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Abstract: Strong invariance principles in Markov chain Monte Carlo are
crucial to theoretically grounded output analysis. Using the wide-sense re-
generative nature of ergodic Markov chains, we obtain explicit bounds on
the almost sure convergence rates for partial sums of multivariate ergodic
Markov chains. Further, we present results on the existence of strong in-
variance principles for both polynomially and geometrically ergodic Markov
chains without requiring a 1-step minorization condition. Our tight and
explicit rates have a direct impact on output analysis, as it allows the
verification of important conditions in the strong consistency of variance
estimators.
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1. Introduction

Markov chain Monte Carlo (MCMC) is the workhorse computational algorithm
for Bayesian inference. In MCMC, given a target distribution – typically a multi-
dimensional Bayesian posterior – an ergodic Markov chain is constructed such
that its stationary distribution is the desired target distribution. Specifically, let
π be a distribution with support X , equipped with a countably generated σ-field,
B(X ). In a typical Bayesian problem, π denotes a posterior distribution and for
a function f : X → R

d, interest is in estimating Eπ(f(X)). Having constructed
a π-stationary Markov chain, {Xt}t≥1, Eπ(f(X)) may be estimated using the
Monte Carlo average

f̂n := Sn

n
:= 1

n

n∑
t=1

f(Xt) .

Naturally, the quality of estimation depends critically on the variability of
f̂n and its limiting distribution. Until recently, focus was on the simpler case
of d = 1 [16, 24], but the increasing complexity of modern data and modeling
strategies warrants the need for ensuring multivariate quality assessment of
MCMC averages. [40, 43] highlighted that a multivariate central limit theorem
holds for f̂n if there exists a d×d positive-definite matrix Σf such that as n → ∞

√
n
(
f̂n − Eπ(f(X)

)
d→ N(0,Σf ) .

Estimators of Σf are then employed to assess the estimation quality in f̂n and
determine a sufficient Monte Carlo sample size; see [37, 41] for recent reviews.
In [19], the authors highlight that strong consistency of variance estimators is
necessary for valid sequential stopping rules in simulation. Strong consistency
results of estimators of MCMC variances often require the assumption of a
strong invariance principle (SIP) on the underlying Markov chain [6, 34, 43].

A popular estimator of Σf is the batch-means estimator of [7], which we now
describe. Let the Monte Carlo sample size n be such that n = anbn where an
denotes the number of batches and bn is the batch-size. For k = 1, . . . , an, define
the mean vector of the kth batch as, f̄k = b−1

n

∑kbn
t=(k−1)bn+1 f(Xt). Then the

batch-means estimator of Σf is

Σ̂BM := bn
an − 1

an∑
k=1

(
f̄k − f̂n

)(
f̄k − f̂n

)�
. (1)

[11, 24] studied the strong consistency of the popular batch-means estima-
tor when f is univariate. The path to establishing strong consistency typically
assumes the existence of a SIP and thus many works have focused on estab-
lishing sufficient conditions under which a univariate SIP holds. Using estab-
lished results on univariate SIPs for mixing processes, [24] arrived at verifiable
conditions for strong consistency for univariate batch-means estimators. Con-
sequently, sufficient conditions on an and bn are available, providing guidelines
to users guaranteeing almost sure convergence. On the other hand, verifiable
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sufficient conditions are not known for multivariate inference. The best known
multivariate SIP results for Markov chains employed in MCMC are due to [43],
where the conditions are not verifiable due to unknown constants in the SIP rate
of convergence. This makes it challenging for practitioners to employ theoret-
ically grounded simulation techniques in their Bayesian inference models. Uti-
lizing wide-sense regenerative properties of ergodic Markov chains, we present
conditions for when a multivariate SIP holds under polynomial and geometric
ergodicity. Our rates are explicit and the tightest known in this framework.

Let ‖·‖ denote the Euclidean norm. Let (Ω,F ,P) be the underlying probabil-
ity space that is assumed to be suitably rich, implying that independent copies
of random variables can exist. Let L be a d × d positive-definite matrix, and
κ : N → R

+ be an increasing function. A multivariate SIP holds if on a suitably
rich probability space, one can construct {f(Xt)}t≥1 along with a d-dimensional
Wiener process {W (t) : t ≥ 0} so that as n → ∞,

‖Sn − E(Sn) − LW (n)‖ = O(κ(n)) with probability 1 .

The rate κ(n) often depends on the moments and the amount of correla-
tion in the process. For independent and identically distributed (iid) univariate
processes exhibiting a moment generating function, [25, 26] obtained the rate
κ(n) = log(n); if f(X1) has r moments for r > 3, they obtain rate κ(n) = n1/r;
we will refer to this result as the KMT result after authors Komlós, Major, and
Tusnády. These are the tightest rates possible. For correlated sequences, [35]
collate the various known SIP rates for φ-mixing, α-mixing, non-stationary, and
regenerative processes. The rates obtained are of the form κ(n) = n1/2−λ where
λ is known.

The situation is quite different in the multivariate case. Although for iid vec-
tors [15] extend the KMT result, the proof techniques used in the univariate
case for stochastic processes do not, in general, yield explicit rates in the multi-
dimensional one [32]. For general φ-mixing processes, [4, 14, 28] obtain a rate of
n1/2−λ for some unknown 0 < λ < 1/2. The best known result is due to [29] of
order κ(n) = n1/r for some 2 < r < 4, and we use their main results to facilitate
our result for Markov chains.

For the univariate case, [24] obtain explicit rates for uniformly ergodic Markov
chains. For polynomially ergodic univariate continuous-time Markov processes
with r moments, [34] obtain rate max{n1/4 log(n), n1/r log2(n)}. If the Markov
chain exhibits a 1-step minorization, it is classically regenerative. Let p denote
the moments of the regeneration time and let the partial sum of a regenerative
tour exhibit 2+δ finite moments; then [8] obtain rate nmax{1/(2+δ),1/(2p),1/4}log(n).
This work forms the basis of obtaining explicit rates for Markov chains with [24]
obtaining an expression for geometrically ergodic Markov chains and [30] ob-
taining the KMT result for geometrically ergodic bounded Markov chains. For
univariate Markov chains exhibiting an l-step minorization, [39] obtain a rate
of n1/2−λ for some unknown 0 < λ < 1/2. The best known result under this
setting is that of [13] and [45], who obtain rate nmax{1/(2+δ),1/p,1/4} log(n) for
univariate and multivariate processes, respectively, under moment assumptions
on the regeneration time.
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We obtain multivariate SIP rates for MCMC that match the existing uni-
variate rates, while also significantly weakening the conditions. Specifically, the
univariate literature requires the Markov chain to exhibit a 1-step minorization,
a condition that can be challenging to verify, even when it holds. We require
an l-step minorization condition for any l ≥ 1; this condition is trivially satis-
fied by all Harris ergodic Markov chains. Our reliance on an l-step minorization
also allows us to reformulate the asymptotic covariance matrix, Σf , yielding a
wide-sense regeneration based estimator.

The remainder of the paper is organized as follows. In Section 2 we define
our notations, and present our main results. Our main SIP result requires finite
moments on the regeneration time, and we show when these moments results
exist for both polynomially and geometrically ergodic Markov chains. In Sec-
tion 3, we leverage our results to arrive at batch-sizes choices that guarantee
strong consistency of Σ̂BM. Our SIP result also allows the construction of a new
regeneration based estimator of Σf . We explore the practicality of this new es-
timator in Section 4 via two examples, and also demonstrate the performance
of the batch-means estimator under conditions where strong consistency is both
known and unknown.

