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Abstract: Linear equations in functional spaces where the solution is not
continuous require regularization to estimate the unknown function of in-
terest. In this paper we consider the estimation of an infinite dimensional
parameter ϕ by solving a linear equation r̂ = Kϕ + U , where the random
noise U has a variance Σ. Under this set-up, we derive the optimal weight-
ing operator which minimizes the mean integrated square error (MISE).
In the finite dimensional case the minimum variance estimator is obtained
by weighting the equation by Σ−1/2. However in the infinite dimensional
case that we consider, regularization introduces a bias to the estimator. We
show that in the infinite dimensional case, the optimal estimator in terms
of the MISE should involve Σ and the unknown smoothness of ϕ. We then
use this result to propose a new feasible two-step estimator. We illustrate
our theoretical findings and the small sample properties of the proposed
optimal estimator by means of simulations.
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1. Introduction

In this paper we consider linear inverse problems of the form:

r̂ = Kϕ + U, (1)

such that ϕ ∈ E ; r̂ and U ∈ F where E and F are Hilbert spaces. The operator
K : E �→ F is a compact linear operator and U is a random element in F such
that E(U) = 0 and V(U) = 1

nΣ where n is the sample size and Σ : F �→ F
is a trace-class (nuclear) variance operator. The value r̂ is a noisy observation
of r = Kϕ with a variance of 1

nΣ. The element r̂ is observed and K and Σ
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are given. We derive an optimal estimator which minimizes the mean integrated
square error (MISE) for linear inverse problems given in Equation (1). The model
given in (1) covers a general class of linear ill-posed problems, such as X-ray
tomography, denoising and deblurring in imaging, functional linear instrumental
variable (IV) models and non-parametric instrumental variable models (NPIV).
For instance, in denoising the operator K is identity, in the case of deconvolution,
the operator K is known and the variance Σ can be estimated consistently
whereas in the case of functional linear IV and NPIV, both K and Σ can be
estimated consistently. In this paper, we will focus on linear inverse problems
with known K and Σ.

Under the Generalized Least Squares (GLS) approach, the minimum variance
(optimal) estimator is obtained by weighting the sum of squares by the inverse
of the variance of the residuals. We show that for linear inverse problems such
as the model given in (1), weighting by the inverse of the variance of the resid-
uals is no longer optimal due to the bias-variance trade-off and in such a case
the optimal weighting should take into account the regularity of the functional
parameter.

The linear inverse problems which are considered in this paper can be re-
lated to the models with moment restrictions where the parameter of interest
is finite-dimensional. There is a large literature on the optimality of the estima-
tor in this class of models. For instance, Hansen (1982) shows that the optimal
Generalized Method of Moments (GMM) estimator is obtained by setting the
weighting matrix to the inverse of variance covariance matrix of the moment
conditions and Chamberlain (1987) shows that one can reach the efficiency of
Generalized Method of Moments estimator in the nonparametric models with
conditional mean restrictions by using instruments given by the power series of
the exogenous variable. Consider the linear GMM problem corresponding to the
following model:

yi = z′iβ + ui, E(ui|zi) �= 0, i = 1, . . . , n.

Assume that we have a vector of instruments wi satisfying:

Cov(zi, wi) �= 0, E(ui|wi) = 0 and V ar(ui|wi) = σ2.

Then the GMM estimator β̂ of β is given by β̂ = argminβ‖wi(yi − ziβ)‖2
Ωn

for any symmetric and positive definite weighting matrix Ωn
p→ Ω.1 Given this

structure, it is straightforward to show that β̂ is asymptotically normally dis-
tributed: √

n(β̂ − β) d→ N (0, V ),
where

V = σ2 (E(ziw′
i)ΩE(wiz

′
i))

−1
E(ziw′

i)ΩE(wiw
′
i)ΩE(wiz

′
i) (E(ziw′

i)ΩE(wiz
′
i))

−1
.

Hansen (1982) shows that the optimal GMM estimator is obtained for Ω =
[E(wiw

′
i)]−1 with asymptotic variance given by V = σ2 (E(ziw′

i)ΩE(wiz
′
i))

−1.
1‖.‖Ω denotes Euclidean norm, i.e., ‖x‖2

Ω = x′Ωx.
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In this paper, following Hansen (1982), we obtain an optimal weighting which
minimizes the MISE when the dimensions of zi and wi are large or infinite. Given
our result, we propose optimal infeasible and feasible estimators and study their
asymptotic properties.

Solving an ill-posed inverse problem requires regularization, see for instance
Carrasco, Florens, and Renault (2007). Among many solutions, Tikhonov Reg-
ularization provides a good solution to this problem where the minimization is
modified by an L2 penalty. However, in return, this penalty introduces a reg-
ularization bias which vanishes under certain conditions. We show that in the
presence of regularization bias, the optimal weighting matrix derived for para-
metric problems is no longer optimal due to the contribution of the bias to the
MISE, in other words, the bias-variance trade-off. We then derive the optimal
weighting operator which leads to minimum MISE for a general class of linear
inverse problems.

From a mathematical viewpoint, the weighting problem can be considered
as follows: The ill-posed inverse problem we consider is an integral equation. If
the weighting operator is an integral operator, then we end up with a larger
degree of ill-posedness. In such a case, an intuitive approach would be to select
the weighting operator as a differential operator (such as the inverse of vari-
ance operator) in order to reduce the degree of ill-posedness. If it is defined,
weighting means differentiation of the equation before its resolution. However,
the impact of weighting is not so clear if we select the regularization parameter
in an optimal way. For example, the rate of decline of the bias is lower for a
weighting operator which is an integral operator but the optimal value of regu-
larization parameter is smaller and hence the effect is ambiguous. In this paper,
we first derive the MISE of a weighted linear inverse problem with given K and
Σ, then minimize the MISE for a fixed regularization parameter with respect
to the weighting operator. We find that the optimal weighting depends on both
the regularity of the function of interest, ϕ and the rate of decay of eigenvalues
of the variance of the noise, Σ. Given our result, we propose optimal infeasible
and feasible estimators and show that they are both consistent under a general
set-up. We show that the MISE of the optimal infeasible estimator no longer
depends on the regularization parameter and the MISE of the feasible estima-
tor has the same order as that of the optimal infeasible estimator for a fixed
value of regularization parameter. This latter result implies that the use of the
optimal weighting operator leads to a feasible estimator without the need for
the choice of regularization parameter. In other words, it provides data driven
way of regularization.2

This paper is mostly related to the literature on linear inverse problems. Cav-
alier (2008) reviews statistical inverse problems and explains some theoretical
issues such as convergence rates, regularization, adaptation and oracle inequal-
ities. Carrasco et al. (2007) on the other hand, studies inverse problems in
structural econometrics. In contrast to most statistical inverse problems where
K and Σ are given, NPIV models in econometrics require the estimation of these

2We thank the anonymous referee for pointing this out.
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operators from the data, see Darolles, Fan, Florens, and Renault (2011); Newey
and Powell (2003); Ai and Chen (2003); Horowitz (2011). Rate optimality of
the NPIV estimator has been well studied (Hall and Horowitz, 2005; Chen and
Reiss, 2011; Chen and Christensen, 2018), however, to the best of our knowl-
edge efficiency of the nonparametric estimator in terms of MISE has only been
considered by Gagliardini and Scaillet (2012) within the framework of Tikhonov
regularized NPIV estimation. The main contribution of Gagliardini and Scaillet
(2012) lies in their computation of an explicit asymptotic mean integrated square
error (MISE) for a Sobolev regularized estimator. However, their study does not
delve into the optimality of their estimator concerning the choice of the weight-
ing matrix. In contrast, our paper investigates the optimality of our estimator
by considering different choices of the weighting matrix. While our paper focuses
on linear inverse problems with given K and Σ, we conduct Monte Carlo simu-
lations using a NPIV model. This allows us to compare the performance of our
proposed estimator under various setups, including situations where both oper-
ators K and Σ are known and where they are unknown. By examining different
scenarios, we gain insights into performance of our estimator in diverse settings.

