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Abstract: Valid online inference is an important problem in contemporary
multiple testing research, to which various solutions have been proposed
recently. It is well-known that these existing methods can suffer from a
significant loss of power if the null p-values are conservative. In this work,
we extend the previously introduced methodology to obtain more powerful
procedures for the case of super-uniformly distributed p-values. These types
of p-values arise in important settings, e.g. when discrete hypothesis tests
are performed. To this end, we introduce the method of super-uniformity
reward (SUR) that incorporates information about the individual null cu-
mulative distribution functions. Our approach yields several new ‘rewarded’
procedures that offer uniform power improvements over known procedures
and come with mathematical guarantees for controlling online error criteria
based either on the family-wise error rate (FWER) or the marginal false
discovery rate (mFDR). We illustrate the benefit of super-uniform reward-
ing in real-data analyses and simulation studies. While discrete tests serve
as our leading example, we also show the benefit of our method for online
p-values weighting. Finally, we present extensions of our theory to online
FDR control and stopped mFDR control.
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1. Introduction

1.1. Background

Multiple testing is a well-established statistical paradigm for the analysis of com-
plex and large-scale data sets, in which each hypothesis typically corresponds
to a scientific question. In the classical situation, the set of hypotheses should
be pre-specified before running the statistical inference. However, in contrast to
the former ‘offline’ setting, in many contemporary applications questions arise
sequentially. A first instance of such sequential application is when testing a
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single null hypothesis repeatedly as new data are collected. For instance, this is
the case for continuous monitoring of A/B tests in the information technology
industry or marketing research, see Kohavi et al. (2013); Johari et al. (2019) and
references therein, or Howard et al. (2021) for recent developments. A second
situation is when the null hypotheses are (potentially) different and arise in a
continuous stream, and accordingly decisions have to be made one at a time
and prior to the termination of the stream. This is generally referred to as the
online multiple testing (OMT) framework and is the focus of this paper, see,
e.g., Lark (2017); Robertson et al. (2019); Kohavi et al. (2020) for application
examples. This second situation can also occurs in combination with the first
one to form a ‘doubly-sequential’ experiment (Ramdas, 2019).

1.2. Existing literature on online multiple testing

The literature aiming at controlling of various error rates in OMT has grown
rapidly in the last few years. As a starting point, the family-wise error rate
(FWER) is the probability of making at least one error in the past discoveries,
and a typical aim is to control it at each time of the stream (for a formal
definition of this and other error rates, see Section 2.2). Since controlling FWER
at a given level α is a strong constraint, it requires employing a procedure that
is conservative, thus generally leading to few discoveries. The typical strategy is
to distribute over time the initial wealth α, e.g., performing the i-th test at level
αγi for a sequence {γi}i≥1 summing to 1. This approach is generally referred to
as α-spending in the literature (Foster and Stine, 2008).

A less stringent criterion is the false discovery rate (FDR), defined as the ex-
pected proportion of false discoveries. This versatile criterion allows many more
discoveries than the FWER and has known a huge success in offline multiple
testing literature since its introduction by Benjamini and Hochberg (1995), both
from a theoretical and practical point of view. In their seminal work on OMT,
Foster and Stine (2008) extended the FDR in an online setting by considering
the expected proportion of errors among the past discoveries (actually, consid-
ering rather the marginal FDR, denoted below by mFDR, which is defined as
the ratio of the expectations, rather than the expectation of the ratio). The
novel strategy in Foster and Stine (2008), which is called α-investing, is based
on the idea that an mFDR controlling procedure is allowed to recover some
α-wealth after each rejection, which slows down the natural decrease of the in-
dividual test levels. In subsequent papers, many further improvements of this
method have been proposed: first, the α-investing rule has been generalized by
Aharoni and Rosset (2014), while maintaining marginal FDR control. Later, Ja-
vanmard and Montanari (2018) established the (non-marginal) FDR control of
these rules, including the LORD (Levels based On Recent Discovery) procedure.
Then, a uniform improvement of LORD, called LORD++, has been proposed
by Ramdas et al. (2017), that maintains FDR/mFDR control while extending
the theory in several directions (weighting, penalties, decaying memory).

Extensions to other specific frameworks have been proposed, including rules
that allow asynchronous online testing (Zrnic et al., 2021), maintain privacy
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(Zhang et al., 2020), and accommodate a high-dimensional regression model
(Johnson et al., 2020). Other online error criteria have also been explored,
such as the false discovery exceedance (Javanmard and Montanari, 2018; Xu
and Ramdas, 2021), post hoc false discovery proportion bounds (Katsevich and
Ramdas, 2020), or confidence intervals with false coverage rate control (Wein-
stein and Ramdas, 2020).

Compared to the offline framework, the online framework has a temporal
structure that needs to be taken into account, which generally leads to less
powerful procedures. Hence, another important branch of the literature aims at
proposing improved rules that gain more discoveries: first, following the classical
‘adaptive’ offline strategy, procedures can be made less conservative by implicitly
estimating the amount of true null hypotheses, see the SAFFRON procedure
for FDR and the adaptive-spending procedure for FWER (Ramdas et al., 2018;
Tian and Ramdas, 2021). Second, under an assumption on the null distribution,
increasing the number of discoveries is possible by ‘discarding’ tests with too
large p-values (Tian and Ramdas, 2019).

A power enhancement can also be obtained by combining online procedures
with other methods. A natural idea is to use more sophisticated individual tests
in the first place, e.g., based on multi-armed bandits (Yang et al., 2017), or
so-called ‘always valid p-values’, see Johari et al. (2019) and references therein.
Another idea is to combine offline procedures to form ‘mini-batch’ rules, see
Zrnic et al. (2020). Further improvements are also possible by incorporating
contextual information as done by Chen and Kasiviswanathan (2020a) or using
local FDR-like approach, see Gang et al. (2020). Lastly, performance boundaries
have been derived by Chen and Arias-Castro (2021).

1.3. Super-uniformity

This paper considers OMT in the setting of super-uniformly distributed p-values
(defined in detail in Section 2.1). Super-uniformity may originate from various
sources. The first main example we have in mind, and which has been extensively
investigated in the statistical literature, is super-uniformity arising from discrete
p-values (described in detail in Section 5). Additionally, we show that super-
uniformity can also be used in a more indirect way as a device for dealing with
online p-value weighting. In the offline setting, this is a powerful and extensively
studied approach, which has, however, in the online case, received little attention
so far (described in detail in Section 6).

Discrete tests often originate when the tests are based on counts or contin-
gency tables, for example:

• in clinical studies, the efficiency or safety of drugs are compared by count-
ing patients who survive a certain period after being treated, or who ex-
perience a certain type of adverse drug reaction;

• in biology, the genotype effect on the phenotype can be tested by knocking
out genes sequentially in time.
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The latter example also describes the data from the International Mouse Phe-
notyping Consortium (IMPC, see Muñoz-Fuentes et al. (2018)), which contains
many categorical variables, observed as counts and summarized in contingency
tables. While this data set is frequently used (see e.g., Tian and Ramdas, 2021;
Xu and Ramdas, 2021; Karp et al., 2017), the classical OMT procedures do
not exploit the discrete nature of the tests, and it turns out that much more
powerful procedures can be developed, see Section 5.3.

In the literature, different solutions have been proposed for dealing with the
conservatism of discrete tests already at the single test level, the most straight-
forward one being randomization (see e.g., Habiger, 2015). While this approach
possesses attractive theoretical properties, randomization is usually unaccept-
able in practice (Lehmann and Romano, 2022). An active research area explores
discrete multiple testing in the offline setting, with the seminal works of Tarone
(1990); Westfall and Wolfinger (1997); Gilbert (2005a) and the subsequent stud-
ies of Heyse (2011); Dickhaus et al. (2012); Habiger (2015); Chen et al. (2015);
Döhler (2016); Chen et al. (2018); Döhler et al. (2018); Durand et al. (2019), see
also references therein. The improvement achieved by such methods can be sub-
stantial and the present work shows that similar improvements are also possible
in the online setting.

Finally, p-value weighting is a well-established and popular approach for im-
proving the performance of offline multiple testing procedures. It can be traced
back to Holm (1979) and has been further developed, in, e.g., Genovese et al.
(2006); Wasserman and Roeder (2006); Rubin et al. (2006); Blanchard and
Roquain (2008); Roquain and van de Wiel (2009); Hu et al. (2010); Zhao and
Zhang (2014); Ignatiadis et al. (2016); Durand (2019); Ramdas et al. (2019)
with weights that can be driven for instance by sample size, groups, or more
generally by some covariates. By approaching the problem from the perspec-
tive of super-uniformity, our general method also allows seamless and flexible
integration of such weighting schemes in an online context.

1.4. Contributions of the paper

In this paper, we propose uniform improvements of the classical base proce-
dures1 listed in Table 1, and prove control of the corresponding error rates. A
distinguishing feature of our work is that we assume that a (non-trivial) upper
bound for the null cumulative distribution function’s (c.d.f.), called the null
bounding family, is known (see Section 2.1). By combining this information with
base procedures, we construct more efficient OMT procedures (see Table 2).
The key quantity involved in this construction can be interpreted as a reward
induced by the super-uniformity of the null bounding family. Figure 1 illustrates
the concept in the case of discrete tests: at time t, the reward is obtained as
the difference between the nominal significance level αt and the truly achieved

1For consistent terminology within this paper we have renamed the classical ADDIS and
(the slightly modified) SAFFRON procedures (more details on the relationship of AOB to
ADDIS and ALORD to SAFFRON can be found in Sections 3.3 and 4.3).
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Table 1

Overview of the critical values of the base procedures for some choice of level α ∈ (0, 1),
adaptivity parameter λ ∈ [0, 1), initial wealth W0 ∈ (0, α), and spending sequence (γj)j≥1.

The quantities T (·), τj , Tj(·) are given by (16), (24), (29), respectively.

Error rate Procedure Critical values Results
FWER OB αOB

T = αγT Tian and Ramdas (2021)
AOB αAOB

T = α(1 − λ)γT (T ) Tian and Ramdas (2021)
(ADDIS)

mFDR LORD αLORD
T =W0γT + (α−W0)γT−τ1

+ α
∑
j≥2

γT−τj

Javanmard and Montanari
(2018) and
Ramdas et al. (2017)

ALORD αALORD
T = (1 − λ) ·

(
W0γT0(T ) Ramdas et al. (2018)

(SAFFRON) +(α−W0)γT1(T ) + α
∑

j≥2 γTj(T )

)
(slightly improved)

Table 2

Overview of the critical values of the rewarded procedures denoted as the corresponding base
procedures, with an additional symbol “ρ” in the name. Here, αOB

T , αAOB
T , αLORD

T , αALORD
T are

the base procedures from Table 1 (with the adaptivity parameter λ defined there), ρt is the
super-uniformity reward at time t given by (8), γ′ is the SURE spending sequence defined in

Section 2.4 and εT = 1{pT < λ}(αT − α0
T ) is an additional adaptivity reward, for either

(α0
T , αT ) = (αAOB

T , αρAOB
T ), or (α0

T , αT ) = (αALORD
T , αρALORD

T ), depending on the case.

Error rate Procedure Critical values Results

FWER ρOB αρOB
T = αOB

T +
T−1∑
t=1

γ′
T−tρt Theorem 3.1

ρAOB αρAOB
T = αAOB

T +
∑

1≤t≤T−1
pt>λ

γ′
T−tρt + εT−1 Theorem 3.2

mFDR ρLORD αρLORD
T =αLORD

T +
T−1∑
t=1

γ′
T−tρt Theorem 4.1

ρALORD αρALORD
T = αALORD

T +
∑

1≤t≤T−1
pt>λ

γ′
T−tρt + εT−1 Theorem 4.2

Fig 1. Super-uniformity reward ρt at time t (length of the vertical line) as defined by (8) (see
Section 2.3) for a given discrete bounding function Ft (orange step function) and a critical
value αt (triangle). The dashed line is the identity function x ∈ [0, 1] �→ x.
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significance level Ft(αt). We use the acronym SUR (Super-Uniform-Reward) to
refer to these new procedures. When we use the uniform null bounding fam-
ily (i.e., in the classical framework), our SUR procedures reduce to their base
counterparts. Our main contributions are as follows:

• We propose two new SUR procedures for online FWER control in Sec-
tion 3: the first one (ρOB) uniformly improves upon the Online Bonferroni
procedure (OB), while the second (ρAOB) uniformly improves upon the
adaptive spending procedure of Tian and Ramdas (2021) (AOB).

• We propose two new SUR procedures for online mFDR control in Sec-
tion 4: the first one (ρLORD) uniformly improves upon the LORD++
procedures of Javanmard and Montanari (2018); Ramdas et al. (2017)
(LORD), while the second one (ρALORD) uniformly improves upon the
SAFFRON procedure of Ramdas et al. (2018) (ALORD).

• We present a general and simple way of constructing SUR procedures for
any base procedure satisfying some mild conditions, see Section 3.4 for
FWER and Section 4.4 for mFDR. This allows us to obtain concise proofs
for all our results, which are deferred to the supplement, see Appendix 8.

• Application to discrete data: we evaluate the performances of the new SUR
procedures on discrete data with simulated experiments (Section 5.2) and
for a classical real data set (Section 5.3), where each hypothesis is tested
using a (discrete) Fisher exact test. The gain in power is shown to be
substantial.

• Application to online p-value weighting: our new SUR procedures can be
used to derive weighted online FWER and mFDR controlling procedures.
The p-value weighting is carried out by rescaling the ‘raw’ weights in
a certain way so that the weighted p-value distributions become super-
uniform and our methodology can be applied. The new online procedures
are shown to outperform existing ones both on simulated and real data
(Section 6).

• We show that our mFDR-controlling online methods also control the
mFDR at any stopping time in Appendix 9, and we provide a modifi-
cation of ρLORD that controls the (non marginal) FDR in Appendix 10.

For easier readability of the paper, a succinct overview of our work is pre-
sented in Tables 1 and 2. It lists the base and SUR procedures and provides links
to definitions and results for error rate control. All our numerical experiments
(simulations and application) are reproducible from the code provided in the
repository https://github.com/iqm15/SUREOMT.

Finally, the appendices contain further material including proofs, alternative
approaches and additional numerical studies.

1.5. Relation to adaptive discarding

As Tian and Ramdas (2019) point out, online multiple testing procedures fre-
quently suffer from significant power loss if the null p-values are too conserva-
tive. In Tian and Ramdas (2021) (FWER control) and Tian and Ramdas (2019)

https://github.com/iqm15/SUREOMT
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(mFDR control), the authors propose adaptive discarding (ADDIS) approaches
as improved methods. In particular, an idea is to use a discarding rule, that
avoids testing a null when the corresponding p-value exceeds a given threshold.
For the particular type of super-uniformity induced by discrete tests, we show
that the discarding rule is less efficient than the SUR method, at least in the
settings of Sections 5.2 and 5.3.

2. Preliminaries

2.1. Setting, procedure and assumptions

Let X = (Xt, t ∈ {1, 2, . . . }) be a process composed of random variables. We
denote the distribution of X by P , which is assumed to belong to some dis-
tribution set P. We consider an online testing problem where, at each time
t ≥ 1, the user only observes variable Xt and should test a new null hypoth-
esis Ht, which corresponds to some subset of P. We let H0 = H0(P ) = {t ≥
1 : Ht is satisfied by P} the set of (unknown) times where the corresponding
null hypothesis is true. Throughout the manuscript, we focus on decisions based
upon p-values. Hence, we suppose that at each time t, we have at hand a p-
value pt = pt(X) ∈ [0, 1]2 (typically depending only on Xt although this is not
necessary) for testing Ht, and we consider online multiple testing procedures
based on p-value thresholding. This means that each null Ht is rejected when-
ever pt(X) ≤ αt, where αt ∈ [0,∞) is a nonnegative threshold, called a critical
value, that is allowed to depend on the past decisions. More precisely, we denote
Rt = 1{pt(X) ≤ αt}, Ct = 1{pt(X) ≥ λ} for all t ≥ 1 and assume that each αt

is measurable with respect to the σ-field Ft−1 = σ(R1, . . . , Rt−1, C1, . . . , Ct−1).
Here, λ ∈ [0, 1] is a parameter that is used for designing adaptive procedures.
The non-adaptive case is recovered as a special case by setting λ = 0, in which
case Ft−1 = σ(R1, . . . , Rt−1).

