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Abstract: In this paper, we develop an epsilon admissible subsets (EAS)
model selection approach for performing group variable selection in the
high-dimensional multivariate regression setting. This EAS strategy is de-
signed to estimate a posterior-like, generalized fiducial distribution over a
parsimonious class of models in the setting of correlated predictors and/or
in the absence of a sparsity assumption. The effectiveness of our approach,
to this end, is demonstrated empirically in simulation studies, and is com-
pared to other state-of-the-art model/variable selection procedures. Fur-
thermore, assuming a matrix-Normal linear model we show that the EAS
strategy achieves strong model selection consistency in the high-dimensional
setting if there does exist a sparse, true data generating set of predictors.
In contrast to Bayesian approaches for model selection, our generalized
fiducial approach completely avoids the problem of simultaneously having
to specify arbitrary prior distributions for model parameters and penalize
model complexity; our approach allows for inference directly on the model
complexity. Implementation of the method is illustrated through yeast data
to identify significant cell-cycle regulating transcription factors.
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1. Introduction

With the advent of modern data collection technologies in many real-life appli-
cations, multiple responses are simultaneously collected that are characterized
by a set of explanatory variables. Data of this structure falls under the scope of
multivariate regression. Examples arise in chemometrics [18], genome-wide asso-
ciation studies (GWAS) [7], etc. More often than not, the number of predictors
p is much larger than the number of observed multivariate response vectors n.
Parsimoniously modeling the variability in the response without overfitting is
necessary to enhance prediction accuracy. For example, in GWAS, identification
of key genetic markers out of millions that are associated with a univariate or
multivariate phenotype is of scientific interest [50]. Model/variable selection is
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a statistical framework that has been widely popular in this context. A naive
way to approach this multivariate problem is to model the components of the
response as separate univariate regressions on the predictors, and to employ
existing selection techniques available in the univariate setting. However, since
the multiple responses for each subject are often correlated, prediction error
can be minimized substantially if one uses the inherent association between the
responses effectively [8]. Finding the best model in the context of multivariate
linear regression (MLR) without ignoring the correlation between the responses,
especially in a high-dimensional setting is a challenging task and has received
much attention in the literature over the last decade.

We develop an EAS approach for group variable selection in high-dimensional
MLR settings. The EAS procedure was originally developed for high-dimensional
univariate regression settings of [53], and has been extended to the vector auto-
regression setting in [54]. However, an EAS procedure has not been constructed
for the multivariate regression setting, nor has there been built a group se-
lection mechanism for EAS selection. In contrast to Bayesian model selection
approaches, we consider a generalized fiducial (GF) inference approach [24] that
explicitly estimates the GF distribution over the class of all subsets of predic-
tors; whereas frequentist and most Bayesian approaches exclusively focus on
coefficient estimation to perform variable selection. In a high-dimensional set-
ting, it is very problematic for a variable selection procedure to over-rely on the
magnitude of the estimated regression coefficients because they lack identifiabil-
ity and are numerically unstable. Moreover, most variable selection procedures
for multivariate regression do not account for the correlation structure of the
multivariate responses. Our multivariate group EAS procedure is designed to
inherently accommodate the arbitrary covariance structure of the response. As
explained in [28], accounting for the correlation is important because, for exam-
ple, in the case of the least absolute shrinkage and selection operator (LASSO)
estimator the shrinkage criterion is affected by the magnitude and sign of the
correlation between the responses.

Mathematically, under a standard sparsity and Gaussian errors assumption
with a general covariance structure we prove that our proposed EAS procedure
achieves strong model selection consistency, as defined in [36]. That is, we show
that over the class of all ε-admissible subsets of the predictors/groups, the GF
probability of a true sparse model converges to one in probability as the sample
size goes to infinity, and the number of predictors/groups is allowed to grow
sub-exponentially as a function of the sample size. Additionally, as a next paper
in the series of papers to investigate EAS model selection strategies in various
settings, the algorithm we propose improves on the computational efficiency
and stability of the algorithms proposed in [53, 54]. We provide user-friendly R
software to implement our EAS procedure, available at https://github.com/
SalilKoner/EAS.

