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are independent with distribution function G, and that arrival and delay
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1. Introduction

The following general delay model appears in several applied situations: Cus-
tomers or particles etc. enter a system at times Ui and depart at times Yi :=
Ui +Xi, i ∈ N, where the random variables U1, U2, . . . , X1, X2, . . . are indepen-
dent; further, for all i ∈ N, Ui is uniformly distributed on the unit interval, and
Xi ≥ 0 has distribution function G, so that G(0−) = 0. Examples include queu-
ing models, notably the M/G/∞ queue, but also models from statistical physics
and mathematical biology; see the discussions in [3] and [5]. In particular, the
uniform distribution of arrival times appears if the system is fed by a Poisson
process with constant intensity.

We are mainly interested in the delay distribution. If the arrival and departure
time for each customer are known then so are the individual service times, and
the problem is simply another instance of the classical situation, with a sample
from an unknown distribution. A typical variant involving data loss appears if
we only know the set of arrival and departure times, or the number of customers
in the system as a function of time over a fixed time interval, or the duration
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Fig 1. The rank plot for the lifetime data.

of busy periods, which further reduces the number of customers to a binary
variable; see e.g. [6, 22, 4, 15, 14, 5, 10]. If only the sets of arrival and departure
times are known then the bijection between arrival and departure indices may
be regarded as the missing part of the complete data, i.e. the individual service
times. Maximum a posteriori and minimum distance prediction of this bijection
are discussed in [14]. An interesting approach is given in [6], where on the basis
of a segment of a path of the M/G/∞ queue departure times are matched
to the last previous arrival times, and a functional relationship between the
distribution of the differences and the service time is used to obtain a consistent
estimator of the latter; see also the end of Sect. 3.

In the present paper we consider the complementary problem where the bijec-
tion is known but the arrival and departure times are not. For example, arriving
customers might receive consecutively numbered tickets which they return on
departure, and the tickets are put on a stack. Of course, the point is that the
order of arrivals will generally not be the same as the order of departures.

In [14] the dates of birth and death for some famous composers were used as
a running example. In the same vein, Chopin (Ch), Gounod (Go), Liszt (Li),
Mendelssohn (Me), Offenbach (Off), Clara Schumann (CSch), Robert Schumann
(RSch), Verdi (Ve) and Wagner (Wa), all born between 1809 and 1819, give rise
to the rank plot in Fig. 1. For example, Offenbach was born later than Verdi
but died earlier.

Our main concern in this paper is the following question: What information
about the delay distribution can be extracted from these random permutations?
As usual, the answers that we obtain in a statistical context, such as estimation
of the delay distribution, refer to asymptotics, where the sample size n tends
to infinity. A methodological aspect worth mentioning is the different view of
permutations that we use in the nonparametric and the parametric case re-
spectively. In the nonparametric situation we regard the data as representing
an empirical copula and we obtain consistency of a specific estimator. In the
parametric situation we base the asymptotic analysis on a view proposed in [16]
where limits of permutations refer to pattern frequencies and lead to permutons
(two-dimensional copulas) as limit objects. Copulas are often used in depen-
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dence modeling; see [20] for an introduction. Copulas predate permutons, but
were in turn used avant la lettre in nonparametric statistics, for example in [23]
as rank order statistics, or in [8] as dependence functions; see also [13] for a
recent review.

In Sect. 2 we introduce some basic notation, we relate rank plots such as in
Fig. 1 to empirical variants of a specific set of copulas, and we discuss model
identifiability (Theorem 4). In Sect. 3 we propose and analyze a nonparamet-
ric estimator for the delay distribution (Theorem 6) and generally remark on
the difficulty of this problem. In Sect. 4 we apply the pattern view in the con-
text of parametric estimation. Here we can go beyond consistency and obtain
asymptotic normality of the estimators. We work out the case of exponential
delay distributions (Theorem 10) and determine the asymptotic efficiency of the
delay model estimator as a function of the parameter λ = 1/EX1.

There is a rough analogy between using pattern frequencies in the present
context and the classical moment method, where sample moments are equated
to moments arising in the parametric model in order to arrive at parameter
estimates. For finite-dimensional parameters it is enough to consider a finite set
of patterns. In a separate paper [2] we deal with nonparametric goodness-of-fit
and two-sample tests for general permutation data. There, a ‘functional view’
turns out to be useful: All patterns are considered simultaneously, which leads
to infinite-dimensional spaces and functional central limit theorems.

2. Delay copulas

We first formalize rank plots and relate them to permutations. Let Sn be the set
of permutations of [n] := {1, . . . , n}. An element π of Sn may be described by
the list (π(1), π(2), . . . , π(n)) of its values. For n < 10 we often use a condensed
form, such as 21 instead of (2, 1).

In our model arrival and departure distributions are continuous. Hence, ig-
noring a set of probability 0 we may assume that U1, U2, . . . and Y1, Y2, . . .
are pairwise different. Given the first n variables Zi = (Ui, Yi), i = 1, . . . , n,
let Qni =

∑n
j=1 1(Uj ≤ Ui) and Rni =

∑n
j=1 1(Yj ≤ Yi) be the ranks of

the respective arrival and departure times in the sample. The rank statistics
Qn = (Qn1, . . . , Qnn) and Rn = (Rn1, . . . , Rnn) then give rise to a unique ran-
dom permutation Πn with the property that

Πn(Qni) = Rni for all i = 1, . . . , n. (1)

Thus the permutation plot of Πn is same as the rank plot for the first n pairs
of arrival and departure times. Note that Πn is invariant under permutations of
Z1, . . . , Zn.

We regard the values of these permutations as our data. Later, asymptotic
considerations with n → ∞ require a notion of convergence for the permutations
Πn, together with a description of the possible limits. We recall that a (two-
dimensional) copula is a distribution function C : [0, 1] × [0, 1] → [0, 1] with
uniform marginals, i.e. C(u, 1) = C(1, u) = u for all u, 0 ≤ u ≤ 1. Generally, if X
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and Y are real random variables with continuous distribution functions FX , FY

defined on the extended real line R = R ∪ {−∞,∞} and joint distribution
function FX,Y : R × R → R, then the transformed random variables U =
FX(X) and V = FY (Y ) are uniformly distributed on the unit interval, and the
associated copula is given by

CX,Y (u, v) = P (U ≤ u, V ≤ v) = FX,Y

(
F−1
X (u), F−1

Y (v)
)
, 0 ≤ u, v ≤ 1, (2)

where F−1 : [0, 1] → R, with F−1(w) = inf{z ∈ R : F (z) ≥ w} for 0 ≤ w ≤ 1,
denotes the quantile function associated with a distribution function F . As
FX , FY are continuous, CX,Y is the unique copula C that satisfies

FX,Y (x, y) = C
(
FX(x), FY (y)

)
for all (x, y) ∈ R× R.

For our purposes, a specific family of copulas will be of central importance.

Definition 1. Let G be a distribution function with G(0−) = 0. Then the
associated delay copula C = C[G] is the copula given by the joint distribution
μ of U and Y := U + X, where U and X are independent, U is uniformly
distributed on the unit interval, and G is the distribution function of X.

