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Abstract: We consider the problem of two-sample testing for data gener-
ated under the manifold setting, namely where potentially high-dimensional
observations are made for underlying objects concentrated near a low-
dimensional manifold. Existing two-sample tests typically suffer from a loss
of power under high-dimensionality; under the manifold setting, these tests
largely ignore the underlying geometric structure of the data, resulting in
misleading representations of similarity. Instead, we avoid these issues and
propose a non-parametric two-sample test for general data objects which
takes into account the intrinsic geometry of the data. A data-driven met-
ric is utilized to characterize the distance between points while respecting
the manifold structure. The test statistic behaves like a distance metric
between distributions and is shown to be consistent against all alternatives
where the two distributions have a positive energy distance. Empirical stud-
ies and data analysis of speech recordings demonstrate the test’s superior
performance for manifold data.
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1. Introduction

Two-sample tests for detecting a difference in distributions are a classic problem
in statistics and appear across a wide-range of applications. Consider that we
have two samples {X1, . . . , Xn} and {Y1, . . . , Ym} that are independently and
identically distributed from unknown distribution FX and FY , respectively. The
two-sample problem aims to distinguish the hypothesis H0 : FX = FY from an
omnibus alternative H1 : FX �= FY . Advancements in data collection technology
have produced data sets of increasingly complexity such that observations may
be high-dimensional data objects, making it intractable to express or estimate
FX and FY directly due to the curse of dimensionality. Omnibus tests perform
well for low-dimensional data but may incur loss of power [29] or become com-
pletely powerless [41] for high-dimensional data. These high-dimensional and
non-standard data types can pose immense challenges from a practical and the-
oretical perspective for two-sample testing.

In practice, imaging, video, and audio data have exceedingly high dimension-
ality, yet humans and many learning techniques are able to distinguish classes
among these types of objects with exceptional accuracy. This phenomenon is
explained by the manifold hypothesis, which states that data may appear to re-
side in a high-dimensional space with a large number p of features, but in truth
these observation live on or near a low-dimensional manifold with intrinsic di-
mensionality d � p [17]. Data satisfying the manifold hypothesis commonly
possess geometric structures that impose constraints on the data, resulting in
inherent low-dimensionality. The intrinsic dimension is of interest in many man-
ifold learning problems [21, 5, 12]. Other works have been devoted to learning a
low-dimensional representation of the manifold, or more generally the underly-
ing structure [37, 10, 9, 34]. In the context of hypothesis testing, non-parametric
two-sample tests for non-Euclidean data designed to exploit the manifold feature
are largely unexplored.

Existing non-parametric two-sample tests applicable to non-Euclidean and
high-dimensional data are commonly equipped with a similarity measure, usu-
ally Euclidean distance. Notable non-parametric contributions include test
statistics based on inter-point distances [35, 2, 30, 23], kernel maximum mean
discrepancy (MMD) tests [19, 18], and graph-based two-sample tests [15, 31, 7,
6]. In particular, tests based on energy distance and MMD have been extensively
studied. For example, [33] provided a framework establishing the equivalence be-
tween the (generalized) energy distance and the MMD. In the high-dimensional
setting, the power of these tests have been found to decrease as dimensionality
increases under various scenarios [29, 41]. Under the manifold hypothesis, [8]
established a consistency result for the MMD test when the kernel bandwidth
is adapted to the intrinsic dimensionality. However, existing tests that apply
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a global Euclidean distance ignore any geometric structure in the data, and
tests that apply local Euclidean distance [15, 31, 7, 8] respect the neighborhood
and smooth manifold structure but not the data similarity measures in term of
manifold distance between points.

We propose a non-parametric two-sample test for general data types lying
in arbitrary dimensions that takes advantage of the intrinsic geometry of the
data. Conscious of the manifold hypothesis, the proposed manifold energy test
utilizes a data-driven metric [ISOMAP, 37] to tell points and distributions apart
on the underlying low-dimensional manifold. As a result, the performance of the
test is independent of the ambient space where the underlying geometrical data
are embedded into, as long as data are intrinsically generated from a fixed
manifold. This phenomenon is confirmed by our simulations and theory. Our
theory suggests that the estimation error of the proposed test statistic under an
unknown manifold structure scales with the intrinsic dimensionality d but not
the ambient dimensionality p. This result supposes a noiseless situation and we
also discuss the situation when the observations are manifold data convoluted
with ambient noise. While the method and theory for estimating the inter-point
manifold distance are drawn from ISOMAP [37, 1], our main contribution lies
in devising the new hypothesis test that is aware of the manifold distance.

For the test of equality in distribution to be powerful, the energy distance
between the two distributions needs to be positive. A commonly considered suf-
ficient condition is that the underlying manifold is of strong negative type [32],
which implies, a fortiori, the energy test is powerful against any alternative
hypothesis. Hilbert spaces and other examples of strong negative type spaces
have been found in the literature [25, 26], though it remains an open problem
how to characterize spaces of negative type [14]. The permutation test is consis-
tent whenever the energy distance between distributions is positive. The strong
negative type condition is only sufficient but not necessary, and our numerical
examples generate data on spaces not necessarily of strong negative type (e.g.,
sphere), yet the energy test demonstrates powerful results. An application of
our test to distinguish voice command utterances yield much improved results
than omnibus tests unaware of the manifold structure.