The choice of regularization parameter is crucial in ill-posed inverse prob-
lems, and as a result, adaptive estimation has been studied extensively both
in the econometrics and statistics literature. For instance, Horowitz (2014) and
Chen and Christensen (2015) examine the selection of a regularization param-
eter in a NPIV model where the infinite dimensional parameter is estimated
using sieve methods and show that the adaptive estimator could reach near-
optimal (Horowitz, 2014) and uniform-optimal (Chen and Christensen, 2015)
convergence rates. This paper is related to the adaptive estimation literature as
we show that selection of an optimal weighting operator replaces the selection of
an optimal regularization parameter, and also we derive the convergence rates
of the proposed estimator. However, we limit our approach to L2-estimation
under Sobolev restrictions of the function of interest where the impossibility of
adaptive honest confidence sets is analysed, see Giné and Nickl (2021); Chen,
Christensen, and Kankanala (2021); Babii (2020). Moreover, we focus on the
case where the variance of the error is not identity as in the Gaussian white
noise models. More recently in statistics, the problem of optimal regularization
has been studied together with machine learning techniques, where the optimal
regularization functional is obtained using a training set, see Lunz, Öktem, and
Schönlieb (2018); Alberti, De Vito, Lassas, Ratti, and Santacesaria (2021).

The paper proceeds as follows. In Section 2 we introduce our set-up. In Section
3 we examine the optimization of the MISE and present our result on optimal
weighting. We then introduce the optimal infeasible and feasible estimators.
In Section 4, we present simulation results which demonstrate our theoretical
findings as well as the small sample properties of the feasible estimator. Finally,
in Section 5 we conclude. All proofs are presented in Appendix A.

2. The set-up

In this section we introduce the problem of optimal weighting under a gen-
eral setting. This general setting can be shown to fit with cases such as com-
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puted tomography (Alberti et al., 2021), magnetic resonance imaging (Alberti
et al., 2021), deconvolution problems (Carrasco et al., 2007), functional linear
regression (Hall and Horowitz, 2007), functional instrumental variables regres-
sion (Florens and Van Bellegem, 2015) or nonparametric instrumental variable
regression (NPIV) (Carrasco et al., 2007).3

Consider the linear inverse problem given in (1). Let L be a differential opera-
tor defined on E such that L is densely defined, self adjoint and L−1 is a compact
operator from E �→ E . Moreover consider a weighting operator A : F �→ F . As-
sume that r̂ ∈ D(A) where D(A) ⊂ R(K) and ϕ ∈ D(L).

In the case of a well-posed inverse problem, to solve for ϕ, the strategy would
be to minimize ‖Ar̂ − AKϕ‖2 and in order to minimize the variance of the
estimator, an optimal choice would be A = Σ− 1

2 . In the case of ill-posed inverse
problems, the Tikhonov regularized estimator using a Hilbert scale penalty is
defined as the solution of:

min
ϕ∈D(L)

‖Ar̂ −AKϕ‖2 + α‖Lϕ‖2 (2)

and it is equal to:

ϕ̂α = (αL∗L + K∗A∗AK)−1K∗A∗Ar̂. (3)

If L is invertible, equation (3) can be rewritten as:

ϕ̂α = L−1(αI + L−1K∗A∗AKL−1)−1L−1K∗A∗Ar̂. (4)

Here we consider Tikhonov regularization with a Hilbert scale penalty. This
approach leads to regularization with a smooth norm as well as giving higher
convergence rates than with Tikhonov regularization with an L2 penalty if the
true function is smooth enough, see Neubauer (1988). Note that, Krein and
Petunin (1966) show that the Sobolev Spaces Hs(Rn) build a Hilbert scale.
Hence a Hilbert scale penalty is equivalent to penalization in the Sobolev norm,
which needs the assumption that the function of interest belongs to a Sobolev
space, i.e. has square integrable derivatives up to a finite order.

The introduction of a differential operator L in the penalty term is a com-
mon practice in the resolution of ill-posed inverse problems, see Engl, Hanke, and
Neubauer (1996). This approach has several advantages: i) If we assume some
smoothness property for the solution (for example, ϕ ∈ R(L−1)) this method
guarantees that the estimator satisfies the same smoothness. ii) One could esti-
mate jointly both ϕ and its derivative, Lϕ. iii) The qualification of the method,
which can be defined as the maximum order of regularity which controls the rate
of the regularization bias (Carrasco et al., 2007), increases by the introduction
of L. Gagliardini and Scaillet (2012) advocate penalisation in the Sobolev norm
to suppress the highly oscillating component of the estimated function. They
further show with Monte Carlo simulations that Tikhonov regularization with

3In this paper we obtain our results for linear inverse problems where K and Σ are known.
For functional IV and NPIV, these operators need to be estimated. We leave the treatment
of estimated K and Σ for future work.
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a Sobolev penalty increases the performance of the estimator compared to that
which is obtained with Tikhonov regularization with an L2 penalty.

In what follows, we work with the spectral representation of the model. For
ease of exposition we assume the following:

Assumption 1. There exist φj and ψj for j = 1, 2, . . . ,∞ such that φj is an
orthonormal basis of E and ψj is an orthonormal basis of F . There also exist
λKj, λAj and λL−1j which satisfy the following properties:

(i) (φj)∞j=1’s are the eigenvectors of K∗A∗AK with eigenvalues λ2
Kjλ

2
Aj and:

A∗AKφj = λ2
AjλKjψj .

(ii) (φj)∞j=1’s are the eigenvectors of L−1∗L−1 with eigenvalues λ2
L−1j

The first part of Assumption 1 can be rephrased in the following way: K∗A∗AK
has a discrete spectrum characterized by the eigenvectors φj and the eigenval-
ues μ2

j . This assumption is essentially a regularity assumption which may be
extended to the case of a continuous spectrum. Indeed, the main assumption
is that A∗AKφj = ψ̃j constitutes an orthogonal family in F . In this case,
one can normalize the ψ̃j in ψj and there exist positive numbers ρj such that
A∗AKφj = ρjψj where ψj is an orthonormal family of F . Finally λKj and λAj

can be defined by the following relations:

μj = λ2
Kjλ

2
Aj and ρj = λKjλ

2
Aj .

This assumption can be satisfied by defining φj , ψj and λ2
Kj as the singular

value decomposition of K and by choosing A such that the eigenvectors of A∗A
are ψj . Then ψj are also the eigenvectors of AA∗ and λ2

Aj are the eigenvalues
of A∗A. The second part of Assumption 1 limits the possible choices for L by
imposing the previously defined φj to be the eigenvectors of L−1∗L−1.

Under Assumption 1, the spectral representation of the model in Equation (1)
can be written as:

〈r̂, ψj〉 = 〈Kϕ,ψj〉 + 〈u, ψj〉, (5)

〈r̂, ψj〉 = λKj〈ϕ, φj〉 + 1√
n
〈Σψj , ψj〉1/2εj , (6)

〈ϕ̂α, φj〉 =
λ2
L−1jλ

2
AjλKj

α + λ2
L−1jλ

2
Ajλ

2
Kj

〈r̂, ψj〉, (7)

where E(εj) = 0, V ar(εj) = 1. The representation given in Equation (6) is stan-
dard in the literature of inverse problems. In particular, in statistical models, the
noise U is assumed to be random rather than deterministic which is, in general,
the case in the ill-posed inverse problem literature. Hence, this notation captures
the fact that the model in Equation (1) can be written as a Gaussian white noise
model when Σ = I, see Cavalier (2008). In econometric applications the model
is not a white noise model because the variance of the noise, 1/n〈Σψj , ψj〉 also
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declines with j, see Knapik, van der Vaart, and van Zanten (2011). Moreover, it
can be seen from Equation (7) that the ill-posedness is coming from the decay
of λKj , i.e., λKj → 0 as j → ∞ which then implies that small changes in r̂ may
explode the solution of ϕ̂ in the case of no regularization (when α = 0).

