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Abstract: Undirected graphical models are widely used to model the con-
ditional independence structure of vector-valued data. However, in many
modern applications, for example those involving EEG and fMRI data,
observations are more appropriately modeled as multivariate random func-
tions rather than vectors. Functional graphical models have been proposed
to model the conditional independence structure of such functional data.
We propose a neighborhood selection approach to estimate the structure of
Gaussian functional graphical models, where we first estimate the neighbor-
hood of each node via a function-on-function regression and subsequently
recover the entire graph structure by combining the estimated neighbor-
hoods. Our approach only requires assumptions on the conditional distri-
butions of random functions, and we estimate the conditional independence
structure directly. We thus circumvent the need for a well-defined precision
operator that may not exist when the functions are infinite dimensional. Ad-
ditionally, the neighborhood selection approach is computationally efficient
and can be easily parallelized. The statistical consistency of the proposed
method in the high-dimensional setting is supported by both theory and
experimental results. In addition, we study the effect of the choice of the
function basis used for dimensionality reduction in an intermediate step.
We give a heuristic criterion for choosing a function basis and motivate two
practically useful choices, which we justify by both theory and experiments.

MSC2020 subject classifications: Primary 62H22, 62J07; secondary
62P10.
Keywords and phrases: Functional graphical model, neighborhood se-
lection, fMRI data.

Received October 2022.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1043
1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1045
arXiv: 2105.02487

1042

https://imstat.org/journals-and-publications/electronic-journal-of-statistics/
https://doi.org/10.1214/24-EJS2219
mailto:boxinz@uchicago.edu
mailto:percy.zhai@uchicago.edu
mailto:ysw7@cornell.edu
mailto:mkolar@usc.edu
https://mathscinet.ams.org/mathscinet/msc/msc2020.html
https://arxiv.org/abs/2105.02487


Functional graphical model via neighborhood selection 1043

1.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1047
1.3 Outline of the paper . . . . . . . . . . . . . . . . . . . . . . . . 1048

2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1049
2.1 Functional graphical model . . . . . . . . . . . . . . . . . . . . 1049
2.2 Functional neighborhood selection . . . . . . . . . . . . . . . . 1050
2.3 Vector-on-vector regression . . . . . . . . . . . . . . . . . . . . 1052
2.4 Choice of basis . . . . . . . . . . . . . . . . . . . . . . . . . . . 1054
2.5 Selection of tuning parameters . . . . . . . . . . . . . . . . . . 1057

3 Optimization algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 1058
4 Theoretical properties . . . . . . . . . . . . . . . . . . . . . . . . . . 1060

4.1 Prior fixed function basis . . . . . . . . . . . . . . . . . . . . . 1062
4.2 Data-dependent function basis . . . . . . . . . . . . . . . . . . 1066
4.3 Theoretical guidance on the choice of function basis . . . . . . 1068

4.3.1 Minimize ω(M) . . . . . . . . . . . . . . . . . . . . . . . 1069
4.3.2 Minimize an approximate upper bound . . . . . . . . . 1069

5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1070
5.1 Comparison with baseline methods . . . . . . . . . . . . . . . . 1072
5.2 The effect of εn . . . . . . . . . . . . . . . . . . . . . . . . . . . 1074
5.3 Performance of cross-validation . . . . . . . . . . . . . . . . . . 1077

6 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1077
7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1083
A Technical proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1084

A.1 Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . 1084
A.2 Derivation of (10) and (15) . . . . . . . . . . . . . . . . . . . . 1086
A.3 Simplification of ADMM optimization problems . . . . . . . . . 1087
A.4 Derivation of (40) . . . . . . . . . . . . . . . . . . . . . . . . . 1088
A.5 Proposition A.1 and its proof . . . . . . . . . . . . . . . . . . . 1090
A.6 Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . 1091
A.7 Proof of Theorem 4.3 . . . . . . . . . . . . . . . . . . . . . . . . 1095

B Useful lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1101
C Wall-clock runtime comparison . . . . . . . . . . . . . . . . . . . . . 1118
D Labels of ROIs in the AAL atlas . . . . . . . . . . . . . . . . . . . . 1120
E Table of notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1122
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1124
Funding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1124
Supplementary Material . . . . . . . . . . . . . . . . . . . . . . . . . . . 1124
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1124

1. Introduction

Multivariate functional data are collected in applications such as neuroscience,
medical science, traffic monitoring, and finance. Although each observation is
typically only recorded at a discrete set of time points, the underlying process
may be interpreted as a realization of a multivariate stochastic process in contin-
uous time. Such interpretation can provide a unifying approach to the analysis
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of classical functional data and longitudinal data, where functional data can be
used to deal with sparsely observed measurements with noise [13].

Our work is centered around elucidating the conditional independence struc-
ture of multivariate random functions. Gaining a robust understanding of such
a structure can yield extensive applications, including the interpretation of time
course gene expression data in genomics [66], multivariate time series data in
finance [61], and electroencephalography (EEG) data in neuroscience [52, 53].
This paper is motivated by the analysis of data gathered from fMRI scans con-
ducted on 116 distinct brain regions, with a time-series signal recorded for each
region [45]. The sample comprises two groups: one group of individuals diagnosed
with Attention Deficit Hyperactivity Disorder (ADHD) and a control group. Our
aim is to comprehend the functional connectivity patterns between these brain
regions for both the ADHD and control groups. Such functional connectivity
can be uncovered by determining the conditional independence structure across
the 116 random functions.

Graphical models are widely used to represent the conditional independence
structure of multivariate random variables [32]. Let G = {V,E} denote an undi-
rected graph where V is the set of vertices and E ⊂ V 2 is the set of edges. When
the data consist of random vectors X = (X1, . . . , Xp)�, we say that X satisfies
the pairwise Markov property with respect to G if Xv ⊥⊥ Xw | {Xu}u∈V \{v,w}
holds if and only if {v, w} �∈ E. This notion has been extended to functional
graphical models—where each node represents a random function rather than a
random scalar—in order to characterize the conditional independence relation-
ship of multivariate random functions.

We propose a procedure to estimate the functional graphical model when the
random functions follow a multivariate Gaussian processes (MGP). This setting
was considered in [52], who proposed the functional graphical lasso to estimate
the structure of the graph. Their procedure first obtains a finite dimensional
representation for the observed multivariate functions using functional princi-
pal component analysis (FPCA). Subsequently, a precision matrix is computed
from the projection scores of the finite dimensional representation using a graph-
ical lasso objective with a group penalty. The graph structure is finally obtained
from the non-zero blocks of the estimated precision matrix. When the underlying
random functions are infinite dimensional, the corresponding covariance opera-
tor is a compact operator, and its inverse, the precision operator, is ill-defined
[22]. As a result, [52] ensure their estimand is well defined by requiring that the
random functions lie in a finite dimensional space. However, that assumption is
restrictive and excludes infinite dimensional functional data.

In contrast to the functional graphical lasso proposed by [52], we propose
a neighborhood selection approach to estimate Gaussian functional graphical
models. For vector-valued Gaussian graphical models, [42] proposed a neighbor-
hood selection procedure that estimates the neighborhood—the set of adjacent
nodes in a conditional independence graph—for each node separately by sparse
regression. The entire graph structure is then estimated by combining estimates
of node-specific neighborhoods. We extend their approach to the functional data
setting. This allows us to avoid defining the precision operator, and, as a result,
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our theory extends to truly infinite dimensional functional data.
We cast the neighborhood selection procedure as a function-on-function re-

gression problem. Due to the infinite dimensional nature of the functional data,
we first project all observed random functions onto a finite dimensional ba-
sis. Thus, we approximate the function-on-function regression with a vector-
on-vector regression problem that is solved by minimizing a squared error loss
with a group lasso penalty. We do not require a specific choice of function basis
for our methodology and the corresponding theory, and we provide a theoreti-
cally guided intuition on the choice of function basis under different conditions.
Specifically, when estimating the neighborhood of a target node, we project all
functions onto a single subspace instead of projecting each function onto its own
subspace. In Section 2.4 we provide intuition for why this may be preferable to
projecting each function onto its own subspace. This is supported by both the
theory in Section 4.3 and the simulations in Section 5.

In addition to the methodology, we also provide nontrivial theoretical contri-
butions. Most importantly, by directly estimating the conditional independence
structure without reference to a population “precision operator,” we do not re-
quire that the functional data are finite dimensional. However, in the infinite
dimensional setting, there will be a residual term due to using a finite dimen-
sional approximation, and deriving error bounds requires a careful analysis of
this residual term. Finally, our theory is non-asymptotic in nature, and we derive
finite-sample guarantees for graph recovery.

In summary, the neighborhood selection approach yields at least three ben-
efits. First, it allows us to define functional graphical models directly from the
conditional distribution and does not require the notion of a precision operator.
As a result, we can estimate the graph structure even from infinite dimensional
data, rather than restricting the data to finite dimensional functions. Second,
by estimating the neighborhood of each node separately, we have increased flex-
ibility in choosing the function basis used to represent the random functions,
and tailoring the function basis for the specific task at hand results in empiri-
cally better estimation results. Finally, when estimating the neighborhood of a
node, we only need to handle p individual M×M matrices. These neighborhood
estimation procedures can be performed in parallel, leading to a highly efficient
estimation procedure. In comparison, fglasso [52] needs to estimate a pM × pM
matrix, which is computationally much more expensive. We demonstrate the
practical value of our neighborhood selection method on the motivating ADHD
fMRI data set, and also on another ASD fMRI data set.

1.1. Related work

Our paper contributes to the growing literature on modeling multivariate func-
tional data. We study the estimation of the conditional independence structure
from multivariate functional data in the setting of MGPs [52]. For each com-
ponent of the multivariate functional data, [52] projected observed functions on
the corresponding function basis estimated by FPCA. Subsequently, the struc-
ture of the graph is estimated from the projection scores using the multitask
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extension of the graphical lasso [28, 29], which estimates the precision matrix
with a block structure. However, the precision operator is ill-defined when the
functional data is infinite dimensional, and their method is computationally
expensive when the number of nodes is large.

In the same setting, [53] proposed a dynamic functional graphical model
that allows the graph structure to change over time. [72] proposed a Bayesian
approach to functional graphical models. [67] studied estimation of the graph
structure under the assumption of partial separability. Roughly speaking, par-
tial separability assumes that the time-varying covariance of the MGP can be
decomposed node-wise into a time-varying component and a constant. However,
this assumption can be restrictive and may not hold in many settings; [40] pro-
posed a test to verify the partial separability assumption. [68] and [69] discussed
direct estimation of the difference between two Gaussian functional graphical
models without the need to estimate each individual structure. [60] studied a
latent multi-modal functional graphical model. [59] extended the Gaussian func-
tional graphical model to a copula version by allowing monotonic transforma-
tions of the FPCA scores. In addition, [37] and [35] discussed a nonparametric
functional graphical model; however, the graph therein is defined based on the
additive conditional independence (ACI) relationship [36, 33, 34], which is not
equivalent to the conditional independence (CI) relationship and is thus not
directly comparable to our paper.

Our paper is also related to the literature on function-on-function regres-
sion that studies regression problems in which both the response and predictor
variables are functions. [38] and [50] studied function-on-function linear regres-
sion, where each predictor function is transformed by a corresponding integral
operator defined by the bivariate coefficient function, and the addition of all
transformed predictor functions is defined as the signal function. The response
function is then assumed to be a simple addition of the signal, intercept, and
noise functions. To estimate the coefficient functions, they used the FPCA basis
of the signal function to expand the observed functions and transform the origi-
nal function-on-function regression problem into a function-on-scalar regression
problem with uncorrelated predictors. Ultimately, this regression is solved by
a penalized least-squares method. In contrast, we focus on variable selection,
rather than prediction, and develop non-asymptotic theory. [39] also converted
the function-on-function regression problem to function-on-scalar regression by
projecting predictor functions with basis functions, but they restricted their
choice of function basis to wavelet transformation, and thus can be considered
as a special case of our approach. [23] discussed a method similar to what we
propose, but they did not give any guidance on how to choose a function basis
or offer any theoretical guarantees. These approaches can be treated as special
cases within our framework with a specific choice of function basis. In addi-
tion to linear function-on-function regression, [51] and [56] studied functional
additive models, but did not give theoretical results on variable selection in the
high-dimensional setting.

While finishing this paper, we were made aware of concurrent work by [58]
that also uses a neighborhood selection approach to estimate a graphical model
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from functional data. There are several differences between our approaches.
First, when estimating the neighborhood of a particular node, [58] project each
observed function to its own eigenfunction basis. We consider several alterna-
tive choices for the functional basis expansion and suggest a different approach:
when estimating the neighborhood of a node j, we project all observed func-
tions onto the same basis—typically the eigenbasis of the j-th node. However,
we may use different bases when estimating different neighborhoods. Second,
[58] assume a slightly more general setting where the FPCA scores arise from a
non-parametric additive regression model, whereas the scores arise from a linear
model in our work. However, it is unclear what the class of joint distributions
is with conditional means that satisfy the non-linear additive structure. The
Gaussian setting considered by our work seems like the only commonly used
distribution to have a conditional mean that satisfies the additive structure. Fi-
nally, to show the consistency of graph recovery, [58] require that the truncation
dimension grows with n; while our result shows non-asymptotic error bounds for
any fixed truncation dimension and chooses the truncation dimension to satisfy
a criterion that is independent of the sample size. Our theoretical analysis also
relies on weaker assumptions and has better convergence rates. See Section 4.1
for a detailed comparison between our theoretical results and the ones of [58].

1.2. Notation

Let [n] denote the set {1, 2, . . . , n}. For a set S, we use |S| to denote its cardi-
nality.

We use bold lower case letters (e.g., a and b) to denote vectors and bold
upper case letters (e.g., A and B) to denote matrices. For a vector a ∈ R

n,
let ‖a‖q denote its lq-norm, q ∈ [1,∞), with the usual extension to q = 0 and
q = ∞. For a set of indices I ⊆ [n], we use aI to denote the vector in Rn with
aI,i = vi for all i ∈ I and aI,i = 0 for all i /∈ I. Let G = {G1, G2, . . . , GNG} be
a partitioning of the set [n] into a set of NG disjoint groups. The mixed norm
‖ · ‖1,q is defined as ‖a‖1,q =

∑NG
t=1 ‖aGt‖q. For two vectors a, b ∈ Rn, we use

〈a, b〉 =
∑n

i=1 aibi to denote their inner product.
For a symmetric matrix B, we use ρmax(B) to denote its largest eigenvalue,

ρmin(B) to denote its smallest eigenvalue, and tr(B) to denote its trace. For a
matrix A ∈ R

n1×n2 , we use vec(A) to denote the vector in R
n1n2 formed by

stacking the columns of A. For two matrices A ∈ R
n×m and B ∈ R

r×s, A⊗B ∈
Rnr×ms denotes their Kronecker product, with (A ⊗ B)ik,jl = AijBkl. For a
matrix A ∈ R

n1×n2 , we use ‖A‖q to denote its operator norm, q ∈ [1,∞], that
is, ‖A‖q = supv∈Rn2 :‖v‖q=1 ‖Av‖q. Thus, ‖A‖2 denotes the maximum singular
value of A, ‖A‖1 = max1≤j≤n2

∑n1
i=1 |Aij |, and ‖A‖∞ = max1≤i≤n1

∑n1
j=1 |Aij |.

We use ‖A‖F to denote the Frobenius norm of A, that is, ‖A‖2
F = tr(A�A).

We use |||A|||∞ to denote the elementwise maximum absolute value of A, that
is, |||A|||∞ = maxi,j |Aij |.

For a real-valued differentiable function f : Rn → R, we use ∇f(x) ∈ R
n

to denote its gradient at a point x ∈ R
n. For a closed interval T ⊆ R, we
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define L2(T ) to be the Hilbert space of square-integrable real-valued functions
defined on domain T , where for f, g ∈ L2(T ), we use 〈f, g〉 =

∫
T f(t)g(t)dt

to denote their inner-product and ‖f‖ = (
∫
T f2(t)dt)1/2 to denote the L2-

norm of f . For a bivariate function B(t′, t) defined on T × T , we use ‖B‖HS =
‖B(t′, t)‖HS = (

∫
T ×T B2(t′, t)dt′dt)1/2 to denote its Hilbert-Schmidt norm. We

use f(·) = (f1(·), f2(·), . . . , fn(·))� to denote a vector with function entries.
For any two Hilbert spaces H and G, we define B(H,G) as the set of bounded

linear operators and BHS(H,G) as the set of Hilbert-Schmidt operators from H

to G. Thus, BHS(H,G) ⊆ B(H,G). For h ∈ H and g ∈ G, the outer product
g ⊗ h : H �→ G is the rank-one linear operator (g ⊗ h)(h′) := 〈h, h′〉H g. When
H = G, we let B(H) = B(H,H) and BHS(H) = BHS(H,H). For any operator
T : H �→ G, we use ran(T ) = {T (h) : h ∈ H} ⊆ G to denote its range. We
denote the adjoint operator of T [22, Definition 3.3.2] by T ∗ and the Moore–
Penrose inverse or pseudo inverse [22, Definition 3.5.7] of T by T †. We say that
an orthonormal sequence {en}n≥1 in a Hilbert space H is called an orthonormal
basis or a complete orthonormal system (CONS) if span{en} = H.

For any finite number of Hilbert spaces H1–Hn, we define their Cartesian
product space H1⊕ . . .⊕Hn

Δ= ⊕n
i=1Hi as {(f1, . . . , fn) : fi ∈ Hi}, with endowed

inner product defined by 〈f , g〉 =
∑n

i=1〈fi, gi〉 for all f = (f1, . . . , fn), g =
(g1, . . . , gn) ∈ ⊕n

i=1Hi. We then have ⊕n
i=1Hi to also be a Hilbert space. For

f = (f1, . . . , fn) ∈ ⊕n
i=1Hi, we use f−j to denote (f1, . . . , fj−1, fj+1, . . . , fn) ∈

⊕n
i=1,i 
=jHi for any j ∈ [n]. When Hi = H for all i ∈ [n], we denote ⊕n

i=1Hi by
H

n.
For any two sequences {an}n≥1 and {bn}n≥1, we use an � bn or an = O(bn)

(an � bn or an = Ω(bn)) to denote that there exists a constant c ≥ 0 such that
an ≤ c · bn (an ≥ c · bn) for n large enough. Similarly, we use an = Õ(bn) to
ignore any log terms asymptotically, that is, an = Õ(bn) if an = O(bn logk bn)
for some k ≥ 0. In this paper, we use Õ(·) to ignore log terms of sample size,
but we keep log terms of other quantities such as the number of vertices and
the dimension of a truncated function.

1.3. Outline of the paper

The rest of the paper is organized as follows. In Section 2, we introduce the func-
tional graphical model and our methodology to estimate the graph structure. In
Section 3, we discuss the optimization algorithm used to compute the estima-
tor. We develop theoretical guarantees for our approach in Section 4. Results on
simulated and real data are reported in Section 5 and Section 6, respectively1.
We conclude the paper with a discussion in Section 7.

1Code and data to replicate the results in this paper is available in the Supplementary
Material of the paper [70] or at: https://github.com/PercyZhai/FGM_Neighborhood.

https://github.com/PercyZhai/FGM_Neighborhood
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2. Methodology

In this section, we briefly review the functional graphical model in Section 2.1.
We introduce a neighborhood selection procedure for estimating the functional
graphical in Section 2.2 and discuss a practical implementation in subsequent
subsections.

2.1. Functional graphical model

Let T ⊆ R be a closed interval, and H ⊆ L2(T ) be a Hilbert subspace of
L2(T ). Since L2(T ) is a separable Hilbert space, H and Hn are also seperable
Hilbert spaces for any 1 ≤ n < ∞. Let (Ω,F ,P) be a probability space and
g : Ω �→ H

p be a Gaussian random element; that is, for any h ∈ H, we have
〈g,h〉 be a real-valued Gaussian random variable2. We can express g as g(ω, t) =
(g1(ω, t), . . . , gp(ω, t)), where (ω, t) ∈ Ω × T , and for all ω ∈ Ω and j ∈ [p], we
have gj(ω, ·) ∈ H to be a function with domain T . In the rest of the paper, we
suppress the dependency on ω, and denote g(t) = (g1(t), . . . , gp(t)) for t ∈ T ,
or sometimes even suppress the dependency on t and let g = (g1, . . . , gp).

To simplify the discussion, we assume that g is zero mean, that is, E[gj ] = 0
for all j ∈ [p]. Furthermore, based on the Gaussian property, we have E[‖g‖2] <
∞. Thus, for all j ∈ [p], we can define the covariance operator of gj as

Kj := E [gj ⊗ gj ] , (1)

and we have Kj ∈ BHS(H). In addition, for any index set I, I1, I2 ⊆ [n], we
define

KI := E

[
(gj)j∈I ⊗ (gj)j∈I

]
, KI1,I2 := E

[
(gj)j∈I1

⊗ (gj)j∈I2

]
.

Furthermore, following [52], we define the conditional cross-covariance function
as

Cjl(t′, t) = Cov (gj(t′), gl(t) | gk(·), k �= j, l) .
Let G = (V,E) denote an undirected graph where V = [p] is the set of

vertices or nodes, and E ⊂ V 2 is the set of edges. The edge set E encodes the
pairwise Markov property of g [32] if

E =
{
(j, l) ∈ V 2 : j �= l and gj �⊥⊥ gl | {gk}k 
=,j,l

}
. (2)

Let gi(·) = (gi1(·), . . . , gip(·)) be a random copy of g(·). The goal of this work is
to estimate the set of edges E when given n i.i.d. random copies {gi(·)}ni=1. [52]
proposed to estimate E using a functional graphical lasso procedure. In contrast,
we propose a neighborhood selection approach detailed in the following section.
In the following, we define the neighborhood of node j as

Nj := {k : (j, k) ∈ E}. (3)
2The existence and construction of Gaussian random elements taking values in any sepa-

rable Hilbert space is shown as following: By Example 1.25 of [24], we can construct Gaussian
random elements taking values in l2 space, that is, the space of square summable sequences.
The desired conclusion then follows from the fact that any separable Hilbert space is isomet-
rically isomorphic to l2 [22, Theorem 2.4.17].
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2.2. Functional neighborhood selection

We develop a neighborhood selection procedure to estimate the functional graph-
ical model. The neighborhood selection approach can be traced back to [5] and
was further developed for Gaussian graphical models in a high-dimensional set-
ting by [42]. Specifically, [42] estimated the conditional independence graph for
vector-valued data X = (Xk)k∈[p] drawn from a multivariate Gaussian. Prop-
erties of the multivariate Gaussian ensure that for each j ∈ [p], there exist
{βjk}k 
=j such that

Xj =
∑
k 
=j

βjkXk + εj , (4)

where εj is normally distributed and independent of all Xk, k �= j. By (4), it is
clear that Nj is equivalent to the set {k ∈ [p]\{j} : βjk �= 0}. Thus, [42] use the
variables selected from a penalized regression of Xj onto all other variables to
estimate Nj ; specifically, N̂j = {k ∈ [p]\{j} : β̂jk �= 0}. After estimating each
neighborhood, they combine the estimates into a single estimate of the entire
graph G.

Our first contribution is to show that an analogous representation to (4) also
holds for g under mild conditions. We start by considering the conditional expec-
tation E[gj | g−j ] for j ∈ [p]. By Doob–Dynkin representation [25, Lemma 1.13],
we have a measurable map Bj : Hp−1 �→ H such that E[gj | g−j ] = Bj(g−j)
almost surely. Due to the Gaussianity of g, we have Bj ∈ B(Hp−1,H), and
ej := gj − E[gj | g−j ] to be Gaussian and independent of g−j [27]. For the pur-
poses of this paper, we require Bj to be in a more narrow class, namely the class
of Hilbert-Schmidt operators. Therefore, we make the following assumption.

Assumption 2.1. For all j ∈ [p], we assume that Bj ∈ BHS(Hp−1,H).

The intuition of the requirement for Assumption 2.1 is associated with the
infinite-dimensional nature of functional data. To characterize Bj in general, one
will need to estimate an infinite number of parameters, which is prohibitive with
a finite sample size. For this reason, any practical solution must approximate
Bj with a finite-dimensional truncation. Since any linear bounded operator
between two finite-dimensional Hilbert spaces is congruent to a matrix that has
a bounded Hilbert-Schmidt (Frobenius) norm, Assumption 2.1 is necessary to
ensure a bounded truncation error. This assumption is also made in [58]—see
Assumption 4.6 therein.

To understand what kind of data generation process will satisfy Assump-
tion 2.1, let us consider a special case. Suppose that

ran
(
KNj ,j

)
⊆ ran

(
KNj

)
.

Then by Theorem 4.8 in [27] and noting that E[gj | g−j ] = E[gj | gk, k ∈ Nj ],
we have

Bj =
(
K †

Nj
KNj ,j

)∗
.
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Therefore, requiring that Bj is Hilbert-Schmidt is equivalent to requiring that
K †

Nj
KNj ,j is Hilbert-Schmidt. To illustrate when this condition holds, we as-

sume that the left singular functions of KNj ,j ordered by singular values coin-
cide with the eigenfunctions of KNj ordered by eigenvalues. Let {s1k}∞k=1 be
the non-increasing singular values of KNj ,j and {s2k}∞k=1 be the non-increasing
eigenvalues of KNj . Then requiring Bj to be Hilbert-Schmidt will be equivalent
to requiring

∑∞
k=1(s1k/s2k)2 < ∞. Intuitively, s1k corresponds to the covariance

between gj and its neighbors (gl)l∈Nj along a direction in H
|Nj |, while s2k rep-

resents the variance of (gl)l∈Nj along that direction. The condition that Bj is
Hilbert-Schmidt basically requires that the covariance between gj and its neigh-
bors decreases sufficiently fast compared to the decreasing speed of the variance
of its neighbors. When Assumption 2.1 is violated, then regardless of the dimen-
sion of the space used for truncation, there always exists a subspace orthogonal
to it, such that the projection of (gl)l∈Nj onto it has small variance, but the
covariance between the projection and gj is relatively large. As a result, the
behavior of Bj on this subspace cannot be ignored, and thus we cannot get a
good approximation of Bj by using any finite-dimensional truncation.