A simple motivating example illustrates the need for a test that leverages
information from the data’s geometric structure even when the ambient dimen-
sionality p is small. Consider data generated uniformly from a swiss roll in R

p

with p = 3. The inner spiral (see Figure 1 for an illustration) constitutes Sam-
ple 1 and the outer spiral constitutes Sample 2, and to ensure the samples are
not well-separated, 30% of observations from Sample 1 are swapped with the
same amount of observations from Sample 2 (uniformly randomly selected and
reassigned to Sample 2, and vice versa). The number of trials, out of 100, that
can successfully reject the null hypothesis at α = 0.05 are reported. We exam-
ine the performance of two non-parametric tests, namely the two-sample energy
statistic [35] and generalized edge-count two-sample test, known as GET [7],
both of which are constructed from pairwise Euclidean distance and are appli-
cable to data in arbitrary dimension. We compare this to our proposed test,
T̂nm, which is constructed from geodesic distances that take into account the
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Table 1

Number of trials out of 100 that reject H0 at α = 0.05. GET, generalized edge-count test;
T̂nm, proposed manifold test.

energy test GET T̂nm

62 48 80

intrinsic geometry of the data. Significance is obtained via 1,000 permutations
for each test statistic, respectively. It is clear that T̂nm works well for data con-
centrated near or on a manifold and has improved power compared to the energy
statistic and GET.

2. Methods

2.1. Background: the energy test

The energy test [35, 2] provides a general framework to conduct two-sample test
for non-Euclidean random objects and multivariate data. Let M be the space
where the observations assume values, and μ and ν be two probability measures
supported on M. Let X1, . . . , Xn ∼ μ and Y1, . . . , Ym ∼ ν be two independent
samples of non-Euclidean objects. The hypothesis being tested is

H0 : μ = ν vs HA : μ �= ν. (1)

Given a choice of metric ρ on M, the energy test targets the population
energy distance between the two distributions, defined as

D(μ, ν) = 2Eρ(X,Y ) − Eρ(X,X ′) − Eρ(Y, Y ′), (2)

where X,X ′ and Y, Y ′ are independent random variables following the law of
μ and ν, respectively. Intuitively, the energy distance measures the difference
of the between-sample and within-sample difference, and should be small when
the two distributions are equal and large when they are different.

The energy statistic [2, 35] is the sample estimate of D(μ, ν) and is defined
as

Tnm = 2
nm

n∑
i=1

m∑
j=1

ρ(Xi, Yj) −
1
n2

n∑
i,j=1

ρ(Xi, Xj) −
1
m2

m∑
i,j=1

ρ(Yi, Yj).

The energy test has been proven to be a generally powerful test [2, 35, 3] in low
dimensions and has been applied in many scientific contexts [11, 28].

In practice, the energy distance between two distinct distributions are usually
positive, endowing power to hypothesis tests based on this distance. A sufficient
condition to guarantee the positiveness is that (M, ρ) is a metric space of strong
negative type [33, see also Definition 2.1]; in this case, the energy distance is a
proper distance between probability measures and equals 0 if μ and ν agree and
is positive otherwise. In fact, this condition implies the universal consistency of
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the energy test, namely the test is powerful against all alternative hypotheses.
Universal consistency hinges on the intuition to hold true that the between-
sample distances tend to be larger than the within-sample distances, which is
formalized by the notion of negative type spaces [32]. A metric space (M, ρ)
has negative type if for all n ≥ 1, x1, . . . , xn ∈ M, and real numbers a1, . . . , an
with

∑n
i=1 ai = 0, we have

∑
i,j aiajρ(xi, xj) ≤ 0. On a metric space of negative

type, any set of n red points xi and n blue points x′
i satisfies that the sum of

distances between different colored points is larger than that within points of
the same color, namely

2
n∑

i,j=1
ρ(xi, x

′
j) −

n∑
i,j=1

ρ(xi, xj) −
n∑

i,j=1
ρ(x′

i, x
′
j) ≥ 0.

As shown by [32, 24], negative type is equivalent to embeddability into a Hilbert
space with a change of the metric, namely M has negative type if and only
if there exists a Hilbert space with norm ‖·‖ and a map φ such that for all
x, x′ ∈ M, ρ(x, x′) = ‖φ(x) − φ(x′)‖2. Examples for metric spaces of negative
type can be found in [27].

The notion of strong negative type was first defined in [42] as follows.
Definition 2.1. The metric space (M, ρ) has strong negative type if for any
two probability measure μ and ν with finite first moments∫∫

ρ(x1, x2)dμ(x1)dμ(x2) +
∫∫

ρ(x1, x2)dν(x1)dν(x2)

− 2
∫∫

ρ(x1, x2)dμ(x1)dν(x2) ≤ 0

and the LHS equals 0 if and only if μ = ν.
Immediately, on a space of strong negative type the energy distance (2) dis-

tinguishes distributions.
Proposition 2.1 (Proposition 3 in [36]). If the metric space (M, ρ) has strong
negative type, then the energy distance (2) is a distance metric between distri-
butions. In particular, D(μ, ν) = 0 if and only if μ = ν.

Spaces of strong negative type have been extensively discussed and applied
by [24, 33] in the context of energy statistics. Examples for spaces of strong
negative type include separable Hilbert spaces [24], hyperbolic spaces [25], and
subsets of a sphere containing at most one pair of antipodal points such as
an open hemisphere [26]. If (M, ρ) has negative type, then (M, ρr) has strong
negative type when 0 < r < 1 [22]. Characterizing Riemannian manifolds that
have strong negative type has been an ongoing interest [36] but is out of scope
of this work.