Example 2. (a) Given G and a > 0 let Ga be defined by Ga(x) = G(x − a),
x ∈ R. If X has distribution function G then Ga is the distribution function of
X + a. Writing C and Ca for the respective delay copulas and using Fa+Y (z) =
FY (z − a), F−1

a+Y (v) = F−1
Y (v) + a, we get

Ca(u, v) = FU,a+Y

(
u, F−1

Y +a(v)
)

= FU,a+Y

(
u, F−1

Y (v) + a
)

= FU,Y

(
u, F−1

Y (v)
)

= C(u, v),

hence a positive shift of the delay distribution does not change the delay copula.
(b) Given G and a > 0 let Ga be defined by Ga(x) = G(x/a), x ∈ R. If X

has distribution function G then Ga is the distribution function of aX. As in (a)
let C and Ca be the delay copulas for G and Ga. We claim that Ca converges
weakly if a → 0 or a → ∞ to the copulas C0 and C∞ given by C0(u, v) = u∧ v,
C∞(u, v) = uv for all u, v ∈ (0, 1) respectively, which are associated to the
extreme cases U = Y and U, Y independent. In particular, rescaling of the
service time distribution changes the associated delay copula. Indeed, for a → 0
continuity implies that CU,U+aX → CU,U , and for a → ∞ we use the invariance
of copulas under continuous and strictly increasing transformations to obtain
CU,U+aX = CU,a−1U+X , and continuity now leads to the limit CU,X as a → ∞.

(c) Next we consider delay distributions concentrated at two points. Specifi-
cally, let G = Gα,c be the distribution function for the mixture αδ0 + (1− α)δc
of the Dirac distributions at the points 0 and c respectively, with parame-
ters α ∈ (0, 1) and c > 0. This models the situation where incoming parti-
cles or customers either leave the system immediately or stay for a fixed time
c, with respective probabilities α and 1 − α. If c ≥ 1 and X ∼ Gα,c then
FU,U+X = αFU,U + (1 − α)FU,U+c. With C0,α and C1,α denoting the restric-
tions of the distribution functions FU,αU and FU,α+(1−α)U to the unit square,
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it is easily verified that Cα = αC0,α + (1 − α)C1,α is the associated delay cop-
ula; remarkably, it does not depend on the shift c ≥ 1. Let Πn be the random
permutation generated by the first n arrivals. Assuming that there are k cus-
tomers that leave immediately, and � customers that require service time c ≥ 1,
the permutation Πn is obtained as follows. With U1 < · · · < Un denoting the
ordered arrival times, there are disjoint subsets {r1, . . . , rk} and {s1, . . . , s�} of
{1, . . . , n}, with 1 ≤ r1 < · · · < rk ≤ n, 1 ≤ s1 < · · · < s� ≤ n, and k + � = n
such that Yrm = Urm , m = 1, . . . , k, are the departure times of the customers
that leave immediately, and Ysm = Usm + c, m = 1, . . . , �, are the departure
times of the customers that require service time c ≥ 1. Then Πn(rm) = m for
m = 1, . . . , k and Πn(sm) = m + k for m = 1, . . . , �. This also shows that the
length of the delay disappears in the step from the time data to the permutation,
as all c ≥ 1 lead to the same sequence.

(d) In view of its later importance we consider the case of exponential distri-
butions Exp(λ), where we have G(x) = 1 − exp(−λx), x ≥ 0, for some λ > 0.
The joint distribution function FU,Y of U and Y = U + X with U uniformly
distributed on the unit interval, X ∼ Exp(λ), and U and X independent, is
readily calculated as

FU,Y (u, y) =
{
y −

(
1 − e−λy

)
/λ, if y < u,

u−
(
e−λ(y−u) − e−λy

)
/λ, if y ≥ u,

(3)

and FY can be obtained from this using FY (y) = FU,Y (1, y). As FY (y) = y −
(1−e−λy)/λ for y < 1 we have that F−1

Y (v), with v ∈ (0, 1− (1−e−λ)/λ), is the
unique solution y ∈ (0, 1) of the equation y − (1 − e−λy)/λ = v. This solution
can suitably be expressed with the help of the Lambert W -function t 
→ W (t),
with W (t) for t ∈ [−e−1,∞) as the unique solution W (t) = y ∈ [−1,∞) of the
equation yey = t. On [−e−1, e−1] the function W has the absolutely convergent
series expansion

W (t) =
∞∑
k=1

(−k)k−1

k! tk, |t| ≤ e−1;

see, e.g. [7]. We get by an easy calculation that

F−1
Y (v) = v + 1

λ
+ 1

λ
W

(
−e−(λv+1)) = 1

λ

(
λv + 1 −

∞∑
k=1

kk−1

k! e−k(λv+1)

)

for v ∈ (0, 1 − (1 − e−λ)/λ). This representation can also be obtained directly
by using Lagranges’s series expansion; see [27, p. 133].

Obviously,

F−1
Y (v) = 1

λ
log eλ − 1

λ(1 − v) , for v ∈ [1 −
(
1 − e−λ

)
/λ, 1).

Putting for abbreviation eλ(u) := u− (1 − e−λu)/λ, u ∈ [0, 1], we get using (3)
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that C[G](u, v) = FU,Y (u, F−1
Y (v)) can be written as

C[G](u, v) =

⎧⎪⎨
⎪⎩
v, v < eλ(u),
u + W

(
−e−(λv+1))(eλu − 1

)
/λ, eλ(u) ≤ v < eλ(1),

u− 1−v
eλ−1

(
eλu − 1

)
, v ≥ eλ(1).

Note that part (b) above applies in the present situation. �

A central question concerns the amount of information about G contained in
the associated delay copula C[G]. In particular, is G specified by C[G]? In the
literature this is known as the identifiability of the model. In the above example
we have seen that this does not hold in general, and that we have to assume,
at least, that G satisfies the conditions G(x) > 0 and G(x + 1) > G(x) for all
x > 0. In words, x = 0 is a point of (right) increase of G, and there is a point of
increase in every interval of length 1. As we will see below, a slight amplification
leads to the sufficient condition

G(0) = 0, G(n + ε) > G(n) for all ε > 0 and n ∈ N0 with G(n) < 1. (4)

This is obviously satisfied if G has a positive density on (0,∞), for example.
As a preparation for the proof we note that the distribution function G of a

random variable X with G(0) = 0 is determined by the function

G̃(x) =
∫ 1

0
G(x− u) du =

{∫ x

0 G(u) du, if x ≤ 1,∫ x

x−1 G(u) du, if x > 1,
(5)

which is the distribution function FY of Y = U+X if U is uniformly distributed
on the unit interval and independent of X. In fact, even more is true.

Lemma 3. Let G and H be distribution functions with G(0) = H(0) = 0.
Then, for all x > 0, G̃(y) = H̃(y) for 0 ≤ y ≤ x implies that G(y) = H(y) for
0 ≤ y ≤ x.

Proof. It follows from (5) that G̃ has the right continuous density

G(x) 1[0,1](x) +
(
G(x) −G(x− 1)

)
1(1,∞)(x), x ∈ R. (6)

If it exists, the right continuous density of a distribution is unique.