Given the spectral representation of the model introduced in Equations (5)
to (7) above, Proposition 1 states the mean integrated square error of the reg-
ularized estimate ϕ̂α:
Proposition 1. The MISE of ϕ̂α is given by:

E‖ϕ̂α−ϕ‖2 = 1
n

∞∑
j=1

〈Σψj , ψj〉λ2
Kjλ

4
Ajλ

4
L−1j

(α + λ2
Kjλ

2
Ajλ

2
L−1j)2

+α2
∞∑
j=1

〈ϕ, φj〉2
(α + λ2

Kjλ
2
Ajλ

2
L−1j)2

. (8)

As can be seen from the MISE expression in (8), L−1 plays the same role as A.
Then the same value can be obtained either by weighting by A or by penalizing
by LA−1. Moreover, if we include α > 0 in the definition of the operator L, one
can also say that weighting by A or penalizing by αLA−1 are equivalent which
means that the choice of A will also regularize the problem. We indeed show in
Theorems 1 and 2 that the optimally weighted infeasible and feasible estimators
are consistent for a fixed α. In the following sections, we only consider weighting
by A and L2 penalty with a regularization parameter α, but our results may
be reinterpreted in terms of Hilbert scale penalization. One advantage of this
is that the use of Hilbert scale penalty without weighting would mean that
the derivatives of the function of interest is being penalised which would be
optimal for smooth functions. However, we do not place any restrictions on A
and we show in Proposition 1 that the optimal weighting operator A might be
a differential or integral operator depending on the smoothness of ϕ which will
then provide a data driven selection of optimal norm for the penalty.

Going back to the discussion of Assumption 1, it is an important assump-
tion and it limits our presentation. In particular, in the general case, choosing
A = Σ− 1

2 does not necessarily satisfy this assumption. The importance of As-
sumption 1 may be underlined by the following remark: consider the MISE
expression given in Proposition 1 and consider a case where α = 0 is possible,
for example a finite dimensional case. In such a case, under Assumption 1, λ2

Aj

disappears and the choice of A has no impact on the MISE of the estimator. It
should be noted that in our framework, the possibility of choosing an optimal
weighting operator is due to the trade-off between the variance and bias; it is not
only due to the minimization of the variance, as in the GMM literature. In the
GMM case, a higher order asymptotic expansion of the estimator is necessary
to introduce such a trade-off and it leads to an optimality result, see Newey and
Smith (2004). In other words, we can say that Assumption 1 is relevant only
in the ill-posed case, as the weighting would cancel out in the usual parametric
case once we impose Assumption 1.

In what follows, we derive our main results under the assumption of known
K and Σ and we provide empirical evidence via Monte Carlo simulations that
our results might hold when K and Σ are estimated. Note that most of the liter-
ature on inverse problems is limited to the case of known K and Σ, see Cavalier,
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Golubev, Picard, and Tsybakov (2002). For example, in image treatment models
such as tomography, denoising, deblurring (Alberti et al., 2021), the operator
K is given. In some statistical applications of the inverse problems, for instance
density estimation (Kϕ =

∫ x

0 ϕ(u)du) or deconvolution models where the dis-
tribution of the error term is given (Kϕ =

∫
ϕ(s)f(t − s)ds), the operator K

is naturally given. This is also the case in functional linear regression where K
depends on the sample size, see Benatia, Carrasco, and Florens (2017).

The estimation strategy which minimizes the risk measured by the MISE
consists of the choice of a regularization parameter α and a weighting operator
A which minimize E‖ϕ̂α−ϕ‖2 at n, K and Σ fixed. The related result is presented
in the next section.

3. MISE optimization

It is shown in Proposition 1 that weighting by A or penalising by LA−1 is
equivalent. For the sake of exposition, in the rest of the paper we consider the
case with weighting by A only, i.e., without Hilbert scale penalty. Consider the
case where the regularization parameter α is fixed so are the φj and ψj families
and the eigenvalues λKj . Given Assumption 1, the optimization is not on the
full space of the operator A. The weighting operator A is constrained by the
eigenvectors φj and ψj and the optimization is done over its eigenvalues λAj .
Dropping L, MISE in Proposition 1 can be written as:

E‖ϕ̂α − ϕ‖2 = 1
n

∞∑
j=1

〈Σψj , ψj〉λ2
Kjλ

4
Aj

(α + λ2
Kjλ

2
Aj)2

+ α2
∞∑
j=1

〈ϕ, φj〉2
(α + λ2

Kjλ
2
Aj)2

. (9)

This MISE expression leads to the following result:

Proposition 2. Consider the MISE expression given in (9) under Assump-
tion 1. Then:

1. The optimal value for the sequence λ2
Aj is given by:

λ2
Aj = 〈ϕ, φj〉2

〈Σψj , ψj〉
αn.

2. This choice leads to the optimal (infeasible) estimator:

ϕ̂if =
∞∑
j=1

〈ϕ, φj〉2λKj〈r̂, ψj〉
1
n 〈Σψj , ψj〉 + 〈ϕ, φj〉2λ2

kj

φj ,

ϕ̂if =
(

1
n
Q + K∗K

)−1
K∗r̂,

where Q is the operator:

Q : E �→ E : g �→ Qg =
∞∑
j=1

〈Σψj , ψj〉
〈ϕ, φj〉2

〈g, φj〉φj for g ∈ E .
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3. Then the MISE of the optimal estimator is given by:

1
n

∞∑
j=1

λ2
Kj〈Σψj , ψj〉(

1
n

〈Σψj ,ψj〉
〈ϕ,φj〉2 + λ2

Kj

)2 +
∞∑
j=1

〈Σψj , ψj〉2

〈ϕ, φj〉2
(

1
n

〈Σψj ,ψj〉
〈ϕ,φj〉2 + λ2

Kj

)2 .

This result differs from the standard result for GMM. In the usual finite-
dimensional case, the optimal λ2

Aj is proportional to 1
〈Σψj ,ψj〉 . In the infinite-

dimensional case with penalty, the optimal choice incorporates the smoothness
of ϕ through the Fourier coefficients 〈ϕ, φj〉2. The optimal choice for A is then
infeasible because it depends on the unknown function ϕ. The estimator ϕ̂if may
be viewed as an oracle estimator and it does not depend on α. Equivalently, one
can say that α is replaced by 1/n. Note that the value of the MISE does not
depend on α either. In some sense, the introduction of the 〈ϕ, φj〉2 replaces the
choice of α.

The estimator ϕ̂if can be interpreted as a Hilbert scale type extension of
Tikhonov estimation. Indeed, ϕ̂if is the argument ϕ that minimizes the follow-
ing:

ϕ̂if = argminϕ‖r̂ −Kϕ‖2 + 1
n
‖Q1/2ϕ‖2.