2. Definitions and main result

2.1. Markov chains and wide-sense regeneration

Consider a π-Harris ergodic 1 Markov chain with a one-step Markov transition
kernel

P (x,A) := Pr(Xk+1 ∈ A | Xk = x) for k ≥ 1, x ∈ X , and A ∈ B(X ) .

Similarly, for n ≥ 1, the n-step Markov transition kernel is

Pn(x,A) := Pr(Xk+n ∈ A | Xk = x) for k ≥ 1, x ∈ X , and A ∈ B(X ) .

Our SIP results will apply to Markov chains exhibiting certain rates of con-
vergence measured via the total variation distance:

‖Pn(x, ·) − π(·)‖TV := sup
A∈B(X )

|Pn(x,A) − π(A)| ≤ M(x)G(n) , (2)

where, since the chain is assumed to be ergodic, G(n) → 0 as n → ∞ and
0 < Eπ[M(X)] < ∞; here we use notation EF to denote expectations when
X1 ∼ F . If G(n) = n−k for some k ≥ 1, the Markov chain is polynomially
ergodic of order k and if G(n) = tn for some 0 ≤ t < 1, the Markov chain is
geometrically ergodic.

1We use shorthand “π-Harris ergodic” to mean a Markov chain that is π-irreducible, ape-
riodic, and Harris recurrent. Please see [31, 36] for definitions. Close to all MCMC algorithms
employed in practical problems are π-Harris ergodic, as this implies convergence of sample
estimators to population quantities.
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Markov chains employed in MCMC are typically π-Harris ergodic and thus
exhibit an l-step minorization [2]. An l-step minorization for l ≥ 1 is said to
hold if there exists h : X → [0, 1] with 0 < Eπ[h(X)] < ∞ and a probability
measure Q(·) such that for all x ∈ X , A ∈ B(X )

P l(x,A) ≥ h(x)Q(A) . (3)

Equation (3) allows the following representation of the l-step transition kernel,

P l(x,A) = h(x)Q(A) + (1 − h(x))R(x,A), (4)

where R(x, ·) is the residual distribution. Consider the augmented Markov chain,
{(X∗

t , δt)}t≥1 where δ’s are binary variables such that X∗
1 ∼ Q and δ1|X∗

1 ∼
Bernoulli(h(X∗

1 )), and for i ≥ 2, if δi = 1, X∗
i+l ∼ Q, else X∗

i+l ∼ R(X∗
i , ·).

By virtue of (4), X∗
t

d= Xt. Time index i such that δi = 1 is known as a
regeneration time. Denote the kth regeneration time as Tk, with T0 = 0. We will
use the wide-sense regenerative properties of Xt to obtain the SIP result.

Definition 1 ([18]). A Markov chain is wide-sense regenerative if for each
k ≥ 0, (XTk+s : s ≥ 0) is independent of Tk.

Let τk := Tk − Tk−1 be the time to the kth regeneration from the (k −
1)th regeneration. Denote μ := EQ(τ1). For k ≥ 1, define the sum of a tour
as Zk :=

∑Tk

t=Tk−1+1 f(Xt), and let η := EQ(Z1). When l = 1, the Markov
chain is classically regenerative and (Zk, τk)k≥1 are iid. For the one-dimensional
case, this feature is exploited by [8] to arrive at an SIP using classical KMT
results. These results have been adapted to MCMC by [24]. However, for many
MCMC samplers, l = 1 is a limiting assumption in that it can be challenging
to verify. Since all Harris ergodic Markov chains satisfy an l-step minorization
for some l [see 2, for e.g.], the assumption of an l-step minorization is no longer
limiting. However, for general l, [18] explain that (Zk, τk)k≥1 is a one-dependent
stationary process 2, and thus the classical KMT results can no longer be used
to establish an SIP.

2.2. Main result

We now present our main results establishing a multivariate SIP. The following
covariance matrix will appear in the limiting covariance expression of the SIP:

ΣZ :=VarQ
(
Z1 −

τ1
μ
η

)
+ CovQ

(
Z1 −

τ1
μ
η, Z2 −

τ2
μ
η

)

+ CovQ

(
Z2 −

τ2
μ
η, Z1 −

τ1
μ
η

)
. (5)

The result below establishes an SIP rate under general conditions on a π-
Harris ergodic Markov chain.

2A process {Yt}t≥1 is 1-dependent if for all k, the joint variables (Yn)n≤k are independent
of the joint variables (Yn)n≥k+2.
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Theorem 1. Let {Xt}t≥1 be a π-Harris ergodic Markov chain and thus (3)
holds. Suppose
(a) EQ(τp1 ) < ∞ for some p > 1 and,
(b) for some δ > 0 and some δ∗ > 0

Eπ

⎡
⎣
(

τ1∑
t=1

∥∥∥∥f(Xt) −
η

μ

∥∥∥∥
)2+δ+δ∗

⎤
⎦ < ∞ . (6)

Then, on a suitably rich probability space, one can construct {f(Xt)}t≥1 together
with a d-dimensional standard Wiener process {W (t) : t ≥ 0} such that for
β = max{1/(2 + δ), 1/(2p), 1/4}, as n → ∞, with probability 1∥∥∥∥∥

n∑
t=1

f(Xt) − nEπ[f(X)] − Σ1/2
Z√
μ
W (n)

∥∥∥∥∥ = O(nβ log(n)). (7)

Proof. See Appendix B.

Remark 1. Theorem 1 is the first result we know that matches the SIP rate of
[8] for general multivariate functionals. Additionally, similar to [13], we remove
the assumption of a 1-step minorization. Under the same assumptions, [13, 45]
obtain the rate with β = max{1/(2 + δ), 1/p, 1/4}, hence our rates are tighter.

For practical application to MCMC, it is important to assess when and for
what values of p is EQ(τp1 ) < ∞. For a 1-step minorization, [22] show that
τ1 has a moment-generating function when {Xt}t≥1 is geometrically ergodic.
The next two lemmas are critical to obtaining moment conditions over τ for
polynomially and geometrically ergodic Markov chains. Additionally, Lemma 3
and Lemma 4 aid in proving the moment existence of regenerative sums. Proofs
of the following lemmas are in Appendix C.
Lemma 1. Let {Xt}t≥1 be a π-stationary polynomially ergodic Markov chain
of order ξ > (2+ δ)(1+(2+ δ)/δ∗) for some δ > 0 and δ∗ > 0 and Eπ(M) < ∞.
Then for all p ∈ (0, ξ), EQ[τp1 ] < ∞.
Lemma 2. Let {Xt}t≥1 be a π-stationary geometrically ergodic Markov chain.
Then EQ[τp1 ] < ∞ for any p > 1.
Lemma 3. Let {Xt}t≥1 be a π-Harris ergodic Markov chain so that (3) holds.
Let Eπ

(
‖f(X)‖r+δ∗

)
< ∞ for some r > 1 and δ∗ > 0 and Eπ(τφ1 ) < ∞ for

φ > r(r + δ∗)/δ∗. Then,

Eπ

[(
τ1∑
i=1

‖f(Xi)‖
)r]

< ∞ .

Lemma 4. Let {Xt}t≥1 be a π-stationary geometrically ergodic Markov chain
so that (3) holds. Further, let Eπ

[
(‖f(X)‖)r+δ∗

]
< ∞ for some r > 1 and

δ∗ > 0. Then

Eπ

[(
τ1∑
i=1

‖f(Xi)‖
)r]

< ∞.
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The above lemmas allow the following result on the existence of an SIP for
MCMC under verifiable conditions.