For general copulas, i.e. with no restrictions on the structure of the consti-
tuting random vector (X,Y ), the passage from the joint distribution to CX,Y

as in (2) is of course not invertible; indeed, for any two strictly increasing
Ψ,Φ : R → R, the random vector (Ψ(X),Φ(Y )) would lead to the same cop-
ula. In contrast, for the smaller class of delay copulas we have the following
invertibility result.

Theorem 4. If G and H both satisfy (4) then C[G] = C[H] implies G = H.
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Proof. In view of FU,U+X(u, y) =
∫ u

0 P (X ≤ y − w) dw the delay copula C[G]
may be written as

C[G](u, v) =
∫ u

0
G
(
G̃−1(v) − w

)
dw, u ∈ [0, 1], v ∈ (0, 1). (7)

Here G̃−1(v) = inf{y : G̃(y) ≥ v} with G̃ as in (5). Due to (4) the density (6)
of G̃ is positive on the interval (0, x0), where x0 := sup{x ∈ R : G̃(x) < 1}.
We deduce from this that the continuous distribution function G̃ is strictly
increasing on the interval (0, x0), G̃−1 is continuous and strictly increasing on
(0, 1), and G̃(G̃−1(v)) = v for all v ∈ (0, 1).

Suppose now that C[G] = C[H]. Then taking the left derivative in (7) with
respect to u leads to

G
(
G̃−1(v) − u

)
= H

(
H̃−1(v) − u

)
for all u ∈ (0, 1], v ∈ (0, 1). (8)

In particular, whenever v ∈ (0, 1) is such that y := G̃−1(v) �= H̃−1(v) =: z then
G(y − u) = H(z − u) for all u ∈ (0, 1].

If G̃ = H̃ on [0, 1], then G = H on [0, 1] by Lemma 3, so for G and H
not to be the same on the unit interval we would need some y ∈ (0, 1] with
v := G̃(y) �= H̃(y) =: w; due to (4) we would have v, w ∈ (0, 1). If v > w,

y = G̃−1(v) = H̃−1(w) < H̃−1(v) =: z.

With u = y in (8) this would lead to 0 = G(0) = H(z − y), in contradiction
to H(z − y) > H(0) = 0. Similarly, if w > v, then G would not be strictly
increasing in 0.

Suppose now that G and H are identical on the interval [0, n] for some n ∈ N.
If G(n) = H(n) = 1 then clearly G = H. Otherwise, for G and H to differ on
[0, n + 1] we would need a y ∈ (n, n + 1] with v := G̃(y) �= H̃(y) =: w; again
we would have v, w ∈ (0, 1). If v > w then, with z := H̃−1(v) would lead to the
contradiction H(n) < H(z − (y − n)) = G(n) = H(n). Similarly, if v < w then,
with z := G̃−1(w) we would get the contradiction G(n) < G(z − (y − n)) =
H(n) = G(n).

In the delay models, Ui and Yi = Ui +Xi are the arrival and departure times
respectively of the ith customer, i ∈ N. Let Vi := FY (Yi). Then (Ui, Vi), i ∈ [n]
is a sample from the joint distribution μ of U1 and V1. Somewhat analogous to
the step from μ to the empirical distribution

μn := 1
n

n∑
k=1

δ(Ui,Vi) (9)

we pass from the copula C to the empirical copula Cn, which we define as the
distribution function associated with

νn := 1
n

n∑
k=1

δ(Qni/n,Rni/n) = 1
n

n∑
k=1

δ(i/n,Πn(i)/n). (10)
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Apart from a scaling factor 1/n this is the discrete uniform distribution on the
points which constitute the graph of the rank plot or, equivalently, the graph
of Πn. Obviously the marginals of νn are uniformly distributed on the set of
values i/n, i = 1, . . . , n, which justifies the interpretation of Cn as a discrete
copula.

Asymptotics for Cn can be translated into asymptotics for Πn. The former
have been studied by various authors, see e.g. [9]. For example, as n → ∞,
Cn → C almost surely (a.s.) with respect to weak convergence of probability
measures on the unit square, and this implies that the delay copula is asymp-
totically determined, with probability 1, by the sequence (Πn)n∈N of random
permutations.

3. Nonparametric estimation of delay distributions

We consider the delay model with delay distribution function G, where we as-
sume that G(0−) = 0 and that G(ε) > 0 for all ε > 0. As FY (y) =

∫ y

0 G(w) dw
for all y ∈ [0, 1], it then follows that the distribution function FY of the depar-
ture times is continuous and strictly increasing on the interval [0, 1], and that
its quantile function F−1

Y is continuous and strictly increasing on the interval
(0, FY (1)]. Further, see also (7), the delay copula C = C[G] is given by

C(u, v) =
∫ u

0
G
(
F−1
Y (v) − w

)
dw for (u, v) ∈ [0, 1]2. (11)

As in Sect. 2, let μ be the distribution of (U, V ), where V := FY (Y ) = FY (U +
X), so that C is the distribution function of μ (we freely switch between viewing
μ as a probability measure on the Borel subsets of R2 or [0, 1]2). As FY (Y ) =
FY (U + X) ≥ FY (U) it follows that the support H of μ is a subset of

H+ :=
{
(u, v) ∈ [0, 1]2 : v ≥ FY (u)

}
.

Define H= and H− similarly, with v = FY (u) and v < FY (u) respectively. Then
each point of the graph H= of FY on the unit interval [0, 1] is an element of H.
To see this we first consider u < 1; let v = FY (u). Then for each ε > 0 with
v+ε < FY (1) there is a unique 0 < δε < 1−u such that FY (u+δε) = FY (u)+ε.
With

Du,ε :=
(
[u, u + δε] × [v, v + ε]

)
∩H+

=
{(

u′, v′
)
∈ [0, 1]2 : u ≤ u′ ≤ u + δε, FY

(
u′) ≤ v′ ≤ FY (u) + ε

} (12)

and μ(Hc
+) = 0 we obtain

μ(Du,ε) = μ
(
[u, u + δε] × [v, v + ε]

)
=

∫ u+δε

u

G(u + δε − w) dw > 0. (13)

This shows that the pair (u, v) is an element of the closed set H, and a similar
argument works for u = 1. Hence H− ⊂ Hc and H= ⊂ H.
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Taken together this implies that the subdistribution function u 
→ FY (u),
0 ≤ u ≤ 1, is the supremum of all increasing functions that lie below the support
of μ. Replacing the delay copula by its empirical counterpart we obtain the
monotone minorant estimator F̂n,Y as the supremum of all increasing functions
that lie below the support of νn as defined in (10). This leads to

F̂n,Y (u) := 1
n

min
{
Πn(i) : �un� ≤ i ≤ n

}
, u ∈ (0, 1],

which we augment by F̂n,Y (u) = 0 for all u ≤ 0. The monotone minorant esti-
mator is a nonnegative and left continuous step function with a jump at 0 and
jumps at a subset of the first coordinates of the support points of the empirical
copula. As such it can be regarded as the (left continuous) distribution function
associated with a subprobability measure on the unit interval. In our running
example, see Fig. 1, apart from the jump at 0 there are jumps at the first coor-
dinates associated with Me, Ch, RSch, and Off, and the subprobability measure
assigns the values 1/9, 1/9, 1/9, 1/9, 4/9 to the atoms at 0, 1/9, 2/9, 3/9, 8/9.