Note that our result remains valid even if some 〈ϕ, φj〉 = 0. To illustrate this,
let us assume that 〈ϕ, φj〉 �= 0 for j ∈ J and 〈ϕ, φj〉 = 0 for j ∈ J̄ , so one can
say that ϕ belongs to EJ , a subspace generated by the φj such that 〈ϕ, φj〉 �= 0.
In this case the λAj ’s cancel out for j ∈ J̄ and the optimal infeasible estimator
belongs to EJ . Our approach constructs an (infeasible) estimator which satis-
fies the constraint ϕ ∈ EJ . In Section 3.1 we define a feasible estimator (given
in Equation (11)) which includes the terms 〈r̂, ψj〉 and these scalar products
converge to 〈r, ψj〉 and if 〈ϕ, φj〉 = 0, 〈r, ψj〉 = 0. Our feasible estimator ap-
proximately satisfies the constraint ϕ ∈ EJ even if this constraint is unknown.
In the case of infeasible estimator all the formulae of Proposition 2 remain valid
if some 〈ϕ, φj〉 = 0 and then the sum

∑∞
j=0 can be replaced by

∑
j∈J . It should

be noted that the operator A is not injective but AK remains injective on the
set EJ and all the theory can be developed replacing E by EJ .

Moreover, the operator A may be a differential or an integral operator de-
pending on the relative rate of decline of the Fourier coefficients of ϕ and of the
〈Σψj , ψj〉. If

∑
j

〈Σψj ,ψj〉
〈ϕ,φj〉2 < ∞, A−1 becomes an integral operator and A is then

a differential operator (as Σ−1/2 in the parametric case). If, on the other hand,∑
j

〈ϕ,φj〉2
〈Σψj ,ψj〉 < ∞, A is a Hilbert-Schmidt integral operator. In other words, if

ϕ is sufficiently regular, A becomes an integral operator. Or, if we reconsider
Hilbert Scale penalization, it means L becomes a differential operator. This re-
sult is very intuitive: if ϕ is sufficiently smooth regarding to Σ, a penalization
by the norm of the derivative is optimal. Note that this idea was supported be-
fore by Gagliardini and Scaillet (2012). They suggest penalizing the derivatives
of the unknown function to prevent oscillations in the estimated function. This
result is also in line with Newey and Powell (2003)’s restriction of the parameter
space. Tikhonov regularization with Hilbert scale penalty can be interpreted as
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minimization of ‖Kϕ − r‖ subject to the constraint ‖Lϕ‖ < ρ for some ρ, see
Carrasco et al. (2007). In other words, it is equivalent to looking for a solu-
tion in a space where the norm of the derivatives of the functional parameter
is bounded as in Newey and Powell (2003). Moreover, in this case where ϕ is
sufficiently smooth, the optimal weighting can be interpreted as the optimal
norm. More precisely, given a regularization parameter α, our result suggests
that it is optimal to use a Sobolev penalty.4

Regarding the consistency of ϕ̂if , it is intuitive to think that it is consistent
as it has a smaller MISE than the MISE of ϕ̂α given in Equation (1), which
converges to zero as n → ∞, nα → ∞ and α → 0. The assumption below is
needed for the formal proof of consistency of the optimal infeasible estimator as
well as for the calculation of its rate of convergence.

Assumption 2.

∞∑
j=1

〈ϕ, φj〉2(1−β)〈Σψj , ψj〉β

λ2β
Kj

< ∞ ∀ β ∈ [0, 1).

One can note the similarity of Assumption 2 and the source condition which
has already been stated in papers such as Darolles et al. (2011) and Florens,
Johannes, and Van Bellegem (2012). In this paper we are considering statistical
inverse problems, where U is assumed to be random. Hence, the variance of U
matters for the solution. Assumption 2 incorporates the variance of U in the
source condition as it does not only state the regularity space which the function
ϕ belongs to, but it states a regularity space for both the function ϕ and the
variance of the noise, Σ. Hence Assumption 2 can be seen as an extended source
condition. The next theorem states the rate of convergence of ϕ̂if under this
extended source condition.

Theorem 1. Assume that Assumptions 1 and 2 hold. Then:

E‖ϕ̂if − ϕ‖2 = O(n−β).

Theorem 1 shows that the infeasible estimator is consistent and it converges
at a rate of n−β which is slower than the usual parametric rate. This result is
not surprising because the optimal infeasible estimator is still a nonparametric
estimator, and by weighting we optimize its MISE for n fixed, not its asymptotic
MISE.

3.1. The feasible estimator

Although Proposition 2 provides the optimal estimator, it is not feasible as it
depends on the smoothness of the unknown function, ϕ. In this section, we con-
struct a feasible estimator. A natural idea is to construct a two-step estimator.

4We thank Demian Pouzo for pointing this out.
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In a first step, ϕ is estimated using Tikhonov regularization with a regulariza-
tion parameter α and in the second step, we replace 〈ϕ, φj〉2 by its estimator in
the optimal weighting operator.

The first-step regularized estimate of ϕ is given by:

ϕ̂α =
∑
j

λKj

α + λ2
Kj

〈r̂, ψj〉φj .

Then, 〈ϕ, φj〉 can be replaced by:

〈ϕ̂, φj〉 = λKj

α + λ2
Kj

〈r̂, ψj〉. (10)

Note that as λKj → 0 very fast, this prevents us estimating ϕ by 〈ϕ̂, φj〉 =
1

λKj
〈r̂, ψj〉φj even if r could be estimated with a

√
n-rate. Using (10), the feasible

estimator is equal to:

ϕ̂f =
∑
j

λ3
Kj〈r̂, ψj〉3

1
n (α + λ2

Kj)2〈Σψj , ψj〉 + λ4
Kj〈r̂, ψj〉2

φj . (11)

As can be seen from Equation (11), the feasible estimator does depend on
α through its dependence on the first stage estimator, ϕ̂α. Also, note that
ϕ =

∑
j

1
λKj

〈r, ψj〉φj so the usual Tikhonov regularized estimator is obtained
by replacing 1

λKj
by λKj

α+λ2
Kj

. Hence, the feasible estimator ϕ̂f is a regularized
estimator where 1

λKj
is replaced by:

λKj

1
n (α + λ2

Kj)2
〈Σψj ,ψj〉

λ2
Kj〈r̂,ψj〉2 + λ2

Kj

. (12)

Equation (12) can also be written as λKj

αj+λ2
Kj

i.e., once the first step estimation
is done, the second step can be seen as regularization with a sequence of αj .
Theorem 2 below states the consistency of the feasible estimator and Theorem 3
shows that the MISE of the feasible estimator has the same order as that of the
optimal infeasible estimator.

Theorem 2. Consider the feasible estimator given in Equation (11). Assume
that α is fixed. Then under Assumption 1 as n → ∞:

‖ϕ̂f − ϕ‖ p→ 0

Theorem 2 shows that the feasible estimator is consistent and that consis-
tency can be achieved with a fixed regularization parameter, in other words, we
do not need α → 0. As is shown in the proof in Appendix A3, in this case, the
role of α is replaced by 1

n . This result is very important as it does not only show
the consistency of the feasible estimator but it also eliminates the problem of
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selection of the optimal regularization parameter. In fact, selection of the opti-
mal regularization parameter is replaced by a data-driven way of regularization
via the use of optimal weighting operator, A.5

Assumption 3. Source Condition: There exists γ > 0 such that:
∞∑
j=1

〈ϕ, φj〉
λ2γ
Kj

< ∞

Theorem 3. Consider the feasible estimator given in Equation (11). Assume
that we have a sample of size 2n. Assume moreover that we use the first half of
the sample to estimate ϕ̂α and then use the second half of the sample to estimate
ϕ̂f where ϕ is replaced by ϕ̂α. If 1

n2α + αγ

n < n1−β and Assumptions 1, 2 and 3
hold, then:

MISE(ϕ̂f ) −MISE(ϕ̂if ) = Op(n−β)
Four points related to Theorem 3 are worth discussing. First, it should be

noted that as the feasible estimator (ϕ̂f ) requires the first step estimator (ϕ̂α) to
be plugged in, so to be able to analyze the MISE we assume that ϕ̂α is obtained
using a separate sample. Although in Theorem 3 it is stated that we split the
sample equally, the result will hold if we take any fraction of the sample (c× n
where 0 < c < 1) to estimate ϕ̂α. Second, Theorem 3 shows that the MISE
of the feasible estimator and that of the oracle estimator have the same order
asymptotically. Third, Giné and Nickl (2021) introduces self similar functions,
whose smoothness can be estimated and this imposes some restrictions on the
function of interest. Even though we indirectly estimate the smoothness of ϕ
via the estimation of its Fourier coefficients, 〈ϕ, φj〉, we do not explicitly restrict
our analysis to self-similar functions. We do however impose restrictions on the
rate of decay of 〈ϕ, φj〉 relative to that of λKj and 〈Σψj , ψj〉 in Assumptions
2 and 3. Finally, regarding econometric application NPIV, minimax rates have
been obtained in papers such as Hall and Horowitz (2007); Chen and Reiss
(2011); Chen and Christensen (2018); Chen et al. (2021). The rate in Theorem 3
is not a minimax rate as we do not define any class of estimators nor we consider
a specific model. It is an oracle equality which shows that MISE(ϕ̂f ) is equal
to MISE(ϕ̂if ) plus a term which has exactly the same rate as MISE(ϕ̂if ) for
a general class of linear inverse problems.

4. Monte Carlo simulations

In this section we present Monte Carlo simulations to show the performance of
the proposed feasible estimator compared to that of the unweighted estimator.
We generate data from a NPIV model as we are interested in econometric ap-
plications of inverse-problems. Even though NPIV does not correspond to our

5In Theorem 3 below where we show the convergence of the MISE of the feasible estimator,
we impose a bound on α given by 1

n2α + αγ

n
< n1−β . Although it may look restrictive as it

depends on the unknown constants γ and β, it also depends on the sample size, n, and when
n increases its effect dominates and increases the bound on α.
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model as K and Σ need to be estimated, NPIV design allows us to see perfor-
mance of our proposed estimator in the cases of both known and unknown K
and Σ. Below we first write NPIV model under our setting and then describe
our simulation design.

4.1. Nonparametric IV regression

NPIV regression has been well studied in many papers; see Carrasco et al.
(2007); Darolles et al. (2011); Hall and Horowitz (2005) among others and to
the best of our knowledge, none of these papers has considered the optimality
of the infinite dimensional parameter in terms of minimum MISE.6 Consider a
vector of random elements (Y,Z,X) such that:

Y = ϕ(Z) + V and E(V |X) = 0. (13)

The model then generates a linear inverse problem:

E(E(Y |X)|Z) = E(E(ϕ(Z)|X)|Z), (14)
r = Kϕ, (15)

where r ∈ L2
Z , ϕ ∈ L2

Z and K : L2
Z �→ L2

Z . We assume that all the L2 spaces are
related to the true distribution. We have a noisy observation of r, r̂, and for the
purposes of this paper, we assume that K is given. In this case, one can write:

r̂ = Kϕ + U. (16)

We assume that E(U) = 0.7 The operator K is a self-adjoint trace class operator.
This NPIV model is studied in detail in Darolles et al. (2011) and it is shown
that V(U) = σ2

n K under some regularity conditions including homoskedasticity
of the variance of V conditional on X, V(V |X) = σ2, see Carrasco et al. (2007).

Note that this model has a particular feature as Σ and K are equal up to
a multiplicative order. This means that the choice of A = Σ− 1

2 is possible in
this set-up and would result in K∗A∗AK = K, with the φj(= ψj) being the
eigenvectors of K and A∗AK = I. More precisely, in this case λAj = λ

1/2
Kj .

Although A = Σ−1/2 is a possible choice for the weighting operator, it is not
optimal due to regularization.

Given this setup, using the result (ii) in Proposition 2, the infeasible estimator
can be written as:

ϕ̂if,IV =
∞∑
j=1

〈ϕ, φj〉2λKj〈r̂, ψj〉
σ2

n λKj + 〈ϕ, φj〉2λ2
Kj

φj . (17)

6As already mentioned, in this paper we consider optimality in terms of minimal MISE for
fixed n, not rate-optimality.

7In the NPIV model described above, it is important to recognise that E(U) is not strictly
equal to zero and V ar(U) is not strictly equal to σ2

n
K due to the presence of the nonparametric

estimate r̂. However, the additional terms in these moments can be controlled by appropriately
selecting the bandwidth in the estimation of r̂ and can be shown to be negligible, see Darolles
et al. (2011).
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To obtain the feasible estimator, 〈ϕ, φj〉 in Equation (17) is replaced by
λKj

α+λ2
Kj

〈r̂, ψj〉:

ϕ̂f,IV =
∞∑
j=1

〈r̂, ψj〉2
σ2

n (α + λ2
Kj)2 + λ3

Kj〈r̂, ψj〉2
λ2
Kj〈r̂, ψj〉φj . (18)

4.2. Simulation design

We first generate data from the NPIV model introduced in previous section with
given K and estimate the unknown function using feasible, ϕ̂f and unweighted
estimators, ϕ̂α. Second, we simulate the design in Newey and Powell (2003)
where K is known to be from a normal family but with an unknown variance.
We call this case partially known K. Third, we use the design in the first set of
simulations but this time we assume that K and Σ are unknown and we esti-
mate them. The results of the Monte Carlo experiments show that the feasible
estimator performs better than the unweighted estimator and this is also true
for the case of unknown K and Σ.

Known K: We generate the data as the following: X, Z and V are drawn
from a multivariate normal distribution with mean (0 0 0)′ and variance:⎛

⎝1 ρ 0
ρ 1 0.5
0 0.5 1

⎞
⎠

where we fix ρ to be equal to 0.6. We set ϕ(Z) to be equal to ϕ(Z) = Z2−1√
2 .

Then Y is given by:

Y = Z2 − 1√
2

+ V.

Partially Known K: We simulate the design in Newey and Powell (2003).
V , η and X are drawn from a normal distribution with mean

(
0 0 0

)′ and
variance: ⎛

⎝ 1 0.5 0
0.5 1 0
0 0 1

⎞
⎠ .

Moreover Z is given by Z = X + η. Finally ϕ is set to be equal to:

ϕ(Z) = ln(|Z − 1| + 1)sign(z − 1).

So, in this design the operator K still comes from a normal family but with an
unknown variance, i.e. the ρ coefficient in the known K design, which is set to
be equal to 0.5 in this design. Hence we estimate ρ from the data. Then the
eigenvalues are given by λKj = ρ̂2j .

Unknown K: The data is generated exactly the same way as in the first
case, however, we assume that K is unknown.
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In the simulations with known K and partially known K, we choose a geomet-
ric spectrum, so the eigenvalues are given by λKj = ρ2j (or by λKj = ρ̂2j) and
the basis functions φj(Z) and ψj(X) are generated using Hermite polynomials.
In the case of unknown K, one way to estimate the model is to estimate the op-
erator K, then obtain its eigenvalues and eigenvectors to estimate the function
of interest ϕ. The conditional expectation operator can be estimated following
Carrasco et al. (2007). For a function f(t) and Kf(t) = E[f(t)|W = w], the
kernel estimation of K for a bandwidth hw is given by:

K̂nf(t) =

∑n
i=1 f(ti)K

(
w−wi

hw

)
∑n

i=1 K
(

w−wi

hw

) =
n∑

i=1
ai(f)εi,

where

ai(f) = f(ti) and εi =

⎡
⎣ K

(
w−wi

hw

)
∑n

i=1 K
(

w−wi

hw

)
⎤
⎦ .