Theorem 2. Let {Xt}t≥1 be a π-Harris ergodic Markov chain and thus (3)
holds. Suppose the chain is either

(a) polynomially ergodic of order ξ > (2+ δ)(1+(2+ δ)/δ∗) for some δ > 0 and
some δ∗ > 0, Eπ

(
‖f(X)‖2+δ+δ∗

)
< ∞, and Eπ(M) < ∞; or,

(b) geometrically ergodic and Eπ

(
‖f(X)‖2+δ+δ∗

)
< ∞ for some δ > 0 and

some δ∗ > 0,

then (7) holds with β = max{1/(2 + δ), 1/4}.
Proof. See Appendix C.

Theorem 2 marks a three-fold improvement over the existing results of [24]
in MCMC; (i) the assumption of a 1-step minorization is completely removed,
(ii) an explicit SIP rate for polynomially ergodic Markov chains, and (iii) the
critical extension to multivariate functionals.

Remark 2. The assumptions in Theorem 2 are sufficient and are not known
to be necessary. Further, when enough moments exists, we obtain a rate of
κ(n) = n1/4. This is now the best known rate for general Markov chains in the
multivariate setup, but this is not sharp. The lack of sharpness, [32] describe,
is a consequence of the proof techniques available for the multivariate case, and
an improvement on these rates remains an open problem in the area.

Remark 3. Theorem 2 presents reasonably weak and verifiable conditions for
the existence of a multivariate SIP. To see this, we first note that since β < 1/2,
the SIP implies a weak invariance principle, and thus, a CLT. [23] summarize
that for geometrically ergodic Markov chains, the conditions required for a CLT
are the same as Theorem 2b. However, for polynomially ergodic chains, an order
of ξ > (1 + 2/(δ + δ∗)) is sufficient for a CLT, whereas our SIP results require
slightly larger order of ξ > (2 + δ)(1 + (2 + δ)/δ∗). Finally, note that since the
SIP result implies a CLT for f̂n, Σf = ΣZ/μ.

Remark 4. For any π-Harris ergodic Markov chain, an l-step minorization
always holds for some l ≥ 1, and the chain is wide-sense regenerative. Utilizing
the one-dependent nature of the process {(Zt, τt)}t≥1, estimators of Σf = ΣZ/μ
can be obtained. This, however, requires detecting wide-sense regenerations from
a simulated Markov chain, which can be fairly challenging. We expand on these
points in Section 3.2.

3. Application to MCMC variance estimation

We discuss the direct impact of our main results in MCMC variance estimation.
First, the explicit rates obtained in Theorem 2 now allows theoretically valid
tuning of the popular multivariate batch-means estimator. Further, the form of
the limiting variance in Theorem 2 allows for a wide-sense regeneration based
estimator of the Monte Carlo variance
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3.1. Batch-means estimator

Having generated the process {Xt}t≥1 through an MCMC algorithm, the sam-
ples are employed to estimate Eπ[f(X)] via the Monte Carlo average since,

f̂n = 1
n

n∑
t=1

f(Xt)
a.s.→ Eπ[f(X)] as n → ∞ .

When a Markov chain CLT holds for f̂n, there exists a positive-definite matrix
Σf such that as n → ∞,

√
n
(
f̂n − Eπ[f(X)]

)
d→ N(0,Σf ) , (8)

where

Σf = Varπ[f(X)] +
∞∑
s=1

[
Covπ(f(X1), f(X1+s)) + Covπ(f(X1), f(X1+s))�

]
.

Estimation of Σf is widely discussed, both in the univariate case [3, 5, 11,
17, 12, 24, 16], and the multivariate case [27, 10, 40, 43, 44, 42]. Estimators of
Σf are employed in deciding when to stop the simulation. Thus, the MCMC
simulation stops at a random time and [19] show that validity of the subsequent
estimators require strong consistency of estimators of Σf . Much effort has thus
gone into ensuring that estimators of Σf are strongly consistent. One particu-
lar estimator that stands out due its computational efficiency and theoretical
underpinnings, is the batch-means estimator defined in (1). An existence of a
multivariate SIP is often assumed for the strong consistency of the batch-means
estimators. [43] showed that if the Markov chain is polynomially ergodic, then
for some (unknown) 0 < λ < 1/2 a multivariate SIP holds with rate n1/2−λ.
However, strong consistency of Σ̂BM also depends on choosing appropriate rates
for the batch-size, bn, for which it is necessary that λ be known. Theorem 2
overcomes this issue considerably as we will now elucidate.

Assumption 1. The batch size bn is such that

(a) bn → ∞ and n/bn → ∞ as n → ∞ where, bn and n/bn are monotonically
increasing,

(b) there exists a constant c ≥ 1 such that
∑

n(bnn−1)c < ∞.

Often bn = 
nν� for some ν > 0 so that Assumption 1 is trivially satisfied.
Common choices in the literature are bn = 
n1/3� and bn = 
n1/2�. The following
theorem from [44] presents the conditions for strong consistency of the batch-
means estimator.

Theorem 3 ([44]). Suppose P and f exhibit a multivariate SIP with rate κ(n).
If bn satisfies Assumption 1 and b−1

n log(n)κ2(n) → 0 as n → ∞, then Σ̂BM → Σ
with probability 1 as n → ∞.
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The above theorem highlights the dependence of the the batch size, bn, on
the SIP rate; typically, slower mixing Markov chains will have a slower rate in
κ(n) requiring larger bn and vice-versa for fast mixing chains. The following
corollary is a consequence of Theorems 2 and 3.

Corollary 1. Let {Xt}t≥1 be a π-Harris ergodic Markov chain and thus (3)
holds. Suppose the chain is either

(a) polynomially ergodic of order ξ > (2+ δ)(1+(2+ δ)/δ∗) for some δ > 0 and
some δ∗ > 0, Eπ

(
‖f(X)‖2+δ+δ∗

)
< ∞, and Eπ(M) < ∞; or,

(b) geometrically ergodic and Eπ

(
‖f(X)‖2+δ+δ∗

)
< ∞ for some δ > 0 and

some δ∗ > 0,

then the batch means estimator is strongly consistent for bn = 
nν� for ν >
max{2/(2 + δ), 1/2}.

Proof. See Section D.

For strong consistency in the univariate case, [24] assumed the same condi-
tions on the batch size; for geometrically ergodic Markov chains under a 1-step
minorization, [24] showed that a univariate SIP holds with κ(n) = nβ logn,
where β is the same as Theorem 2. This implies that the batch size should be
chosen such that ν > max{2/(2 + δ), 1/2}. For geometrically ergodic Markov
chains, this is the best known batch size condition.

For the multivariate case, the only known MCMC SIP result was that of [43]
with κ(n) = n1/2−λ for some unknown 0 < λ < 1/2. This implies a choice of ν >
1−2λ but since λ is unknown, the condition, b−1

n log(n)κ2(n) cannot be verified.
Now, by Corollary 1, we match the univariate condition of ν > max{2/(2 +
δ), 1/2}. We note, as did [11, 12], that this condition excludes common choices
of bn, like bn = 
n1/3�. In Section 3, we compare the performance of bn =

n1/2+.0.0001� – a choice that satisfies the conditions of Corollary 1 – versus
bn = 
n1/3�.

3.2. Regenerative estimator

Given that (Zk, τk)k≥1 is a one-dependent stationary process and Σf = ΣZ/μ,
if the regeneration times could be identified, we can construct estimators of
Σf using (5). Although regenerations, particularly wide-sense regenerations, are
notoriously difficult to identify, it is natural to consider a wide-sense regenerative
estimator of Σf , even if it is for a theoretical exposition. In Section 4, we identify
examples and situations in which wide-sense regenerations can be identified. For
1-step minorization, [22, 40] present regenerative estimators, and for univariate
wide-sense regenerative processes, [21] provide an estimator of Eπ[f(X)]. Here,
we present a regenerative estimator of Σf .