In the proof of our next theorem it will be helpful to regard the unit square
as a compact metric space, with metric d1(a, b) = |b1 − a1| + |b2 − a2|, a =
(a1, a2), b = (b1, b2) ∈ [0, 1]2. For x ∈ [0, 1]2, ∅ �= K ⊂ [0, 1]2, ρ > 0, let

d1(x,K) := inf
{
d1(x, c) : c ∈ K

}
and Kρ :=

{
x ∈ [0, 1]2 : d1(x,K) ≤ ρ

}
.

We use the corresponding Hausdorff distance d0 of nonempty subsets A,B of
the unit square,

d0(A,B) := max
{
sup

{
d1(a,B) : a ∈ A

}
, sup

{
d1(b, A) : b ∈ B

}}
, (14)

which may also be written as

d0(A,B) := inf{ρ > 0 : A ⊂ Bρ and B ⊂ Aρ}. (15)

The following theorem implies that F̂n,Y is a strongly consistent estimator for
FY with respect to the supremum norm distance on each interval [0, 1 − δ],
0 < δ < 1.

Theorem 5. With F̂n,Y and FY as above it holds that

lim sup
n→∞

sup
0≤u≤1

(
FY (u) − F̂n,Y (u)

)
≤ 0 a.s., (16)

and that, for all 0 < δ < 1,

lim sup
n→∞

sup
0≤u≤1−δ

(
F̂n,Y (u) − FY (u)

)
≤ 0 a.s. (17)

Proof. As above, let Ui, Yi = Ui + Xi, Vi = FY (Yi) for all i ∈ N. Then μn and
νn are the discrete uniform distributions on the random sets

An :=
{
(Ui, Vi) : i ∈ [n]

}
(18)
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and
Bn :=

{
(Qni/n,Rni/i) : i ∈ [n]

}
=

{(
i/n,Πn(i)/n

)
: i ∈ [n]

}
(19)

respectively. Our proof relies on a comparison between μn and νn and the known
asymptotic behavior of the former.

By construction, μ has uniform marginals, and the Dvoretsky–Kiefer–Wolfo-
witz inequality, see [19], gives

P
(√

n sup
0≤u≤1

∣∣F̂n,U (u) − u
∣∣ ≥ λ

)
≤ 2e−2λ2

for all n ∈ N, λ > 0. (20)

Here F̂n,U denotes the the empirical distribution function associated with the
variables U1, . . . , Un. Of course, the analogue statement for the V -components
also holds. By (15) the Hausdorff distance between the sets An and Bn defined in
(18) and (19) is bounded from above by the maximum of the distances between
the individual points in any pairing of their elements. Hence, using F̂n,U (Ui) =
Qni/n and F̂n,V (Vi) = Rni/n, 1 ≤ i ≤ n, we get

d0(An, Bn) ≤ max
{
d1
(
(Qni/n,Rni/n), (Ui, Vi)

)
: i ∈ [n]

}
≤ sup

0≤u≤1

∣∣Fn,U (u) − u
∣∣ + sup

0≤v≤1

∣∣Fn,V (v) − v
∣∣.

Taking λ = λn = n−1/4 in (20) we obtain a summable upper bound, and the
Borel-Cantelli lemma leads to

lim
n→∞

d0(An, Bn) = 0 a.s. as n → ∞. (21)

For a given ε > 0 we now choose ρ > 0 such that

Hρ ⊂
{
(u, v) ∈ [0, 1]2 : v ≥ FY (u) − ε

}
.

We have An ⊂ H for all n ∈ N on a probability 1 set E, and then μn(H) = 1.
Hence it follows from (21) that, on E and for n large enough, νn(Hρ) = 1, which
implies that F̂n,Y (u) ≥ FY (u) − ε. Since ε > 0 was arbitrary, this proves (16).

Now let 0 < δ < 1, u ∈ [0, 1 − δ], and 0 < ε < FY (1) − FY (u) be given.
As u 
→ FY (u) is a convex function on the unit interval [0, 1], the compact
subset Du,ε of the unit square [0, 1]2 defined in (12) is also convex. Recall (13),
according to which μ(Du,ε) > 0. Obviously, there exists a compact and convex
subset D◦ of Du,ε with μ(D◦) > 0 and (D◦)ρ ⊂ Du,ε for some ρ > 0. By
construction, and noting that F̂n,Y is increasing, F̂n,Y (u) > FY (u) + ε implies
that νn(Du,ε) = 0. From the above comparison we obtain that, on a set of
probability 1, νn(Du,ε) = 0 implies that μn(D◦) = 0 for all sufficiently large n,
contradicting

lim
n→∞

μn

(
D◦) = μ

(
D◦) > 0 a.s.

Thus we have
lim sup
n→∞

F̂n,Y (u) ≤ FY (u) + ε a.s.
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Fig 2. Empirical copula and monotone minorant estimator (see text).

As ε > 0 was arbitrary, this gives (17), albeit at a single value u. Finally, for
the step from the pointwise to the uniform statement we may proceed as in
the proof of the Glivenko-Cantelli lemma, using monotonicity of FY and F̂n,Y

together with pointwise convergence in a finite set of suitably chosen quantiles
of FY .

The theorem implies that, for all δ ∈ (0, 1),

lim
n→∞

sup
0≤u≤1−δ

∣∣F̂n,Y (u) − FY (u)
∣∣ = 0 a.s. (22)

Figure 2 illustrates this with an artificial data set of size n = 1000 and with
G(x) = 1−e−x, x ≥ 0. Part (a) shows the empirical copula, with the jump points
of the monotone minorant in red. Part (b) shows the corresponding monotone
minorant estimators for the first 100 (green) and 300 (blue) data values and for
the full data set (red). In both plots, the black line is the graph of the function
u 
→ u+e−u−1, which is the restriction of FY to 0 ≤ u ≤ 1; see Example 2 (d). It
is apparent that the variability of the estimates increases as u increases towards
the right endpoint of the interval.

We next deal with the step from FY to the delay distribution function G.
The departure time distribution is the convolution of the delay distribution and
the uniform distribution on the unit interval, which displays this step as a de-
convolution problem. In particular, the restriction of FY to the unit interval
is convex, and the restriction of G to the unit interval is the associated den-
sity. We thus obtain an estimator Ĝn for G on the interval [0, 1) as the right
derivative of the convex minorant F̂ cm

n,Y of the points of the rescaled rank plot
or, equivalently, the rescaled permutation plot for Πn. The connection to the
Grenander estimator [11] for a decreasing density, which is the derivative of the
concave majorant of the empirical distribution function, appears if we note that
u 
→ FY (1)−FY (1− u) has density u 
→ G(1− u). Here, however, we only have
νn rather than μn.
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Informally, the convex minorant arises by ‘tightening a rubber band’ below
the respective colored step function in Fig. 2 (b). Formally, we obtain F̂ cm

n,Y and
the associated estimator Ĝn of G, both on the unit interval, as follows. First,
given n ∈ N and Πn we put k0 = 0 and

fi,j := Πn(j) − Πn(i)
j − i

, 0 ≤ i < j ≤ n,

with Πn(0) := 0. We then determine m and 1 ≤ k1 < · · · < km ≤ n inductively:
If kl is already defined for some l ≥ 0 and kl = n, then let m = l and stop.
Otherwise, if kl < n, let

hl := min{fkl,j : kl < j ≤ n} and kl+1 := max{j : kl < j ≤ n, fkl,j = hl}.