Based on Assumption 2.1, we have a representation similar to (4) for g, which
we state in the following theorem.

Theorem 2.1. Assume that Assumption 2.1 holds for all j ∈ [p]. Then for all
j ∈ [p], there exists {βjk(t, t′)}k 
=j such that

gj(t) =
∑
k 
=j

∫
T
βjk(t, t′)gk(t′)dt′ + ej(t), (5)

where ej(·) ⊥⊥ gk(·), k �= j, and ‖βjk(t, t′)‖HS < ∞. In addition, for any sequence
{φm}∞m=1 being a CONS of H, we have

βjk(t, t′) =
∞∑

m,m′=1
b∗jk,mm′φm(t)φm′(t′) a.e., (6)

where
b∗jk,mm′ =

∫
T ×T

βjk(t′, t)φm(t)φm′(t′)dt′dt. (7)

Proof. See Appendix A.1.

Although it is straightforward to postulate that such a linear representation
holds for multivariate Gaussian random functions, to the best of our knowledge,
we are the first to strictly prove it. When the index is clear from the context,
we will remove the subscript j from βjk(t, t′). Given the representation in (5),
it is clear that Nj defined in (3) is equivalent to

Nj = {k ∈ [p]\{j} : ‖βjk‖HS > 0}. (8)

We can thus adapt the neighborhood selection approach to functional data and
seek to construct an estimate of the graph by first estimating each neighborhood.
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Algorithm 1: Functional neighborhood selection
Input: Observed random functions {gi(·)}ni=1

for j ∈ V do
Estimate the projection basis φj if it is not fixed in advance
Use (9) to calculate projection scores for all observed functions on φj

Given projection scores, solve (13)
Estimate N̂j using (14)

end for
Combine all neighborhoods into the estimated edge set using AND/OR rule

Output: Return Ê

We denote the size of the neighborhood as sj = |Nj |. To estimate the neigh-
borhood for j ∈ V , we regress gj on {gk : k ∈ [p]\{j}} using a penalized
functional regression approach. Despite the conceptual simplicity and high level
similarity to [42], there are numerous technical challenges that need to be ad-
dressed in the functional data setting, which we discuss in Section 4.

2.3. Vector-on-vector regression

When the observed functions {gi(·)}ni=1 are infinite dimensional objects, the
regression problem suggested by (5) cannot be solved directly. As a practical
estimation procedure, we first approximate the function-on-function regression
problem with a tractable finite dimensional vector-on-vector regression problem.

Suppose we seek to estimate Nj for a fixed target node j ∈ [p]. As a first
step, we represent potentially infinite dimensional functions using a finite M -
dimensional basis. Let φj = {φjm}∞m=1 be an orthonormal basis of H; for now,
we assume that it is given, and details on selecting an appropriate basis will
be discussed in Section 2.4. Using the first M basis functions, we compute the
projection scores for each k ∈ [p] and m ∈ [M ]:

aikm = 〈gik, φjm〉 =
∫
T
gik(t)φjm(t)dt, (9)

and form the projection score vectors ai,k,M = (aik1, . . . , aikM )�. For each
observed function, the scores encode the L2 projection onto the first M elements
of φj and gik(·) ≈

∑M
m=1 aikmφjm(·).

The target node j, will typically be fixed, so for ease of presentation, we as-
sume j = p. Furthermore, we follow the commonly used regression notation and
denote the random function of the target node, gij(·), as gYi (·) and denote the
other p−1 random functions as (gX1

i (·), . . . , gXp−1
i (·))�. We let aYim = 〈gYi , φjm〉

and aXk
im = 〈gXk

i , φjm〉 denote the scores for observed functions and let aY
i,M

and aXk

i,M denote the vectors of scores. At times, we will also use the notation

aX
i,M =

(
(aX1

i,M )�, . . . , (aXp−1

i,M )�
)�

∈ R
(p−1)M .
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As shown in Appendix A.2, aY
i,M can be represented as

aY
i,M =

p−1∑
k=1

B∗
k,MaXk

i,M + wi,M + ri,M , (10)

where
B∗

k,M = (b∗k,mm′)1≤m,m′≤M ∈ R
M×M (11)

is a regression matrix parameter corresponding to βjk(·, ∗) defined in Theo-
rem 2.1 and

b∗k,mm′ =
∫
T ×T

βjk(t′, t)φm(t)φm′(t′)dt′dt for all m,m′ ≥ 1.

For better illustrating the proposed method, we also compare the regression
matrix B∗

k,M with the conditional covariance operator Bj in Assumption 2.1.
By Assumption 2.1 and Appendix A.1, we have

Bj =
∑
k 
=j

Bjk, and Bjk =
∞∑

m=1

∞∑
m′=1

b∗k,mm′φm ⊗ φm′ .

Compared to (11), we can see that the regression matrix B∗
k,M can be regarded

as a finite-dimensional approximation of Bjk with respect to orthonormal basis
{φm}∞m=1.

Besides, we have

rim =
p−1∑
k=1

∞∑
m′=M+1

b∗k,mm′aXk

im′ ,

ri,M = (ri1, . . . , riM )�, wim =
∫
T eij(t)φm(t)dt and wi,M = (wi1, . . . , wiM )�.

The term wi,M is the noise vector corresponding to eij(·) defined in Theo-
rem 2.1, and ri,M is a bias term, which arises due to only using the first M
basis functions. More details are provided in Section 4.

Based on (10), we may define the truncated neighborhood of node j as

N M
j :=

{
k ∈ [p]\{j} : ‖B∗

k,M‖F > 0
}
. (12)

Note that in contrast to Nj , N M
j depends on the finite-dimensional objects

B∗
1,M , . . . ,B∗

p−1,M , and thus it is estimable with a finite sample size. Since for
j /∈ Nj , we have βjk = 0 a.e., which implies that ‖B∗

k,M‖F = 0 for all M ≥ 1,
thus we have j /∈ N M

j for all M ≥ 1. This way, it is clear that N M
j ⊆ Nj

for all M ≥ 1. On the other hand, when we choose M large enough, such that
‖B∗

k,M‖F > 0 for all k ∈ Nj , we then have N M
j = Nj .

Given n i.i.d. samples {gi(·)}ni=1, we estimate B∗
k,M—and subsequently N M

j

and Nj—using a penalized least squares approach. Let aYim, aXk
im , aY

i,M , and
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aXk

i,M denote the quantities arising from the ith observed sample. We select
B∗

k,M by minimizing the following objective:

B̂1,M , · · · , B̂p−1,M

∈ arg min
B1,...,Bp−1

⎧⎨
⎩ 1

2n

n∑
i=1

∥∥∥∥∥aY
i,M −

p−1∑
k=1

Bka
Xk

i,M

∥∥∥∥∥
2

2

+ λn

p−1∑
k=1

‖Bk‖F

⎫⎬
⎭ ,

(13)

where λn is a tuning parameter. In Section 3, we propose an efficient optimiza-
tion algorithm to solve (13). The challenge in giving statistical guarantees for the
estimators obtained by (13) lies in the fact that ri,M and aX

i,M in (10) are corre-
lated, so B∗

1,M , . . . ,B∗
p−1,M are not the coefficients of the best linear unbiased

estimators for predicting aY
i,M by aX

i,M , which is the general setting assumed
in the group LASSO analysis. However, when the covariance between ri,M and
aX
i,M is small enough in the sense discussed in Section 4, B̂1,M , . . . , B̂p−1,M

may still be good estimators of B∗
1,M , . . . ,B∗

p−1,M .
Given B̂1,M , . . . , B̂p−1,M , the estimated neighborhood set is then

N̂j = {k ∈ [p− 1] : ‖B̂k‖F > εn}, (14)

where the threshold εn is a tuning parameter. Finally, the estimated edge set Ê
is obtained by combining the estimated neighborhoods of each node. Following
[42], the edge set Ê can be computed by one of the following schemes:

• AND: if both j ∈ N̂l and l ∈ N̂j hold, then (j, l) ∈ Ê;
• OR: if either j ∈ N̂l or l ∈ N̂j holds, then (j, l) ∈ Ê.

To operationalize the procedure, we discuss the choice of basis functions and
the choice of tuning parameters in the following two sections.

2.4. Choice of basis

A key element in the above procedure is the choice of the basis φj . Throughout
the paper, we assume that the basis is orthonormal; if the user specifies a non-
orthonormal basis, it can first be orthonormalized with a procedure such as the
Gram-Schmidt algorithm (Theorem 2.4.10 of [22]).

At a high level, there are two different approaches that can be used: the
basis can be fixed in advance, or the basis can depend on the data. In the first
approach, one uses a known basis, which could be selected via prior knowledge,
or simply a commonly used basis for which projection scores can be efficiently
computed (e.g., the Fourier, B-spline, and wavelet bases). The second approach
uses a basis that is determined by unobserved population quantities and needs
to be estimated before computing the projection scores. For example, functional
PCA (FPCA) can be used to estimate a basis [54, Chapter 8]. In the previous
section, we discussed vector-on-vector regression assuming that the basis φj was
known a priori, and here we discuss the case where the basis must be estimated.
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For a chosen node j ∈ [p] and any i ∈ [n], suppose that we have an esti-
mate {φ̂jm}m≥1 of the “true” basis {φjm}m≥1. Let âYim = 〈gYi , φ̂jm〉, âXk

im =
〈gXk

i , φ̂jm〉, âY
i,M = (âYi1, . . . , âYiM )�, and âXk

i,M = (âXk
i1 , . . . , âXk

iM )�. Similarly
to (10), we have

âY
i,M =

p−1∑
k=1

B∗
k,M âXk

i,M + wi,M + ri,M + vi,M , (15)

where the additional term vi,M is defined in (45) in the appendix, which arises
from using φ̂j instead of φj . When φ̂j is close to φj , the error term vi,M should
be small. See the derivation of (15) in Appendix A.2.

Based on the relationship in (15), we estimate the graph structure as in the
previous section, where B̂1, · · · , B̂p−1 are estimated using (13) with aY

i,M and
aXk

i,M replaced by âY
i,M and âXk

i,M . The subsequently estimated neighborhood
sets are given by (14).

The most popular data-driven basis is the FPCA basis. Recall the linear
Hilbert-Schmidt covariance operator Kj defined in (1), which is the integral
operator with the kernel being the covariance function of gj , that is,

Kjj(t, t′) = Cov (gj(t), gj(t′)) .

Then there exist eigenpairs {σjm, φjm(·)}m∈N of Kj (Theorem 7.2.6 of [22]),
where {σjm}m∈N are the eigenvalues and {φjm(·)}m∈N are orthonormal eigen-
functions. Since the covariance operator, Kj , is symmetric and positive semidef-
inite, we assume that σj1 ≥ σj2 ≥ · · · ≥ 0 without loss of generality. Ac-
cording to the Karhunen-Loève theorem, gij can be represented as gij(·) =∑∞

m=1 aijmφjm(·), where aijm =
∫
T gij(t)φijm(t)dt ∼ N(0, σjm) are the FPCA

scores and aijm is independent of aijm′ for m �= m′ [6, Theorem 1.5]. We will
refer to {φjm(·)}∞m=1 as the FPCA basis. Since the basis is orthonormal, the
function gMij (·) =

∑M
k=1 aijkφjk(·) is the L2-projection of gij(·) onto the ba-

sis spanned by the first M FPCA functions. The main advantage of this basis
is that it provides the best approximation in the L2 sense when projecting a
function onto a fixed number of basis functions.

Unfortunately, the FPCA basis is typically unknown, as Kjj(t′, t) is unknown.
Therefore, we first estimate the functional covariance with the empirical version:

K̂jj(t, t′) = 1
n

n∑
i=1

gij(t)gij(t′). (16)

Subsequently, an eigen-decomposition of K̂jj(t, t′) produces the estimated eigen-
pairs {σ̂jm, φ̂jm(·)}Mm=1, which in turn can be used to estimate FPCA scores
âijm =

∫
T gij(t)φ̂jm(t)dt.

[52] and [58] also use projection scores from a dimension reduction procedure.
However, there are several key differences between our approach and theirs.
First, although it is the most commonly used basis, we do not restrict ourselves
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to the FPCA basis, and instead consider a generic basis. This provides additional
flexibility and allows us to explore the effect of the chosen basis on empirical
performance. See Section 4.3 for more details. Our methodology also differs
in a second, more substantial way. Both [52] and [58] project each random
function on its own FPCA basis and consider the resulting projection scores for
all subsequent tasks. In contrast, when estimating the neighborhood of a specific
node—rather than projecting each random function onto its own subspace—
we project all random functions onto the same subspace. Concisely put, the
subspace to estimate Nj , φj , may differ from φk, the subspace used to estimate
Nk. However, when estimating Nj we use projection scores for all functions
projected on a single basis φj .

Intuitively, the advantage of this approach is that we can tailor the finite
dimensional representation to maximize the information relevant to selecting the
neighborhood of a specific node, Nj . The FPCA basis for each random function
maximizes the “retained information” for that random function. Although there
may be significant features of gik(·) that are captured by its FPCA basis, these
features may not be relevant to estimate the neighborhood of a specific node
Nj . Ultimately, we should care more about how gik(·) behaves in the subspace
spanned by gij ’s FPCA basis, which captures gi,Y ’s variability, rather than the
subspace spanned by its own FPCA basis. We examine a theoretical justification
in Section 4.3 and also illustrate the advantages in simulations.

More concretely, using a single basis for selecting Nj also avoids issues of
colinearity that may arise artificially. For example, suppose that

gik(·) =
∞∑

m=1
aikmφkm(·) and gil(·) =

∞∑
m=1

ailmφlm(·)

have eigenfunctions {φkm(·)}m≥1 and {φlm(·)}m≥1 that differ drastically, but
aikm and ailm are highly correlated. When estimating Nj using the projection
scores from the FPCA basis of k and l, this would result in a poorly conditioned
problem that may violate the irrepresentability condition (e.g., Assumption 4.8
in [58] or Condition 5 in [52]), despite the fact that the actual random functions
gik(·) and gil(·) are not difficult to distinguish. Projecting gik(·) and gil(·) onto
the same basis—φj—would avoid this concern, and the resulting projection
scores would only be colinear if the actual random functions are similar and the
problem is intrinsically hard.

While our methodology and theory allow for any orthonormal basis, we show
both theoretically and in simulations that a well-chosen basis can improve per-
formance. When choosing a basis, there are at least two objectives to consider.
First, we want to minimize the covariance between riM and {aXk

i,M}k∈[p−1]
in (10). Second, we want to maximize the signal strength mink∈Nj ‖B∗

k,M‖F. In
general, simultaneously achieving these two objectives is practically infeasible.
Thus, in practice, we focus on achieving at least one of the two. Achieving the
first objective is generally infeasible without further restrictive assumptions (see
Section 4.3). Thus, in practice, we generally focus on the second objective, which
will lead us to use the FPCA basis of gYi , which we recommend as a default
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choice. Finally, we acknowledge that our study on the choice of function basis
is far from complete. One should treat our guidance as a heuristic design, and
we leave more thorough studies on this topic for further research.

2.5. Selection of tuning parameters

There are three tuning parameters that need to be chosen to implement our
algorithm: the number of basis functions used for dimension reduction, M ; the
thresholding parameter from (13), εn; and the group lasso penalty parameter
λn in (12). We now discuss how to choose them in practice.

We first discuss how to choose the number of basis functions M . We follow
the same cross-validation (CV) tuning strategy as in [52]. In practice, we have
access to observations {(tike, hike)}Eik

e=1, i ∈ [n] and k ∈ [p], where hike is a
noisy observation of gik(·) at a time point tike ∈ T . We then divide the time
interval T into J equal-size folds J1, . . . ,JJ with T = ∪J

l=1Jl. For a ∈ [J ],
we treat fold Ja as the validation set, and the remaining J − 1 folds as the
training set. For a chosen node j ∈ [p], if φj is known, we then fit each function
gik(·) with an M -dimensional φj basis {φj1(·), . . . , φjM (·)} via least-square on
the observations {(tike, hike)} where tike /∈ Ja to get ĝik(·); we then calculate
the squared error between hike and ĝik(tike) on the validation set. We repeat
this procedure for a = 1, . . . , J to compute the CV error and choose M that
minimizes the CV error. In the case when φj is unknown, we first fit gij(·) on
observations {(tije, hije)} where tije /∈ Ja via a L-dimensional B-spline basis [54,
Chpater 5] to get ĝij(·), and subsequently use ĝij(·) to get φ̂j(·). Next, we fit
all functions gik(·) by {φ̂j1(·), . . . , φ̂jM (·)} via least-square on the observations
{(tike, hike)} where tike /∈ Ja to get ĝik(·). After following the same procedure to
compute CV error, we then choose (M,L) simultaneously over a grid of M ≤ L
values and choose the pair with the lowest error.

Next, we describe the selection process for εn and λn. When λn is large
enough, all estimated coefficients B̂k will be set to zero. Specifically, by Propo-
sition 1, there exists a threshold λmax,n > 0 that can be calculated from the
data, such that for any λn > λmax,n, the result B̂k = 0 for all k ∈ [p − 1].
Thus, we only need to consider λn ∈ (0, λmax,n]. We found empirically that tra-
ditional K-fold cross-validation performs poorly in our setting. Therefore, for
each j ∈ [p], we select λn, εn pair using selective cross-validation (SCV) [57].

For each value of λn, we use the entire data set to estimate

B̂λn = (B̂λn,1, . . . , B̂λn,p−1)

by solving (13). Given any threshold parameter εn, we can obtain an index set
Ňj(λn, εn) ⊆ [p − 1] that indicates the blocks in B̂λn that are large enough in
terms of Frobenius norm, that is,

l ∈ N̂j(λn, εn) if and only if ‖B̂λn,l‖F > εn. (17)

For l ∈ N̂j(λn, εn), we then re-estimate B̃k by minimizing the unpenalized
least squares objective using the k-th-fold training set, which we denote as Ik,
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Algorithm 2: The Selective Cross-Validation (SCV) algorithm to choose
(λn, εn).
Input: AX , AY , j ∈ [p];

for all λn do
Run Group Lasso ADMM on (AX ,AY ) and obtain B̂λn ;
for all εn do

Obtain N̂j(λn, εn) by (17);
for k ∈ [K] do

Re-estimate B̃l for l ∈ [p− 1] by solving (18) with the k-th-fold training set;
Evaluate the estimate on the k-th-fold test data using the SCV-RSS criterion;

end for
Calculate the mean of the criterion across all K folds;

end for
end for
Pick the (λn, εn) pair that minimizes the mean criterion;

and we set B̃l = 0 for all l /∈ N̂j(λn, εn). Specifically, we obtain B̃1, . . . , B̃p−1
by solving the optimization problem below:

B̃1, . . . , B̃p−1 ∈ arg min
B1,...,Bp−1

⎧⎨
⎩
∑
i∈Ik

∥∥∥∥∥aY
i,M −

p−1∑
l=1

Bla
Xl

i,M

∥∥∥∥∥
2

2

⎫⎬
⎭ ,

s.t. B̃l = 0 for all l /∈ N̂j(λn, εn).

(18)

We propose an error criterion named SCV-RSS, where RSS stands for the
residual sum of squares. The criterion performs well in practice and adds the
BIC penalty term to the squared norm of the empirical estimation error. Let

r̂ei := aY
i,M −

p−1∑
l=1

B̃la
Xl

i,M ,

and SCV-RSS on the test set Itest is defined as

SCV-RSS(λn, εn) :=
∑

i∈Itest

‖r̂ei‖2
2 + log(|Itest|) · |N̂j(λn, εn)|. (19)

We then finally choose the (λn, εn) pair that minimizes the mean of SCV-RSS
over all K folds. The pseudo-code of the procedure is given in Algorithm 2.

3. Optimization algorithm

We propose an optimization method to solve (13) using the alternating direc-
tion method of multipliers (ADMM) [17, 7]. Note that (13) has a composite
objective structure where the objective is composed of a convex smooth loss
and a convex non-smooth regularization term. This composite objective is well
studied in the convex optimization literature [see, for example, Section 5.1 9].
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In this section, we provide an easy-to-use practical solution. Commonly used
alternative methods to solve such a composite objective include ISTA (Iterative
Shrinkage-Thresholding Algorithm) and FISTA (Fast ISTA). See Section 5.1 in
[9] for more details. One advantage of ADMM is that it is easy to parallelize.
Therefore, it is preferable when there are several machines available and the
sample size or number of vertices is large [7, Chapter 8 and Chapter 10].

The pseudo-code of our method is given in Algorithm 3 and we provide
additional details below. Let

AY =

⎡
⎢⎢⎢⎣

(aY
1,M )�

(aY
2,M )�

...
(aY

n,M )�

⎤
⎥⎥⎥⎦ ∈ R

n×M , AXk =

⎡
⎢⎢⎢⎢⎣

(aXk

1,M )�

(aXk

2,M )�
...

(aXk

n,M )�

⎤
⎥⎥⎥⎥⎦ ∈ R

n×M .

Consider the concatenated matrices

AX =
[
AX1 AX2 . . . AXp−1

]
∈ R

n×(p−1)M ,

and

P =

⎡
⎢⎢⎢⎣

P1
P2
...

Pp−1

⎤
⎥⎥⎥⎦ ∈ R

(p−1)M×M , Q =

⎡
⎢⎢⎢⎣

Q1
Q2
...

Qp−1

⎤
⎥⎥⎥⎦ ∈ R

(p−1)M×M .

Then (13) can be reformulated as:

min
P ,Q

1
2n

∥∥AY −AXQ
∥∥2

F + λn

p−1∑
k=1

‖Pk‖F subject to P −Q = 0,

which can be minimized by solving a series of optimization problems. At the
h’th iteration, for all k ∈ [p− 1]:

P h+1
k = arg min

Pk

(
λn‖Pk‖F + ρ

2‖Pk −Qh
k + Uh

k ‖2
F

)
, k ∈ [p− 1], (20)

Qh+1 = arg min
Q

(
1
2n‖A

Y −AXQ‖2
F + ρ

2‖Q− P h+1 −Uh‖2
F

)
, (21)

Uh+1 = Uh + P h+1 −Qh+1. (22)

Here, ρ is the penalty parameter for the augmented Lagrangian. The solution
to (20) is a group soft-thresholding update of P . For each k ∈ [p− 1],

P h+1
k =

[
1 − λ

ρ‖Qh
k −Uh

k ‖F

]
+

(Qh
k −Uh

k ). (23)

The solution to (21), i.e. the update of Q, is

Qh+1 =
(

1
n

(AX)�AX + ρIM

)−1 ( 1
n

(AX)�AX + ρP h+1 + ρUh

)
. (24)
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Algorithm 3: ADMM for functional neighborhood selection
Input: AX , AY , and λn;

Set initial values of ρ0, P 0, Q0, and U0;
for h = 0, 1, 2, . . . do

Update Ph+1 by (23);
Update Qh+1 by (24);
Update Uh+1 by (22);
Break if primal and dual residuals meet stopping criteria;
Update ρh+1 for next round;

end for
Output: B̂k for k ∈ [p− 1].

Iteratively using updates (23), (24), and (22), the matrix P h
k will eventually

converge to P ∗
k , k ∈ [p − 1], as h → ∞ [7]. The solution of (13) is given by

B̂k = P ∗
k , k ∈ [p− 1]. The stopping criterion for the iteration process depends

on the primal residual, which indicates how well the constraints are satisfied, and
the dual residual, which indicates stability of updates between two consecutive
iterations [7]. In our settings, sh1 = P h−Qh, and sh2 = Qh−Qh−1 are the primal
and dual residuals respectively. The algorithm terminates when both residuals
are below their respective tolerances:

‖sh1‖F ≤ εpri,h and ‖sh2‖F ≤ εdual,h,

where

εpri,h =
√

(p− 1)M2εabs + εrel (‖P h‖F ∨ ‖Qh‖F
)
,

εdual,h =
√

(p− 1)M2εabs + εrel‖Uh‖F.

The factor
√

(p− 1)M2 is because the Frobenius norms are computed on
R

(p−1)M2 matrices. In the following experiments, we use εabs = 10−4 and
εrel = 10−4 by default.

The penalty parameter ρ of the augmented Lagrangian can be adjusted adap-
tively. We use Strategy S3 in Table 1 of [20] with ϕ = 10, τ incr = τdecr = 2:

ρh+1 =

⎧⎪⎨
⎪⎩
τ incrρh, ‖sh1‖2 > ϕ‖sh2‖2

ρh/τdecr, ‖sh2‖2 > ϕ‖sh1‖2

ρh, otherwise,

with ρ0 = 1. This guarantees that the primal and dual residuals do not vary
significantly across iterations and ensures stability regardless of the initial P 0

and U0.

4. Theoretical properties

We now discuss the statistical properties of the estimator proposed in Section 2.
In particular, we give conditions under which the neighborhood of a single vari-
able can be consistently recovered. Using a union bound extends the guarantees



Functional graphical model via neighborhood selection 1061

to recovery of the entire graph. First, we discuss a procedure that uses a fixed
function basis, and, subsequently, we discuss a procedure that uses an estimated
function basis.

