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Abstract: Heterogeneous effect estimation is crucial in causal inference,
with applications across medicine and social science. Many methods for
estimating conditional average treatment effects (CATEs) have been pro-
posed, but there are gaps in understanding if and when such methods are
optimal. This is especially true when the CATE has nontrivial structure
(e.g., smoothness or sparsity). Our work contributes in several ways. First,
we study a two-stage doubly robust CATE estimator and give a generic
error bound, which yields rates faster than much of the literature. We ap-
ply the bound to derive error rates in smooth nonparametric models, and
give sufficient conditions for oracle efficiency. Along the way we give a gen-
eral error bound for regression with estimated outcomes; this is the second
main contribution. The third contribution is aimed at understanding the
fundamental statistical limits of CATE estimation. To that end, we propose
and study a local polynomial adaptation of double-residual regression. We
show that this estimator can be oracle efficient under even weaker condi-
tions, and we conjecture that they are minimal in a minimax sense. We go
on to give error bounds in the non-trivial regime where oracle rates cannot
be achieved. Some finite-sample properties are explored with simulations.
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1. Introduction

Heterogeneous effect estimation plays a crucial role in causal inference, with
applications across medicine and social science, e.g., improving understanding
of variation, and informing policy or optimizing treatment decisions. The most
common target parameter in this setup is the conditional average treatment
effect (CATE) function, E(Y 1 − Y 0 | X = x), which measures the expected
difference in outcomes had those with covariates X = x been treated versus not.
The CATE is typically identified under standard causal assumptions (including
no unmeasured confounding) as the difference between two regression functions,
τ(x) ≡ E(Y | X = x,A = 1) − E(Y | X = x,A = 0).

Important early methods for estimating the CATE often employed semipara-
metric models, for example partially linear models assuming τ(x) to be constant
[39, 34], or structural nested models in which τ(x) followed some known para-
metric form [32, 51, 48, 53]. These approaches reflect a commonly held conviction
that the CATE may be more structured and simple than the rest of the data-
generating process (with the zero treatment effect case an obvious example).
This is similar in spirit to the common belief that interaction terms are more
often zero than “main effects”.

Recent years have seen a move towards more flexible estimators of τ(x). The
first formal nonparametric model where the CATE has its own complexity sep-
arate from regression functions seems to be Example 4 of Robins et al. [35]. van
der Laan [48] (Section 4.2) proposed an important model-free “meta-algorithm”
for estimating the CATE, a variant of which we study in this paper. The last
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5–10 years has seen even more emphasis on nonparametrics and incorporating
machine learning [16, 21, 3, 44, 43, 30, 55, 25, 15, 20]. The present work is in
a similar vein, focusing on (i) providing more flexible CATE estimators with
stronger theoretical guarantees, and (ii) pushing forward our understanding of
optimality and the fundamental limits of CATE estimation. At the start of each
of the Sections 3, 4, and 5, we detail related work and describe how our results
fit.

After describing the setup and presenting a simple motivating illustration
in Section 2, we go on to present our three main contributions: (i) a model-
free oracle inequality for regression with estimated pseudo-outcomes (given in
Section 3); (ii) general conditions for oracle efficiency of a doubly robust estima-
tor we term the DR-Learner, with applications to specific regression methods
under smoothness conditions (in Section 4); and (iii) a more refined analysis
of a specialized estimator we call the lp-R-Learner, showing that faster rates
can be achieved in the non-oracle regime, and giving a partial answer towards
understanding the fundamental limits of CATE estimation (in Section 5).

2. Setup & illustration

We assume access to an iid sample of observations of Zi = (Xi, Ai, Yi), where
X ∈ R

d are covariates, A ∈ {0, 1} is a binary treatment or exposure, and
Y ∈ R an outcome of interest. The distribution of Z is indexed by the covariate
distribution and nuisance functions:

π(x) = P(A = 1 | X = x)
μa(x) = E(Y | X = x,A = a)
η(x) = E(Y | X = x)

Our goal is estimation of the difference in regression functions under treatment
versus control τ(x) ≡ μ1(x) − μ0(x). Under standard causal assumptions of no
unmeasured confounding, consistency, and positivity or overlap (ε ≤ π ≤ 1 − ε
wp1, which we assume throughout), the function τ(x) also equals E(Y 1 − Y 0 |
X = x), where Y a is the counterfactual outcome under A = a. We refer to
μ1(x) − μ0(x) as the CATE, noting that our results hold regardless of whether
the causal assumptions do. The average treatment effect (ATE) is given by
E{τ(X)}.

2.1. Notation

We use Pn(f) = Pn{f(Z)} = 1
n

∑
i f(Zi) as shorthand for sample averages.

When x ∈ R
d we let ‖x‖2 =

∑
j x

2
j denote the usual (squared) Euclidean norm,

and for generic (possibly random) functions f we let ‖f‖2 =
∫
f(z)2 dP(z)

denote the (squared) L2(P) norm. We use the notation a � b to mean a ≤ Cb
for some universal constant C, and a � b to mean cb ≤ a ≤ Cb so that a � b
and b � a. We let an ∼ bn mean an/bn → 1 as n → ∞.
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At various points we refer to s-smooth functions, which we define as those
contained in the Hölder class H(s), a canonical function class in nonparametric
regression, density estimation, and functional estimation. Intuitively, it contains
smooth functions that are close to their 
s�-order Taylor approximations. More
precisely, H(s) is the set of functions f : X → R that are 
s�-times continuously
differentiable with partial derivatives up to order 
s� bounded, and for which

|Dmf(x) −Dmf
(
x′)| � ‖x− x′‖s−�s�

for all x, x′ and m = (m1, . . . ,md) such that
∑

j mj = 
s�, where Dm =
∂�s�

∂
m1
x1 ···∂md

xd

is the multivariate partial derivative operator.

2.2. Simple motivating illustration

Consider a simple data-generating process where the covariates X are uniform
on [−1, 1],

π(x) = 0.5 + 0.4 sign(x)

and μ1(x) = μ0(x) are equal to the piecewise polynomial function defined on
page 10 of Györfi et al. [18], given by

μa(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(x + 2)2/2 if − 1 ≤ x ≤ −0.5,
x/2 + 0.875 if − 0.5 ≤ x < 0,
−5(x− 0.2)2 + 1.075 if 0 < x ≤ 0.5,
x + 0.125 if 0.5 ≤ x < 1,

which is illustrated in Figure 1. Figure 1 also shows n = 1000 simulated data
points from this data-generating process, approximately half of which are treated
(shown on the left panel) and the other half untreated (shown on the right). Also
shown are estimates of the corresponding μ1 and μ0 functions, using default
tuning parameters with the smoothing.spline function in base R.

An interesting but likely common phenomenon occurs in this simple example.
The individual regression functions are non-smooth, and difficult to estimate
well on their own; this is especially true in the region where there are fewer
treated indviduals. Thus the estimate μ̂1 tends to oversmooth on the left, where
there are more untreated individuals; in contrast, the estimate μ̂0 tends to un-
dersmooth on the right, where there are more treated individuals. This means
a naive plug-in estimator of the CATE that simply takes the difference μ̂1 − μ̂0
will be a poor and overly complex estimator of the true difference, which is not
only a constant but zero.

In contrast, suppose for simplicity that the propensity scores π were known.
Then a regression of the inverse-probability-weighted (IPW) pseudo-outcome
(A−π)Y
π(1−π) would, up to constants, behave just as an oracle estimator that had
access to the actual counterfactual difference Y 1 − Y 0, since the conditional
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Fig 1. Plot of simulated data where the regression functions μ1 and μ0 individually are
complex and difficult to estimate, but their difference is simply constant and equal to zero.
Thus a naive plug-in estimator of the CATE will be overly complex, yielding large errors.

Fig 2. Estimated CATE curves in a simple simulated example. The plug-in method inherits
the large errors from estimating the individual regression functions, which are complex and
non-smooth. The IPW and doubly robust methods adapt to the smoothness of the CATE,
which is constant in this example, with the doubly robust methods more efficient.

mean of this pseudo-outcome is exactly τ(x). Figure 2 shows results from this
procedure, as well as two other more efficient and doubly robust versions de-
scribed in subsequent sections, again all using default tuning parameter choices
from smoothing.spline. For these simulated data, the doubly robust estima-
tors are much more efficient than the IPW estimator, and do a much better job
of adapting to the correct underlying simplicity of the true τ .

The results shown in Figure 2 are typical for this data-generating process:
across 500 simulations, the IPW and doubly robust estimators gave smaller inte-
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grated squared bias across X by a factor of 10–100, respectively, and the doubly
robust estimators improved on the integrated variance of the IPW estimator by
nearly a factor of 20.
Remark 1. If the CATE has no additional structure (e.g., smoothness, sparsity)
beyond that of the individual regression functions μa, then a simple plug-in
estimator τ̂(x) = μ̂1(x) − μ̂0(x) would be sufficient. However, in general the
complexities of μa and τ may differ substantially, and in practice we often expect
the CATE to be much more structured, as described in the Introduction.

In the following sections we study the error of procedures like those illus-
trated above, giving model-free guarantees for practical use, as well as a more
theoretical study of the fundamental limits of CATE estimation in a large non-
parametric model.

3. General pseudo-outcome regression

In this section we lay out a framework for characterizing the error of general
two-stage regression estimators that regress estimated “pseudo-outcomes” on a
covariate vector. We define a new notion of stability (which we prove holds for
generic linear smoothers, for example), and then show how this stability can be
combined with a small-bias condition to yield oracle efficiency. In addition to
laying a foundation for the analysis of a doubly robust CATE estimator in the
next section, the result should also be of independent interest in other problems
involving regression with estimated or imputed outcomes [13, 1, 40, 41, 23, 6].

With a few exceptions, previous work on regression with estimated outcomes
has not appeared to exploit sample splitting, and has largely focused on par-
ticular pseudo-outcomes, and particular regression estimators (in both stages);
in contrast we lean on sample splitting in order to obtain a more general result
that is agnostic about the methods used, beyond a basic stability condition.
Prominent examples of previous work include Ai and Chen [1], Rubin and van
der Laan [40], and Foster and Syrgkanis [15], all of which gave results for pseudo-
outcomes of a general form. Ai and Chen [1] and Rubin and van der Laan [40]
did not use sample splitting and so limited their attention to particular esti-
mators. Ai and Chen [1] used sieves, and focused more on a finite-dimensional
component appearing in the pseudo-outcome. Rubin and van der Laan [40] con-
sidered least squares, penalized methods, and linear smoothers in the second
stage, while being agnostic about the first-stage regression. However, their error
bounds do not allow one to exploit double robustness in the pseudo-outcome,
which is a crucial advantage in practice and which our result does allow.

Our results are closest in spirit to Foster and Syrgkanis [15], who study generic
empirical risk minimization when the loss involves complex nuisance functions.
However there are some important distinctions to be made. Most importantly,
Foster and Syrgkanis [15] assume the loss satisfies a Neyman orthogonality prop-
erty in order to obtain squared error rates; in contrast, our bound does not rely
on this structure, but can exploit it when it holds, as shown in the following
section. Crucially, our bound will also be seen to yield doubly robust errors,



3014 E. H. Kennedy

whereas the orthogonality-based results of Foster and Syrgkanis [15] yield er-
rors that are second-order but not doubly robust. Double robustness is essential
when different nuisance components are estimated with different errors. Lastly,
Foster and Syrgkanis [15] pursue global error bounds, while we consider point-
wise error, which can be beneficial for developing inferential tools. These and
some other differences are discussed further in the next section.

In what follows we first define a new notion of estimator stability, which can
be viewed as a form of stochastic equicontinuity for nonparametric regression
(as opposed to averaging).

