3355 —0.2192 02414 0.3822  0.4775

MCED? —0.4051  —0.3355 —0.2192 0.2414 03822 04775

H=0.55 A=1/52 MCED —0.3635  —0.3015  —0.2001 0.2102  0.3467  0.4197
- MCED? —0.3634  —0.3015 —0.2001 0.2102 0.3467  0.4197

A=1/12 MCED? —0.5142  —0.4193 —0.2746 0.3147 0.5312  0.6669

MCED? —0.5136  —0.4188  —0.2743 0.3144  0.5306  0.6661

New Asym. —0.6460 05142 —0.3126 0.3130 05155 _ 0.6462

A= 1252 MCED” —0.3563  —0.2932  —0.1950 0.2209  0.3552  0.4257

MCED? —0.3563  —0.2932 —0.1950 0.2209  0.3552  0.4257

H=0.75 A= 150 MCED? —0.3037  —0.2620 —0.1710 0.1842 03025  0.3641
= MCED? —0.3037  —0.2620 —0.1710 0.1842  0.3025  0.3640

A=1/12 MCED? —0.4819  —0.4023 —0.2627 03191 05614  0.7115

MCED? —0.4814  —0.4018  —0.2624 0.3187  0.5608  0.7106

For testing the influence of the sampling interval, we choose the sampling
interval A = 1/52 and A = 1/12. Moreover we set H € {0.1,0.3,0.6,0.8} and
other parameters are the same as those in Table 7. Table 6 provides mean,
variance, skewness and kurtosis of the Monte Carlo empirical distributions of
5., ®5, and @5, and those of the asymptotic standard normal distributions.
From Table 6, we can see that both <I>H\A and @5, is a little different from the
standard normal distribution. Hence, we can obtain that the smaller of A, more
accurate of Ha, oA and fia.

Finally, we investigate the effect of the time varying diffusion parameter on
estimates of fian proposed by (3.6) and Ha proposed by (3.1). To simulate data,
we set 6 = 0.2, u = —1 and H € {0.1,0.3,0.6,0.8}. The time varying diffusion
parameters used are o; = v/t and oy = sin(t). For convenience, we choose the
sampling interval A = 1/252 and the time span T = 10 with 10,000 simulated
sample paths from model (2.1). Similarly, we provide the mean, variance, skew-
ness and kurtosis of the Monte Carlo empirical distributions of ®z ~and @5,
and those of the asymptotic standard normal distributions (i.e., A'(0,1)) in Ta-
ble 8. As we can see from Table 8, the derived asymptotic distributions well
approximate the Monte Carlo empirical distributions for time varying diffusion
parameters.

5. Empirical studies

To illustrate the usefulness of the proposed model and the derived limit distri-
bution in practice, we consider an empirical study. Our study is motivated from
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TABLE 6

Mean, variance, skewness and kurtosis of @ﬁA, D5, Pay in (4.1) and the standard

normal limiting distribution with A =1/252.

Value of H Statistics Mean Variance Skewness Kurtosis
N(0,1) 0 1 0 3
[N —0.017311 0.923305 —0.013949 3.024885
H=01 D5, 0.022569 0.888150 —0.091405 3.176769
P 0.0315831 1.062469 —0.163131 3.570116
[N —0.019234 0.953352 —0.007881 2.991773
H=02 D5, 0.064560 0.927148 —0.087279 3.172227
P 0.044777 0.938544 0.108009 3.096121
B, —0.020780 0.925791 —0.006025 2.978431
H=03 D5, 0.029536 0.933122 —0.086998 3.168624
N 0.033007 0.952455 —0.096756 3.131023
R —0.022140 0.929721 —0.007054 2.979255
H=04 D, 0.030560 1.085842 —0.089672 3.268379
N —0.015380 0.915075 0.058212 2.962478
B, —0.011831 0.934033 —0.029452 3.108228
H =05 ®5 . —0.065678 1.022217 —0.035021 3.207613
N —0.140621 0.922738 —0.084704 3.231211
B —0.022225 0.942600 —0.014839 2.991179
H =06 P, 0.075118 0.911895 —0.053187 3.217130
N —0.029949 1.036335 —0.083410 3.278550
[T —0.013036 0.952611 —0.021022 2.991612
H=07 P, 0.081108 0.942304 —0.051543 3.299545
N —0.018987 1.039631 —0.070227 2.896728
(TR 0.039712 0.967824 —0.027516 2.986774
H=08 ®g . 0.061376 0.945947 —0.167950 3.281394
Pa —0.016915 1.056022 0.040067 2.856668

Phillips et al. [39] where explosiveness is found in the monthly Nasdaq between
January 1990 to June 2000 when a pure AR(1) model is fitted. In our study,
Model (2.1) is fitted to the monthly price-dividend ratio of Nasdaq between
January 1990 to June 2000 with A =1/12, T = 10.5, n = 126, and X, = 1.7753
(which is the price-dividend ratio of Nasdaq in December 1989).7

We estimate H,o,0, p using (3.1), (3.2), (3.5) and (3.6), respectively. The
point estimates and their corresponding 90% confidence intervals based on
the derived asymptotic distributions are reported in Table 9. Since the es-
timated 6 is greater than zero, model (2.1) is relevant and the asymptotic
theory developed in this paper is applicable. From Table 9, we can see that
the 90% confidence interval of 6 excludes zero, which implies explosiveness.
Moreover, the point estimate of H is much smaller than 0.5, implying anti-
persistence in the error term. The evidence of anti-persistence is statistically
significant.