Since we first consider a single node j, we assume without loss of gen-
erality that j = p. To simplify the notation, we also drop the subscript j
from βjk(t′, t), φj , φj,m, . . ., in this section. By (6), we have ‖βk(t′, t)‖HS =√∑∞

m,m′=1(b∗k,mm′)2 and b∗k,mm′ = 0 for all m,m′ ≥ 1 when ‖βk(t, t′)‖HS = 0.
Let B∗

k,M be a M × M matrix whose m-th row is (b∗k,m1, b
∗
k,m2, . . . , b

∗
k,mM ).

The scores of the “error” projected onto the function basis are denoted as
wim =

∫
T ei(t)φm(t)dt, m ≥ 1, and wi,M = (wi1, · · · , wiM )�. Let ri,M =

(ri1, · · · , riM )� ∈ R
M denote the “bias” arising from using the first M basis

elements to represent βk(t′, t) where rim =
∑p−1

k=1
∑∞

m′=M+1 b
∗
k,mm′a

Xk

im′ . Let

βk,M (t′, t) =
M∑

m,m′=1
b∗k,mm′φm(t)φm′(t′),

βk,>M (t′, t) =
∞∑

m>M orm′>M

b∗k,mm′φm(t)φm′(t′).

(25)

Then

‖βk,M (t′, t)‖HS =

√√√√ M∑
m,m′=1

(
b∗k,mm′

)2
,

‖βk,>M (t′, t)‖HS =

√√√√ ∞∑
m>M orm′>M

(
b∗k,mm′

)2
,

and

‖βk(t′, t)‖HS − ‖B∗
k,M‖F = ‖βk,M (t′, t) + βk,>M (t′, t)‖HS − ‖B∗

k,M‖F

≤ ‖βk,M (t′, t)‖HS + ‖βk,>M (s, t)‖HS − ‖B∗
k,M‖F

= ‖βk,>M (t′, t)‖HS.

When M is large enough, then the term ‖βk,>M (t′, t)‖HS is small; when n is
also large enough, B̂M

k is close to B∗
k,M , and N̂j will be a good estimator of

Nj .
Both wi,M and ri,M are Gaussian vectors with mean zero, and we de-

note their covariance matrices as Σw and Σr respectively; in addition, we
define Σr,w = Cov(ri,M ,wi,M ) and Σw,r = (Σr,w)�. To simplify the no-
tation, we drop the explicit dependence on M . Let ΣXk,r = Cov(aXk

i,M , ri,M ) ∈
R

M×M , Σr,Xk = (ΣXk,r)�, ΣXk,Xl = Cov(aXk

i,M ,aXl

i,M ) ∈ R
M×M , and ΣX =

(ΣXk,Xl)1≤k,l≤p−1 is a matrix composed of M×M -blocks ΣXk,Xl , k, l ∈ [p−1].
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The following quantities will be used to state the results:

Ξ1(M) = max
k∈[p−1]

{
ρmax(Σw + Σr − Σr,Xk

(
ΣXk,Xk

)−1 ΣXk,r)
}
,

Ξ2(M) = max
k∈[p−1]

ρmax(ΣXk,Xk), Ξ3(M) = max
k∈[p−1]

tr(ΣXk,Xk),

Ξ4(M) = tr {Σr + Σw + Σr,w + Σw,r} , ω(M) = max
k∈[p−1]

∥∥Σr,Xk
∥∥

F .

(26)

Note that Σr − Σr,Xk
(
ΣXk,Xk

)−1 ΣXk,r is a conditional variance of ri given
aXk

i,M , so the arguments in Ξ1(M) are always positive semidefinite. The functions
Ξ1(M) – Ξ4(M) are used to express an upper bound on the covariance between
the projection scores aXk

i,M and the error terms (ri,M+wi,M ). This upper bound
then provides a lower bound for the regularization parameter λn. The function
ω(M) measures the correlation of residuals ri,M with aXk

i,M . A large correlation
implies that the problem is more difficult to solve. Finally, let

K0 = max
k∈[p−1],m∈M

E[(aXk
im )2] = max

k∈[p−1],m∈M

(
ΣXk,Xk

)
m,m

< ∞. (27)

The quantity K0 is used to provide an upper bound on the estimation error
for the covariance matrix of aX

i,M . Subsequently, this is used to prove a lower
bound on restricted eigenvalues, which is a crucial step in proving Theorem 4.1
and Theorem 4.3.

4.1. Prior fixed function basis

Let σj0 = E[‖gij‖2], σmax,0 = maxj∈[p] σj0, and σjr = E[‖eij‖2], where eij is
defined in (5). Note that σjr ≤ σj0. We introduce several assumptions before
stating the main results.

Assumption 4.1. There exists a constant C > 0 that does not depend on p
such that σmax,0 ≤ C.

Assumption 4.1 requires that the norm of the random functions have a finite
second moment that does not grow with p and is a basic requirement for func-
tional graphical models to be well defined. Note that Ξk(M) ≤ maxj∈[p] E‖gij‖2

for all k = 1, 2, 3, 4 and any M . Thus, Ξk(M) ≤ C for all M ≥ 1 and p ≥ 1.

Assumption 4.2. Let ΣX
Nj ,Nj

= (ΣXk,Xk′ )k,k′∈Nj ∈ R
|Nj |M×|Nj |M be the

submatrix with blocks indexed by the elements of the neighborhood set Nj and
define

κ = κ(M) = ρmin

(
ΣX

Nj ,Nj

)
. (28)

For any M , we assume that κ > 0. When Nj is empty, we let κ = ∞ for all M .

Assumption 4.2 requires that the projection scores of all functions in the
neighborhood of node j are linearly independent. As discussed in Section 2.4,
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because we project all functions onto the same basis, projection scores would
only be colinear if the functions are truly difficult to distinguish.

Let τ(M) be the relevant signal strength:

τ(M) = min
k∈Nj

‖B∗
k‖F = min

k∈Nj

‖βk,M‖HS , (29)

where βk,M (t′, t) is defined in (25). For any orthonormal basis, the signal strength
τ(M) is an increasing function of M . When Nj is empty, we define τ(M) = ∞ for
all M . Recall that we use s = sj to denote the size of the neighborhood, s = |Nj |.
As discussed in Section 2.3, when M is large enough such that τ(M) > 0, we
have N M

j = Nj , where N M
j is defined in (12).

Assumption 4.3 (Signal Strength). We assume that

ω(M)√
κ(M)τ(M)

is a non-increasing function of M , and

lim
M→∞

24
√
s

ω(M)√
κ(M)τ(M)

< 1.

Assumption 4.3 requires that the function ω(M)—a measure of bias due to
truncation—must decay quickly compared to

√
κ(M), which roughly measures

the conditioning of the design matrix, after dividing by τ(M), which measures
the signal strength.

We also compare our Assumption 4.3 with Assumption 4.6 of [58]. Assump-
tion 4.6 of [58] assumes that there exists a universal constant Cmin > 0 such that
κ(M) ≥ Cmin for all M ≥ 0, where κ(M)—defined in our Assumption 3—is the
minimum eigenvalue of of the covariance matrix of the function scores when us-
ing an M -dimensional basis. However, by [22, Theorem 7.2.5], the covariance op-
erator is a compact operator; furthermore, by [22, Theorem 4.2.3], we must have
κ(M) → 0 as M → ∞ unless H has finite-rank. Thus, Assumption 4.6 of [58]
is equivalent to assuming that the random functions lie in a finite-dimensional
space. In contrast, in our Assumption 4, instead of assuming that κ(M) is uni-
formly bounded away from 0, we study the interplay between κ(M), ω(M) and
τ(M). When κ(M) is bounded from 0, our Assumption 4 holds; however, our
assumptions also allow κ(M) → 0 as M → ∞, as long as it does not decrease too
quickly when compared with s ω2(M)/τ2(M). Thus, our theory can deal with
infinite-dimensional random functions. In this sense, our Assumption 4 should
be considered strictly weaker than Assumption 4.6 of [58].

Let

ν(M) = τ(M) − 24
√
s

ω(M)√
κ(M)

. (30)

Under Assumption 4.3, limM→∞ ν(M) > 0. We denote M∗ as the smallest
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integer such that ν(M ′) > 0 for all M ′ ≥ M∗, that is,

M∗ = min {M : ν(M ′) > 0 for all M ′ ≥ M}

= min
{
M : 24

√
s

ω(M ′)√
κ(M ′)τ(M ′)

< 1 for all M ′ ≥ M

}
.

(31)

Let
χ(n, p,M, δ) = 6

√
s√

κ(M)
λ̃(n, p,M, δ), (32)

where

λ̃(n, p,M, δ) = Õ

(
Cn,δ

{
M

√
Ξ1(M)√
n

+
√

Ξ1(M)
√

log(p/δ)
n

}

+ ω(M)
{
M

√
log(pM2/δ)√

n
+ M log(pM2/δ)

n

})
, (33)

and

Cn,δ =
√

Ξ2(M) ·
(

1 +

√
2
n

log
(

(p− 1)
δ

))
+
√

Ξ3(M)
n

. (34)

The exact form of λ̃(n, p,M, δ) can be found in (54) in appendix. The function
λ̃(n, p,M, δ) provides a theoretical guidance on how to select the regulariza-
tion parameter λn and the function χ(n, p,M, δ) is used to provide theoretical
guidance on the choice of thresholding parameter εn.

We are now ready to state our main result on the consistency of the neigh-
borhood selection procedure.

Theorem 4.1 (Neighborhood Recovery with Prior Fixed Basis). Suppose that
Assumptions 2.1-4.3 hold. Furthermore, suppose M ≥ M∗, λn = λ̃(n, p,M, δ),
and εn = χ(n, p,M, δ) + 12

√
s/κ(M)ω(M). Fix δ ∈ (0, 1]. If the sample size n

satisfies

n ≥ Õ

(
max

{
M4s2 log(p2M2/δ)

κ2(M) ,

s · max
{
M2, log(p/δ),M2ω2(M) log(M2p/δ)

}
κ(M)ν2(M)

})
,

then with probability at least 1 − δ, we have√√√√p−1∑
k=1

∥∥∥B̂k −B∗
k

∥∥∥2

F
≤ χ(n, p,M, δ) + 12

√
s

ω(M)√
κ(M)

,

so that N̂j = Nj.
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Proof. See Appendix A.6.

Note that the quantities κ(M), ω(M), ν(M), s, and M all implicitly depend
on j. One key difference between Theorem 4.1 and a typical group lasso result
[Chapter 9.6 of 63] is that the error term is correlated with the covariates—recall
that the projection scores aX

i,M are correlated with the residual ri,M due to the
finite-dimensional approximation. The effect of the correlation is captured by
the function ω(M). When there is no truncation bias—i.e., the random functions
are finite-dimensional and M is large enough—then ω(M) will be zero.

Using a union bound, the following corollary directly follows from Theo-
rem 4.1 and provides guarantees for recovery of the entire graph.

Corollary 4.2 (Graph Recovery with Prior Fixed Basis). Suppose the condi-
tions of Theorem 4.1 hold for all nodes j ∈ [p]. We use κj(Mj), ωj(Mj), νj(Mj),
sj, and Mj to take the place of κ(M), ω(M), ν(M), s, and M in Theorem 4.1 to
show their dependency on j explicitly. Let Ê be the estimated edge set obtained
by applying either the AND or OR rule to the estimated neighborhood of each
node. If the sample size n satisfies

n ≥ max
j∈[p]

Õ

(
max

{
M4

j s
2
j log(p3M2

j /δ)
κ2
j (Mj)

,

sj · max
{
M2

j , log(p2/δ),M2
j ω

2
j (Mj) log(M2

j p
2/δ)

}
κj(Mj)ν2

j (Mj)

})
,

then P

{
Ê = E

}
≥ 1 − δ.

Before moving to the next section, we compare our theorems with some ex-
isting literature.

Compared with [52], we do not assume that the functional data are finite
dimensional. Instead, we study the truly infinite dimensional functional data
and discuss the trade-off between bias, signal strength, and conditioning of the
design matrix explicitly. When Condition 2 of [52] (which is required for the
correct graph recovery therein) holds, that is, when gij is M(n)-dimensional for
all j ∈ [p] and some positive integer M(n), then ω(M(n)) = 0 and ν(M(n)) > 0.
However, when Assumption 4.3 holds, we do not necessarily need gij to be finite
dimensional. Thus, Condition 2 of [52] is strictly stronger than Assumption 4.3.

We also compare our results to those in [58]. In addition to the difference be-
tween our Assumption 4.3 and Assumption 4.6 of [58] as discussed previously,
our theoretical analysis offers an explicit characterization of a pivotal threshold
in M . Specifically, we necessitate M to exceed M�—as defined in (31)—which
is contingent solely on the characteristics of the functional data, rather than
n. This allows our theoretical analysis to account for finite M . In contrast,
[58] necessitate a sieve-type estimator where M scales with n (Assumption 4.1
(ii)). We argue that our finding is more intuitive because increasing M seeks
to decrease the approximation error. If M is not large enough, the approxima-
tion error remains too large to ensure consistent graph recovery, irrespective
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of how large n may be. Therefore, accurate graph recovery becomes infeasible.
Conversely, once M is large enough to render the approximation error small,
consistent graph recovery is achievable irrespective of the specific M chosen, as
long as n is sufficiently large. In this regard, M� encapsulates this threshold,
a concept that is absent in [58]. Furthermore, when we prescribe M to scale
with n and treat κ(M) as a constant, our result still delivers a superior rate.
To highlight this, we initially presume all other parameters remain constant
and only contemplate how the sample size n relates to M . In Theorem 4.1,
once M ≥ M�, the dominant term becomes the first one. When κ(M) is con-
stant, we have n = Ω(M4). By contrast, Assumption 4.1 (ii) of [58] stipulates
that n = Ω(M2+3β). Noting that Assumption 4.1 (i) of [58] demands β > 1, it
requires n = Ω(M2+3β) = Ω(M5), rendering it inferior to our rate.

Finally, to obtain consistency of neighborhood recovery and graph recovery,
we take a thresholding idea by introducing a tuning threshold εn in (14), while
both [52] and [58] rely on the irrepresentability condition [71]. Although our ap-
proach requires an additional tuning parameter, the irrepresentability condition
is known to be a strong assumption. Both ideas are widely used in the literature.
The hard thresholding after initial group LASSO estimation has been broadly
applied in high-dimensional linear regression [43] and graphical modeling [10].
The theoretically appropriate choice of εn depends on problem parameters, typi-
cally unknown in practice. For this reason, the hard thresholding step is primar-
ily employed for theoretical, rather than practical, purposes. Despite recognizing
the gap between practice and theory, it’s crucial to note that bridging this gap
is a non-trivial task and remains a long-standing challenge in high-dimensional
statistics. In the simulations of Section 5, we set εn = 0. In Appendix 5.2, we
empirically demonstrate how a non-zero εn impacts practical performance. The
result shows that the benefit of a nonzero εn is not substantial, which justifies
our choice in simulations. Another way to choose εn is by cross-validation (CV)
as we described in Section 2.5. See Section 5.3 for the empirical results of CV.

4.2. Data-dependent function basis

We now consider the setting where the function basis used for dimension re-
duction is not known in advance, and instead the basis used is an estimate of
some population basis. We will assume we have access to estimates satisfying
the following property.

Assumption 4.4. There exist constants c1, c2 > 0 such that for all 0 < δ ≤ 1,
we have

P

{
‖φ̂jm − φjm‖ ≤ djm

√
(1/c1) log (c2/δ)

n
for all m ≥ 1

}
≥ 1 − δ, (35)

where {djm}, j ∈ [p],m ≥ 1, are constants that depend on j,m and satisfy d2
j0 =∑∞

m=1 d
2
jm < ∞, j ∈ [p].
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Assumption 4.4 holds when φjm(t)’s are the FPCA eigenfunctions of Kjj(t′, t)
and φ̂jm(t)’s are the estimated FPCA eigenfunctions of K̂jj(t′, t)—see Lemma
6 and Lemma 8 in the Supplementary Material of [52]. When Assumption 4.4
holds, let dj,max = maxm≥1 djm, and

djs(M) =

√√√√ M∑
m=1

d2
jm for all M ≥ 1, (36)

so that djs(M) ≤ dj0 for all M ≥ 1. In addition, let

Φ(M) =

√√√√p−1∑
k=1

M∑
m=1

∞∑
m′=M+1

(
b∗k,mm′

)2
(37)

and
χ̌(n, p,M, δ) = 6

√
s√

κ(M)
λ̌(n, p,M, δ), (38)

where λ̌(n, p,M, δ) is given in (69) in appendix.

Theorem 4.3 (Neighborhood Recovery with Data-Dependent Basis). Suppose
Assumptions 2.1-4.4, hold. Furthermore, suppose M ≥ M∗, λn = λ̌(n, p,M, δ),
and εn = χ̌(n, p,M, δ) + 12

√
s/κ(M)ω(M). Fix δ ∈ (0, 1]. If the sample size n

satisfies

n ≥ Õ

(
max

{
M4s2 log(p2M2/δ)

κ2(M) ,

max
{
sM2, s log(p/δ), sM2ω2(M) log(M2p/δ)

}
κ(M)ν2(M) ,

max
{
s3M2(log(1/δ)2), s(d2

j0 − d2
js(M)Φ2(M))

}
κ(M)ν2(M)

})
,

then with probability at least 1 − δ, we have√√√√p−1∑
k=1

∥∥∥B̂k −B∗
k

∥∥∥2

F
≤ χ̌(n, p,M, δ) + 12

√
s

ω(M)√
κ(M)

,

so that N̂j = Nj.

Proof. See Appendix A.7.

Comparing Theorem 4.3 with Theorem 4.1, one key difference is that the reg-
ularization parameter is increased by a term that corresponds to the estimation
error of the basis functions. As a result, the sample complexity also increases
due to this additional error source.

Similar to before, the following corollary provides guarantees for recovery of
the whole graph and directly follows from Theorem 4.3 when applying a union
bound.
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Corollary 4.4 (Graph Recovery with Data-Dependent Basis). Suppose the con-
ditions of Theorem 4.3 hold for all nodes j ∈ [p]. We use κj(Mj), ωj(Mj),
νj(Mj), sj, and Mj to take the place of κ(M), ω(M), ν(M), s, and M in Theo-
rem 4.1 to show their dependency on j explicitly. Let Ê be the estimated edge set
obtained by applying either the AND or OR rule to the estimated neighborhood
of each node. If the sample size n satisfies

n ≥ max
j∈[p]

Õ

(
max

{
M4

j s
2
j log(p3M2

j /δ)
κ2
j (Mj)

,

max
{
sjM

2
j , sj log(p2/δ), sjM2

j ω
2
j (Mj) log(M2

j p
2/δ)

}
κj(Mj)ν2

j (Mj)
,

max
{
s3
jM

2
j (log(1/δ)2), sj(d2

j0 − d2
js(Mj)Φ2

j (Mj))
}

κj(Mj)ν2
j (Mj)

})
,

then P

{
Ê = E

}
≥ 1 − δ.

Compared to [58], our theoretical analysis is more general, since we allow,
but do not restrict, φjm(t)’s to be the FPCA eigenfunctions of Kjj(t′, t) and
φ̂jm(t)’s to be the estimated FPCA eigenfunctions of K̂jj(t′, t).

4.3. Theoretical guidance on the choice of function basis

We give a theoretical guide for choosing the function basis. Note that we treat
the guidance in this section as a heuristic design, and leave more thorough study
on this topic for further research. Our theory can successfully explain why the
PSKL basis is a good choice for functional data satisfying the partial separability
condition—see Section 4.3.1.

Suppose that we use φ = {φm}∞m=1 as a function basis to represent the data.
Let

Λ(M,φ) = ω(M)√
κ(M)τ(M)

, (39)

where ω(M) measures the covariance between the scores of the basis elements
we include and the basis elements we truncate, κ(M) is the minimum eigenvalue
of the covariance of the scores, and τ(M) measures the signal strength of the
basis elements we include. The function Λ(M,φ) appears in Assumption 4.3, and
according to the previous section, a good choice of φ should minimize Λ(M,φ)
for all M ≥ 1. Unfortunately, minimizing Λ(M,φ) is typically infeasible, as
it involves unknown quantities. We motivate two approaches for selecting the
function basis. First, we show that when additional assumptions hold, a basis
that minimizes ω(M) can be used. Second, we consider a more general case and
suggest approximately minimizing an upper bound on Λ(M,φ).
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4.3.1. Minimize ω(M)

Our first approach to choosing the function basis is to minimize ω(M). To
achieve that, the function basis φ should minimize the covariance between
{{gXk

i , φm}p−1
k=1}Mm=1 and {{gXk

i , φm}p−1
k=1}m>M . Although minimizing this co-

variance is intractable in general, under the assumption of partial separability
[67], we can solve the minimization problem exactly.

Definition 4.5 (Partial Separability). An orthonormal function basis {φm}∞m=1
is called the partial separability Karhunen-Loève expansion (PSKL) basis if the
random vectors

(〈gYi , φm〉, 〈gX1
i , φm〉, . . . , 〈gXp−1

i , φm〉), m ∈ N

are mutually uncorrelated.

When the PSKL basis exists, then

{{〈gXk
i , φm〉}p−1

k=1}Mm=1 and {{〈gXk
i , φm〉}p−1

k=1}m>M

are uncorrelated for any M ≥ 1, and ω(M) = 0 for all M ≥ 1. Note that Λ(M,φ)
is nonnegative, thus, the PSKL basis minimizes (39) when the data generating
process is partially separable. [40] proposed a test to verify the partial separa-
bility assumption. When the partial separability condition holds, by Theorem 2
of [67], one can use the eigenfunctions of K̂(t, t′) = (1/p)

∑p
j=1 K̂jj(t, t′) as esti-

mates of the PSKL basis, where K̂jj(t, t′) is defined in (16). However, the partial
separability assumption is strong and may not hold in general settings.

4.3.2. Minimize an approximate upper bound

When the PSKL basis does not exist, we suggest choosing a function basis by
approximately minimizing the following upper bound on (39). By the calculation
in Appendix A.4, we have

− log Λ(M,φ) �

− log
{

max
k∈[p−1]

‖Σr,Xk‖F

}
+ 1

2 log
{
tr
(
ΣY

)}
+ 1

2 log

⎧⎨
⎩

ρmin

(
ΣX

NjNj

)
ρmax

(
ΣX

NjNj

)
⎫⎬
⎭

+ 1
2 log

{
ρmin

([
RY,Xk

]
k∈Nj

(
RX

NjNj

)−2 [
RXk,Y

]
k∈Nj

)}
. (40)

Therefore, by maximizing the right hand side of (40), we are approximately
minimizing Λ(M,φ). Unfortunately, most of the terms depend on Nj , which
is unknown. As a consequence, we choose to maximize log

{
tr
(
ΣY

)}
, which

does not depend on Nj . This term is maximized when the function basis φ is
the FPCA basis of gYi . More intuitively, the FPCA basis of gYi maximizes the
signal strength of the response variable. In Section 5, we confirm by extensive
simulations that the FPCA basis of gYi indeed performs well by a slight margin.
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5. Simulations

We illustrate the finite sample properties of our neighborhood selection proce-
dure through a simulation study. We defer the wall-clock runtime analysis of
different methods to Appendix C. We generate the simulated data with the
following procedure. Let

gij(t) = (aij)�f(t), i ∈ [n], j ∈ [p],

where aij ∈ R
M∗ and ((ai1)�, . . . , (aip)�)� ∈ R

pM∗ follows a mean zero Gaus-
sian distribution with covariance matrix Σ = Θ−1, and f(t) is a vector that
contains the first M∗ Fourier basis functions. We consider the following four
settings for the precision matrix Θ.

• Model A. (Block Banded – Full) We generate a block-banded precision
matrix Θ ∈ R

pM∗×pM∗ with M∗ = 15. Define a Toeplitz matrix T such
that Tjj = 1, and Tjl = 1/2|j − l| for all j �= l. Let A ∈ R

M∗×M∗ be a
tridiagonal matrix with Akk = 1 and Ak,k+1 = Ak+1,k = 0.5. All other
entries of A are set to 0. The blocks of the precision matrix Θ are then
given as Θjj = T , Θj,j+1 = Θj+1,j = 0.4A, and Θj,j+2 = Θj+2,j =
0.2IM∗ . All remaining blocks of Θ are set to 0.

• Model B. (Block Banded – Partial) We generate a partially block-banded
precision matrix Θ ∈ R

pM∗×pM∗ with M∗ = 15. In this setting, every
alternating block of 10 nodes have similar connection pattern as in Model
A, and the remaining nodes are fully isolated. Precisely, Θ is a block
diagonal matrix, with each of its 10M∗ × 10M∗ blocks denoted by Θ(k),
k = 1, · · · , � p

10�. For even k, we set Θ(k) = I10M∗ . For odd k, we set
Θ(k) ∈ R

10M∗×10M∗ to be the block-banded precision matrix such that
(Θ(k))jj = A, (Θ(k))j,j+1 = (Θ(k))j+1,j = 0.4A, and (Θ(k))j,j+2 =
(Θ(k))j+2,j = 0.2A. All remaining blocks of Θ(k) are set to 0.