Definition 1 (Stability). Suppose Dn = (Z01, . . . , Z0n) and Zn = (Z1, . . . , Zn)
are independent training and test samples, respectively, with covariate Xi ⊂ Zi.
Let:

1. f̂(z) = f̂(z;Dn) be an estimate of a function f(z) using the training data
Dn,

2. b̂(x) = b̂(x;Dn) ≡ E{f̂(Z) − f(Z) | Dn, X = x} the conditional bias of
the estimator f̂ ,

3. Ên(Y | X = x) denote a generic regression estimator that regresses out-
comes (Y1, . . . , Yn) on covariates (X1, . . . , Xn) in the test sample Zn.

Then the regression estimator Ên is defined as stable at X = x (with respect to
a distance metric d) if

Ên{f̂(Z) | X = x} − Ên{f(Z) | X = x} − Ên{b̂(X) | X = x}√
E([Ên{f(Z) | X = x} − E{f(Z) | X = x}]2)

p→ 0 (3.1)

whenever d(f̂ , f) p→ 0.

Sample splitting plays an important role here: the regression procedure as
defined estimates the pseudo-outcome on a separate sample, independent from
the one used in the second-stage regression via Ên. Examples of such procedures
can be found in subsequent sections, e.g., as illustrated in Figures 3 and 5. The
main role of sample splitting is that it allows for informative error analysis while
being agnostic about the first- and second-stage methods.
Remark 2. With iid data, one can always obtain separate independent samples
by randomly splitting the data in half (or in folds); further, to regain full sample
size efficiency one can always swap the samples, repeat the procedure, and aver-
age the results, popularly called cross-fitting and used for example by Bickel and
Ritov [7], Robins et al. [35], Zheng and van der Laan [56], and Chernozhukov
et al. [10]. In this paper, to simplify notation we always analyze a single split
procedure, with the understanding that extending to an analysis of an average
across independent splits is straightforward.

As mentioned above, Definition 1 can be viewed as a generalization of the
classic condition that

(Pn − P)(f̂ − f)
1/

√
n

p→ 0
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when ‖f̂−f‖ p→ 0 (cf. Andrews [2], Lemma 19.24 of van der Vaart [52], Lemma 2
of Zheng and van der Laan [56], term I3,k of Chernozhukov et al. [10], Lemma 2
of Kennedy et al. [24], etc.). More specifically, Definition 1 generalizes from
settings involving averages Pn to generic regressions Ên, where slower than root-
n rates can appear in the denominator scaling. We also note that the stability
in Definition 1 is local or pointwise, in the sense that it is defined at a particular
X = x (because pointwise rates are the focus of this paper). More global variants
of stability are also possible; for example, after this work appeared on arxiv,
Rambachan et al. [31] used an L2 version of stability (their Assumption B.1 and
Proposition B.1) to study L2 rates (their Lemma B.1).

The next result shows that generic linear smoothers are stable, with respect
to a natural weighted L2 distance. This and all other proofs are given in Ap-
pendix A. Linear smoothers are a fundamental class of regression estimators
and include, for example, linear regression, series methods, local polynomials,
nearest neighbor matching, smoothing splines, kernel ridge regression, and some
versions of random forests [5, 42, 54]. We suspect other kinds of estimators that
are not linear smoothers are also stable in the sense of Definition 1, but leave
this to future work.

Theorem 1. Linear smoothers Ên{f̂(Z) | X = x} =
∑

i wi(x;Xn)f̂(Zi) are
stable in the sense of Definition 1, with respect to distance

d(f̂ , f) = ‖f̂ − f‖w2 ≡
n∑

i=1

{
wi(x;Xn)2∑
j wj(x;Xn)2

}∫ {
f̂(z) − f(z)

}2
dP(z | Xi),

whenever 1/‖σ‖w2 = OP(1) for σ(x)2 = var{f(Z) | X = x}.
We note that Theorem 1 recovers results similar to Lemma 2 of Kennedy

et al. [24] for averages, i.e., when the weights all equal wi(x;Xn) = n−1, but
also covers the much larger class of all linear smoothers. The norm ‖ · ‖w2

defining the relevant distance d(f̂ , f) for linear smoothers is a natural weighted
and conditional version of an L2(P) norm. Namely, it is a weighted average of
the conditional L2(P) norm (given X), weighted more towards the point X = x
depending on how localized the weights wi(x;Xn) are.

The next result shows how stability and consistency of f̂ yield a rate of con-
vergence result, relative to an oracle estimator that regresses the true unknown
f(Z) on X, and that a further small-bias condition yields oracle efficiency (i.e.,
asymptotic equivalence to the oracle estimator). This lays out a recipe for de-
riving convergence rates and conditions for oracle efficiency for general pseudo-
outcome regression problems, which we will use in the CATE setup in the next
section.

Proposition 1. Under the same setup from Definition 1, also define:

i. m(x) = E{f(Z) | X = x} the conditional expectation of f(Z) given X,
ii. m̂(x) = Ên{f̂(Z) | X = x} the regression of f̂(Z) on X in the test samples,
iii. m̃(x) = Ên{f(Z) | X = x} the corresponding oracle regression of f(Z)

on X,
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and the oracle mean squared error R∗
n(x)2 = E[{m̃(x) −m(x)}2]. If:

1. the regression estimator Ên is stable with respect to distance d, and
2. d(f̂ , f) p→ 0,

then
m̂(x) − m̃(x) = Ên

{
b̂(X) | X = x

}
+ oP

(
R∗

n(x)
)
.

Therefore if it further holds that

3. Ên{b̂(X) | X = x} = oP(R∗
n(x)),

then m̂ is oracle efficient, i.e., asymptotically equivalent to the oracle estimator
m̃ in the sense that

m̂(x) − m̃(x)
R∗

n(x)
p→ 0.

We now go on to discuss each component of Proposition 1. The oracle risk
R∗

n(x) will typically be known (at least up to constants) based on structural
assumptions on the target regression function m(x) as well as the form of the
estimator Ên. For example, if m is s-smooth and Ên is an appropriate min-
imax optimal estimator (e.g., based on series or local polynomial regression)
then R∗

n(x) � n−1/(2+d/s). Similarly, if m is s-sparse and Ên is an appropriate
minimax optimal estimator (e.g., lasso) then R∗

n(x) �
√

s log d/n, under some
assumptions. The stability condition was described previously; as mentioned
there, it holds for linear smoothers and we expect it to hold more generally. The
consistency condition d(f̂ , f) p→ 0 is mild since it does not impose any particular
rate requirement, and would generally follow from standard regression results
(depending on the form of f̂); although consistency at any rate is sufficient
for asymptotic negligibility, finite-sample behavior could depend on the rate at
which d(f̂ , f) converges to zero.

Under just stability of Ên and consistency of f̂ , one obtains the rate of con-
vergence result

m̂(x) −m(x) = m̃(x) −m(x) + Ên

{
b̂(X) | X = x

}
+ oP

(
R∗

n(x)
)
.

The bias term Ên{b̂(X) | X = x} (recalling b̂(x) = E{f̂(Z)−f(Z) | Dn, X = x})
is the crucial piece that will generally determine whether the estimator m̂ is
oracle efficient; if not, the rate would follow from this bias term. The bias b̂(x)
can in be determined on a case-by-case basis, depending on the estimator f̂ .
For simple plug-in estimators of f , the bias would typically have a first-order
dependence on the estimation error in whatever nuisance functions appear in f .
However, in some cases one will be able to construct influence-function-based
estimators of f that have only a second-order dependence on nuisance estimation
error. The availability of such estimators will depend on the form of m, but
would be expected to exist when m is a structured combination of regressions
or densities (e.g., a dose-response curve, CATE, counterfactual density, etc.).
We refer to Section 5.3 of Kennedy [22] for some related general discussion of
using influence functions for non-pathwise differentiable quantities like m.
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Note Ên{b̂(X) | X = x} is actually an estimate of the regression of the bias
term b̂(X) at X = x; thus it can be viewed as a smoothed bias, which may
be more or less averaged or localized depending on the form of Ên. Since the
form of b̂(x) will often be well-understood (e.g., derived analytically based on
the form of f̂), in the following proposition we relate it to its smoothed analog
Ên{b̂(X) | X = x} in the linear smoother case.

Proposition 2. If b̂(x) = b̂1(x)̂b2(x), and Ên is a linear smoother with∑
i

|wi

(
x;Xn

)
| = OP(cn),

then
Ên

{
b̂(X) | X = x

}
= OP(cn‖b̂1‖w,p‖b̂2‖w,q)

for the norm ‖f‖w,p = [
∑

i{
|wi(x;Xn)|∑
j |wj(x;Xn)|}|f(Xi)|p]1/p and 1/p + 1/q = 1

(p, q > 1).

Proposition 2 shows that the smoothed bias can be expressed in terms of nat-
ural weighted norms of the components of the bias b̂(x) itself. For many linear
smoothers

∑
i |wi(x;Xn)| ≤ C with probability one, so that cn = 1 (e.g., this

is a condition in the celebrated theorem of Stone [45] guaranteeing weak uni-
versal consistency of linear smoothers). For series estimators with wi(x;Xn) =
1
nρ(x)TQ̂−1

hxρ(Xi) where ρ is some basis of dimension k and Q̂hx = Pn(ρρT), a
simple bound can yield cn = supx

√
ρ(x)Tρ(x) (which is of order

√
k for many

series). We suspect the dependence on k can be avoided with more careful anal-
ysis, or when working with L2(P) norms.

4. DR-Learner

In this section we analyze a two-stage doubly robust estimator we refer to as the
DR-Learner, following the naming scheme from Nie and Wager [30] and Künzel
et al. [25]. After detailing previous work, we describe the algorithm in detail,
and then give model-agnostic error bounds which apply for arbitrary first-stage
estimators, and as long as the second-stage estimator is stable in the sense of
Definition 1. We go on to apply the error bound in multiple nonparametric
models incorporating smoothness or sparsity structure, and then explore the
performance of the DR-Learner in simulations.

4.1. Previous work

Variants of the DR-Learner have been used before, though often tied to par-
ticular estimators and not incorporating sample splitting, which can allow for
model-agnostic error bounds and reduced bias. van der Laan [48] (Section 4.2)
appears to be the first to propose the general DR-Learner approach, i.e., flexible
regressions of the pseudo-outcome (4.1) below on covariates. Specifically, van der
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Laan [48] (along with van der Laan [49] and Luedtke and van der Laan [27]) ad-
vocates regressing the pseudo-outcome on V ⊆ X to construct candidate CATE
estimators, and then selecting among them with a tailored cross-validation ap-
proach [50]. The main distinction with our work is they did not give specific
error guarantees for the CATE.

To the best of our knowledge, previous papers that do give specific error rates
for the DR-Learner either employ stronger nuisance estimation conditions than
we show are required, or else do not allow the CATE to be smoother or more
structured than the individual regression functions μa. Lee et al. [26] studied a
local-linear version of the DR-Learner, but assumed the first-stage nuisance error
was negligible. Semenova and Chernozhukov [43] and Zimmert and Lechner [57]
studied series and local-constant variants, respectively, but required conditions
on nuisance estimation that are as restrictive as for the ATE. Fan et al. [14] also
studied a local-constant variant, but did not consider the case where the CATE
is smoother than the regression functions.