In the literature, this property is referred to as predictability, see Ramdas
et al. (2017). Throughout the manuscript, an online multiple testing procedure
is identified with a family A = {αt, t ≥ 1} of such predictable critical values.
Let us now state the assumptions used in what follows. First, recall the classical
super-uniformity assumption:

PX∼P (pt(X) ≤ u) ≤ u for all u ∈ [0, 1], and P ∈ P with t ∈ H0, (1)

which means that each test rejecting H0,t when pt(X) is smaller than or equal
to u is of level u. Here, we typically consider a setting where these tests may
have a more stringent level. Formally, we assume that at each time t, a known
null bounding function Ft : [0, 1] → [0, 1] is available, satisfying

PX∼P (pt(X) ≤ u) ≤ Ft(u) ≤ u, for all u ∈ [0, 1], and P ∈ P with t ∈ H0.
(2)

2In the sequel, we write pt instead of pt(X) when there is no ambiguity.
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Note that we will sometimes also consider Ft(u) for u ≥ 1, in which it is to be
understood as Ft(u ∧ 1). The family F = {Ft, t ≥ 1} of null-bounding functions
will be referred to as the null bounding family. Note that (2) reduces to (1) when
choosing Ft(u) = u for all u, but encompasses other cases by choosing differently
the null bounding family. Typically, for discrete tests, it is well-known that Ft(u)
can be (much) smaller than u, see Example 2.1 for more details. Second, another
important assumption is the online independence within the p-value process:

pt(X) is independent of the past decisions Ft−1 for all t ∈ H0 and P ∈ P.
(3)

Assumption (3) holds for instance, in the case where pt(X) only depends on Xt

and the variables in X are all mutually independent, which means that the data
are collected independently at each time.

Remark 2.1. In this manuscript, results are often based on assumptions (2)
and (3). In all these results, these two assumptions can be replaced by the weaker
condition

∀u ∈ [0, 1], ∀t ∈ H0 and P ∈ P, PX∼P (pt(X) ≤ u|Ft−1) ≤ Ft(u) ≤ u a.s. (4)

When choosing the null bounding family Ft(u) = u for all u, the latter condition
is sometimes referred to as SuperCoAD (super-uniformity conditionally on all
discoveries), see Ramdas et al. (2017).

Throughout the paper, we investigate the two following prototypical examples
of super-uniformity.

Example 2.1. Our leading example is the case where a discrete test statistic
is used for inference in each individual test. Typical instances include tests for
analyzing counts such as Poisson and Fisher’s exact test, but also permutation
tests (Romano and Wolf, 2005), see Appendix 13 for more details on these dis-
crete tests. In discrete testing, each p-value pt(X) has its own support St (known
and not depending on P ), that is a finite set (or, in full generality, a countable
set with 0 or 1 as the only possible accumulation points). A null bounding family
satisfying (2) can easily be derived by considering Ft, the right-continuous step
function that jumps at each point of St, see Figure 1 as an example. The support
St can depend on t so that discrete testing can also induce heterogeneity over
time. In Section 5 we apply our SUR approach to discrete tests.

Example 2.2. Our secondary example is p-value weighting, where we start from
continuous p-values that are uniform under the null (i.e. corresponding to the
“usual” case). These p-values are then weighted using external information in
order to increase power. Our SUR approach is developed for weighted p-values
in Section 6.

2.2. Error rates and power

Let us define the criteria that we use to measure the quality of a given procedure
A = {αt, t ≥ 1}. For each T ≥ 1, let R(T ) = {t ∈ {1, . . . , T} : pt(X) ≤ αt}
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denote the set of rejection times of the procedure A, up to time T . We consider
the two following classical online criteria for type I error rates:

FWER(A, P ) := supT≥1{FWER(T,A, P )};
FWER(T,A, P ) := PX∼P

(
|H0 ∩R(T )| ≥ 1

)
; (5)

mFDR(A, P ) := supT≥1{mFDR(T,A, P )};
mFDR(T,A, P ) := EX∼P (|H0∩R(T )|)

EX∼P (1∨|R(T )|) ,
(6)

with the convention 0/0 = 0. In words, when controlling the online FWER at
level α, one has the guarantee that, at each fixed time T , the probability of mak-
ing at least one false discovery before time T is below α. Since FWER control
does not tolerate any false discovery (with high probability), it is generally con-
sidered a stringent criterion. By contrast, when controlling the online mFDR,
at each time T , the expected number of false discoveries before time T need not
be small provided the expected number of discoveries is large enough. While
online FWER has been investigated in Tian and Ramdas (2021), online mFDR
control is generally less conservative (that is, allows more discoveries), and is
widely used in an online context, see Foster and Stine (2008); Ramdas et al.
(2017, 2018). The false discovery rate (FDR) is closely related to the mFDR: it
is defined by using the expectation of the ratio, instead of the ratio of the ex-
pectations as in (6). Controlling the FDR generally requires more assumptions,
while mFDR is particularly useful in an online context (we refer the reader to
Section 1.1 of Zrnic et al. (2021) for more discussions on this). For a given error
rate, we aim at deriving procedures that maximize power. For any procedure
A, we define the power as the expected proportion of signal the procedure can
detect, that is,

Power(T,A, P ) := EX∼P (|H1 ∩R(T )|)
1 ∨ |H1|

, (7)

where H1 is the set of times of false nulls, that is, the complement of H0 in
{1, 2, . . . }.

While this power notion will be used in our numerical experiments to compare
procedures, our theoretical results will use a stricter comparison criterion. For
two online procedures A = {αt, t ≥ 1} and A′ = {α′

t, t ≥ 1}, we say that A′

uniformly dominates A when α′
t ≥ αt for all t ≥ 1 (almost surely). This implies

that, almost surely, A′ makes more discoveries than A, in the sense that the
set of discoveries of A is contained in the one of A′, that is, R(T ) ⊂ R′(T ) for
all T ≥ 1 (a.s.). In particular, this implies the same domination for the true
discovery sets and thus in particular Power(T,A, P ) ≤ Power(T,A′, P ) for all
T ≥ 1. With this terminology, we can restate the aim of this work as follows:
construct valid OMT procedures that uniformly dominate their base procedures
by incorporating the null bounding family function Ft given in (2).

Remark 2.2. There is no consensus regarding the most adequate definition of
power in online testing literature. The concept of uniform domination that we
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use in this paper is much stronger than, e.g., the asymptotic power considered
by Javanmard and Montanari (2018). It may, however, not be particularly ap-
propriate if the base procedure A is chosen poorly. Since the base procedures
given in Table 1 are standard in our setting, the domination criterion seems to
be reasonable.

2.3. Wealth and super-uniformity reward

In the Generalized Alpha-Investing (GAI) paradigm (see Xu and Ramdas (2021)
and the references given therein), the nominal level α, at which one wants to
control the type I error rate, can be seen as an overall error budget – or wealth –
that may be spent on testing hypotheses in the course of an online experiment.
For a given OMT procedure A, it is possible to define a suitable wealth function
W (T ) = W (T,A, P ), such that W (T ) represents the wealth available at time
T for further testing. As a case in point, Xu and Ramdas (2021) define the
(nominal) wealth function for the online Bonferroni procedure by W nom(T ) =
α −

∑T
t=1 αγt. Generalizing this expression for arbitrary null distributions we

obtain the ‘true’ or ‘effective’ wealth W eff(T ) = α−
∑T

t=1 Ft(αγt), where Ft is
a null-bounding function. In the super-uniform setting, assumption (2) implies
W nom(T ) ≤ W eff(T ), and as the two orange curves in Figure 2 illustrate, the
discrepancy can be quite large.

Fig 2. Nominal wealth for OB (dashed orange curve, ‘what we want to spend’), effective
wealth for OB (solid orange curve, ‘what OB actually spends’) and effective wealth for ρOB
(solid green curve, ‘what ρOB actually spends’) for the male mice from the IMPC data (see
Section 5.3 for more details).

While the user thinks the procedure is spending the budget over time ac-
cording to the nominal wealth given by the dashed orange curve, in reality,
the procedure is under-utilizing wealth, as the solid orange true wealth curve
indicates. This unnecessarily austere spending behaviour makes the online Bon-
ferroni procedure sub-optimal. In addition, this phenomenon extends to the
other procedures and error rates listed in Table 1 as well. Our proposed solu-
tion incorporates super-uniformity so that its wealth function behaves more like
the targeted nominal wealth, as depicted by the green curve in Figure 2.
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For incorporating super-uniformity, we introduce the super-uniformity reward
(SUR), a key quantity in our work. For any procedure A = {αt, t ≥ 1} and null
bounding family F = {Ft, t ≥ 1}, the super-uniformity reward ρt at time t is
defined by

ρt = ρt(αt, Ft) := αt − Ft(αt), t ≥ 1. (8)

Note that (2) always implies ρt ≥ 0 for all t ≥ 1. In the case of discrete testing
(Example 2.1), we have Ft(αt) = 0 when αt is below the infimum of the support
St. This produces the maximum possible super-uniformity reward at time t,
that is, ρt = αt. Conversely, when αt ∈ St, we have Ft(αt) = αt and we have no
super-uniformity reward at time t, that is, ρt = 0. In general, we have ρt ∈ [0, αt],
its actual value depending on the discreteness of the test (that is on the steps
of Ft) and of the value of αt. The super-uniformity reward is illustrated in
Figure 1 for a single distribution Ft and value αt. Mathematically, ρt is simply
the difference between the nominal significance level αt and the truly achieved
significance level Ft(αt). In terms of wealth, ρt can be interpreted as the fraction
of nominal significance level which the OMT procedure was unable to ‘spend’
due to super-uniformity. Intuitively, it seems clear that this amount can be put
aside and be re-allocated to the subsequent tests to increase the future critical
values (αT , T ≥ t + 1). In Sections 3 and 4, we show in detail how this can be
done without sacrificing type I error control.

2.4. Spending sequences

As Table 1 displays, the base procedures we use are parametrized by a sequence
γ = (γt)t≥1 of non-negative values, such that

∑
t≥1 γt ≤ 1, which we refer to

as the spending sequence. The spending sequence controls the rate at which the
wealth is spent in the course of the online experiment (for instance, see (10) for
the online Bonferroni procedure). However, finding suitable spending sequences
is not trivial: there is a trade-off between saving wealth for large values of T and
the ability to make discoveries in the not-too-distant future. Typical choices for
γ in the literature are:

• γt ∝ t−q for all t for some q > 1, see Tian and Ramdas (2021);
• γt ∝ (t+ 1)−1 log−q(t+ 1) for all t, for some q > 1, see Tian and Ramdas

(2021);
• γt ∝ log((t+1)∨2)

(t+1) exp(
√

log(t+1)) , see Javanmard and Montanari (2018).

Throughout the paper, we choose γt ∝ t−q with q = 1.6, as suggested by previ-
ous literature. In the base procedures listed in Table 1, there are two potential
sources of wealth: the initial wealth invested at T = 0, and the rejection reward
that can be earned by rejections for investing procedures (i.e., mFDR control-
ling procedures). When one can use super-uniformity reward as described in
Section 2.3, an additional source of wealth comes into play. Indeed, our ap-
proach uses an additional SUR spending sequence γ′ to smoothly incorporate
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all the rewards collected up to time T to compute the new critical value αT . This
SUR spending sequence could be chosen for instance from one of the smoothing
sequences listed above. Here, we focus on the following choice:

γ′
t = γ′

t(h) = 1{t ≤ h}/h, t ≥ 1, (9)

where h ≥ 1 is a suitably chosen integer. Since this leads to procedures that
spread rewards uniformly over a finite horizon of length h, we refer to (9) – by
analogy with non-parametric density estimation – as a rectangular kernel with
bandwidth h. Finally, another idea introduced by Ramdas et al. (2018); Tian and
Ramdas (2021) in order to slow down the natural decay in the αt sequence is to
consider γT (t) where T (t) is a slowed down clock, see (16) and (29) below. As
we will see in Section 3.3 and Section 4.3, this technique can also be combined
with a suitable super-uniformity reward.

3. Online FWER control

In this section, we aim at finding procedures A such that FWER(A, P ) ≤
α for some targeted level α ∈ (0, 1). We begin with a simple presentation
of our approach to improve the online Bonferroni procedure with a ‘greedy’
super-uniformity reward, and then turn to a smoother spending of the super-
uniformity reward (Theorem 3.1). This approach is then applied in combination
with the adaptive online procedure introduced by Tian and Ramdas (2021)
(Theorem 3.2). Finally, a general result is provided (Theorem 3.3) that allows
to reward any procedure controlling the online FWER in some specific way.
This allows unifying all results obtained in this section while further extending
the scope of our methodology.

3.1. Warming-up: online Bonferroni procedure and a first greedy
reward

For any given spending sequence γ = (γt)t≥1, a well-known online FWER con-
trolling procedure is the online Bonferroni procedure, AOB = AOB(α, γ) :=
{αOB

t , t ≥ 1}, defined by

αOB
T := αγT , T ≥ 1. (10)

It is also called Alpha-Spending rule (Foster and Stine, 2008) in the context
of online FWER control, see Tian and Ramdas (2021). It is straightforward
to check that AOB controls the FWER under the classical super-uniformity
condition (1): by the Markov inequality, for all T ≥ 1,

FWER(T,AOB, P ) ≤ EX∼P

( T∑
t=1

1{t ∈ H0, pt ≤ αγt}
)

(11)

≤
∑
t∈H0

PX∼P (pt ≤ αγt) ≤
∑
t∈H0

αγt ≤ α. (12)



Online multiple testing with super-uniformity reward 1305

Let us now present the rationale behind our approach in this simple case. Assume
more generally that we have at hand a null bounding family F = {Ft, t ≥ 1}
satisfying (2). For any procedure A = {αt, t ≥ 1} (with deterministic αt) the
above reasoning leads to the following upper bound on the FWER:

FWER(T,A, P ) ≤ αT +
T−1∑
t=1

Ft(αt) =: F̂WER(T,A). (13)

Thus, FWER is controlled if we can guarantee that F̂WER(T,A) ≤ α for all
T ∈ {1, 2, . . .}. There are various ways of achieving this. A simple solution
that takes the spending schedule of AOB as a benchmark, consists of choosing
αT =

∑T
t=1 αγt −

∑T−1
t=1 Ft(αt). The latter is a recursive relation that allows us

to define a new procedure A = {αt, t ≥ 1} controlling the FWER. Indeed, since
α1 = αγ1 and for T ≥ 2, αT − αT−1 = αγT − FT−1(αT−1), this leads to the
simple rule

αT = αγT + ρT−1, T ≥ 1, (14)

where ρT−1 = αT−1−FT−1(αT−1) is the super-uniformity reward (8) at time T−
1 (with the convention ρ0 = 0). In addition, from (2), we have ρT−1 ≥ 0, and the
critical values (14) uniformly dominate the online Bonferroni critical values (10)
(the obtained critical values are in particular nonnegative, thus defining a valid
OMT procedure). The algorithm behind critical values (14) can be described as
‘greedy’, because it spends the complete super-uniformity reward ρT−1 obtained
at step T − 1 for increasing the next critical value αT .

3.2. Smoothing out the super-uniformity reward

The greedy policy described in the previous section is not always appropriate
when time is considered on a potentially large scale, because the sequence of
critical values might decrease too quickly. Instead, we can smooth this effect
over time, by distributing the reward collected at time T − 1 over all times
following T . To formalize this idea, we introduce a SUR spending sequence (see
also Section 2.4), which is defined as a non-negative sequence γ′ = (γ′

t)t≥1
such that

∑
t≥1 γ

′
t ≤ 1. While this definition is mathematically the same as

the definition of a spending sequence, the role of the SUR spending sequence is
different, so we use a different name for it.

Definition 3.1. For any spending sequence γ and any SUR spending sequence
γ′, the online Bonferroni procedure with super-uniformity reward, denoted by
AρOB = {αρOB

t , t ≥ 1}, is defined by the recursion

αρOB
T = αγT +

T−1∑
t=1

γ′
T−tρt, T ≥ 1, (15)

where ρt = αρOB
t − Ft(αρOB

t ) denotes the super-uniformity reward at time t for
that procedure.
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Fig 3. Sequences of critical values for Bonferroni procedures with different rewards over
time 1 ≤ t ≤ T = 300 (simulated data): base Bonferroni critical values (10) (orange line),
rewarded with the greedy approach (14) (blue line), and with the rectangular kernel SUR
spending sequence (15) (h = 10, green line). The rug plots display the time of discoveries
for each procedure with the corresponding color. The Y -axis has been transformed by y �→
− log(− log(y)). The grey dots denote the p-value sequence (those equal to 1 are displayed at
the top of the picture). The spending sequence is γt ∝ t−1.6.

Note that taking γ′ = (1, 0, . . . 0) recovers the ‘greedy’ critical values (14). For
the rectangular kernel SUR spending sequence given by (9), we have

∑T−1
t=1 γ′

T−tρt

= h−1 ∑T−1
t=1∨(T−h) ρt, which we interpret as a uniform spending of the super-

uniformity reward over the last h time points. As shown in Figure 3, the cor-
responding sequence of critical values (green line) is more ‘stable’ than the one
using the greedy approach (blue line), allowing for some additional discoveries
(on this simulated data).

The following result provides FWER control of the new rewarded critical
values (15), for a general SUR spending sequence.

Theorem 3.1. Consider the setting of Section 2.1, where a null bounding family
F = {Ft, t ≥ 1} satisfying (2) is at hand. For any spending sequence γ and any
SUR spending sequence γ′, consider the online Bonferroni procedure AOB =
{αOB

t , t ≥ 1} (10), and the online Bonferroni with super-uniformity rewards
AρOB = {αρOB

t , t ≥ 1} (15). Then we have FWER(AρOB, P ) ≤ α for all P ∈ P,
while AρOB uniformly dominates AOB.

This result will be a consequence of a more general result, see Section 3.4.