2.2. Our setting: data lying on an unknown manifold

Practical evidence supports the manifold hypothesis that high-dimensional data
such as audios and images often lie on or close to a low-dimensional manifold.
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Fig 1. Observations generated uniformly from a swiss roll in R
3. Observations from Sample 1

are represented by red dots and observations from Sample 2 are represented by blue dots.

This could be because data objects are subject to intrinsic geometrical con-
straints or are connected to each other via transformations [37]. The extrinsic
Euclidean distance fails to represent the inter-relationship between objects. In
contrast, the geometry is respected and well-represented by the geodesic distance
for measuring inter-point distances. This can be seen in the Swiss roll example
illustrated in Figure 1. Here, the distributions μ and ν are induced by sampling
from observations on different layers of the swiss roll. Observations from μ con-
sist of data sampled from the inner spiral (Sample 1) while observations from ν
are sampled from the outer spiral (Sample 2). To make the setting more challeng-
ing, 30% of the observations in each sample are reassigned to the other sample.
Explicitly, 30% of the observations from Sample 1 are uniformly randomly se-
lected and re-labelled as Sample 2 and 30% of the observations from Sample 2
are uniformly randomly selected and re-labelled as Sample 1. As illustrated, the
overall between- and within-sample distances do not differ much in terms of Eu-
clidean distance. However, if one follows the flow of the data and does not travel
across any space where there is no data, it is clear that the between-sample dif-
ference is much larger than within-sample difference. This example illustrates
that the two samples drastically differ in terms of the intrinsic geodesic distance.

This phenomenon prompts us to study the energy test when the metric is
appropriately chosen and estimated in a data-driven fashion depending on the
geometry of the dataset. Our setting is that we have available two samples
of multivariate observations {Xi}ni=1 and {Yj}mj=1 lying on a compact smooth
d-dimensional submanifold M of the Euclidean space R

p, for p ≥ d. This re-
flects the situation where p-dimensional features are available for geometrical
objects that can be represented using d parameters. The geometry of the data
is determined locally by the Euclidean distance between the p-dimensional fea-
tures, while globally the inter-point distances are not Euclidean, as illustrated
in Figure 1.



Manifold energy two-sample test 151

In what follows, we consider, in particular, the geodesic distance on M as
the metric ρ, defined for x, y ∈ M by

ρ(x, y) = inf
γ

∫
‖γ′(t)‖ dt,

where the infimum is taken over all piecewise smooth paths γ : [0, 1] → M that
starts at x and ends at y, and ‖·‖ is the ambient Euclidean norm. The geodesic
distance ρ must be estimated since the manifold M is unknown. We propose
to first obtain an estimate ρ̂(z1, z2) of the geodesic distance between any two
observations z1, z2 by the graph distance on a neighborhood graph, adopting
the method proposed by [37], as described in Algorithm 1. Denote the pooled
random sample as Z = {X1, . . . , Xn, Y1, . . . , Ym}.

Algorithm 1: Estimate geodesic distance
Data: Observations Z, a pair of points z1, z2 ∈ Z, and neighborhood size r
Result: Geodesic distance estimate ρ̂(z1, z2)
Build a graph connecting all the pairs a, b ∈ Z of observations for which the edges are
the segments (a, b) with ‖a− b‖ ≤ r.

Set ρ̂(z1, z2) to be the length of the shortest path in the graph.

Next, to test the hypothesis (1), we propose the manifold energy statistic

T̂nm = T̂ (X1, . . . , Xn, Y1, . . . , Ym), (3)

where for x1, . . . , xn, y1, . . . , ym ∈ M define

T̂ (x1, . . . , xn, y1, . . . , ym)

= 2
nm

n∑
i=1

m∑
j=1

ρ̂(xi, yj) −
1
n2

n∑
i,j=1

ρ̂(xi, xj) −
1
m2

m∑
i,j=1

ρ̂(yi, yj).

Here ρ̂ is constructed using Algorithm 1 applied on {x1, . . . , xn, y1, . . . , ym}.
The null hypothesis is rejected if T̂nm is large.
We propose to approximate the null distribution using the permutation dis-

tribution. We applied the permutation null distribution to derive the p-values.
Let Z = {Z1, . . . , Zn, Zn+1, . . . , Zn+m} = {X1, . . . , Xn, Y1, . . . , Ym} denote the
pooled sample. The permutation null distribution is the distribution of T̂π =
T̂ (Zπ1 , . . . , Zπn+m) given Z, where π = (π1, . . . , πn+m) is a random permuta-
tion uniformly distributed over all permutations of {1, . . . , n+m}. The nominal
α-level permutation test rejects H0 if the permutation p-value

pperm = P (T̂π ≥ T̂nm | Z)

is at most α. In practice, the permutation null distribution is approximated by
the empirical distribution of T̂π1 , . . . , T̂πB for a large number B of permutations,
which is constructed using random permutation π1, . . .πB uniformly sampled
with replacement from the collection of all permutations.
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3. Theoretical results

3.1. Notations

Let an, bn be non-zero real sequences, and An, Bn be sequences of real-valued
random variables, n = 1, 2, . . . . We write an = o(bn) if limn→∞ an/bn = 0;
an = O(bn) if lim supn→∞ |an/bn| < ∞; an � bn if an = O(bn) and bn =
O(an).