Our results are closest to Foster and Syrgkanis [15], who also considered the
DR-Learner and gave an oracle inequality for generic empirical risk minimization
when the loss involves complex nuisance functions. However there are some
important distinctions to be made. First and most importantly, our error bound
for the DR-Learner is doubly robust, involving a simple second-order product of
nuisance errors. In contrast, the results of Foster and Syrgkanis [15] yield errors
that are second-order but not doubly robust, instead involving L4 errors of all
nuisance components. This means our error bound is tighter when the propensity
score and outcome regressions are estimated at different rates. Second, we focus
on local estimation error at a point, whereas Foster and Syrgkanis [15] consider
global error (e.g., integrated MSE); in this sense our work is complementary.
A third important distinction is that our results can be used to justify the
validity of inferential procedures, such as confidence intervals and hypothesis
testing, whereas Foster and Syrgkanis [15] focus on global rates of convergence.

There is also a related literature on regression with estimated pseudo-out-
comes, similar in spirit to Foster and Syrgkanis [15], though giving somewhat
more specialized results. For example, Ai and Chen [1] and Rubin and van der
Laan [40] both studied regression with general pseudo-outcomes, though they
focused on particular estimators, and did not give doubly robust error bounds.
Ai and Chen [1] restricted their attention to sieves, and focused more on a finite-
dimensional component appearing in the pseudo-outcome. Rubin and van der
Laan [40] considered least squares, penalized methods, and linear smoothers in
the second stage, but their error bounds are not doubly robust.

Künzel et al. [25] considered various method-agnostic “meta-learners”, but
not the DR-Learner; further, none of their methods are doubly robust, and
so in general would inherit larger error rates from the underlying regression
estimators.

4.2. Construction & analysis

The algorithm below describes our proposed construction of the DR-Learner.
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Algorithm 1 (DR-Learner). Let (Dn
1 , D

n
2 ) denote two independent samples of

n observations of Zi = (Xi, Ai, Yi).

Step 1. Nuisance training:
(a) Construct estimates π̂ of the propensity scores π using Dn

1 .
(b) Construct estimates (μ̂0, μ̂1) of the regression functions (μ0, μ1)

using Dn
1 .

Step 2. Pseudo-outcome regression: Construct the pseudo-outcome

ϕ̂(Z) = A− π̂(X)
π̂(X){1 − π̂(X)}

{
Y − μ̂A(X)

}
+ μ̂1(X) − μ̂0(X) (4.1)

and regress it on covariates X in the test sample Dn
2 , yielding

τ̂dr(x) = Ên

{
ϕ̂(Z) | X = x

}
. (4.2)

Step 3. Cross-fitting (optional): Repeat Step 1–2, swapping the roles of Dn
1 and

Dn
2 so that Dn

2 is used for nuisance training and Dn
1 as the test sample.

Use the average of the resulting two estimators as a final estimate of τ .
K-fold variants are also possible.

Figure 3 gives a schematic illustrating the DR-Learner construction.

Fig 3. Schematic illustrating the DR-Learner approach. In the first stage, the nuisance func-
tions π̂ and (μ̂0, μ̂1) are estimated from training sample Dn

1 . In the second stage, these esti-
mates are used to construct an estimate of the pseudo-outcome ϕ̂, which is then regressed on
X using the test sample Dn

2 .

Remark 3. The DR-Learner approach is motivated by the fact that (4.1) is the
(uncentered) efficient influence function for the ATE [33, 19]; this drives many of
its favorable properties. The intuition is that, to efficiently estimate the ATE,
the standard doubly robust estimator averages the pseudo-outcome ϕ̂, so to
estimate the CATE the DR-Learner regresses ϕ̂ on covariates. For a review of
influence functions and semiparametric theory we refer to van der Laan and
Robins [51], Tsiatis [46], and Kennedy [22].



3020 E. H. Kennedy

Next we present the main result of this section, which gives error bounds for
the DR-Learner procedure (relative to an oracle) for arbitrary first-stage estima-
tors, as long as the second-stage estimator is stable in the sense of Definition 1.

Theorem 2. Let τ̂dr(x) denote the DR-Learner estimator detailed in Algo-
rithm 1, which regresses the estimated pseudo-outcome ϕ̂(Z) on covariates X.
Assume:

1. The second-stage regression estimator Ên is stable with respect to dis-
tance d,

2. d(ϕ̂, ϕ) p→ 0,

Let τ̃(x) = Ên{ϕ(Z) | X = x} denote an oracle estimator that regresses the true
pseudo-outcome ϕ(Z) on X, and denote its risk by R∗

n(x)2 = E[{τ̃(x)− τ(x)}2].
Then

τ̂dr(x) − τ̃(x) = Ên

{
b̂(X) | X = x

}
+ oP

(
R∗

n(x)
)

for

b̂(x) =
1∑

a=0

{π̂(x) − π(x)}{μ̂a(x) − μa(x)}
aπ̂(x) + (1 − a)(1 − π̂(x))

and τ̂dr(x) is oracle efficient in the sense of Proposition 1 if Ên{b̂(X) | X =
x} = oP(R∗

n(x)).

The bound on the DR-Learner error given in Theorem 2 shows that it can
only deviate from the oracle error by at most a (smoothed) product of errors
in the propensity score and regression estimators, thus allowing faster rates
for estimating the CATE even when the nuisance estimates converge at slower
rates. Importantly the result is agnostic about the methods used, and requires
no special tuning or undersmoothing.

Theorem 2 gives a smaller risk bound compared to earlier work. Semenova
and Chernozhukov [43] and Zimmert and Lechner [57] gave a remainder error
larger than the product of the nuisance mean squared errors, with oracle effi-
ciency requiring this product to shrink faster than 1/nd and 1/(n/h) for series
and kernel-based second stage regressions, respectively (for h a shrinking band-
width). Fan et al. [14] assumed the CATE was only as smooth as the individual
regression functions, giving a larger oracle risk. The results from Foster and
Syrgkanis [15] are closest to ours, but as mentioned earlier their error bounds
are not doubly robust, and instead involve L4 errors of all nuisance components.
Remark 4. Several important oracle inequalities for cross-validated selection
of estimators exist in the literature [50, 27, 12]. These are relevant for cross-
validated CATE estimation, but are conceptually different from our Theorem 2;
for example, they use a different oracle. Namely, in cross-validated selection
the oracle is the best performing among a group of learners, whereas in our
setup the oracle is the specified learner Ên when it is given access to the true
pseudo-outcome ϕ(Z).
Remark 5. In addition to showing double robustness and giving conditions
for oracle efficiency, Theorem 2 also has important implications for inference.
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Namely, if the DR-Learner is oracle efficient so that τ̂(x) − τ̃(x) = oP(R∗
n(x)),

then whenever an inferential result is available for the oracle estimator τ̃(x)
(which is just a standard regression of oracle pseudo-outcomes on covariates),
this would also apply to τ̂(x), immediately allowing for the construction of confi-
dence intervals, tests, etc. For example, if one used a local polynomial estimator
for the second-stage regression Ên, then under standard conditions [28] τ̃(x)
would be asymptotically normal, and so τ̂(x) would be as well, by virtue of the
oracle equivalence. Thus standard confidence intervals could be constructed,
treating the estimated pseudo-outcomes as one would usual observed outcomes
in nonparametric regression. This is a benefit of the asymptotic equivalence to
the oracle in Theorem 2. In contrast, the results from Foster and Syrgkanis
[15], for example, instead give conditions under which the global risk of a DR-
Learner is within a multiplicative constant of that of the oracle, which is not as
immediately useful for inference.

4.3. Examples & illustrations

An important feature of the oracle result in Theorem 2 is that it is essentially
model-free: beyond a mild consistency assumption, it only requires that the
second-stage regression estimator satisfies the stability condition in Definition 1.
In the following corollaries, we illustrate the flexibility of this result by applying
it in settings where the nuisance functions and CATE are smooth or sparse (i.e.,
in settings where local polynomial, series, lasso, or random forest estimators
would work well). Similar results could be obtained in generic models with
known bounds on mean squared error rates.

Corollary 1. Suppose the assumptions of Theorem 2 hold. Further assume:

1. Ên is a minimax optimal linear smoother with
∑

i |wi(x;Xn)| = OP(1).
2. The propensity score π is α-smooth, and ‖π̂ − π‖w,2 = OP(n−1/(2+d/α)).
3. The regressions μa are β-smooth, and ‖μ̂a − μa‖w,2 = OP(n−1/(2+d/β)).
4. The CATE τ is γ-smooth.

Then
τ̂dr(x) − τ(x) = OP

(
n

−1
2+d/γ + n−( 1

2+d/α+ 1
2+d/β ))

and the DR-Learner is oracle efficient if

√
αβ ≥ d/2√

1 + d
γ (1 + d

2s )
, (4.3)

where s = (α
−1+β−1

2 )−1 is the harmonic mean of (α, β).

Corollary (1) illustrates how the DR-Learner can adapt to smoothness in
the CATE even when the propensity score and regression functions may be less
smooth, and gives sufficient conditions for achieving the oracle rate depending
on nuisance smoothness and dimension d.
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It is instructive to compare the sufficient condition in (4.3) to the analogous
condition for root-n consistency of a standard doubly robust estimator of the
average treatment effect, which is

√
αβ ≥ d/2 (cf. Equation 25 of Robins et al.

[36]). First, as the CATE smoothness gets larger, the sufficient condition (4.3)
for the CATE approaches that for the ATE, as should be expected (intuitively,
an infinitely smooth CATE should be nearly as easy to estimate as the ATE).
Second, the term in the denominator of (4.3), dividing d/2, can be interpreted
as a “lowered bar” for optimal estimation, due to the fact that the oracle rate
n

−1
2+d/γ is slower than root-n. This phenomenon was also noted in the dose-

response estimation problem by Kennedy et al. [23], and is in contrast with the
error bounds given in Nie and Wager [30] and Zimmert and Lechner [57], which
required ATE-like conditions for oracle efficiency of CATE estimators, via n−1/4

or faster rates on the nuisance estimators (note that if α = β then
√
αβ ≥ d/2

means the nuisance error rate is faster than n−1/4). In the next section we will
show how the sufficient condition (4.3) can even be improved upon.

Similar results could be obtained for other models. For example, suppose
the propensity score and regression functions are α- and β-sparse, respectively,
and estimated at rates α log d/2 and β log d/n, and similarly for the CATE
with γ-sparsity. The corresponding condition for oracle efficiency would be
αβ log2 d/n2 ≤ γ log d/n, which is

√
αβ ≤ γn/ log d. However we note that

we have not proved second-stage estimators attaining these rates satisfy the
stability condition of Definition 1.

4.4. Simulation experiments

In this section we study some finite-sample properties via simulations (R code
is available in Appendix B). We use four methods for CATE estimation: a plug-
in that estimates the regression functions μ0 and μ1 and takes the difference
(called the T-Learner by Künzel et al. [25]), the X-Learner from Künzel et al.
[25], the DR-Learner from Section 4, and an oracle DR-Learner that uses the
true pseudo-outcome in the second-stage regression.

First we use the piecewise polynomial model from the motivating example in
Section 2.2, with outcome and 2nd-stage regressions fit with smoothing.spline
in R. Figure 4a shows the mean squared error for the four CATE methods at
n = 2000 (based on 500 simulations with MSE averaged over 500 independent
test samples), across a range of convergence rates for the propensity score es-
timator π̂. To control the convergence rate we constructed this estimator as
π̂ = expit{logit(π) + εn}, where εn ∼ N(n−α, n−2α) so that RMSE(π̂) ∼ n−α

(the estimator was truncated to lie within [0.01, 0.99] to ensure positivity holds).
The results show that the plug-in estimator inherits the large error in estimating
the individual regression functions, while the DR-Learner achieves much smaller
errors and adapts to the smoothness of the CATE. The X-Learner has MSE in
between the two. Consistent with Theorem 2, the MSE of the DR-Learner ap-
proaches that of the oracle as the propensity score estimation error decreases
(i.e., as the convergence rate gets faster).
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Fig 4. Simulation results.