"The data are obtained from https://www.nasdaq.com/market-activity/index/comp


https://www.nasdaq.com/market-activity/index/comp

Mean, variance, skewness and kurtosis of @ﬁA, EI

Asymptotic theory for explosive FOUP

TABLE 7

TN

normal limiting distribution with A =1/52 and A = 1/12.
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in (4.1) and the standard

Value of H  Statistics Mean Variance Skewness  Kurtosis
N(0,1) 0 1 0 3

R —0.027001  0.933378 —0.033449 3.073117

H=0.1 D5, 0.065119  0.903888  —0.066673  3.703790
TN —0.062120  0.932149  0.028473  3.004746

B, 0.073222  0.932350 —0.030244  3.024067

H=03 Ds, 0.089004  0.879408 —0.182250  4.322952
A=1/52 P, —0.005251  0.892314  0.023862  2.981330
LR 0.060516  1.187440  0.041642  2.998527

H=06 D5, —0.066142  1.150020 —0.258197  4.639454
TN 0.000291  0.939629  0.020138  2.999654

[N 0.043335  1.271114  0.043377  2.850611

H=08 D5, —0.089881  1.105603  0.162334  2.936305
P, 0.000233  0.970088  0.015274  3.013257

R —0.012826  0.928770 —0.112388  2.965402

H=0.1 D5, —0.050260  0.940998 —0.231826  4.880821
TN —0.016434  0.981458  0.030186  3.018325

B, 0.079236  0.922651 —0.092458  2.925360

H=023 Ds . —0.095521  0.940193 —0.121790  5.061145
A=1/12 D —0.031046  0.960453  0.030111  2.940064
T, 0.164374  0.990257 —0.082454 3.001363

H =06 D, —0.068967  0.977749  —0.543642  5.026407
TN —0.002422  0.968370  0.056569  3.075413

[N 0.026784  1.106585  0.080360  2.598159

H=038 D5, 0.026791  1.290227  0.872756  7.735156
TN 0.007610  0.963467  0.232312  3.951518

TABLE 8

Mean, variance, skewness and kurtosis of 5, @
N

distribution with oy = v/t and oy = sin(t).

[N

and the standard normal limiting

Value of H  Statistics Mean Variance Skewness  Kurtosis
N(0,1) 0 1 0 3

[oES —0.011914  1.067501 —0.035781  2.953839

H =0.1 Hp
o, —0.081175  1.098299 0.057418 3.036918
H=03 @ﬁ —0.014314 1.065272 —0.031240 2.969305
ot =t ’ N 0.093090 1.084782  —0.033541  3.177708
P —0.018544 1.081048 —0.029286  3.005216

H =06 Ha
LN 0.055843 1.077630 0.063124 2.947798
[ —0.003935 1.108419 —0.034659 2.991984

H=0.8 Hp
NN —0.001668 1.082284 —0.105158  3.037013
H=01 <I>ﬁA 0.008673 1.114837 0.031816 3.035688
' LI 0.083700 0.976268 —0.083029  3.196050
H =03 @ﬁA 0.005612 1.109477 —0.014354 3.072120
ot = sin(t) ' o, 0.069933 1.121313  —0.027690  3.066687
[ 0.003653 1.106876  —0.010307 3.066465

H=10.6 Ha
LN 0.029138 1.037571  —0.059882  3.174537
P 0.025356 1.056075 —0.017431 3.042485

H =028 Ha
[ors 0.002881 0.980997 0.111312 3.124255
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TABLE 9
Empirical results for the monthly price-dividend ratio of Nasdag.
H c I 0
0.1206 0.9879 0.8759 0.0521

(—0.1429, 0.3842)  (0.8831, 1.0927)  (0.6293, 1.1225)  (0.0460, 0.0582)

6. Conclusions

In recent years, the fOUp has been used to model the realized volatility in
financial time series. Moreover, the discrete-time representation of fOUp has
been used to model equity price (Lui et al. [31, 32]). In this paper, we introduce
estimators for all four parameters in fOUp. The estimators of two diffusion
parameters are the same as those in Wang et al. [47]. The estimators of two
drift parameters are based on the least squares method. The asymptotic theory
for the diffusion estimators are established under the in-fill asymptotic scheme.
The asymptotic theory for the drift estimators are established under the double
asymptotic scheme for explosive fOUp with a full range of the Hurst parameter.

Our double asymptotic theory contributes to the literature in two aspects.
First, our theory permits explicit consideration of the effects from the initial
condition. Monte Carlo evidence suggests that the new asymptotic theory pro-
vides a better approximation to the Monte Carlo empirical distribution than
the limit theory that is independent of the initial condition. Second, our theory
works for the full range value of H € (0,1). Our asymptotic distribution for 6
is the same whether H < 1/2 or H > 1/2.

Our simulation studies show that the Monte Carlo empirical distribution
of # is indeed very sensitive to the change of the initial condition and that
our asymptotic distribution can well approximate the Monte Carlo empirical
distribution not only for 8 but also for other parameters in the model.

Appendix A: Proofs of Theorems 3.2-3.4

In order to give the proofs to Theorems 3.2-3.4, we first establish some crucial
useful lemmas and propositions.

A.1. Technical lemmas

Let oy = H(2H —1). The following four lemmas relate to the explicit fractional
calculus, which will play an important role in our analysis. They may have
independent interests. The proofs of Lemma A.3 and A.4 are postponed to the
supplementary material file [28] for the readability of the paper.

Lemma A.1. Assume H € (1/2,1). Let A — 0 and T — oo. Then we have

n n
ay § § 6—29T6291Ae20jA

i=1 j=1

in HT(2H)

92H

(A1)

iA
/ e e 0 |t—s|? 1 2dtds —
(i—naJi-na
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Proof. A standard calculation shows

n ) ) iA JA
ay § § 6—29T6291A629jA/ / 6—9t6—93|t_ S|2H_2dtd8
(i-1)AJ(j-1)A

e
—2aHZ Z e 20T 9<Z+J+2>A/ / Ple=0s1t — s+ jA —iA|P2dtds
=1 j=i+1
NQQHZ Z e—29T [ZX7AN OJA QGA/ / |t—8+_jA—ZA|2H stdt
i=1 j=i+1
n n+1
_ Z Z 6—29T60iA69jA69A(jA _ iA)2H
i=1 j=i+2
9 Z Z (20T OIA 0ID 208 (A _ i A)2H
i=1 j=it1
n n—1
+ Z Z 6720T69iA60jA639A(jA o ,LA)ZH
i=1 j=it+1
n n
_ Z —29T60iA69jA69A(1 + 629A _ 269A)(jA _ iA)2H
i=1j=
n
_ Z —20T 291A 29AA2H 4 ZG_GT 0iA 20A(TLA + A — ZA)
i=1 i=1
n
o Z 676'T607LA€39A(TLA o ZA)2H
1=1
n n
Z Z 6720T€0iA66jA60A(1 + 629A _ 269A)(jA _ ZA)ZH
1=1 =141
21— ") oy ~0iA 301 = sin JETIN
- WA —G—Ze N Ze (iA)*H
i=1 i=1
n n
_ Z Z 6_29T60iA69jA€9A(1 + 629A _ 269A)(jA _ ZA)2H
i=1 j=it+1
649A(1 _ 6720T)