• Model C. (Hub Model) We generate a hub-connected precision matrix
Θ ∈ R

pM∗×pM∗ with M∗ = 5. We generate the edge set E from a power
law distribution as follows. For each node, the number of neighbors m fol-
lows a power law distribution pm = m−α with α = 2, and the exact neigh-
bors are sampled uniformly. A disjoint sequence of edge sets E1, . . . , E5 is
generated from E, yielding 5 adjacency matrices Gl, l = 1, . . . , 5. The de-
tailed algorithm of this step is given in Section 8 of [67]. Then we generate
p × p precision submatrices Ωl, l = 1, . . . , 5, whose supports are exactly
Gl. First, p× p matrices Ω̃l are generated:

(Ω̃l)ij =

⎧⎪⎨
⎪⎩

1 if i = j

0 if (Gl)ij = 0 or i < j

∼ Unif(D) if (Gl)ij = 1

where D = [−2
3 ,−

1
3 ] ∪ [ 13 ,

2
3 ]. Next, we rescale the rows of Ω̃l so that the

�2-norm of each row is 1. We then obtain Ωl by symmetrizing Ω̃l; we
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average Ω̃l with its transpose, and set the diagonals to one. Let Σps =
diag(Σ1, . . . ,Σ5) with Σl = �lΩ−1

l , where �l = 3l−1.8. To break the
partial separability condition, we define a block precision matrix Ω̄ ∈
R

pM∗×pM∗ , whose diagonal blocks of p× p are Ω̄l,l = Ωl and off-diagonal
blocks are Ω̄l,l+1 = Ω̄l+1,l = (Ω∗

l + Ω∗
l+1)/2 where Ω∗

l = Ωl − diag(Ωl).
We then calculate

Σnps = diag(Σps)
1
2

(
diag(Ω̄)− 1

2 Ω̄diag(Ω̄)− 1
2

)−1
diag(Σps)

1
2 .

Finally, we obtain the covariance matrix as (Σjl)st = (Σnps,st)jl, 1 ≤ j, l ≤
p and 1 ≤ s, t ≤ 5. Finally, the precision matrix Θ = (Σ)−1.

• Model D. (Randomly Connected) This model is similar to the setting
introduced in [55], but modified to fit functional data. We generate a
random block sparse precision matrix Θ ∈ R

pM∗×pM∗ with M∗ = 15. Each
off-diagonal block Θjl, 1 ≤ j �= l ≤ p is set to 0.5IM∗ with probability 0.1,
and 0M∗ otherwise. The diagonal blocks are set as Θjj = δ′IM∗ , where
δ′ is chosen to guarantee the positive definiteness of the precision matrix,
i.e., Θ � 0. It is sufficient to choose δ′ such that it exceeds the maximum
row sum of the absolute values of the off-diagonal entries of Θ, thus the
diagonal dominance ensures positive definiteness. Notice that the partial
separability condition is satisfied under this model.

Models A and B are similar to Models 1 and 2 in Section 5.1 of [52], but
modified so that partial separability is violated. Model C—where partial sep-
arability is also violated—is used as a counter-example in [67]. In these three
models, the partial separability condition is violated, that is, it is impossible to
separate the multivariate and functional aspects of the data. However, Model D
satisfies the partial separability by construction.

For each setting, we fix n = 100 and let p = 50, 100, 150. Each random
function is observed on a grid with T = 100 equally spaced points on [0, 1]. For
T observed time points, (t1, . . . , tT ), uniformly spread on [0, 1], the observed
values are generated by

gobs
ij (tk) =

M∗∑
l=1

aijlfl(tk) + εijk

where εijk ∼ N(0, σ2). In models A, B, and D, we set σ = 0.5, while in model C,
σ2 = 0.05×

∑M∗

l=1 tr(Σl)/p. We report the results averaged over 50 independent
runs.

In all experiments, we set M , the number of principal components used to
model each function, to be 5 for all nodes. This is a typical value selected by the
cross-validation process described in Section 2.5. The first simulation experiment
compares the performance of our proposed method to current baseline methods,
including FGLasso [52] and PSKL [67]. Since the theoretically appropriate choice
of the threshold εn depends on problem parameters that are generally unknown
in practice, we use εn = 0 for this part of experiment. We plot the ROC curve
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as the penalty parameter λn changes. More specifically, let λn = λj,n explicitly
denote the parameter choice for the node j. According to Proposition A.1, there
exists λmax such that N̂j is empty. Let λj,n,t = tλ · λj,max, where tλ ∈ [0, 1] is
the same for all nodes. We plot the ROC curve as tλ changes from 1 to 0. The
second simulation experiment illustrates the performance of our method under
various choices of εn. From the comparison of ROC’s under each model setting,
our empirical results confirm that optimal performance is typically achieved
with a non-zero εn. The third simulation experiment is dedicated to assess the
accuracy of a single selected graph. We use the SCV-RSS criterion introduced
in Section 2.5 to select λj,n for all nodes, and then evaluate the performance by
reporting the precision and recall on the specific graph that is selected.

5.1. Comparison with baseline methods

We compare our method with the functional Graphical lasso (FGLasso) proce-
dure [52] and the PSKL procedure [67]. For FGLasso, we select the parameters
as proposed in [52]. For PSKL, we use the package “fgm” with the default setting
[67]. As Model D is partially separable, we also implemented our method using
the PSKL function basis that we assume is known a priori, which we call PSKL
Basis—in this case, it is Fourier basis. To demonstrate the advantages of using
a single function basis when estimating Nj—as explained in Section 2.4—we
implemented the following two methods to estimate the FPCA scores and com-
pared their performances. The first method, which we call FPCA-gX , projects
each function onto its own FPCA basis and uses those projection scores for
all subsequent tasks. The second method, which we call FPCA-gY , projects all
other functions onto the FPCA basis of gj when selecting Nj .

To compare the methods, we plot their respective ROC curves for each model
and different values of p. For each value of the tuning parameters λn and tε,
we compare the estimated edge set to the true edge set. Specifically, we calcu-
late the true positive rate TPR(λn, tε) = TP(λn, tε)/(TP(λn, tε) + FN(λn, tε))
and the false positive rate FPR(λn, tε) = FP(λn, tε)/(TP(λn, tε) + TN(λn, tε)),
where TP(λn, tε),FP(λn, tε),TN(λn, tε),FN(λn, tε) stand for the number of true
positive, false positive, true negative, and false negative number of edges, respec-
tively. Recall that we use tε = 0 for the comparison of different methods. The
ROC curves are plotted by varying the penalty parameter λn, with TPR(λn, 0)
on the vertical axis and FPR(λn, 0) on the horizontal axis. We also calculate
the area under the ROC curve (AUC). The ROC curves are shown in Figure 1
and the average AUC is given in Table 1.

Although FPCA-gY and FPCA-gX perform similarly, FPCA-gY slightly out-
performs FPCA-gX across all settings. Moreover, both FPCA-gX and FPCA-gY
drastically outperform FGLasso in Models A, B, and D, and slightly outperforms
FGLasso in most settings under Model C. In Models A, B, and C, where par-
tial separability does not hold, the PSKL procedure generally underperforms
the other procedures. Even in Model D, where partial separability holds, PSKL
has a performance that is comparable to ours when the dimension is low. We
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Fig 1. ROC curves for different models and values of p. From top to bottom: Models A, B,
C, D. From left to right: p = 50, 100, 150. Horizontal axis: FPR; vertical axis: TPR. For
FPCA-gX , each function is projected onto its own FPCA basis, while FPCA-gY projects all
other functions onto the FPCA basis of gij .
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Table 1

The average AUC ROC for each method across 50 runs; the standard errors of AUC are
given in the parentheses. For FPCA-gX , each function is projected onto its own FPCA

basis, while FPCA-gY projects all other functions onto the FPCA basis of gij . The
maximum of each row is marked in bold.

Model p FPCA-gY ,
AND

FPCA-gY ,
OR

FPCA-gX ,
AND

FPCA-gX ,
OR

FGLasso PSKL FPCA-
PSKL,
AND

FPCA-
PSKL,
OR

A

50 0.984
(0.004)

0.974
(0.007)

0.984
(0.005)

0.973
(0.007)

0.942
(0.010)

0.920
(0.010)

100 0.985
(0.003)

0.976
(0.004)

0.984
(0.003)

0.975
(0.004)

0.947
(0.006)

0.925
(0.007) N/A N/A

150 0.985
(0.003)

0.976
(0.003)

0.984
(0.003)

0.975
(0.003)

0.948
(0.005)

0.927
(0.007)

B

50 0.969
(0.008)

0.964
(0.009)

0.969
(0.008)

0.964
(0.009)

0.806
(0.100)

0.924
(0.013)

100 0.976
(0.005)

0.971
(0.006)

0.976
(0.005)

0.970
(0.006)

0.703
(0.077)

0.918
(0.021) N/A N/A

150 0.965
(0.006)

0.961
(0.007)

0.964
(0.006)

0.960
(0.008)

0.620
(0.067)

0.924
(0.012)

C

50 0.785
(0.035)

0.828
(0.037)

0.785
(0.035)

0.828
(0.038)

0.838
(0.037)

0.799
(0.042)

100 0.780
(0.040)

0.839
(0.036)

0.777
(0.039)

0.837
(0.036)

0.822
(0.101)

0.797
(0.061) N/A N/A

150 0.740
(0.061)

0.792
(0.053)

0.738
(0.060)

0.790
(0.053)

0.768
(0.115)

0.755
(0.077)

D

50 0.967
(0.012)

0.948
(0.017)

0.966
(0.013)

0.947
(0.017)

0.888
(0.081)

0.966
(0.044)

0.966
(0.013)

0.948
(0.017)

100 0.902
(0.029)

0.882
(0.022)

0.900
(0.029)

0.881
(0.022)

0.798
(0.092)

0.929
(0.037)

0.902
(0.030)

0.881
(0.022)

150 0.823
(0.013)

0.824
(0.010)

0.821
(0.013)

0.822
(0.011)

0.802
(0.040)

0.917
(0.009)

0.823
(0.013)

0.824
(0.010)

also note that in Model D, the neighborhood selection procedure that uses the
“optimal” PSKL basis, which we assume is known a priori, has a very similar
performance to the procedure that uses the FPCA basis and does not require
prior knowledge. This suggests that using the data-selected FPCA basis is a
good idea across a variety of settings.

5.2. The effect of εn

In this section, we empirically demonstrate how εn impacts practical perfor-
mance. The experimental setting remains identical to that in Section 5. We
apply our proposed method by setting εn = tελn, and compute an ROC for
each fixed tε value. For each model, we select five distinct tε values, inclusive of
0. Figure 2 provides a visually intuitive comparison and Table 2 illustrates the
area under the curve (AUC) for each of the five tε values under each setting. In
most scenarios, the maximal AUC is achieved by a non-zero tε. However, the
marginal benefit of using the optimal tε over simply setting tε = 0 is relatively
insignificant in most cases. This empirical investigation justifies the practical
choice of εn = 0.
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Fig 2. ROC for different models and values of p under different threshold coefficient tε
using FPCA-gX method. From top to bottom: Models A, B, C, D. From left to right:
p = 50, 100, 150. Horizontal axis: FPR; vertical axis: TPR.



1076 B. Zhao et al.

Table 2

The average AUC for each tε across 50 runs; the standard errors of AUC are given in the
parentheses. The method is FPCA-gX . The maximum of each row is marked in bold.
Model A tε = 2.0 tε = 0.6 tε = 0.3 tε = 0.1 tε = 0

p=50 AND 0.992
(0.004)

0.997
(0.003)

0.996
(0.003)

0.993
(0.004)

0.984
(0.005)

OR 0.991
(0.004)

0.996
(0.003)

0.995
(0.003)

0.989
(0.004)

0.973
(0.007)

p=100 AND 0.970
(0.009)

0.994
(0.003)

0.994
(0.003)

0.992
(0.003)

0.984
(0.003)

OR 0.973
(0.005)

0.993
(0.003)

0.993
(0.003)

0.989
(0.003)

0.975
(0.004)

p=150 AND 0.985
(0.006)

0.991
(0.003)

0.992
(0.003)

0.990
(0.002)

0.984
(0.003)

OR 0.987
(0.004)

0.991
(0.002)

0.991
(0.002)

0.987
(0.002)

0.975
(0.003)

Model B tε = 0.5 tε = 0.2 tε = 0.05 tε = 0.02 tε = 0

p=50 AND 0.901
(0.026)

0.964
(0.010)

0.974
(0.009)

0.973
(0.009)

0.969
(0.008)

OR 0.856
(0.020)

0.949
(0.011)

0.970
(0.009)

0.971
(0.009)

0.964
(0.009)

p=100 AND 0.940
(0.013)

0.966
(0.009)

0.977
(0.005)

0.978
(0.005)

0.976
(0.005)

OR 0.943
(0.009)

0.963
(0.007)

0.975
(0.006)

0.976
(0.006)

0.970
(0.006)

p=150 AND 0.896
(0.015)

0.946
(0.009)

0.965
(0.007)

0.965
(0.007)

0.964
(0.006)

OR 0.924
(0.012)

0.952
(0.008)

0.962
(0.008)

0.964
(0.008)

0.960
(0.008)

Model C tε = 1.5 tε = 0.6 tε = 0.1 tε = 0.05 tε = 0

p=50 AND 0.725
(0.043)

0.758
(0.041)

0.783
(0.037)

0.785
(0.037)

0.785
(0.035)

OR 0.730
(0.035)

0.766
(0.036)

0.808
(0.032)

0.817
(0.033)

0.828
(0.038)

p=100 AND 0.659
(0.079)

0.715
(0.073)

0.761
(0.060)

0.766
(0.058)

0.771
(0.054)

OR 0.688
(0.076)

0.738
(0.072)

0.805
(0.062)

0.818
(0.059)

0.830
(0.061)

p=150 AND 0.602
(0.076)

0.666
(0.070)

0.723
(0.063)

0.730
(0.062)

0.738
(0.059)

OR 0.632
(0.081)

0.699
(0.070)

0.765
(0.067)

0.778
(0.062)

0.791
(0.052)

Model D tε = 3.0 tε = 0.6 tε = 0.3 tε = 0.1 tε = 0

p=50 AND 0.918
(0.115)

0.966
(0.024)

0.969
(0.015)

0.968
(0.013)

0.966
(0.013)

OR 0.922
(0.113)

0.969
(0.018)

0.966
(0.014)

0.956
(0.014)

0.948
(0.017)

p=100 AND 0.840
(0.104)

0.896
(0.036)

0.900
(0.031)

0.901
(0.030)

0.900
(0.029)

OR 0.851
(0.100)

0.903
(0.031)

0.899
(0.027)

0.889
(0.024)

0.881
(0.022)

p=150 AND 0.794
(0.042)

0.814
(0.011)

0.818
(0.012)

0.820
(0.013)

0.821
(0.013)

OR 0.805
(0.034)

0.824
(0.013)

0.825
(0.013)

0.823
(0.011)

0.822
(0.011)
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Table 3

The average precision and recall of the graph using FPCA-gX method. The optimal λn and
tε is selected by the SCV-RSS criterion across 50 runs; the standard deviation is given in

paranthesis.
Model p AND, Precision AND, Recall OR, Precision OR, Recall

A
50 1.000 (0.000) 0.644 (0.050) 0.985 (0.012) 0.843 (0.037)
100 1.000 (0.002) 0.630 (0.032) 0.970 (0.013) 0.826 (0.031)
150 1.000 (0.001) 0.626 (0.029) 0.964 (0.010) 0.815 (0.022)

B
50 0.934 (0.071) 0.463 (0.066) 0.442 (0.120) 0.659 (0.058)
100 0.601 (0.105) 0.528 (0.049) 0.155 (0.024) 0.746 (0.052)
150 0.338 (0.061) 0.556 (0.038) 0.102 (0.009) 0.782 (0.032)

C
50 0.853 (0.212) 0.050 (0.033) 0.549 (0.124) 0.145 (0.048))
100 0.902 (0.080) 0.076 (0.031) 0.646 (0.093) 0.211 (0.064)
150 0.849 (0.085) 0.062 (0.023) 0.590 (0.070) 0.172 (0.057)

D
50 0.998 (0.014) 0.122 (0.127) 0.989 (0.030) 0.263 (0.240)
100 0.966 (0.150) 0.034 (0.024) 0.957 (0.055) 0.114 (0.086)
150 0.988 (0.058) 0.004 (0.009) 0.979 (0.044) 0.012 (0.031)

5.3. Performance of cross-validation

Practitioners may want a single graph rather than a series of graphs corre-
sponding to different penalty and threshold parameters. Thus, we also evalu-
ate the precision and recall of the final graph selected using the parameters
obtained through selective cross-validation algorithm stated in Algorithm 2.
When choosing λn, εn, we let candidate εn’s to be εn = tε · λn, where tε ∈
{0, 0.2, 0.4, 0.8, 1.2, 1.6, 2}. We denote the chosen tuning parameters as (λ∗

n, t
∗
ε ).

The precision and recall of (λ∗
n, t

∗
ε ) are defined as

Precision(λ∗
n, t

∗
ε ) = TP(λ∗

n, t
∗
ε )/(TP(λ∗

n, t
∗
ε ) + FP(λ∗

n, t
∗
ε )),

Recall(λ∗
n, t

∗
ε ) = TP(λ∗

n, t
∗
ε )/(TP(λ∗

n, t
∗
ε ) + FN(λ∗

n, t
∗
ε )).

A larger value of precision and recall indicate better performance. The results
under all models using FPCA-gX basis are shown in Table 3. From Table 3 we
see that our method obtains satisfactory performance under most models, even
in the high-dimensional setting. In applications where a type-I error is more
costly, the AND scheme may be preferable because it enjoys a higher precision;
when we want to minimize type-II errors, the OR scheme is preferred.

6. Data analysis

In this section, we illustrate the practical application of our method on two
functional magnetic resonance imaging (fMRI) datasets. Raw brain magnetic
resonance images are segmented into temporal signals for 116 regions of interest
(ROIs) using the automatic anatomic labeling (AAL) parcellation approach [62].
Table 6 in Appendix D lists the names and corresponding labels of all 116 ROIs.
By applying this approach, we average the signal within all ROIs to obtain 116
distinct time series, which we interpret as observations of 116 corresponding
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random functions. Using the neighborhood selection procedure, we can recover
the conditional independence (CI) graphs associated with different ROIs.

Recent research uncovers a hierarchical structure in brain connectivity. For
instance, heteromodal areas, such as the prefrontal cortex, inferior parietal lobe,
and superior temporal sulcus, project to paralimbic areas like the insula, or-
bitofrontal, cingulate, parahippocampal, and temporopolar regions. These, in
turn, project to limbic areas, namely the amygdala and hippocampus. The lat-
ter two are the only parts of the cortex with substantial connections to the
hypothalamus, a key node for homeostatic, autonomic, and endocrine aspects
of the internal milieu [44]. By learning the conditional independence graph of
ROIs, we gain insight into these brain connectivity patterns. Moreover, compar-
ing conditional independence graphs from populations with and without specific
neurodevelopmental conditions could yield clues about the origins of certain
symptoms.

Our functional graphical models approach offers significant advantages over
traditional non-functional analyses of fMRI signals. Specifically, it can detect
spatio-temporal interactions among ROIs. For instance, our method can identify
the influence of one node at time t on another node at a different time t′. We
subsequently apply our method to two fMRI datasets: one pertaining to Autism
Spectrum Disorder (ASD) and the other to Attention Deficit Hyperactivity
Disorder (ADHD).

ASD dataset

Autism Spectrum Disorder (ASD) is a chronic neurodevelopmental disorder as-
sociated with both sensory processing and high-level functional deficits [14].
Functional magnetic resonance imaging (fMRI) analysis provides a method for
characterizing connectome anomalies in individuals with ASD.

ASD is characterized by a dissociation of a transmodal core, which combines
long-distance connections from peripheral networks with primarily short-range
connectivity [21]. In contrast to a neurotypical brain, which exhibits distributed
functional activation patterns, an autistic brain features more regionally local-
ized connections where selective core activation is less prominent [4].

We apply our procedure to data from the Autism Brain Imaging Data Ex-
change (ABIDE), a consortium that provides previously gathered fMRI data
from both autism and control groups [16]. The selected samples encompass
whole-brain fMRI scans from 73 ASD-diagnosed patients (nautism = 73) and 98
controls (ncontrol = 98).3 Given that p = 116, this dataset is high-dimensional.
We use the time series, preprocessed by [15] using AAL parcellation, derived
from the raw data.

The interpretation of the results naturally depend on the sparsity level, and
the network sparsity level should be treated as a tuning parameter, which may
be chosen by either domain knowledge or a data-driven approach. We initially

3The dataset includes fMRI measurements from eight different sites. For consistency, we
only used data from New York University.
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Fig 3. Brain connectome graph of autism and control groups using FPCA-gX method, ob-
tained by SCV process

estimate the CI graphs of both autism and control groups using the SCV proce-
dure separately, as depicted in Figure 3. Comparison of the connectivity graphs
of autism and control groups reveals an overall reduction in connectivity across
different brain centers in the autism group, aligning with prior findings of corti-
cal underconnection in ASD [41]. Notably, the orbitofrontal regions (nodes 2111,
2112, 2211, 2212, 2321, 2322, 2611, 2612) appear almost isolated from the rest
of the brain. This finding suggests that the orbito-frontal region, a typical paral-
imbic area according to [44], is less connected to limbic areas like the amygdala
and hippocampus. This result is consistent with previous findings of diminished
activity in the hypothalamus, leading to decreased oxytocin and vasopressin
synthesis and release, which may contribute to impaired social cognition and
behavior in ASD [12].

Additionally, we estimate the CI graphs of both groups under a fixed 2%
sparsity following the same approach as previous analyses [52, 37] where the au-
thors also set the network density to a small fixed level. We choose 2% because
we observe that further increasing the sparsity level will induce substantially
more suspicious connections in the estimated networks for both Autism and
Control groups. The results are provided in Figure 4. One notable observation
is the reduced rich-club connection 4 in the autism group. Figure 4 shows a
less hierarchical brain connectome in the autism group compared to the con-
trol group. The control group exhibits more centralized connections and fewer
regions without connections, while the autism group displays a more evenly dis-
tributed connection pattern across all nodes. For the control group, 22 nodes
have at least 4 connections, 13 nodes have at least 5 connections, and 4 nodes
have at least 6 connections. In comparison, for the autism group, 17 nodes have

4In neuroscience literature, the brain connectome structure where connections are centered
around certain hub nodes is called rich-club.
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Fig 4. Brain connectome graph of autism and control groups using FPCA-gX method, with
sparsity fixed to 2%

at least 4 connections, 9 nodes have at least 5 connections, and 3 nodes have
at least 6 connections. Given that the total number of edges in both groups is
identical, the standard deviation of the degree of all nodes is 1.52 for the control
group and 1.37 for the autism group. These observations corroborate the results
in [21], suggesting that ASD is associated with selective disruption in long-range
connectivity, coupled with a deficit in fully activating the “rich-club.” Our find-
ings also align with previous fMRI studies showing that individuals with ASD
exhibit more spatially diffuse activations in the cerebellum’s motor-related re-
gions [2].

Another notable observation from both Figures 3 and 4 is that the autism
group displays increased connectivity in the precentral (Nodes 2001, 2002), post-
central (Nodes 6001, 6002), and paracentral (Nodes 6401, 6402) regions. This
observation aligns with reports by [49]. These regions are critical components
of the motor control network, and abnormal activities within these areas could
potentially be associated with ASD [46].

ADHD dataset

Attention Deficit Hyperactivity Disorder (ADHD) is a mental health disorder
characterized by persistent issues such as difficulty maintaining attention, hy-
peractivity, and impulsive behavior. Functional graphical modeling may be in-
strumental in identifying abnormal brain connectivity associated with this con-
dition.

We apply our procedure to data from the ADHD-200 Consortium [45]. The
samples used in our analysis include whole-brain fMRI scans from 74 ADHD-
diagnosed patients (nADHD = 74) and 109 controls (ncontrol = 109)5. This

5The dataset includes fMRI measurements from eight different sites. For consistency, we
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Fig 5. Brain connectome graph of ADHD and control groups using FPCA-gX method, ob-
tained by SCV process

dataset is high-dimensional, as neither sample size exceeds p = 116. The time
series preprocessed by [3] using AAL parcellation from the raw data is used in
our study.

We initially estimate the CI graphs of both the ADHD and control groups
using the SCV procedure separately, as demonstrated in Figure 5. We observe
significantly reduced brain connectivity in the ADHD group across the entire
brain network. The connectivity graph of the ADHD group in Figure 5a con-
tains 51 edges, while the control group in Figure 5b has 62 edges. This observa-
tion aligns with the findings in [65] suggesting decreased homotopic, intrahemi-
spheric, and heterotopic functional connectivity (i.e., disconnection) within the
ADHD group. Specifically, a weaker connection is apparent within the cerebel-
lum regions (nodes on the bottom left of Figures 5a and 5b with labels beginning
with “90”) in the ADHD group. This observation is consistent with the conclu-
sion in [11] stating that individuals with ADHD exhibit altered connectivity in
cerebellum circuits, which are linked to timing disorders.