Next we consider a high-dimensional logistic model where X=(X1, . . . , Xd)∼
N(0, Id), and logit{π(x)} = 1

2
√
α

∑α
j=1 xj , and logit{μa(x)} = 1√

β

∑β
j=1 xj , so

the propensity score and individual regressions are α and β sparse, respec-
tively, while the CATE is zero. The normalization of the coefficients ensures
π(X) ∈ [0.2, 0.8] with high probability and similarly for μa. We use standard
cross-validation-tuned lasso for all model-fitting, i.e., to estimate the propen-
sity scores, regression functions, and second-stage fits. Figure 4b shows mean
squared errors for the four CATE methods when d = 500 and α = β = 50,
for n = 200 and n = 2000, across 100 simulations (median of mean square
errors is reported due to high skewness). As expected from Theorem 2, the
DR-Learner is closer to the oracle than the plug-in or X-Learner, though this
high-dimensional setup yields larger estimation error than the previous simula-
tion model. The relative performance of the DR-Learner seems to improve with
sample size.

5. Local polynomial R-learner

The previous section gave general sufficient conditions under which the DR-
Learner attains the oracle error rate of an estimator with direct access to the
difference Y 1 −Y 0, showing that this rate can in fact be achieved whenever the
product of nuisance errors is of smaller order. This raises the crucial question
of what happens when this product is not sufficiently small: in such regimes, is
there any hope at still attaining the oracle error rate?

The current section provides a first answer to this question, with a more re-
fined analysis of a different estimator. Specifically, we analyze a double-sample-
split local polynomial adaptation of the R-Learner [30, 39], which we call the
lp-R-Learner for short. The R-Learner of Nie and Wager [30] is a nonparametric
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RKHS regression-based extension of the double-residual regression method of
Robinson [39]. A nonparametric series-based version of the R-Learner was also
proposed in Example 4 of Robins et al. [35], though assuming known propen-
sity scores and not incorporating outcome regression. Chernozhukov et al. [9]
studied a lasso version of the R-learner. Some important distinctions between
our results and those in previous work include the following: (i) our estimator
is built from local polynomials, and incorporates a specialized form of sample
splitting inspired by Newey and Robins [29] for bias reduction, (ii) our sufficient
conditions for attaining oracle efficiency are substantially weaker than the n−1/4

rates in Nie and Wager [30] and Chernozhukov et al. [9], and (iii) we give specific
rates of convergence outside the oracle regime.

We first describe the lp-R-Learner in detail, then give the main error bound
result, which holds under a Hölder-smooth model, and is valid for a wide variety
of tuning parameter choices. Following that, we optimize the bound with specific
tuning parameter choices, under different sets of conditions, and discuss the
resulting rates.

5.1. Construction

The algorithm below describes the lp-R-Learner construction.

Algorithm 2 (lp-R-Learner). Let (Dn
1a, D

n
1b, D

n
2 ) denote three independent sam-

ples of n observations of Zi = (Xi, Ai, Yi).

Let b : Rd �→ R
p denote the vector of basis functions consisting of all powers of

each covariate, up to order 
γ�, and all interactions up to degree 
γ� polynomials
(cf. Masry [28]). Let Khx(X) = 1

hdK(X−x
h ) for K : Rd �→ R a bounded kernel

function with support [−1, 1]d, and h a bandwidth parameter.

Step 1. Nuisance training:
(a) Using Dn

1a, construct estimates π̂a of the propensity scores π.
(b) Using Dn

1b, construct estimates η̂ of the regression function η =
πμ1 + (1 − π)μ0, and estimates π̂b of the propensity scores π.

Step 2. Localized double-residual regression:
Define τ̂r(x) as the fitted value from a kernel-weighted least-squares re-
gression (in the test sample Dn

2 ) of outcome residual (Y − η̂) on ba-
sis terms b scaled by the treatment residual (A − π̂b), with weights
(A−π̂a

A−π̂b
)Khx. Thus τ̂r(x) = b(0)Tθ̂ for θ̂ the minimizer over θ ∈ R

p

of

Pn

(
Khx(X)

{
A− π̂a(X)
A− π̂b(X)

}[{
Y − η̂(X)

}
−θTb(X − x)

{
A− π̂b(X)

}]2)
.

(5.1)

Step 3. Cross-fitting (optional): Repeat Step 1–2 twice, first using (Dn
1b, D

n
2 ) for

nuisance training and Dn
1a as the test sample, and then using (Dn

1a, D
n
2 )
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for training and Dn
1b as the test sample. Use the average of the resulting

three estimators of τ as the final estimator τ̂r.

Remark 6. The kernel weights in the second step regression need to be multiplied
by the ratio (A− π̂a)/(A− π̂b) in order to ensure the independence of relevant
products of nuisance estimators (i.e., that they are built from separate samples
Dn

1a and Dn
1b). This allows for multiplicative biases and thus faster rates due

to undersmoothing, first introduced by Newey and Robins [29] but for
√
n-

estimable functionals. In other words, this ensures the bias of the lp-R-Learner
equals a product of biases of the nuisance estimators; other, different ratios used
in this kernel weight would therefore generally not work in the same way.

Figure 5 gives a schematic illustrating the lp-R-Learner construction.

Fig 5. Schematic illustrating the lp-R-Learner approach. In the first stage, the nuisance
functions π̂a and (π̂b, η̂) are estimated from training samples Dn

1a and Dn
1b, respectively. In

the second stage, these estimates are used in a kernel-weighted least squares regression of
residuals (Y − η̂) on residual-scaled basis terms (A− π̂b)b, with weights (A−π̂a

A−π̂b
)Khx.

5.2. Main error bound & oracle results

Before giving the main error bound in this section, we first present the following
condition on the nuisance estimators that we use in the analysis. At a high
level, this condition requires the nuisance estimators to be linear smoothers
with particular bias and variance bounds.
Condition 1. The nuisance estimators (π̂a, π̂b, η̂) are linear smoothers of the
form

π̂j(x) =
∑

i∈Dn
1j

wiα

(
x;Xn

1j
)
Ai (1a)
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η̂(x) =
∑

i∈Dn
1b

wiβ

(
x;Xn

1b
)
Yi

with weights wi·(x;Xn
1·) depending on tuning parameter k, which are localized

in the sense that

wi·
(
x;Xn

1·
)

= 0 whenever ‖Xi − x‖ > 1/k1/d (1b)

and which satisfy the conditional bias and variance bounds∣∣E{π̂j(x) | Xn
1j
}
− π(x)

∣∣ � k−α/d var
{
π̂j(x) | Xn

1j
}
� k/n∣∣E{η̂(x) | Xn

1b
}
− η(x)

∣∣ � k−β/d var
{
η̂(x) | Xn

1b
}
� k/n. (1c)

Conditions (1a)–(1c) are relatively standard. Many popular estimators take
the form given in (1a), as discussed just before Theorem 1. Condition (1b) holds
for several prominent linear smoothers. For example, it holds for series estima-
tors built from k basis terms, if properly localized, and for standard kernel or
local polynomial estimators when taking the bandwidth parameter as h ∼ k−d,
as shown for example in Proposition 1.13 of Tsybakov [47].

Condition (1c) also has been shown to hold for series and local polynomial
estimators, for example, when the underlying regression function is appropri-
ately smooth. In particular, under standard conditions, the bias part of (1c)
would hold for these methods when the propensity score π is α-smooth and
the regression function η is β-smooth; we again refer to Belloni et al. [4] and
Tsybakov [47] for a review of related results. For (1c) to hold uniformly over all
x ∈ X would typically mean these bounds would only hold up to log factors;
however our result will only require the bias to be controlled locally, near the
point at which the CATE is to be estimated.

The next result gives error bounds on the lp-R-Learner from Algorithm 2,
under Hölder smoothness conditions.

Theorem 3. Let τ̂r(x) denote the lp-R-Learner estimator detailed in Algo-
rithm 2. Assume:

1. The estimator η̂ and observations Z are bounded, and X has density
bounded above.

2. The estimators π̂j satisfy P{ε ≤ π̂j(x) ≤ 1 − ε} = 1 for some ε > 0.
3. The eigenvalues of the sample Gram matrices Q̂hx and Q̃hx defined in (A.7)

are bounded away from zero in probability.
4. The nuisance estimators (π̂a, π̂b, η̂) satisfy Condition 1, with the bias and

variance bounds holding for all x′ such that ‖x′ − x‖ ≤ h.

Let s = α+β
2 denote the average smoothness of the propensity score and re-

gression function. Then, if the CATE τ(x) is γ-smooth and k−(α∧β)/d � k/n,
we have

τ̂r(x) − τ(x) = OP

(
hγ + k−2s/d + k−2α/d + 1√

nhd

(
1 + k

n

))
.
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Before detailing the result and implications of Theorem 3, we first discuss
the assumptions. The first part of Assumption 1 is mostly to simplify presenta-
tion, and could be weakened at the cost of added complexity; the second part
ensuring X has bounded density is more crucial, but still mild. Assumption 2
is standard in the causal literature, and in theory could be guaranteed by sim-
ply thresholding propensity score estimates; however, extreme propensity values
(i.e., positivity violations) are an important issue in practice, especially in the
nonparametric and high-dimensional setup [11]. Assumption 3 is relatively stan-
dard (see, e.g., Assumption (LP1) of Tsybakov [47]) but would restrict how n
and h scale; when d is fixed, standard bandwidth choices should suffice. Assump-
tion 4 is arguably most crucial, and does the most work in the proof (together
with the specialized sample splitting); however, as detailed in the discussion
of Condition 1 prior to the theorem statement, Assumption 4 uses standard
conditions commonly found in the nonparametric regression literature.

Now we give some discussion and interpretation of the (in-probability) error
bound of Theorem 3. The first three terms are the bias, and the last two are the
variance (on the standard deviation scale). The bias has three components. The
first hγ bias term comes from the bias of an oracle estimator with access to the
true propensity score and regression function, and matches the bias of an oracle
with direct access to the difference Y 1 − Y 0. The other two bias terms come
from nuisance estimation: the first k−2s/d term is the product of the biases of
the propensity score and regression estimators, whereas the second k−2α/d term
is the squared bias of the propensity score estimator. If the propensity score is
at least as smooth as the regression function, then the first k−2s/d term will
dominate. Some heuristic intuition about why these specific bias terms arise is
as follows: by virtue of its least squares construction, the lp-R-Learner can be
viewed as a product of the inverse of an “XTX-like” term involving products of
π̂a and π̂b, and an “XTY -like” term involving products of π̂a and η̂.

The variance has two components. As with the bias, the first 1/
√
nhd term is

the standard deviation of an oracle estimator with access to the true nuisance
functions. The second term is a product of this oracle standard error with k/n,
which is the additional variance coming from nuisance estimation (in fact k/n
is the product of the standard deviations of the nuisance estimators). In stan-
dard regimes the tuning parameter k would have to be chosen of smaller order
than n (e.g., k log k/n → 0 as in Belloni et al. [4] and elsewhere) in order for
Condition 1 to hold, making the variance contribution from nuisance estimation
asymptotically negligible. This last point will be discussed further shortly.

Now we give conditions under which the oracle rate is achieved by the lp-R-
Learner, which we conjecture are not only sufficient but also necessary condi-
tions.