o A2H + efeTeBGATQH
629A -1

~ 02 Z Z 20T iA OIA (A _ i A)PHA? — 1*5;9T A2H-1 | —6Tp2H
=1 j=141

T T
~ 0? / / e 20T b0 (+ — 5)2H dtds 4 o(1),
0 s

where for the first ‘~’, e=%e~%% is approximated as 1, which is because e 204 <
e %e=0s < 1fort,scl0 Al
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Furthermore, we can obtain

T pT
92 / / 6726T€9t€08(t _ S)2Hdtd8
0 s
T T—s
_ 62/ / 6—29T69t6295t2Hdtd8
T—t
_ 02/ / 729T Gt 295t2Hdet
0

_ / —29T( 29T —20t 1) Gtt2Hdt
0

2
o [T 0 T
_ 5/ o= 0ty 2H gy _ 5672971/ Ot 2H gy
0 0
9 (T 1 HT(2H
~ 5/ e Ot 2H gt — §€_GTT2H — %, as T — oo and A — 0.
0

When j =i, it is easy to see that

n _ iA iA
- Z o207 L40iA / / 679t€705|t _ S|2H72dtd8
— (i—1)A J(i—-1)A
n 4 A A
— ag Z 6—20T6291A€26A/ / e—0t€—03|t _ s|2H_2dtds
im1 o Jo

n
- Z 20T 20i0 20MN2H _ O (A2H-1Y,
i=1

Hence, the proof of this lemma is completed. O

Lemma A.2. Assume H € (0,1/2). Let A — 0 and T — oo. Then we have

Zze—zecr 29(1+J)A( / / e _gs OR(L, 5) dtds
G-1aJi-na ot

i=1 j=1
iA
Jr/ o0t <ea]AaR( aJA) —0(j— 1)A8R( (J 1)A)>dt)

HT(2H)
92H ° (A.2)
where R(t,s) is defined by (2.2).

Proof. Firstly, we can see that

JA iA
9/ / e*(%e*oswdtds
G-naJi-na ot

+/iA 7 e—QjAaR(t’jA) _e—G(i—l)AaR(tv (j—1A) di
(i—l)A at at
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_ Q/A /A o+ (i-1)A) ,~0(s+(—1)A) OR(t+ (i — 1A, s+ (j — 1)A)

dtd
ot 5

A . ‘
4 / o0t (i=1)A) ,~05A OR(t + (28; DA’jA)dt
0

_ /A o OH(i-1)A) ,—0(-1)A OR(t+ (i — 1A, (j —1A)
ot

_ —G(H-j 2)A/ / 0(t+s) %It—I_(Z_ )A|2H |t s+iA— ]A|2H)
ot
4 e 0iA—05A GA/ Lo O3t + (i = APH — [t +iA — jA — A]PH)
0 ot
_ o 0iB —0jA 207 /A Ot 3|t + (i = DAPH — [t +iA — jAPPH)
0

dt

dtds

dt

ot dt

dt

A 1 ; A |2H
_ o 0iA—0jA 207 / 0t D5t +iA — jA|
0 ot
A 1 . .
—0iA _—0jA QA/ _etag‘t-l—ZA—]A_AFH
— € e e e
0 ot
A A 1 ; : A |2H
_ Ge—0iB ,—05A 20 / / 6_9t6_958§|t — s+ iA —jA]
ot

dt

dtds.  (A.3)

Using (A.3), we can obtain

i:zn:e—zeT 20( z+J)A< / / o0t —0saR(t S)dtd
= G-1A J@E-1)A ot

=1
/iA ot (e—GjA OR(t, jA) o—0G-1)A OR(t, (j — 1>A)>dt>
(i—1)A ot ot
i - S R INTINCTIN /A 670t8%|t+iA—jA|2Hdt
ot

+

7,1]1
n
zlg

e
1
oLt — A — jA)RH
_ezze 20T 0iA 05 A 29A// 6t 0 5| 8+6Z JA dtds

lel

A 1 . CA2H
_ Zze—on 0id 652 QHA/ e_9t8§|t+zA—]A|2 dt
ot

i=1 j=1

dt

A 1 , ' 2H
—20T ,0iA L0jA GA/ efota§|t+lA—JA—A\
ot

n n+l

A . .
_Zze 20T 01 03A/ efetoﬁ'%\t"'ZA—JAPHdt
ot

11]2

oLt — A — jA)RH
_ezze 20T 0iA 05 A 29A// 6t 0 5| S+6Z JA dtds

=1 j=1
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A 1 , A 2H
¢ 20T DI 3B (G208 _ 1) / efetai‘t + lgt— JA gt
0

. A Ot +iA —nA - APH
_ZefeTeOerOA/ o0t 3l | dt
ot
n . . OL|t +iA — APH
—20T 0iA A —9t93
dt
+ izle e’"“e /0 e 5
L O3t — s+ 1A — jA[PH
_9226—2% INNIIN QGA/ / —6t,—0s dtds
i=1 j=1 ot
n H
— _Ze—ememm/ g 03] — t AP gt
— 0 ot
= . A 0t +inpH
4 20T 6iA 20A/ —0t93 dt
;0 e e’“e i e
n n A 1 . - 2H
+Zze—29TeaiAeejA(ezeA B 1)/ e—at5§|t+lg*JA| gt
i=1 j=1 0 t
_Hzn:zn:e—zw 0in 0 QGA/ / o5t SJFaZA *JA|2H dtds
i=1 j=1 t
= J1n+J2n+J3nv (A4)

where

n 2H
_Ze—emezm/ _o 03] —t+iA] dt
i=1 0 ot

n—1 A 1 A 12H
n Z 020 L0iA 20 / 7 I3t ‘BZN dt.
i=0 0

n n . ] A al t + ZA _ A 2H
= Z 28—20T601A69]A(620A _ 1) / o0t 5| — JA| dt,
0

i=1j=1

n o n o A A 8 t— —l—‘A— A 2H
Jn:_ezzefzwee(”]ﬁm/ /0 e 0(t+s) alt = GZt JA| dtds.