For an observed Markov chain of length n, denote the number of regenerations
by R. Using the fact that Σf = ΣZ/μ, we obtain a wide-sense regenerative plug-
in estimator of Σf . Define Z̄ := R−1∑R

i=1

(
Zi − τif̂

)
. We can estimate μ and
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ΣZ with,

μ̂ := 1
R

R∑
i=1

τi , and (9)

Σ̂Z := 1
R

R∑
i=1

(Zi − τif̂)(Zi − τif̂)�

+ 1
R

R−1∑
i=1

(Zi − τif̂)(Zi+1 − τi+1f̂)�

+ 1
R

R−1∑
i=1

(Zi+1 − τi+1f̂)(Zi − τif̂)� . (10)

Using (9) and (10), the estimator for Σf is Σ̂f = Σ̂Z/μ̂. Since as n → ∞,
R → ∞, using strong law of large numbers for one-dependent processes [see for
e.g. 39], Σ̂f is strongly consistent for Σf .

Employing this estimator in practice has two significant challenges: (i) de-
tecting wide-sense regenerations can be difficult since one requires knowledge of
l and the minorization kernel Q, and (ii) when minorizations can be established,
the bounds in the minorization constant are fairly weak, yielding prohibitively
large regeneration times. Even still, there are certain situations where employing
these estimators is possible, and we identify two such examples in the sequel.

4. Illustrative examples

With the help of two examples, we demonstrate the utility of our discussions in
Section 3. Our primary objective in these examples is to demonstrate that our
results allow us to choose batch-sizes that guarantee strong consistency of the
multivariate batch-means estimators. In the first example, we also compare the
batch-means and regenerative estimators. Reproducible R code for the examples
is available at https://github.com/Arkagit/Multivariate-SIP-for-MCMC.

4.1. Bivariate normal Gibbs sampler

For known constants μ1, μ2, σ1, σ2 and ρ such that σ1σ2 > ρ2 we consider a
bivariate normal target distribution(

X
Y

)
∼ N

((
μ1
μ2

)
,

(
σ2

1 ρ
ρ σ2

2

))
.

In this toy problem, we will employ a deterministic scan Gibbs sampler that
alternates updates between the X and Y components using the conditional
distributions:

(X | Y = y) ∼ N

(
μ1 + ρ

σ2
2
(y − μ2), σ2

1 − ρ2

σ2
2

)

https://github.com/Arkagit/Multivariate-SIP-for-MCMC
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(Y | X = x) ∼ N

(
μ2 + ρ

σ2
1
(x− μ1), σ2

2 − ρ2

σ2
1

)
.

The consequent 1-step Markov transition density for any ith step of the deter-
ministic scan Gibbs sampler is

kDS (xi+1, yi+1 | xi, yi) = π(yi+1 | xi+1)π(xi+1 | yi).

For this deterministic scan Gibbs sampler, the asymptotic covariance matrix
in (8) is known [see 20, Theorem 6], and is given by

ΣBNG = 1
σ2

1σ
2
2 − ρ2

(
σ2

1
(
σ2

1σ
2
2 + ρ2) 2σ2

1σ
2
2ρ

2σ2
1σ

2
2ρ σ2

2
(
σ2

1σ
2
2 + ρ2)

)
.

Let y∗ ∈ R be a “distinguished point” and let D ⊆ R be a “small set” as
described by [33]; by using the distinguished point technique of [33], the following
1-step minorization can be established

kDS (xi+1, yi+1 | xi, yi) ≥ inf
x∈D

{
π(x | yi)
π(x | y∗)

}
π(yi+1 | xi+1) π(xi+1 | y∗) ID(xi+1)

=: s(yi) Q(xi+1, yi+1),

where the forms of s(yi) and Q(xi+1, yi+1) are known explicitly and presented
in Appendix E.1. Consequently, we can show that a 2-step minorization holds
as well, since

k2
DS (xi+2, yi+2 | xi, yi)

=
∫
R

∫
R

kDS (xi+2, yi+2 | xi+1, yi+1) kDS (xi+1, yi+1 | xi, yi) dyi+1 dxi+1

≥ s(yi) Q(xi+2, yi+2)
∫
R

∫
R

s(yi+1)Q(xi+1, yi+1) dyi+1 dxi+1

= s∗(yi) Q(xi+2, yi+2) .

Here, s∗(y) := s(y)EQ(s(y)) and can be estimated using Monte Carlo.
We fix our target distribution to have σ2

1 = 1, σ2
2 = 5, ρ = 1.5, μ1 =

μ2 = 0. To identify both 1-step and 2-step regenerations using the distinguished
point approach, we set y∗ = 0 and D = {(x, y) : x ∈ [−1, 1], y ∈ [−1, 1]}. For
increasing Monte Carlo sample size, n, we compare the batch-means estimator
for bn = 
n1/2+0.0001� and bn = 
n1/3� along with regenerative estimators for
1-step and 2-step regenerations. We assess the performance of the estimators by
measuring the Frobenius norm distance ‖Σ̂ − ΣBNG‖F for all estimators, and
by studying running estimates of the multivariate effective sample size. The
multivariate effective sample size for estimating Eπ(f) was defined by [44] as

ESS = n

(
det (Varπ(f))

det (Σf )

)1/p

.
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Fig 1. Left: For varying sample sizes, evolution of the Frobenius norm distance of estima-
tors of ΣBVG from the truth. Right: Running estimates of estimated ESS /n using different
estimators.

In Figure 1, we present the Frobenius norm distance ‖Σ̂−ΣBNG‖F and esti-
mated ESS /n, averaged over 1000 replications. Since the target is a bivariate
normal, moment conditions of Theorem 3 are easily satisfied and batch-size
bn = 
n1/2+0.0001� yields strong consistency of the batch-means estimator. On
the other hand, strong consistency under the popular bn = 
n1/3� is unknown.
Figure 1 shows that these two choices yield similar performing estimators, with
bn = 
n1/2+0.0001� ensuring theoretical validity. The 1-step and 2-step regener-
ative estimators perform better than the batch-means estimators, but of course
did require a lot more effort to set up.

4.2. Bayesian probit regression model

For a Bayesian probit regression model, [38] studied 1-step regenerations for
some deterministic scan Gibbs samplers. We adapt their setup to establish both
1-step and 2-step minorizations. We found that no regenerations were identified
for even a chain of length 106, and so in this example we only implement the
batch-means estimators.

For j = 1, 2, . . . ,m, [38] consider the model Yj |β ind∼ Bernoulli(Φ(xT
j β))

where xj ∈ R
p are given and β ∈ R

p is the vector of coefficients. Set X =
(x�

1 , x
�
2 , . . . , x

�
m)� and consider a flat prior for β yielding the posterior density

π(β | y) =
m∏
j=1

{Φ(x�
j β)}yj{1 − Φ(x�

j β)}1−yj .

Although the complete analytical form of π(β |y) is unavailable, [1] provide
a deterministic Gibbs sampler using an auxiliary variable, denoted by z =
(z1, z2, . . . , zm)�. We refer to this sampler as the AC sampler and implement a
random scan version of the AC sampler:
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• with probability p, update β: draw β′|z ∼ Np

(
(X�X)−1X�z, (X�X)−1).

• with probability (1 − p), update z: for all j = 1, 2, . . . ,m, draw (zj)′|β iid∼
Truncated Normal(x�

j β, 1, yj), where if yj = 0, (−∞, 0] is the truncation
range and if yj = 1, (0,∞) is the truncation range.