Next, in various simulation scenarios, we demonstrate that our EAS proce-
dure is either competitive with or outperforms the state-of-the-art Bayesian or
frequentist approaches, based on various metrics such as prediction error, mis-
classification rate, and average proportion of correct model selections. Moreover,
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consistent with our theory, our EAS method does an excellent job in assigning
a very high probability mass to the true model compared to the other Bayesian
methods.

There are four distinct elements of novelty of our EAS procedure for the MLR
setting compared to the univariate case [53]. To start with the methodological
novelties: 1) Our EAS method is designed to inherently accommodate an arbi-
trary covariance structure of the response in performing variable selection. 2)
The second added difficulty, specific to GF inference, is that the so-called GF
“Jacobian term” for the MLR model (derived in Appendix A) is non-standard
and exerts substantial influence on the resulting GF model probabilities that
we construct, whereas the Jacobian term in the univariate linear regression
setting is concise and involves components readily relatable to the likelihood
function. 3) The theoretical novelties, primarily imparted by accounting for an
arbitrary covariance structure, constitute derivation of non-asymptotic concen-
tration bounds on ratios of determinants (or eigenvalues) of error covariance
matrices for different models (i.e., subsets of covariates) in the multivariate set-
ting, for which much less standard theory exists. 4) The key computational
improvement of our EAS method is that the user does not need to scale the
tuning parameter ε as a function of the sample size to select the best model, in
contrast to previous EAS developments such as [53].

Prior choice/specification in contemporary Bayesian approaches are typically
not chosen because they reflect true prior knowledge/beliefs, but they are tai-
lored to simplify computational complexities and/or achieve desirable large sam-
ple/frequentist properties. While this practice is pragmatic, it is a violation of
fundamental Bayesian principles. In contrast, GF inference is an equally prin-
cipled framework that has an appeal to objective Bayesian perspectives, but it
does not suffer from the arbitrary choice of prior specification. The GF approach
is to solve an inverse problem resulting in parameter values most consistent in
reconciling the observed data with random draws from the distribution of the
auxiliary variable in the data generating equation. Holding the data fixed, these
parameter values then inherit a probability distribution via the distribution of
the auxiliary variable. It can be argued that this procedure effectively has im-
plicit prior knowledge built in, but the subjectivist Bayesian approach (assuming
a likelihood function) goes a step further by imposing/requiring additional prior
knowledge (in the form of a prior distribution specification) that is exogenous
to the data generating model. Moreover, it has been shown that GF inference
exhibits large sample Bernstein-von Mises type properties that guarantee the
nominal coverage of credible sets, similar to such theory for Bayesian posteriors
[41]. See [24] for a full introduction of GF inference.

Standard model selection techniques for univariate linear regression via Mal-
low’s Cp and other types of information criterion have been extended to mul-
tivariate regression; see [42, 20] and the references therein. Since the inception
of LASSO [43], penalized methods introducing sparsity in the regression co-
efficients have engulfed the MLR literature. Notable contributions are the si-
multaneous variable selection using L∞SVS from [45] and L2SVS from [40];
the remMap procedure in [37] employs an elastic net type penalty to identify
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master predictors. Estimation of the regression coefficients taking into account
the correlation between the responses was pioneered in [39], which was later
extended in [28]. Assuming that the groups are known, a multivariate sparse
group LASSO strategy is proposed in [29] to impose the group structure, which
was later augmented in [55] for simultaneous covariance estimation. Very re-
cently, de-sparsified/de-biased LASSO was developed in [14, 4] to overcome the
bias induced by the penalty, by extending the existing techniques developed
for the univariate setting [46]. From a Bayesian perspective, a stochastic search
variable selection (SSVS) procedure for MLR is employed in [9, 10]. The multi-
variate Bayesian group LASSO using a spike-and-slab prior is developed in [31]
to perform the variable selection. To mitigate the computational issues of spike-
and-slab priors for the large p scenario, continuous global-local shrinkage priors
are introduced in [1]. Recently, an expectation-maximization based maximum
a posteriori (MAP) estimation procedure was formulated for fast simultaneous
variable and covariance selection using continuous shrinkage priors in [17].