i=1 j=1 0

First, for Jy,,, we have

i TN I Gta | — H‘ZAPH
T T dt
i=1 0

= 4 AL OMtiAPRHE
+ Z e—zeTeeerzeA/ o0t 2‘ ~ | dt
i=0 0
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efeiAe%‘A [(ZA)QH _ (ZA _ A)QH}

2
N | =

&
Il
_

n—1

6—29T69iA620A [(’LA + A)2H _ (zA)QH]

+
N =
=}

n - 1 n—1 )
— = Z —0iA 20A(,LA) 2H 5 Z efeerGA(iAyH

=1 i=1

N[ —

n
- § —20T GzA GA ’LA 2H - E 29T601’A629A(iA)2H

—
—_

[\
[\

n

,BiAeeA (69A o 1) (ZA)QH + 3670T60AT2H

N

=1

- Z —20T ,0iA 0A (60A _ 1)(Z-A)2H + %efeTeMATQH

N =

T

N D

i T
e 2 H gt — 56*2” / 21 dt 4 o(1)
0

T
HT'(2H
e_‘%tQHdt—i—o(l) ogH )

S— — _

I
oD

Second, for Js,, we can see that

n n , ] A alt+ZA_A2H
Z Ze—QOTeOerGJA (629A _ 1) / o0t 5| ~ JA dt
i=1 j=1 0

n i—1

A
S YY) e HTHASID (208 _ 1) / eI+ iA — ALt
0

i=1 j=1

n A
+ H Z 6729T620iA (629A . 1) / efettQHfldt
i=1 0
n n . _ A
CHY Y e HTsiA050 (208 _ 1>/ eI (—t 4 jA — iAH L4y
i=1 j=i+1 0

n t—1

A
~ I o207 BiA 05N (208 _ | / FiA — iARH- g
> ( ) ; ( jA)

i=1 j=1

+ Hi6729T620iA (629A o 1) \/A t2H71dt
i=1 0
n n A
_ HZ Z ¢ 20T HiB BIA (o208 _ 1)/ (=t + A — iA)2H 1 gy
i=1 j=i+1 0
n t—1
:_226729T 0iA GJA( 20A )[(ZA—jA+A)2H—(ZA—jA)2H]

=1 j=1
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1 _
+ 5eze)A(l —e 29T)A2H

=1 j=i+1
1 - Y
— 5 Z Z 6—29T69ZA69]A(629A _ 1) [(JA _ ZA + A)2H _ 2(.7A _ ZA)2H
=1 j=i+1

+ (A —iA = A + %(22‘% (1—e 20T A2H

Z —29T69iA69jAe—9A (629A _ 1) (1 + 629A _ 269A) (]A _ ’LA)2H

[\7|}—‘
_
N HM:

1j=
n n—1
+ 9iA€9A (629A o 1) (ZA)QH o % Z eft%AGQA (620A o ].)(ZA)QH
=1 i=1

M:

ss

= o(1). (A.6)
Third, for Js,, it follows that

H
—20T 0iA 052 ;204 —20A 2 —s+iA - jAP?
ORI IVE

729T GzA QJA 70A(]A A)QHAS 1679T60A (620A _ 1)T2H

2

+

1= 1] 1 ot
. . H
3 T i s / / ot —0a b1 —s+5tA—JA'2 dtds
1=1 j=1
H
< 9226*2” 0il L0 20A/ / 93 st — S‘HA_JAP dtds
i=1 j=1
here, the first term equals to
n i—1
79H22672OT 0iA GJA 29A/ / S+ZA*]A)2H ldtds
1=1 j=1
+9HZ Z 6720T 0iA GJA 29A/ / —0t 705( t+$+jA*ZA)2H ldtds
i=1j=i+1
—20T 20iA 204 aora —ot 7esa%|t_5|2H
7926 e e e eV —=———— dtds
= o Jo ot
n +—1
~ —GHZZe*%T i g4 2(m/ / t—s+ZA—jA)2H Ldtds
i= lj 1

+0HZ Z e 20T 0iR 05A 2GA/ / —t+s+jA —iA)2H 7 dtds

=1 j=i+1
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n t—1
0

_ 75 Z 26720T 01A GJA 20A [(ZA ]A + A)2H+1 (ZA A)2H+1
1=1 j=1

+ (ZA_jA_A)QH-‘rl:I

AN —20T 0iA 0jA 20A( ; - 2H+1 _ 2H+1
+§ZZe e"2eIRIR(GA —iA + A) 2(jA —iA)

=1 j=i+1
+ (JA —iA — A)2H+1]
=0. (A7)
The last term also equals to 0. By Sandwich Theorem, we have J; ~ 0. Together
with (A.4)—(A.6), we complete the proof of this lemma. O

Lemma A.3. Assume H € (1/2,1). Let A — 0 and T — co. Then we have the

following results
JA
/ e Ote 0t — 5|2 2dtds
DA JE-na

’L' aH§ § €—9T QGZA/

i=1 j=1 (i—
~ 9T2HA + Te 9T AZH=1 4 (1), (A.8)
JA
0(i+j)A / / —9(t+s)|t - ‘QH—thd
Z’L OéH € € S S
~ T2H + o(T2H) (A.9)
(i) an Z ZGGZA/ / =00+ |1 _ g 2H2g4 s
=1 j=1 (G-1A
0
~ §T2HA+9HT2H’1 +0(1), (A.10)
JA
—-0T 9 (i+24)A / / —0(t+s) |+ _ o|2H—2
(iv) ag e € [t — s dtds
D) w-vadopa
0
5T”LIAMJLIT?H* +0(1). (A.11)