Furthermore, we estimate the CI graphs of both groups under a fixed 2%
sparsity. Similar to the analysis of ASD dataset, we choose 2% because we find
that further increasing the sparsity level will induce substantially more suspi-
cious connections in the estimated network for both ADHD and Control groups.
The results are shown in Figure 6. The connectivity graph of the control group
in Figure 6b features several highly centralized areas, for instance, the paracen-
tral lobule (Nodes 6401 and 6402 at the top) and prefrontal regions (e.g., Nodes
2111, 2112, 2211, 2212, 2321, 2322, 2611, 2612 on the right). The connectivity to
these rich-club nodes is markedly reduced in the ADHD group. These rich-club
connections are theorized to play a central role in integrating information among
different brain subsystems. ADHD may be characterized by diminished struc-

solely utilized data from Peking University that passed quality tests.
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Fig 6. Brain connectome graph of ADHD and control groups using FPCA-gX method, with
sparsity fixed to 2%

tural integrity of the rich-club backbone, potentially leading to a decrease in
globally efficient communication capacity and altered functional brain dynam-
ics [64]. Specifically, the diminished prefrontal activities in ADHD have been
pinpointed by neuroscientific studies [30, 11]. Deficits in these regions have been
associated with impairments in cognitive functions and the capacity to adapt
behavior to changing circumstances flexibly [8]. Differences between the ADHD
and control group are also identified in non-rich-club regions. The connections
stemming from the precuneus regions (Nodes 6301 and 6302 atthe top left of
the graph) are markedly reduced in the ADHD group—their connections to the
inferior parietal (Nodes 6101, 6102) and paracentral regions are no longer de-
tected. The precuneus is linked to functional disturbances in regulatory control,
attention, and aspects of executive function. Our observation aligns with the
findings of [48], which underscore connectivity abnormalities in the precuneus
among ADHD patients.

We have also applied the FGLasso method by [52] to the ADHD dataset,
adjusting the connection sparsity to 2% by tuning the penalty parameter. The
resulting connectome graph can be seen in Figure 7. When compared with Fig-
ure 6b, it’s noticeable that FGLasso tends to generate more rich-club results.
This observation aligns with simulation results wherein FGLasso exhibits rela-
tively good performance when the underlying model features a rich-club con-
nection structure (Model C). However, even when the underlying model has
minimal rich-club structure (e.g., Models A, B, and D), FGLasso still tends to
impose a rich-club structure, leading to subpar performance. As a consequence,
while the FGLasso method is effective in identifying the most active regions in
the connectome, it may result in a biased conclusion if such a rich-club structure
is not present in reality.

For instance, according to Figure 7, the visual cortex region of the ADHD pa-
tients (Nodes 5001, 5002, 5011, 5012, 5021, 5022, 5101, 5102, 5201, 5202, 5301,
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Fig 7. Brain connectome graph of ADHD and control groups using FGLasso method [52],
with sparsity fixed to 2%

5302) appears to be densely connected to other brain regions. However, consider-
ing that the fMRI dataset we use is gathered during a resting state and that the
visual cortex is primarily dedicated to visual functions [19], such a connection
pattern within the ADHD group is unexpected. Furthermore, within the ADHD
group, Node 9110, part of the cerebellum, appears densely connected to many
regions of the cerebrum. Modern neuroscience, however, posits that the cerebel-
lum and cerebrum serve relatively independent functions [18], which suggests
that such extensive connections are unlikely to occur. In contrast, our method
tends to yield a graph in which the node degrees are more evenly distributed,
thereby offering a more balanced and potentially accurate representation.

7. Conclusion

We propose a neighborhood selection method for estimating the structure of a
functional graphical model and show that it can consistently recover the condi-
tional independence graph in the high-dimensional setting. Specifically, we pose
the problem of graph selection as a series of function-on-function regressions, and
we approximate the function-on-function regressions with a vector-on-vector re-
gression approach that is achieved by functional dimension reduction. Through
extensive simulations, we demonstrate that the proposed method outperforms
existing approaches in a variety of settings. Finally, we apply our method on
fMRI data sets that include patients with ASD and patients with ADHD, as well
as corresponding control groups. We estimate the connectivity pattern between
brain regions and find results that agree with previous neuroscience research.

A key step in our method is the choice of the basis for dimension reduction.
Although we suggest using the FPCA basis for most settings, our methodology
allows an arbitrary orthonormal basis. We also provide a theoretically motivated
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procedure for choosing a particular basis. However, developing a more rigorous
data-driven approach is still an open problem that we hope to study in the
future. Another fruitful avenue for future work is the development of methods
that allow for inference and hypothesis testing in functional graphs. For example,
[26] has developed inferential tools for high-dimensional Markov networks, and
future work may extend their results to the functional graph setting.

Appendix A: Technical proofs

We give proofs of the technical results that appear in the main text.

A.1. Proof of Theorem 2.1

For all k ∈ [p] and k �= j, we define Bjk : H �→ H as

Bjk(h) := Bj((0, . . . , 0, h
k-th

, 0, . . . , 0)) for all h ∈ H.

Since Bj is Hilbert-Schmidt, we claim that Bjk ∈ BHS(H). To prove this claim,
note that for any CONS of H denoted by {en}∞n=1, we have

{{(en, 0, . . . , 0)}∞n=1 , {(0, en, 0, . . . , 0)}∞n=1 , . . . , {(0, . . . , 0, en)}∞n=1}

to be a CONS of Hp−1. Given the assumption that Bj is Hilbert-Schmidt, we
have

∞∑
n=1

‖Bjk (en)‖2 =
∞∑

n=1

∥∥∥∥∥Bj

(
(0, . . . , 0, en

k-th
, . . . , 0)

)∥∥∥∥∥
2

≤
∞∑

n=1
‖Bj ((en, 0, . . . , 0))‖2 + . . . + ‖Bj ((0, . . . , 0, en))‖2

< ∞,

which implies that Bjk ∈ BHS(H). By the linearity of Bj , then for all

h = (h1, . . . , hj−1, hj+1 . . . , hp) ∈ H
p−1,

we have

Bj(h) = Bj ((h1, 0, . . . , 0)) + . . . + Bj ((0, . . . , 0, hp)) =
p∑

k=1,k 
=j

Bjk(hk).

Thus, we have
E [gj | g−j ] = Bj (g−j) =

∑
k 
=j

Bjk (gk) . (41)

The rest of the proof is composed of two steps. We first construct functions
{βjk(t, t′)}k 
=j such that (5) holds and then show (6) and (7). For any choice of
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CONS {φm}∞m=1 for H, by Theorem 4.4.5 of [22] and the fact that Bjk ∈ BHS(H),
we have

Bjk =
∞∑

m=1

∞∑
m′=1

b∗jk,mm′φm ⊗ φm′ ,

where b∗jk,mm′ := 〈Bjk(φm′), φm〉 and ‖Bjk‖2
HS =

∑∞
m=1

∑∞
m′(b∗jk,mm′)2 < ∞.

Let

βjk(t, t′) =
∞∑

m,m′=1
b∗jk,mm′φm(t)φm′(t′)

for all (t, t′) ∈ T × T . Then, for any h ∈ H, we have

Bjk(h)(t) =
∞∑

m=1

∞∑
m′=1

b∗jk,mm′〈h, φm′〉φm(t)

=
∞∑

m=1

∞∑
m′=1

b∗jk,mm′

(∫
T
h(t′)φm′(t′)dt′

)
φm(t)

=
∫
T

∞∑
m=1

∞∑
m′=1

b∗jk,mm′φm(t)φm′(t′)h(t′)dt′

=
∫
T
βjk(t, t′)h(t′)dt′ (42)

for all t ∈ T , where the third equality is by Fubini’s Theorem. In this way,
Bjk is the integral operator with the kernel βjk(t, t′). By Theorem 4.6.7 of [22],
we have ‖βjk‖HS = ‖Bjk‖HS < ∞. The relation (5) follows by combining (42)
and (41).

We then show (6) and (7). Let {φ̃m}∞m=1 be another CONS of H. Let b̃∗jk,mm′ :=
〈Bjk(φ̃m′), φ̃m〉, and we can similarly define β̃jk(t, t′) by

β̃jk(t, t′) =
∞∑

m,m′=1
b̃∗jk,mm′ φ̃m(t)φ̃m′(t′).

Similar to (42), we can show Bjk(h)(t) =
∫
T β̃jk(t, t′)h(t′)dt′ for all h ∈ H and

t ∈ T . Thus, we have

b̃∗jk,mm′ = 〈Bjk(φ̃m′), φ̃m〉 =
∫
T
β̃jk(t, t′)φ̃m(t)φ̃m′(t′)dt′dt.

In this way, to finish the proof, we only need to show that βjk(t, t′) = β̃jk(t, t′)
a.e., or equivalently ‖βjk − β̃jk‖HS = 0. This is obvious since, for any CONS
{φ̄m}m≥1 for H, we have

Bjk(φ̄m)(t) =
∫
T
βjk(t, t′)φ̄m(t′)dt′ =

∫
T
β̃jk(t, t′)φ̄m(t′)dt′

for all t ∈ T , which implies that

‖βjk − β̃jk‖2
HS =

∞∑
m=1

‖Bjk(φ̄m) − Bjk(φ̄m)‖2 =
∞∑

m=1
0 = 0.
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A.2. Derivation of (10) and (15)

Recall that βjk(t, t′) is defined in (5) and φ̂jm is an estimate of the true basis
function φjm. Let b∗jk,mm′ =

∫
T ×T βjk(t′, t)φm(t)φm′(t′)dt′dt. We focus on a

given node j ∈ [p], and we drop the index j from the notation to simplify the
discussion.

We first prove (10). By (5) and (6), we have

aYim =
p−1∑
k=1

∫
T ×T

βk(t, t′)gXk
i (t′)φm(t)dt′dt +

∫
T
ei(t)φm(t)dt

=
p−1∑
k=1

∫
T ×T

⎛
⎝ ∞∑

m′′,m′=1
b∗k,m′′m′φm′′(t)φm′(t′)

⎞
⎠ gXk

i (t′)φm(t)dt′dt

+
∫
T
ei(t)φm(t)dt

=
p−1∑
k=1

∞∑
m′,m′′=1

b∗k,m′′m′

∫
T ×T

φm′′(t)φm′(t′)gXk
i (t′)φm(t)dt′dt

+
∫
T
ei(t)φm(t)dt

=
p−1∑
k=1

∞∑
m′,m′′=1

b∗k,m′′m′

(∫
T
φm′′(t)φm(t)dt

)(∫
T
φm′(t′)gXk

i (t′)dt′
)

+
∫
T
ei(t)φm(t)dt

=
p−1∑
k=1

∞∑
m′=1

b∗k,mm′

(∫
T
gXk
i (t′)φm′(t′)dt′

)
+
∫
T
ei(t)φm(t)dt

=
p−1∑
k=1

∞∑
m′=1

b∗k,mm′aXk

im′ +
∫
T
ei(t)φm(t)dt

=
p−1∑
k=1

∞∑
m′=M+1

b∗k,mm′aXk

im′ +
p−1∑
k=1

M∑
m′=1

b∗k,mm′aXk

im′ +
∫
T
ei(t)φm(t)dt. (43)

Then (10) follows directly from (43) by setting B∗
k,M = (b�k,mm′)1≤m,m′≤M ,

rim =
p−1∑
k=1

∞∑
m′=M+1

b∗k,mm′aXk

im′ ,

ri,M = (ri1, . . . , riM )�, wim =
∫
T ei(t)φm(t)dt and wi,M = (wi1, . . . , wiM )�.

To show (15), we only need to redefine relevant concepts. We define

b̃k,mm′ =
∫
T ×T

βk(t′, t)φ̂m(t′)φ̂m′(t)dt′dt. (44)
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Thus b̃k,mm′ = 0 for all m,m′ ≥ 1 when k /∈ Nj . Similarly, let

w̃im =
∫
T
ei(t)φ̂m(t)dt and r̃im =

p−1∑
k=1

∞∑
m′=M+1

b̃k,mm′ âXk

im′ .

Furthermore, let w̃i,M = (w̃i1, · · · , w̃iM )�, r̃i,M = (r̃i1, · · · , r̃iM )� ∈ R
M , B̃M

l

is a M ×M matrix with the m-th row equal to (b̃l,m1, . . . , b̃l,mM ), and

viM =
p−1∑
k=1

(B̃k,M −B∗
k,M )âXk

i,M + (r̃i,M − ri,M ) + (w̃i,M −wi,M ). (45)

By (6), we have

βk(t′, t) =
∞∑

m,m′=1
b̃∗k,mm′ φ̂m(t)φ̂m′(t′) almost everywhere.

Then by a similar argument to (43), we have

âYim =
p−1∑
k=1

∞∑
m′>M

b̃k,mm′ âXl

im′ +
p−1∑
k=1

M∑
m′=1

b̃k,mm′ âXl

im′ +
∫
T
ei(t)φ̂m(t)dt, (46)

which implies (15) combined with (45).

A.3. Simplification of ADMM optimization problems

We explain how to obtain the problem in (21). Let g(
∑p−1

k=1 Qk) = 1
2n‖AY −∑p−1

k=1 Qk‖2
F and W h+1

k = AXkPh+1
k +Uh

k . The update to matrices {Qk}k∈[p−1]
can be rewritten as

min
{Qk}k∈[p−1]

g((p− 1)Q̄) + ρ

2

p−1∑
k=1

‖Qk −W h+1
k ‖2

F subject to Q̄= 1
p− 1

p−1∑
k=1

Qk.

Let φ : Rn×M → R be a function that satisfies φ(0) = 0 and ∇φ(0) �= 0. The
Lagrangian function is then

(Q1, . . . ,Qp−1;μ) =

g((p− 1)Q̄) + ρ

2

p−1∑
k=1

‖Qk −W h+1
k ‖2

F + μφ

(
Q̄− 1

p− 1

p−1∑
k=1

Qk

)
.

The matrix Qk that minimizes the Lagrangian satisfies

∂L

∂Qk
= ρ(Qk −W h+1

k ) − μ

p− 1∇φ

(
Q̄− 1

p− 1

p−1∑
k=1

Qk

)
= 0,
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∂L

∂μ
= Q̄− 1

p− 1

p−1∑
k=1

Qk = 0.

This is equivalent to ρ(Qk −W h+1
k ) = μ

p−1∇φ(0). As a result, we see that each
entry in Qk−W h+1

k does not vary with k. Let R̄h+1 = 1
p−1

∑p−1
k=1 W

h+1
k . Then

Qh+1
k can be replaced by Q̄h+1 + W h+1

k − R̄h+1 and

Qh+1
k = Q̄h+1 + AXkP h+1

k + W h
k −AXP

h+1 − Ūh,

where AXP
h

= 1
p−1

∑p−1
k=1 A

XkP h
k . Therefore, we have obtained the problem

in (21).

A.4. Derivation of (40)

We drop the subscript M . By (10) and the definition of Nj , we have

aY
i =

∑
k∈Nj

B∗
ka

Xk

i + wi + ri,

where ri = (ri1, ri2, . . . , riM )� with

rim =
∑
k∈Nj

∑
m′>M

b∗k,mm′aXk

im′ .

Let ΣY = E
[
aY
i (aY

i )�
]
, ΣY,Xk = E

[
aY
i (aXk

i )�
]
, k ∈ [p− 1]. Note that

((aY
i )�, (aX1

i )�, (aX2

i )�, . . . , (aXp−1

i )�)�

is a multivariate Gaussian vector. Then

[B∗
k]k∈Nj

=
[
ΣY,Xk − Σr,Xk

]
k∈Nj

(
ΣX

NjNj

)−1
(47)

and ∥∥∥[B∗
k]k∈Nj

∥∥∥
F

=
∥∥∥∥[ΣY,Xk − Σr,Xk

]
k∈Nj

(
ΣX

NjNj

)−1
∥∥∥∥

F

≥
∥∥∥∥[ΣY,Xk

]
k∈Nj

(
ΣX

NjNj

)−1
∥∥∥∥

F
−
∥∥∥∥[Σr,Xk

]
k∈Nj

(
ΣX

NjNj

)−1
∥∥∥∥

F
.

Since the correlation between aY
i and aXk

i is larger than correlation between
ri and aXk

i , k ∈ Nj , when M is large enough, we will have∥∥∥∥[ΣY,Xk
]
k∈Nj

(
ΣX

NjNj

)−1
∥∥∥∥

F
�

∥∥∥∥[Σr,Xk
]
k∈Nj

(
ΣX

NjNj

)−1
∥∥∥∥

F
.
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Combining the last two displays, we have∥∥∥[B∗
k]k∈Nj

∥∥∥
F
�

∥∥∥∥[ΣY,Xk
]
k∈Nj

(
ΣX

NjNj

)−1
∥∥∥∥

F
. (48)

Furthermore, let RY,Xk = (ΣY )−1/2ΣY,Xk(ΣXk)−1/2, k ∈ [p− 1], and

RX
NjNj

= diag
([(

ΣX
kk

)−1/2]
k∈Nj

)
ΣX

NjNj
diag

([(
ΣX

kk

)−1/2]
k∈Nj

)
.

Then
[
ΣY,Xk

]
k∈Nj

(
ΣX

NjNj

)−1

=
(
ΣY

) 1
2
[
RY,Xk

]
k∈Nj

diag
([(

ΣX
kk

)1/2]
k∈Nj

)(
ΣX

NjNj

)−1

=
(
ΣY

) 1
2
[
RY,Xk

]
k∈Nj

(
RX

NjNj

)−1
diag

([(
ΣX

kk

)−1/2]
k∈Nj

)

and

[
Σr,Xk

]
k∈Nj

(
ΣX

NjNj

)−1
=

(Σr)
1
2
[
Rr,Xk

]
k∈Nj

(
RX

NjNj

)−1
diag

([(
ΣX

kk

)−1/2]
k∈Nj

)
.

By Lemma B.15, we have∥∥∥∥[ΣY,Xk
]
k∈Nj

(
ΣX

NjNj

)−1
∥∥∥∥

F

≥
∥∥∥(ΣY

) 1
2
∥∥∥

F

{
ρmin

([
RY,Xk

]
k∈Nj

(
RX

NjNj

)−1
·

diag
([(

ΣX
kk

)−1]
k∈Nj

)(
RX

NjNj

)−1 [
RXk,Y

]
k∈Nj

)}1/2

=
√

tr (ΣY )
{
ρmin

([
RY,Xk

]
k∈Nj

(
RX

NjNj

)−1
·

diag
([(

ΣX
kk

)−1]
k∈Nj

)(
RX

NjNj

)−1 [
RXk,Y

]
k∈Nj

)}1/2

≥
√

tr (ΣY )

√
ρmin

(
diag

([(
ΣX

kk

)−1
]
k∈Nj

))
·

√
ρmin

(
[RY,Xk ]k∈Nj

(
RX

NjNj

)−2
[RXk,Y ]k∈Nj

)

≥
√

tr (ΣY )
√

1
maxk∈Nj ρmax

(
ΣX

kk

) ·
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ρmin

(
[RY,Xk ]k∈Nj

(
RX

NjNj

)−2
[RXk,Y ]k∈Nj

)
,

and, therefore,

√
κ(M)

∥∥∥∥[ΣY,Xk
]
k∈Nj

(
ΣX

NjNj

)−1
∥∥∥∥

F

≥
√

tr (ΣY )

√√√√ ρmin

(
ΣX

NjNj

)
maxk∈Nj ρmax

(
ΣX

kk

) ·
√
ρmin

(
[RY,Xk ]k∈Nj

(
RX

NjNj

)−2
[RXk,Y ]k∈Nj

)

≥
√

tr (ΣY )

√√√√√ ρmin

(
ΣX

NjNj

)
ρmax

(
ΣX

NjNj

) ·

√
ρmin

(
[RY,Xk ]k∈Nj

(
RX

NjNj

)−2
[RXk,Y ]k∈Nj

)
. (49)

Combining (48), (49), and the definition of Λ(M,φ), we arrive at (40).

A.5. Proposition A.1 and its proof

Proposition A.1. If the tuning parameter λn satisfies

λn > max
k∈[p−1]

1
n
‖(AXk)�AY ‖F , (50)

where AXk and AY are defined in Section 3, then the estimated support set N̂j

is empty.

Proof. This threshold of λn can be derived using the KKT condition. We use
the notation introduced in Section 3. The subgradient of the objective in (13)
with respect to Bk can be written as

− 1
n

(AXk)�
(
AY −

p−1∑
l=1

AXlBl

)
+ λnΥk, (51)

where Υk = ‖Bk‖−1
F Bk if Bk �= 0, and Υk ∈ R

M×M , ‖Υk‖F ≤ 1 otherwise.
We assume that N̂j is non-empty. That is, there exists some k such that Bk �= 0.
By (51), we have

λn
Bk

‖Bk‖F
= 1

n
(AXk)�AY − 1

n
(AXk)�

∑
l∈N̂j

AXlBl for all k ∈ N̂j . (52)
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Let AX
N̂j

=
[
AXk

]
k∈N̂j

∈ R
n×|N̂j |M and BN̂j

= [Bl]l∈N̂j
∈ R

M×|N̂j |M be the

submatrix of AX and [B�
1 , . . . ,B�

p ]� that correspond to k ∈ N̂j . By (52), we
have(

1
n

(
AX

N̂j

)� (
AX

N̂j

)
+ λndiag

({
1

‖Bl‖F
IM

}
l∈N̂j

))
BN̂j

= 1
n

(
AX

N̂j

)�
AY .

(53)

Since 1
n

(
AX

N̂j

)� (
AX

N̂j

)
is positive semi-definite and we have assumed that (50)

holds, the left hand side of (53) then satisfies that∥∥∥∥∥
(

1
n

(
AX

N̂j

)� (
AX

N̂j

)
+ λndiag

({
1

‖Bl‖F
IM

}
l∈N̂j

))
BN̂j

∥∥∥∥∥
F

≥
∥∥∥∥∥λndiag

({
1

‖Bl‖F
IM

}
l∈N̂j

)
BN̂j

∥∥∥∥∥
F

≥ λn|N̂j |

> |N̂j | · max
k∈[p−1]

1
n
‖(AXk)�AY ‖F ,

where the first inequality follows from Lemma B.16. On the other hand, the
right hand side of (53) satisfies that∥∥∥∥ 1

n

(
AX

N̂j

)�
AY

∥∥∥∥
F

≤ |N̂j | · max
k∈[p−1]

1
n
‖(AXk)�AY ‖F .

Combine the above two equations with (53), we have a contradiction. Thus, we
conclude that N̂j must be empty.

A.6. Proof of Theorem 4.1

In this section, we prove Theorem 4.1. We first introduce some useful notation.
Let λ̃(n, p,M, δ) be defined as

λ̃(n, p,M, δ) = 2Cn,δ

(
M

√
Ξ1(M)√
n

+ 2
√

Ξ1(M)
√

log(4(p− 1)/δ)
n

)

+ 2ω(M)
{

7
√

3
M

√
log(6(p− 1)/δ) + 2 logM√

n

+8Mc(log(2n))(log(6(p− 1)/δ) + 2 logM)
3n

}
, (54)

where c is some universal constant that does not depend on n, p or M .



1092 B. Zhao et al.

To simplify the notation, we omit the basis dimension, M , and let aY
i = aY

i,M ,
aXk

i = aXk

i,M , and B∗
k = B∗

k,M for all k ∈ [p− 1]. Then by (10), for all i ∈ [n],
we have

aY
i =

p−1∑
k=1

B∗
ka

Xk

i + ui, (55)

where ui = wi+ri, and wi, ri are defined in Appendix A.2. With this notation,
we give a proof of Theorem 4.1.

Proof. The equation (55) can be rewritten as

aY
i =

p−1∑
k=1

(
(aXk

i )� ⊗ IM

)
vec(B∗

k) + ui. (56)

Let ZXk

i = aXk

i ⊗ IM ∈ R
M2×M , i ∈ [n], and let β∗

k = vec(B∗
k) ∈ R

M2 ,
k ∈ [p− 1]. Furthermore, let

aY = ((aY
1 )�, (aY

2 )�, . . . , (aY
n )�)� ∈ R

nM ,

β∗ = ((β∗
1)�, (β∗

2)�, . . . , (β∗
p−1)�)� ∈ R

(p−1)M2
,

and
u = (u�

1 ,u
�
2 , . . . ,u

�
n)� ∈ R

nM . (57)

Let Zi = ((ZX1

i )�, (ZX2

i )�, . . . , (ZXp−1

i )�)� ∈ R(p−1)M2×M for i ∈ [n], and

Z =

⎡
⎢⎢⎢⎣
Z�

1
Z�

2
...

Z�
n

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

(ZX1

1 )� (ZX2

1 )� . . . (ZXp−1

1 )�

(ZX1

2 )� (ZX2

2 )� . . . (ZXp−1

2 )�
...

(ZX1

n )� (ZX2

n )� . . . (ZXp−1

n )�

⎤
⎥⎥⎥⎥⎦ ∈ R

nM×(p−1)M2
.

Then we can further formulate (56) as

aY = Zβ∗ + u. (58)

Recall that

AX =

⎡
⎢⎢⎢⎣

(aX
1 )�

(aX
2 )�
...

(aX
n )�

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

(aX1

1 )� (aX2

1 )� . . . (aXp−1

1 )�

(aX1

2 )� (aX2

2 )� . . . (aXp−1

2 )�
...

(aX1

n )� (aX2

n )� . . . (aXp−1

n )�

⎤
⎥⎥⎥⎥⎦ ∈ R

n×(p−1)M ,

then we have Z = AX ⊗ IM . We divide columns of AX into p− 1 groups with
equal group size M , that is, AX = (AX1 ,AX2 , . . . ,AXp−1), where AXk ∈
R

n×M for all k ∈ [p − 1]. Similarly, we divide the columns of Z into p − 1
groups with equal group size M2, that is, Z = (Z1,Z2, . . . ,Zp−1), where Zk ∈
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R
nM×M2 for all k ∈ [p−1]. Then, we have (Z�u)k = Z�

k u. Besides, by definition
of Z, it is easy to see that Zk = AXk ⊗ IM .

Besides, we can rewrite (13) as

β̂ = arg min
β

{L(β) + λnR(β)} , (59)

where

L(β) = 1
2n‖a

Y −Zβ‖2
2, (60)

R(β) =
p−1∑
k=1

‖βk‖2, (61)

and β = ((β1)�, . . . , (βp−1)�)� ∈ R
(p−1)M2 , with βk ∈ R

M2 for k ∈ [p− 1].
Thus, the support set defined in (8) and its estimator defined in (14) can be

expressed as
Nj = {k ∈ [p− 1] : ‖β∗

k‖2 > 0} ,

and
N̂j =

{
k ∈ [p− 1] : ‖β̂k‖2 > εn

}
.