3.3. Rewarded adaptive online Bonferroni

It is apparent from (11)-(12) that there is some looseness when upper-bounding∑
t∈H0

γt by
∑

t≥1 γt which may lead to unnecessarily conservative procedures.
We may attempt to avoid this loss in efficiency by considering a spending se-
quence γ satisfying the condition

∑
t∈H0

γt ≤ 1 which is more liberal than∑
t≥1 γt ≤ 1. In words, this means that the index t in the sequence {γt, t ≥ 1}
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should only be incremented when we are testing an hypothesis Ht with t ∈ H0.
Since H0 is unknown, such a modification cannot be implemented directly in
the γ sequence. Nevertheless, the ADDIS procedure proposed by Tian and Ram-
das (2021) works by replacing the unknown set H0 by an estimate {1} ∪ {t ≥
2 : pt−1 ≥ λ} for some parameter λ ∈ (0, 1), and to correct the introduced
error in the thresholds αt to maintain the FWER control. More formally, we
follow Tian and Ramdas (2021) by introducing the re-indexation functional
T : {1, . . . } → {1, . . . } defined by

T (T ) = 1 +
T∑

t=2
1{pt−1 ≥ λ}, T ≥ 1. (16)

Since a large p-value is more likely to be linked to a true null, T (T ) is used to
account for the number of true nulls before time T (note that this estimate is
nevertheless biased). From an intuitive point of view, T (T ) slows down the time
by only incrementing time when the preceding p-value is large enough. This
idea leads to the adaptive online Bonferroni procedure introduced by Tian and
Ramdas (2021) (called ‘Adaptive spending’3 there), with spending sequence γ
and adaptivity parameter λ ∈ [0, 1), denoted here by AAOB = {αAOB

t , t ≥ 1}, and
given by

αAOB
T = α(1 − λ)γT (T ), T ≥ 1. (17)

It recovers the standard online Bonferroni procedure when λ = 0 (because
T (T ) = T for T ≥ 1 in that case), but leads to different thresholds when λ > 0.
Comparing AAOB to AOB, no procedure uniformly dominates the other. An im-
provement of AAOB over AOB is expected to hold when there are many false
null hypotheses in the data, and increasingly so if the signal occurs early in
the time sequence, see the numerical experiments in Section 5.2. In addition,
note that the critical value αAOB

T depends on the data X1, . . . , XT−1 and thus
is random. As a result, the adaptive approach requires additional distributional
assumptions compared with the online Bonferroni procedure. In Tian and Ram-
das (2021), AAOB is proved to control the FWER under (1) and (3) (actually
under the slightly more general condition (4) with Ft equal to identity). Let us
now use this approach in combination with the super-uniformity reward.

Definition 3.2. For any spending sequence γ, any SUR spending sequence γ′,
and λ ∈ [0, 1), the adaptive online Bonferroni procedure with super-uniformity
reward, denoted by AρAOB = {αρAOB

t , t ≥ 1}, is defined by

αρAOB
T = α(1 − λ)γT (T ) +

∑
1≤t≤T−1

pt≥λ

γ′
T−tρt + εT−1, T ≥ 1, (18)

where ρt = αρAOB
t − Ft(αρAOB

t ) denotes the super-uniformity reward at a time t,
and εT−1 = 1{pT−1 < λ}(αT−1 − α(1 − λ)γT (T−1)) is an additional ‘adaptive’
reward (convention ε0 = 0).

3The so-called ‘discarding’ part of the method proposed by Tian and Ramdas (2021) cannot
be implemented in our setting because the Ft are not convex, as discussed in Section 1.5.
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This class of procedures reduces to the class of procedures (15) introduced in
the previous section by setting λ = 0. However, when λ > 0 the class is different
since the term α(1 − λ)γT (T ), which comes from αAOB

T , makes the threshold
random. Also, the super-uniformity reward is only collected at time t ≤ T − 1
where pt ≥ λ. The latter is well expected from the motivation of the adaptive
approach described above: when pt < λ, no testing is performed so no reward
could be obtained from ρt. Nevertheless, note that the additional term εT−1
allows to collect some reward at time T − 1 in the case where pT−1 < λ. Since
this term only appears in critical values of adaptive procedures, we call it the
‘adaptive’ reward. It is linked to the super-uniformity reward in that no adaptive
reward can be obtained if no super-uniformity reward has been collected in the
past. The following result shows that this approach is valid from the perspective
of FWER control.

Theorem 3.2. Consider the setting of Section 2.1 where a null bounding family
F = {Ft, t ≥ 1} satisfying (2) is at hand. For any spending sequence γ, any SUR
spending sequence γ′ and λ ∈ [0, 1), consider the adaptive online Bonferroni
procedure AAOB = {αAOB

t , t ≥ 1} (17) and the adaptive online Bonferroni with
super-uniformity rewards AρAOB = {αρAOB

t , t ≥ 1} (18). Then, assuming that the
model P is such that (3) holds, we have FWER(AρAOB, P ) ≤ α for all P ∈ P,
while AρAOB uniformly dominates AAOB.

Theorem 3.2 relies on a more general result (Theorem 3.3 below). Note that,
contrary to Theorem 3.1, Theorem 3.2 needs an independence assumption, which
is due to the adaptive methodology that makes the critical values random. If
this independence assumption holds, we show in Section 5.2 that AρAOB can
indeed improve AρOB, while it always improves the procedure AAOB of Tian and
Ramdas (2021) (as guaranteed by the above theorem).

3.4. Rewarded version for base FWER controlling procedures

In this section we present a general result stating that any procedure ensuring
online FWER control (in a specific way) can be rewarded using super-uniformity
while maintaining the FWER control. First, we can extend (13) by defining an
adaptive estimator

F̂WERλ(T,A) =
αT +

∑
1≤t≤T−1,

pt≥λ
Ft(αt)

1 − λ
. (19)

The following lemma holds as a direct consequence of Lemma 8.1.

Lemma 3.1. Assuming that (2) holds, for any procedure A = (αt, t ≥ 1), we
have for all λ ∈ [0, 1),

FWER(T,A, P ) ≤ EX∼P

[
F̂WERλ(T,A)

]
, (20)

if either (3) holds or if the critical values (αt, t ≥ 1) are deterministic.



Online multiple testing with super-uniformity reward 1309

This gives rise to the following theorem.

Theorem 3.3. Assuming that (2) holds, consider any procedure A0 = (α0
t , t ≥

1) satisfying almost surely, for some λ ∈ [0, 1) and for all T ≥ 1,

α0
T +

∑
1≤t≤T−1,

pt≥λ

α0
t ≤ (1 − λ)α. (21)

Then the following holds:

(i) A0 controls the online FWER, that is, FWER(A0, P ) ≤ α for all P ∈ P,
either if the α0

T are deterministic for all T ≥ 1, or if (3) holds;
(ii) for any SUR spending sequence γ′ = (γ′

t, t ≥ 1), the procedure A = (αt, t ≥
1), corresponding to the rewarded A0, and defined by, for all T ≥ 1,

αT = α0
T +

∑
1≤t≤T−1

pt≥λ

γ′
T−t(αt − Ft(αt)) + 1{pT−1 < λ}(αT−1 − α0

T−1),

(22)

controls the online FWER, that is, FWER(A, P ) ≤ α for all P ∈ P, either
if the αT are deterministic for all T ≥ 1, or if (3) holds.

Theorem 3.3 is proved in Section 8.1. Condition (21) is essentially the same
as Condition (20) derived in Tian and Ramdas (2021). It is satisfied by the
online Bonferroni procedure (A0 = AOB), and the online adaptive Bonferroni
procedure (A0 = AAOB). While this is obvious for AOB, the case of AAOB requires
to carefully check how the functional T (·) (16) slows down the time, which
is done in Lemma 8.3. Statement (i) of Theorem 3.3 thus states the online
FWER control for these procedures. Statement (ii) of Theorem 3.3 is our main
contribution and reduces to Theorems 3.1 and 3.2, when choosing A0 = AOB

and A0 = AAOB, respectively. This recovers the rewarded procedures AρOB and
AρAOB discussed in the previous sections: compare (22) to (15) (with λ = 0),
and (22) to (18). Nevertheless, other choices for A0 satisfying (21) are possible.
According to our general result, any such choice is compatible with our reward
methodology.

4. Online mFDR control

In this section, we aim at finding procedures A such that mFDR(A, P ) ≤ α
for some targeted level α ∈ (0, 1). We follow the same route as for the FWER:
we start with a presentation of the super-uniformity reward to the classical
LORD++ procedure (Ramdas et al., 2017, called just LORD hereafter for
short), and then turn to adaptive counterparts.

Finally, we propose a general result encompassing all these cases. In this
section, we follow the notation of Ramdas et al. (2017) for online mFDR control.
For any procedure A = {αt, t ≥ 1} and realization of the p-value process, let us
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denote

R(T ) =
T∑

t=1
Rt, Rt = 1{pt(X) ≤ αt}, (23)

the number of rejections of the procedure up to time T , and

τj = min{t ≥ 1 : R(t) ≥ j} (τj = +∞ if the set is empty), (24)

the first time that the procedure makes j rejections, for any j ≥ 1.
Finally, we define the following additional notation: the critical values are

defined recursively by involving a suitable functional At(R1, . . . , Rt−1) (Sec-
tions 4.1 and 4.2) or At(R1, . . . , Rt−1, C1, . . . , Ct−1) (Sections 4.3 and 4.4),
where the sequence R1, . . . , Rt−1 is defined as in (23) with the past rejection in-
dicators, the sequence C1, . . . , Ct−1 is defined as in Section 2.1 and At(·) is some
functional. This ensures that the sequence of critical values is predictable, that is,
αt is Ft−1-measurable as defined in Section 2.1. In addition, for better readabil-
ity, we will omit C1, . . . , Ct−1 in the notation of At(·), writing At(R1, . . . , Rt−1)
instead of At(R1, . . . , Rt−1, C1, . . . , Ct−1) in Sections 4.3 and 4.4. This should
not cause confusion because the recursion is w.r.t. the critical values αt, which
are not used in the sequence C1, . . . , Ct−1.

4.1. Warming up: LORD procedure and a first greedy reward

While a sufficient condition for online FWER control is
∑

t≥1 αt ≤ α (see the
previous section and in particular (21)), the mFDR control is ensured when∑

t≥1 αt ≤ α(1∨R(T )), as proved in Theorem 2 of Ramdas et al. (2017) (appli-
cable, e.g., under assumptions (2) and (3)). Consequently, for each rejection we
earn back some α wealth with which we are allowed to increase αt; typically by
starting a new online Bonferroni critical value process. This idea is referred to
as α-investing in the literature, see Foster and Stine (2008); Aharoni and Rosset
(2014); Javanmard and Montanari (2018). This idea leads to the LORD (Levels
based On Recent Discovery) procedure (Javanmard and Montanari, 2018), with
the improvement given by Ramdas et al. (2017): the critical values are defined
recursively in time T ≥ 1 as

αLORD
T = ALORD

T (R1, . . . , RT−1) := W0γT + (α−W0)γT−τ1 + α
∑
j≥2

γT−τj , (25)

where by convention γt = 0 at any time t ≤ 0 and where γ is an arbitrary
spending sequence. Note that the test level at time T splits the initial α-wealth
between the cases where R(T ) = 0 and R(T ) = 1, because the bound is
equal to α(1 ∨ R(T )) = α in both cases so the first rejection does not pro-
vide an extra room for false discoveries. The resulting additional parameter
W0 ∈ (0, α) balances the initial α-wealth between these two cases to maintain
the mFDR control. The procedure ALORD = {αLORD

t , t ≥ 1} controls the mFDR
under (1) and (3), because for any rejection sequence (R1, . . . , RT−1), we have∑

t≥1 ALORD
t (R1, . . . , Rt−1) ≤ α(1 ∨R(T )) (see Section 8.2 for a proof).
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Now, let us consider our more general framework where we have at hand a
null bounding family F = {Ft, t ≥ 1} satisfying (2). In that case, Theorem 4.3
below implies that mFDR is controlled, if we can ensure that F̂DP(T,A) ≤ α
for all T ∈ {1, 2, . . .}, where

F̂DP(T,A) :=
αT +

∑T−1
t=1 Ft(αt)

1 ∨R(T ) . (26)

By using the crude bound Ft(αt) ≤ αt, we recover the classical criterion for
mFDR control mentioned in the beginning of this section. Similar to the rea-
soning described in Section 3.1 for FWER control, there are various ways of
ensuring that F̂DP(T,A) ≤ α. A simple solution that takes the LORD critical
values as a benchmark is to solve the equation

αT =
T∑

t=1
ALORD

t (R1, . . . , Rt−1) −
T−1∑
t=1

Ft(αt), T ≥ 1,

where we recall that Rt = 1{pt ≤ αt}, t ≤ T − 1. The solution of this equation
can be provided by the following recursion: α1 = W0γ1 and given α1, . . . , αT−1,
we let

αT = ALORD
T (R1, . . . , RT−1) + ρT−1, T ≥ 1, (27)

where ρT−1 = αT−1 − FT−1(αT−1) is the super-uniformity reward (8) at time
T − 1 (with the convention ρ0 = 0). Since ρt ≥ 0 for all t by (2), this pro-
cedure uniformly dominates the procedure ALORD. Furthermore, depending on
the magnitude of the super-uniformity reward, this new procedure is potentially
much more powerful.

Example 4.1. Let us provide an example of critical values built from (27): for
the rejection sequence (R1, R2, R3) = (0, 1, 1) (so that τ1 = 2, τ2 = 3), we have
α1 = W0γ1, α2 = W0γ2 +α1 −F1(α1), α3 = W0γ3 + (α−W0)γ1 +α2 −F2(α2),
α4 = W0γ4 + (α−W0)γ2 + αγ1 + α3 − F3(α3).

Remark 4.1. It is apparent from (27) that the new critical values can be writ-
ten as αT = AT (R1, . . . , RT−1) for some functional AT (·). However, since the
super-uniformity reward (8) also depends on the rejection sequence, this func-
tional has a subtle behavior. As a matter of fact, while the functional ALORD

T (·) is
coordinate-wise non decreasing, this is not necessarily the case for the rewarded
version AT (·), see Proposition 10.1.

4.2. Smoothing out the super-uniformity reward

As discussed for FWER control (see Section 3.2), the preliminary procedure (27)
spends immediately at time T all of the super-uniformity reward collected at
time T − 1. However, it is more advantageous to redistribute this reward over
subsequent times T, T + 1, . . . , by using a SUR spending sequence γ′ = (γ′

t)t≥1.
This gives rise to the following more general class of online procedures.
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Definition 4.1. For a spending sequence γ and a SUR spending sequence
γ′, the LORD procedure with super-uniformity reward, denoted by AρLORD =
{αρLORD

t , t ≥ 1}, is defined by the recursion

αρLORD
T = ALORD

T (R1, . . . , RT−1) +
T−1∑
t=1

γ′
T−tρt, T ≥ 1, (28)

where ALORD
T is given by (25), Rt = 1{pt ≤ αρLORD

t } and ρt = αρLORD
t −Ft(αρLORD

t )
denotes the super-uniformity reward at time t.

Fig 4. Sequences of critical values of LORD procedure with different rewards over time 1 ≤
t ≤ T = 300 (simulated data): base LORD critical values (25)(orange line), rewarded with
the greedy approach (27) (blue line), and with the rectangular kernel SUR spending sequence
(28) (h = 10, green line). The rug plots display the time of discoveries for each procedure with
the corresponding color. The y-axis has been transformed by y �→ − log(− log(y)). The grey
dots denote the p-value sequence (those equal to 1 are displayed at the top of the picture).
The spending sequence is γt ∝ t−1.6.

Figure 4 displays the critical values of the LORD procedure, and of those
rewarded with the greedy SUR spending sequence γ′ = (1, 0, . . . ) or rewarded
with the rectangular kernel SUR spending sequence (28) (h = 10). First, the
reward given by the α-investing, which is possible for mFDR control, is visible
at each discovery for which all critical value curves ‘jump’. Second, the effect
of the super-uniformity reward is visible between these jumps, and the kernel
sequence is able to better smooth the critical value sequence. As a result, the
corresponding procedure is likely to make more discoveries (as in the simulated
data presented in Figure 4). The following result establishes the mFDR control
of this new class of rewarded procedures.

Theorem 4.1. Consider the setting of Section 2.1 where a null bounding fam-
ily F = {Ft, t ≥ 1} satisfying (2) is at hand. For any spending sequence γ
and any SUR spending sequence γ′, consider the LORD procedure ALORD =
{αLORD

t , t ≥ 1} (25) and the LORD procedure with super-uniformity rewards
AρLORD = {αρLORD

t , t ≥ 1} (28). Then, assuming that the model P is such that (3)
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holds, we have mFDR(AρLORD, P ) ≤ α for all P ∈ P while AρLORD uniformly
dominates ALORD.

This theorem is proved in Section 8.2, as a corollary of a more general result
(Theorem 4.3 below). As shown in the numerical experiments (Section 5.2), the
improvement of AρLORD with respect to ALORD can be substantial.