Lemma A.4. Assume H € (0,1/2). Let A — 0 and T' — oo. Then we have the
following statements

Zze—eT 291A( / / obte _gs OR(L, 5) dtds
G-naJi-a ot

=1 j=1
A
+/ o0t <€6]A6R(t ,JA) et o—1)a OR(t, (j — UA))dt)
7 T2HHIA + 0 pan 5 +0o(1) (A.12)
2H +1 2 ’ '

n o n o JA iA
(44) Z Z fl+a)A (9/ / efetefeswdtds
G-naJi-na ot

i=1 j=1
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+/m o0t o-0in OB JA) - _p-1)a ORI —DA)Y
(i—1)A ot ot
~ T2 4 o(T2H), (A.13)

SN Y OR(t
(i) » Y e (9/ / o0t ,—0s OB(L,8)
i=1 j=1 G-DA JE-1)A ot

. /m ot (m0a OR(EGD) o OR(E G = DA
(i—1)A ot ot

v
2(2H + 1)

oy Ty Y OR(
(zy) Z Z 6—0T60(1+2])A (9/ / e—Gte—Gs ({(91; 3) dtds
i=1j=1 (G-DA J(i-1)A

+/m o0t g-0in OBt JA) - _p-1)a0R(t (1 —DA)Y
(i—1)A ot ot

= O(T*"*A) + 0(1). (A.15)

THHIA + 0(1), (A14)

A.2. Useful lemmas, propositions and their proofs

Now, we rewrite Oa and [ia as

_oaUr
Opr =0 log( 1 oA 2 A.16
A=0+— A 0g< +e VT>7 ( )
~ Mt M
= On — 0 — 00— Al
s =it @ = 0) (5 + ) 05T (A17)
where

n 1 n n
Ur=o0 Z &AX(i—1)A — o Z €A ZX(i—l)Aa (A.18)

i=1 =1 i=1

n n 2
VT:ZX(Qil)A_%<ZX(i—1)A> ; (A.19)
MT—O’ZQAZX@ Ha+ 0o g AZX B

=1 =1 i=1

—U%HZQAX(FUA— Z (i— 1)AZGZAXZ A (A.20)

i=1 i—1
2
N =n(e qu Ha — (ZX(Z Ha )

_UZQ—AZX(Z-,DA—l—o‘nZeiAX(i,l)A. (A.21)
1= =1 =1

s HM:
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Moreover, let

n n A
Up=0Y e8¢, =0 efeTe%"A/ e %*dBH (A.22)
T
Xr=e""Xr =X+ %(1 —e ) + 0/ e ?aBY, (A.23)
0
Er=TH Z €in. (A.24)
=1

Then, in Proposition A.1, we present further expansions for the terms Ur,
Vr, Mr and N, which play crucial roles in our analysis.

Propostion A.l. Let Ur, Vi, My, Ny, Ur, Xy and S be defined by
(A.18)-(A.24), respectively. Then, we have

e VTR = e 22U X + Ry, (A.25)

(1— e 22)e2TVp = e 22X2 A — Ron, (A.26)

T1(1— e 2)e T My = 0e 2227 X2, o — Rsn,  (A27)

(n(e” — 1))_1(1 — e 2) e M Ny = e_QGA)?(anl)A — Ryn, (A.28)

where the remainder terms Ri,, Ron, R3n and Ry, are defined as

Ry, = oe 22 e T8 e\ (X(i_1)a — X1)
i=1
o—0(T+2) n

—UTZQAZX@—I)A, (A.29)

i=1 i=1

Rpp = e72% Z e (X(Qi—l)a - X(zi—2)A> + e 2R X2

=2

2
1 ¢—208Y,—20T [ ™
+ ( ) ZX(Z'*UA , (A.30)
=1

n

Rs, = 02y le—zeA Ze—za(T—z‘A+A) ()?(22'—1)A _ X(Ziﬁ)A) + 6—29Ae—29T)~(g
i=2

I —20A\ —20T— - —20A _—20T ¥
*0—5(176 2 )6 2T:T;X(i—1)A+e 2 e 2TX02

[ ~ B ~ n
—|—05nT H(l —e 26A)e ZHT;QAX(FUA

+oT (1 e 208)e T Z X@i-1a Z EAX(i—1)As (A.31)

i=1 i=1
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n
Ryp = 722 Z e (X(Qi—l)A - )N((2¢—2)A) e WA 20T X2

=2
1 - ’
—20A\ ,—20T
+ﬁ(1_6 )6 <ZX(i_1)A>
=1
(1 _ 6—20A)e—20T n n

+o

n(ef — 1) D _cia ) Xina
=1 =1

(1 _ 6—29A)e—20T n
— 51 Z einX(i—1)A- (A.32)
=1

Proof. Firstly, we can write

n
oe TN " einX(i_1)a

i=1

P N 5 RN N Ze—a(T—m)em(;}(i_l)A — X7), (A.33)
i=1

where Ur and X7 are defined by (A.22) and (A.23), respectively. Then, together
with (A.18) and (A.33), we can easily obtain (A.25). We can see that

(1 _ 6720A)6720T ZX(Qz_l)A

1=1
S MARE e MAN MR R ) (A3
=2

Together with (A.19), we have (A.26). Furthermore, combining (A.20), (A.21)
and (A.26), we can obtain (A.27) and (A.28) easily. O

The following four lemmas characterize the relationship between l?T, X 7 and
Er, whose proofs are postponed to the supplementary material file [28] for the
readability of this paper.

Lemma A.5. Let A — 0, T — oo. If (i) H = 1/2, (i) H € (1/2,1) and
T*MA — 0, or (i) H € (0,1/2) and T* 1A — 0, then we have E(Ur X1)— 0.