Corollary 2. Suppose the assumptions of Theorem 3 hold. Further assume
α ≥ β so the propensity score is smoother than the regression function, and take

1. h ∼ n−1/(2γ+d), and
2. k ∼ n/ log2 n so that k log k/n → 0.
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Then, up to log factors,

τ̂r(x) − τ(x) = OP

(
n−γ/(2γ+d) + n−2s/d)

and the oracle rate is achieved if the average nuisance smoothness satisfies s ≥
d/4

1+d/2γ .

Corollary 2 shows that an undersmoothed lp-R-Learner can be oracle efficient
under weaker conditions than the error bound given in Theorem 2 would indicate
for the DR-Learner.
Remark 7. Note taking k ∼ n/ log2 n amounts to undersmoothing as much as
possible: it drives down nuisance bias, letting the variance k/n go to zero only
very slowly, since the contribution of the latter is asymptotically negligible for
CATE estimation as long as k � n. In general, undersmoothing can often require
specific knowledge of smoothness parameters, and data-driven approaches are
often lacking. However, it is worth noting that in Corollary 2 the choice of k only
depends on the sample size, and not on the underlying nuisance smoothness,
for example, making it more feasible to implement. For example, one could set
k and then use cross-validation or other approaches to select h [50, 6]; however
we leave a formal study of tuning parameter selection to future work.

The result in Corollary 2 is remniscient of a similar phenomenon in marginal
ATE estimation, where Robins et al. [37] showed that the condition s ≥ d/4 is
necessary and sufficient for the existence of root-n consistent estimators of the
ATE functional E{E(Y | X,A = 1)}. Our result thus shows that s ≥ d/4 is also
sufficient for oracle efficient estimation of the CATE, but now the oracle rate
is n−γ/(2γ+d) rather than root-n, and so there is in fact a weaker bar for oracle
efficiency (namely s ≥ d/4

1+d/2γ ), depending on the smoothness γ. At one extreme,
when the CATE is infinitely smooth, the condition we give for oracle efficiency
of the lp-R-Learner recovers the usual s ≥ d/4 condition for the ATE. At the
other extreme, when the CATE is non-smooth, oracle efficiency can be much
easier to achieve (e.g., if the CATE is only γ = 1-smooth, it is only required
that s ≥ 1/2 even for arbitrarily large dimension d). We conjecture that the
condition s ≥ d/4

1+d/2γ is not only sufficient but may also be necessary for oracle
effiency in the above Hölder model, making the proposed lp-R-Learner minimax
optimal in this regime when α ≥ β; however, we leave a proof of this to future
work.

When s < d/4
1+d/2γ and the oracle rate is not achieved, the rate n−2s/d is

slower than the usual functional estimation rate n−4s/(4s+d), which is minimax
optimal for the ATE if the covariate density is smooth enough [37], and also
occurs for simpler functionals like the expected density [7, 8]. To illustrate this
gap, if s = d/8 then the rate in Corollary 2 is n−1/4 while the usual functional
minimax rate is n−1/3.
Remark 8. There is a trade-off between the DR-Learner and lp-R-Learner. In
short, the DR-Learner provides somewhat more general guarantees, and is com-
putationally more straightforward, while the lp-R-Learner can achieve faster
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rates in somewhat more specialized Holder smoothness models, but is also some-
what more difficult to compute in practice, and requires undersmoothing.

5.3. Faster rates with known covariate density

Here we briefly consider how the lp-R-Learner rates from Corollary 2 can be
improved by exploiting structure in the covariate density, as in Robins et al.
[35, 38]. This is somewhat paradoxical since the CATE itself does not depend
on the covariate density.

Some intuition for a possible rate improvement is as follows. If the density
of the covariates X was known, then one could construct nuisance estimators
(π̂a, π̂b, η̂) satisfying Condition 1 without any restriction on the tuning parame-
ter k, such as the k log k/n → 0 restriction employed in Corollary 2. For example,
a series estimator η̂ could satisfy Condition 1 for any choice of k, if it took the
form

η̂(x) = b(x)T
[
E
{
b(X)b(X)T

}]−1
Pn

{
b(X)Y

}
(5.2)

where b is a vector of appropriate basis functions (different from those used in
the lp-R-Learner construction), and similarly for π̂. Intuitively this is because
restrictions like k log k/n → 0 are only required to ensure the inverse of the
sample Gram matrix Pn(bbT) converges to a limit (in operator norm), whereas
if the density of X was known, then one could simply compute the population
Gram matrix E(bbT) exactly.

We conjecture however that the n−2s/d rate from Corollary 2 may not be
improvable in the non-random fixed X case. A fixed design setup was recently
considered by Gao and Han [17], though in a somewhat specialized model where
the propensity scores have zero smoothness. In fact when α = 0 our rate matches
their lower bound in the non-oracle regime.

The next result gives rates for the lp-R-Learner when there are no restrictions
on the choice of nuisance tuning parameter k.

Corollary 3. Suppose the assumptions of Theorem 3 hold, and in particular
suppose Assumption 4 holds without any restrictions on k (e.g., as if the density
of X is known). Then if α ≥ β the convergence rate in Theorem 3 is optimized
by taking h ∼ n

−3s
2sγ+(s+γ)d and k ∼ n

3γd/2
2sγ+(s+γ)d which gives

τ̂(x) − τ(x) = OP

(
n−γ/(2γ+d) + n

−3s
2s+d(1+s/γ)

)
,

and so the oracle rate is achieved if s ≥ d/4
1+d/2γ .

Remark 9. When the density of the covariates X is unknown but smooth and
estimable at fast enough rates, we expect results similar to those in Corollary 3 to
still hold. This phenomenon also occurs for the ATE functional [35, 38]. However,
here the analysis of the lp-R-Learner becomes much more complicated, so we
leave this to future work.
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When the nuisance tuning parameter k is unrestricted, one needs to balance
all three dominant terms from Theorem 3: the two bias terms hγ and k−2s/d, as
well as the variance term k/n√

nhd
. Notice the “elbow” at s ≥ d/4

1+d/2γ occurs here
even when the density is known, perhaps again suggesting that this condition
for oracle efficiency may be both sufficient and necessary. Whether the rate
n

−3s
2s+d(1+s/γ) is minimax optimal or not in the non-oracle regime is unknown; we

will pursue this in future work.
Interestingly, the rate n

−3s
2s+d(1+s/γ) is slightly slower than the usual functional

estimation rate n−4s/(4s+d). For example, when γ → ∞ and s = d/8, the CATE
rate from Corollary 3 is n−3/10 whereas the classic functional estimation rate is
n−1/3. Therefore there do appear to be benefits of exploiting structure in the
covariate density, but whether the gap between the improved rate of Corollary 3
and the usual functional rate can be closed is unclear. An interesting more
philosophical question is whether structure in the covariate density should be
exploited for CATE estimation in practical settings, since the CATE itself does
not depend on the covariate density.

6. Discussion

In this paper we studied the problem of estimating conditional treatment ef-
fects, giving new results that apply to a wider variety of methods and that
better exploit when the CATE itself is structured, compared to the current
state-of-the-art. Sections 3 and 4 were more practically oriented, giving model-
free yet informative error bounds for general regression with estimated outcomes,
and the DR-Learner method for CATE estimation, along with examples from
smooth and sparse models, illustrating the flexibility of Proposition 1 and The-
orem 2. In contrast, Section 5 was more theoretically oriented, aiming instead at
understanding the fundamental statistical limits of CATE estimation, i.e., the
smallest possible achievable error. We derived upper bounds on this error with
a specially constructed (and tuned) estimator called the lp-R-Learner. Namely
we showed that in a Hölder model, oracle efficiency is possible under weaker
conditions on the nuisance smoothness than indicated from the DR-Learner er-
ror bound given in Theorem 2 – which itself is an improvement over conditions
given in previous work.

Figure 6 summarizes the various error rates in this paper graphically, in an
illustrative setup where the dimension is d = 20, CATE smoothness is γ =
2d, and nuisance smoothness α = β = s varies from 0–10. This shows the
various gaps between methods/rates, in an interesting regime where the CATE
is relatively smooth compared to the nuisance functions.

Our work raises some interesting open questions, some of the more immediate
of which we list here for reference:

1. Can the error bounds in Proposition 1 and Theorem 2 be improved without
committing to particular first- or second-stage methods?

2. What rates can be achieved by specialized sample splitting and tuning of
a DR-Learner, rather than an R-Learner?
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Fig 6. Illustration of error bounds in this work, as a function of nuisance smoothness s =
α = β. The dotted gray line represents the classical minimax lower bound for functional
estimation, which is

√
n when s ≥ d/4. The dashed gray line is the oracle rate that would

be achieved by a minimax optimal regression using Y 1 − Y 0. The red line is the bound for
a plug-in estimator, which is just the rate for estimating the individual regression functions.
The blue line is the rate for the DR-Learner given in Theorem 2, which matches the oracle
under conditions given there. The purple line is the rate achieved by the lp-R-Learner when
tuned as in Corollary 2, which matches the oracle when s ≥ d/4

1+d/2γ . The black line is the
improved rate achieved by the lp-R-Learner when tuned as in Corollary 3, e.g., with known
covariate density.

3. What are the analogous results of Corollaries 1 for other function classes?
4. Can the error bounds in Theorem 3 be obtained with other methods?

A natural alternative is a higher-order influence function approach [35, 38],
which could avoid the α ≥ β condition, perhaps at the cost of some extra
complexity.

We have obtained partial answers to some of these questions, but most re-
main unanswered and left for future work. One of the deepest open questions is
whether the rates given in Corollaries 2 and 3 are minimax optimal or not (in
the fixed and random design setups, respectively).
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Appendix A: Proofs

A.1. Proof of Theorem 1

Here we use the notation of Proposition 1. Letting Tn = m̂(x)−m̃(x)−Ên{b̂(X) |
X = x} denote the numerator of the left-hand side of (3.1), we will show that

Tn = OP

(
‖f̂ − f‖w2

‖σ‖w2
R∗

n(x)
)

which yields the result when 1/‖σ‖w2 = OP(1). First note that for linear
smoothers we have

Tn = Ên

{
f̂(Z)−f(Z)− b̂(X) | X = x

}
=

n∑
i=1

wi

(
x;Xn

){
f̂(Zi)−f(Zi)− b̂(Xi)

}
and this term has mean zero since

E
{
f̂(Zi) − f(Zi) − b̂(Xi) | Dn, Xn

}
= E

{
f̂(Zi) − f(Zi) − b̂(Xi) | Dn, Xi

}
= 0

by definition of b̂ and iterated expectation. Therefore

E
(
T 2
n | Dn, Xn

)
= var

[
n∑

i=1
wi

(
x;Xn

){
f̂(Zi) − f(Zi) − r̂(Xi)

} ∣∣∣ Dn, Xn

]

=
n∑

i=1
wi

(
x;Xn

)2 var
{
f̂(Zi) − f(Zi) | Dn, Xi

}
≤ ‖f̂ − f‖2

w2

n∑
i=1

wi

(
x;Xn

)2
(A.1)

where the second line follows since f̂(Zi) − f(Zi) are independent given the
training data, and the third since var(f̂ − f | Dn, X) ≤ E{(f̂ − f)2 | Dn, X}
and by definition of ‖ · ‖w2 . Further note that R∗

n(x)2 equals

E
[{

m̃(x) −m(x)
}2] = E

([
n∑

i=1
wi

(
x;Xn

){
f(Zi) −m(Xi)

}
(A.2)

+
n∑

i=1
wi

(
x;Xn

)
m(Xi) −m(x)

]2)

= E

{
n∑

i=1
wi

(
x;Xn

)2
σ(Xi)2

}
+ E

[{
n∑

i=1
wi

(
x;Xn

)
m(Xi) −m(x)

}2]

≥ E

{
‖σ‖2

w2

n∑
i=1

wi

(
x;Xn

)2} (A.3)
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where the second line follows from iterated expectation and independence of the
samples, and the third by definition of ‖ · ‖w2 (and since the squared bias term
from the previous line is non-negative). Therefore

P

{
‖σ‖w2 |Tn|

‖f̂ − f‖w2R∗
n(x)

≥ t

}
= E

[
P

{
‖σ‖w2 |Tn|

‖f̂ − f‖w2R∗
n(x)

≥ t
∣∣∣ Dn, Xn

}]
≤

(
1

t2R∗
n(x)2

)
E

{
‖σ‖2

w2E

(
T 2
n

‖f̂ − f‖2
w2

∣∣∣ Dn, Xn

)}

≤
(

1
t2R∗

n(x)2

)
E

{
‖σ‖2

w2

n∑
i=1

wi

(
x;Xn

)2} ≤ 1
t2

where the second line follows by Markov’s inequality, the third from the bound
in (A.1) and iterated expectation, and the last from the bound in (A.3). There-
fore the result follows since we can always pick t2 = 1/ε to ensure the above
probability is no more than any ε.