So far the NP-hard problem of best subset selection has been seemingly con-
veniently handled by assuming sparsity in the true data-generating model. How-
ever, in a high-dimensional setting, especially when there is a strong degree of
collinearity amongst the predictors, there may not be a unique model that fits
the data best, and so the concept of a true model is somewhat vague. More-
over, the typical �1 and �2 regularization methods shrink coefficients to zero
only based on their magnitude, which is again unreliable in the presence of
multicollinearity. Our EAS procedure provides a fresh perspective on variable
selection in the MLR setting by defining an admissibility condition for candidate
models. The admissibility criterion relates to the idea that any candidate model,
as defined by a set of predictors, is redundant if there exists a subset model that
explains the variation in the response as well as the candidate model. Thus,
while we prove important mathematical properties of the EAS approach under
a sparsity assumption, in finite sample data analyses the key functionality of
our EAS approach is not to determine the model that is necessarily the true
set of predictors but to identify a parsimonious model that explains the data
as well as the true model, if it exists. This criterion is meaningful even in the
absence of a sparsity assumption. We refer to the criterion as ε-admissibility,
defined in Section 2. The key characteristic of the EAS-based GF distribution is
that it assigns very negligible probability to models that fail the ε-admissibility
criterion, and in doing so significantly reduces the class of candidate models
to choose from. This is the intuition for why, assuming sparsity, the procedure
achieves strong model selection consistency.

An advantage of our GF-based variable selection procedure over the fre-
quentist counterparts is that it provides an estimate of the model probabili-
ties, derived from the posterior-like GF distribution of the model parameters.
Even many recent standard Bayesian approaches, such as Multivariate Bayesian
model with Shrinkage Priors (MBSP) from [1], multivariate spike-and-slab prior
(mSSL) from [17], and Spike-and-Slab Group LASSO (SSGL) from [3] are not
developed to compute relative model probabilities; rather they are designed to
estimate the MAP probability model parameters. A notable exception is the
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Bayesian spike-and-slab prior group LASSO from [31] that is capable of pro-
viding relative model probabilities, but is unfortunately not suitable for high-
dimensional settings. In a finite sample scenario, relative model probabilities
are useful because they give a certain degree of confidence in choosing one
model over another, and they reflect a useful discrimination between competing
models, especially in the high-dimensional setting. Moreover, the ε-admissibility
criterion in our EAS framework takes into account the covariance structure of
the multivariate response. In a multi-response setting, the noise associated with
a particular component of the response may be significantly higher than the
other components. Many of the variable selection procedures such as remMap
[37], L2SVS [40], or reduced rank regression [13, 48], neither consider this dif-
ference in noise levels nor the intra-dependence in the multivariate response.

The rest of the paper is organized as follows. In Section 2 we layout the EAS
methodology and highlight differences from other EAS approaches. Next, the
computational algorithm to implement the method is presented in Section 3.
A few essential non-asymptotic results characterizing the meaningfulness of the
EAS procedure along with the main consistency result are stated in Section 4.
The proof of all the results are relegated to the Section B of the Appendix. Finite
sample numerical results covering both n > p and p > n cases are illustrated in
Section 5. Section 6 provides an illustration of the practical application of the
procedure using yeast cell cycle data. Computer codes to reproduce all empirical
results are available at https://github.com/SalilKoner/EAS.