Proof. Case 1: H € (0,1/2). By Lemma A.4 and T?#*'A — 0, we can get

E(UrXr)
2zn:znj 0T 20iA “ 0 H a8 0 H
=0 e Ve E(/ e "*dB; / e "*dB; >
i=1 j=1 (i-1)A (G-1A

n o n ) JA iA
. Z Z 00T 20iA (Q/ / o0t~ OR(t, s) dids
G-Da J-1a ot

i=1 j=1
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iA .
+/ e—9t<e—9jAaR(t7]A) _o(j—1)a OR(t, (J — 1)A)>dt)
(i—1)A ot ot

— 0. (A.35)

Case 2: H =1/2. By (A.22) and (A.23), we have

iA 2
(UTXT 2 —0T 292A </ —93st>
Z (i—-1)A

n 1A
2 E e —0T 29'LA / 7295d8
(i—1)A

i=1

Q

0,2

0 <

M:

e 97 (620A -1) =0, (A.36)

[\~

1

-
Il

as T — oo and A — 0.
Case 3: H € (1/2,1). From (A.22), (A.23), Lemma A.3 and 7?7 A — 0, we
can write the following result immediately,

E(UrXr)
JA

2 —0T 29’LA 795 H —0s H

=0 e E(/ dB; / e "*dB, >
» A

2 ii or_ooin [ 78 0(s+r) 2H—2

=o ay e "te / / e VUt |s — o |PH2dsdr
i=1 j=1 (i-1AJ(G-1)A
— 0. (A.37)
Using (A.35)—(A.37), we complete the proof of this lemma. |

Lemma A.6. Let A - 0 and T — oo. If (i) H =1/2, (i) H € (1/2,1) and
THA — 0, or (iii) H € (0,1/2) and TH1A — 0, then we have E(ErXr) — 0.

Proof. Case 1: H € (0,1/2). By Lemma A.4 and THT'A — 0, it holds that

E(ErXr)
JA

— ol HZZE< OZA/ 795dBH/ OsdBH>

1=1 j=1 (@-1A (
— 0T~ szeem< / / —ot 70583@ S)dtd

i=1 j=1 (7—1)A J(i— I)A

+/1A o0t e—GjAaR(t A o0~ naOR(t, (1 —1)A) at

(i—l)A 3t at

— 0, (A.38)
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Case 2: H = 1/2. Straightforward calculations lead to

iA 9
E(HTXT) — T~ 1/22 OzAE</ GsdBS>
(

i—1 zl)A

=T~ 1/2 01A/ —205ds
Zz; (i-1)A

T71/2 (629A o 1)(1 o efaT)
=0 A 7 — 0, (A.39)

as T — oo and A — 0.
Case 3: H € (1/2,1). By Lemma A.3 and T# A — 0, it holds

E(ErX7)
H [Z2VAN i 6 H ia 6 H
= oT" E< i / e05dB / e Sst>
Sye(es [t [
=gagT 1 OZA/ / (SJFT)\S — r|*"=2dsdr
23 [
— 0,

which together with (A.38) and (A.39) completes the proof of this lemma. O

Lemma A.7. Let A - 0 and T — oo. If (i) H =1/2, (i) H € (1/2,1) and
THA — 0, or (i) H € (0,1/2) and THHA — 0, then we have E(ErUr) — 0.

Proof. Case 1: H € (0,1/2). By Lemma A.4 and THT'A — 0, it holds that

E (ET > e—9<"—j>AejA>

jA
Yy e 9(‘+2J)A]E< / eoan!! [ e—asczBf)
(i-1)A (

=1 j=1 i—1)A
i=1 j=1 G-1DA JE-1A ot
P[0 (s ORIA) s OREG DA,
(i-1)A ot ot
=0 (A.40)

Case 2: H = 1/2. It follows that

E(ETINJT) =cE <T1/2 Z €A Ze (n=7) EjA)

i=1 j=1
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n A 2
— O_T—1/2 28—9T639iAE(/ e—@deS>
(

= i—1)A
A A Cor
=g T s (=)
=0(T~'/?). (A.41)

Case 3: H € (1/2,1). By Lemma A.3 and T#+'A — 0, we have
E(ETZG_Q(n_j)AGjA>
j=1
— T—H 6—9T69 i+27 AE (/ e—QSdB;"I/ e—@sdB£{>
( (

im1 =1 i—1)A J—1)A

n n
— aHT_H Z 26—9T69(1+2])A

i=1j=1

— 0. (A.42)

i JA
/ 6_9(S+T)|S — 2 =2dsdr
—naJig-na

Together with (A.40), (A.41) and (A.42), we complete the proof of this lemma.
O

Lemma A.8. Let A — 0 and T — oo. Then for any m < 1, we have
gl ot f:X 1A 30
n . (i—1) .
Proof. First, using (2.6), we can write

) ) ] (i—1)A
Xi1a = X069<l—1>A+%(69<1—1>A —1) +oef-1A / e~ %dB!. (A.43)
0

It is obvious that

- p\1=€T p
ZX(i—l)A - [(XO + 5) s 5”] ~ N(O,a%;lzlx(iilm), (A.44)
i=1

where O'%;;l Xoonys = E(>L, oefli-DA fo(ifl)A e~95aBH)2,

Case 1: H = 1/2. We can deduce that, as n — oo

2
Iy Xi-na

n % A
_ 2 Z 20(-1)A /( o205 1
i=1 0
n n (i—-1)A
12003 Y 69(¢71)A69(j71)a/ o205 1
0

i=1j=i+1
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0_2 n
_ 20(i—1)A —20(i—1)A
= — e 1—e
2% 2 ( )

2 n n
+ %Z Z e@(i—l)Aee(j—l)A(l _6—29(1‘—1)A)

i=1 j=i+1

0._2 1— 629T o) 4+ 0.2 eQT 1— eHT B 1— e—OT
20\ 1 — e20A O(ef2 —1) 1—efA 1 —e0A
_ (1- 629T)69A n nefm]

1 — e20A

< CeTA2, (A.45)