A.2. Proof of Proposition 1

Stability and consistency together imply

m̂(x) − m̃(x) = Ên

{
b̂(X) | X = x

}
+ oP

(
R∗

n(x)
)

by definition. Therefore if Ên{b̂(X) | X = x} = oP(R∗
n(x)) the result follows.

A.3. Proof of Proposition 2

We have

Ên

{
b̂(X) | X = x

}
=

n∑
i=1

wi

(
x;Xn

)
b̂1(Xi)̂b2(Xi)

≤
{

n∑
i=1

|wi

(
x;Xn

)
||̂b1(Xi)|p

}1/p{ n∑
i=1

|wi

(
x;Xn

)
||̂b2(Xi)|q

}1/q

=
(

n∑
i=1

|wi

(
x;Xn

)
|
)
‖b̂1‖w,p‖b̂2‖w,q

where the second line follows by Holder’s inequality, and the last by definition
of the norms.

A.4. Proof of Theorem 2

This follows from Proposition 1, letting f(Z) = ϕ(Z) and noting that

b̂(x) =
{
π(x)
π̂(x) − 1

}{
μ1(x) − μ̂1(x)

}
−
{

1 − π(x)
1 − π̂(x) − 1

}{
μ0(x) − μ̂0(x)

}
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=
1∑

j=0

{
π̂(x) − π(x)

jπ̂(x) + (1 − j)(1 − π̂(x))

}{
μ̂j(x) − μj(x)

}
≡ b̂0(x) + b̂1(x)

by iterated expectation.

A.5. Proof of Corollary 1

The rate result follows since

m̂(x) −m(x) = m̂(x) − m̃(x) + m̃(x) −m(x)

= OP

(
n−( 1

2+d/α+ 1
2+d/β )) + m̃(x) −m(x)

= OP

(
n−( 1

2+d/α+ 1
2+d/β )) + OP

(
n

−1
2+d/γ

)
where the second equality follows from Proposition 2 together with Assumptions
1–3, and the third since Ên is minimax optimal and the CATE is γ-smooth. For
the oracle efficiency condition, note that

n−( 1
2+d/α+ 1

2+d/β ) ≤ n− 1
2+d/γ

⇐⇒ 1
2 + d/α

+ 1
2 + d/β

≥ 1
2 + d/γ

⇐⇒ 4 + d/α + d/β ≥ 4 + 2d/α + 2d/β + d2/αβ

2 + d/γ

⇐⇒ 4 + (4 + d/α + d/β)d/γ ≥ d2/αβ

⇐⇒ αβ ≥ d2

4 + (4 + d/α + d/β)d/γ = d2/4
1 + (1 + d/4α + d/4β)d/γ

which yields the result.

A.6. Proof of Theorem 3

To simplify notation, in this subsection we largely omit function arguments, for
example writing τ̂ = τ̂(x), b = b(X − x), Khx = Khx(X), etc. We also define
b0 = b(0) and

φ̂ = φ̂(Z) = (A− π̂a)(Y − η̂) φ = φ(Z) = (A− π)(Y − η)
ϕ̂a = ϕ̂a(Z) = (A− π̂a)(A− π̂b) ν = ν(X) = π(1 − π).

We let Xn denote all covariates in training/test samples (Dn
1a, D

n
1b, D

n
2 ), and we

let Dn
1 = (Dn

1a, D
n
1b) denote the training data.

First note that by definition

τ̂ = bT
0Pn

(
bKhxϕ̂ab

T
)−1

Pn(bKhxφ̂).
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Thus we begin with the central decomposition

τ̂ − τ = bT
0Pn

(
bKhxνb

T
)−1

Pn(bKhxφ) − τ

+ bT
0Pn

(
bKhxνb

T
)−1

Pn

{
bKhx(φ̂− φ)

}
+ bT

0
{
Pn

(
bKhxϕ̂ab

T
)−1 − Pn

(
bKhxνb

T
)−1}

Pn(bKhxφ̂)

≡ bT
0 Q̃

−1
hxPn(bKhxφ) − τ (A.4)

+ bT
0 Q̃

−1
hxPn

{
bKhx(φ̂− φ)

}
(A.5)

+ bT
0
(
Q̂−1

hx − Q̃−1
hx

)
Pn(bKhxφ̂) (A.6)

where we define

Q̃hx ≡ Pn

{
b(X − x)Khx(X)ν(X)b(X − x)T

}
(A.7)

Q̂hx ≡ Pn

{
b(X − x)Khx(X)ϕ̂a(Z)b(X − x)T

}
.

The general approach in this proof is to use conditional error bounds for
each term in the decomposition above, from which one arrives at bounds in
probability (cf. Lemma 6.1 of Chernozhukov et al. [10]).

The term on the right-hand side of (A.4) is the difference between τ and an
oracle version of the lp-R-Learner that has access to the true nuisance functions
and so is built from ν and φ; we will show that it attains the same order as
the oracle rate n−γ/(2γ+d). The term (A.5) captures the error from estimating
(π̂b, η̂) in φ̂; we will show its order is the product of the biases from estimating
(π̂b, η̂) plus a typically smaller variance term. The term (A.6) captures the error
from estimating (π̂a, π̂b) in φ̂a; we will show it behaves similarly to (A.5), except
involving the product of the biases of (π̂a, π̂b). In regimes where the oracle rate
is not achievable and the propensity score π is smoother than the regression
function μ, we will show that the term (A.5) dominates.

A.6.1. Term (A.4)

The analysis of the term in (A.4) follows that of a standard local polynomial
estimator of pseudo-outcome φ/ν on X with a special choice of kernel. This is
because we can write

bT
0Pn

(
bKhxνb

T
)−1

Pn(bKhxφ) =
n∑

i=1
wi

(
x;Xn

)φ(Zi)
ν(Xi)

where the weights are

wi

(
x;Xn

)
≡ 1

n
b(0)TQ̃−1

hx b(Xi − x)Khx(Xi)ν(Xi). (A.8)

Thus the oracle estimator in (A.4) is a local polynomial estimator of the re-
gression of φ/ν on X using scaled kernel function Khxν, which has the same
support as Khx and has a smaller upper bound since ν ≤ 1/4.
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The above implies that the weights wi satisfy analogues of Proposition 1.12
and Lemma 1.3 in Tsybakov [47], i.e., that they reproduce polynomials in X up
to degree 
γ�, and have the localizing properties given in the following lemma.

Lemma 1. Assume (i) |K(u)| ≤ Kmax1(‖u‖ ≤ 1) and (ii) supx ‖b(x)‖ ≤ B,
and define

λn ≡
∥∥Q̃−1

hx

∥∥ and ξn ≡ Pn(‖X − x‖ ≤ h)/hd.

Then the weights in (A.8) satisfy:

1. maxi |wi(x;Xn)| � λn/nh
d.

2.
∑n

i=1 |wi(x;Xn| � λnξn.
3. wi(x;Xn) = 0 when ‖Xi − x‖ > h.

Proof. Property (3) follows from Assumption (i). Properties (1) and (2) also
follow immediately after noting that

|wi

(
x;Xn

)
| ≤ KmaxB

4nhd

∥∥Q̃−1
hx

∥∥1(‖Xi − x‖ ≤ h)

using the submultiplicative property of the operator norm, with Assumptions
(i)–(ii) and the facts that ‖b(0)‖ = 1 and ν = π(1 − π) ≤ 1/4.

Note also that E(φ/ν | X) = τ since

E
{
φ(Z) | X

}
= E

[{
A− π(X)

}{
Y − η(X)

} ∣∣ X]
= π(X)

{
1 − π(X)

}
τ(X)

by iterated expectation. Therefore by the same logic as in Proposition 1.13 of
Tsybakov [47], using Lemma 1 with the Hölder condition on τ , we have

E
{
bT
0Pn

(
bKhxνb

T
)−1

Pn(bKhxφ) − τ
∣∣ Xn

}
=

n∑
i=1

wi

(
x;Xn

){
τ(Xi) − τ(x)

}
=

n∑
i=1

wi

(
x;Xn

)([ ∑
0<|j|≤�γ�−1

Djτ(x)
j! (xi − x)j

+
∑

|k|=�γ�


γ�
k!

∫ 1

0
(1 − t)�γ�−1{Dkτ

(
x + t(xi − x)

)
−Dkτ(x)

}
dt (xi − x)k

])

�
n∑

i=1
|wi

(
x;Xn

)
|‖Xi − x‖γ1(‖Xi − x‖ ≤ h) � hγλnξn

where the second line uses a multivariate Taylor approximation of τ at x eval-
uated at Xi, and the third line follows by the polynomial-reproducing property
of wi, the Hölder assumption on τ , and Property 3 of Lemma 1, with Property 2
of Lemma 1.

For the variance we have

var
{
bT
0Pn

(
bKhxνb

T
)−1

Pn(bKhxφ)
∣∣ Xn

}
=

n∑
i=1

wi

(
x;Xn

)2var(φ | X = Xi)
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� max
i

|wi

(
x;Xn

)
|

n∑
i=1

|wi

(
x;Xn

)
| � λ2

nξn
nhd

since the variance of φ is bounded, and using Properties 1–2 of Lemma 1. There-
fore term (A.4) satisfies

E
[{
bT
0 Q̃

−1
hxPn(bKhxφ) − τ

}2 ∣∣ Xn
]
�

(
h2γξn + 1

nhd

)
λ2
nξn. (A.9)

Since ξn = OP(1) and λn = OP(1) by assumption, the above rate will end up
matching the classical n−γ/(2γ+d rate, when balancing bias and variance by
taking h ∼ n−1/(2γ+d).