Remark 4.2. AρLORD can be also expressed by using the paradigm of generalized
α investing (GAI) rules, as introduced in Foster and Stine (2008); Aharoni and
Rosset (2014); Ramdas et al. (2017), see Section 12.3.

4.3. Rewarded adaptive LORD

In this section, we apply the re-indexation trick of the γ sequence presented in
Section 3.3 to improve the performance of the procedures ALORD and AρLORD. For
this, we follow essentially the reasoning used by Ramdas et al. (2018) for deriving
the SAFFRON procedure, with a slight modification, as explained below. To
start, let us define, for some parameter λ ∈ [0, 1),

Tj(T ) =
{

1 +
∑T

t=τj+2 1{pt−1 ≥ λ} if T ≥ τj + 1
0 if T ≤ τj

, j ≥ 1, (29)

with T0(T ) = T (T ) given by (16) by convention. From an intuitive point of view,
Tj(T ) is like a ‘stopwatch’ starting after τj and suspended at each time t for
which pt−1 < λ. Hence, having pt < λ allows to delay the natural dissipation of
α-wealth due to online testing. Then, the SAFFRON procedure (Ramdas et al.,
2018) is defined by the threshold

αT = min

⎛
⎝λ, (1 − λ)

⎛
⎝W0γT0(T ) + (α−W0)γT1(T ) + α

∑
j≥2

γTj(T )

⎞
⎠
⎞
⎠ . (30)

This procedure controls the mFDR and FDR under (1) and (3) as proved by
Ramdas et al. (2018). The capping prevents the critical values from exceeding λ,
thus avoiding the case pt ≥ λ when pt ≤ αt, and makes the procedure monotone
in the past decisions, see Lemma 1 in Ramdas et al. (2018). As the monotonicity
is not needed for mFDR control, we discard the capping here and work with the
(uniformly dominating) procedure

αALORD
T = AALORD

T (R1, . . . , RT−1)

= (1 − λ)

⎛
⎝W0γT0(T ) + (α−W0)γT1(T ) + α

∑
j≥2

γTj(T )

⎞
⎠ . (31)

The mFDR control of (31) now follows as a special case of Theorem 4.2 below
with Ft(u) = u for all t, u. Also note that AALORD reduces to ALORD (25) when
λ = 0, because Tj(T ) = 0∨(T−τj) in that case. Now, we generalize this method
to our present framework.
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Definition 4.2. For a spending sequences γ, a SUR spending sequence γ′ and
λ ∈ [0, 1), the adaptive LORD procedure with super-uniformity reward denoted
by AρALORD = {αρALORD

t , t ≥ 1}, is defined by

αρALORD
T = AALORD

T (R1, . . . , RT−1) +
∑

1≤t≤T−1
pt≥λ

γ′
T−tρt + εT−1, T ≥ 1, (32)

where αALORD
T is defined by (31), Rt = 1{pt ≤ αρALORD

t }, ρt = αρALORD
t −Ft(αρALORD

t )
denotes the super-uniformity reward a time t and εT−1 = 1{pT−1 < λ}(αρALORD

T−1 −
αALORD
T−1 ) is an additional ‘adaptive’ reward at time T − 1 (convention ε0 = 0).

Note that AρALORD reduces to AρLORD (28) when λ = 0, and to AALORD when
Ft(u) = u for all u, t. The following result shows that this class of procedures
controls the mFDR.

Theorem 4.2. Consider the setting of Section 2.1 where a null bounding family
F = {Ft, t ≥ 1} satisfying (2) is at hand. For any spending sequence γ and any
SUR spending sequence γ′, consider the adaptive LORD procedure AALORD =
{αALORD

t , t ≥ 1} (31), and the adaptive LORD procedure with super-uniformity
rewards AρALORD = {αρALORD

t , t ≥ 1} (32). Then, assuming that the model P is
such that (3) holds, we have mFDR(AρALORD, P ) ≤ α for all P ∈ P while AρALORD

uniformly dominates AALORD and thus also the SAFFRON procedure of Ramdas
et al. (2018).

Theorem 4.2 follows from Theorem 4.3 below. Let us underline that AρALORD

both incorporates α-investing and super-uniformity reward. Thus, it is expected
to be the most powerful among the procedures considered in the present paper.
This is supported both by the numerical experiments of Section 5.2 and the real
data analysis in Section 5.3.

Remark 4.3. Note that the critical values of ALORD and ρALORD can exceed
1 (e.g., when all p-values are zero). Since the rejection decision is the same for a
critical value larger than 1 or equal to 1, this may appear at first sight as wasted
wealth. While this is indeed the case for ALORD, we emphasize that this is not
the case for ρ-ALORD, because the super-uniformity reward allows to reuse the
exceeding amount of wealth available in αρALORD

t ; namely ρt = αρALORD
t − 1 when

αρALORD
t ≥ 1.

4.4. Rewarded version for base mFDR controlling procedures

In this section, we present a result establishing that any base online mFDR con-
trolling procedure satisfying mild conditions (of a specific type) can be rewarded
with super-uniformity. First, we can extend (26) by defining

F̂DPλ(T,A) =
αT +

∑
1≤t≤T−1,

pt≥λ
Ft(αt)

(1 − λ)(1 ∨R(T )) . (33)

The following lemma holds (proved in Section 8.2).
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Lemma 4.1. Assume that both (2) and (3) hold. For any procedure A =
(αt, t ≥ 1), if for some λ ∈ [0, 1) we have supT≥1 F̂DPλ(T,A) ≤ α a.s. then
mFDR(A, P ) ≤ α.

This gives rise to the following theorem.

Theorem 4.3. Assume that both (2) and (3) hold. Consider any sequence of
functionals A0

T (·), T ≥ 1, such that for all R1, . . . , RT−1 ∈ {0, 1}, we have

A0
T (R1, . . . , RT−1) +

∑
1≤t≤T−1,

pt≥λ

A0
t (R1, . . . , Rt−1) ≤ (1 − λ)α (1 ∨R(T )), (34)

where R(T ) =
∑T

t=1 Rt, and consider the corresponding procedure A0 = (α0
t , t ≥

1) defined recursively by α0
T = A0

T (R0
1, . . . , R

0
T−1), T ≥ 1, with R0

t = 1{pt ≤ α0
t},

t ≤ T − 1. Then the following holds

(i) A0 controls the online mFDR, that is, mFDR(A0, P ) ≤ α for all P ∈ P;
(ii) for any SUR spending sequence γ′ = (γ′

t, t ≥ 1), the procedure A = (αt, t ≥
1), corresponding to the rewarded A0, and defined by the recursion

αT = A0
T (R1, . . . , RT−1) +

∑
1≤t≤T−1

pt≥λ

γ′
T−t(αt − Ft(αt))

+1{pT−1 < λ}(αT−1 − A0
T−1(R1, . . . , RT−2)), T ≥ 1, (35)

for Rt = 1{pt ≤ αt}, controls the online mFDR, that is, mFDR(A, P ) ≤ α
for all P ∈ P.

Theorem 4.3 is proved in Section 8.2. Condition (34) is essentially the same
as the condition found in Theorem 1 of Ramdas et al. (2018). Our main con-
tribution is in statement (ii), showing that the super-uniformity reward can
be used with any base procedure A0 satisfying (34). Since the latter condition
holds for the LORD procedure A0 = ALORD, and the adaptive LORD proce-
dure A0 = AALORD (see Lemma 8.3), Theorem 4.3 entails Theorem 4.1 and
Theorem 4.2, respectively. Finally, let us emphasize the similarity between The-
orem 3.3 (FWER) and Theorem 4.3 (mFDR). Interestingly, the reward takes
exactly the same form (22), which makes the range of improvement in the critical
values comparable for these two criteria.

Remark 4.4. The results of Theorem 4.3 is also true for the mFDR taken at
some stopping time, see Appendix 9.

Remark 4.5. While this section considers the online mFDR control, we show
in Appendix 10 that our SUR approach can also be developed for online (non-
marginal) FDR control, see Theorem 10.2 and the modified procedure Aρ̃LORD

in Definition 10.1. The procedure is developed in the non-adaptive setting. It
uniformly improves ALORD and is dominated by AρLORD. However, computing the
corresponding reward becomes rapidly intractable in time so the interest in this
procedure is mainly theoretical.



1316 S. Döhler et al.

5. SUR procedures for discrete tests

In this section, we study the performances of our newly derived SUR procedures
in discrete online multiple testing problems for simulated and real data. We defer
some of the numerical results to Appendix 14.

5.1. Considered procedures

The considered procedures are the base (non-rewarded) procedures AOB (10),
AAOB (17), ALORD (25), and AALORD (31), and their rewarded counterparts
AρOB (18), AρAOB (18), AρLORD (32), and AρALORD (32), respectively. As men-
tioned in Section 1.5, we also consider the ADDIS-spending and ADDIS proce-
dures (see Tian and Ramdas, 2021, 2019) although the type I error rate control
is not guaranteed for these two procedures, in our (discrete) setting. The pa-
rameters of the OMT procedures are set to α = 0.2, W0 = α/2 and λ = 0.5.
For ADDIS and ADDIS-spending, we use the default values W0 = αλτ

2 , with
λ = 0.25 and τ = 0.5 (the latter being the discarding parameter, see Tian and
Ramdas, 2021, 2019). Following Tian and Ramdas (2019), we set γt ∝ t−1.6

with a normalizing constant chosen such that
∑+∞

t=1 γt = 1. For the SUR spend-
ing sequence (γ′

t)t≥1 we use a rectangular kernel with bandwidth h, as defined
by (9), with h = 100 for FWER and h = 10 for mFDR. We discuss different
choices for tuning parameters in the SUR procedures (adaptivity parameter λ
and the rectangular kernel bandwidth h) in Appendices 14.4 and 14.5.

5.2. Application to simulated data

5.2.1. Simulation setting

We simulate m experiments in which the goal is to detect differences between
two groups by counting the number of successes/failures in each group. More
specifically, we follow Gilbert (2005b), Heller and Gur (2011) and Döhler et al.
(2018) by simulating a two-sample problem in which a vector of m independent
binary responses is observed for N subjects in both groups. The goal is to test
the m null hypotheses H0i: ‘p1i = p2i’, i = 1, ...,m in an online fashion, where
p1i and p2i are the success probabilities for the ith binary response in group A
and B respectively. Thus, for each hypothesis i, the data can be summarized by
a 2× 2 contingency table, and we use (two-sided) Fisher’s exact test for testing
H0i. The m hypotheses are split in three groups of size m1, m2, and m3 such that
m = m1 +m2 +m3. Then, the binary responses are generated as i.i.d Bernoulli
of probability 0.01 (B(0.01)) at m1 positions for both groups, i.i.d B(0.10) at m2
positions for both groups, and i.i.d B(0.10) at m3 positions for one group and
i.i.d B(p3) at m3 positions for the other group. Thus, the null hypotheses are
true for m1 + m2 positions (set H0), while the null hypotheses are false for m3
positions (set H1). Therefore, we interpret p3 as the strength of the signal while
πA = m3

m , corresponds to the proportion of signal. Also, m1 and m2 are both
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taken equal to m−m3
2 . In these experiments, we fix m = 500, and vary each one

of the parameters H1 (Section 5.2.2), πA (Section 5.2.3), N (Section 14.1), p3
(Section 14.2) while keeping the others fixed. The default values are πA = 0.3,
N = 25, p3 = 0.4 and H1 ⊂ {1, . . . ,m} chosen randomly for each simulation
run. We estimate the different criteria (FWER (5), mFDR (6), power (7)) using
empirical mean over 10 000 independent simulation trials.

5.2.2. Position of signal

We start by studying how the position of the signal can affect the performances
of the procedures (it is well-known to be critical, see Foster and Stine, 2008;
Ramdas et al., 2017). We investigate different positioning schemes in which the
signal can be clustered at the beginning of the stream, or at the end, or clustered
between the two, as described in the caption of Figure 5.

Fig 5. Power and type I error rates of the different considered OMT procedures versus po-
sitions of the signal: at the beginning (B), the end (E), half at the beginning and half in the
middle of the stream (BM), half at the beginning and half at the end of the stream (BE),
half in the middle and half at the end of the stream (ME), and taken uniformly at random
(Random).

Consistently with our theoretical results, Figure 5 shows that all procedures
control the type I error rate at level α = 0.2. In terms of power, we can see
that the rewarded procedures have greater power than the associated base pro-
cedures. More specifically, AρALORD uniformly dominates the other procedures
for mFDR control and AρAOB for FWER control. The gain in power is most
noticeable when the signal is not localized at the beginning of the stream (i.e.
positions ME, E, and Random) for which the online testing problem is more
difficult. These first results indicate that the rewarded procedures may protect
against ‘α-death’.
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5.2.3. Proportion of signal

Figure 6 displays the results for πA varying in {0.1, . . . , 1}. It shows that the
aforementioned superiority of the rewarded procedures holds in this whole range.
Also note that the super-uniformity reward can affect the monotonicity of the
power curves: while most curves are increasing with πA, the power of the re-
warded procedure AρOB decreases. An explanation could be that when πA in-
creases, the marginal counts increase, and thus the degree of discreteness de-
creases providing a smaller super-uniformity reward. However, using adaptivity
seems to compensate for this effect, thus providing better results.

Fig 6. Power and type I error rates of the considered procedures for πA ∈ {0.1, 0.2, . . . , 0.9, 1}.

Finally, let us mention that the additional numerical results in Section 14
provide qualitatively similar conclusions for all other explored parameter con-
figurations: the SUR procedures AρAOB and AρALORD always improve, often sub-
stantially, the existing OMT procedures.

5.3. Application to IMPC data

In this section we analyse data from the International Mouse Phenotyping Con-
sortium (IMPC), which coordinates studies on the genotype influence on mouse
phenotype. More precisely, scientists test the hypotheses that the knock-out of
certain genes will not change certain phenotypic traits (e.g., the coat or eye
color). Since the data set is constantly evolving as new genes are studied for
new phenotypic traits of interest, online multiple testing is a natural approach
for analysing such data, see also Tian and Ramdas (2021); Xu and Ramdas
(2021). We use the data set provided by Karp et al. (2017) which includes, for
each studied gene, the count of normal and abnormal phenotype for female and
male mice (separately), thus providing two by two contingency tables, which
can be analysed using Fisher exact tests. In this section, we investigate the
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genotype effect on the phenotype separately for male and female. The data set
originally contains nearly 270 000 genes studies, but we focus on the first 30 000
genes for simplicity. We set the global level α to 0.2 and 0.05, respectively for
FWER and mFDR procedures. For the procedure parameters, we follow the
choice made in Section 5.1. Table 3 presents the number of discoveries for the
FWER controlling procedures OB, AOB, ρOB, ρAOB (top) and for the mFDR
controlling procedures LORD, ALORD, ρLORD, ρALORD (bottom). The re-
sults show that ignoring the discreteness of the tests causes the scientist to miss
(potentially many) discoveries. Hence, using the SUR methods helps to reduce
this risk.

Table 3

Number of discoveries for FWER controlling OMT procedures (top) and mFDR controlling
OMT procedures (bottom). These numbers are obtained by running the procedures on the
first 30 000 genes for male (second row) and female (third row) mice in the IMPC data.

FWER procedures OB ρOB AOB ρAOB
# discoveries (male) 229 377 281 697

# discoveries (female) 267 481 764 811
mFDR procedures LORD ρLORD ALORD ρALORD

# discoveries (male) 882 972 972 1041
# discoveries (female) 839 946 966 1046

Figure 7 (FWER procedures) and Figure 8 (mFDR procedures) illustrate
in more detail how the super-uniformity reward leads to more discoveries, in
the case of male mice (similar findings hold for the female mice for which the
corresponding figures can be found in Section 15.2). First, note that the smallest
p-values occur at the beginning of the stream (see Figure 17 in Section 15.1), so
that we limit the visual analysis to the first 1500 p-values for clarity of exposition.
For the ρOB procedure, the benefit of incorporating the super-uniformity reward
is visible in the left panel of Figure 7. As expected from Figure 3, applying
a rectangular kernel to these rewards yields a smooth curve. For the ρAOB
procedure, presented in the right panel of Figure 7, the improvement is even
stronger, but the resulting critical value curve is less smooth. This is due to the
‘adaptive’ reward, that is, the εT−1-component of our improvement, recall (18).
More precisely, an explanation of this ‘saw-tooth’ shape is that during a period
with p-values smaller than λ, we have αρAOB

T − αAOB
T ≥ αρAOB

T−1 − αAOB
T−1 so the

gain increases. Also, if this period lasts for a while (as for 500 � t � 1240
here), the ρ-part of the reward vanishes and we end up with a constant gain
αρAOB
T − αAOB

T ≈ αρAOB
T−1 − αAOB

T−1, explaining the flat part of the curve, until the
next pT ≥ λ occurs. After this point, we switch from the ε-regime back to the
ρ-regime, i.e., αρAOB

T+1 = αAOB
T+1 + γ′

1ρT . Since typically γ′
1ρT � αρAOB

T−1 − αAOB
T−1,

this causes the downward jump in the green curve. For the mFDR procedures
presented in Figure 8, there is an additional ‘rejection’ reward as described in
Section 4. Note that this makes some critical values exceed 1 (both for ALORD
and ρALORD), which thus cannot be displayed in the Y -axis scale considered
in that figure. However, these values are still used in ρALORD algorithm to
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Fig 7. Applying online FWER controlling procedures to the male mice IMPC data set. Left
panel: p-values and critical values for OB (orange curve) and ρOB (green curve). Right panel:
AOB (orange curve) and ρAOB (green curve). Representation similar to Figure 3 (Y -axis
transformed by y �→ − log(− log(y)); p-values equal to 1 displayed at the top of the picture).