We define the model space M(Nj) with which the penalty term R(·) is
decomposable. Let

M = M(Nj) =

{β = ((β1)�, . . . , (βp−1)�)� ∈ R
(p−1)M2

: βk = 0 for all k /∈ Nj},

we then have its orthogonal complement as

M⊥ = M(Nj)⊥ =

{β = ((β1)�, . . . , (βp−1)�)� ∈ R
(p−1)M2

: βk = 0 for all k ∈ Nj}.

It is then easy to verify that R(·) defined in (61) is decomposable with respect
to (M(Nj),M(Nj)⊥) (Example 2, Section 2.2 of [47]), that is

R(θ + γ) = R(θ) + R(γ) for all θ ∈ M(Nj) and γ ∈ M(Nj)⊥.

When λn = λ̃(n, p,M, δ), where λ̃(n, p,M, δ) is defined in (54), then by
Lemma B.3, we have

λn ≥ 2
n

max
k∈[p−1]

‖(Z�u)k‖2 (62)

hold with probability at least 1 − 2δ. This way, by Lemma 1 of [47], we have
that β̂ − β∗ lies in a constrained space C(Nj) defined by

C(Nj) = {θ ∈ R
(p−1)M2

: ‖θM⊥‖1,2 ≤ 3‖θM‖1,2}. (63)



1094 B. Zhao et al.

with probability at least 1−2δ. Note that C(Nj) depends on support Nj through
M.

The error term of a first-order Taylor series expansion is

L(β∗ + Δβ̂) − L(β∗) − 〈∇L(β∗),Δβ̂〉 = 1
2n‖ZΔβ̂‖2

2

where Δβ̂ = β̂ − β∗. Then by Lemma B.7 and Δβ̂ ∈ C(Nj) with probability
at least 1 − 2δ, we have

P

{
1
2n‖ZΔβ̂‖2

2 ≥ κ

4 ‖Δβ̂‖2
2

}
≥ 1 − 3δ. (64)

Thus, by Lemma B.4, we then have

P

⎧⎨
⎩
√√√√p−1∑

k=1

∥∥∥B̂k −B∗
k

∥∥∥2

F
≤ χ(n, p,M, δ) + 12

√
s

ω(M)√
κ(M)

⎫⎬
⎭ ≥ 1 − 3δ, (65)

where κ(M) is defined in (28) and χ(n, p,M, δ) is defined in (32). Given the
inequality in the left hand side parenthesis of (65) holds, we then have

∥∥∥B̂k −B∗
k

∥∥∥
F
≤ χ(n, p,M, δ) + 12

√
s

ω(M)√
κ(M)

for all k ∈ [p− 1].

Next, we prove that P{N̂j = Nj} ≥ 1 − 3δ. To show that, we only need to
prove that the above inequality implies that N̂j = Nj . Under the assumption
that the above inequality holds, note that for any k /∈ Nj , we have B∗

k = 0 for
all M , thus, we have

∥∥∥B̂k

∥∥∥
F

=
∥∥∥B̂k −B∗

k

∥∥∥
F
≤ χ(n, p,M, δ) + 12

√
s

ω(M)√
κ(M)

.

On the other hand, for k ∈ Nj , we have∥∥∥B̂k

∥∥∥
F

=
∥∥∥B∗

k + B̂k −B∗
k

∥∥∥
F
≥ ‖B∗

k‖F −
∥∥∥B̂k −B∗

k

∥∥∥
F

≥ τ(M) − χ(n, p,M, δ) − 12
√
s

ω(M)√
κ(M)

.

Because M ≥ M∗, and by the definition of M∗ in (31) and the definition of
ν(M) in (30), when

χ(n, p,M, δ) ≤ ν(M)
3 , (66)

we have

τ(M) − χ(n, p,M, δ) − 12
√
s

ω(M)√
κ(M)

> χ(n, p,M, δ) + 12
√
s

ω(M)√
κ(M)

.
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Recall that εn = χ(n, p,M, δ) + 12
√
s/κ(M)ω(M), we then have

max
k/∈Nj

∥∥∥B̂k

∥∥∥
F
≤ εn < min

k∈Nj

∥∥∥B̂k

∥∥∥
F
.

which implies that N̂j = Nj by (14).
Finally, we only need to show an asymptotic lower bound for n such that

Γ(n, p,M, δ) ≤ κ(M)/(32M2s) and χ(n, p,M, δ) ≤ ν(M)/3 are both satisfied.
First, to satisfy Γ(n, p,M, δ) ≤ κ(M)/(32M2s), where Γ(n, p,M, δ) is defined

in (88), by dropping the logn term, we have

n ≥ Õ

(
M4s2 log(p2M2/δ)

κ2(M)

)
.

Note that Ξi(M), i = 1, 2, 3 are all uniformly bounded for all M . Next, to satisfy

χ(n, p,M, δ) ≤ ν(M)/3,

where χ(n, p,M, δ) is defined in (32), we need

n ≥ Õ

(
s · max

{
M2, log(p/δ),M2ω2(M) log(M2p/δ)

}
κ(M)ν2(M)

)
.

Combine the above results and note that decreasing 3δ to δ doesn’t affect the
asymptotic order of n, we the have the final result.

A.7. Proof of Theorem 4.3

In this section, we prove Theorem 4.3. In addition to the notations introduced
in Appendix A.6, we define more notations that will be used in this section. Let

Q1
n,δ := 1 + 8

(
log(2/δ)

n
+
√

log(2/δ)
n

)
,

Q2
n,p,δ := 1 + 8

(
log(2p/δ)

n
+
√

log(2p/δ)
n

)
,

Q3
n,p,M,δ := 1 + 8

(
log(2(p− 1)M/δ)

n
+
√

log(2(p− 1)M/δ)
n

)
.

(67)

Also, let

Γv =
12σmax,0|Nj |d2

j0 log(2p/δ)
n

⎛
⎝ ∑

k∈Nj

‖βk(t, t′)‖2
HS

⎞
⎠Q1

n,δ

+ 3Φ(M)σmax,0|Nj |Q1
n,δ

(
d2
j0 − d2

js(M)
)
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+ 3σjrQ1
n,δ

√
djs(M). (68)

We then state the exact form of λ̌(n, p,M, δ) as below:

λ̌(n, p,M, δ) = λ̃(n, p,M, δ) + 2Γ1/2
v

√
max

k∈[p−1]
tr
(
ΣX

kk

)√
Q2

n,p−1,δ

+ √
σmax,0

√
Q2

n,p,δ

√
(1/c1) log(c2/δ)

n
djs(M) ·

(√
Ξ4(M)

√
Q2

n,p,δ + Γ1/2
v

)
.

(69)
We also define that

Γ̌(n, p,M, δ) = Γ(n, p,M, δ) + d2
j,maxσmax,0Q2

n,p,δ

(1/c1) log (c2/δ)
n

+ 2
√

Ξ2(M)dj,max
√
σmax,0

√
Q2

n,p,δ

√
(1/c1) log (c2/δ)

n
·
√
Q3

n,p,M,δ.

(70)

As in the proof of Theorem 4.1, we omit the basis dimension, M , and let
âY
i = âY

i,M , âXk

i = âXk

i,M , and B∗
k = B∗

k,M for all k ∈ [p − 1]. Then by (15),
for all i ∈ [n], we have

âY
i =

p−1∑
k=1

B∗
kâ

Xk

i + ũi, (71)

where ũi = wi + ri + vi, and wi, ri, vi are defined in Appendix A.2. We now
give the proof of Theorem 4.3.

Proof. Let

ÂX =

⎡
⎢⎢⎢⎢⎣

(âX1

1 )� (âX2

1 )� · · · (âXp−1

1 )�

(âX1

2 )� (âX2

2 )� · · · (âXp−1

2 )�
...

...
(âX1

n )� (âX2

n )� · · · (âXp−1

n )�

⎤
⎥⎥⎥⎥⎦ ∈ R

n×(p−1)M .

We divide columns of ÂX into p− 1 groups with equal group size M , that is,

ÂX = [ÂX1 , ÂX2 , . . . , ÂXp−1 ],

where ÂXk ∈ R
n×M for all k ∈ [p − 1]. Let Ẑ = ÂX ⊗ IM . Similarly, we

divide the columns of Ẑ into p − 1 groups with equal group size M2, that is,
ẐX = [ẐX1 , ẐX2 , . . . , ẐXp−1 ], where ẐXk ∈ R

nM×M2 for all k ∈ [p − 1].
Then, we have (Ẑ�u)k = Ẑ�

k u. By definition of Ẑ, it is easy to see that Ẑk =
ÂXk ⊗ IM . In addition, let âY = ((âY

1 )�, · · · , (âY
n )�)� ∈ R

nM . Furthermore,
let Σ̃X

n = 1
n (ÂX)�ÂX . Thus, we can rewrite (13) as

β̂ = arg min
β

{
L̂(β) + λnR(β)

}
,
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where

L̂(β) = 1
2n‖â

Y − Ẑβ‖2
2,

R(β) =
p−1∑
k=1

‖βk‖2,

and β = ((β1)�, . . . , (βp−1)�)� ∈ R
(p−1)M2 , with βk ∈ R

M2 for k ∈ [p− 1].
We can then follow the similar proof of Theorem 4.1 to prove Theorem 4.3.

The only two modifications needed are new upper bounds for

2
n

max
k∈[p−1]

‖(Ẑ�ũ)k‖2 and
∣∣∣∣∣∣Σ̃X

n − ΣX
∣∣∣∣∣∣

∞.

In fact, when we have

λn = λ̌(n, p,M, δ) ≥ 2
n

max
k∈[p−1]

‖(Ẑ�ũ)k‖2 and
∣∣∣∣∣∣Σ̃X

n − ΣX
∣∣∣∣∣∣

∞ ≤ Γ̌(n, p,M, δ)

(72)
hold, where χ̌(n, p,M, δ) is defined in (38), then by the similar argument in the
proof of Theorem 4.1, we can show that√√√√p−1∑

k=1

∥∥∥B̂k −B∗
k

∥∥∥2

F
≤ χ̌(n, p,M, δ) + 12

√
s

ω(M)√
κ(M)

,

which further implies that N̂j = Nj . Thus, to show that N̂j = Nj holds with
high probability, we only need to prove that (72) holds with high probability.

We define the following events.

A1 =
{

1
n

n∑
i=1

‖g(i)
j ‖2 ≤ σmax,0Q2

n,p,δ for all j ∈ [p]
}
,

A2 =
{

1
n

n∑
i=1

‖e(i)‖2 ≤ σjrQ1
n,p,δ

}
,

A3 =
{

1
n

n∑
i=1

‖ri + wi‖2
2 ≤ Ξ4(M)Q1

n,p,δ

}
,

A4 =
{

1
n

n∑
i=1

‖aXk
i ‖2

2 ≤ tr
(
ΣX

kk

)
Q2

n,p−1,δ for all k ∈ [p− 1]
}
,

A5 =
{

2
n

max
k∈[p−1]

‖(Z�(w + r))k‖2 ≤ λ̃(n, p,M, δ)
}
,

A6 =
{∣∣∣∣∣∣∣∣∣Σ̂X

n − ΣX
∣∣∣∣∣∣∣∣∣

∞
≤ Γ(n, p,M, δ)

}
,

A7 =
{

1
n

n∑
i=1

‖aXk
im‖2

2 ≤ Ξ2(M)Q3
n,p,δ for all m ∈ [M ] and k ∈ [p− 1]

}
,
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where λ̃(n, p,M, δ) is defined in (33). Then we claim that under Assumption 4.4,
we have

∩7
i=1 Ai =⇒

2
n

max
k∈[p−1]

‖(Ẑ�ũ)k‖2 ≤ λ̌(n, p,M, δ) and
∣∣∣∣∣∣Σ̃X

n − ΣX
∣∣∣∣∣∣

∞ ≤ Γ̌(n, p,M, δ). (73)

We now prove the above claim. We first prove that ∩7
i=1Ai implies that

2
n

max
k∈[p−1]

‖(Ẑ�ũ)k‖2 ≤ λ̌(n, p,M, δ).

Note that for all k ∈ [p− 1], we have

‖(Ẑ�ũ)k‖2 = ‖Ẑ�
k ũ‖2 ≤ ‖(Ẑk −Zk)�ũ‖2 + ‖Z�

k ũ‖2

= ‖(Ẑk −Zk)�ũ‖2 + ‖Z�
k (w + r + v)‖2

≤ ‖(Ẑk −Zk)�ũ‖2 + ‖Z�
k (w + r)‖2 + ‖Z�

k v‖2,

where v = (vim){m∈[M ]} with vim defined in (45). The above inequality implies
that

2
n

max
k∈[p−1]

‖(Z�u)k‖2 ≤ 2
n

max
k∈[p−1]

‖(Ẑk −Zk)�ũ‖2

+ 2
n

max
k∈[p−1]

‖Z�
k (w + r)‖2 + 2

n
max

k∈[p−1]
‖Z�

k v‖2 (74)

By A5, we have the second term to be bounded by λ̃(n, p,M, δ). To bound the
third term, note that∥∥∥∥ 1

n
Z�

k v

∥∥∥∥
2

=
∥∥∥∥ 1
n

(AXk ⊗ IM )�v
∥∥∥∥

2

=

∥∥∥∥∥ 1
n

n∑
i=1

(aXk

i ⊗ IM )vi

∥∥∥∥∥
2

=

∥∥∥∥∥ 1
n

n∑
i=1

aXk

i v�
i

∥∥∥∥∥
F

, (75)

and by Lemma B.6, we further have

∥∥∥∥ 1
n
Z�

k v

∥∥∥∥
2
≤

√√√√ 1
n

n∑
i=1

∥∥∥aXk

i

∥∥∥2

2

√√√√ 1
n

n∑
i=1

‖vi‖2
2. (76)

By Lemma B.14 with

Γg(j) = σmax,0Q2
n,p,δ for all j ∈ [p]

Γe = σjrQ1
n,δ

Γφ(m) = djm

√
(1/c1) log (c2/δ)

n
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because of A1, A2 and Assumption 4.4, we have

1
n

n∑
i=1

‖vi‖2 ≤ Γv, (77)

where Γv is defined by (68). And combine with A4, we have

∥∥∥∥ 2
n
Z�

k v

∥∥∥∥
2
≤ 2

√√√√ 1
n

n∑
i=1

∥∥∥aXk

i

∥∥∥2

2

√√√√ 1
n

n∑
i=1

‖vi‖2
2 ≤ 2

√
tr
(
ΣX

kk

)√
Q2

n,p−1,δ · Γ1/2
v .

Finally, to bound the first term in (74), by similar arguments as (75) and (76),
we have

∥∥∥∥ 1
n

(Ẑk −Zk)�ũ
∥∥∥∥

2
≤

√√√√ 1
n

n∑
i=1

∥∥∥âXk

i − aXk

i

∥∥∥2

2

√√√√ 1
n

n∑
i=1

‖ũi‖2
2. (78)

Since we have

1
n

n∑
i=1

∥∥∥âXk

i − aXk

i

∥∥∥2

2
≤

(
1
n

n∑
i=1

‖gik‖2

)
M∑

m=1
‖φ̂m − φm‖2

≤ σmax,0Q2
n,p,δ

(1/c1) log(c2/δ)
n

d2
js(M)

by A1 and Assumption 4.4, and√√√√ 1
n

n∑
i=1

‖ũi‖2
2 ≤

√√√√ 1
n

n∑
i=1

‖ri + wi‖2
2 +

√√√√ 1
n

n∑
i=1

‖vi‖2
2

≤
√

Ξ4(M)
√
Q1

n,δ + Γ1/2
v

by A3 and (77), then by (78), we have
∥∥∥∥ 1
n

(Ẑk −Zk)�ũ
∥∥∥∥

2
≤ √

σmax,0

√
Q2

n,p,δ

√
(1/c1) log(c2/δ)

n
·

djs(M)
(√

Ξ4(M)
√

Q1
n,δ + Γ1/2

v

)
.

Thus, combine the bounds of three terms in (74) and by the definition of
λ̌(n, p,M, δ) in (69), we have

2
n

max
k∈[p−1]

∥∥Z�
k v

∥∥
2 ≤ λ̌(n, p,M, δ).

We then prove that ∩7
i=1Ai implies that

∣∣∣∣∣∣Σ̃X
n − ΣX

∣∣∣∣∣∣
∞ ≤ Γ̌(n, p,M, δ).

Note that ∣∣∣∣∣∣Σ̃X
n − ΣX

∣∣∣∣∣∣
∞ ≤

∣∣∣∣∣∣∣∣∣Σ̃X − Σ̂X
n

∣∣∣∣∣∣∣∣∣
∞

+
∣∣∣∣∣∣∣∣∣Σ̂X

n − ΣX
∣∣∣∣∣∣∣∣∣

∞
,
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and by A6, we thus only need to prove that
∣∣∣∣∣∣∣∣∣Σ̃X − Σ̂X

n

∣∣∣∣∣∣∣∣∣
∞

≤ Γ̌(n, p,M, δ) −
Γ(n, p,M, δ). Note that

∣∣∣∣∣∣∣∣∣Σ̃X − Σ̂X
n

∣∣∣∣∣∣∣∣∣
∞

= max
1≤k,k′≤p−1

∣∣∣∣
∣∣∣∣
∣∣∣∣ 1n (ÂXk)�ÂXk′ − 1

n
(AXk)�AXk′

∣∣∣∣
∣∣∣∣
∣∣∣∣
∞

= max
1≤k,k′≤p−1

max
1≤m,m′≤M

∣∣∣∣∣ 1n
n∑

i=1
âXk
im â

Xk′
im′ − aXk

ima
Xk′
im′

∣∣∣∣∣ , (79)

and ∣∣∣∣∣ 1n
n∑

i=1
âXk
im â

Xk′
im′ − aXk

ima
Xk′
im′

∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑

i=1

(
âXk
im − aXk

im

)(
â
Xk′
im′ − a

Xk′
im′

)
+ 1

n

n∑
i=1

aXk
im

(
â
Xk′
im′ − a

Xk′
im′

)

+ 1
n

n∑
i=1

a
Xk′
im′

(
âXk
im − aXk

im

)∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑

i=1

(
âXk
im − aXk

im

)(
â
Xk′
im′ − a

Xk′
im′

)∣∣∣∣∣ +

∣∣∣∣∣ 1n
n∑

i=1
aXk
im

(
â
Xk′
im′ − a

Xk′
im′

)∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑

i=1
a
Xk′
im′

(
âXk
im − aXk

im

)∣∣∣∣∣
≤

√√√√ 1
n

n∑
i=1

(
âXk
im − aXk

im

)2
√√√√ 1

n

n∑
i=1

(
â
Xk′
im′ − a

Xk′
im′

)2

+

√√√√ 1
n

n∑
i=1

(
âXk
im

)2
√√√√ 1

n

n∑
i=1

(
â
Xk′
im′ − a

Xk′
im′

)2

+

√√√√ 1
n

n∑
i=1

(
a
Xk′
im′

)2
√√√√ 1

n

n∑
i=1

(
âXk
im − aXk

im

)2
. (80)

By Lemma B.12 with

Γg(j) = σmax,0Q2
n,p,δ for all j ∈ [p],

Γφ(m) = djm

√
(1/c1) log (c2/δ)

n
,

we have

1
n

n∑
i=1

(
âXk
im − aXk

im

)2
≤ d2

j,maxσmax,0Q2
n,p,δ

(1/c1) log (c2/δ)
n
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for all m ∈ [M ] and k ∈ [p− 1]. And by A7, we have

1
n

n∑
i=1

‖aXk
im‖2

2 ≤ Ξ2(M)Q3
n,p,δ

for all m ∈ [M ] and k ∈ [p− 1]. Combine with (79) and (80), we have∣∣∣∣∣∣∣∣∣Σ̃X − Σ̂X
n

∣∣∣∣∣∣∣∣∣
∞

≤ d2
j,maxσmax,0Q2

n,p,δ

(1/c1) log (c2/δ)
n

+2
√

Ξ2(M)dj,max
√
σmax,0

√
Q2

n,p,δ

√
(1/c1) log (c2/δ)

n
·
√

Q3
n,p,Mδ

= Γ̌(n, p,M, δ) − Γ(n, p,M, δ) ≤ Γ̌(n, p,M, δ).

Therefore, by (73) and Lemma B.3, Lemma B.5, Lemma B.9 and Lemma B.10,
we have

P

{
2
n

max
k∈[p−1]

‖(Z�u)k‖2 ≤ λ̌(n, p,M, δ) and
∣∣∣∣∣∣Σ̃X

n − ΣX
∣∣∣∣∣∣

∞ ≤ Γ̌(n, p,M, δ)
}

≥ 1 − P
{
∪7
i=1Āi

}
≥ 1 − 8δ.

Finally, we only need n large enough such that Γ̌(n, p,M, δ) ≤ κ(M)/(32M2s)
and χ̌(n, p,M, δ) ≤ ν(M)/3 where χ̌(n, p,M, δ) is defined in (38). After dropping
log(n) term, to satisfy the first condition, we need

n ≥ O

(
M4s2 log(p2M2/δ)

κ2(M)

)
,

and to satisfy the second condition, we need

n ≥ O

(
1

κ(M)ν2(M) max
{
sM2, s log(p/δ), sM2ω2(M) log(M2p/δ),

s3M2(log(1/δ)2), s(d2
j0 − d2

js(M)Φ2(M))
})

.

Then combine the above results and note that decreasing 8δ to δ doesn’t affect
the asymptotic order of n, we the have the final result.

Appendix B: Useful lemmas

Recall that Cn,δ is defined in (34) and Q1
n,δ, Q2

n,p,δ, and Q1
n,p,M,δ are defined

in (67).

Lemma B.1. Let δ ∈ (0, 1]. Then maxk∈[p−1] ‖AXk‖2/
√
n ≤ Cn,δ with proba-

bility at least 1 − δ.
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Proof. The result follows directly from Theorem 6.1 of [63] and a union bound.

Lemma B.2. Suppose maxk∈[p−1] ‖AXk‖2/
√
n ≤ Cn,δ1 for some 0 < δ1 ≤ 1.

Then there exists a constant c > 0 such that

max
k∈[p−1]

∥∥∥∥ 1
n
Z�

k u

∥∥∥∥
2
≤ MCn,δ1

√
Ξ1(M)√
n

+ 2Cn,δ1
√

Ξ1(M)
√

log(4(p− 1)/δ2)
n

+ ω(M)
{

1 + 7
√

3
M

√
log(6(p− 1)/δ2) + 2 logM√

n
+

8c
3
M(log(2n))(log(6(p− 1)/δ2) + 2 logM)

n

}

holds with probability at least 1 − δ2, δ2 ∈ (0, 1].

Proof. Note that ‖Zk‖2 = ‖AXk ⊗ IM‖2 = ‖AXk‖2. Thus ‖Zk/
√
n‖2 ≤

Cn,δ1 , k ∈ [p − 1], since maxk∈[p−1] ‖AXk‖2/
√
n ≤ Cn,δ1 . Recall that u =

w + r, where u is defined in (57), w = (w�
1 ,w�

2 , . . . ,w�
n )� ∈ R

nM and
r = (r�1 , r�2 , . . . , r�n )� ∈ RnM . Both wi and ri are Gaussian vectors with mean
zero, and covariance matrices Σw and Σr respectively for all i ∈ [n], where we
dropped the superscript M to simplify the notation, and wi ⊥⊥ ri.

Fix k ∈ [p− 1]. Let ri = r1
i + r2

i , where

r1
i = ri − Σr,Xk

(
ΣX

kk

)−1
aXk

i and r2
i = Σr,Xk

(
ΣX

kk

)−1
aXk

i .

Since both ri and aXk

i are Gaussian vectors and Cov(aXk

i , r1
i ) = 0, we have

aXk

i ⊥⊥ r1
i . Then∥∥∥∥ 1

n
Z�

k u

∥∥∥∥
2
≤

∥∥∥∥ 1
n
Z�

k (w + r1)
∥∥∥∥

2
+
∥∥∥∥ 1
n
Z�

k r2
∥∥∥∥

2
. (81)

We upper bound the first term on the right hand side of (81). Let ξi = wi+r1
i .

Then ξi is a Gaussian vector with mean zero and covariance matrix Σξ
k, with

Σξ
k = Σw + Σr −Σr,Xk

(
ΣX

kk

)−1 ΣXk,r. Note that ξ ⊥⊥ Zk and we establish a
bound conditional on Zk first.

For any pair θ,θ′ ∈ RnM , we have
∣∣∣∣
∥∥∥∥Z�

k θ

n

∥∥∥∥
2
−
∥∥∥∥Z�

k θ′

n

∥∥∥∥
2

∣∣∣∣ ≤ 1
n

∥∥Z�
k (θ − θ′)

∥∥
2

≤ 1
n
‖Zk‖2‖θ − θ′‖2 ≤ Cn,δ1√

n
‖θ − θ′‖2.

Therefore, θ �→ ‖Z�
k θ
n ‖2 is a Lipschitz function with a Lipschitz constant Cn,δ1√

n
.