We also denote An = oP (1) if An converges in probability to zero; An =
OP (1) if An is bounded in probability, namely for every ε > 0, there exists
M > 0 such that lim supn P (|An| > M) < ε; An = oP (bn) if An/bn = oP (1);
An = OP (bn) if An/bn = OP (1). We say An = oP (bn) conditional on Bn

in probability if for any ε > 0, the conditional probability P (|An/bn| > ε |
Bn) converges in probability to 0; also, An = OP (bn) conditionally on Bn in
probability if for any ε0, ε1 > 0, there exists M = M(ε0, ε1) > 0 such that
lim supn→∞ P (P (|An/bn| > M | Bn) ≥ ε0) < ε1.

3.2. Asymptotic results

The next proposition provides the rate of convergence for the approximation
of the energy distance (2) by the version (3), where the geodesic distance are
estimated from data. For the theory, we assume data are sampled from the
manifold and thus lies exactly on it, and we later discuss the case with ambient
noise added. The proof utilizes a result by [1] for the uniform approximation
of the geodesic distance by the graph distance; see also [4]. The rate for the
approximation depends, as expected, only on the intrinsic dimensionality d but
not the ambient dimensionality p. The following conditions for estimating the
geodesic distance [1] are needed.

(A1) M is a d-dimensional compact manifold, d < p, isometrically and C2-
smoothly embedded in R

p without boundary.
(A2) Distributions μ and ν respectively has a continuous density bounded below

on M by a positive constant c0.
(A3) The neighborhood graph in Algorithm 1 is constructed with r = rn =

c(maxx∈Z(miny �=x, y∈Z ‖x− y‖))2/3 for some constant c > 0.
(A4) n,m → ∞ such that n/(n + m) → λ ∈ (0, 1).

Proposition 3.1. Suppose that Conditions (A1)–(A4) hold. Then

∣∣∣T̂nm − Tnm

∣∣∣ = O

((
logn
n

)2/(3d)
)

a.s.

Proof. We verify the conditions of Corollary 2.2 in [1] which is restated as
Theorem A.1 in the Appendix. The manifold condition is verified by (A1),
the density condition by (A2) since an observation sampled uniformly from
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{X1, . . . , Xn, Y1, . . . , Ym} has a continuous density uniformly bounded below by
c0, and the neighborhood condition by (A3). By (A4),

max
x,y∈Z

|ρ̂(x, y) − ρ(x, y)| = O

((
logn
n

)2/(3d)
)

a.s. (4)

For x, y ∈ Z, write δ̂(x, y) = ρ̂(x, y) − ρ(x, y). Then

∣∣∣T̂nm − Tnm

∣∣∣ =

∣∣∣∣∣∣
2
nm

n∑
i=1

m∑
j=1

δ̂(Xi, Yj) −
1
n2

n∑
i,j=1

δ̂(Xi, Xj) −
1
m2

m∑
i,j=1

δ̂(Yi, Yj)

∣∣∣∣∣∣
≤ 4 max

x,y∈Z

∣∣∣δ̂(x, y)∣∣∣
= O

((
logn
n

)2/3d
)

a.s.,

where the inequality is due to the triangle inequality, and the last equality is
due to (4).

The permutation test satisfies the following properties on size and power.

Theorem 3.1. Let Cnm = Cnm(Z1, . . . , Zn+m) be the α-upper quantile of the
permutation distribution T̂π given Z.

(a) Suppose that n and m are large enough so that the exact α-upper quantile
Cnm of T̂π given Z is well-defined. If H0 is true, then the size of the test is
exactly α. Namely,

P (T̂nm ≥ Cnm) = α.

(b) Suppose that Conditions (A1)–(A4) hold. If HA is true for some μ, ν
with D(μ, ν) > 0, then the test is consistent against this alternative. Namely,
under HA,

lim
n,m→∞

P (T̂nm ≥ Cnm) = 1.

Our main theorem shows that the proposed permutation procedure has an
exact size if the null hypothesis is correct, and is otherwise consistent against
an alternative hypothesis where D(μ, ν) > 0, as the sample sizes diverge. The
power of the test critically depends on whether the energy distance D(μ, ν) > 0
under the alternative. A widely applied condition to verify this is that (M, ρ)
is a metric space of has strong negative type. This is, however, a sufficient
but not necessary condition for the proposed test to be powerful. The energy
distance between populations are often positive even if data lie on a space not of
strong negative type, which is the case in the spherical simulation in Section 4.
The proof relies on U -statistics theory and an estimation of the size of the
permutation test statistic.

Our permutation test can handle noise-contaminated manifold data. Suppose
that the observations now take the form of Xi = X ′

i+εi where the latent X ′
i ∼ μ

lies on the manifold and εi ∼ N(0, σ2I) is ambient Gaussian noise where I is
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the p × p identity matrix (and similar definition for the noise contaminated Yi

in the other sample). Theorem 3.1(a) holds without modification and the size
of the test is always exact because of a property of the permutation test. We
conjecture that Theorem 3.1(b) still holds if ρ̂ converges to a metric ρ′ in the
ambient space R

d that makes this space of strong negative type. Relatedly, [8]
showed that the kernel MMD test can handle small additive ambient Gaussian
noise that shrinks as the bandwidth shrinks. Recently, approaches [16, 13, 40]
on denoising manifold data have become available.

Proof. (a) Under H0 and the given conditions,

P (T̂π ≥ Cnm | Z) = α,

so unconditionally,
P (T̂π ≥ Cnm) = α.