Fig 8. Applying online mFDR controlling procedures to the male mice IMPC data set. Left
panel: p-values and critical values for LORD (orange curve) and ρLORD (green curve).
Right panel: ALORD (orange curve) and ρALORD (green curve). Representation similar to
Figure 4 (Y -axis transformed by y �→ − log(− log(y)); p-values equal to 1 are displayed at the
top of the picture).

compute the future critical values (see Remark 4.3). The obtained results are
qualitatively similar to the FWER setting: the super-uniformity reward makes
the green curves run above the orange ones, uniformly over the considered time,
hence inducing significantly more discoveries.

5.4. Discussion

In Sections 3 and 4 we proved that SUR methods are always more powerful
than the classical base procedures and the results in this section show that the
gains in power can be considerable for discrete tests. Thus, using SUR methods
whenever discreteness is involved in tests is a risk-less strategy with potentially
large benefits. A more complicated task is to quantify the increase in power that
may be expected from using SUR in such a setting. While an exhaustive solution
to this problem seems beyond the scope of this paper, we would like to point
out some sufficient conditions for when we anticipate SUR to be particularly
beneficial:
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• When tests with relatively small sample sizes are expected to occur through-
out the experiment. The IMPC data can be seen as a typical example of
such an experiment, since the number of knockout mice available in each
test may be restricted by ethical and financial considerations.

• When discrete tests are involved at the beginning of the OMT process,
particularly when using the OB procedure. In this case, the critical value
sequence decreases quickly in the beginning and unused wealth can not be
recovered later.

• Since we expect many critical values to be small, we may expect SUR to be
particularly helpful if the deviations of the Fi’s to the uniform distribution
occur for small p-values. The numerical experiments for 2 × 2 tables in
Appendix 14.3 show that even for large sample sizes, where standard rules
of thumb would suggest that FET p-values are uniform, the SUR approach
still achieves noticeably more power.

6. SUR procedures for weighted p-values

In this section, we show how our SUR approach can be easily used to construct
valid online p-value weighting schemes.

6.1. Setting and benchmark procedure

Consider a standard continuous online multiple testing setting where each p-
value is super-uniformly distributed under the null, i.e. (1) holds. Assume in
addition that, at each time t, the p-value pt is associated with a quantity rt ≥ 0,
called the raw weight (as opposed to the rescaled weight defined further on),
which is assumed to be measurable w.r.t. Ft−1. Throughout the section, the
weights rt are assumed to be available a priori and we will not discuss how to
derive them (for this task, we refer to Wasserman and Roeder (2006); Rubin
et al. (2006); Roquain and van de Wiel (2009); Hu et al. (2010); Zhao and Zhang
(2014); Ignatiadis et al. (2016); Chen and Kasiviswanathan (2020b) among oth-
ers).

While p-value weighting is a classical tool for improving the performance of
multiple testing methods in the offline setting (see references in Section 1.3),
the incorporation of weights has received little attention in the online context.
The only relevant work to our knowledge is Ramdas et al. (2017) (Section 5
therein), which presents sufficient criteria for weighting procedures controlling
the (m)FDR based on so-called GAI++ procedures and also discusses the tech-
nical challenges associated with weighted online multiple testing procedures. An
explicit algorithm which satisfies these criteria is used in Ramdas et al. (2017)4,
which is detailed in Appendix 12.2 for completeness. This method, which will
be our benchmark procedure, works by weighting the p-values and adjusting for
this weighting in the rejection reward.

4An implementation of this procedure can be found on the website https://github.com/
fanny-yang/OnlineFDRCode

https://github.com/fanny-yang/OnlineFDRCode
https://github.com/fanny-yang/OnlineFDRCode
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6.2. New weighting approach

The main idea of our new approach is as follows: consider weighted p-values
p̃t = pt/wt for some rescaled weight wt ∈ [0, 1] which gives rise to the null
bounding family F = {Ft : u ∈ [0, 1] �→ uwt, t ≥ 1}. Since the weights are
constrained to take their values in [0, 1], the functions of F are super-uniform,
i.e. (2) holds. Hence, one can apply our SUR approach with respect to that
family F.

More specifically, our approach takes into account the null bounding family
F in a simple two-step process, which proceeds as follows: for each time t,

1. enforce super-uniformity by computing the rescaled weight

wt = ξt(rt|r1, . . . , rt−1),

t ≥ 1, for some given rescaling function ξt valued in [0, 1] (see below for
more details and an explicit choice);

2. apply any one of the SUR methods from Section 3 or Section 4, depending
on whether FWER or mFDR control is desired.

The second step of the above algorithm is equivalent to rejecting hypothesis
Ht if pt ≤ wtαt, so that wt is the fraction of αt spent on testing Ht and 1 − wt

is the fraction of αt saved for later testing. In this view, it is appropriate to
interpret the quantity 1 − wt in our approach as a penalty weight at time t,
which serves to make a rejection of Ht less likely. This is different from conven-
tional offline weighting where the original p-values can be directly up-weighted
or down-weighted. Here, the online weighting acts in a more subtle way in the
decision rule pt ≤ wtαt; while wtαt is down-weighted by wt (because wt ∈ [0, 1]),
it is up-weighted by past weights w1, . . . , wt−1.

At first sight, these SUR weighting approaches may seem to be ineffective due
to the conservatism induced by the rescaling step. However, this is countered in
the second step by using SUR procedures that provide larger values αt, due to
the super-uniform rewards accumulated in the past. The hope is that these two
effects balance out in such a way as to favor rejection of hypotheses associated
with larger values of (raw) weights.

We denote these new weighted procedures by wX, where X stands for the
name of the base procedure (either OB (10), AOB (17), LORD (25)
or ALORD (31)). These procedures all come with the corresponding FWER
or mFDR control (by additionally assuming (3) if needed). In particular, to the
best of our knowledge, this also provides the first method for weighted online
FWER control.

Finally, let us mention that a simple choice for ξt is given by ξt(x|r1, . . . , rt−1)
= F̂t−1(x)1{x > 0}, where F̂t−1(x) = (t− 1)−1 ∑t−1

i=1 1{ri ≤ x} is the empirical
c.d.f. of the sample r1, . . . , rt−1 (and by convention F̂0(x) = 1). This particular
choice is easy to compute in a sequential manner, and it satisfies the following
intuitive and desirable properties: ξt(x) ∈ [0, 1] (ensures super-uniformity of
F), ξt(x) is nondecreasing in x (a larger raw weight leads to a larger rescaled
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weight), ξt(0) = 0 (raw zero weights rescaled to zero), ξt(λrt|λr1, . . . , λrt−1) =
ξt(rt|r1, . . . , rt−1) for all λ > 0 (scale invariance) and if all raw weights are equal
then all rescaled weights are equal to 1.

6.3. Analysis of RNA-Seq data

We revisit an analysis of the RNA-Seq data set ‘airway’ using results from the
Independent Hypothesis Weighting (IHW) approach (for details, see Ignatiadis
et al. (2016) and the vignette accompanying its software implementation). While
the original data was not collected in an online fashion, we use it here neverthe-
less to provide a proof of concept for weighted SUR procedures. The ‘airway’
data set contains data from 64102 genes and the corresponding (offline) weights
are taken from the output of the ihw function from the bioconductor package
‘IHW’. These ‘raw’ weights are then transformed into rescaled weights by using
the function ξt described in the previous section. For the procedure parameters,
we use the same choices as for the analysis of the IMPC data, see Section 5.3.

Table 4 (top part) presents the result for the FWER controlling procedures
OB, AOB (non-weighted), and wOB, wAOB (SUR weighted approaches). It is
clear that incorporating the weights leads to more rejections, which corrobo-
rates the fact that the weights coming from Ignatiadis et al. (2016) are indeed
informative.

Table 4

Number of discoveries for weighted controlling OMT procedures for the ‘airway’ data set,
with the weights taken from Ignatiadis et al. (2016).

FWER procedures OB wOB (new) AOB wAOB (new)
# discoveries 1092 1195 1188 1273

mFDR procedures LORD wGAI1 wGAI2 wLORD (new)
# discoveries 3550 1308 3631 3875

As for mFDR control, the (non-weighted) LORD is compared to our weighted
version wLORD in Table 4 (bottom part). As additional competitors, we also
added the weighted GAI++ procedure proposed in Ramdas et al. (2017) (see
Section 12.2 for a detailed description), that we use either with the raw weights
(denoted by wGAI1) or with the rescaled weights (denoted by wGAI2). As
one can see, the effect of rescaling the weights is highly beneficial, and the new
wLORD proposal is the one that incorporates these weights in the most efficient
way.

7. Discussion

7.1. Conclusion

Existing OMT procedures often suffer from a lack of power due to conserva-
tiveness of the p-values. This occurs typically for discrete test statistics, which
is a common situation when testing is based upon counts. To fill the gap, we



1324 S. Döhler et al.

introduced new SUR versions of some existing classical procedures, that ‘re-
ward’ the base procedures by spending more efficiently the α-wealth according
to known bounds on the null cumulative distribution functions. We showed that
our new SUR procedures provide rigorous control of online error criteria (FWER
or mFDR) under classical assumptions while offering a systematic power en-
hancement. When using discrete Fisher exact test statistics, the improvement
is substantial, both for simulated and real data.

In addition, even in the standard case of uniformly distributed p-values, our
approach allowed us to derive new weighted procedures that incorporate ex-
ternal covariates. This provides improvements w.r.t. existing online weighting
strategies.

7.2. Future directions

While our results address several issues, they also raise new questions. First, the
bandwidth of the kernel-based SUR spending sequence γ′ given by (9) has been
chosen in a loose way here, but tuning the bandwidth is certainly interesting
from a power enhancement perspective (see Section 14.5). Also, in applications,
the user would possibly like to select the bandwidth in a data dependent fashion
without losing control over type I error rate. These two issues are interesting
extensions for future developments. Second, most of our results rely on an inde-
pendence assumption, see (3). While this can be considered as a mild restriction
in an online framework, relaxing it or incorporating a known dependence struc-
ture in OMT is an interesting avenue for future work.

8. Proofs

8.1. Proofs for online FWER control

We start by proving Theorem 3.3 and then deduce Theorems 3.1 and 3.2.

Proof of Theorem 3.3. From Lemma 3.1, (i) is clear by using the (crude) bound
Ft(x) ≤ x and assumption (21). As for (ii), by using again Lemma 3.1, we only
have to check that the procedure A defined by (22) satisfies F̂WERλ(T,A) ≤ α
(a.s.). This is done by reducing this to a statement on α0

t via Lemma 8.2. More
precisely, with aT =

∑T
t=1 γ

′
t, we have

αT +
T−1∑
t=1

1{pt(X) ≥ λ}Ft(αt)≤αT +
T−1∑
t=1

1{pt ≥ λ} [(1 − aT−t)αt+aT−tFt(αt)]

= α0
T +

T−1∑
t=1

1{pt ≥ λ}α0
t ≤ α,
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where the equality above is true provided that the following recursion holds for
all T ≥ 1,

αT = α0
T +

T−1∑
t=1

1{pt ≥ λ}α0
t −

T−1∑
t=1

1{pt ≥ λ} [(1 − aT−t)αt + aT−tFt(αt)] .

This is true by Lemma 8.2 because of the expression (22) of αt. This concludes
the proof.

Proof of Theorems 3.1 and 3.2. Theorems 3.1 and 3.2 are corollaries of Theo-
rem 3.3, by considering A0 = AOB (λ = 0) and A0 = AAOB, respectively. Indeed,
checking (21) is straightforward for AOB from the spending sequence definition
or comes from Lemma 8.3 for AAOB.

8.2. Proofs for online mFDR control

The global proof strategy is similar to the one used for FWER: we start by
proving Theorem 4.3 and then deduce Theorem 4.1 and Theorem 4.2, and finally
prove Lemma 4.1.

Proof of Theorem 4.3. By Lemma 4.1 it is enough to prove supT≥1 F̂DPλ(T,A)
≤ α (a.s.) both for A = A0 and A being the rewarded procedure (35). First, it is
clear for A0 by (34). Second, we can show that condition supT≥1 F̂DPλ(T,A) ≤
α (a.s.) holds for any procedure A = (αt, t ≥ 1) such that for all T ≥ 1,

αT +
T−1∑
t=1

1{pt ≥ λ} [(1 − aT−t)αt + aT−tFt(αt)]

= A0
T (R1, . . . , RT−1) +

∑
pt≥λ,1≤t≤T−1

A0
t−1(R1, . . . , Rt−1), (36)

where aT =
∑T

t=1 γ
′
t and Rt = 1{pt ≤ αt}. Indeed, we have A0

T (R1, . . . , RT−1)+∑
pt≥λ,1≤t≤T−1 A0

t−1(R1, . . . , Rt−1) ≤ (1−λ)α(1∨R(T )) by (34), which means
supT≥1 F̂DPλ(T,A) ≤ α. Now, (36) holds true for the rewarded procedure (35)
by Lemma 8.2 (applied5 with α0

T = A0
T (R1, . . . , RT−1)), which concludes the

proof.

Proof of Theorems 4.1 and 4.2. Theorem 4.1 and Theorem 4.2 can be derived
from Theorem 4.3 for A0

T = ALORD
T (25) (using λ = 0) and A0

T = AALORD
T (31),

respectively, by checking (34) in both cases. First, for ALORD, we have for all
R1, . . . , RT−1 ∈ {0, 1},

T∑
t=1

ALORD
t (R1, . . . , Rt−1) =

T∑
t=1

⎛
⎝W0γt + (α−W0)γt−τ1 + α

∑
j≥2

γt−τj

⎞
⎠

5Note that these critical values are slightly different from those of A0 because the definition
of Rt is different from R0

t .
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= W0

T∑
t=1

γt + (α−W0)
T∑

t=1
γt−τ1

+ α
∑
j≥2

1{T − τj ≥ 1}
T∑

t=1
γt−τj

≤ α(1 + 0 ∨ (R(T − 1) − 1)) ≤ α(1 ∨R(T )), (37)

because τj ≤ T − 1 is equivalent to R(T − 1) ≥ j by definition. Second, for
AALORD, we proceed similarly with the help of Lemma 8.3: by definition (31),
we have for all R1, . . . , RT−1 ∈ {0, 1},

(1 − λ)−1

⎛
⎜⎝AALORD

T (R1, . . . , RT−1) +
∑

1≤t≤T−1,
pt≥λ

AALORD
t (R1, . . . , Rt−1)

⎞
⎟⎠

= W0

⎛
⎜⎝γT0(T ) +

∑
1≤t≤T−1,

pt≥λ

γT0(t)

⎞
⎟⎠ + (α−W0)

⎛
⎜⎝γT1(T ) +

∑
1≤t≤T−1,

pt≥λ

γT1(t)

⎞
⎟⎠

+ α
∑
j≥2

1{T ≥ τj + 1}

⎛
⎜⎝γTj(T ) +

∑
1≤t≤T−1,

pt≥λ

γTj(t)

⎞
⎟⎠ .

Finally, by using (41) and (42), the latter is equal to

W0

T0(T )∑
t=1

γt + (α−W0)
T1(T )∑
t=1

γt + α
∑
j≥2

1{T ≥ τj + 1}
Tj(T )∑
t=1

γt

≤ W0 + α−W0 + α
∑
j≥2

1{T ≥ τj + 1} = α(1 + 0 ∨ (R(T − 1) − 1))

≤ α (1 ∨R(T )),

because T ≥ τj + 1 if and only if R(T − 1) ≥ j.

Proof of Lemma 4.1. Let us assume (2), (3) and for all T ≥ 1, F̂DPλ(T,A) ≤ α
a.s., that is,

αT +
∑

1≤t≤T−1,
pt≥λ

Ft(αt) ≤ (1 − λ)α (1 ∨R(T )), (a.s.). (38)

Now applying Lemma 8.1, we have

EX∼P

( T∑
t=1

1{t ∈ H0, pt ≤ αt}
)
≤ (1 − λ)−1 E

(
T∑

t=1
1{pt ≥ λ}Ft(αt)

)

≤ α E(1 ∨R(T )),

by using (38), which is exactly the desired mFDR control.
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8.3. Auxiliary lemmas

The following lemma provides a tool for controlling both online FWER and
mFDR.

Lemma 8.1. For any procedure A = (αt, t ≥ 1), we have for all λ ∈ [0, 1),

EX∼P

( T∑
t=1

1{t ∈ H0, pt ≤ αt}
)
≤ (1 − λ)−1 E

(
T∑

t=1
1{pt(X) ≥ λ}Ft(αt)

)
,

(39)

provided that (2) holds and if either (3) holds or if the critical values (αt, t ≥ 1)
are deterministic.