Notations

Throughout the course of the paper we will use the following notations. For
an vector a ∈ Rn, ‖a‖ =:

√∑n
i=1 a

2
i denotes vector 2-norm; for any matrix

A, ‖A‖ refers to the spectral norm (i.e., ‖A‖ := supx,‖x‖=1 ‖Ax‖); ‖A‖F de-
notes the Frobenius norm; and ‖A‖max := maxi,j |aij | denotes the max norm.
For any symmetric matrix A, λmin(A) and λmax(A) denotes the minimum
and maximum eigenvalues, respectively, of the matrix A. For an m × r ran-
dom matrix X, X ∼ Matrix-Normalm,r(M,U,V) is equivalent to vec(M) ∼
Nm,r(vec(M),V ⊗ U) [see 22, definition 2.2.1]. For a m× r random matrix X,
X ∼ Tm,r(ν,M,U,V) means X follows a matrix t-distribution with mean M,
scale matrices U, V, and degrees of freedom ν [see 22, definition 4.2.1]. For any
set M , |M | denotes the cardinality of M . For any event A, I(A) denotes the
indicator function that the event happens. Lastly, for two sequences an and bn,
an = o(bn) means limn→∞ an/bn = 0.

2. Methodology

In MLR, n pairs of examples (Xi,Yi) are observed, where Yi := (Yi1, . . . , Yiq)�
is the q-dimensional multivariate response vector for i-th subject, and Xi :=
(X1i, . . . , Xpi)� contains the values of p predictor variables that are presumed
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to be associated with the response. The response is expressed as the linear
model,

Yi =
p∑

j=1
BjXji + AUi,

where Bj := (b1j , . . . , bqj)� is a q-dimensional regression coefficient vector
where b�j captures the effect of j-th predictor on �-th coordinate of the mul-
tivariate response, A is q × q matrix, and Ui ∈ Rq×1 is the i-th error vector
with mean 0 and Var(Ui) = Iq, so that Var(Yi) = AA�. Further denoting
Y := [Y1, . . . ,Yn] ∈ Rq×n as the horizontal column stacked response, and
U := [U1, . . . ,Un] as the corresponding q × n dimensional error matrix, the
multivariate regression model with a sample of size n is summarized as,

Y =
[ p∑
j=1

BjXj1, · · · ,
p∑

j=1
BjXjn

]
+ AU = BX + AU, (1)

where B :=[B1, . . . ,Bp]∈Rq×p is the coefficient matrix and X :=[X1, . . . ,Xn]∈
Rp×n is the design matrix.

In the context of variable selection, for any index set M ⊆ {1, . . . , p}, let
XM · denote the matrix with rows comprised of the rows of X corresponding
to the indices in M . In subsetting the rows of X for variable selection, the
columns of B must be subset to only those corresponding to the indices in M ;
take B·M to be the column-subsetted coefficient matrix. The subscript (M),
as in the q × q matrix A(M), simply denotes an association with the index set
M , rather than any subsetting of the rows/columns. Accordingly, conditional
on index set/model M , expression (1) reduces to,

Y = B·MXM · + A(M)U. (2)

Observe that variable selection in this multivariate model is in fact a group se-
lection problem because the active columns (i.e., the groups) of the coefficient
matrix B are being selected. This fact establishes the need for the a group selec-
tion mechanism within the variable selection procedure. Nonetheless, the EAS
variable selection procedure that we develop seamlessly accommodates the ad-
ditional problem of selecting among known/posited groups of predictors, rather
than the power set of the predictors 1, . . . , p (i.e., the natural grouping). Our
presentation will focus on EAS methodology for solving the problem of grouped
variable selection for MLR under the natural grouping, but the methodology
and theoretical results cover (as a sub-case) the simpler case when a class of
predictor groups are known. In that case, simply restrict the class of candidate
models that the algorithm is allowed to choose from.