The 1-step transition density for the random scan AC sampler is

kRS(βi+1, zi+1 | βi, zi)
= pπ (βi+1 | zi) δzi(zi+1) + (1 − p)π (zi+1 | βi+1) δβi(βi+1).

Consequently, the 2-step random scan transition density is

k2
RS (βi+2, zi+2 | βi, zi) = p2π (βi+2 | zi+2) δzi

(zi+2)
+ p(1 − p)π (βi+2 | zi+2) π (zi+2 | βi)
+ p(1 − p)π (zi+2 | βi+2)π (βi+2 | zi)
+ (1 − p)2π (zi+2 | βi) δβi(βi+2). (11)

Since a 1-step minorization of the deterministic scan AC sampler is available, a
2-step minorization of the random scan Gibbs sampler is easily obtained:

k2
RS (βi+2, zi+2 | βi, zi) ≥ p(1 − p)s(zi) Q(βi+2, zi+2)

= s′(zi) Q(βi+2, zi+2) , (12)

where the specific form of s′ and Q is given in Appendix E.2.
We use the above Bayesian probit regression model to analyze the popular

Titanic dataset. The response is an indicator on whether a passenger survived
the tragedy or not. The covariates are the sex of the passenger, the age, the
number of siblings and spouses accompanying the passenger, number of children
and parents accompanying the passenger, and the fare of their ticket. We fit
a model with intercept, yielding a p = 6 dimensional posterior, and aim to
estimate the posterior mean.

We run the random scan AC sampler for varying lengths, and compute the
batch-means estimator with bn being both 
n1/2+0.0001� and 
n1/3�. Unfortu-
nately, we did not observe any 2-step regenerations, and thus are unable to
compare the regenerative estimators in this example. Further, since the true Σf

is unknown, we only present the running estimates of the effective sample size.
Averaged over 500 replications, we plot the estimated ESS /n for both batch-
means estimators in Figure 2. Here it is evident that in addition to guaranteeing
theoretical convergence and consistency, batch-size bn = 
n1/2+0.0001� performs
significantly better than the cuberoot batch-size, reaching to a point of stability
faster than the cuberoot batch-size.

Appendix A: Some preliminary results

Lemma 5. Let {Xt}t≥1 be a π-Harris ergodic Markov chain. Recall f, η, and
μ from Section 2.1. Then,

Eπ[f(X)] = η

μ
.
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Fig 2. Monte Carlo sample size (log scale) versus estimated ESS /n.

Proof. By [18], {(Zk, τk) : k ≥ 1} form a stationary 1-dependent process. By a
strong law of large numbers for 1-dependent processes,

1
R

R∑
i=1

Zi
a.s.→ EQ(Z1) as R → ∞ and, (13)

1
R

R∑
i=1

τi
a.s.→ EQ(τ1) as R → ∞. (14)

By a strong law for ergodic Markov chains and from (14),

1
TR

TR∑
t=1

f(Xt) =
1/R

∑R
i=1 Zi

1/R
∑R

i=1 τi

a.s.→ Eπ[f(X)] as R → ∞

⇒
(

1/R
R∑
i=1

τi

)
1/R

∑R
i=1 Zi

1/R
∑R

i=1 τi

a.s.→ EQ(τ1)Eπ[f(X)] as R → ∞

⇒
(

1/R
R∑
i=1

Zi

)
a.s.→ EQ(τ1)Eπ[f(X)] as R → ∞. (15)

Thus, by (13) and (15),

EQ(Z1) = EQ(τ1)Eπ[f(X)] ⇒ Eπ[f(X)] = η

μ
. (16)

The following lemma will be employed for the proof of Theorem 2 and is an
extension of [22, Lemma 1] to the multivariate and l-step minorization case.
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Lemma 6. Let {Xt}t≥1 be a π-Harris ergodic Markov chain so that (3) holds.
Then, for any measurable function Ψ : X∞ → R

d

Eπ‖Ψ(X1, X2, X3, . . .)‖ ≥ Eπ[h(X)]EQ‖Ψ(X1, X2, X3, . . .)‖ . (17)

Proof. For all A ∈ B(X ) and x ∈ X ,

π(A) =
(
πP l
)
(A) =

∫
X
π(dx)P l(x,A) ≥ Q(A)

∫
X
h(x)π(x) = Q(A)Eπ[h(X)].

(18)
By taking conditional expectation over X1

Eπ‖Ψ(X1, X2, X3, . . .)‖ = Eπ (E{‖Ψ(X1, X2, X3, . . .)‖ | X1}) . (19)

Since E{‖Ψ(X1, X2, X3, . . .)‖ |X1} is a positive function of X1, by (18) and (19)

Eπ‖Ψ(X1, X2, X3, . . .)‖ =
∫
X

E{‖Ψ(X1, X2, X3, . . .)‖ | X1 = x}π(dx)

≥ Eπ[h(X)]
∫
X

E (‖Ψ(X1, . . .)‖ | X1 = x)Q(dx)

= Eπ[h(X)]EQ‖Ψ(X1, . . .)‖
⇒ Eπ‖Ψ(X1, . . .)‖ ≥ Eπ[h(X)]EQ‖Ψ(X1, . . .)‖.

Appendix B: Proof of Theorem 1

We will be using [29, Theorem 2.1] for our SIP result. The original statement
of the theorem is presented in generality, and here we present a version is that
amenable to our setup.

Theorem 4. [see 29, Theorem 2.1 for more details] Let {εn : n ≥ 0} be iid
random elements and let {Ak}k≥1 be such that Ak = g(ε0, ε1, . . . , εk) for some
measurable function g. Let E(Ak) = 0 and for 2 < r < 4, let E‖Ak‖r+δ < ∞ for
δ > 0. Further, as n → ∞, let Cov (

∑n
k=1 Ak) /n → D, where D is a positive

definite matrix. Define A∗
k = g(ε∗0, ε1, . . . , εk), where ε∗0 is an iid copy ε0. If

Θn;2+δ :=
∞∑

k=n

‖Ak −A∗
k‖(2+δ) = O

(
n−(r−2)/(2(4−r))−δ

)
for all n ≥ 1,

then on a suitably rich probability space one can construct a Wiener process
{W (t) : t > 0}, such that∥∥∥∥∥

n∑
k=1

Ak − E
(

n∑
k=1

Ak

)
−D1/2W (n)

∥∥∥∥∥ a.s.= O(n1/r).

Proof of Theorem 1. We will start by showing some moment properties of the
sequence of regeneration times in order to prove strong convergence. Denote the
number of regenerations in a sample of size n by:

ξ(n) := sup{k ≥ 1 : Tk ≤ n} = inf{k ≥ 1 : Tk+1 > n} .
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By [18], {(Zk, τk) : k ≥ 1} is a stationary 1-dependent process. Further, by the
conditions in the theorem, EQ(τp1 ) < ∞ for p > 1. Define p′ = min{2, p} for
p > 1. Thus, EQ(τp

′

1 ) < ∞. By a Marcinkiewicz-Zygmund strong law of large
numbers for 1-dependent process [see 39, for e.g.], for 1 < p′ ≤ 2,∣∣∣∣∣∣

ξ(n)∑
i=1

τi − ξ(n)μ

∣∣∣∣∣∣ = |Tξ(n) − ξ(n)μ| a.s.= O(ξ(n)1/p
′
) . (20)

With n < Tξ(n)+1, subtracting ξ(n)μ from both sides

n− ξ(n)μ < Tξ(n)+1 − (ξ(n) + 1)μ + μ.