Note that T̂π has the same marginal distribution as T̂nm under H0, and
Cnm(Z1, . . . , Zn+m) stays the same if we permute its inputs. So (T̂π, Cnm) shares
the same distribution as (T̂nm, Cnm), and

P (T̂nm ≥ Cnm) = α.

(b) Under HA, by Proposition 3.1 and by adapting U -statistics theory to Tnm

(Theorem 12.3 and 12.6 in [38]), we have that

T̂nm = D(μ, ν) + oP (1) (5)

as n,m → ∞, where D(μ, ν) > 0. Write for x1, . . . , xn, y1, . . . , ym ∈ M,

T (x1, . . . , xn, y1, . . . , ym)

= 2
nm

n∑
i=1

m∑
j=1

ρ(xi, yj) −
1
n2

n∑
i,j=1

ρ(xi, xj) −
1
m2

m∑
i,j=1

ρ(yi, yj).

Inspecting the proof of Proposition 3.1, we have∣∣T̂π − T (Zπ1 , . . . , Zπn+m)
∣∣ ≤ max

x,y∈Z

∣∣ρ̂(x, y) − ρ(x, y)
∣∣

where the RHS is O((log n/n)2/(3d)) a.s. and is a function of Z. Combine the
last display with Lemma A.2 in the Appendix, conditional on Z, we have

T̂π = OP

(
1

n + m
+
(

logn
n

)2/(3d)
)

= oP (1)

in probability and thus Cnm = oP (1) unconditionally. This and (5) imply the
desired result.
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Table 2

The number of trials (out of 100) to reject H0 of equal distribution, α = 0.05. The
underlying manifold varies between scenarios but all has intrinsic dimension d = 2 and

ambient dimension p.
S-surface (δ = 0.15) fish bowl (δ = 0.08) sphere (δ = 0.1)
p = 3 p = 10 p = 3 p = 10 p = 3 p = 10

energy statistic 81 38 63 44 56 16
GET (L2) 18 7 24 21 5 5
GET (ρ) 18 7 24 21 5 5
T̂nm 80 75 41 54 55 54

Theorem 3.1(b) can be strengthened to obtain a rate of convergence for the
test being arbitrarily close to (logn/n)2/3d. More precisely,

lim
n,m→∞

Pnm(T̂nm ≥ Cnm) = 1,

where Pnm denotes the joint distribution of the Xi and the Yi′ , which are re-
spectively iid observations from μn and νm such that limn,m→∞ D(μn, νm)/
(logn/n)2/3d = ∞. The line of proof is highly similar to that of Theorem 3.1(b).
To bound the exception probability along Pnm, we apply a Lindeberg CLT for
the U -statistics and also extend Proposition 2.1 to an in-probability version (see
the proof of Corollary 2.1 in [1]).

4. Simulations

We compare the new manifold energy tests with other commonly used non-
parametric two-sample tests that are widely applicable to data in arbitrary
dimension/object data and straightforward to implement. We compare our ap-
proach to the energy test statistic based on Euclidean distance and the gen-
eralized edge-count test statistic (GET). Both are implemented using their re-
spective R packages energy and gTests. For GET, the similarity graph can be
constructed based on a user-selected similarity measure. We carry out the test
using Euclidean distance (L2) and geodesic distance (ρ) and compare the results.
As per the recommendation of [7], the similarity graph used is the 5-minimum
spanning tree (MST). In each simulation setting, we let n = m = 1000 and sam-
pled uniformly from a manifold with ambient noise (σ = 0.3 for the S-surface,
σ = 0.2 for fish bowl, and σ = 0.5 for sphere). To make the simulation scenarios
more challenging for the tests, only one dimension in Sample 2 is shifted by
amount δ. We see in Table 2 the tests based on geodesic distance clearly have
stable power for these simple manifolds even as the ambient dimensionality p
increases.

To further illustrate the performance of our test statistic, we check its be-
havior when the ambient dimension p increases even more dramatically, but the
intrinsic dimension remains low. Here, we simulate data from a 9-dimensional
hypersphere with n = m = 500 and ambient gaussian noise (σ = 0.05). The first
dimension of observations from Sample 2 are shifted by amount δ = 0.25. The
observations are then embedded into p-dimensional space. The results can be
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Table 3

The number of trials (out of 100) to reject H0 of equal distribution, with α = 0.05. Both
samples are uniformly generated from 9-dimensional hypersphere. Observations from

Sample 2 are shifted by amount δ = 0.25. Observations are embedded into a p-dimensional
space.

p 10 20 75 100 150
energy statistic 100 100 29 17 16
GET (L2) 70 51 57 46 37
GET (ρ) 70 51 58 46 38
T̂nm 100 100 100 99 98

Table 4

The proportion of trials (out of 1000) to reject H0 of equal distribution, with α = 0.05. Both
samples are uniformly generated from 9-d hypersphere. Observations are embedded into a

p-dimensional space.
p 10 20 75 100 150
energy statistic 0.04 0.05 0.04 0.06 0.06
GET (L2) 0.06 0.06 0.05 0.04 0.04
GET (ρ) 0.06 0.06 0.05 0.04 0.04
T̂nm 0.06 0.04 0.05 0.03 0.05

seen in Table 3, which shows that as the ambient dimension grows, the proposed
manifold energy test still retains power but other tests have diminished power.

To demonstrate that the manifold energy test is conservative and not simply
rejecting random noise generated by the embedding, we simulate data under
the same manifold settings as in Table 3 but with no difference between the two
populations. Results reported in Table 4 show that the manifold test is near
exact and rejects almost as often as the nominal level.