In the case of Gaussian error, we introduce the notion of a true data gener-
ating model as the assumption that,

Y ∼ Matrix-Normalq,n
(
B0

·Mo
XMo ·,V0

(Mo), In
)
, (3)
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for some fixed (but unknown) Mo ⊆ {1, 2, . . . , p}, and some fixed (but unknown)
parameter matrices B0

·Mo
and V0

(Mo) = A0
(Mo)A

0�
(Mo), for some positive definite

matrix A0
(Mo). Note that in the case of the covariance matrix V0

(Mo), the sub-
script Mo simply denotes the association with the index set Mo but it is not
constructed by subsetting some more general matrix V0. Analogous to [53], the
index ‘o’ in Mo is in reference to the term ‘oracle’, and the superscript ‘0’ em-
phasizes that the quantities B0

·Mo
and V0

(Mo) are fixed quantities (in contrast
to their GF/Bayesian-like random variable counterparts B·Mo and V(Mo), to
be introduced shortly). The matrix normal notation in (3) is a compact way of
saying that the multivariate responses Y1, . . . ,Yn are independent and iden-
tically distributed multivariate normal random vectors with mean B0

·Mo
XMo ·

and q × q covariance matrix V0
(Mo).

The objective of our paper is to develop a methodology that identifies a
non-redundant (i.e., ε-admissible) set Mo (the true model or possibly a related
sub-model of the true model) out of the 2p candidate sets in the power set of
{1, 2, . . . , p}. In the special case that the true model is sparse, the objective is
to show that the method will identify the true model Mo, as the sample size is
taken to infinity. The notion of ε-admissibility is defined in Definition 2.1. To
build up to this definition, the following model-based perspective is required.

For any index set M ⊆ {1, . . . , p}, we assume the conditional distribution,

Y|B·M ,V(M) ∼ Matrix-Normalq,n
(
B·MXM ·,V(M), In

)
, (4)

where B·M and V(M) = A(M)A�
(M) are random matrices that reflect the un-

certainty in not knowing the true data generating model nor true values of its
parameter matrices. Under the Gaussian error assumption, the quantities B·M
and V(M) are expected to be centered, respectively, around the least squares
estimator B̂·M := YX�

M ·
(
XM ·X�

M ·
)−1 and the restricted maximum likeli-

hood estimator V̂M := Σ̂(M)/(n − |M |), with Σ̂(M) := Y(In − H(M))Y� and
H(M) := X�

M ·
(
XM ·X�

M ·
)−1 XM ·. Note that the matrix H(M) is the orthogonal

projection onto the row space of XM ·. Moreover, given the true data generating
model (3), it follows that E(Ŷ) = E(B̂·MXM ·) = B0

·Mo
XMo ·H(M), and so if

M ⊇ Mo then E(Ŷ) = B0
·Mo

XMo ·. This means that any collection of predictors
with linear span containing the oracle predictors, Mo, is as good at explaining
variation in the data as the true model (in terms of residual sum of squares).
However, such a large/redundant set of predictors lacks efficiency in terms of
prediction accuracy. Exploiting this idea, the critical definition supporting our
methodology is presented next.

Definition 2.1. A q × |M | regression coefficient matrix B·M coupled with an
index set M ⊆ {1, . . . , p} is said to be ε-admissible if hε(B·M ) = 1 where,

hε(B·M ) = I
{

1
2

∥∥∥Σ̂−1/2
(M) (B·MXM · − BminX)

∥∥∥2
F
≥ ε

}
I{|M | < n− q}, (5)
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where Bmin is the solution to the optimization problem,

arg min
B∈Rq×p

∥∥∥Σ̂−1/2
(M) (B·MXM · − BX)

∥∥∥2
F

subject to |{j : ‖Bj‖ 	= 0}| ≤ |M | − 1.

Definition 2.1 characterizes a notion of redundancy for any set of predic-
tors, indexed by M . The quantity ‖B·MXM · − BX‖2

F captures the difference
in prediction of the model M from all models with fewer predictors. Any model
M that is not ε-admissible is redundant in the sense that there exists a sub-
set of fewer predictors that approximately linearly spans the same subspace.
This very notion of redundancy makes the EAS method different from the tra-
ditional regularization-based approaches, where redundancy is expressed as a
model containing negligible or zero magnitude regression coefficients. Nonethe-
less, Definition 2.1 encompasses the traditional notion of redundancy because, if
one column of B·M is equal to zero then hε(B·M ) is 0 for all ε > 0. Additionally,
as a consequence of the rows of XM · spanning a finite-dimensional vector space,
hε(B·M ) assigns value zero to all models M with |M | > n, by definition. As a
consequence, the EAS procedure inherently reduces the difficultly of the model
selection problem from 2p candidate models to 2n, a fact that is fundamental
to the scalability of the EAS procedure for high-dimensional settings. Further-
more, if XM · does not have full row rank, then hε(B·M ) is again zero by its
construction.