A.6.2. Term (A.5)

Now we bound the conditional mean and variance of term (A.5). First note we
have

E
(
φ̂− φ | Dn, Xn

)
= E

{
(A− π̂a)(Y − η̂) − (A− π)(Y − η) | Dn, Xn

}
= E

{
(A− π + π − π̂a)(Y − η + η − η̂) − (A− π)(Y − η) | Dn, Xn

}
=

{
π̂a(Xi) − π(Xi)

}{
η̂(Xi) − η(Xi)

}
≡ R̂2(Xi) (A.10)

by iterated expectation. Let

Bn(x; f̂) = E
{
f̂(x) | Xn

}
− f(x)

denote the pointwise conditional bias of a generic estimator f̂ of f at x.
Then the conditional mean of term (A.5) is

Pn

{
bKhx(φ̂− φ)

}
| Xn] =

n∑
i=1

wi

(
x;Xn

)
ν(Xi)−1

E
(
φ̂i − φi | Xn

)
=

n∑
i=1

wi

(
x;Xn

)
ν(Xi)−1

E
{
R̂2(Xi) | Xn

}
=

n∑
i=1

wi

(
x;Xn

)
ν(Xi)−1 Bn(Xi; π̂a)Bn(Xi; η̂)

�
n∑

i=1

λn

nhd

∣∣Bn(Xi; π̂a)Bn(Xi; η̂)
∣∣1(‖Xi − x‖ ≤ h)

� sup
‖x′−x||≤h

∣∣Bn

(
x′; π̂a

)∣∣∣∣Bn

(
x′; η̂

)∣∣λnξn � k−α/dk−β/d(λnξn) (A.11)

where the second line follows by iterated expectation, the third since π̂a ⊥⊥ η̂,
the fourth and fifth by Properties 1–3 of Lemma 1 and since ν ≥ ε(1 − ε), and
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the last by Condition (1c) via Assumption 4. For the conditional variance we
have the decomposition

var
[
bT
0Pn

(
bKhxνb

T
)−1

Pn

{
bKhx(φ̂− φ)

}
| Xn

]
(A.12)

= var
[

n∑
i=1

wi

(
x;Xn

){ φ̂(Zi) − φ(Zi)
ν(Xi)

} ∣∣∣ Xn

]

= E

(
var

[
n∑

i=1
wi

(
x;Xn

){ φ̂(Zi) − φ(Zi)
ν(Xi)

} ∣∣∣ Dn, Xn

] ∣∣∣ Xn

)
(A.13)

+ var
(
E

[
n∑

i=1
wi

(
x;Xn

){ φ̂(Zi) − φ(Zi)
ν(Xi)

} ∣∣∣ Dn, Xn

] ∣∣∣ Xn

)
(A.14)

For the term in (A.13) note that

var
[

n∑
i=1

{
wi(x;Xn)
ν(Xi)

}
(φ̂i − φi)

∣∣∣ Dn, Xn

]

=
n∑

i=1

{
wi(x;Xn)
v(Xi)

}2

var
(
φ̂i − φi | Dn, Xn

)
� 1

ε(1 − ε) max
i

|wi

(
x;Xn

)
|

n∑
i=1

|wi

(
x;Xn

)
| � λ2

nξn
nhd

where the second line used that var(φ̂− φ | Dn, Xn) and 1/ν are bounded, and
the last Properties 1–2 of Lemma 1.

The second term (A.14) equals

var
[

n∑
i=1

{
wi(x;Xn)
ν(Xi)

}
R̂2(Xi)

∣∣∣ Xn

]
=

n∑
i=1

{
wi(x;Xn)
ν(Xi)

}2

var
{
R̂2(Xi) | Xn

}
(A.15)

+
∑
i �=j

{
wi(x;Xn)wj(x;Xn)

ν(Xi)ν(Xj)

}
cov

{
R̂2(Xi), R̂2(Xj) | Xn

}
(A.16)

For the first term (A.15) above we have

var
{
R̂2(Xi) | Xn

}
= var

[{
π̂(Xi) − π(Xi)

}{
η̂(Xi) − η(Xi)

}
| Xn

]
= var

{
π̂(Xi) | Xn

}
var

{
η̂(Xi) | Xn

}
+ var

{
π̂(Xi) | Xn

}[
E
{
η̂(Xi) − η(Xi) | Xn

}]2
+ var

{
η̂(Xi) | Xn

}[
E
{
π̂(Xi) − π(Xi) | Xn

}]2
�

(
k

n

)2

+ k

n

(
k−2α/d + k−2β/d) (A.17)
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where in the second line we use the fact that var(V1V2) = var(V1)var(V2) +
var(V1)E(V2)2 + var(V2)E(V1)2 if V1 ⊥⊥ V2, and the third the bias and variance
from Conditions 1b-1c. (A slightly worse bound could have used var(V1V2) ≤
E(V 2

1 )E(V 2
2 ) in the second line, which would give the expression in the third

line plus a k−2(α+β)/d term, which is smaller order in the undersmoothing
regime.) Therefore when max(k−2α/d, k−2β/d) = k−2(α∧β)/d � k/n, the first
term in (A.15) satisfies

n∑
i=1

{
wi(x;Xn)
ν(Xi)

}2
var

{
R̂2(Xi) | Xn

}
� λ2

nξn
nhd

(
k

n

)2

using Properties 1–2 of Lemma 1.
For the second term in (A.16) we have

cov
{
R̂2(Xi), R̂2(Xj) | Xn

}
= cov

{
π̂(Xi), π̂(Xj) | Xn

}
E
[{
η̂(Xi) − η(Xi)

}{
η̂(Xj) − η(Xj)

}
| Xn

]
+ cov

{
η̂(Xi), η̂(Xj) | Xn

}
E
[{
π̂(Xi) − η(Xi)

}{
π̂(Xj) − η(Xj)

}
| Xn

]
+ cov

{
π̂(Xi), π̂(Xj) | Xn

}
cov

{
η̂(Xi), η̂(Xj) | Xn

}
� |cov

{
π̂(Xi), π̂(Xj) | Xn

}
|
(
k−2β/d + k

n

)
(A.18)

+ |cov
{
η̂(Xi), η̂(Xj) | Xn

}
|
(
k−2α/d + k

n

)
+ |cov

{
π̂(Xi), π̂(Xj) | Xn

}
cov

{
η̂(Xi), η̂(Xj) | Xn

}
| (A.19)

where the second line uses the fact that cov(AiBi, AjBj) = cov(Ai, Aj)E(BiBj)
+ cov(Bi, Bj)E(AiAj) + cov(Ai, Aj)cov(Bi, Bj) whenever (Ai, Aj) ⊥⊥ (Bi, Bj),
and the third Cauchy-Schwarz. Now

cov
{
π̂(Xi), π̂(Xj) | Xn

}
(A.20)

= cov
{

n∑
�=1

w�α

(
Xi;Xn

)
A�,

n∑
�=1

w�α

(
Xj ;Xn

)
A� | Xn

}
1
(
‖Xi −Xj‖ ≤ 2k−1/d)

≤
√

var
{
π̂(Xi) | Xn

}√
var

{
π̂(Xj) | Xn

}
1
(
‖Xi −Xj‖ ≤ 2k−1/d)

�
(
k

n

)
1
(
‖Xi −Xj‖ ≤ 2k−1/d) (A.21)

where the first line uses Property 3 of Lemma 1, which implies π̂(Xi) and
π̂(Xj) are built from different observations if Xi and Xj are far enough apart,
the second Cauchy-Schwarz, and the third Condition (1b). Therefore when
k−2(α∧β)/d � k/n, and defining

ωni ≡
k

n− 1
∑
j �=i

1
(
‖Xi −Xj‖ ≤ 2k−1/d)
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ξ′n ≡ 1
nhd

n∑
i=1

1(‖Xi − x‖ ≤ h)ωni

the second term in (A.16) satisifies∑
i �=j

{
wi(x;Xn)wj(x;Xn)

ν(Xi)ν(Xj)

}
cov

{
R̂2(Xi), R̂2(Xj) | Xn

}
�

(
k

n

)2 ∑
i �=j

{
|wi(x;Xn)wj(x;Xn)|

ν(Xi)ν(Xj)

}
1
(
‖Xi −Xj‖ ≤ 2k−1/d)

�
(

λn

nhd

)2(
k

n

)2 ∑
i �=j

1(‖Xi − x‖ ≤ h)1
(
‖Xi −Xj‖ ≤ 2k−1/d)

= ξ′n

(
λ2
n

nhd

)(
k

n

)
where the first inequality follows from (A.19) and (A.21), the second by Prop-
erties 1 and 3 of Lemma 1, and the last by definition.

Therefore combining bounds on the four terms (A.11), (A.13), (A.15), and
(A.16), we have that the term (A.5) satisfies

E
([
bT
0 Q̃

−1
hxPn

{
bKhx(φ̂− φ)

}]2 ∣∣ Xn
)

� k−4s/d(λnξn)2 + λ2
n

nhd

(
ξn +

(
k

n

)(
ξ′n + ξn

k

n

))
(A.22)

A.6.3. Term (A.6)

Note term (A.6) equals

bT
0
{
Pn

(
bKhxϕ̂ab

T
)−1 − Pn

(
bKhxνb

T
)−1}

Pn(bKhxφ̂)

= bT
0
(
Q̂−1

hx − Q̃−1
hx

)
Pn(bKhxφ̂)

=
{
bT
0 Q̃

−1
hx (Q̃hx − Q̂hx)

}{
Q̂−1

hxPn(bKhxφ̂)
}

(A.23)

For the first term in the product in (A.23) we have

bT
0 Q̃

−1
hx (Q̂hx − Q̃hx) =

n∑
i=1

{
wi(x;Xn)
ν(Xi)

}{
ϕ̂a(Zi) − ν(Xi)

}
b(Xi − x)T

which is a finite-dimensional vector with elements
n∑

i=1

{
b�(Xi − x)

ν(Xi)

}
wi

(
x;Xn

){
ϕ̂a(Zi) − ν(Xi)

}
which we can tackle with similar logic as for term (A.5). First note

E
(
ϕ̂a − ν | Dn, Xn

)
= E

{
(A− π̂a)(A− π̂b) − (A− π)2 | Dn, Xn

}
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= E
{
(A− π + π − π̂a)(A− π + π − π̂b) − (A− π)2 | Dn, Xn

}
=

{
π̂a(Xi) − π(Xi)

}{
π̂b(Xi) − π(Xi)

}
≡ R̂2π(Xi) (A.24)

by iterated expectation. Defining Bn(x; f̂) as in the previous subsection, the
conditional means of the elements of (A.23) (omitting subscripts �) are

E
{
bT
0 Q̃

−1
hx (Q̂hx − Q̃hx)

∣∣ Xn
}
�

=
n∑

i=1

{
b(Xi − x)
ν(Xi)

}
wi

(
x;Xn

)
E
{
ϕ̂a(Zi) − ν(Xi) | Xn

}
=

n∑
i=1

{
b(Xi − x)
ν(Xi)

}
wi

(
x;Xn

)
E
{
R̂2π(Xi) | Xn

}
=

n∑
i=1

{
b(Xi − x)
ν(Xi)

}
wi

(
x;Xn

)
Bn(Xi; π̂a)Bn(Xi; π̂b)

�
n∑

i=1

λn

nhd

∣∣Bn(Xi; π̂a)Bn(Xi; π̂b)
∣∣1(‖Xi − x‖ ≤ h)

� sup
‖x′−x||≤h

∣∣Bn

(
x′; π̂a

)∣∣∣∣Bn

(
x′; π̂b

)∣∣(λnξn) � k−2α/d(λnξn)

where the second line follows by iterated expectation, the third since π̂a ⊥⊥ π̂b,
the fourth and fifth by Properties 1–3 of Lemma 1 and since ν ≥ ε(1 − ε), and
the last by Condition (1c) via Assumption 4.

The analysis of the conditional variance follows exactly the same logic as
for term (A.5), and is of the same order. For the second term in the product
in (A.23) we have ∣∣∣∣Q̂−1

hxPn(bKhxφ̂)
∣∣∣∣ � λ̂n

∣∣∣∣Pn(bKhxφ̂)
∣∣∣∣

and note

E
{
‖Pn(bKhxφ̂)‖2 | Xn

}
=

∑
j

E
{
Pn(bjKhxφ̂)2 | Xn

}
=

∑
j

[
E
{
Pn(bjKhxφ̂) | Xn

}2 + var
{
Pn(bjKhxφ̂) | Xn

}]
.