Case 2: H € (0,1/2) U (1/2,1). Using the Cauchy-Schwarz inequality, we
have

2
Oy, Xa-na

n n , , (i—1)A (G—-1HA
_ 2 2260(1—1)A60(j—1)AE (/0 e—esdBf/o e‘esdBf*’)

i=1 j=1
(i-1)A (G-1A
/ efesdBf/ e % dBH
0 0

n n
< o2 Z Z Hl—1A BG-1)AR

i=1 j=1

n o n (i—1)A 2\ 1/2
< OQZZee(i—l)Aeﬂ(j—l)A (E(/ e‘esdBf> )
0

i=1 j=1

(i-DA 2\ 1/2
. (JE(/ e_QSdBSH> )
0

n n oo 2
S UZZzee(ifl)AeO(jfl)A (]E (/ eesdBf) )
0

i=1 j=1
0T\ 2
— o2 Hl;giH) G — :9A> < Ce¥TA2, (A.46)

Using (A.45) and (A.46), for H € (0,1), we have
T xS CPTATE (A.47)

Note that

1 —oT S
nge ZX(Zfl)A
=1

1 _ 1
T _ e QTO_ n v
it Xi—na
n i=1“*( IA Gn
i=1 X(ifl)A

& p\N1—€"T
'{Zx(il)A - [(X0+ 5) 1_0a 5”}}

i=1
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7n1 —60T o 1760T M
+ T Ee |:<Xo + 9) N gn (A48)

and by (A.47), we can get

1
T'm_e—GTO,Z < CTm_l,

n e X-na

1 1— orT
et KXO + Z) — ZM - ';n] < O™t — OTMe 0T

Therefore, we have

d

> e) < Zexp{—C'e2TQ*2m}7
which implies that

By the Borel-Cantelli lemma, we complete the proof of this lemma. O

m1 - .
T EE OTZ;X(Z-_DA

m]' — -
T 56 GTZIX(Z'_DA

Propostion A.2. Let A — 0 and T — oo. Then, we have

. VHT(2H < ae
£ ,VHLRH) - % ey 5 4 (A.49)

Ur=o oH v, =r — .
Moreover, if (i) H = 1/2, (i) H € (1/2,1) and T*! A — 0, or (i) H € (0,1/2)
and T*HHIA — 0, then we have

HT(2H)

. <U VHT(2H) G—H“’")’ (A.50)

(ﬁT,)’ZT,ET)—) o V,X0—|—%—|—O'

where v, w and n are independent standard normal variables, and )ZOO =Xo+
b+o fooo e~%5aBH.

Proof. (i). We first consider the limiting distribution for Up. Since Uy is a
Gaussian process, for any n and A > 0, we have Ur 4 UﬁTN(O, 1), where o5,

denotes the standard deviation of ﬁT. Thus, it is sufficient to show as A —
0, T — o0

n n A JA

2 _ 2 —20T 29(i+j)A]E(/ —9sdBH/ —esdBH)

o o E E e e e 5 e o
vr i=1 j=1 (i—1)A (G-1nA

HT(2H)
e
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Case 1: H € (0,1/2). Using Lemma A.2, as A — 0, T — oo, we get

n on iA A
2 2 —20T _260(1+7)A 705 H 795 H
aﬁngE Ee e20(i47) IE(/ dB! ></( dB)

i=1 j=1 j—1)A
. zn: Zn: o207 L20(i+5)A ( / / o0t b5 OR(t, s)dtd
i1 j=1 (7-1)A J(E-1)A ot
iA . .
+/ o0t <60jA OR(t,jA) _ e tG-DA OR(t, (j — 1)A)>dt>
o HT'(2H)

The first equation is from (8) in Chen and Li [15], which is a modification of
(2.3) in Hu et al. [22]; see also Hu et al. [24].
Case 2: H=1/2. As A =0, T — oo,

n ) A o2 o2
0[27 —2 26—20T6491A / e~ 2050 — _ezeA(l B 629T) L2
. i=1 (i-1)A 20 26

Case 3: H € (1/2,1). Using Lemma A.1, we can get as A — 0, T' — o0,

2 _ 2 —20T 201 29;A/ / o~ Ote—0s(y _ g|2H-2
ox =o ag et — s dtds
o ZZ S A

Therefore, we have Ur A aing,SQH)V, as A — 0, T — oo.
(ii). Now, we consider the limiting distribution for X;. Recall that

)?Oo:XOJrnga/ e %dBH.
0

Then, using (A.23), we have

E| X7 — Xoo| = E‘—%eﬂ — a/ e % dBH
T

i < A\
< Ll 0T +U(E</ eesdBf) ) .
0 T

Case 1: H € (0,1/2). Straightforward calculations lead to

E| X1 — Xoo|

0o 1/2
< |/L| 70T ( / / 79(t+s) 8R(t S) dtds te 70T/ —0t 8Rétt 5) dt)



Asymptotic theory for explosive FOUP 3967

— MefeTJrU(HefzeT/ efeuquqdu)lﬂ
0

0
1/2
= %67071 +o (Hl;g[H) ezeT) < Ce T,

Case 2: H = 1/2. Using the It6 isometry formula, we obtain

]E\)ZT— Xoo| < |H| 70T_~_0_L670T < Ce 0T

0 V20
Case 3: H € (1/2,1). It follows that

~ SIS 1/2
E| X7 — Xoo| < "Z| 0T 4 cr(ozH/ / 69(S+T)|sr|2H2dsdr>
T JT
0o r—T 1/2
= ‘%67” + a(2aH/ / 629T69“u2H2dudr>
T Jo
oo pu 1/2
— ‘II;T|6—QT + U(2O{H€_29T/ / e—20’ueeuu2H—2dudv>
o Jo

1/2
_ \%e—eT + U(Hl;giH)e—zeT) < Ce T,

Hence, for H € (0,1), it holds that E| X7 — Xoo| < Ce~T, and then we have
(|XT OO| > €) < Ce e 9T, Consequently, by the Borel-Cantelli lemma, we
have XT g X
(iii). In this part, we prove Zp = T-H 3" €a 5 N(0,1). In fact, using
the definition of €;4, we can easily obtain Y . | € 4 oy eaN(0,1). Here
oy n ,» denotes the standard deviation of Z?:l €;A, which will be calculated
as follows.