The above definition of the h-function is well-defined in the sense that for M
with |M | < n− q, the matrix Σ̂(M) is invertible with probability 1. Lemma 4.2
in Section 4 justifies that the minimum eigenvalue of Σ̂(M) diverges away from
0 for large n. Next, for identifiability of a sparse true model, Mo, the choice of ε
must not be so large that it classifies Mo as redundant. Conversely, if ε is chosen
too small, then many redundant models might also satisfy the ε-admissibility
criterion. It will be seen throughout the remainder of the paper that this trade-
off analysis is the crux of the theoretical underpinnings of the EAS approach.

A distinction between the definition of the h-function defined in (5) and the
one defined in [53] is the introduction of the empirical error covariance matrix
Σ̂(M). Normalization by the square-root of error covariance matrix is common
in LASSO-type model selection strategies such as concomitant multi-task re-
gression [33], multivariate square-root LASSO [47, 5] to name a few. For any
fixed model M , a common assumption is that the quantity ‖B·MXM · − BX‖2

F
is on the order of n (for large n). As a result, the optimal choice of ε as derived
in [53] turned out to be a function of both n and |Mo|. Moreover, the form
of their suggested ε is somewhat unintuitive as it was derived purely from a
theoretical result. On the other hand, since Σ̂(M) is also on the order of n (for
large n), adjusting for the inverse square-root of Σ̂(M), as in (5), proportionately
scales ‖B·MXM · − BX‖2

F. This enables us to choose the threshold ε via simple
grid search based on some metric such as cross-validation (CV) technique or
information criterion (IC), independently of n and |M |. We implement a com-
putationally efficient version of the EAS algorithm that bypasses the original
repeated sampling based pseudo-marginal Markov chain Monte Carlo (MCMC)
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algorithm. A detailed description of the computational procedure we propose is
presented in Section 3.

With our ε-admissibility notion of redundancy now defined, we are ready to
build the statistical framework that will facilitate its use in model selection. The
GF inference approach adopted in [53] remains an advantageous pathway for
constructing a posterior-like probability distribution over the class of candidate
models; one that is principled in the sense of Bernstein-von Mises asymptotics,
but also avoids the problem of prior choice/specification.

To introduce the mechanics of GF inference, assume a random variable Z has
a forward data generation equation that can be expressed as Z = G(U, θ), where
G is some known deterministic function, U is a pivotal quantity whose distribu-
tion is known, and θ is some fixed but unknown parameter(s) of interest in the
space Θ. Given an observed data set z = (z1, . . . , zn)� of independent instances
of the random variable Z, GF inference aims to find the best fitting ϑ such that
‖z − G(U, ϑ)‖ is minimized, resulting in a random variable θ∗ := θ∗(U). The
distribution of the random variable θ∗(U) is termed the GF distribution of the
unknown parameter θ. When Z is a continuous random variable, under certain
regularity conditions [as stated in 24, mostly dealing with the smoothness of G]
the GF distribution of θ can be expressed as

r(ϑ | z) = f(z, ϑ)J(z, ϑ)∫
Θ f(z, ϑ̃)J(z, ϑ̃) dϑ̃

, (6)

where f(z, ϑ) is the likelihood function and

J(z, ϑ) := D

(
d

dϑ
G(u, ϑ)

∣∣∣
u=G−1(z,ϑ)

)
, (7)

with D(C) :=
√

detC�C for a matrix argument C. The Jacobian-like quantity
J(z, ϑ) results from inverting the data generating equation assuming the inverse
G−1(z, ϑ) exists.