Note that in our problem K is given by Kϕ(Z) = E[E[ϕ(Z)|X]|Z]. Hence K̂ is
given by KZKX where the KZ and KX matrices are the ones with the following
(i, j)th elements:

Kz(i, j) =
Kz

(
zi−zj
hz

)
∑

j Kz

(
zi−zj
hz

) ,

Kx(i, j) =
Kx

(
xi−xj

hx

)
∑

j Kx

(
xi−xj

hx

) .
Given this K̂, the estimated eigenvalues λ̂2

j and eigenvectors φ̂j are given by the
eigenvalues and eigenvectors of K̂ ′K̂.

Given the set-up above, for all three designs, we estimate unweighted ϕ using
the following:

ϕ̂α(z) =
∑
j

λKj

α + λ2
Kj

(
1
n

n∑
i=1

yiφj(zi)λ1/2
Kj

)
φj(z). (19)

Then the scalar product can be written as:

〈ϕ̂α, φj〉 = λKj

α + λ2
Kj

(
1
n

n∑
i=1

yiφj(zi)λ1/2
Kj

)
. (20)

We use first the stage estimate ϕ̂α to obtain 〈ϕ̂α, φj〉 and V - which is then used
to compute σ̂2

v - to obtain the feasible estimator:
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ϕ̂f (z) =
∑
j

〈ϕ̂α, φj〉2λKj

(
1
n

∑n
i=1 yiφj(zi)λ1/2

Kj

)
1/nσ̂2

vλKj + 〈ϕ̂α, φj〉2λ2
Kj

φj(z). (21)

We replicate this exercise 250 times for sample sizes equal to 100, 200 and
400 and estimate unweighted estimator, ϕ̂α and the feasible estimator, ϕ̂f . We
truncate the sum at j = 15.8 As for the regularization parameter, α, we select
it in two different ways: 1) Given a grid of values of α, we select the one which
minimizes the MISE of the unweighted (first stage) estimator; 2) we select the
one which minimizes the MISE of the feasible (second stage) estimator.

Results: Table 1 shows the Root Mean Integrated Square Error (RMISE)
of ϕ̂α and ϕ̂f under the two different selection rules for α, for known, partially
known and unknown K. In the cases of known and unknown K, the feasible
estimator performs better than the unweighted estimator when α is selected
in the second stage i.e. such that it minimizes the MISE of ϕ̂f . In the case of
partially known K, the feasible estimator always performs better. As expected,
in all cases RMISE of both ϕ̂α and ϕ̂f decreases when the sample size increases.

Table 1

Simulation results.
αopt first stage αopt second stage

RMISE RMISE
ϕ̂α ϕ̂f αopt ϕ̂α ϕ̂f αopt

K known
n = 100 0.4511 0.6275 0.0110 0.7013 0.4327 0.0237
n = 200 0.3936 0.4917 0.0060 0.5219 0.3335 0.0211
n = 400 0.3115 0.4137 0.0048 0.5193 0.2269 0.0256
K partially known
n = 100 0.7372 0.5687 0.0768 0.9059 0.5446 0.0719
n = 200 0.6255 0.4892 0.0745 0.7071 0.4663 0.0801
n = 400 0.8171 0.4548 0.0684 0.9302 0.4390 0.0866
K unknown
n = 100 0.6361 0.8050 0.1062 1.1051 0.6118 0.0077
n = 200 0.6240 0.7785 0.1062 1.0637 0.5588 0.0111
n = 400 0.6029 0.7583 0.0536 1.0057 0.5353 0.0044

Two things are worth discussion in detail. First, when selected in the first
stage, optimal α decreases with the sample size as one might expect. However,
this is not the case for optimal α selected so as to minimize the MISE of the
second stage estimator, ϕ̂f . Although this might seem counterintuitive, it is
actually in line with our theoretical result. In Theorem 3, we show that the
MISE of the feasible estimator has the same order as that of the oracle estimator
for a fixed α which satisfies the condition 1

nα2 + αγ

n < n1−β . Hence, when the
sample size n increases, the bound on α relaxes allowing ϕ̂f to have smaller
RMISE for larger values of α. Second, Theorem 3 also implies that α needs
to be sufficiently small depending on the values of n, γ and β. In the case of
partially known K, our results show that the MISE of ϕ̂f does not depend much

8We chose the truncation point based on values of λKj . More precisely, we truncate at the
point where λKj ’s get very close to zero.
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on α and this is potentially because given the function of interest, we use a grid
which contains the values of α that are sufficiently small. This is not true for the
design we used for the cases of known and unknown K as our results suggests
that the MISE of ϕ̂f changes with α. This could be fixed by using a grid which
contains smaller values of α. In Figure 7, we plot the RMISE of ϕ̂α (RMISE1)
and ϕ̂f (RMISE2) against the values of α. In Panel (a), the grid of α is given
by

[
10−6, 10−3] and it can be seen that as the RMISE of ϕ̂f does not change

much. Whereas in Panels (b) and (c), the grid is larger,
[
10−3, 10−1], and the

RMISE of ϕ̂f varies more compared to Panel (a).
Figures 1 to 6 show ϕ̂α, ϕ̂f and the true curve in all three cases. While

Figues 1, 3 and 5 show the results from a single draw under for two different se-
lection rules of the regularization parameter, Figures 2, 4 and 6 show estimated
curves from 250 draws where α is chosen to minimize the MISE of ϕ̂f . It can
also be seen in Figures 1, 3 and 5 that ϕ̂f is much less dependent on α compared
to ϕ̂α.

Fig 1. Simulation result with one draw - K known.

Note: α is selected in order to minimize the MISE of the second step estimator. Black pluses
are the true values of the ϕ function. Dark gray dots are the estimated curve using the feasible
estimator at each draw while the light gray dots are unweighted estimates.

Fig 2. Simulation result with 250 draws.
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Fig 3. Simulation result with one draw - K partially known.

Note: α is selected in order to minimize the MISE of the second step estimator. Black pluses
are the true values of the ϕ function. Dark gray dots are the estimated curve using the feasible
estimator at each draw while the light gray dots are unweighted estimates.

Fig 4. Simulation result with 250 draws.

Fig 5. Simulation result with one draw - K unknown.
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Note: α is selected in order to minimize the MISE of the second step estimator. Black pluses
are the true values of the ϕ function. Dark gray dots are the estimated curve using the feasible
estimator at each draw while the light gray dots are unweighted estimates.

Fig 6. Simulation result with 250 draws.

Fig 7. RMISE vs. α.
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5. Conclusion

In this paper we study the MISE optimality in linear inverse problems and
we derive the weighting operator which leads to minimal MISE. We have sev-
eral important findings. First, under a very general set-up, we have shown that
weighting and a Hilbert scale penalty play the same role. Hence, one may fix one
of these operators to identity. Second, we have found that the optimal weighting
depends on the regularity of the function of interest and on the variance of the
noise. A conjecture would be to equalize the regularity of ϕ and the sum of the
degree of ill-posedness of A and Σ. Third, given our results on optimal weight-
ing we have proposed a feasible estimator. Fourth, we study the asymptotic
properties of our proposed feasible estimator and show that for a fixed value
of regularization parameter, α, (i) it is consistent; (ii) its MISE has the same
order as that of the oracle estimator. While doing this, we also introduce a new
type of source condition which do not only take into account the smoothness
of the functional parameter but also the variance of the noise. Finally, we have
supported our theoretical findings by means of Monte Carlo simulations.