Note that ξ has a strongly log-concave distribution with the parameter

(ρmax(IM ⊗ Σξ
k))−1 = (ρmax(Σξ

k))−1.
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Then, by Theorem 3.16 of [63], we have

P

{∥∥∥∥Z�
k ξ

n

∥∥∥∥
2
≥ E

[∥∥∥∥Z�
k ξ

n

∥∥∥∥
2

]
+ Δ

}
≤ 2 exp

(
− nΔ2

4C2
n,δ1

ρmax(Σξ
k)

)
(82)

for all Δ > 0.
Next, we bound E

[ 1
n

∥∥Z�
k ξ

∥∥
2

]
using the Sudakov-Fernique inequality [Theo-

rem 2.2.3 of 1]. For any vector θ ∈ R
M2 , let ζθ = n−1〈θ,Z�

k ξ〉. Then 1
n‖Z�

k ξ‖2 =
max‖θ‖2=1 ζθ. For any two vectors θ,θ′ ∈ R

M2 , we have

E
[
(ζθ − ζθ′)2

]
= E

[(
1
n

〈
θ − θ′,Z�

k ξ
〉)2

]

= 1
n2E

[
(θ − θ′)�Z�

k ξξ�Zk(θ − θ′)
]

≤ ρmax(Σξ
k)

n

‖Zk‖2
2

n
‖θ − θ′‖2

2 ≤
C2

n,δ1
ρmax(Σξ

k)
n

‖θ − θ′‖2
2.

We define another Gaussian process,

ζ̃θ =
(
Cn,δ1

√
ρmax(Σξ

k)/n
)
· 〈θ, ε〉,

where ε ∼ N(0, IM2). For any pair θ,θ′ ∈ R
M2 , we have

E
[
(ζ̃θ − ζ̃θ′)2

]
=

C2
n,δ1

ρmax(Σξ
k)

n
‖θ − θ′‖2

2 ≥ E
[
(ζθ − ζθ′)2

]
.

Then, by the Sudakov-Fernique inequality, we have

E

[∥∥∥∥Z�
k ξ

n

∥∥∥∥
2

]
= E

[
max

‖θ‖2=1
ζθ

]
≤ E

[
max

‖θ‖2=1
ζ̃θ

]
.

On the other hand,

E

[
max

‖θ‖2=1
ζ̃θ

]
=

Cn,δ1
√
ρmax(Σξ

k)
√
n

E [‖ε‖2] ≤
Cn,δ1

√
ρmax(Σξ

k)
√
n

√
E [‖ε‖2

2]

=
MCn,δ1

√
ρmax(Σξ

k)
√
n

.

Combining (82) with the above upper bound, we have

P

⎧⎨
⎩
∥∥∥∥Z�

k ξ

n

∥∥∥∥
2
≥

MCn,δ1
√
ρmax(Σξ

k)
√
n

+ Δ

⎫⎬
⎭
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≤ 2 exp
(
− nΔ2

4C2
n,δ1

ρmax(Σξ
k)

)
, Δ > 0.

The above inequality holds for any Zk such that ‖Zk/
√
n‖2 ≤ Cn,δ1 and, there-

fore, is valid unconditionally as well. Since Ξ1(M) = maxk∈[p−1] ρmax(Σξ
k), if

follows from the union bound that

P

{
max

k∈[p−1]

∥∥∥∥Z�
k ξ

n

∥∥∥∥
2
≥ MCn,δ1

√
Ξ1(M)√
n

+ Δ
}

≤ 2(p− 1) exp
(
− nΔ2

4C2
n,δ1

Ξ1(M)

)
, Δ > 0. (83)

Next, we upper bound the second term in (81). For any k ∈ [p− 1], we have∥∥∥∥ 1
n
Z�

k r2
∥∥∥∥

2

=

∥∥∥∥∥ 1
n

n∑
i=1

(aXk

i ⊗ IM )r2
i

∥∥∥∥∥
2

=

∥∥∥∥∥ 1
n

n∑
i=1

r2
i (aXk

i )�
∥∥∥∥∥

F

=

∥∥∥∥∥ 1
n

n∑
i=1

Σr,Xk
(
ΣX

kk

)−1
aXk

i (aXk

i )�
∥∥∥∥∥

F

≤
∥∥∥∥∥ 1
n

n∑
i=1

Σr,Xk
(
ΣX

kk

)−1
aXk

i (aXk

i )� − Σr,Xk

∥∥∥∥∥
F

+
∥∥Σr,Xk

∥∥
F .

=

∥∥∥∥∥Σr,Xk

{
1
n

n∑
i=1

(
ΣX

kk

)−1
aXk

i (aXk

i )� − IM

}∥∥∥∥∥
F

+
∥∥Σr,Xk

∥∥
F

≤
∥∥Σr,Xk

∥∥
F

∥∥∥∥∥ 1
n

n∑
i=1

(
ΣX

kk

)−1
aXk

i (aXk

i )� − IM

∥∥∥∥∥
F

+
∥∥Σr,Xk

∥∥
F

=
∥∥Σr,Xk

∥∥
F

∥∥∥∥∥ 1
n

n∑
i=1

((
ΣX

kk

)−1/2
aXk

i

)(((
ΣX

kk

)−1/2
aXk

i

))�
− IM

∥∥∥∥∥
F

+
∥∥Σr,Xk

∥∥
F

Δ=
∥∥Σr,Xk

∥∥
F

{∥∥∥∥∥ 1
n

n∑
i=1

bXk

i

(
bXk

i

)�
− IM

∥∥∥∥∥
F

+ 1
}
, (84)

where bXk

i = (ΣX
kk)−1/2aXk

i ∼ N(0, IM ). Since∥∥∥∥∥ 1
n

n∑
i=1

bXk

i

(
bXk

i

)�
− IM

∥∥∥∥∥
F

≤ M

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

bXk

i

(
bXk

i

)�
− IM

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∞

, (85)

we only need to bound
∣∣∣∣
∣∣∣∣
∣∣∣∣ 1
n

∑n
i=1 b

Xk

i

(
bXk

i

)�
− IM

∣∣∣∣
∣∣∣∣
∣∣∣∣
∞

. We use Theorem 4.1

in [31] to bound this term. We first check the conditions therein. Note that for
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bXk
im is a standard normal random variable for all i ∈ [n] and m ∈ [M ], we have

(bXk
im )2 to be chi-squared distributed with degree of freedom 1. By the moment

generating function of chi-square distribution, we have

E

[
exp{η(bXk

im )2}
]

= 1√
1 − 2η

for all 0 < η < 1/2.

Thus, we have

‖bXk
im‖ψ2 = inf{η > 0 : E

[
ψ2(|bXk

im |/η)
]
≤ 1}

= inf{η > 0 : E
[
exp((bXk

im )2/η2)
]
≤ 2}

= inf{η > 0 : 1/
√

1 − 2/η2 ≤ 2}

= 2
√

2√
3
.

Furthermore, we have

‖bXk
i ‖M,ψ2 = max

m∈[M ]
‖bXk

im‖ψ2 = 2
√

2√
3
.

for all i ∈ [n]. In addition, note that

Var
(
bXk
im bXk

im′

)
≤ E

[
(bXk

im )2(bXk

im′)2
]
≤

(
E

[
(bXk

im )4
])1/2 (

E

[
(bXk

im′)4
])1/2

= 3

for all m,m′ ∈ [M ], thus we have

max
m,m′∈[M ]

{
1
n

n∑
i=1

Var
(
bXk
im bXk

im′

)}
≤ 3.

Therefore, by Theorem 4.1 in [31], we have

P

{∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

bXk

i

(
bXk

i

)�
− IM

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∞

>

7
√

3
√

Δ + 2 logM
n

+ 8c
3

(log(2n))(Δ + 2 logM)
n

}
≤ 3e−Δ,

for all Δ > 0, where c is a constant. Thus, combining the above equation
with (84) and (85), we have

P

{∥∥∥∥ 1
n
Z�

k r2
∥∥∥∥

2
>

∥∥Σr,Xk
∥∥

F

(
1 + 7

√
3M

√
Δ + 2 logM√

n
+ 8c

3
M(log(2n))(Δ + 2 logM)

n

)}

≤ 3e−Δ.
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Let ω(M) = maxk∈[p−1]
∥∥Σr,Xk

∥∥
F, then

P

{
max

k∈[p−1]

∥∥∥∥ 1
n
Z�

k r2
∥∥∥∥

2
> ω(M)

(
1 + 7

√
3M

√
Δ + 2 logM√

n

+8c
3
M(log(2n))(Δ + 2 logM)

n

)}
≤ 3(p− 1)e−Δ.

(86)

The result follows by combining (81), (83), and (86).

Lemma B.3. Let λn = λ̃(n, p,M, δ), where

λ̃(n, p,M, δ) = 2Cn,δ

(
M

√
Ξ1(M)√
n

+ 2
√

Ξ1(M)
√

log(4(p− 1)/δ)
n

)

+ 2ω(M)
{

7
√

3
M

√
log(6(p− 1)/δ) + 2 logM√

n

+8Mc(log(2n))(log(6(p− 1)/δ) + 2 logM)
3n

}
,

is defined in (54), then (62) holds with probability at least 1 − 2δ. That is, we
have

λn ≥ 2
n

max
k∈[p−1]

‖(Z�u)k‖2

hold with probability at least 1 − 2δ.

Proof. The result follows directly from Lemma B.1, Lemma B.2 and Bonferroni
inequality.

Lemma B.4.

P

⎧⎨
⎩
√√√√p−1∑

k=1

∥∥∥B̂k −B∗
k

∥∥∥2

F
≤ χ(n, p,M, δ) + 12

√
s

ω(M)√
κ(M)

⎫⎬
⎭ ≥ 1 − 3δ,

where κ(M) is defined in (28) and χ(n, p,M, δ) is defined in (32).

Proof. By Lemma B.3 and (64), we can get an error bound for ‖β̂−β∗‖2 by ap-
plying Theorem 1 in [47]. Note that by Lemma C.4 of [68], we have the subspace
compatibility constant defined in Definition 3 of [47] to be

√
s. Then, for all 0 <

δ ≤ 1, when n is large enough such that Γ(n, p,M, δ) ≤ κ(M)/(32M2s), where
Γ(n, p,M, δ) is defined in (88), and let λn = λ̃(n, p,M, δ), where λ̃(n, p,M, δ)
is defined in (33), then by Corollary 1 in [47], Lemma B.3, (64), and a union
bound, we have the desired result.

Lemma B.5. There exists a constant c such that
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∣∣∣∣∣∣∣∣∣Σ̂X
n − ΣX

∣∣∣∣∣∣∣∣∣
∞

≤ 7
√

3K0

√
log (3/δ) + 2 log ((p− 1)M)

n

+ 8cK0 log (2n)(log (3/δ) + 2 log ((p− 1)M))
3n (87)

holds with probability at least 1 − δ where K0 is defined by (27).

Proof. The result follows Theorem 4.1 in [31]. In order to apply the theorem, we
need to check the conditions therein. First, we bound maxk∈[p−1],m∈[M ] ‖aXk

im‖ψ2 .
Note that for ζ ∼ N(0, σ2), we have (ζ/σ)2 is chi-square distributed with degree
of freedom 1. By the moment generating function of chi-square distribution, we
have

E
[
exp{η(ζ/σ)2}

]
= 1√

1 − 2η
for all 0 < η < 1/2.

Thus, we have

E
[
exp

(
ζ2/t2

)]
= E

[
exp

{(
σ2/t2

)
·
(
ζ2/σ2)}] = 1√

1 − 2σ2/t2

for all t >
√

2σ. Let 1/
√

1 − 2σ2/t2 ≤ 2, we have t ≥ (2
√

2)/(
√

3σ). Thus, we
have

‖ζ‖ψ2 = inf{t > 0 : E [ψ2(|ζ|/t)] ≤ 1}
= inf{t > 0 : E

[
exp(ζ2/t2)

]
≤ 2}

= inf{t > 0 : 1/
√

1 − 2σ2/t2 ≤ 2}

= 2
√

2√
3
σ.

Based on the above result, we have for any i ∈ [n],

‖aXk

i ‖M,ψ2 = max
k∈[p−1],m∈[M ]

‖aXk
im‖ψ2

= 2
√

2√
3

max
k∈[p−1],m∈[M ]

√
ΣX

kk,mm

= 2
√

2√
3
√
K0,

where K0 is defined by (27). We then bound maxk,k′∈[p],m,m′∈[M ] Var
(
aXk
ima

Xk′
im′

)
.

This followed by

Var
(
aXk
ima

Xk′
im′

)
≤ E

[
(aXk

im )2(aXk′
im′ )2

]
≤

(
E

[
(aXk

im )4
]
E

[
(aXk′

im′ )2
])1/2

=
(
9(ΣX

kk,mm)2(ΣX
k′k′,m′m′)2

)1/2
≤ 3K2

0 .

Thus, the final result is derived by applying Theorem 4.1 in [31] with Kn,p =
(2
√

2/
√

3)
√
K0 and A2

n,p = 3K2
0 .
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Lemma B.6. For xi,yi ∈ R
M , i ∈ [n], we have

∥∥∥∥∥ 1
n

n∑
i=1

xiy
�
i

∥∥∥∥∥
F

≤

√√√√ 1
n

n∑
i=1

‖xi‖2
2

√√√√ 1
n

n∑
i=1

‖yi‖2
2 .

Proof. For any m,m′ ∈ [M ], we have
∣∣∣∣∣ 1n

n∑
i=1

ximyim′

∣∣∣∣∣
2

≤
(

1
n

n∑
i=1

x2
im

)(
1
n

n∑
i=1

y2
im′

)
.

Therefore,
∥∥∥∥∥ 1
n

n∑
i=1

xiy
�
i

∥∥∥∥∥
2

F

=
M∑

m,m′=1

∣∣∣∣∣ 1n
n∑

i=1
ximyim′

∣∣∣∣∣
2

≤
M∑

m,m′=1

(
1
n

n∑
i=1

x2
im

)(
1
n

n∑
i=1

y2
im′

)

=
(

1
n

n∑
i=1

M∑
m=1

x2
im

)(
1
n

n∑
i=1

M∑
m′=1

y2
im′

)

=
(

1
n

n∑
i=1

‖xi‖2
2

)(
1
n

n∑
i=1

‖yi‖2
2

)
,

and the result immediately follows.

Lemma B.7. Let

Γ(n, p,M, δ) = 7
√

3K0

√
log (3/δ) + 2 log ((p− 1)M)

n

+ 8cK0 log (2n)(log (3/δ) + 2 log ((p− 1)M))
3n , (88)

then when Γ(n, p,M, δ) ≤ κ(M)/(32M2s), we have

P

{
1
2n‖ZΔβ‖2

2 ≥ κ

4 ‖Δβ‖2
2 for all Δβ ∈ C(Nj)

}
≥ 1 − δ,

where C(Nj) is defined in (63).

Proof. We want to first prove

1
2n‖ZΔβ‖2

2 ≥ κL‖Δβ‖2
2 − τL(β∗) for all Δβ ∈ C(Nj),

where κL > 0 is a positive constant, τL(β∗) > 0, and C(Nj) is defined in (63).
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Since Z = AX ⊗ IM , thus for any θ ∈ R
(p−1)M2 , we have

1
n
‖Zθ‖2

2 = 1
n
‖(AX ⊗ IM )θ‖2

2

= 1
n
θ�(AX ⊗ IM )�(AX ⊗ IM )θ

= 1
n
θ�((AX)� ⊗ IM )(AX ⊗ IM )θ

= 1
n
θ�((AX)�AX ⊗ IM )θ

= θ�(Σ̂X
n ⊗ IM )θ,

where Σ̂X
n = 1

n (AX)�AX . We then further have

1
n
‖Zθ‖2

2 = θ�(ΣX ⊗ IM )θ + θ�
(
(Σ̂X

n − ΣX) ⊗ IM

)
θ

≥
∣∣θ�(ΣX ⊗ IM )θ

∣∣− ∣∣∣θ�
(
(Σ̂X

n − ΣX) ⊗ IM

)
θ
∣∣∣ .

Note that

min
θ∈C(Nj)\{0}

θ�(ΣX ⊗ IM )θ
‖θ‖2

2
≥ min

θ∈M\{0}

θ�(ΣX ⊗ IM )θ
‖θ‖2

2

≥ ρmin

(
ΣX

NjNj
⊗ IM

)
= ρmin(ΣX

NjNj
)

= κ,

and we have κ(M) > 0 for all M by Assumption 4.2. Thus, for any θ ∈ C(Nj),
we have

1
n
‖Zθ‖2

2 ≥ κ‖θ‖2
2 −

∣∣∣θ�
(
(Σ̂X

n − ΣX) ⊗ IM

)
θ
∣∣∣ . (89)

To prove the RSC condition, it then suffices to give an upper bound for

|θ�
(
(Σ̂X

n − ΣX) ⊗ IM

)
θ|,

where θ ∈ C(Nj). By Lemma 5 in section D of the appendix of [68] and the
definition of C(Nj), for any θ ∈ C(Nj), we have∣∣∣θ�

(
(Σ̂X

n − ΣX) ⊗ IM

)
θ
∣∣∣

≤ M2
∣∣∣∣∣∣∣∣∣(Σ̂X

n − ΣX) ⊗ IM

∣∣∣∣∣∣∣∣∣
∞
‖θ‖2

1,2

= M2
∣∣∣∣∣∣∣∣∣(Σ̂X

n − ΣX) ⊗ IM

∣∣∣∣∣∣∣∣∣
∞

(‖θM‖1,2 + ‖θM⊥‖1,2)2

≤ 16M2
∣∣∣∣∣∣∣∣∣(Σ̂X

n − ΣX) ⊗ IM

∣∣∣∣∣∣∣∣∣
∞
‖θM‖2

1,2

≤ 16sM2
∣∣∣∣∣∣∣∣∣(Σ̂X

n − ΣX) ⊗ IM

∣∣∣∣∣∣∣∣∣
∞
‖θM‖2

1,2,
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where the penultimate line is by Lemma 6 in section D of [68]. Note that∣∣∣∣∣∣∣∣∣(Σ̂X
n − ΣX) ⊗ IM

∣∣∣∣∣∣∣∣∣
∞

=
∣∣∣∣∣∣∣∣∣Σ̂X

n − ΣX
∣∣∣∣∣∣∣∣∣

∞
,

then combine (89) and Lemma B.5, we have constant c such that for any δ > 0,
with probability at least 1 − δ, we have

1
2n‖ZΔβ‖2

2 ≥
(
κ

2 − 8M2s ·
{

7
√

3K0

√
log (3/δ) + 2 log ((p− 1)M)

n
+

8cK0 log (2n)(log (3/δ) + 2 log ((p− 1)M))
3n

})
‖Δβ‖2

2

(90)

for all Δβ ∈ C(Nj). Let Γ(n, p,M, δ) be defined by (88), then when Γ(n, p,M, δ) ≤
κ(M)/(32M2s), we have

1
2n‖ZΔβ‖2

2 ≥ κ

4 ‖Δβ‖2
2 for all Δβ ∈ C(Nj)

with probability at least 1 − δ.

In the next few results, recall that

Q1
n,δ = 1 + 8

(
log(2/δ)

n
+
√

log(2/δ)
n

)
.

Lemma B.8. Let ξ1, · · · , ξn be i.i.d. mean zero random elements in some
Hilbert space, and E[‖ξ1‖2] = σξ. Besides, we assume that

E
[
‖ξ1‖2k] ≤ (2σξ)k · k! for all k = 1, 2, · · · .

Then for any given δ ∈ (0, 1], we have

P

{
1
n

n∑
i=1

‖ξi‖2 ≤ σξQ1
n,δ

}
≥ 1 − δ.

Proof. Note that x �→ |x|k is a convex function when k ≥ 1 and x ∈ R. By
Jensen’s inequality, we have |x/2 + y/2|k ≤ (|x|k + |y|k)/2, which implies that
|x + y|k ≤ 2k−1(|x|k + |y|k). Then by Lemma B.11, for k ≥ 2, we have

E

[∣∣‖ξ1‖2 − σξ

∣∣k] ≤ 2k−1 (
E
[
‖ξ1‖2k] + σk

ξ

)
≤ 2k−1 ((2σξ)kk! + σk

ξ

)
≤ (4σξ)kk!.

Thus, we have

1
n

n∑
i=1

E

[∣∣‖ξi‖2 − σξ

∣∣k] ≤ k!
2 (32σ2

ξ )(4σξ)k−2

for all k = 2, 3, . . . . Then, by Theorem 2.5 [6], we have

P

{∣∣∣∣∣ 1n
n∑

i=1
‖ξi‖2 − σξ

∣∣∣∣∣ > Δ
}

≤ 2 exp
(
− nΔ2

64σ2
ξ + 8σξΔ

)
, Δ > 0.

The result follows by rearranging the terms.
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Lemma B.9. Let δ ∈ (0, 1]. For any j ∈ [p], we have

P

{
1
n

n∑
i=1

‖gij‖2 ≤ σmax,0Q1
n,δ

}
≥ 1 − δ

and

P

{
1
n

n∑
i=1

‖eij‖2 ≤ σjrQ1
n,δ

}
≥ 1 − δ,

where eij is defined in (5) and σjr = E[‖eij‖2].

Proof. The result follows directly from Lemma B.8.

Lemma B.10. For all 0 < δ ≤ 1, we have

P

{
1
n

n∑
i=1

‖ri + wi‖2
2 ≤ Ξ4(M)Q1

n,δ

}
≥ 1 − δ,

P

{
1
n

n∑
i=1

‖aXk
i ‖2

2 ≤ tr
(
ΣX

kk

)
Q1

n,δ

}
≥ 1 − δ,

and

P

{
1
n

n∑
i=1

‖aXk
im‖2

2 ≤ Ξ2(M)Q1
n,δ

}
≥ 1 − δ for all m ∈ [M ], k ∈ [p− 1].

Proof. Note that E[‖ri+wi‖2
2] = Ξ4(M), E[‖aXk

i ‖2
2] = tr(ΣX

kk) and E[‖aXk
im‖2

2] =
ΣXkXk

mm ≤ ρmax(ΣX
kk) ≤ Ξ2(M), where Ξ2(M),Ξ4(M) is defined in (26), and

then the result follows directly from Lemma B.8.

Lemma B.11. Let g be a mean zero random Gaussian function in the Hilbert
space H. Let σ0 = E

[
‖g‖2]. Then

E
[
‖g‖2k] ≤ (2σ0)k · k! for all k = 1, 2, · · · .

Proof. Let {φm}m≥1 be othornormal eigenfunctions of covariance function of g.
Let am = 〈g, φm〉. We have am, m ≥ 1, are independent mean zero Gaussian
random variables with variance σm and σ0 =

∑
m≥1 σm. We further have

g =
∞∑

m=1
σ1/2
m ξmφm,

where ξm = σ
−1/2
m am are independent standard Gaussian, and

‖g‖ =

⎛
⎝∑

m≥1
σmξ2

m

⎞
⎠

1/2

.
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Using the Jensen’s inequality for t �→ t2k, we have

‖g‖2k =

⎛
⎝∑

m≥1
σm

⎞
⎠

k

·
(∑

m≥1 σmξ2
m∑

m≥1 σm

)k

≤

⎛
⎝∑

m≥1
σm

⎞
⎠

k

·
∑

m≥1 σmξ2k
m∑

m≥1 σm
=

⎛
⎝∑

m≥1
σm

⎞
⎠

k−1

·

⎛
⎝∑

m≥1
σmξ2k

m

⎞
⎠ .

Thus,

E
[
‖g‖2k] ≤

⎛
⎝∑

m≥1
σm

⎞
⎠

k−1

·

⎛
⎝∑

m≥1
σmE

[
ξ2k
m

]⎞⎠
= σk

0E
[
ξ2k
1
]
≤ σk

0 · 2k · k! = (2σ0)kk! ,

which completes the proof.

Lemma B.12. Recall that gi(·) = (gi1(·), gi2(·), . . . , gip(·))� is our i-th observa-
tion defined in Section 2.1. Besides, recall that in Section 2.4, we have φm = φjm

and φ̂m = φ̂jm be the m-th basis function and and its corresponding estimate
respectively used to do projection for j-th node, and âXk

i,M = (âXk
i1 , . . . , âXk

iM )� be
the projection score vector of gi by using {φ̂m}Mm=1. Under the assumption that

1
n

n∑
i=1

‖gij‖2 ≤ Γg(j) for all j ∈ [p],

and
‖φ̂m − φm‖ ≤ Γφ(m) for all m ≥ 1,

for some 0 < δ ≤ 1, we then have

1
n

n∑
i=1

(
âXk
im − aXk

im

)2
≤ Γg(k)Γ2

φ(m),

for all k ∈ [p− 1] and m ≥ 1. Furthermore, we have

1
n

n∑
i=1

‖âXk

i − aXk

i ‖2 ≤ Γg(k)
M∑

m=1
Γ2
φ(m).

Proof. Note that(
âXk
im − aXk

im

)2
=

(
〈gXk

i , φ̂m − φm〉
)2

≤ ‖gXk
i ‖2‖φ̂m − φm‖2.

Thus we have

1
n

n∑
i=1

(
âXk
im − aXk

im

)2
≤

(
1
n

n∑
i=1

‖gXk
i ‖2

)
‖φ̂m − φm‖2.