To illustrate, if Z1, . . . , Zn
iid∼ N(μ, σ2), then G(U, (μ, σ2)) = μ+

√
σ2U where

U ∼ N(0, 1). In this case,

J(z, (μ, σ2)) = D([1n − σ−2(z − μ1n)/2]) =
√
nσ−2sz/2,

where z̄ :=
∑n

i=1 zi and s2
z :=

∑n
i=1(zi − z̄)2. Then the GF distribution takes

the form
r(μ, σ2 | z) ∝ (σ2)−n/2−1e−σ−2∑n

1 (zi−μ)2/2,

which implies that the conditional GF distribution of (μ | σ) is N(z̄, σ2/n), and
the marginal GF distribution of σ2 is Inverse-Gamma{(n − 1)/2, s2

z/2}. This
solution is consistent with the posterior distribution of (μ, σ2) constructed via
flat prior specification [page 65, 21].

In contrast to the univariate regression model (as in [53]), however, construc-
tion of the GF distribution in the MLR setting is not a simple extension and is
accompanied by unique challenges, especially so for dealing with the arbitrary
covariance matrix of the multivariate response vectors.
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The difficulty in deriving and studying an expression for a GF distribution,
for most continuous data models, is that it requires deriving a complicated
function of partial derivatives with respect to the unknown model parameters.
Interesting data models for which the GF density can be expressed analytically
(up to a normalizing constant), such as we will show for the MLR with arbitrary
coefficient and covariance matrices, are interesting in their own right for their
contribution to the growing literature on GF inference. The assumptions and
materials for deriving/computing a GF distribution are provided in [24]. In the
remainder of this section we provide the details relevant to our methodology.

Given an index set, M , the unknown parameters in model (4) are B·M and
A(M). As in the GF inference setup, re-express the data generating equation (4)
as,

Y = B·MXM · + A(M)U =: G
(
U, (B·M ,A(M))

)
, (8)

where U ∼ Matrix-Normalq,n(0, Iq, In). As prescribed in Theorem 1 of [24], the
GF density of the parameters (B·M ,A(M)) can be expressed as,

r(B·M ,A(M) | Y) :=
f
(
Y, (B·M ,A(M))

)
J
(
Y, (B·M ,A(M))

)∫
f
(
Y, (B̃·M , Ã(M))

)
J
(
Y, (B̃·M , Ã(M))

)
d(B̃·M , Ã(M))

,

where f is the matrix normal likelihood function, and the Jacobian term defined
in (7). After some routine matrix calculations the Jacobian term reduces to,

J
(
Y, (B·M ,A(M))

)
=
(
detA(M)A�

(M)

)−q/2 (
detXM ·X�

M ·
)q/2 (det Σ̂(M)

)q/2
.

Accordingly, restricting M to the class of ε-admissible models yields the GF
density,

rε(B·M ,A(M) | Y) ∝ e
− 1

2 tr
[
R(M)V−1

(M)

] (
detXM ·X�

M ·
)q/2 (det Σ̂(M)

)q/2
×(

detV(M)
)−(n+q)/2

hε (B·M ) ,

where R(M) := (Y − B·MXM ·) (Y − B·MXM ·)�. Note the dependence of
rε(· | Y) on the choice of ε. Further, rε(· | Y) should not be confused with
the notation for a conditional probability density function, but should be un-
derstood to reflect the fact that the GF distribution is a function of the observed
data Y.