Case 1: H € (0,1/2). By (A.13) in Lemma A.4, we have

2
2 0iA —93 H
O5n = e dB;
Zz‘:l KZAN (Z /(1 na )
_Zze z-‘rj)A( / / bt ,—0sOB(E,8)
G-naJi-na ot

=1 j=1
n /ZA o0t —0in OB, JA)  _o_naOR( (G —DA) o,
(i-1)A ot ot

~ T 4 o(T?7).

Case 2: H = 1/2. Using the It6 isometry formula, we can see that

n A 2 n
a%)?zl €in ZeQGiAE(/( e—edeS) - % Z(ezfm _ 1) T
i=1 —

i—1)A
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Case 3: H € (1/2,1). Using (A.9) in Lemma A.3, we have
n_ A 2
03w o =E Zem / e "aBH
(i+5)A 0(s+r) 2H—-2 2H
=apg |s — 7] dsdr ~ T,
DL VA

=1 5=1

Therefore, we have T_HUZZ;l e;a — 1, which implies Zp A N(0,1).

(iv). Finally, we show (A.50). In fact, it holds (Ur, X1 — Xo,E7)" 4

N (7*,3*)7 where T denotes the vector transposition. Here, @* and B* have
the following representation ar = (EUr,E(X7 — Xo),EZ7) " and

U%T Cov(ﬁT,)N(T) C’ov((?T,ET)
B* = CO”U()?T,[}T) J%Z COU(XT,ET)
_ T _
Cov(ZEr,Ur) Cov(ZEr, Xr) O'%T

Notice that EZ7 = 0, EUr = 0 and ]E(XT — Xo) — 5. Then B* can written as

U%T E(ﬁT)?T) E((ZTET)

B* = E()’ZTﬁT) a% E(XTET)

TJV

E(ErUr) E(ErXr) o2

=T

By (A.49) and Lemmas A.5-A.7, we can obtain (A.50). The proof of this propo-
sition is completed. O

Finally, in Proposition A.3, we can see the remainders Ry, Ro,, R3, and Ry,
are negligible in the asymptotic analysis.

Propostion A.3. Let Ry, Ran, R3n and Ry, be defined by (A.29)-(A.52),
respectwely Then, as A — 0 and logA — 0, we have Ry, “3 0, Ray “3 0

Rgn 4) 0 R4n s
3
In particular, as A — 0 and (1<>gT_2A) — 0, we get TH1R3, 0.

)

For the sake of the length and readability of this paper, we delegate it to the
supplementary material [28].

A.3. Proofs of Theorems 3.2-3.}

Proof of Theorem 3.2. (i). We first prove the strong consistency of §A. By Propo-
sition A.1, we have
e~ [ B e OAATI(1 — e=208)e=20T ),
A Vp oo (1 — e=208)e—20TY/p,
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A’l(l _ 6729A)6720A670TﬁT§T + Afl(l _ 6726A)670TR17L

G_QQAXEn_l)A - R2n

Using the fact E|le=®TUpXp| < e‘eT(Eﬁ%)l/Q(]E)N(%)l/z < Ce 9T and the
Borel-Cantelli lemma, we obtain that

e TUr X %5 0. (A.51)

Moreover, Proposition A.3 gives that

a.s.

e TRy, “30, Ry 30, e AXE 0 X2 (A.52)

oo

a.s.

From (A.51) and (A.52), it follows that %3—; =" 0, which together with
(A.16) implies Ba — 623 0.

(ii). Now, we turn to prove the asymptotic distribution of </9\A, that is, (3.12).
By (A.16), Proposition A.1, Proposition A.3, we can get

AeeT N eGT PN UT
6—9(7L+1)AUT
= (1— e 208)e— 20TV, (1+0(1))

1— 6720A (HA

2080, X1 + Rip UrX
= TR (14 o(1) = =TT (14 0,(1)).
€ X(n—l)A — Rap X(n—l)A

(A.53)
where Ur and Vr are defined by (A.18) and (A.19), respectively. Consequently,
from Propositions A.2, it follows that

AT P UivHaFIg?H)y
C @a-05 :
25 %2 =7 Xo+ 4 + oYL,

0H

which completes the proof of this theorem. O
Proof of Theorem 3.3. Note that é\A %% 9 and

. ~ M M
MA—#+(9A—9)<Z+NT>+9'T- (A.54)
T

To verify the strong consistency of fia, it is sufficient to show %—; %0, as

A = 0and T — co.
In fact, using (A.28), Proposition A.2 and Proposition A.3, we have

(n(e‘gA — 1))71(1 - e_zeA)e_%TNT X2, A—=0,T — . (A.55)

Moreover, using (iii) in the proof of Proposition A.2, we obtain TH1Zp ~
N(0,77% 4 o(T~2)). Then, Borel-Cantelli lemma gives that 77 1=, “% 0,
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as A — 0,7 — oo. Therefore, under the condition A — 0 and B RN o0, by

(logn)®
(A.27), Proposition A.2 and Proposition A.3, we obtain
(71(69A - 1))_1(1 - e_zoA)e_%TMT 20,

which together with (A.55) implies %—77: “20. O

Proof of Theorem 3.4. Using (A.53) and (A.54), we can write

T UrX
g (0a—0)= 7~2T — +0,(1),
X(n—l)A
oT —-H
1-Hi~ o N_ € > —0T1-H —or 17" Mr (A.56)
T (in — p) = 50 (N 9)(2,ue T + 2e (HnA)lNT>
n T_HMT
(OnA)~INp~

Together with Proposition A.1 and Proposition A.3, we can obtain
T H(fia — ) = 027 + 0,(1). (A.57)

From (A.56) and (A.57), we have

0T 7Y
et~ TN UrX _
5708 =0, 7" (fa —p) ) = (=057 | +0,(1).
20 X2
(n—1)A
Using Proposition A.2, we can complete the proof of this theorem. O
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Supplement to “ Asymptotic Theory for Explosive Fractional Ornstein-
Uhlenbeck Processes”

(doi: 10.1214/24-EJS2293SUPP; .pdf). The supplement contains the proofs of
Lemmas A.1-A.4 and Proposition A.3.
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