Then, F̂ cm
n,Y (x) =

∫ x

0 Ĝn(u) du, where Ĝn is the increasing, right continuous step
function given by

Ĝn :=
m−1∑
l=0

fkl,kl+11[kl/n,kl+1/n). (23)

Theorem 6. Suppose that the delay distribution function G is continuous on
the interval [0, 1), and let Ĝn be as defined in (23). Then, for each 0 < δ < 1,

lim
n→∞

sup
0≤u≤1−δ

∣∣Ĝn(u) −G(u)
∣∣ = 0 a.s. (24)

Proof. We first relate the convex minorant to the monotone minorant, using
an argument that is also known as Marshall’s lemma [18] in order restricted
statistical inference.

As the restrictions of FY and FY −ε to the interval [0, 1] are convex, it follows
from Theorem 5 that, on a set of probability 1, for all ε > 0 there exists an n0
such that for all n ≥ n0,

F̂n,Y (u) ≥ F̂ cm
n,Y (u) ≥ FY (u) − ε for all u ∈ [0, 1 − δ]

for all δ ∈ (0, 1). As ε > 0 was arbitrary, (22) now implies that, for all δ ∈ (0, 1),

lim
n→∞

sup
0≤u≤1−δ

∣∣F̂ cm
n,Y (u) − FY (u)

∣∣ = 0 a.s. (25)

Now let 0 < δ < 1 and 0 < h < δ/2 be given. Using
∫ u+h

u

(
G(t) −G(u)

)
dt =

∫ u+h

u

(
Ĝn(t) −G(u)

)
dt

−
(
F̂ cm
n,Y (u + h) − FY (u + h)

)
+

(
F̂ cm
n,Y (u) − FY (u)

)
≥ h

(
Ĝn(u) −G(u)

)
−

(
F̂ cm
n,Y (u + h) − FY (u + h)

)
+

(
F̂ cm
n,Y (u) − FY (u)

)
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for all u ∈ [0, 1 − δ] we get

h sup
0≤u≤1−δ

∣∣G(u + h) −G(u)
∣∣

≥ h sup
0≤u≤1−δ

(
Ĝn(u) −G(u)

)
− 2 sup

0≤u≤1−δ/2

∣∣F̂ cm
n,Y (u) − FY (u)

∣∣.
Thus, by (25),

sup
0≤u≤1−δ

∣∣G(u + h) −G(u)
∣∣ ≥ lim sup

n→∞
sup

0≤u≤1−δ

(
Ĝn(u) −G(u)

)
for all 0 < h < δ/2. Let h ↓ 0 to deduce from this and the uniform continuity of
G on [0, 1 − δ/2] that

0 ≥ lim sup
n→∞

sup
0≤u≤1−δ

(
Ĝn(u) −G(u)

)
. (26)

Similarly, using G(u) = FY (u) = 0 for u < 0, and defining Ĝn(u) := 0,
F cm
n,Y (u) := 0 for u < 0, we get∫ u

u−h

(
G(u) −G(t)

)
dt =

∫ u

u−h

(
G(u) − Ĝn(t)

)
dt

+
(
F̂ cm
n,Y (u) − FY (u)

)
−

(
F̂ cm
n,Y (u− h) − FY (u− h)

)
≥ h

(
G(u) − Ĝn(u)

)
+

(
F̂ cm
n,Y (u) − FY (u)

)
−

(
F̂ cm
n,Y (u− h) − FY (u− h)

)
for all u ∈ [0, 1 − δ]. Arguing as above we deduce from this that

0 ≥ lim sup
n→∞

sup
0≤u≤1−δ

(
G(u) − Ĝn(u)

)
. (27)

Combining (26) and (27) we obtain the assertion of the theorem.

Figure 3 illustrates the estimator for delays that are uniformly distributed on
the interval [0, 1/2]. The left part shows the passage from monotone minorant
to convex minorant for two simulated data sets of size n = 10 (red) and n = 100
(blue) respectively. The right part shows G (black) and two simulation results
for n = 1000 (red) and n = 10000 (blue). Our impression derived from several
such experiments indicates that a rather large value of n is needed for Ĝn to
become a useful estimator for G.

We next discuss the problem of extending the above estimator for G to the
range beyond the unit interval. If we assume for simplicity that the delay distri-
bution has a positive density then Theorem 4 implies that there is only one G
for a given delay copula C = C[G], and we know that C can be estimated con-
sistently. Thus, the (informal) question is if this inverse problem is statistically
well-posed.

From (11) it follows that, for any fixed v ∈ (0, 1), the function u 
→ C(u, v)
has derivative u 
→ G(F−1

Y (v) − u), which is decreasing and may be regarded
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Fig 3. Monotone and convex minorant, and estimates of G (see text).

as a density of the subprobability with subdistribution function u 
→ C(u, v),
0 ≤ u ≤ 1. As before, let Cn be the empirical copula associated with a sample
of size n from the delay copula C[G]. As Cn converges to C in supremum norm,
see e.g. [9, p. 51], it holds that, again a.s.,

lim
n→∞

sup
0≤u≤1

∣∣Cn(u, v) − C(u, v)
∣∣ = 0.

The arguments used in the proof of Theorem 6 now lead to the following result.

Proposition 7. Suppose that v ∈ (0, 1) is such that

a(v) := F−1
Y (v) − 1 > 0. (28)

Let Hn be the right derivative of the concave majorant of the function u 
→
Cn(u, v) on the interval [0, 1). Then, for each 0 < δ < 1,

lim
n→∞

sup
0≤u≤1−δ

∣∣Hn(u) −G
(
a(v) + 1 − u

)∣∣ = 0 a.s. (29)

As it stands, this cannot be used to estimate the delay distribution function
on the interval (a(v), a(v)+1] by Ĝn(x) = Hn(a(v)+1−x), x ∈ (a(v), a(v)+1],
as a(v) is in general not known. However, given a consistent estimate Ĝn of G
on some interval [0, c] and choosing v small enough for a = a(v) < c and large
enough for a+1 > c it is possible to glue together the two estimates, leading to
an extension from [0, c] to [0, a+ 1]. Of course, we then need assumptions on G
to exclude ‘flat pieces’. For example, we may suppose that the delay distribution
has support [0,∞) or [0, a] for some a > 0, and that it has a strictly positive
density on its support. The whole procedure could then, at least in principle,
be iterated. Note the rough parallel to the stepwise argument in the proof of
Theorem 4.
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Fig 4. Simulation results for unif(0, 3/2) (see text).