Therefore for b� the �-th component of b(Xi − x)

E
{
Pn(b�Khxφ̂) | Xn

}
=Pn

{
b�KhxE

(
φ̂i | Xn

)}
� 1

nhd

n∑
i=1

1(‖Xi − x‖ ≤ h) = ξn

using boundedness of the kernel K and observations Z. For the variance we have

var
{
Pn(b�Khxφ̂) | Xn

}
= E

[
var

{
Pn(b�Khxφ̂) | Dn, Xn

} ∣∣ Xn
]

(A.25)
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+ var
[
E
{
Pn(b�Khxφ̂) | Dn, Xn

} ∣∣ Xn
]

(A.26)

For the term in (A.25) note

var
{
Pn(b�Khxφ̂) | Dn, Xn

}
=

(
1

nhd

)2 n∑
i=1

b�(Xi − x)2K
(
Xi − x

h

)2

var
(
φ̂i | Dn, Xn

)
�

(
1

nhd

)2 n∑
i=1

1(‖Xi − x‖ ≤ h) = ξn
nhd

using the boundedness of the kernel, X, and φ̂. For the term in (A.26)

var
[
E
{
Pn(b�Khxφ̂) | Dn, Xn

} ∣∣ Xn
]

= var
[
Pn

{
b�KhxE

(
φ̂ | Dn, Xn

)} ∣∣ Xn
]

= var{Pn

{
b�KhxR̂2(Xi)

∣∣ Xn
}
� 1

nhd

(
ξn +

(
k

n

)(
ξ′n + ξn

k

n

))
where the second line follows from the definition of R̂2(Xi) and since E(φ | Xi)
is constant given Xn. The rest follows the same logic as for the term in (A.14),
noting that λn terms do not appear since here there is only a kernel weight, and
so no corresponding ‖Q̃−1

hx‖ term.
Therefore the square of the term (A.6) has conditional expectation bounded

above by a constant multiple of{
k−4α/d(λnξn)2 + λ2

n

nhd

(
ξn +

(
k

n

)(
ξ′n + ξn

k

n

))}
× λ̂n

{
ξ2
n + 1

nhd

(
ξn +

(
k

n

)(
ξ′n + ξn

k

n

))}
. (A.27)

A.6.4. Combining bounds

Now we use the following lemma (or equivalently Lemma 6.1 of Chernozhukov
et al. [10]) to deduce unconditional convergence from the previously derived
conditional bounds.

Lemma 2. Suppose a random variable Zn satisfies

|E
(
Zn | Xn

)
| � bn and var

(
Zn | Xn

)
� s2

n

for some bn = b(Xn) and s2
n = s(Xn)2. Then Zn = OP(bn + sn).

Proof. Note for some Mε depending on any ε > 0 we have

P

(
|Zn|

bn + sn
≥ Mε

)
= E

{
P

(
|Zn|

bn + sn
≥ Mε

∣∣∣ Xn

)}
≤ E

{
E(Z2

n | Xn)
(bn + sn)2M2

ε

}
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≤ E

{
E(Zn | Xn)2 + var(Zn | Xn)

(b2n + s2
n)M2

ε

}
≤ C

M2
ε

where the first equality uses iterated expectation, the second Markov’s inequal-
ity, the third the fact that (bn + sn)2 ≥ b2n + s2

n, and the last the bounds on
|E(Zn | Xn)| and var(Zn | Xn). The result follows taking Mε =

√
C/ε.

Recall our conditional bounds in (A.9), (A.22), and (A.27) involve the quan-
tities (λn, λ̂n, ξn, ξ

′
n). The quantities λn and λ̂n are OP(1) by Assumption 3,

and in the following lemmas we show that ξn and ξ′n are as well, as long as the
covariate density is bounded (Assumption 1).

Lemma 3. Assume X has a density bounded above by some C < ∞. Then

ξn ≡ Pn(‖X − x‖ ≤ h)/hd = OP(1).

Proof. First note that

E(ξn) = 1
hd

∫
1(‖t− x‖ ≤ h) p(t) dt ≤ C

hd

πd/2hd

Γ(1 + d/2) ≤ 5.3C

using the bound on the density and the volume of a d-ball of radius h. Therefore
for any ε > 0 we have

P(ξn ≥ 5.3C/ε) ≤ ε

by Markov’s inequality, which yields the result.

Lemma 4. Assume X has a density bounded above by some C < ∞. Define

ωni ≡
k

n− 1
∑
j �=i

1
(
‖Xi −Xj‖ ≤ 2/k1/d).

Then

ξ′n ≡ 1
nhd

n∑
i=1

1(‖Xi − x‖ ≤ h)ωni = OP(1)

Proof. For any i we have

E(ωni | Xi) = k

∫
1
(
‖Xi − t‖ ≤ 2/k1/d) p(t) dt ≤ 2d5.3C

just as in Lemma 3. Therefore

E

{
1

nhd

n∑
i=1

1(‖Xi − x‖ ≤ h)ωni

}
= E

{
1

nhd

n∑
i=1

1(‖Xi − x‖ ≤ h)E(ωni | Xi)
}

≤ 2d5.3CE(ξn) ≤ 2d(5.3C)2

by iterated expectation and Lemma 3. Therefore again the result follows by
Markov’s inequality.
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Therefore, combining the bounds in (A.9), (A.22), and (A.27), together with
the facts that (λn, λ̂n, ξn, ξ

′
n) are all OP(1) due to Assumptions 1 and 3, we have

the unconditional convergence results

bT
0 Q̂

−1
hxPn(bKhxφ) − τ = OP

(
hγ + 1√

nhd

)
bT
0Pn

(
bKhxνb

T
)−1

Pn

{
bKhx(φ̂− φ)

}
= OP

(
k−2s/d + 1√

nhd

(
1 +

√
k

n
+ k

n

))
bT
0 Q̃

−1
hx (Q̃hx − Q̂hx)Q̂−1

hxPn(bKhxφ̂) = OP

(
k−2α/d + 1√

nhd

(
1 +

√
k

n
+ k

n

))
.

Note we can discard the
√

k/n term since, if k ≤ n then the constant term
1 on the far right side dominates, whereas if k ≥ n then k/n ≥

√
k/n and the

k/n term dominates.

Appendix B: R code

Piecewise polynomial model from motivating example in Section 2.2:
set.seed(1234)
expit <- function(x){ exp(x)/(1+exp(x)) }
logit <- function(x){ log(x/(1-x)) }
n <- 4*2000; nsim <- 500; rateseq <- seq(0.1,0.5,by=0.05)
res2 <- NULL

for (rate in rateseq){

res <- data.frame(matrix(nrow=nsim,ncol=4))
colnames(res) <- c("plugin","xl","drl","oracle.drl")

for (i in 1:nsim){

## simulate data
s <- sort(rep(1:4,n/4)); x <- (runif(n,-1,1))
ps <- 0.1 + 0.8*(x>0)
mu0 <- (x <= -.5)*0.5*(x+2)^2 + (x/2+0.875)*(x>-1/2 & x<0) +
(x>0 & x<.5)*(-5*(x-0.2)^2 +1.075) + (x>.5)*(x+0.125)
mu1 <- mu0; tau <- 0

a <- rbinom(n,1,ps)
y <- a*mu1 + (1-a)*mu0 + rnorm(n,sd=(.2-.1*cos(2*pi*x)))

## estimate nuisance functions
pihat <- expit( logit(ps) + rnorm(n,mean=1/(n/4)^rate,sd=1/(n/4)^rate))
mu1hat <- predict(smooth.spline(x[a==1 & s==2],y[a==1 & s==2]),x)$y
mu0hat <- predict(smooth.spline(x[a==0 & s==2],y[a==0 & s==2]),x)$y

## construct estimators
plugin <- mu1hat-mu0hat
x1 <- predict(smooth.spline(x[a==1 & s==3],(y-mu0hat)[a==1 & s==3]),x)$y
x0 <- predict(smooth.spline(x[a==0 & s==3],(mu1hat-y)[a==0 & s==3]),x)$y
xl <- pihat*x0 + (1-pihat)*x1
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pseudo <- ((a-pihat)/(pihat*(1-pihat)))*(y-a*mu1hat-(1-a)*mu0hat) + mu1hat-mu0hat
drl <- predict(smooth.spline(x[s==3],pseudo[s==3]),x)$y
pseudo.or <- ((a-ps)/(ps*(1-ps)))*(y-a*mu1-(1-a)*mu0) + mu1-mu0
oracle.drl <- predict(smooth.spline(x[s==3],pseudo.or[s==3]),x)$y

## save MSEs
res$plugin[i] <- (n/4)*mean((plugin-tau)[s==4]^2)
res$xl[i] <- (n/4)*mean((xl-tau)[s==4]^2)
res$drl[i] <- (n/4)*mean((drl-tau)[s==4]^2)
res$oracle.drl[i] <- (n/4)*mean((oracle.drl-tau)[s==4]^2)

}

res2 <- rbind(res2, c(rate, apply(res,2,mean)))
}

High-dimensional model example:

set.seed(1234)
library(glmnet)
expit <- function(x){ exp(x)/(1+exp(x)) }
logit <- function(x){ log(x/(1-x)) }

nsim <- 100; res <- data.frame(matrix(nrow=nsim,ncol=4))
colnames(res) <- c("plugin","xl","drl","oracle.drl")

n <- 4*2000; d <- 500; alpha <- d/10; beta <- alpha

for (i in 1:nsim){

## simulate data
s <- sort(rep(1:4,n/4)); x <- matrix(rnorm(n*d), n, d)
mu0 <- expit(as.numeric(x %*% rep(c(1, 0), c(beta,d-beta)))/sqrt(beta/1))
ps <- expit(as.numeric(x %*% rep(c(1, 0), c(alpha,d-alpha)))/sqrt(alpha/0.25))
tau <- 0; mu1 <- mu0 + tau
a <- rbinom(n,1,ps); y <- rbinom(n,1,a*mu1+(1-a)*mu0)

## estimate nuisance functions
pihat <- predict(cv.glmnet(x[s==1,],a[s==1], family="binomial"),newx=x,

type="response", s="lambda.min")
mu0hat <- predict(cv.glmnet(x[a==0 & s==2,],y[a==0 & s==2], family="binomial"),

newx=x, type="response", s="lambda.min")
mu1hat <- predict(cv.glmnet(x[a==1 & s==2,],y[a==1 & s==2], family="binomial"),

newx=x, type="response", s="lambda.min")

## construct estimators
plugin <- mu1hat-mu0hat
x1 <- predict(cv.glmnet(x[a==1 & s==3,],(y-mu0hat)[a==1 & s==3]),newx=x)
x0 <- predict(cv.glmnet(x[a==0 & s==3,],(mu1hat-y)[a==0 & s==3]),newx=x)
xl <- pihat*x0 + (1-pihat)*x1

pseudo <- ((a-pihat)/(pihat*(1-pihat)))*(y-a*mu1hat-(1-a)*mu0hat) + mu1hat-mu0hat
drl <- predict(cv.glmnet(x[s==3,],pseudo[s==3]),newx=x)
pseudo.or <- ((a-ps)/(ps*(1-ps)))*(y-a*mu1-(1-a)*mu0) + mu1-mu0
oracle.drl <- predict(cv.glmnet(x[s==3,],pseudo.or[s==3]),newx=x)

## save MSEs
res$plugin[i] <- (n/4)*mean((plugin-tau)[s==4]^2)
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res$xl[i] <- (n/4)*mean((xl-tau)[s==4]^2)
res$drl[i] <- (n/4)*mean((drl-tau)[s==4]^2)
res$oracle.drl[i] <- (n/4)*mean((oracle.drl-tau)[s==4]^2)

}
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