5. Real data application

To illustrate the practical utility of the geodesic two-sample tests, we apply it to
the speech commands dataset [39]. The dataset consists of 35 keywords spoken
for a one second duration by different contributors, as well as recordings of
background noises such as running water and exercise machinery. Since different
utterances of the same keyword are highly alike in nature and differ only in
terms of pitch, tone, volume, and speed, etc, the audio recording of a keyword
can be viewed as data lying on a low-dimension manifold embedded into a high-
dimensional space.

A raw utterance is a sound snippet of 1 second sampled at 16 kHz and is
denoted as a time series u(j) for j = 1, . . . , T where T = 16000. It is standard
to convert these raw audio files to spectrograms and this pre-processing step is
widely used in speech recognition [20]. Standard time series techniques would
not be applicable here since the audio sample is non-stationary and not easily
modeled by a few parameters. For example, the same word can be spoken in
different pitches or intonations, which results in drastically different time series.
The spectrogram su(·, ·) of u(·) is a time-frequency representation of the sound
obtained as the magnitude of the short-time Fourier transform, defined for time
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Fig 2. Spectrograms of two “tree” and two “three” utterances. Blue to red spectral color stands
for low to high magnitude.

t ∈ [0, 1] and frequency ω ∈ [0, 8] kHz, as

su(t, ω) =

∣∣∣∣∣
T∑

k=−T

u(Tt− k)W
(

2k
M

)
exp(−ik2πω/16)

∣∣∣∣∣
where W (·) was chosen to be the Hann window supported on [−1, 1] and M =
512 is the window length. It is understood that we set u(t) = 0 if t ≤ 0 or
t > T . The spectrogram of the input signal was evaluated at 122 time points
and 256 frequencies equally spaced in [0, 1] × [0, 8], where examples are shown
in Figure 2 as 2D surfaces over time and frequency. Each spectrogram is then
vectorized such that each observation is treated as a 31232-dimensional vector.

We focus on comparing the distribution of two different spoken words. All the
observations from Sample 1 are audio recordings of one word (for example, tree)
and the observations from Sample 2 are the audio recordings of a different word
(for example, three). Intuitively, the tests should reject H0 that the two samples
are equal in distribution. To improve computational speed, we randomly sample
5% of the available recordings. The following word pairs are considered: forward
(n = 79) vs. follow (m = 78), tree (n = 88) vs. three (m = 186), backward (83)
vs. forward (n = 78), and stop (n = 193) vs. go (m = 194). To make the setting
more challenging, we include randomly sampled recordings of background noise.
The amount of background noise is chosen so that the tests have moderate power
to be comparable. Specifically, each observation is a weighted sum of signal and
noise where 40% of the weight is given to the signal (word utterance) and 60%
of the weight is given the random Gaussian background noise. In effect, each
recording sounds like the word stated with background noise. We repeat this
process 100 times and power is estimated to be the number of trials (out of 100)
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Table 5

Speech commands data with randomly sampled background noise.
forward vs. follow tree vs. three backward vs. forward stop vs. go

spectral 11 14 10 11
energy test 7 6 8 10
GET (L2) 43 31 32 45
GET (ρ) 41 34 32 45
T̂nm 64 45 55 58

to reject the H0 at the 0.05 significance level. Results can be see in Table 5.
We compare our proposed test (T̂nm) to the energy statistic and GET. We also
compare it to a test statistic that treats each word utterance as a stationary time
series and estimates the average spectral density of each sample of words. An
L2 statistic is then calculated of the difference between spectral densities, with
a permutation test done to assess significance. It is clear that in this setting,
the manifold energy test enjoys substantial power gain compared to the energy
statistic based on Euclidean distance. For the graph-based tests, following the
recommendations of [7], the similarity graph used is the 5-MST.

6. Discussion

6.1. Generalizing manifold energy test

The concept of manifold energy test can be extended from two closely related
perspectives. For example, the metric ρ on the manifold can be chosen to be
the diffusion distance [9] which can be estimated from the data. More gener-
ally, the energy test can be defined for any general metric after estimating the
manifold. Equivalently, by the equivalence of the energy test and kernel MMD
test [33], the energy test could be generalized to any semimetric resulting from
the equivalent kernel defined on the manifold. Choosing a metric to make the
energy distance large, or a kernel to make the MMD large under the alterna-
tive is crucial for the power. Again, negative type space/positive kernel is a
sufficient but not necessary condition for the test to be powerful against any
alternative hypothesis. When this condition cannot be satisfied or verified in
practice, test methods need to be developed and validated based on extensive
numerical simulations.

6.2. Relationship between our manifold energy test and kernel
MMD test

A well-known result by [33] has shown that the energy test and the maximum
mean discrepancies (MMD) test are equivalent. Given a nondegenerate kernel
k (z → k(·, z) is injective), a semimetric ρ can be defined which makes (Z, ρ)
of negative type; vise versa, given a metric ρ, a distance-induced kernel k can
be defined. The MMD test using the distance-induced kernel k is equivalent to
the energy test using the corresponding metric ρ. It is thus natural to wonder
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Table 6

The number of trials (out of 100) to reject H0 of equal distribution, with α = 0.05.
Observations from Sample 2 are shifted by amount δ. Observations are embedded into a

p-dimensional space.
MMD MMD MMD MMD

(γ = 0.7) (γ = 0.5) (γ = 0.1) (γ = 0.05) T̂nm

hypersphere (δ = 0.25, p = 50) 71 80 78 65 100
S-surface (δ = 0.15, p = 10) 39 26 26 25 75
fish bowl (δ = 0.08, p = 10) 5 5 4 4 54

sphere (δ = 0.10, p = 10) 8 8 6 5 54

whether the proposed manifold energy test is equivalent to an MMD test. It was
shown in [8] that if data lie on a low-dimensional manifold, applying the kernel
MMD test designed for Euclidean data with a local bandwidth is able to adapt
to the manifold data and achieve consistency, regardless of the dimensionality
of the ambient space.