Now, using (20), Tξ(n)+1− (ξ(n)+1)μ a.s.= O((ξ(n)+1)1/p′) and hence Tξ(n)+1−
(ξ(n) + 1)μ + μ

a.s.= O((ξ(n) + 1)1/p′). Thus

n− ξ(n)μ a.s.= O((ξ(n) + 1)1/p
′
)

⇒ n− ξ(n)μ a.s.= O(n1/p′
) ⇒ ξ(n) a.s.= n/μ + O(n1/p′

) (21)

⇒ |ξ(n) − n/μ| a.s.= O(n1/p′
). (22)

Further, by the assumption in (6) and Lemma 6,

Eπ

⎡
⎣
(

τ1∑
t=1

∥∥∥∥f(Xt) −
η

μ

∥∥∥∥
)2+δ

⎤
⎦ < ∞

⇒EQ

⎡
⎣
(

τ1∑
t=1

∥∥∥∥f(Xt) −
η

μ

∥∥∥∥
)2+δ

⎤
⎦ < ∞

⇒EQ

[(∥∥∥∥Z1 − τ1
η

μ

∥∥∥∥
)2+δ

]
< ∞

⇒
∥∥∥∥EQ

(
Z1 − τ1

η

μ

)∥∥∥∥
2+δ

< ∞ , (23)

where the last implication follows from Jensen’s inequality.
Define, Sk := (

∑Tk

i=Tk−1+l Xi,
∑Tk+l−1

i=Tk+1 Xi, Tk−Tk−1−2)� for all k ≥ 2 where
S1 := (

∑T1
i=T0+1 Xi,

∑T1+l−1
i=T1+1 Xi, T1−T0+l−2)� and S0 ∼ S1 independently. By

construction Sk’s are iid vectors [see 18, Section 2]. Consequently, g(S0, S1) =
(Z1−τ1

η
μ ) for some measurable function g(·). Again XT1+l ∼ Q and independent

to all previous elements in the chain; define g(S0, S1, S2) = (Z2 − τ2
η
μ ). Hence,

for all k ≥ 1 we can say g(S0, S1, . . . , Sk−1, Sk) = (Zk − τk
η
μ )

Define, (Z∗
k − τ∗k

η
μ ) = g(S∗

0 , S1, . . . , Sk−1, Sk), where S∗
0 is an iid copy of S0.

See that (Z∗
k − τ∗k

η
μ ) = (Zk − τk

η
μ ) for all k ≥ 1. So, Θn;2+δ :=

∑∞
k=n ‖(Zk −

τk
η
μ ) − (Z∗

k − τ∗k
η
μ )‖2+δ = 0 for all n ≥ 1. Also from (5)

lim
ξ(n)→∞

Var
(∑ξ(n)

k=1

(
Zk − τk

η
μ

))
ξ(n) = ΣZ ,
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which is a positive definite matrix. By Theorem 4, for the stationary 1-dependent
process {(Zk − τk

η
μ ) : k ≥ 1} and {W (t) : t > 0}, a d-dimensional standard

Wiener process,∥∥∥∥∥∥
ξ(n)∑
k=1

Zk − Tξ(n)
η

μ
− Σ1/2

Z W (ξ(n))

∥∥∥∥∥∥
a.s.= O(ξ(n)1/(2+δ))

⇒

∥∥∥∥∥∥
ξ(n)∑
k=1

Zk − Tξ(n)
η

μ
− Σ1/2

Z W (ξ(n))

∥∥∥∥∥∥
a.s.= O(n1/(2+δ)). (24)

By (21) and [9, Proposition 1.2.1],

‖W (ξ(n)) −W (n/μ)‖ a.s.= O(bn) ,

where for positive constants c and c′,

bn =
(

2cn1/p′
(

log
(

n/μ

n1/p′

)
+ log log (n/μ)

))1/2

=
(

2cn1/p′

(
log
(
n1−1/p′

μ

)
+ log log (n/μ)

))1/2

< c′n1/(2p′) (logn) .

Consequently,

‖W (ξ(n)) −W (n/μ)‖ a.s.= O(n1/(2p′) logn). (25)

Using triangle inequality and since Tξ(n) < n < Tξ(n)+1,

Yξ(n) :=
Tξ(n)+1∑

i=Tξ(n)+1

∥∥∥∥f(Xi) −
η

μ

∥∥∥∥
>

∥∥∥∥∥∥
n∑

i=Tξ(n)+1

(
f(Xi) −

η

μ

)∥∥∥∥∥∥
=

∥∥∥∥∥∥
n∑

i=1

(
f(Xi) −

η

μ

)
−

ξ(n)∑
k=1

(
Zk − τk

η

μ

)∥∥∥∥∥∥ . (26)

By construction, {Yk}k≥1 are positive and identical random variables generated
from the sum of absolute values of correlated units sampled through wide-sense
regeneration. By the integral transformation inequality and the assumption in
equation-(6)

∞∑
i=1

Pr
(
Yi

2+δ > i
)

=
∞∑
i=1

Pr
(
Y1

2+δ > i
)

<

∫ ∞

1
Pr
(
Y1

2+δ > x
)
dx
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<

∫ ∞

0
Pr
(
Y1

2+δ > x
)
dx

= EQ[Y1
2+δ]

< ∞.

Consequently,
∞∑
i=1

Pr
(
Yi

2+δ > i
)
< ∞ ⇒

∞∑
i=1

Pr
(
Yi > i

1
2+δ

)
< ∞. (27)

Thus by Borel-Cantelli lemma

Yn
a.s.= O

(
n

1
2+δ

)
as n → ∞. (28)

From (26) and (28) as n → ∞

Yξ(n)
a.s.= O

(
ξ(n)

1
2+δ

)

⇒

∥∥∥∥∥∥
n∑

i=1

(
f(Xi) −

η

μ

)
−

ξ(n)∑
k=1

(
Zk − τk

η

μ

)∥∥∥∥∥∥
a.s.= O

(
n

1
2+δ

)
. (29)

Using the triangle inequality and (24), (25), and (29)∥∥∥∥∥
n∑

i=1
f(Xi) − n

η

μ
− Σ1/2

Z√
μ
W (n)

∥∥∥∥∥ <
∥∥∥∥∥∥

n∑
i=1

(
f(Xi) −

η

μ

)
−

ξ(n)∑
k=1

(
Zk − τk

η

μ

)∥∥∥∥∥∥
+

∥∥∥∥∥∥
ξ(n)∑
k=1

Zk − Tξ(n)
η

μ
− Σ1/2

Z W (ξ(n))

∥∥∥∥∥∥
+
∥∥∥∥Σ1/2

Z

(
W (ξ(n)) −W

(
n

μ

))∥∥∥∥ ,

This implies,∥∥∥∥∥
n∑

i=1
f(Xi) − n

η

μ
− Σ1/2

Z√
μ
W (n)

∥∥∥∥∥ = O(n1/(2+δ)) + O(n1/(2+δ)) + O(n1/p logn) .

Thus, with β = max{1/(2 + δ), 1/(2p′)} = max{1/(2 + δ), 1/(2p), 1/4} and by
Lemma-5 as n → ∞ ∥∥∥∥∥

n∑
i=1

f(Xi) − n
η

μ
− Σ1/2

Z√
μ
W (n)

∥∥∥∥∥ a.s.= O(nβ logn) (30)

⇒
∥∥∥∥∥

n∑
i=1

f(Xi) − nEπ[f(X)] − Σ1/2
Z√
μ
W (n)

∥∥∥∥∥ a.s.= O(nβ logn).
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Appendix C: Proof of Theorem 2

Definition 2. Let {Xt}t≥1 be a stationary stochastic process on a probability
space (Ω,F ,P), and let Fq

p := σ(Xp, . . . , Xq) for some q > p. The process is
said to be α-mixing or strongly mixing if α(n) → 0 as n → ∞ where

α(n) := sup
k≥1

sup
A∈Fk

1 ;B∈F∞
k+n

|Pr(A ∩B) − Pr(A) Pr(B)|.