This paper can be considered as the first of a series of papers on this topic.
Extension of our results to the case with estimated K and Σ is the first thing
in our agenda. We believe that with this extension, our results will contribute
to the literature on the nonparametric estimation of simultaneous equations.
Hence, the development of a nonparametric three stage least squares estimator
using this optimal weighting matrix is also left for future work. Second, opti-
mal weighting in inverse problems can be studied in Bayesian context. Third,
machine learning techniques have been used in the solution of inverse problems
recently and extension of our results to these settings can also be studied.

Appendix A: Proofs

A.1. Proof of Proposition 1

Proof.
E‖ϕ̂α − ϕ‖2 = tr[V(ϕ̂α)] + ‖ϕ̂α − ϕ‖2,

where ϕ̂α = L−1(αI + L−1K∗A∗AKL−1)−1L−1K∗A∗AKϕ and V(.) denotes
the variance. Using some elementary manipulations and the property that L−1

commutes with K∗A∗AK we get:

E‖ϕ̂α − ϕ‖2 = 1
n
tr[L−1(αI + B)−1L−1K∗A∗AΣA∗AKL−1(αI + B)−1L−1]

+ ‖α(αI + B)−1ϕ‖2,

where B = L−1K∗A∗AKL−1. Given Assumption 1 and the fact that tr(Ω) =∑∞
j=1 〈Ωδj , δj〉, the result follows from the definition of MISE above.
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A.2. Proof of Proposition 2

Proof. The proof follows from the minimization of the MISE given in Equa-
tion (9) with respect to λ2

Aj . The first order condition is given by:

2
n 〈Σψj , ψj〉(α + λ2

Kjλ
2
Aj)λ2

Kjλ
2
Ajα

(α + λ2
Kjλ

2
Aj)4

−
2α2〈ϕ, φj〉2(α + λ2

Kjλ
2
Aj)λ2

Kj

(α + λ2
Kjλ

2
Aj)4

= 0.

After rearranging one can obtain:

1
n
〈Σψj , ψj〉λ2

Aj = α〈ϕ, φj〉2.

Then the result follows:
λ2
Aj = 〈ϕ, φj〉2

〈Σψj , ψj〉
αn.

Note that ϕ̂α is given by:

ϕ̂α =
∑
j

λKjλ
2
Aj

α + λ2
Kjλ

2
Aj

〈r̂, ψj〉ϕj .

Then the second result is obtained by replacing optimal λ2
Aj in the above

equation. Finally, the third result is obtained by substituting optimal λ2
Aj by

〈ϕ,φj〉2
〈Σψj ,ψj〉αn in the MISE formula.

A.3. Proof of Theorem 1

Proof. If we replace the λ2
Aj by 〈ϕ,φj〉2

〈Σψj ,ψj〉αn in the MISE formula given in Equa-
tion (9), we obtain the MISE of the optimal infeasible estimator:

E‖ϕ̂if−ϕ‖2 = 1
n

∞∑
j=1

〈Σψj , ψj〉λ2
Kj(

1
n

〈Σψj ,ψj〉
〈ϕ,φj〉2 + λ2

Kj

)2 + 1
n2

∞∑
j=1

〈Σψj , ψj〉2

〈ϕ, φj〉2
(

1
n

〈Σψj ,ψj〉
〈ϕ,φj〉2 + λ2

Kj

)2 .

where the first term is the variance and the second term is the bias squared.
The rest of the proof treats these two terms separately. Starting with the bias,
if ones divides and multiplies it by 〈ϕ,φj〉2

〈Σψj ,ψj〉2 , the following can be obtained after
some manipulation:

1
n2

∞∑
j=1

〈ϕ, φj〉2(
1
n + 〈ϕ,φj〉2

〈Σψj ,ψj〉λ
2
Kj

)2 . (A.1)

Denote xj = 〈ϕ,φj〉2
〈Σψj ,ψj〉λ

2
Kj and divide and multiply Equation (A.1) by xβ

j :

1
n2

∞∑
j=1

〈ϕ, φj〉2

xβ
j

xβ

(1/n + xj)2
,
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where xβ
j

(1/n+xj)2 is O(n2−β). Then the whole bias term is O(n−β) and under
Assumption 2, bias term goes to 0 as n → ∞.

We now examine the variance term. As before, after some manipulation the
variance term can be rewritten as:

1
n

∞∑
j=1

〈ϕ, φj〉2λ2
Kj

〈ϕ,φj〉2
〈Σψj ,ψj〉(

1
n + λ2

Kj
〈ϕ,φj〉2
〈Σψj ,ψj〉

)2 . (A.2)

Replacing 〈ϕ,φj〉2
〈Σψj ,ψj〉λ

2
Kj by xj and dividing and multiplying Equation (A.2) by

xβ
j , one obtains:

1
n

∞∑
j=1

〈ϕ, φj〉2

xβ
j

xβ+1
j

(1/n + xj)2
.

The term xβ+1
j

(1/n+xj)2 is O(n−1) and the whole variance term is O(n−β). Thus
under Assumption 2 the variance term as well vanishes as n → ∞.

A.4. Proof of Theorem 2

Proof. The proof follows by Theorem 4.1 and Theorem 4.2 in Engl et al. (1996).
One can decompose ‖ϕ̂f − ϕ‖ as the following:

‖ϕ̂f − ϕ‖ = ‖ϕ̂f − ϕf‖︸ ︷︷ ︸
A

+ ‖ϕf − ϕ‖︸ ︷︷ ︸
B

The proof follows showing both terms, A and B, converge to zero. Starting with
B, note that B captures the regularization bias and it can be shown to converge
to zero by using Theorem 4.1 in Engl et al. (1996). The theorem states that for
gρ(x) such that

(1) |xgρ(x)| < C and (2) lim
ρ→0

gρ(x) = 1
x

for all x ∈ [0, ‖K‖2]

then
lim
ρ→0

gρ(K∗K)Kφ = r

If one can verify (1) and (2) in the case of feasible estimation, then one can
conclude ‖ϕf − ϕ‖ → 0. Using Equation (10), gρ(x) can be written as:

gρ(x) = x 〈r̂, ψj〉2

ρ(α + x)2 〈Σψj , ψj〉 + x2 〈r̂, ψj〉2

where ρ = 1/n. Then:

lim
ρ→0

gρ(x) = x 〈r̂, ψj〉2

x2 〈r̂, ψj〉2
= 1

x
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It is straightforward to show the first condition as well, as:

|xgρ(x)| =

∣∣∣∣∣ x2 〈r̂, ψj〉2

ρ(α + x)2 〈Σψj , ψj〉 + x2 〈r̂, ψj〉2

∣∣∣∣∣ < 1

and it is bounded.
We now show that the term A, ‖ϕ̂f − ϕf‖ converges to zero in probability.

The result will follow from Theorem 4.2 in Engl et al. (1996). Define Gρ :=
sup{|gρ(x)||x ∈ [0, ‖T‖2]}. Then the theorem shows that:

‖ϕ̂f − ϕf‖ ≤ 1√
n

√
CGρ

sup gρ(x) is given when x =
√
x∗ where

x∗ =
1
nα

2 〈Σψj , ψj〉
〈r̂, ψj〉2 + 1

n 〈Σψj , ψj〉

Then

1
n

sup gρ(x) = x∗ 〈r̂, ψj〉2

(α + x∗)2 〈Σψj , ψj〉 + α2〈Σψj ,ψj〉
〈r̂,ψj〉2+ 1

n 〈Σψj ,ψj〉 〈r̂, ψj〉2
(A.3)

First note that x∗ can be rewritten as:

α2

n〈r̂,ψj〉2
〈Σψj ,ψj〉 + 1

The term in denominator is bounded which makes x∗ is of order O(1) for a fixed
α. Then we can conclude that the numerator of Equation (A.3) is of order O(1).
As for the denominator of A.3, the second term dominates so one can examine
just that term:

α2 〈Σψj , ψj〉
1
n 〈r̃, ψj〉2 + 1

n 〈Σψj , ψj〉
where r̃ = nr̂. For a fixed α, this term is Op(n). Hence it can be concluded
that A.3 is Op(1/n):

As n → ∞, ‖ϕ̂f − ϕf‖2 p→ 0.