We illustrate this in Fig. 4 with another simulation example, with n = 10000
and unif(0, 3/2) as delay distribution. Part (a) shows the estimator for G on the
unit interval, with the restriction of G to the unit interval given in black. Part
(b) displays the extensions obtained with v = 0.97 (blue), v = 0.91 (red), and
v = 0.7 (green). These correspond to the respective ‘true’ intervals (1.2, 2.2],
(0.98, 1.98], and (0.55, 1.55], where the left endpoints of the intervals were ob-
tained from FY , which is known in the simulation example. Again, in each case
the black line is the respective piece of the graph of G, where x = 0 corresponds
to the respective left endpoint 1.2, 0.98 and 0.55. It seems that a judicious choice
of v, combined with a formal or informal matching of the two functions, may
result in a practicable procedure.

In the classical case, with a sample from a distribution on [0,∞) with de-
creasing density, the Grenander estimator has been investigated in considerable
detail. It is, for example, well known that the estimator is not consistent at
x = 0; see e.g. [1] for a discussion. In the present setup this is responsible for
the restriction 0 ≤ u ≤ 1− δ in (29); see Fig. 4 (a). Similarly, for the extensions
beyond the unit interval, these difficulties appear at the left end; see Fig. 4 (b).

As pointed out in the introduction the present problem may be regarded
as complementary to the problem where only the two sets of arrival times and
departure times are known. Brown [6] gave an interesting estimator for this later
case, together with a consistency result: From a path of the stationary M/G/∞
queue successive departure times 0 < Y1 < · · · < Yn and the associated last
previous arrival times X1 ≤ X2 ≤ · · · ≤ Xn are extracted. The differences
Zi = Yi −Xi, 1 ≤ i ≤ n, while not independent, are identically distributed, and
their distribution function H is related to the service time distribution function
G as follows,

H(z) = 1 − e−ηz
(
1 −G(z)

)
, z ≥ 0, (30)

where η denotes the rate of the Poisson process of arrivals. Using (30) an es-
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Fig 5. Comparison of Brown’s estimator (red) with the permutation based estimator (blue)
and the true distribution function (black) (see text).

timator Ĝn of G can be obtained that is based on the empirical distribution
function Ĥn of the differences Z1, . . . , Zn and an estimator η̂n of η,

Ĝn(x) = sup
0≤z≤x

(
1 − eη̂nz

(
1 − Ĥn(z)

))
, x ≥ 0.

This and other estimators in the M/G/∞ context are discussed and compared
in [10] where it was noted that the quality of Brown’s estimator depends on η.
Specifically, for large arrival rates its performance can be poor, as is intuitively
plausible from the fact that the support of the estimator is contained in the set
of Z-values; see also [5]. While the delay model is not the same as the situation
where observations are from a single path of increasing length a comparison
can be made if we take X1 to be 0 and restrict the estimator to the unit inter-
val. Rescaling the length of the observation interval in the M/G/∞ situation
amounts to a rescaling of the service times, and the limit n → ∞ in the delay
model then corresponds to the heavy traffic limit η → ∞. Figure 5 illustrates
the different performances with two simulation results, where n = 10000 and
λ = 30 in its left part and n = λ = 1000 on its right.

The above concerns the consistency of the nonparametric estimators. It is
natural to ask for an associated rate, or even a second order result. In the
context of Grenander’s estimator it is known that the step from a concave
majorant to its derivative, which parallels the transition displayed in Fig. 3,
leads to a decrease in rate from n−1/2 to n−1/3; see e.g. [21, 12]. In the present
setup this would explain that n has to be large in order for ‘the asymptotics to
set in’, as suggested by simulation experiments. In the complementary problem,
where only the separate sets of arrival and departure times are known, such a
loss of rate might not occur; see e.g. [4, Theorem 6.3]. Also, it is expected that
Brown’s estimator has rate n−1/2. For a related discrete time queuing model
this has indeed been proved in [25].
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4. Patterns, permutons and parametric models

The nonparametric results in the previous section were based on regarding per-
mutations as two-dimensional distribution functions, which provides a connec-
tion to empirical process theory. For samples, a classical approach in a para-
metric context is the moment method, where estimating equations for the pa-
rameters are obtained by equating theoretical moments with their empirical
versions, the sample moments. In the present situation the role of moments
may be taken over by pattern probabilities and their data analogues, pattern
frequencies. In [16], a topology based on pattern counting is introduced; the re-
sulting limit objects are permutons, in fact two-dimensional copulas. We discuss
this in the general case and then apply the results to delay copulas.

We need a suitable notion of restriction for permutations: For π ∈ Sn, A =
{i1, . . . , im} ⊂ [n] with 1 ≤ i1 < · · · < im ≤ n, let πA ∈ Sm be defined by the
requirement that, for all j, k ∈ [m] with j �= k,

πA(j) < πA(k) ⇐⇒ π(ij) < π(ik). (31)

For σ ∈ Sm and π ∈ Sn we say that σ occurs in π at the position vector given
by A ⊂ [n] if πA = σ, and the density of σ in π is defined as the corresponding
proportion,

t(π, σ) = #{A ⊂ [n] : #A = m, πA = σ}(
n
m

) . (32)

This is also the probability of observing the pattern σ ∈ Sm in the permutation
π ∈ Sn if A ⊂ [n] with #A = m is chosen uniformly at random. We augment
this by putting t(π, σ) := 0 if n < m. For example, the data in Fig. 1 lead
to π = 123659748 ∈ S9, and with A = {3, 6, 7, 8} we obtain πA = 1432 ∈ S4.
Further, each occurrence of the transposition τ = 21 ∈ S2 corresponds to a pair
where the earlier-born outlives the other person. There are seven such pairs,
hence t(π, τ) = 7/

(9
2
)

= 7/36. Similarly, the permutations Πn discussed at the
end of Example 2 (c) contain the identity permutation σ = (1, 2, . . . , k) ∈ Sk as
a pattern.

Considering all pattern densities simultaneously we may regard any permu-
tation π as a real-valued function on S :=

⋃∞
n=1 Sn via

S � π 
→
(
t(π, σ)

)
σ∈S

∈ R
S.

Given a random permutation Π we then obtain a random function T : S → N0
by putting T (σ) = t(Π, σ), σ ∈ S. This may be interpreted as an analogue of
the sequence of sample moments. To obtain the theoretical counterpart for a
given (general) copula C, we construct the function CS : S → [0, 1] as follows:
Let Zi = (Ui, Vi), i ∈ N, be a sequence of independent bivariate random vectors
with distribution function C. For each k ∈ N let Πk be the random element
of Sk that connects the ranks of U1, . . . , Uk and V1, . . . , Vk as in (1). Then we
define the function CS : S → [0, 1] by

CS(σ) = P(Πk = σ) for all σ ∈ Sk, k ∈ N. (33)
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Clearly, C determines the distribution of Πk for all k ∈ N, and thus CS depends
on C only. Remarkably, as pointed out in [16, Lemma 5.1], the copula C is in
turn determined by CS. A somewhat streamlined version of their argument is
the following: As in Sect. 2, let νn and μ be the distributions on the unit square
with distribution functions Cn and C. The empirical copulas Cn converge almost
surely to C as n → ∞, which implies that the laws L(νn) converge in the space
of probability measures on the unit square to the distribution δμ concentrated
at μ with respect to the weak topology. Now we note that L(νn) is specified
by the function Sn � σ → CS(σ). In particular, this settles the analogue of the
classical moment problem.