Proof. Recall αt is either deterministic or Ft−1-measurable (in which case it is
independent of pt(X) under (3)). Therefore, under the conditions of the lemma,
we have in any case: for all t ∈ H0, both

E
(

1{pt(X) > λ}
1 − λ

∣∣∣∣αt

)
≥ 1, P (pt(X) ≤ αt | αt) ≤ Ft(αt).

This entails

EX∼P

( T∑
t=1

1{t ∈ H0, pt ≤ αt}
)

=
T∑

t=1
1{t ∈ H0} E (P(pt(X) ≤ αt | αt))

≤
T∑

t=1
1{t ∈ H0} E (Ft(αt))

≤
T∑

t=1
1{t ∈ H0} E

(
Ft(αt)E

(
1{pt(X) ≥ λ}

1 − λ
| αt

))

≤ (1 − λ)−1 E
(

T∑
t=1

1{pt(X) ≥ λ}Ft(αt)
)
.

The following representation lemma is the key tool for building the new
rewarded critical values.

Lemma 8.2. Let (α0
t , t ≥ 1) be any nonnegative sequence. Let (α̃t, t ≥ 1) be

the sequence defined by the recursive relation: for all T ≥ 1,

α̃T = α0
T +

T−1∑
t=1

1{pt ≥ λ}α0
t−

T−1∑
t=1

1{pt ≥ λ} [(1 − aT−t)α̃t + aT−tFt(α̃t)] , (40)
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where aT =
∑T

t=1 γ
′
t, T ≥ 1 for any real values γ′

t, pt, λ and functions Ft. Let
(ᾱt, t ≥ 1) be the sequence defined by the recursive relation

ᾱT = α0
T +

∑
1≤t≤T−1

pt≥λ

γ′
T−t(ᾱt − Ft(ᾱt)) + 1{pT−1 < λ}(ᾱT−1 − α0

T−1), T ≥ 1.

Then we have α̃t = ᾱt for all t ≥ 1. Moreover, ᾱt ≥ α0
t for all t ≥ 1 under (2).

In particular, these critical values are nonnegative.
Proof. Clearly, α̃1 = α0

1 = ᾱ1 so the result is satisfied for T = 1. For T ≥ 2, by
using (40) for α̃T and α̃T−1, we have

α̃T − α̃T−1 = α0
T − α0

T−1 + 1{pT−1 ≥ λ}α0
T−1

− 1{pT−1 ≥ λ} [(1 − a1)α̃T−1 + a1FT−1(α̃T−1)]

+
T−2∑
t=1

1{pt ≥ λ} [(aT−t − aT−t−1)α̃t − (aT−t − aT−t−1)Ft(α̃t)] .

Hence, by using α̃T−1 = α̃T−11{pT−1 < λ} + α̃T−11{pT−1 ≥ λ}, we obtain

α̃T = α0
T − 1{pT−1 < λ}α0

T−1 + α̃T−11{pT−1 < λ}
+ 1{pT−1 ≥ λ} [γ′

1α̃T−1 − γ′
1FT−1(α̃T−1)]

+
T−2∑
t=1

1{pt ≥ λ}
[
γ′
T−tα̃t − γ′

T−tFt(α̃t)
]
,

because γ′
1 = a1, and we recognize the expression given in the lemma.

Let us finally prove that ᾱT ≥ ᾱ0
T for all T ≥ 1. This is true for ᾱ1 because

ᾱ1 = α0
1. Now, if ᾱ1 ≥ α0

1, . . . , ᾱT−1 ≥ α0
T−1 then we also have

ᾱT = α0
T +

∑
1≤t≤T−1

pt≥λ

γ′
T−t(ᾱt − Ft(ᾱt)) + 1{pT−1 < λ}(ᾱT−1 − α0

T−1) ≥ α0
T ,

because ᾱt ≥ Ft(ᾱt) by (2). This finishes the proof.

We now establish a result for the functionals T (·) and Tj(·), j ≥ 1, which are
used by the adaptive procedures AAOB and AALORD, respectively.
Lemma 8.3. Consider the functional T (·) defined by (16) for some realization
of the p-values and some λ ∈ [0, 1). Then for any sequence (γt)t≥1 and for any
T ≥ 1, we have

T∑
t=1

1{pt ≥ λ}γT (t) =
T (T+1)−1∑

t=1
γt. (41)

In addition, for any j ≥ 1, consider the τj defined by (24) and the functional
Tj(·) defined by (29). Then for all T ≥ τj + 1,

∑
1≤t≤T
pt≥λ

γTj(t) =
Tj(T+1)−1∑

t=1
γt. (42)
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Proof. Let us first prove (41). Since T (t + 1) = T (t) + 1 when pt ≥ λ from
definition (16), we can write

T∑
t=1

1{pt ≥ λ}γT (t) =
T∑

t=1
1{pt ≥ λ}γT (t+1)−1 =

T+1∑
t=2

1{pt−1 ≥ λ}γT (t)−1.

Additionally, it is clear that T (·) is a bijection mapping {1, 2 ≤ t ≤ T + 1 :
pt−1 ≥ λ} into {1, 2, . . . , T (T + 1)}. Hence, the latter sum can be rewritten as∑T (T+1)

t=2 γt−1 =
∑T (T+1)−1

t=1 γt which provides (41).
Second, for proving (42), the crucial point is that according to the definition

of Tj(T ) (29), the functional Tj : {τj + 1, . . . } → {1, . . . } is a bijection from
{τj + 1} ∪ {t ∈ {τj + 2, . . . , T + 1} : pt−1 ≥ λ} to {1, . . . , Tj(T + 1)}, for any
j ≥ 1 and T ≥ τj + 1. In particular, this entails∑

pt≥λ,1≤t≤T

γTj(t) =
∑

pt≥λ,τj+1≤t≤T

γTj(t) =
∑

pt≥λ,τj+1≤t≤T

γTj(t+1)−1

=
∑

pt−1≥λ,τj+2≤t≤T+1
γTj(t)−1 =

Tj(T+1)∑
t=2

γt−1 =
Tj(T+1)−1∑

t=1
γt.

This proves (42).

9. Online mFDR control for stopping times

Let us consider an almost surely finite stopping time, that is, any random vari-
able τ taking values in {1, 2, . . .} with

• τ < +∞ almost surely;
• {τ = t} ∈ Ft for all t ≥ 1.

As a case in point, τ = τr ∧ tmax satisfies the two conditions above, where τr is
the first time where the procedure makes at least a deterministic number r ≥ 1
of rejections and tmax ≥ 1 is a deterministic maximum time for stopping. For
some procedure A, we define the τ -stopped mFDR as

mFDRτ (A, P ) := EX∼P (|H0 ∩R(τ)|)
EX∼P (1 ∨ |R(τ)|) , (43)

similarly to the mFDR definition (6). The following result generalizes Lemma 4.1.

Lemma 9.1. Assume that both (2) and (3) hold, and consider a stopping time
τ as above. For any procedure A = (αt, t ≥ 1), if for some λ ∈ [0, 1) we have
supT≥1 F̂DPλ(T,A) ≤ α a.s. (see (33)) then mFDRτ (A, P ) ≤ α.

Proof. We follow here Section 6.1 of Zrnic et al. (2021). Consider the process

Mt =
∑

i≤t,i∈H0

(
1{pi ≤ αi} −

1{pi > λ}
1 − λ

Fi(αi)
)
, t ≥ 1.
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By super-uniformity, (Mt)t≥1 a super-martingale w.r.t. the filtration Ft, that is,
for all t ≥ 1, Mt is measurable w.r.t. Ft and E[Mt+1 |Ft] ≤ Mt. By the optional
stopping theorem, we have E[Mτ ] ≤ E[M1] ≤ 0. This implies

E (|H0 ∩R(τ)|) = E

⎛
⎝ ∑

i≤τ,i∈H0

1{pi ≤ αi}

⎞
⎠ ≤ E

(
τ∑

i=1

1{pi > λ}
1 − λ

Fi(αi)
)

≤ E (α(1 ∨R(τ))) ,

where the last inequality follows from (33).

Theorem 9.1. In the setting of Theorem 4.3, for the procedure A defined
therein and for any stopping time as above, we also have mFDRτ (A, P ) ≤ α for
all P ∈ P.

Proof. The proof is straightforward from Lemma 9.1 and the proof of Theo-
rem 4.3.

10. Online FDR control under super-uniformity

In this section, we study FDR control and not only mFDR control as in the
main part of the paper (in a non-adaptive setting, or equivalently when λ =
0). We show that a sufficient condition for FDR control is independence and
monotonicity, by slightly generalizing Theorem 2 of Ramdas et al. (2017) to
the super-uniform setting of Section 2.1. We then show that AρLORD does not
satisfy the monotonicity condition in general, so that the FDR control of AρLORD

cannot be deduced. We then propose a monotone modification of AρLORD that
provably controls the FDR and which ‘interpolates’ between ALORD and AρLORD.

10.1. General result

First define formally the FDR of a procedure A for the parameter P ∈ P as

FDR(A, P ) := sup
T≥1

{FDR(T,A, P )}, FDR(T,A, P ) := EX∼P

(
|H0 ∩R(T )|
1 ∨ |R(T )|

)
.

(44)

Theorem 10.1. Consider the setting of Section 2.1 where a null bounding
family F = {Ft, t ≥ 1} satisfying (2) is at hand. Consider any procedure A =
{αt, t ≥ 1} satisfying the two following conditions:

(i) F̂DP(T,A) ≤ α for all T ≥ 1 where F̂DP(T,A) is the FDP estimate at
time T defined by (26);

(ii) the critical values of A are all nondecreasing with respect to the past re-
jections, that is, if the critical values αT , T ≥ 1, are written as a function
αT = AT (R1, . . . , RT−1) of the past rejection status Rt = 1{pt ≤ αt},
t ≤ T − 1, we have for all T ≥ 1, R1, . . . , RT−1, R

′
1, . . . , R

′
T−1 ∈ {0, 1},

(∀t ≤ T − 1, R′
t ≥ Rt) ⇒ AT (R′

1, . . . , R
′
T−1) ≥ AT (R1, . . . , RT−1). (45)
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Then, assuming that the model P is such that (3) holds, we have FDR(A, P ) ≤
α.

Proof. We follow the proofs of Theorem 2 and Lemma 1 of Ramdas et al. (2017).
Write αT = AT (R1, . . . , RT−1) as in statement (ii) of the theorem. By defini-
tion (44), and writing Rt = 1{pt ≤ αt}, t ≥ 1, we have for T ≥ 1,

FDR(T,A, P ) =
∑

t∈H0,t≤T

E
(

1{pt ≤ At(R1, . . . , Rt−1)}
1 ∨

∑
t′≤T Rt′

)

=
∑

t∈H0,t≤T

E
(

1{pt ≤ At(R1, . . . , Rt−1)}
R1 + · · · + Rt−1 + 1 + Rt+1 + · · · + RT

)
,

because Rt = 1 on the event {pt ≤ At(R1, . . . , Rt−1)}. Now, for a fixed t ≤ T , let
R̃

(t)
t′ = 1{p̃(t)

t′ ≤ αt′}, t′ ≤ T , where p̃
(t)
t′ = pt′ for t′ �= t and p̃

(t)
t′ = 0 otherwise. It

is clear that we have 1{pt ≤ At(R1, . . . , Rt−1)} = 1{pt ≤ At(R̃(t)
1 , . . . , R̃

(t)
t−1)}

and thus

1{pt ≤ At(R1, . . . , Rt−1)}
R1 + · · · + Rt−1 + 1 + Rt+1 + · · · + RT

=
1{pt ≤ At(R̃(t)

1 , . . . , R̃
(t)
t−1)}∑

t′≤T R̃
(t)
t′

,

because R̃
(t)
t′ = R̃t′ for all t′ ≤ T provided that Rt = 1. Since by (3) pt is

independent of pt′ , t′ �= t, t′ ≤ T , and thus also of (R̃(t)
t′ , t

′ ≤ T ), this gives

FDR(T,A, P ) =
∑

t∈H0,t≤T

E
(

1{pt ≤ At(R̃(t)
1 , . . . , R̃

(t)
t−1)}∑

t′≤T R̃
(t)
t′

)

=
∑

t∈H0,t≤T

E
(

P(pt ≤ At(R̃(t)
1 , . . . , R̃

(t)
t−1) | pt′ , t′ ≤ T, t′ �= t)∑

t′≤T R̃
(t)
t′

)

≤
∑

t∈H0,t≤T

E
(
Ft(At(R̃(t)

1 , . . . , R̃
(t)
t−1))∑

t′≤T R̃
(t)
t′

)

=
∑

t∈H0,t≤T

E
(

Ft(At(R1, . . . , Rt−1))
R1 + · · · + Rt−1 + 1 + R̃

(t)
t+1 + · · · + R̃

(t)
T

)
,

by using in addition the super-uniformity (2) in the third line. Now, R̃
(t)
t =

1 ≥ Rt and by (45), we have R̃
(t)
t+1 = 1{p̃(t)

t+1 ≤ At+1(R1, . . . , Rt−1, 1)} =
1{pt+1 ≤ At+1(R1, . . . , Rt−1, 1)} ≥ 1{pt+1 ≤ At+1(R1, . . . , Rt−1, Rt)} = Rt+1,
so by induction we have R̃

(t)
t′ ≥ Rt′ for all t′ ≥ t. This yields

FDR(T,A, P ) ≤
∑

t∈H0,t≤T

E
(

Ft(αt)
R(T ) ∨ 1

)
≤ α,

because by assumption F̂DP(T,A) ≤ α, see (26).
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Unfortunately, in general, AρLORD does not satisfy (45).

Proposition 10.1. There exists a null bounding family F = {Ft, t ≥ 1} such
that the ‘greedy’ critical values (27) of AρLORD do not satisfy (45) pointwise.

Proof. Let us consider a sequence (R1, . . . , R5) = (0, 0, 1, 0, 1) so that τ1 = 3
and τ2 = 5, then the corresponding critical values (27) are given by

• α1 = W0γ1
• α2 = W0γ2 + α1 − F1(α1)
• α3 = W0γ3 + α2 − F2(α2)
• α4 = W0γ4 + (α−W0)γ1 + α3 − F3(α3)
• α5 = W0γ5 + (α−W0)γ2 + α4 − F4(α4)
• α6 = W0γ6 + (α−W0)γ3 + αγ1 + α5 − F5(α5)

Let us consider a sequence (R′
1, . . . , R

′
5) = (0, 1, 1, 0, 1) so that τ ′1 = 2, τ ′2 = 3

and τ ′3 = 5, then the corresponding critical values (27) are given by

• α′
1 = W0γ1

• α′
2 = W0γ2 + α′

1 − F1(α′
1)

• α′
3 = W0γ3 + (α−W0)γ1 + α′

2 − F2(α′
2)

• α′
4 = W0γ4 + (α−W0)γ2 + αγ1 + α′

3 − F3(α′
3)

• α′
5 = W0γ5 + (α−W0)γ3 + αγ2 + α′

4 − F4(α′
4)

• α′
6 = W0γ6 + (α−W0)γ4 + αγ3 + αγ1 + α′

5 − F5(α′
5).

Hence, α1 = α′
1, α2 = α′

2, α′
3 > α3, and

α′
4 = W0γ4 + (α−W0)γ2 + αγ1 + α′

3 − F3(α′
3)

= α4 + (α−W0)γ2 + αγ1 − (α−W0)γ1 + α′
3 − α3 + F3(α3) − F3(α′

3)
= α4 + (α−W0)γ2 + αγ1 + F3(α3) − F3(α′

3).

In particular, if F3(α′
3) = α′

3 (minimal super-uniformity reward) while F3(α3) =
0 (maximal super-uniformity reward) and F1(α′

1) = F2(α′
2) = 0, we have

α′
3 = W0(γ1 + γ2 + γ3) + (α−W0)γ1,

and thus

α′
4 = α4 + (α−W0)γ2 + αγ1 −W0(γ1 + γ2 + γ3) − (α−W0)γ1.

As a result, for W0 = α/2, α′
4 = α4 − W0γ3 < α4. Finally, with the notation

of condition (45), we have for T = 4, that (∀t ≤ T − 1, R′
t ≥ Rt) but α′

T =
AT (R′

1, . . . , R
′
T−1) ≥ AT (R1, . . . , RT−1) = αT , which shows that condition (45)

is violated.

10.2. A SUR procedure controlling the FDR

We propose the following modification of AρLORD.