Proof of Lemma 1. {Xt}t≥1 is a polynomially ergodic sequence of random vari-
ables of order ξ for ξ > (2 + δ)(1 + (2 + δ)/δ∗). So in (2), G(n) = n−ξ. Further,
from [23] we have that α(n) ≤ n−ξ for n ≥ 1 (see Definition 2 for α(n)). Con-
sequently, for p < ξ

∞∑
n=1

np−1α(n) <
∞∑

n=1
np−1n−ξ < ∞.

By [39, Proposition 3.1]

Eπ[τp1 ] < ∞ for p ∈ (0, ξ). (31)

From Lemma 6 we have EQ[τp1 ] < ∞ for p ∈ (0, ξ).

Proof of Lemma 2. Since {Xt}t≥1 is geometrically ergodic, G(n) = tn for some
0 < t < 1 (see Definition 2 for α(n)). From [23], α(n) ≤ tn for n ≥ 1. Conse-
quently for p > 1,

∞∑
n=1

np−1α(n) <
∞∑

n=1
np−1tn.

By a ratio test, for all p > 1

lim
n→∞

(n + 1)p−1tn+1

np−1tn
= lim

n→∞
(1 + 1/n)p−1t = t < 1.

So,
∞∑

n=1
np−1α(n) < ∞ for p > 1.

By [39, Proposition 3.1]

Eπ[τp1 ] < ∞ for p > 1. (32)

From Lemma 6, EQ[τp1 ] < ∞ for p > 1.

Proof of Lemma 3. For r > 1 and using triangle inequality for Lr-distances on
π, Hölder’s inequality, Markov’s inequality, and, infinite sum of r-series,
(

Eπ

[(
τ1∑
i=1

‖f(Xi)‖
)r])1/r
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=
(

Eπ

[( ∞∑
i=1

I(i ≤ τ1)‖f(Xi)‖
)r])1/r

≤
∞∑
i=1

(Eπ (I(i ≤ τ1)‖f(Xi)‖r))1/r

≤
∞∑
i=1

(
(EπI(i ≤ τ1))δ

∗/(r+δ∗)
(
Eπ

(
‖f(Xi)‖r+δ∗

))r/(r+δ∗)
)1/r

=
(
Eπ

(
‖f(X)‖r+δ∗

))1/(r+δ∗) ∞∑
i=1

(Prπ(τ1 ≥ i))δ
∗/r(r+δ∗)

≤
(
Eπ

(
‖f(X)‖r+δ∗

))1/(r+δ∗) ∞∑
i=1

(
Prπ(τφ1 ≥ iφ)

)δ∗/r(r+δ∗)

≤
(
Eπ

(
‖f(X)‖r+δ∗

))1/(r+δ∗) ∞∑
i=1

(
Eπ(τφ1 )

iφ

)δ∗/r(r+δ∗)

=
(
Eπ

(
‖f(X)‖r+δ∗

))1/(r+δ∗) (
Eπ(τφ1 )

)δ∗/r(r+δ∗) ∞∑
i=1

(
1
iφ

)δ∗/r(r+δ∗)

< ∞ .

Proof of Lemma 4. Since {Xt}t≥1 is geometrically ergodic, by (32), Eπ[τ q1 ] < ∞
for q > 1. Proceeding similarly as Lemma 3, Eπ

(
(
∑τ1

i=1 ‖f(Xi)‖)r
)
< ∞.

Proof of Theorem 2. (a) {Xt}t≥1 is polynomially ergodic of order ξ for ξ >
(2 + δ)(1 + (2 + δ)/δ∗). Thus (31) holds. Then by Lemma 1,

EQ[τp1 ] < ∞ for p ∈ (0, ξ). (33)

By the assumption in the theorem, Eπ

(
‖f(X)‖(2+δ+δ∗/2)+δ∗/2) < ∞ for some

δ > 0 and δ∗ > 0. By (31) and Lemma 3

Eπ

⎡
⎣
(

τ1∑
i=1

‖f(Xi)‖
)2+δ+δ∗/2

⎤
⎦ < ∞

⇒ Eπ

⎡
⎣
(

τ1∑
i=1

∥∥∥∥f(Xi) −
η

μ

∥∥∥∥
)2+δ+δ∗/2

⎤
⎦ < ∞. (34)

By Theorem 1, (33), and (34),∥∥∥∥∥
n∑

i=1
f(Xi) − nEπ[f(X)] − Σ1/2

Z√
μ
W (n)

∥∥∥∥∥ a.s.= O(nβ log(n)) (35)

as n → ∞ where β = max{1/(2 + δ), 1/(2p), 1/4} for all p ∈ (0, ξ). Since ξ > 2
always, β = max{1/(2 + δ), 1/4}.
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(b) Let {Xt}t≥1 be geometrically ergodic. So (32) holds. By Lemma 2

EQ[τp1 ] < ∞ ∀p > 1. (36)

Since Eπ

(
‖f(X)‖(2+δ+δ∗/2)+δ∗/2) < ∞ for some δ > 0 and δ∗ > 0, by (32) and

Lemma 4

Eπ

⎡
⎣
(

τ1∑
i=1

‖f(Xi)‖
)2+δ+δ∗/2

⎤
⎦ < ∞

⇒ Eπ

⎡
⎣
(

τ1∑
i=1

∥∥∥∥f(Xi) −
η

μ

∥∥∥∥
)2+δ+δ∗/2

⎤
⎦ < ∞. (37)

By Theorem 1, (36), and (37), with β = max{1/(2 + δ), 1/4} as n → ∞∥∥∥∥∥
n∑

i=1
f(Xi) − nEπ[f(X)] − Σ1/2

Z√
μ
W (n)

∥∥∥∥∥ a.s.= O(nβ log(n)). (38)

Appendix D: Proof of Corollary 1

From Theorem 2, β = max{1/(2 + δ), 1/4}. Hence, if b−1
n log(n)κ2(n) → 0 as

n → ∞, then log3(n)n{max{2/(2+δ),1/2}−ν}} → 0 as n → ∞. Hence, a choice of
bn such that ν > max{2/(2+δ), 1/2} will ensure the strong consistency of batch
means estimator.

Appendix E: Theory for illustrative examples

E.1. Bivariate normal Gibbs sampler

A 1-step minorization is obtained from kDS by using a “distinguished point
technique” as described in [see 33]. Define a distinguished point y∗ in a small
set D = {(u, v) | u ∈ [μ1 − h, μ1 + h], v ∈ [μ2 − h, μ2 + h];h > 0} and π denote
the bivariate Gaussian target density. Then,

kDS (xi+1, yi+1 | xi, yi) = π(xi+1 | yi)
π(xi+1 | y∗)π(yi+1 | xi+1)π(xi+1 | y∗)

≥ inf
x∈D

{
π(x | yi)
π(x | y∗)

}
π(yi+1 | xi+1) π(xi+1 | y∗) ID(xi+1)

= s(yi) Q(xi+1, yi+1),

where Q(xi+1, yi+1) := ε−1π(yi+1 | xi+1) π(xi+1 | y∗) ID(xi+1) such that for
Φ(μ; σ2)(·) to be the probability measure for Normal(μ, σ2)

ε :=
∫
R

∫
R

π(yi+1 | xi+1) π(xi+1 | y∗) ID(xi+1) dyi+1 dxi+1
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=
∫
D

{∫
R

π(yi+1 | xi+1) dyi+1

}
π(xi+1 | y∗) dxi+1

=
∫
D

π(xi+1 | y∗) dxi+1

= Φ(
μ1+ ρ

σ2
2
(y∗−μ2); σ2

1− ρ2
σ2
2

) (D) .