While this method targets the same scenario as we consider, the two methods
are quite different in both the approach and the quantity they target, and the
consistency result of neither method implies the other. Our manifold energy test
specifically targets the manifold geometry by estimating the geodesic distance,
while the kernel MMD test [8] applies kernel designed for Euclidean data and
adapt to the manifold case via appropriately tuned bandwidth. The equivalent
energy test of the kernel MMD test [8] incorporates a distance metric defined in
the ambient space (which could utilize the Euclidean distance between points
far away, though assigning very small weight only). It is also interesting to
find that the asymptotic limit of our energy statistics is the energy distance
D(μ, ν) =

∫
M

∫
M ρ(x, y)(2p(x)q(y) − p(x)p(y) − q(x)q(y))dV (x)dV (y), while

the main term of the kernel MMD test approaches the (squared) L2 distance∫
M(p(x)−q(x))2dV (x) (not an energy distance!), where p and q are the densities

of μ and ν, respectively, w.r.t. the volume measure V of the manifold. So the
two tests are drastically different.

For numerical comparisons, we present in Table 6 the power performance of
the kernel MMD test and our proposed test (T̂nm). Here, we simulate data under
the same settings as Table 2 and Table 3. The first dimension of observations
from Sample 2 are shifted by amount δ and p represents the ambient dimension.
For the kernel MMD test, we use the Gaussian Radial Basis function (RBF)
kernel and report the power of the MMD test over a range of kernel bandwidth
parameters γ. The threshold of the MMD test is obtained via 1000 bootstraps.

6.3. Computational speed

To compute geodesic distance, standard algorithms such as Dijkstra’s and Floyd-
Warshall all-pairs shortest path run in O(n3) time. For practical sample sizes, we
report in Table 7 the average time (in seconds) it takes to implement our geodesic
test (T̂nm) under the same simulation setup as Table 4. The total sample size
is denoted by n and the extrinsic dimensionality of each observation is denoted
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Table 7

Average computation time (secs) for 100 trials.

p = 10 p = 20 p = 75 p = 100 p = 150

T̂nm

n = 1000 0.796 0.805 0.848 0.879 0.925
n = 2000 3.673 3.716 3.912 3.998 4.161
n = 3000 9.613 9.685 10.103 10.306 10.679
n = 10, 000 112.456 113.248 116.826 119.256 126.004

energy Test

n = 1000 0.492 0.495 0.514 0.524 0.550
n = 2000 2.391 2.500 2.572 2.614 2.693
n = 3000 6.992 7.013 7.176 7.300 7.261
n = 10, 000 76.528 78.276 79.797 80.69 83.25

GET (L2)

n = 1000 3.728 3.764 3.788 3.91 3.806
n = 2000 12.661 13.520 13.695 13.779 13.847
n = 3000 31.933 31.530 31.160 31.092 31.424
n = 10, 000 437.786 439.82 440.962 446.508 452.396

by p. The results were run on a Macbook M1 Pro with 32 GB of memory and 8
cores. For comparison, we also report the average time (in seconds) to implement
the energy test (based on Euclidean distance) and the graph-based test (GET).
For the graph-based test, we construct an MST (minimum spanning tree) using
Euclidean distance. For fair comparison, all tests use 1,000 permutations. The
R packages energy and gTests were used for the energy test and graph-based
test, respectively. In comparison, the results for the geodesic test are not too
terrible: For example, for sample size of 10,000 it takes approximately 2 minutes
when p = 150 while the energy test requires a little under a minute and a half.

Appendix

Technical details

The following is a restatement of Corollary 2.2 in [1] listed here for clarity, which
is invoked by our Proposition 3.1.

Theorem A.1 (Corollary 2.2 in [1]). Let M ⊂ R
p, p ≥ 2, be a d-dimensional

compact manifold with d < p, of class C2 without boundary. Suppose that the
observations X1, . . . , Xn follow probability distribution P with continuous density
w.r.t. the volume measure of M bounded from below on M by a positive constant
c0. Then, for any c > 0, setting r = rn = c(maxi(minj �=i ‖Xi −Xj‖))2/3 in
Algorithm 1, we have

max
i,j

|ρ̂(Xi, Xj) − ρ(Xi, Xj)| = O

((
logn
n

)2/3d′)
a.s.

as n → ∞.

Lemma A.2. Suppose that the conditions of Theorem 3.1(b) hold. Conditional
on Z, as n,m → ∞,

Tnm(Zπ1 , . . . , Zπn+m) = OP

(
1

n + m

)
in probability.
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Proof. Let N = n + m and

φnm(u, u′) =

⎧⎪⎨
⎪⎩
− 1

n2 , u, u′ ≤ n
N+1

− 1
m2 , u, u′ > n

N+1
1

nm , otherwise.