The rest of the proof follows directly from the assumptions we made.
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Lemma B.13. For a given node j ∈ [p], recall that φm = φjm and φ̂m = φ̂jm

are the m-th basis function and its corresponding estimate respectively used to do
projection for j-th node, defined in Section 2.4. Besides, let βk(t′, t) = βjk(t′, t)
and recall that b∗k,mm′ =

∫
T ×T βk(t′, t)φm(t)φm′(t′)dt′dt is defined in (7) and

b̃k,mm′ =
∫
T βk(t′, t)φ̂m(t′)φ̂m′(t)dt′dt is defined in (44). Under the assumption

that
‖φ̂m − φm‖ ≤ Γφ(m) for all m ≥ 1,

and
∑∞

m=1 Γ2
φ(m) < ∞, then we have

p−1∑
k=1

∞∑
m′=1

(
b̃k,mm′ − b∗k,mm′

)2 ≤ 2

⎛
⎝ ∑

k∈Nj

‖βk(t, t′)‖2
HS

⎞
⎠Γ2

φ(m)

+ 2
∑
k∈Nj

∞∑
m′=1

∣∣∣∣
∫
T ×T

βk(t, t′)φm(t)
(
φ̂m′(t′) − φm′(t′)

)
dt′dt

∣∣∣∣
2

,

where βk(t, t′) is defined in (5).

Proof. Note that∣∣b̃k,mm′ − b∗k,mm′
∣∣

=
∣∣∣∣
∫
T ×T

βk(t, t′)
(
φ̂m(t)φ̂m′(t′) − φm(t)φm′(t′)

)
dt′dt

∣∣∣∣
=

∣∣∣∣
∫
T ×T

βk(t, t′)
{(

φ̂m(t) − φm(t)
)
φ̂m′(t′) + φm(t)

(
φ̂m′(t′) − φm′(t′)

)}
dt′dt

∣∣∣∣
≤

∣∣∣∣
∫
T ×T

βk(t, t′)
(
φ̂m(t) − φm(t)

)
φ̂m′(t′)dt′dt

∣∣∣∣
+
∣∣∣∣
∫
T ×T

βk(t, t′)φm(t)
(
φ̂m′(t′) − φm′(t′)

)
dt′dt

∣∣∣∣ . (91)

Since {φm′}∞m′=1 is an orthonormal function basis, thus when we treat∫
T
βk(t, t′)

(
φ̂m(t) − φm(t)

)
dt

as a function of t′, we have
∞∑

m′=1

∣∣∣∣
∫
T ×T

βk(t, t′)
(
φ̂m(t) − φm(t)

)
φ̂m′(t′)dt′dt

∣∣∣∣
2

=
∫
T

(∫
T
βk(t, t′)

(
φ̂m(t) − φm(t)

)
dt

)2

dt′

≤
∫
T

(∫
T
β2
k(t, t′)dt

)(∫
T

(
φ̂m(t) − φm(t)

)2
dt

)
dt′

= ‖φ̂m − φm‖2‖βk(t, t′)‖2
HS
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≤ Γ2
φ(m)‖βk(t, t′)‖2

HS. (92)

Combine (91)-(92), and note that b∗k,mm′ = b̃k,mm′ = 0 for all m,m′ ≥ 1 when
k /∈ Nj , thus we have

p−1∑
k=1

∞∑
m′=1

(
b̃k,mm′ − b∗k,mm′

)2 ≤ 2

⎛
⎝ ∑

k∈Nj

‖βk(t, t′)‖2
HS

⎞
⎠Γ2

φ(m)

+ 2
∑
k∈Nj

∞∑
m′=1

∣∣∣∣
∫
T ×T

βk(t, t′)φm(t)
(
φ̂m′(t′) − φm′(t′)

)
dt′dt

∣∣∣∣
2
.

Lemma B.14. Recall that gi(·) = (gi1(·), gi2(·), . . . , gip(·))� is our i-th obser-
vation defined in Section 2.1 and eij(·) is the error term defined in (5). Besides,
recall that φm = φjm and φ̂m = φ̂jm are the m-th basis function and its corre-
sponding estimate respectively used to do projection for the j-th node, defined in
Section 2.4. Recall from (45)

viM =
p−1∑
k=1

(B̃k,M −B∗
k,M )âXk

i,M + (r̃i,M − ri,M ) + (w̃i,M −wi,M ),

and suppose that
1
n

n∑
i=1

‖gij‖2 ≤ Γg(j) for all j ∈ [p],

1
n

n∑
i=1

‖eij‖2 ≤ Γe for all j ∈ [p],

and
‖φ̂m − φm‖ ≤ Γφ(m) for all m ≥ 1,

where
∑∞

m=1 Γ2
φ(m) < ∞. Then,

1
n

n∑
i=1

v2
im ≤ Im + IIm + IIIm, (93)

where

Im = 6

⎛
⎝ ∑

k∈Nj

Γg(k)

⎞
⎠
⎧⎨
⎩
⎛
⎝ ∑

k∈Nj

‖βk(t, t′)‖2
HS

⎞
⎠Γ2

φ(m)

+
∑
k∈Nj

∞∑
m′=1

∣∣∣∣
∫
T ×T

βk(t, t′)φm(t)
(
φ̂m′(t′) − φm′(t′)

)
dt′dt

∣∣∣∣
2
⎫⎬
⎭ .
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IIm = 3

⎛
⎝ ∑

k∈Nj

∞∑
m′=M+1

(
b∗k,mm′

)2⎞⎠
⎛
⎝ ∑

k∈Nj

Γg(k)

⎞
⎠( ∞∑

m′=M+1
Γ2
φ(m′)

)
,

IIIm = 3ΓeΓ2
φ(m).

Recall that βjk(t, t′) is defined in (5). Drop the subscript j and let βk(t, t′) =
βjk(t, t′). Recall that b∗k,mm′ =

∫
T ×T βk(t′, t)φm(t)φm′(t′)dt′dt is defined in (7).

Furthermore, we have

1
n

n∑
i=1

‖vi‖2 ≤ 12
( ∞∑

m=1
Γ2
φ(m)

)⎛
⎝ ∑

k∈Nj

‖βk(t, t′)‖2
HS

⎞
⎠
⎛
⎝ ∑

k∈Nj

Γg(k)

⎞
⎠

+ 3Φ2(M)

⎛
⎝ ∑

k∈Nj

Γg(k)

⎞
⎠( ∞∑

m′=M+1
Γ2
φ(m′)

)
+ 3Γe

M∑
m=1

Γ2
φ(m),

(94)
where, as previously defined in (37),

Φ(M) =

√√√√p−1∑
k=1

M∑
m=1

∞∑
m′=M+1

(
b∗k,mm′

)2
.

Proof. Note that

vim =
p−1∑
k=1

M∑
m′=1

(b̃k,mm′ − b∗k,mm′)âXk

im′

+
p−1∑
k=1

∞∑
m′=M+1

(
b̃k,mm′ âXk

im′ − b∗k,mm′aXk

im′

)
+ 〈eij(t), φ̂m(t) − φm(t)〉

=
∑
k∈Nj

M∑
m′=1

(b̃k,mm′ − b∗k,mm′)âXk

im′

+
∑
k∈Nj

∞∑
m′=M+1

(
b̃k,mm′ âXk

im′ − b∗k,mm′aXk

im′

)
+ 〈eij(t), φ̂m(t) − φm(t)〉

=
∑
k∈Nj

∞∑
m′=1

(b̃k,mm′ − b∗k,mm′)âXk

im′ +
∑
k∈Nj

∞∑
m′=M+1

b∗k,mm′(âXk

im′ − aXk

im′)

+ 〈eij(t), φ̂m(t) − φm(t)〉.

By Jensen’s inequality, we have

v2
im ≤ 3

⎛
⎝ ∑

k∈Nj

∞∑
m′=1

(b̃k,mm′ − b∗k,mm′)âXk

im′

⎞
⎠

2
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+ 3

⎛
⎝ ∑

k∈Nj

∞∑
m′=M+1

b∗k,mm′(âXk

im′ − aXk

im′)

⎞
⎠

2

+ 3
(
〈eij(t), φ̂m(t) − φm(t)〉

)2
.

By Cauchy-Schwartz inequality, we further have

v2
im ≤ 3

⎛
⎝ ∑

k∈Nj

∞∑
m′=1

(b̃k,mm′ − b∗k,mm′)2
⎞
⎠
⎛
⎝ ∑

k∈Nj

∞∑
m′=1

(
âXk

im′

)2
⎞
⎠

+ 3

⎛
⎝ ∑

k∈Nj

∞∑
m′=M+1

(
b∗k,mm′

)2⎞⎠
⎛
⎝ ∑

k∈Nj

∞∑
m′=M+1

(âXk

im′ − aXk

im′)2
⎞
⎠

+ 3‖eij(t)‖2‖φ̂m(t) − φm(t)‖2.

Note that
∑∞

m=1(â
Xk
im )2 = ‖gXk

i ‖2, thus we have

1
n

n∑
i=1

v2
im ≤ 3

⎛
⎝ ∑

k∈Nj

∞∑
m′=1

(b̃k,mm′ − b∗k,mm′)2
⎞
⎠
⎛
⎝ ∑

k∈Nj

1
n

n∑
i=1

‖gXk
i ‖2

⎞
⎠

+3

⎛
⎝ ∑

k∈Nj

∞∑
m′=M+1

(
b∗k,mm′

)2⎞⎠
⎛
⎝ ∑

k∈Nj

∞∑
m′=M+1

1
n

n∑
i=1

(âXk

im′ − aXk

im′)2
⎞
⎠

+3
(

1
n

n∑
i=1

‖eij(t)‖2

)
‖φ̂m(t) − φm(t)‖2

Δ=I′m + II′m + III′m.

By Lemma B.13 and our assumption, we have

I′m ≤ 6

⎛
⎝ ∑

k∈Nj

Γg(k)

⎞
⎠
⎧⎨
⎩
⎛
⎝ ∑

k∈Nj

‖βk(t, t′)‖2
HS

⎞
⎠Γ2

φ(m)

+
∑
k∈Nj

∞∑
m′=1

∣∣∣∣
∫
T ×T

βk(t, t′)φm(t)
(
φ̂m′(t′) − φm′(t′)

)
dt′dt

∣∣∣∣
2
⎫⎬
⎭ .

By Lemma B.12, we have

1
n

n∑
i=1

(
âXk

im′ − aXk

im′

)2
≤ Γg(k)Γ2

φ(m′).

Thus,

II′m ≤ 3

⎛
⎝ ∑

k∈Nj

∞∑
m′=M+1

(
b∗k,mm′

)2⎞⎠
⎛
⎝ ∑

k∈Nj

Γg(k)

⎞
⎠( ∞∑

m′=M+1
Γ2
φ(m′)

)
.
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In addition, we have

III′m ≤ 3ΓeΓ2
φ(m).

Combining the above results, we complete the proof of (93).
To show (93), note that {φm}∞m=1 is an orthonormal function basis, and we

treat ∫
T
βk(t, t′)

(
φ̂m′(t′) − φm′(t′)

)
dt′

as a function of t, then we have

∑
k∈Nj

∞∑
m′=1

∞∑
m=1

∣∣∣∣
∫
T ×T

βk(t, t′)φm(t)
(
φ̂m′(t′) − φm′(t′)

)
dt′dt

∣∣∣∣
2

=
∑
k∈Nj

∞∑
m′=1

∫
T

{∫
T
βk(t, t′)

(
φ̂m′(t′) − φm′(t′)

)
dt′

}2
dt

≤
∑
k∈Nj

∞∑
m′=1

∫
T

{∫
T
β2
k(t, t′)dt

}{∫
T

(
φ̂m′(t′) − φm′(t′)

)2
dt′

}
dt

=

⎛
⎝ ∑

k∈Nj

‖βk(t, t′)‖2
HS

⎞
⎠( ∞∑

m′=1
Γ2
φ(m′)

)
.

Thus, we have

M∑
m=1

Im ≤
∞∑

m=1
Im ≤ 12

( ∞∑
m=1

Γ2
φ(m)

)⎛
⎝ ∑

k∈Nj

‖βk(t, t′)‖2
HS

⎞
⎠
⎛
⎝ ∑

k∈Nj

Γg(k)

⎞
⎠ .

(94) then follows the combination of the above inequality and (93).

Lemma B.15. Let A ∈ R
m×n, B ∈ R

n×m. We have√
ρmin (B�B)‖A‖F ≤ ‖BA‖F ≤ ‖B‖2‖A‖F

and √
ρmin (BB�)‖A‖F ≤ ‖AB‖F ≤ ‖B‖2‖A‖F.

Proof. Let A = [a1,a2, . . . ,an]. Since

‖BA‖2
F = tr

(
A�B�BA

)
=

n∑
i=1

a�
i B

�Bai,

we have

ρmin
(
B�B

)
‖A‖2

F = ρmin
(
B�B

) n∑
i=1

‖ai‖2
2
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≤
n∑

i=1
a�
i B

�Bai

≤ ‖B‖2
2

n∑
i=1

‖ai‖2
2

= ‖B‖2
2‖A‖2

F.

The final result follows from taking the square root on both sides.

Lemma B.16. Let A ∈ R
n×n be symmetric and positive semi-definite, B ∈

R
n×m, and C ∈ R

n×n be a diagonal matrix with positive diagonal elements.
Then we have

‖(A + C)B‖F ≥ ‖CB‖F .
Proof. Let j-th column of B be bj for j = 1, . . . ,m. Then we have

‖(A + C)B‖2
F = tr

(
B�(A + C)�(A + C)B

)
=

m∑
j=1

b�j (A + C)�(A + C)bj

=
m∑
j=1

b�j A
�Abj +

m∑
j=1

b�j C
�Abj

+
m∑
j=1

b�j A
�Cbj +

m∑
j=1

b�j C
�Cbj .

Since A is symmetric and positive semi-definite and C is a diagonal matrix
with positive diagonal elements, we have C�A = A�C = CA to be symmetric
and positive semi-definite. And note that A�A is symmetric and positive semi-
definite, thus we have

‖(A + C)B‖2
F ≥

m∑
j=1

b�j C
�Cbj = tr

(
B�C�CB

)
= ‖CB‖2

F ,

which implies the final result.

Appendix C: Wall-clock runtime comparison

Table 4 documents the wall-clock runtime required for each method to generate
a Receiver Operating Characteristic (ROC) curve. We execute each method on
100 distinct values of λn. Table 5 logs the wall-clock runtime of the FPCA-gX
method to generate an estimated graph via the Selective Cross-Validation (SCV)
algorithm as described in Algorithm 2, over a two-dimensional grid of (λn, tε).
This grid encompasses 100 unique values of λn and 7 different values of tε.
All tasks are executed in parallel using R, utilizing 28 CPU cores on Chicago
Booth’s Mercury Computing Cluster.
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Table 4

The average wall-clock running time for each method to obtain a ROC under each model.
All of results are recorded in seconds. The fastest algorithm in each setting is marked bold.

The standard deviation is given in parenthesis.
Model p FPCA-gX FPCA-gY FGLasso PSKL FPCA-

PSKL

A
50 24.8

(3.0)
47.9
(6.3)

11.4
(2.5)

126.6
(9.9)

100 137.7
(16.7)

186.4
(20.7)

35.1
(21.4)

241.3
(21.2)

N/A

150 305.9
(58.2)

377.9
(63.8)

69.9
(10.3)

418.4
(24.0)

B
50 46.6

(2.6)
75.1
(3.9)

33.5
(15.5)

108.1
(7.8)

100 263.3
(29.2)

345.0
(33.4)

111.0
(72.1)

226.8
(13.4)

N/A

150 807.7
(125.3)

973.7
(136.0)

212.5
(188.2)

437.3
(27.9)

C
50 14.6

(4.1)
29.2
(7.1)

91.3
(27.7)

343.3
(43.5)

100 174.1
(125.2)

218.9
(113.1)

87.8
(78.8)

695.6
(73.3)

N/A

150 692.3
(684.0)

754.9
(517.1)

139.8
(132.7)

1037.9
(200.2)

D
50 11.2

(16.6)
26.7
(22.3)

72.3
(37.0)

259.6
(74.8)

14.8
(23.0)

100 92.0
(99.1)

129.9
(121.4)

390.2
(333.8)

603.3
(151.0)

112.3
(121.8)

150 92.3
(111.5)

126
(128.2)

1228.2
(325.7)

1108.4
(103.6)

100.0
(122.3)

Table 5

The average wall-clock running time of FPCA-gX to obtain an estimated graph under each
model, where (λn, εn) is chosen by SCV algorithm stated in Algorithm 2. All of results are

recorded in seconds. The standard deviation is given in parenthesis.
Model A B C D
p = 50 22.3 (2.9) 45.0 (6.9) 12.2 (1.2) 17.0 (16.2)
p = 100 141.1 (24.1) 218.9 (42.8) 111.7 (12.9) 108.6 (106.8)
p = 150 326.0 (70.5) 707.1 (174.0) 463.8 (322.0) 220.6 (60.0)

The runtime analysis indicates that the FPCA-gX method is marginally faster
than the other two FPCA methods and significantly outpaces PSKL in most
instances. Even though FPCA-gX can occasionally be slower than FGLasso, it
delivers more accurate results while maintaining comparable runtime. Notably,
FPCA methods outperform FGLasso or PSKL in terms of speed. Despite the
SCV process operating over a two-dimensional grid with 100 different values of
λn and 7 different values of tε, its runtime is akin to that of the ROC process,
which operates on a one-dimensional grid of λn. This can be attributed to the
fact that the most time-intensive step of the SCV process, the ADMM algorithm,
is executed only once for each value of λn.
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Appendix D: Labels of ROIs in the AAL atlas

Table 6: Labels and names of each ROI in the AAL atlas

Label Name Label Name
2001 Precentral_L 4112 ParaHippocampal_R
2002 Precentral_R 4201 Amygdala_L
2101 Frontal_Sup_L 4202 Amygdala_R
2102 Frontal_Sup_R 5001 Calcarine_L
2111 Frontal_Sup_Orb_L 5002 Calcarine_R
2112 Frontal_Sup_Orb_R 5011 Cuneus_L
2201 Frontal_Mid_L 5012 Cuneus_R
2202 Frontal_Mid_R 5021 Lingual_L
2211 Frontal_Mid_Orb_L 5022 Lingual_R
2212 Frontal_Mid_Orb_R 5101 Occipital_Sup_L
2301 Frontal_Inf_Oper_L 5102 Occipital_Sup_R
2302 Frontal_Inf_Oper_R 5201 Occipital_Mid_L
2311 Frontal_Inf_Tri_L 5202 Occipital_Mid_R
2312 Frontal_Inf_Tri_R 5301 Occipital_Inf_L
2321 Frontal_Inf_Orb_L 5302 Occipital_Inf_R
2322 Frontal_Inf_Orb_R 5401 Fusiform_L
2331 Rolandic_Oper_L 5402 Fusiform_R
2332 Rolandic_Oper_R 6001 Postcentral_L
2401 Supp_Motor_Area_L 6002 Postcentral_R
2402 Supp_Motor_Area_R 6101 Parietal_Sup_L
2501 Olfactory_L 6102 Parietal_Sup_R
2502 Olfactory_R 6201 Parietal_Inf_L
2601 Frontal_Sup_Medial_L 6202 Parietal_Inf_R
2602 Frontal_Sup_Medial_R 6211 SupraMarginal_L
2611 Frontal_Med_Orb_L 6212 SupraMarginal_R
2612 Frontal_Med_Orb_R 6221 Angular_L
2701 Rectus_L 6222 Angular_R
2702 Rectus_R 6301 Precuneus_L
3001 Insula_L 6302 Precuneus_R
3002 Insula_R 6401 Paracentral_Lobule_L
4001 Cingulum_Ant_L 6402 Paracentral_Lobule_R
4002 Cingulum_Ant_R 7001 Caudate_L
4011 Cingulum_Mid_L 7002 Caudate_R
4012 Cingulum_Mid_R 7011 Putamen_L
4021 Cingulum_Post_L 7012 Putamen_R
4022 Cingulum_Post_R 7021 Pallidum_L
4101 Hippocampus_L 7022 Pallidum_R
4102 Hippocampus_R 7101 Thalamus_L
4111 ParaHippocampal_L 7102 Thalamus_R
8101 Heschl_L 8111 Temporal_Sup_L
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8102 Heschl_R 8112 Temporal_Sup_R
8121 Temporal_Pole_Sup_L
8122 Temporal_Pole_Sup_R
8201 Temporal_Mid_L
8202 Temporal_Mid_R
8211 Temporal_Pole_Mid_L
8212 Temporal_Pole_Mid_R
8301 Temporal_Inf_L
8302 Temporal_Inf_R
9001 Cerebelum_Crus1_L
9002 Cerebelum_Crus1_R
9011 Cerebelum_Crus2_L
9012 Cerebelum_Crus2_R
9021 Cerebelum_3_L
9022 Cerebelum_3_R
9031 Cerebelum_4_5_L
9032 Cerebelum_4_5_R
9041 Cerebelum_6_L
9042 Cerebelum_6_R
9051 Cerebelum_7b_L
9052 Cerebelum_7b_R
9061 Cerebelum_8_L
9062 Cerebelum_8_R
9071 Cerebelum_9_L
9072 Cerebelum_9_R
9081 Cerebelum_10_L
9082 Cerebelum_10_R
9100 Vermis_1_2
9110 Vermis_3
9120 Vermis_4_5
9130 Vermis_6
9140 Vermis_7
9150 Vermis_8
9160 Vermis_9
9170 Vermis_10
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Appendix E: Table of notations

Table 7: Summary of notations used in the paper.

Notation Meaning Page
G = (V,E) undirected graph, V is set of vertices, E is set

of edges
2

X p-dimensional random variables 2
M number of basis functions we used to do dimen-

sion reduction
3

g(·) p-dimensional multivariate Gaussian process 5
T domain of multivariate Gaussian process 5
Cjl(t, t′) conditional cross-covariance function 5
{gi(·)}ni=1 gi(·) = (gi1(·), · · · , gip(·))�, random copies of

g(·)
5

βjk(t, t′) coefficient on gij from gik 5
Nj , N̂j (estimated) neighborhood set of node j 5
eij(·) error of gij(·) 5
φj = {φjm(·)}∞m=1, orthonormal functional basis

on H

6

ai,k,M = (aik1, · · · , aikM )�, vector of projection
scores

6

gYi (·), gXk
i (·) random functions of the target node and the

other random functions
6

aY
i,M ,aXk

i,M , aX
i,M vectors of scores projected on known bases φj 6

B∗
k,M regression matrix parameter 7

wi,M , ri,M noise vector and bias term for M -truncation 7
B̂k,M Estimator of B∗

k,M 7
λn penalty parameter for group Lasso regression 7
εn threshold parameter of neighborhood recogni-

tion
7

Ê estimated edge set 7
âY
i,M , âXk

i,M , âX
i,M scores projected on estimated bases φ̂j 7-8

Kjj(t′, t) functional covariance of gij(·) 8
Kj(f)(t) Hilbert-Schmidt covariance operator 8
{σjm}m∈N eigenvalues of Kj 8
gMij (t) L2 projection of gij(t) onto the basis spanned

by the first M FPCA functions
8

K̂jj(t′, t) empirical functional covariance of gij(·) 8
{σ̂jm, φ̂jm(t)}Mm=1 eigenpairs of K̂jj(t′, t) 8
âijm =

∫
T gij(t)φ̂jm(t)dt, estimated FPCA scores 8

B̂λn = (B̂1, · · · , B̂p−1), group Lasso estimates un-
der a fixed λn

9
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B̃k estimates of Bk in selective cross-validation
process

10

ε̂i = aY
i,M −

∑p−1
k=1 B̃ka

Xk

i,M , residuals of B̃k 10
AY ,AXk ,AX matrices of FPCA scores 10
ρ, ρh penalty parameter for ADMM subproblem 10
b∗k,mm′ =

∫
T ×T βk(t′, t)φm(t)φm′(t′)dt′dt 12

βk,M (t′, t) =
∑M

m,m′=1 b
∗
k,mm′φm(t)φm′(t′) 13

βk,>M (t′, t) =
∑∞

m>M orm′>M b∗k,mm′φm(t)φm′(t′) 13
ΣXk,r = Cov(aXk

i,M , ri,M ), and Σr,Xk = (ΣXk,r)� 13
ΣXk,Xl = Cov(aXk

i,M ,aXl

i,M ) 13
Ξ1(M)

= max
k∈[p−1]

{ρmax(Σw + Σr−

Σr,Xk
(
ΣXk,Xk

)−1 ΣXk,r)
}

13

Ξ2(M) = maxk∈[p−1] ρmax(ΣXk,Xk) 13
Ξ3(M) = maxk∈[p−1] tr(ΣXk,Xk) 13
Ξ4(M) = tr {Σr + Σw + Σr,w + Σw,r} 13
ω(M) = maxk∈[p−1]

∥∥Σr,Xk
∥∥

F 13
K0 = maxk∈[p−1],m∈M E[(aXk

i,m)2], used to derive
an upper bound for the estimation error of the
covariance matrix of aX

i,M

13

κ(M) = ρmin
(
(ΣX)Nj ,Nj

)
14

τ(M) = mink∈Nj ‖B∗
k‖F = mink∈Nj ‖βk,M (t′, t)‖HS,

relevant signal strength
14

χ(n, p,M, δ) = 6
√
s√

κ(M) λ̃(n, p,M, δ) 14
λ̃(n, p,M, δ) exact form can be found in (54) 14

Φ(M) =
√∑p−1

k=1
∑M

m=1
∑∞

m′=M+1

(
b∗k,mm′

)2
16

χ̌(n, p,M, δ) = 6
√
s√

κ(M) λ̌(n, p,M, δ) 16
λ̌(n, p,M, δ) exact form given in (69) 16
Λ(M,φ) ω(M)√

κ(M)τ(M) 17
(ai1, · · · ,aip)� generated functional scores from a mean zero

Gaussian distribution
18

f(·) vector of Fourier basis functions 18
M∗ number of basis functions contained in f(·) 18
Σ covariance matrix of (ai1, · · · ,aip)� 18
Θ = Σ−1, precision matrix 18
T number of observation time points 19
εijk observation error of gij(tk) 19
σ variance of εijk 19
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