Similarly, the minorization constant will be

s(yi) := ε inf
x∈D

{
π(x | yi)
π(x | y∗)

}

= ε inf
x∈D

⎡
⎣exp

⎧⎨
⎩−

(x− μ1 − ρ
σ2
2
(yi − μ2))2 − (x− μ1 − ρ

σ2
2
(y∗ − μ2))2

2
(
σ2

1 − ρ2

σ2
2

)
⎫⎬
⎭
⎤
⎦

= ε exp
[
−
ρ2 {(yi − μ2)2 − (y∗ − μ2)2

}
2σ2

2(σ2
1σ

2
2 − ρ2)

]

× inf
x∈D

[
exp
{
ρσ2

2(x− μ1)(yi − y∗)
σ2

1σ
2
2 − ρ2

}]
.

Clearly, the value of x required for minimizing the above function is dependent
on ρ and (y− y∗). A detailed table of (x− μ1) values are given in the following
table.

ρ (y − y∗) (x− μ1)
ρ > 0 (y − y∗) ≥ 0 −h
ρ > 0 (y − y∗) < 0 h
ρ ≤ 0 (y − y∗) ≥ 0 h
ρ ≤ 0 (y − y∗) < 0 −h

The 2-step minorization kernel for the deterministic scan Gibbs sampler can
be achieved as

k2
DS (xi+2, yi+2 | xi, yi) :=

∫
R

∫
R

kDS (xi+2, yi+2 | xi+1, yi+1)×

kDS (xi+1, yi+1 | xi, yi) dyi+1 dxi+1

≥ s(yi) Q(xi+2, yi+2)×∫
R

∫
R

s(yi+1)Q(xi+1, yi+1) dyi+1 dxi+1

= s∗(yi) Q(xi+2, yi+2),

where s∗(yi) := s(yi)EQ(s(y)). Determining the form of s∗ and hence the form
of EQ(s(y)) is crucial for determining regeneration times.

E.2. Probit regression model

Establishing a 1-step minorization with the corresponding small set calculations
has been done for deterministic scan Gibbs samplers (see [33], [38]). Using a
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random scan version of the Gibbs sampler of [1], we present a framework for
identifying wide-sense regenerations.

The deterministic scan AC sampler is geometrically ergodic [see 38, Theorem
1] and regenerations can be identified using “distinguished point” technique
of [33]. For a distinguished point z∗ ∈ R

n and a rectangular small set D∗ =
[c1, d1] × [c2, d2] × . . . [cp, dp] the minorization kernel is

Q(βi+1, zi+1) := 1
ε
π(βi+1 | z∗,y)π(zi+1 | βi+1,y)ID∗(βi+1) ,

where ε =
∫
Rp

∫
Rn π(βi+1 | z∗,y) π(zi+1 | βi+1,y)ID∗(βi+1) dzi+1dβi+1. For tj

being the jth term of t = (zi − z∗)TX, the minorization constant will be

s(zi) :=
ε exp

(∑p
j=1 (cjtjIR+(tj) + djtjIR−(tj))

)
exp(0.5(zi)TXT (XTX)−1X(zi) − 0.5(z∗)TXT (XTX)−1X(z∗)) .

Consequently, the minorization holds with

kDS(βi+1, zi+1 | βi, zi) ≥ s(zi) Q(βi+1, zi+1). (39)

For Δ being the Dirac measure, the one-step random scan AC-sampler kernel
is defined as

kRS(βi+1, zi+1 | βi, zi) =pπ (βi+1 | zi)Δzi
(zi+1)

+ (1 − p)π (zi+1 | βi+1)Δβi(βi+1).

Similarly, the 2-step random scan Markov transition kernel is

k2
RS(βi+2, zi+2 | βi, zi)

=
∫
Rp

∫
Rn

kRS(βi+2, zi+2 | βi+1, zi+1)kRS(βi+1, zi+1 | βi, zi) dzi+1dβi+1

=
∫
Rp

∫
Rn

(
pπ (βi+2 | zi+1) Δzi+1(zi+2) + (1 − p)π (zi+2 | βi+1)Δβi+1(βi+2)

)
(pπ (βi+1 | zi) Δzi(zi+1) + (1 − p)π (zi+1 | βi) Δβi(βi+1)) dzi+1dβi+1

=
∫
Rp

∫
Rn

p2π (βi+2 | zi+1)π (βi+1 | zi) Δzi(zi+1)Δzi+1(zi+2) dzi+1dβi+1

+
∫
Rp

∫
Rn

p(1 − p)π (βi+2 | zi+1)π (zi+1 | βi)Δβi(βi+1)Δzi+1(zi+2) dzi+1dβi+1

+
∫
Rp

∫
Rn

p(1 − p)π (zi+2 | βi+1)π (βi+1 | zi)Δzi(zi+1)Δβi+1(βi+2) dzi+1dβi+1

+
∫
Rp

∫
Rn

(1 − p)2π (zi+2 | βi+1)π (zi+1 | βi) Δβi(βi+1)Δβi+1(βi+2) dzi+1dβi+1.
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So,

k2
RS (βi+2, zi+2 | βi, zi) = p2π (βi+2 | zi+2) Δzi(zi+2)

+ p(1 − p)π (βi+2 | zi+2) π (zi+2 | βi)
+ p(1 − p)π (zi+2 | βi+2)π (βi+2 | zi)
+ (1 − p)2π (zi+2 | βi) Δβi(βi+2). (40)

Using the 1-step minorization of the deterministic scan Gibbs sampler and with
s′(zi) := p(1 − p)s(zi), we get

k2
RS (βi+2, zi+2 | βi, zi)

= p2π (βi+2 | zi+2) Δzi
(zi+2) + p(1 − p)π (βi+2 | zi+2) π (zi+2 | βi)

+ p(1 − p)π (zi+2 | βi+2)π (βi+2 | zi) + (1 − p)2π (zi+2 | βi)Δβi(βi+2)
≥ p(1 − p)π (zi+2 | βi+2)π (βi+2 | zi)
≥ p(1 − p)s(zi) Q(βi+2, zi+2)
= s′(zi) Q(βi+2, zi+2). (41)

Following the ideas in [33] and [38], we can obtain the probability of a regen-
eration from the observed chain in the following way:

ηi = Pr (δi = 1 | (βi, zi), (βi+2, zi+2)) ;

= Pr(Xi+2 = y | Xi = x, δi = 1)Pr(δi = 1 | Xi = x) Pr(Xi = x)
Pr(Xi+2 = y | Xi = x) Pr(Xi = x) ;

= Pr(Xi+2 = y | Xi = x, δi = 1)Pr(δi = 1 | Xi = x)
Pr(Xi+2 = y | Xi = x) ;

= s′(zi) Q(βi+2, zi+2)
k2
RS (βi+2, zi+2 | βi, zi)

;

= p(1 − p) exp(−0.5(zi)TXT (XTX)−1X(zi)))
exp(−0.5(z∗)TXT (XTX)−1X(z∗)))

;

× exp
{

p∑
i=1

(citiIR+(ti) + ditiIR−(ti))
}

;

× π(βi+2 | z∗,y) π(zi+2 | βi+2,y)ID∗(βi+2);

× 1
k2
RS (βi+2, zi+2 | βi, zi)

.

The ηi can be calculated analytically from a run of the random scan Gibbs
sampler. By drawing Bernoulli samples with success probability ηi we identify
the regenerations if the outcome of a trial is 1.
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