Online multiple testing with super-uniformity reward 1333

Definition 10.1. For a spending sequence γ and a SUR spending sequence γ′,
the modified LORD procedure with super-uniformity reward, denoted by Aρ̃LORD =
{αρ̃LORD

t , t ≥ 1}, is defined by the following recursion on T ≥ 1: given critical
values αρ̃LORD

1 , . . . , αρ̃LORD
T−1 , put αρ̃LORD

T = Aρ̃LORD
T (R1, . . . , RT−1) with

Aρ̃LORD
T (R1, . . . , RT−1) = ALORD

T (R0
1, . . . , R

0
T−1)

+ min
(r1,...,rT−1)∈{0,1}T−1

∀i≤T−1, ri≥Ri

(
T−1∑
t=1

γ′
T−tρt(r1, . . . , rt−1)

)
,

(46)

where ALORD
T (R0

1, . . . , R
0
T−1) = αLORD

T is given by (25) with R0
t = 1{pt ≤ αLORD

t },
Rt = 1{pt ≤ αρ̃LORD

t } and the super-uniformity reward at time t for Aρ̃LORD is
given by ρt(r1, . . . , rt−1) = Aρ̃LORD

t (r1, . . . , rt−1)− Ft(Aρ̃LORD
t (r1, . . . , rt−1)) (for

the past rejections r1, . . . , rt−1).

First note that when Ft(x) = x, then Aρ̃LORD reduces to the LORD proce-
dure because the min-component in (46) disappears. Otherwise, the procedure
provides some reward. Compared to AρLORD, the modification Aρ̃LORD involves
a “least favorable” super-uniformity reward over all possible past rejection se-
quences that could have occurred in the past. Computing these critical val-
ues becomes intractable when t gets large because of the minimum which re-
quires to compute all αρ̃LORD

t (r1, . . . , rt−1), for all possible rejection sequences
(r1, . . . , rT−1) ∈ {0, 1}t−1. Also, αρ̃LORD

t is predictable in the sense of the present
theory — and hence defines a valid online procedure — only after enlarging the
filtration Ft−1 to contain R0

1, . . . , R
0
T−1 the sequence of rejections for the stan-

dard LORD procedure, that should be run in parallel when computing (46).
The counterpart of these drawbacks is that Aρ̃LORD controls the online (non
marginal) FDR, as the next result establishes.

Theorem 10.2. Consider the setting of Section 2.1 where a null bounding
family F = {Ft, t ≥ 1} satisfying (2) is at hand. Consider Aρ̃LORD = {αρ̃LORD

t , t ≥
1} given in Definition 10.1. Then we have

∀T ≥ 1, αLORD
T ≤ αρ̃LORD

T ≤ αρLORD
T , (47)

and Aρ̃LORD satisfies conditions (i) and (ii) of Theorem 10.1. In particular, as-
suming that the model P is such that (3) holds, we have FDR(Aρ̃LORD, P ) ≤ α.

Proof. First, since

0 ≤ min
(r1,...,rT−1)∈{0,1}t−1

∀i≤T−1, ri≥Ri

(
T−1∑
t=1

γ′
T−tρt(r1, . . . , rt−1)

)
≤

T−1∑
t=1

γ′
T−tρt(R1, . . . , Rt−1)

relation (47) easily follows from (46). Second, this minimum is clearly nonde-
creasing w.r.t. (R1, . . . , RT−1), so that by definition (46) Aρ̃LORD satisfies (45).
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Now let us check condition (i) of Theorem 10.1. For this we consider the new
critical values sequence (slightly different than αρLORD) given by

αT = ALORD
T (R0

1, . . . , R
0
T−1) +

T−1∑
t=1

γ′
T−tρt(R1, . . . , Rt−1),

where R0
t = 1{pt ≤ αLORD

t }, Rt = 1{pt ≤ αt}. The same reasoning as above
gives the domination ∀T ≥ 1, αρ̃LORD

T ≤ αT . As a result, we have

αρ̃LORD
T +

T−1∑
t=1

Ft(αρ̃LORD
t ) ≤ αρ̃LORD

T +
T−1∑
t=1

[
(1 − aT−t)αρ̃LORD

t + aT−tFt(αρ̃LORD
t )

]

≤ αT +
T−1∑
t=1

[(1 − aT−t)αt + aT−tFt(αt)] .

Now applying Lemma 8.2 with α0
T = ALORD

T (R0
1, . . . , R

0
T−1) and λ = 0, the last

display is equal to α0
T +

∑T−1
t=1 1{pt ≥ λ}α0

t ≤ α(1∨R0(T )). But now the latter
is smaller than α

(
1 ∨

∑
t≤T 1{pt ≤ αρ̃LORD

t }
)

by using (47) (left inequality).

This means that F̂DP(T,Aρ̃LORD) ≤ α holds and shows that condition (i) of
Theorem 10.1 is satisfied. The FDR control hence follows from Theorem 10.1.

11. Delayed spending approach

In this section we present another way of incorporating super-uniformity into
OMT which we refer to as delayed spending (in the sequel abbreviated as DS).
We are grateful to Aaditya Ramdas for this suggestion.

11.1. Motivation

In the discrete setting, let us consider the following constrained spending prob-
lem: at each step t, choose the critical value αt to be in the support St (including
0) such that the following constraint holds∑

t≥1
αt ≤ α. (48)

It solves the super-uniformity problem, because Ft(αt) = αt for all t, while
it controls the online FWER. This general principle, that we refer to as ‘con-
strained spending strategies’, can be implemented in many ways.

Markedly, the SUR approach is a way to achieve this, by additionally follow-
ing some reference critical values — here the online Bonferroni critical values
αOB
t (10). Indeed, the rejection decision pt ≤ αρOB

t and pt ≤ αt = Ft(αρOB
t )

are almost surely identical and we have calibrated αρOB
t such that (48) holds,
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see (13). In other words, even if our critical values are not constrained to be in
the support initially, the effective critical values αt = Ft(αρOB

t ) that are actually
used in the decision rule will automatically belong to the support. Thus, our
approach can be equivalently seen as a way of implementing the constrained
spending strategies delineated above.

Obviously, there are other ways to implement the constrained spending strat-
egy. One instance is the delayed spending (DS) approach, that we describe below.

The new procedure is introduced in Section 11.2, while we highlight some
mathematical and practical differences with our approach in Sections 11.3 and
11.4. In order to make the new procedure more efficient we also present a hybrid
version in Section 11.5. For simplicity, we restrict ourselves to FWER controlling
procedures for discrete data throughout this section.

11.2. Definition

Let us start with the critical value α1 = αγ1. While the OB procedure would
choose α2 = αγ2, the idea is that if the super-uniformity is strong enough to
ensure F1(αγ1)+F2(αγ1) ≤ αγ1, we can still use α2 = αγ1 in the second round.
This process can be continued until F1(αγ1)+ · · ·+Fb1+1(αγ1) > αγ1, in which
case we switch to αb1 = αγ2, and so on. This way, we can incorporate the
super-uniformity directly by ‘delaying’ the γ sequence.

More formally, consider the setting of Section 2.1, where a null bounding
family F = {Ft, t ≥ 1} satisfying (2) is at hand. The above strategy reads:

αDS
t = αγC(t), where C(t) = min{j ≥ 1 : bj ≥ t}, t ≥ 1; (49)

bj = max
{
T ≥ bj−1 + 1 :

T∑
t=bj−1+1

Ft(αγj) ≤ αγj

}
, j ≥ 1, (50)

(with the convention b0 = 0 and bj = +∞ if the set in (50) is empty), so that
j = C(t) for bj−1 + 1 ≤ t ≤ bj . Thus, the DS method processes each sub-budget
αγj one at a time, until the stopping rule in (50) is met and the transition to the
next sub-budget αγj+1 is made. Since C(t) ≤ t we can interpret αDS

t = αγC(t) as
a ‘slowed-down’ variant of the original OB procedure.

The procedure (49) controls the online FWER under (2) because by (13), a
sufficient condition is given by

∑T
t=1 Ft(αt) ≤ α, T ≥ 1, and we indeed have

∑
t≥1

Ft(αDS
t ) ≤

∑
j≥1

bj∑
t=bj−1+1

Ft(αγj) ≤
∑
j≥1

αγj ≤ α,

by definition of the bj ’s. Note that the bj ’s are based on local averages (in time)
of the Ft(x)’s at certain points x. This shares similarity to the approach of
Westfall and Wolfinger (1997) for offline FWER control.
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11.3. Comparison to SUR for real data

Both the DS and the SUR approaches use super-uniform rewarding. In a nut-
shell, the DS approach slows down the clock whereas the SUR approach aug-
ments the critical values of existing OMT procedures in an additive way. While
a more detailed comparison can be found in the following Section 11.4, we may
say that no method dominates the other one uniformly. The examples given in
Section 11.4 (delayed start, long/infinite delay, ineffective delay) suggest that
the DS method could be more efficient at the very start of the stream but may
suffer from conservativeness afterwards.

To assess the behaviour of the procedures in a practical setting, we reanal-
yse the IMPC data from Section 5.3 using the DS procedure defined by (49)
and (50) and compare it with the OB and ρOB from Section 3. The results
for FWER control at level α = 0.2 are displayed in Table 5 and Figure 9. As
Figure 9 (right panel) shows, the rejection process {R(T ), T ≥ 1}, is almost
identical at the very start. However, for larger T , the delayed approach makes
less discoveries than the ρOB procedure and this, uniformly in time for this
data set. This conservative behaviour is probably caused by under-utilization
of wealth as described in Section 11.4. More specifically, the non-utilized com-
ponent of α = 0.2 accumulates up to time T = 1500 approximately to 0.077,
so that approximately 38.5% of α = 0.2 are effectively neglected. Accordingly,
the wealth plot displayed in Figure 9 shows that the delayed approach manages

Table 5

Number of discoveries for SURE online Bonferroni (15) (bandwidth h = 10) and the DS
approach (49). Here C(30 000) = 5083 as defined in (49). These numbers are obtained by
running the procedures on the first 30 000 genes for male (second row) and female (third

row) mice in the IMPC data.

Procedures OB ρOB Delayed
# discoveries (male) 229 377 293

# discoveries (female) 267 481 355

Fig 9. Comparison with DS. Left: nominal wealth for OB (dashed orange curve), effective
wealth for OB (solid orange curve), effective wealth for ρOB (solid green curve) and effective
wealth for DS (solid purple curve), plot similar to Figure 2. Right: rejection numbers, cumu-
lated over time, for the same procedures (same color code). Both plots are computed from the
male IMPC data.
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Fig 10. Critical values of OB (orange), ρOB (green) and DS (purple) for the IMPC data
(left panel is for male, right panel is for female).

to spend more wealth than the OB procedure, but still deviates strongly from
the nominal wealth curve. Figure 10 illustrates the same phenomenon for the
critical values.

11.4. Formal properties

From the definition of the DS approach we obtain the following comparison to
OB and ρOB:

• the DS approach improves OB uniformly when γt is nonincreasing: indeed
C(t) ≤ t, so that αDS

t = αγC(t) ≥ αγt = αOB
t .

• the DS approach does not depend on any other tuning parameter such as
the bandwidth. By contrast, choosing this parameter badly in the ρOB
procedure may adversely affect its performance.

• the DS approach is another way of using the super uniformity reward. For
instance, if there is no super uniformity reward, that is, Ft(αγt) = αγt for
all t, then bt = t and the DS procedure reduces to OB.

In addition, we have the following observations:

• Delayed start: If Ft(x) = 0 for all x < 1 and t ≤ T0 and Ft(x) = x for
t ≥ T0 + 1, the DS procedure is much more intuitive: it yields b1 = T0 + 1
by (50) and αDS

t = αγt−T0 for t ≥ T0 + 1 which is the most natural way
to proceed (just start the testing process at time T0 + 1). By contrast,
ρOB (with rectangular kernel of bandwidth r) collects some reward in
αρOB
t , 1 ≤ t ≤ T0, spends the reward in the following r time points, but

continues with αρOB
t = αγt for t ≥ T0 + r + 1. Hence, delaying spends

the super-uniformity more intuitively than ρOB in that situation. More
generally, in practice, we may therefore expect DS to be more efficient in
the beginning of the stream.

• Long/infinite delay: Conversely, if there exists T0 ≥ 1 such that for all
t ≥ bT0 +1, Ft(αγC(T0)+1) = 0, then we have bT0+1 = +∞ from (50), which
in turn implies C(t) ≤ T0 + 1. But for t ≥ bT0 + 1, we have C(t) ≥ T0 + 1
by (49). Hence, for t ≥ bT0 + 1, C(t) = T0 + 1 and the ‘spending clock’
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freezes. On the one hand, we have αDS
t = αγT0+1 so the delaying works

perfectly to effectively improve the OB critical values. On the other hand,
this effectively stops the spending of any further budget and thus a large
part of the wealth is left unspent. This is in contrast to the SUR approach
which uses a reward of an additive nature and thus always has a chance
to spend the budget.

• Under-utilization of wealth. The DS method processes each sub-budget
αγj one at a time, until the transition to the next sub-budget αγj+1 is
made. In most cases, however, the inequality (50) defining the transition
time bj will be a strict inequality, meaning that when we move on to
the next sub-budget we will have used

∑bj
t=bj−1+1 Ft(αγj) < αγj . Thus,

this method does not exhaust the available sub-budgets. Moreover, since
it neglects these ‘alpha-gaps’, they accumulate over time. This under-
utilized wealth leads to unnecessary conservatism. Removing such gaps
was precisely the primary motivation for introducing our SUR method,
see Section 2.3.
The most disadvantageous scenario occurs when bt = t for all t ≤ T ,
so that the DS procedure reduces to the original OB procedure up to
time T . As an example consider ε ∈ (0, αγT ) for some large T ≥ 1 and
assume that the support of each pt is given by St = {ε, At, αγt−1} ∪ {1}
(convention αγ0 = 1), where At is a finite subset of (αγt, αγt−1). Then
we have F1(αγ1) + F2(αγ1) = αγ1 + ε hence b1 = 1, and more generally
Ft(αγt) + Ft+1(αγt) = αγt + ε for all t ≤ T , which implies bt = t for all
t ≤ T . However, we know that OB does not allow to spend all the budget
in such a discrete situation, see Figure 2.
A potential remedy for the conservatism of the DS method could be to
combine it with our SUR method. We describe such a hybrid approach in
more detail in Section 11.5.

In summary, it may be said that the delaying method is particularly appealing
in terms of simplicity and elegance, while the primary aim of the SUR approach
is on efficiency.

11.5. Hybrid approach

In this section, we describe a hybrid approach, combining the ideas underlying
DS and SUR, in order to improve the utilization of wealth of DS.

The method starts as follows: first let αHyb
1 = αγ1, . . . , αHyb

b1
= αγ1 as long

as F1(αγ1) + · · · + Fb1(αγ1) ≤ αγ1. Then consider the reward ρ1 = αγ1 −
(F1(αγ1) + · · · + Fb1(αγ1)) and let αHyb

b1+1 = αγ2 + ρ1, . . . , αHyb
b2

= αγ2 + ρ1 as
long as Fb1+1(αγ2 + ρ1) + · · · + Fb2(αγ2 + ρ1) ≤ αγ2 + ρ1. More generally, let
b0 = 0, ρ0 = 0, and for all j ≥ 1,

αHyb
bj−1+1 = αγj + ρj−1, . . . , α

Hyb
bj

= αγj + ρj−1
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bj = max

⎧⎨
⎩T ≥ 1 :

T∑
t=bj−1+1

Ft(αγj + ρj−1) ≤ αγj + ρj−1

⎫⎬
⎭

ρj = αγj + ρj−1 −

⎛
⎝ bj∑

t=bj−1+1

Ft(αγj + ρj−1)

⎞
⎠ .

Then the online FWER control holds because for all j0 ≥ 1, we have

∑
t≥1

Ft(αHyb
t ) =

j0∑
j=1

⎛
⎝ bj∑

t=bj−1+1
Ft(αγj + ρj−1)

⎞
⎠ + Fbj0+1(αγj0+1 + ρj0)

≤
j0∑
j=1

(αγj + ρj−1 − ρj) + αγj0+1 + ρj0 =
j0+1∑
j=1

αγj ≤ α,

because
∑j0

j=1(ρj−1 − ρj) = −ρj0 (telescopic sum). When ρt = 0 for all t ≥ 1,
the hybrid approach reduces to the DS approach. When bj = j, the hybrid
approach reduces to the greedy SUR procedure.

We can also combine the DS with smoothed SUR rewarding, which gives
us the following, slightly more involved, procedure. For some SUR spending
sequence γ′ = (γ′

t)t≥1 (nonnegative and such that
∑

t≥1 γ
′
t ≤ 1), let b0 = 0,

ρ0 = 0 and for all j ≥ 1,

αHyb
bj−1+1 = αγj +

j−1∑
i=1

γ′
j−iρi, . . . , αHyb

bj
= αγj +

j−1∑
i=1

γ′
j−iρi

bj = max

⎧⎨
⎩T ≥ 1 :

T∑
t=bj−1+1

Ft

(
αγj +

j−1∑
i=1

γ′
j−iρi

)
≤ αγj +

j−1∑
i=1

γ′
j−iρi

⎫⎬
⎭

ρj = αγj +
j−1∑
i=1

γ′
j−iρi −

⎛
⎝ bj∑

t=bj−1+1

Ft

(
αγj +

j−1∑
i=1

γ′
j−iρi

)⎞
⎠ .

The online FWER control holds because for all j0 ≥ 1, we have

∑
t≥1

Ft(αHyb
t ) ≤

j0∑
j=1

⎛
⎝ bj∑

t=bj−1+1

Ft

(
αγj +

j−1∑
i=1

γ′
j−iρi

)⎞
⎠ + αγj0+1 +

j0∑
i=1

γ′
j0+1−iρi.