Results on the convergence of Πn in the pattern counting topology are most
easily derived by using U -statistics. Recall that, for an i.i.d. sequence (Zi)i∈N

with values in the measurable space (E, E), and a symmetric function h : Ek →
R that is measurable with respect to the product σ-field E⊗k, the associated
sequence Tn, n ≥ k, of U -statistics with kernel h is given by

Tn = 1(
n
k

) ∑
1≤i1<···<ik≤n

h(Zi1 , . . . , Zik), n ≥ k.

The relative frequency t(Πn, σ) of a pattern σ ∈ Sk then arises as a U -statistic if
h = hσ is the indicator function of σ, applied to the permutation associated with
zi = (ui, vi), i ∈ [k]. Further, with this choice of h, it holds that CS(σ) = ETk.

For computational purposes such as the calculation of moments of Tn(σ) =
t(Πn, σ) it is helpful to express Tn(σ) directly in terms of the sample variables
Zi = (Ui, Vi), i = 1, . . . , n. We regard E := [0, 1] × [0, 1] as the sample space
for the random variables Zi. Of course, for the single element σ ∈ S1 we have
hσ ≡ 1 and Tn(σ) = 1 = CS(σ) for all n ∈ N. For σ ∈ Sk, k ≥ 2, with inverse
σ−1 ∈ Sk, defining

hσ

(
(u1, v1), . . . , (uk, vk)

)
=

∑
τ∈Sk

1(uτ(1) < · · · < uτ(k), vτ◦σ−1(1) < · · · < vτ◦σ−1(k)) (34)

for zj = (uj , vj) ∈ E, j = 1, . . . , k, we get

Tn(σ) = 1(
n
k

) ∑
1≤j1<···<jk≤n

hσ(Zj1 , . . . , Zjk), n ≥ k,

and

CS(σ) = P(Πk = σ) = k!P(U1 < · · · < Uk, Vσ−1(1) < · · · < Vσ−1(k)). (35)

With this background we have almost sure convergence of the sequence (Πn)n∈N

in the pattern counting topology, meaning that for all σ ∈ S,

Tn(σ) = t(Πn, σ) → CS(σ) a.s. as n → ∞. (36)
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This is [16, Corollary 4.3]. The connection to U -statistics leads to a direct ar-
gument: As for each k ∈ N and each σ ∈ Sk the expectation Ehσ(Z1, . . . , Zk) =
P(Πk = σ) is finite, the process (Tn(σ),Fn)n≥k with Fn := σ({Zm : m ≥ n})
is a backwards martingale, and the limit theorem for these structures implies
that Tn(σ) converges a.s. to Ehσ(Z1, . . . , Zk) as n → ∞; see e.g. [26, Problems
12.13 and 12.15] or [17, Abschnitt 10.3].

In a statistical context this result can be used to obtain consistency of ‘mo-
ment estimators’. A next important step would be the asymptotic normality
of the scaled difference between Πn and the limiting copula C, represented
by the function CS. We require an extension of CS to two arguments. Let
CS,2(σ, τ) = CS,2(τ, σ) = CS(σ) if τ = 1 ∈ S1, and for σ ∈ Sk, τ ∈ Sj with
k, j > 1 let

CS,2(σ, τ) = P
(
Πk(Z1, Z2, . . . , Zk) = σ, Πj

(
Z1, Z

′
2, . . . , Z

′
j

)
= τ

)
,

where Z1, Z2, Z
′
2, . . . are independent copies of Z = (U, V ). For σ ∈ S let |σ| := k

if σ ∈ Sk. For each n ∈ N and σ ∈ S let

Wn(σ) :=
√
n

|σ|
(
Tn(σ) − CS(σ)

)
if n ≥ |σ|, (37)

and Wn(σ) := 0 if n < |σ|.
Theorem 8. Let d ∈ N and σ1, . . . , σd ∈ S. Then the d-dimensional ran-
dom vector (Wn(σ1), . . . ,Wn(σd)) converges in distribution as n → ∞ to the
d-dimensional centered normal random vector (W1, . . . ,Wd) with covariances
cov(Wi,Wj) = ρC(σi, σj), 1 ≤ i, j ≤ d, where

ρC(σ, τ) := CS,2(σ, τ) − CS(σ)CS(τ), σ, τ ∈ S. (38)

Proof. For σ ∈ S with k := |σ| > 1 and r = 1, . . . , k let ĥr,σ : Er → R be defined
by

ĥr,σ(z) = Ehσ(z1, . . . , zr, Zr+1, . . . , Zk) − CS(σ)

for all z = (z1, . . . , zr) ∈ Er, and put ĥr,σ ≡ 0 if |σ| = 1. Then the random
variables

Ŵn(σ) := n−1/2
n∑

j=1
ĥ1,σ(Zi), n ∈ N,

are sufficiently close to the variables of interest in the sense that, for all σ ∈ S,

Wn(σ) − Ŵn(σ) → 0 in probability as n → ∞, (39)

see e.g. [26, Theorem 12.3]. Obviously, ρC(σ, τ) = cov(ĥ1,σ(Y1), ĥ1,τ (Y1)) for
σ, τ ∈ S. The multivariate central limit theorem and (39) together imply that(

Wn(σ1), . . . ,Wn(σd)
)
→distr (W1, . . . ,Wd) as n → ∞, (40)

where (W1, . . . ,Wd) is a d-dimensional centered normal random vector with
covariances ρC(σi, σj), 1 ≤ i, j ≤ d.
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Remark 9. In the context of parametric estimation for delay models it is enough
to consider finite-dimensional random vectors, as in the above result. In a sep-
arate paper [2] we consider nonparametric tests for permutation data arising
from general copulas. In order to obtain distributional limits for such proce-
dures it is then important to regard all σ ∈ S simultaneously and to consider
the stochastic processes Wn = (Wn(σ))σ∈S as random elements of some suit-
able infinite-dimensional space. Theorem 8 then covers the convergence of the
finite-dimensional distributions. �

Returning to the delay model we now apply the pattern frequency approach
in a specific parametric context. We assume that the delays are exponentially
distributed, so that G(x) = 1 − exp(−λx) for all x ≥ 0 with an unknown
parameter λ > 0. The idea is to use the relative frequency Tn of inversions in Πn

as an estimator for the limiting probability φ(λ) = C[G]S(τ) with τ = 21 ∈ S2;
see (35).