A.5. Proof of Theorem 3

Proof. Using result two of Proposition 2, the infeasible estimator is given by

ϕ̂if =
(

1
n
Q + K∗K

)−1

K∗r̂,
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where Q is the operator:

Q : E �→ E : g �→ Qg =
∞∑
j=1

〈Σψj , ψj〉
〈ϕ, φj〉2

〈g, φj〉φj for g ∈ E .

Let us write the feasible estimator ϕf = ( 1
n Q̂ + K∗K)−1K∗r̂ and let us denote

eigen values of the operator Q and Q̂ by νj and ν̂j , respectively. Then the MISE
of the infeasible estimator can be written as:

MISE(ϕif ) = 1
n

∞∑
j=1

1
( 1
nνj + λKj2)2

[λ2
Kj〈Σψj , ψj〉 + 1

n
ν2
j 〈ϕ, φj〉2]

A second order Taylor expansion of MISE(ϕf ) around MISE(ϕif ) leads to:

MISE(ϕf ) −MISE(ϕif ) = 2
n2

∞∑
j=1

λ2
Kj(

1
nνj + λ2

Kj

)3 (νj〈ϕ, φj〉2

− 〈Σψj , ψj〉)(ν̂j − νj)

+ 1
n2

∞∑
j=1

λ2
Kj

( 1
nνj + λ2

Kj)3
〈ϕ, φj〉2(ν̂j − νj)2

+ o
(
(ν̂j − νj)2

)
The term (νj〈ϕ, φj〉2 − 〈Σψj , ψj〉) is equal to zero as νj = 〈Σψj ,ψj〉

〈ϕ,φj〉2 , so:

MISE(ϕf ) −MISE(ϕif ) = 1
n2

∞∑
j=1

λ2
Kj

( 1
nνj + λ2

Kj)3
〈ϕ, φj〉2(ν̂j − νj)2︸ ︷︷ ︸
A

+ op
(
(ν̂j − νj)2

)︸ ︷︷ ︸
B

First let us investigate the remainder term, B. Note that vj is a function of ϕ
and v̂j is a function of ϕ̂α. So, one can write:

1
n2

∞∑
j=1

op
(
(v̂j − vj)2

)
= 1

n2

∞∑
j=1

op(〈ϕ̂α − ϕ, φj〉2)

= 1
n2 op

⎛
⎝ ∞∑

j=1
〈ϕ̂α − ϕ, φj〉2

⎞
⎠

= 1
n2 op (‖ϕ̂α − ϕ‖)

= 1
n2 op(1)
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The final rate is obtained because of the following: Note that we do not use L
or A during the first step estimation. Then the MISE of the first step estimator
is given by:

1
n

∞∑
j=1

〈Σψj , ψj〉λ2
Kj

(α + λ2
Kj)2

+ α2
∞∑
j=1

〈ϕ, φj〉2
(α + λ2

Kj)2

Under Assumption 3, for α and n fixed, we get:

‖ϕ̂α − ϕ‖2 = Op

(
1
nα

+ αγ

)
,

given the above rate, one can always find an α such that:

1
n2

(
1
nα

+ αγ

)
<

1
nβ

,

which will satisfy the final rate. Intuitively, it means that we need to select a
small α for the first step estimation. In fact, if α is chosen optimally, the MISE
would have a rate of n−γ/γ+1 and one would need to verify that γ/γ + 1 > β.
As this is not possible, we choose α smaller than the optimal.

Let us now continue with term A. If we replace vj and v̂j to what they are
equal to in the second order term, we obtain:

1
n2

∞∑
j=1

λ2
Kj〈ϕ, φj〉2〈Σψj , ψj〉2(

1
n

〈Σψj ,ψj〉
〈ϕ,φj〉2 + λ2

Kj

)3 〈ϕ, φj〉2
(

1
〈ϕ̂α, φj〉2

− 1
〈ϕ, φj〉2

)2

Another Taylor expansion of 1
〈ϕ̂α,φj〉2 around ϕ gives:

1
〈ϕ̂α, φj〉2

− 1
〈ϕ, φj〉2

= − 1
〈ϕ, φj〉3

〈ϕ̂α − ϕ, φj〉 + o(ϕ̂α − ϕ)

Replacing the above equation back in term A and after some manipulations:

= 1
n2

∞∑
j=1

λ2
Kj〈Σψj , ψj〉2(

1
n

〈Σψj ,ψj〉
〈ϕ,φj〉2 + λ2

Kj

)3
1

〈ϕ, φj〉4
〈ϕ̂α − ϕ, φj〉2

which has the expectation equal to:

= 1
n3

∞∑
j=1

〈Σψj , ψj〉3λ4
Kj(

1
n

〈Σψj ,ψj〉
〈ϕ,φj〉2 + λ2

Kj

)3
〈ϕ, φj〉4(α + λ2

Kj)2︸ ︷︷ ︸
I

+ 1
n2

∞∑
j=1

α2λ2
Kj〈Σψj , ψj〉2

( 1
n

〈Σψj ,ψj〉
〈ϕ,φj〉2 + λ2

Kj)3〈ϕ, φj〉4(α + λ2
Kj)2︸ ︷︷ ︸

II

(A.4)
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as
E[〈ϕ̂α − ϕ, φj〉2] = 1

n

λ2
Kj〈Σψj , ψj〉
(α + λ2

Kj)2
+ α2〈ϕ, φj〉2

(α + λ2
Kj)2

Below, we investigate the term in A.4. Let us start with I. After some manipu-
lation, I can be written as:

I = 1
n3

∞∑
j=1

λ4
Kj〈ϕ, φj〉2(

1
n + λ2

Kj
〈ϕ,φj〉2
〈Σψj ,ψj〉

)3
(α + λ2

Kj)2

Denote x = λ2
Kj

〈ϕ,φj〉2
〈Σψj ,ψj〉 and divide and multiple the above equation by(

λ2
Kj

〈ϕ,φj〉2
〈Σψj ,ψj〉

)β

. Then I can be written as:

I = 1
n3

∞∑
j=1

(
λ2
Kj

α + λ2
Kj

)2 〈ϕ, φj〉2(1−β)〈Σψj , ψj〉β

λ2β
Kj

xβ

( 1
n + x)3

The first term on the RHS is < 1 and the second term is finite by Assumption 2
and then I is O(n−β). The order of II can be shown in similar way. After some
manipulation, II can be rewritten:

II = 1
n2

∞∑
j=1

α2λ2
Kj〈ϕ, φj〉4(

1
n + λ2

Kj
〈ϕ,φj〉2
〈Σψj ,ψj〉

)3
〈Σψj , ψj〉(α + λ2

Kj)2

If we divide and multiply II by
(
λ2
Kj

〈ϕ,φj〉2
〈Σψj ,ψj〉

)β

:

II = 1
n2

∞∑
j=1

α2

(α + λ2
Kj)2

〈ϕ, φj〉2(1−β)〈Σψj , ψj〉β

λ2β
Kj

x1+β

( 1
n + x)3

By making the similar arguments as in I, it can be shown that II is O(n−β).
Finally, MISE(ϕf )−MISE(ϕif ) = Op(n−β) follows from Markov inequality.
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