Now letting aT =
∑T

t=1 γ
′
t, we obtain

j0∑
j=1

⎛
⎝ bj∑

t=bj−1+1

Ft

(
αγj +

j−1∑
i=1

γ′
j−iρi

)⎞
⎠

≤
j0∑
j=1

aj0−j+1

(
αγj +

j−1∑
i=1

γ′
j−iρi − ρj

)
+

j0∑
j=1

(1 − aj0−j+1)
(
αγj +

j−1∑
i=1

γ′
j−iρi

)
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=
j0∑
j=1

αγj +
j0∑
j=1

j−1∑
i=1

γ′
j−iρi −

j0∑
j=1

aj0−j+1ρj

=
j0∑
j=1

αγj +
j0−1∑
i=1

aj0−iρi −
j0∑
j=1

aj0−j+1ρj ,

and the latter is equal to
∑j0

j=1 αγj −
∑j0−1

j=1 γ′
j0−j+1ρj − a1ρj0 =

∑j0
j=1 αγj −∑j0

j=1 γ
′
j0−j+1ρj . Combining this with the above bound for the FWER concludes

the proof.
To compare the performance of the hybrid approach with the SUR and DS

approaches, we use the simulation setting from Section 5.2 in the case where the
signal is positioned at the beginning of the stream for each simulation run, which
is the most favorable position of the signal for any procedure (see Section 5.2.2
for more details). We consider both procedures based on the uniform kernel
(bandwidth h = 100) and those based on the greedy spending sequence (denoted
by ‘greedy’).

Figure 11 shows that taking super-uniformity into account is always bene-
ficial, regardless of the specific approach used. The base DS method performs
similarly to the greedy ρOB and the greedy hybrid. In contrast, the hybrid ap-
proach based on a uniform kernel improves DS, with performance close to ρOB.
Hence, we conclude that closing the alpha-gaps by smoothing with an adequate
kernel can make the hybrid approach as powerful as the smoothed ρOB method.
However, given the added complexity of the hybrid approach, we prefer to stick
with the smoothed SUR.

Fig 11. Power of several online FWER controlling approaches for simulated data (see text):
online Bonferroni (OB), Delayed spending (DS), greedy hybrid, greedy ρOB, hybrid, ρOB.

12. Complements on generalized α-investing rules

12.1. SUR-GAI++ rules

GAI++ rules have been introduced in Ramdas et al. (2017) to control the
(m)FDR. Here, we can extend them to our super-uniform setting as follows. Let
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us consider the following recursive constraints: for t ≥ 1,

Rt = 1{pt ≤ αt}
W (t) = W (t− 1) − φt + Rtψt ‘wealth available at time t + 1’

φt ∈ [0,W (t− 1)] ‘spent at time t’
ψt ≤ bt + min (φt, φt/Ft(αt) − 1) ‘reward at time t’
ψt ≥ 0
bt = α−W01{t ≤ τ1},

where W (0) = W0 ∈ [0, α]. Any choice of W0 and αt, φt, ψt that are Ft−1 mea-
surable and satisfying the above constraints defines a SUR-GAI++ procedure.
Here, the only difference with the original GAI++ rule is the presence of Ft(αt)
instead of αt in the definition of Ψt.

Proposition 12.1. Consider the setting of Section 2.1 where a null bound-
ing family F = {Ft, t ≥ 1} satisfying (4) is at hand. Then any SUR-GAI++
procedure controls the mFDR at level α.

The proof is totally analogous to the one of Theorem 1 in Ramdas et al.
(2017) (adapted to the mFDR, so without using any monotonicity property).

12.2. GAI++ weighting

Consider (continuous) p-values satisfying (1)-(3) and weights wt ≥ 0 that are
Ft−1 measurable for all t. In Section 5 of Ramdas et al. (2017), the following
(implicit) GAI++ weighting scheme has been proposed:

Rt = 1{pt ≤ wtαt}
W (t) = W (t− 1) − φt + Rtψt

φt ∈ [0,W (t− 1)]
ψt ≤ bt + min (φt, φt/(wtαt) − 1)
ψt ≥ 0
bt = α−W01{t ≤ τ1}.

Note that the latter constraints are similar to the constraints given in Sec-
tion 12.1 for Ft(x) = (wtx)∧1 (up to the ‘∧1’ which makes the constraints here
slightly more stringent) so that this weighting case is a particular SUR-GAI++
procedure.

For given raw weights rt ≥ 0 (Ft−1 measurable), an explicit procedure which
is used in Ramdas et al. (2017)6, is obtained by choosing αt, wt, φt, ψt as follows:

wt = rt ∧
1

1 − bt

6This procedure is available at https://github.com/fanny-yang/OnlineFDRCode

https://github.com/fanny-yang/OnlineFDRCode


1342 S. Döhler et al.

φt = αt = W0γt +
∑
j≥1

γt−τjψτj

ψt = bt + min (φt, 1/wt − 1) .

This choice is valid because αt ≤ W (t− 1) for all t. Indeed,

W (t− 1) = W0 +
t−1∑
i=1

(−αi + Riψi),

so αt ≤ W (t− 1) if and only if
∑t

i=1 αi ≤ W0 +
∑t−1

i=1 Riψi, which is true.

12.3. Our ρ-LORD is a SUR-GAI++ rule

We claim here that the procedure ρ-LORD corresponds to a SUR-GAI++ rule
with the choice φt = Ft(αt), ψt = bt, and

αt = W0γt + (α−W0)γt−τ1 + α
∑
j≥2

γt−τj +
t−1∑
i=1

γ′
t−iρi t ≥ 1. (51)

To establish this, we check that all constraints given in Section 12.1 are satisfied.
The only non-trivial one is φt = Ft(αt) ≤ W (t− 1). Let us now prove it. Recall
that W (t) = W (t − 1) − φt + Rtbt and W (0) = W0. Hence α1 = W0γ1 ≤ W0.
Moreover, for t ≥ 2,

W (t− 1) = W0 + (α−W0)1{t− 1 ≥ τ1} + α
∑
j≥2

1{t− 1 ≥ τj} −
t−1∑
i=1

Fi(αi).

So we have ᾱt ≤ W (t− 1) for the critical value

ᾱt =
(

t∑
i=1

γi

)
W0 +

t−1∑
i=1

⎛
⎝(α−W0)γi−τ1+11{i ≥ τ1} + α

∑
j≥2

γi−τj+11{i ≥ τj}

⎞
⎠

−
t−1∑
i=1

[at−iFi(ᾱi) + (1 − at−i)ᾱi] ,

by letting at =
∑t

i=1 γ
′
i. But now, we have that ᾱt = αt for all t, for αt defined

by (51). Indeed, this can be seen from Lemma 8.2, applied with λ = 0 and α0
T

being the LORD critical values.

13. Concrete examples of discrete tests

In this section, we describe in detail some examples of discrete tests7.
7more details for running examples in R can be found in the vignette https://cran.r-

project.org/web/packages/DiscreteFDR/vignettes/DiscreteFDR.html

https://cran.r-project.org/web/packages/DiscreteFDR/vignettes/DiscreteFDR.html
https://cran.r-project.org/web/packages/DiscreteFDR/vignettes/DiscreteFDR.html
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13.1. Exact Poisson test

Let X ∼ P(λ) with λ > 0, and consider the one-sided testing problem of the
null hypothesis “λ = λ0” against the alternative “λ < λ0” for some pre-specified
value λ0 > 0. The p-value is defined as p = G(X) where G(·) is the c.d.f. of the
distribution P(λ0). The support S = G(N) ⊂ [0, 1] is finite so that p is said to
be discrete and the discrete distribution function of p is defined in the usual way
as F (s) = Pλ0(p ≤ s) =

∑
q≤s,q∈S P(p = q) and it can be shown that F (s) = s

for s ∈ [0, 1] ∩ S and F (s) < s for s ∈ [0, 1] \ S.

13.2. Permutation test

Let us observe two independent samples of real random variables: X1, . . . , Xn1

i.i.d. ∼ Q1 and Xn1+1, . . . , Xn1+n2 i.i.d. ∼ Q2. We want to test the null “Q1 =
Q2” versus the alternative “Q1 �= Q2” by using some test statistic S(X) so that
a large value of S(X) provides evidence against the null, for instance S(X) =∣∣∣n−1

1
∑n1

i=1 Xi − n−1
2

∑n1+n2
i=n1+1 Xi

∣∣∣.
For any permutation σ of {1, . . . , n} (with n = n1 + n2), we let Xσ denote

a permutation of X = (X1, . . . Xn1 , Xn1+1, . . . , Xn1+n2) and S(Xσ) the corre-
sponding test statistic. Now, a (permutation-based) p-value can be computed
as follows:

p(X) = (B + 1)−1

(
1 +

B∑
b=1

1{S(Xσb) ≥ S(X)}
)
,

where σ1, . . . , σB are i.i.d. permutations, independent of X, and uniformly
distributed on the set of all permutations of {1, . . . , n}, for some number B ≥ 1
fixed in advance. Here, the support of p(X) is S = {1/(B + 1), . . . , 1} and a
bounding c.d.f. of p(X) under the null is given by

P(p(X) ≤ s) ≤ F (s) = �(B + 1)s�
B + 1 ,

see Lemma 5.2 of Arlot et al. (2010).

13.3. Fisher’s exact test

Fisher’s exact test can be used for testing various hypotheses on count data
summarized by 2 × 2 contingency tables (for more details, see Lehmann and
Romano (2022); Agresti (2002)).

Suppose the observed 2 × 2 table for realizations of two Bernoulli rv X and
Y is given by Table 6. Then the count n11 can be used as a test statistic for
testing e.g. the null hypothesis H0 that X and Y are independent. Conditioning
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Table 6

Example of a 2 × 2 contingency table.
Y = 1 Y = 0 Total

X = 0 n11 n12 n1·
X = 1 n21 n22 n2·
Total n·1 n·2 n

on both sets of margin totals in Table 6 yields that N11 has a hypergeometric
distribution under the null with

PH0(N11 = t) =
(
n1·
t

)(
n2·

n·1−t

)
(

n
n·1

) ,

where the range of possible values of N11 is given by X = {max(0, n1· + n·1 −
n), . . . ,min(n1·, n·1)}. Thus, if e.g. a small observed value of N11 provides ev-
idence for the alternative, the (one-sided) p-value for Table 6 is given by p =
G(N11), where G(·) is the c.d.f. of N11 under the null. Thus, for fixed marginal
totals, the support of the rv p is given by the finite set S = G(X ) ⊂ [0, 1].
Therefore, p is discretely distributed and the discrete distribution function of p
is defined in the usual way as F (s) = PH0(p ≤ s) =

∑
q≤s,q∈S P (p = q) and it

can be shown that F (s) = s for s ∈ [0, 1] ∩ S and F (s) < s for s ∈ [0, 1] \ S.

14. Additional numerical experiments for Section 5

14.1. Sample size

Figure 12 illustrates results when the sample size N , i.e., the subjects number
per group, takes values in the set {25, 50, . . . , 150}. As expected, the power plots
show that the detection problem becomes easier when N increases. In fact, for
large N the power of all procedures converge to 1. We see that our rewarded
procedures do well on the whole range of N values and improve substantially
on existing OMT procedures for small and moderate values of N , including our
default value N = 25.

14.2. Signal strength

In Figure 13, we vary the strength of the signal p3 in the set {0.1, 0.2, . . . , 1}.
We see that the SUR procedures dominate their base counterparts, as expected.
In addition, depending on the signal strength, the gain in power can be con-
siderable. Also note that, perhaps surprisingly, all curves exhibit a decrease in
power for p3 near 1. Since this happens even for the original OB procedure, this
is not due to the super-uniformity reward, but could perhaps be caused by the
behavior of the power function of multiple Fisher exact tests taken at different
levels.
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Fig 12. Power and type I error rates of the considered procedures versus N ∈ {25, 50, . . . , 150},
the number of subjects in the groups.

Fig 13. Power and type I error rates of the considered procedures versus the strength of the
signal p3 ∈ {0.1, 0.2, . . . , 0.9, 1}.

14.3. Local alternatives

As Figure 12 demonstrates, for a fixed value of the signal strength p3, the
detection problem becomes easier as N increases, so that all procedures attain
a power of 1. In this section we are interested in obtaining a more refined analysis
of the various power curves when N is large. To this end, we introduce local
alternatives, i.e. we now model p3 as a function of the sample size N . To be more
specific, we take N ∈ {5, 10, . . . , 30} × 1000 and set p3 = p1 + 1√

N
for mFDR

procedures and, p3 = p1 + 1.5√
N

for FWER procedures, we fix p1 = p2 = 0.1, and
generate simulated data as in Section 5.2. Figure 14 displays power and error
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Fig 14. Power and type I error rates of the considered procedures versus N ∈ {5, 10, . . . , 30}×
1000, with local alternatives.

rates for this data. Taking N as a (crude) proxy for discreteness, we observe that
even with a low discreteness (say N ≤ 30000) the SUR methods still provide
some degree of improvement. Finally, for FWER procedures, ADDIS-spending
provides the best power performance over the whole range of the experiment.
This might be explained by the setting causing very conservative nulls p-values
(i.e. very close to 1), thus allowing the discarding scheme to redistribute and
spend a large part of the wealth on testing alternative hypotheses. Using the
SUR method along with the discarding scheme (Tian and Ramdas, 2019, 2021)
might provide an interesting avenue for further improvement, but this would
define yet another class of procedures, which is outside of the scope of this
paper.

14.4. Adaptivity parameter

We study the choice of λ for the adaptive procedures. In the literature, different
choices of λ were proposed: in the offline case, λ = 0.5 was often used as a
default choice, while λ = α was recommended under dependence, see Blanchard
and Roquain (2009). In the online case, Tian and Ramdas (2021) used λ = α
for FWER while Ramdas et al. (2018) used λ = 1/2 for mFDR. In the latter
reference, the authors showed that the performance of a specific choice of λ
depends on the alternative distribution in general.

Our results are presented in Figure 15 for the different adaptive procedures
considered in this paper and for our particular numerical experiment setting.
We can see that the SUR approach is improving the performances across all
the considered values of λ, with a slightly better overall power for smaller val-
ues of λ. This experiment also shows that the default choice λ = 1/2 in our
experiments does not play any specific role in the performance of our SUR pro-
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Fig 15. Power and type I error rates, for the considered procedures, versus the adaptivity
parameter λ.

cedures. It is mainly motivated by previous literature to calibrate the adaptive
base procedures.

14.5. Rectangular kernel bandwidth

Finally, we study the choice of the bandwidth parameter h for the rectangular
kernel (9) used for the rewarded procedures, see Figure 16. As we can see, using
a small bandwidth provides the best performance for the mFDR controlling
procedures, whereas FWER controlling procedures require a larger bandwidth.

Fig 16. Power for FWER (left) and mFDR (right) rewarded procedures versus the proportion
of signal πA, for different kernel bandwidths.
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Fig 17. p-values for male mice in the IMPC data of Section 5.3. The left panel presents all
p-values, the right panel the first 3000 p-values. The p-values have been transformed as in
Figure 3.

The choices h = 100 for FWER controlling procedures, and h = 10 for mFDR
controlling procedures seem reasonable although not necessarily optimal. Our
experiments also show that the performance is quite sensitive to the choice of
bandwidth.

15. Additional figures for the analysis of IMPC data

15.1. Localization of small p-values

Figures 17 and 18 show that small p-values mostly occur at the beginning of
the data set, both for male and female mice.

15.2. Figures for female mice in the IMPC data

Figures 19 and 20 display the critical values of the studied online procedures
when applied to the IMPC data in the case of female mice.
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Fig 18. p-values for female mice in the IMPC data of Section 5.3. The left panel presents
all p-values, the right panel the first 3000 p-values. The p-values have been transformed as in
Figure 3.

Fig 19. Same as Figure 7 but for female mice of IMPC data (see Section 5.3).

Fig 20. Same as Figure 8 for female mice of IMPC data (see Section 5.3).
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16. An experiment with permutation tests

We consider the permutation test setting described in Section 13.2, with m =
1 000 tests, m0 = 0.6m = 600 nulls, n1 = 10, n2 = 10, Q1 = N (0, 1) and
Q2 = N (μ, 1), with μ = 3. The m1 = 400 alternatives appear as follows in the
stream: 300 take position {1, . . . , 300} and then the remaining 100 are randomly
scattered at positions {301, . . . , 500}. Since the reward is always smaller than
1/(B + 1) by construction, we expect a significant improvement only when B
is not too large, and therefore we set the number of permutations to B = 20
(across all tests), and we run the procedures for α = 0.5. These choices are
rather unusual but they are only used to provide a proof of concept.

While providing a more convincing case or real data application is left for
future investigation, our preliminary findings presented in Figure 21 show that
our SUR approach can lead to a few more rejections.

Fig 21. Same representation as in Figure 8. The procedures are run on simulated data as
described in Appendices 13.2 and 16. The SUR approach makes 5 additional rejections.
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