Denote R = (R1, . . . , RN ) as the rank corresponding to π = (π1, . . . , πN ) (i.e.,
Ri = j if πj = i for i, j = 1, . . . , N). Let Dkk′ = ρ(Zk, Zk′) and akk′ =
φnm(k/(N + 1), k′/(N + 1)), k, k′ = 1, . . . , N . Then

Tπ := T (Zπ1 , . . . , ZπN
) =

N∑
k,k′=1

Dkk′aRkRk′ =
∑

1≤k �=k′≤N

Dkk′aRkRk′

=
∑

1≤k �=k′≤N

(Dkk′ − D̄)(aRkRk′ − ā) + N(N − 1)D̄ā,

where D̄=(N(N−1))−1∑
1≤k �=k′≤N Dkk′ , and ā = (N(N−1))−1∑

1≤k �=k′≤N akk′ ,
and the second equality is due to ρ(Zk, Zk) = 0 for k = 1, . . . , N . Taking
expected values and variances conditional on Z,

E[Tπ | Z] = N(N − 1)D̄ā, (6)

and

var(Tπ | Z) = var
( ∑

1≤k �=k′≤N

(Dkk′ − D̄)(aRkRk′ − ā)
)

=
( ∑

(k,k′) and (j,j′) share 2 indices
k �=k′

j �=j′

+
∑

(k,k′) and (j,j′) share 1 index
k �=k′

j �=j′

+
∑

(k,k′) and (j,j′) share 0 indices
k �=k′

j �=j′

)

×
(
(Dkk′ − D̄)(Djj′ − D̄)E[(aRkRk′ − ā)(aRjRj′ − ā)]

)

= 2E[(aR1R2 − ā)2]
N∑

k=1

N∑
k′=1
k′ �=k

(Dkk′ − D̄)2

+ 4E[(aR1R2 − ā)(aR1R3 − ā)]
N∑

k=1

N∑
k′=1
k′ �=k

N∑
j′=1
j′ �=k
j′ �=k′

(Dkk′ − D̄)(Dkj′ − D̄)
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+ E[(aR1R2−ā)(aR3R4−ā)]
N∑

k=1

N∑
k′=1
k′ �=k

N∑
j=1
j �=k
j �=k′

N∑
j′=1
j′ �=k
j′ �=k′

j′ �=j

(Dkk′−D̄)(Djj′−D̄),

(7)

where we utilized the independence of the ranks Rk and Z and the symmetry
of akk′ and Dkk′ in their two indices. After algebraic computation, we have

E[aR1R2 ] = ā

= 1
(n + m)(n + m− 1)

∑
1≤k �=k′≤n+m

akk′

= 1
mn(m + n− 1) � N−3, (8)

E[(aR1R2 − ā)2]

= m2(n− 1) − n + mn(1 + n)
m3n3(m + n− 1) −

(
1

mn(m + n− 1)

)2

=
(m + n− 1)

(
m2(n− 1) + mn(n + 1) − n2)−mn

m3n3(m + n− 1)2 � N−4, (9)

E[(aR1R2 − ā)(aR1R3 − ā)]
= E[(aR1R2aR1R3 − āaR1R2 − āaR1R3 + ā2)]
= E[(aR1R2aR1R3 − ā2)]

= m2(n− 2) + 2n2 −mn(n + 2)
m3n3(m + n− 2)(m + n− 1) −

(
1

mn(m + n− 1)

)2

= −
2m2 (n2 + 1

)
+ m3(n− 2) + mn

(
n2 − 4

)
− 2(n− 1)n2

m3n3(m + n− 2)(m + n− 1)2 � N−5, (10)

E[(aR1R2 − ā)(aR3R4 − ā)]
= E[(aR1R2aR3R4 − ā2)]

= 3(m2(n− 2) − 2n2 + mn(2 + n)
m3n3(m + n− 3)(m + n− 2)(m + n− 1) −

(
1

mn(m + n− 1)

)2

=
2
(
m2 (2n2 + n + 3

)
+ m3(n− 3) + mn

(
n2 + n− 6

)
− 3(n− 1)n2)

m3n3(m + n− 3)(m + n− 2)(m + n− 1)2

� N−6. (11)

Unconditional on Z, by the U -statistics CLT (Theorem 12.3 in [38]) and
compactness of M, we have

D̄ = 1
N(N − 1)

N∑
k=1

N∑
k′=1
k′ �=k

Dkk′ = E[D12] + OP (N−1/2), (12)
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1
N(N − 1)

N∑
k=1

N∑
k′=1
k′ �=k

(Dkk′ − D̄)2 = E[D2
12] −E[D12]2 + OP (N−1/2), (13)

1
N(N − 1)(N − 2)

N∑
k=1

N∑
k′=1
k′ �=k

N∑
j′=1
j′ �=k
j′ �=k′

(Dkk′ − D̄)(Dkj′ − D̄)

= E[D12D13] −E[D12]2 + OP (N−1/2), (14)

1
N(N − 1)(N − 2)(N − 3)

N∑
k=1

N∑
k′=1
k′ �=k

N∑
j=1
j �=k
j �=k′

N∑
j′=1
j′ �=k
j′ �=k′

j′ �=j

(Dkk′ − D̄)(Djj′ − D̄)

= OP (N−1/2). (15)

Combining (6), (8), and (12), we have

E[Tπ | Z] = OP (N−1),

and combining (7), (9)–(11), and (13)–(15), we have

var(Tπ | Z) = OP (N−2).

By Chebychev’s inequality, conditional on Z,

Tπ = OP (N−1)

in probability.
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