With U1, U2, X1, X2 independent, U1, U2 ∼ unif(0, 1) and X1, X2 ∼ Exp(λ)
we obtain by sequentially conditioning on U1, U2 and X2,

φ(λ) = P (U1 < U2, U1 + X1 > U2 + X2) + P (U1 > U2, U1 + X1 < U2 + X2)

= 2
∫ 1

0

∫ 1

u

P (X1 > X2 + v − u) dv du

= 2
∫ 1

0

∫ 1

u

∫ ∞

0
P (X1 > x + v − u)λe−λx dx dv du

= 2
∫ 1

0

∫ 1

u

∫ ∞

0
e−λ(x+v−u) λe−λx dx dv du = e−λ − 1 + λ

λ2 .

We note in passing that, in accordance with part (b) of Example 2, we have
φ(λ) → 1/2 if λ → 0, and φ(λ) → 0 if λ → ∞. To see that the func-
tion φ is strictly decreasing on (0,∞), we argue that its derivative φ′(λ) =
− (2+λ)e−λ−(2−λ)

λ3 is negative for all λ > 0. In fact, this is obviously true for all
λ ≥ 2. For 0 < λ < 2 we put x = λ/2, write

(2 + λ)e−λ − (2 − λ) = 2(1 − x)(1 + x)e−x

(
e−x

1 − x
− ex

1 + x

)
,

and note that

e−x

1 − x
− ex

1 + x
= 2

∞∑
n=2

(2n−1∑
k=0

1
k! (−1)k

)
x2n−1,

where the sum
∑2n−1

k=0
1
k! (−1)k is known to be the (for n ≥ 2) positive probability

that a randomly chosen permutation in S2n−1 has no fixed point. If Tn < 1/2
we may thus define a unique estimator λn for λ via φ(λn) = Tn. Almost sure
convergence of the pattern frequencies, see (36), implies that the condition is
satisfied with probability 1 from some finite n ∈ N onwards. Together with the
continuity of the inverse function φ−1 at λ this also shows that λn is a consistent
estimator for λ. We show next that this estimator is asymptotically normal.
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Theorem 10. With λn as defined above it holds that
√
n(λn − λ) →distr Z as n → ∞, (41)

where Z has a centered normal distribution with variance

varλ(Z) = 2λ2(2λ2 − 3λ− 6 + 2(3λ2 + 2λ + 6)e−λ − (λ + 6)e−2λ)
3((λ− 2)2 + 2(λ2 − 4)e−λ + (λ + 2)2e−2λ) . (42)

Proof. We use Theorem 8 to obtain asymptotic normality for the relative num-
ber Tn of inversions in Πn and then apply the delta method.

We can write Tn as

Tn = 1(
n
2
) ∑

1≤i<j≤n

(
1(Ui < Uj)1(Ui + Xi > Uj + Xj)

+ 1(Ui > Uj)1(Ui + Xi < Uj + Xj)
)
,

where U1, U2, . . . , X1, X2, . . . are independent, Ui ∼ unif(0, 1), Xi ∼ Exp(λ) for
all i ∈ N.

We need some calculations. For u, u′ ∈ (0, 1), x, x′ > 0, let

h1
(
u, x, u′, x′) =

{
1, if u ≤ u′ and u + x ≥ u′ + x′,

0, otherwise,

h2
(
u, x, u′, x′) =

{
1, if u > u′ and u + x < u′ + x′,

0, otherwise.

This displays Tn as a U -statistic with kernel h := h1 + h2 for the i.i.d. sequence
(Ui, Xi), i ∈ N, of two-dimensional random vectors. Let g, g1, g2 be defined as

g1(u, x) := Eh1(u, x, U1, X1), g2(u, x) := Eh2(u, x, U1, X1)

and g := g1 + g2. Then g(u, x) = Eh(u, x, U1, X1). For u + x > 1 we obtain

g1(u, x) = P (U1 > u,U1 + X1 < u + x)

=
∫ 1

u

P (X1 < u + x− v) dv

=
∫ 1

u

(
1 − e−λ(u+x−v)) dv = 1 − u− e−λx

λ

(
eλ(1−u) − 1

)
,

and similarly for u + x ≤ 1,

g1(u, x) =
∫ u+x

u

(
1 − e−λ(u+x−v)) dv = x− 1

λ

(
1 − e−λx

)
.

Further,

g2(u, x) = P (U1 < u,U1 + X1 > u + x)
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=
∫ u

0
P (X1 > u + x− v) dv

=
∫ u

0
e−λ(u+x−v) dv = e−λx

λ

(
1 − e−λu

)
.

Replacing u and x by independent random variables U ∼ unif(0, 1) and X ∼
Exp(λ) and then taking expectations we obtain another proof of the above
formula for φ(λ).

In order to apply Theorem 8 we need

ξ(λ) := 4E
(
h(U1, X1, U2, X2)h(U1, X1, U3, X3)

)
,

where (U1, X1), (U2, X2), (U3, X3) are i.i.d. with U1 ∼ unif(0, 1) and X1 ∼
Exp(λ). Conditioning on U1 and X1 we get

ξ(λ) = 4
∫ 1

0

∫ ∞

0
g(u, x)2 λe−λx dx du.

Inserting the expressions found above we obtain, after some calculations,

ξ(λ) = 2
3λ3

(
8λ− 15 + 2(3λ + 8)e−λ − e−2λ).

Together with Eh(U1, X1, U2, X2) = φ(λ) this yields

ρ(λ) := 4 cov
(
h(U1, X1, U2, X2), h(U1, X1, U3, X3)

)
= 2

3λ4

(
2λ2 − 3λ− 6 + 2

(
3λ2 + 2λ + 6

)
e−λ − (λ + 6)e−2λ),

which is the asymptotic variance of Tn.
In the second step we apply the delta method. As λn is given implicitly by

φ(λn) = Tn we need the derivative of φ−1 at φ(λ), which is given by

β(λ) := 1
φ′(λ) = λ3

2 − λ− (2 + λ)e−λ
,

and ρ(λ)β(λ)2 now leads to (42).

If the sojourn times X1, . . . , Xn were all known then the maximum likelihood
estimator λ̂n = 1/Xn, with Xn = 1

n

∑n
j=1 Xj , is an asymptotically efficient

estimator of λ. The variance of its limit normal distribution is λ2. From this
we deduce that the asymptotic efficiency of λn with respect to λ̂n is eff(λ) =
λ2/varλ(Z). From (42) we obtain

eff(λ) = 3
4 − 15

8λ + 39
16λ2 + O

(
1
λ3

)
as λ → ∞

and
lim
λ→0

eff(λ) = 0.
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The limits 3
4 and 0 obtained as λ → ∞ and λ → 0 correspond to the extreme

cases U = Y and U, Y independent; see Example 2 (b).
Using Theorem 10 we can now augment the discussion at the end of Sect. 3:

In the parametric model with exponential delay distributions we retain the
standard rate n−1/2 for the supremum norm distance between the corresponding
estimate Ĝn of the distribution function G, where Ĝn(x) = 1− exp(−λnx) and
G(x) = 1 − exp(−λx), x ≥ 0.

Finally, it should be clear that the above approach could be extended to para-
metric families of higher dimension. Again in analogy to the moment method,
we would then count longer patterns. The necessary calculations may become
cumbersome; indeed, those above were partially carried out with the help of the
computer algebra program SageMath [24].
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