Moving along, analogous to a Bayesian model selection approach, we con-
struct a probability distribution over all ε-admissible index sets as the marginal
distribution,

rε(M | Y) ∝
∫
Rq×|M|

∫
Rq×q

rε(B·M ,A(M) | Y) dA(M) dB·M

=
(
detXM ·X�

M ·
) q

2
(
det Σ̂(M)

) q
2
∫

hε (B·M ) dB·M ×

∫
e
− 1

2 tr
[
R(M)V−1

(M)

]
(
detV(M)

)(n+q)/2 dA(M)
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We simplify this expression as equation (9), stated next, and provide a detailed
account of the intermediate steps in Section A of the Appendix. The derivation
of GF model involve integration over the domain of positive definite matrices and
non-trivial matrix algebra that are far more complex than the case of univariate
linear regression setting.

rε(M | Y) ∝ Γq

(
n− |M |

2

)
π

q|M|
2

(
det Σ̂(M)

)−(n−|M|−q
2

)
E [hε (B·M )] , (9)

where the expectation is taken with respect to the density of matrix t-distribution,
i.e.,

B·M ∼ Tq,|M |

(
n− |M | − q + 1, B̂·M , Σ̂(M),

(
XM ·X�

M ·
)−1)

. (10)

Note that the GF distribution of B·M is concentrated around the least squared
estimator, B̂·M , defined previously.

Observe in (9) that for models with |M | > n − q, the h-function is zero by
definition, and thus rε(M | Y) is trivially zero. This probability mass function
has the interpretation as the relative likelihood of the model M versus that
of all other candidate models in the class of ε-admissible models. It becomes
clear from the expression (9) that rε(M | Y) is largely driven by the inverse
of the empirical error covariance matrix, and that the h-function delivers a
multiplicative effect on the probability. For a large redundant model, M , we
expect that the determinant of the empirical error covariance is small relative
to that of Mo, and so we leverage the choice of ε such that E [hε (B·M )] controls
the value of rε(M | Y). This insight is formalized in Section 4.

As we illustrate in the remainder of this paper, the GF mass function rε(M |
Y) serves as a vehicle for model selection and inference. In the next section we
discuss the details of the computations, and provide an algorithm to generate
samples from this GF distribution.

3. Model estimation and computational techniques

In order to generate samples from rε(M | Y) we must be able to compute
E [hε (B·M )]. Although the expectation is with respect to a matrix t-distribution,
the complex expression for hε(B·M ) makes the form of its expectation in-
tractable, and so standard MCMC techniques do not apply. This issue is typical
of all the previously developed EAS implementations. The MLR EAS analogue
of the previous EAS approaches is to employ a pseudo-marginal MCMC algo-
rithm by estimating E [hε (B·M )] with the average of a large number of random
samples from the GF distribution of B·M (i.e., its matrix t-distribution). An
important remark is that in contrast to the previous EAS articles, in our em-
pirical investigations we find that rather than generating a sample of matrices
B·M as in (10) for approximating hε(B·M ) with an a sample mean, it suffices
to take hε(B̂·M ) as a point estimate of E [hε (B·M )], where B̂·M is the least
squares estimator for model M . This is likely partly due to our construction
for the h function having a better scaling with ε than in earlier developments
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of EAS approaches, and the fact that the distribution in (10) is centered at
B̂·M . This adjustment makes the implementation of EAS highly efficient, and
is supported by the competitive performance exhibited in extensive numerical
studies, summarized in Section 5. We briefly discuss the algorithms of EAS for
MLR case, next.

From Definition 2.1, evaluating hε(B̂·M ) can be formulated as the mixed
integer quadratic program (MIQP) with quadratic constraints,

vec (Bmin) = arg min
b,z1,...,zp

{1
2b�Q(M)b − a�

(M)b
}
,

subject to b ∈ Rqp, zj ∈ {0, 1} for j ∈ {1, . . . , p},

b�Cjb ≤ MUz
2
j , and

p∑
j=1

zj ≤ |M | − 1,

where Q(M) := (XX�) ⊗ Σ̂−1
(M), a(M) :=

(
XX�

M · ⊗ Σ̂−1
(M)

)
vec(B̂·M ), Cj is a

block diagonal matrix with p blocks of q× q zero matrices, except Iq in the j-th
block, and MU > 0 is a properly chosen constant. In particular, the quantity
MU must be chosen large enough so that MU > maxj ‖(Bmin)j‖2

2 [6]. Further,
since Bmin is not a-priori known, [6] provides a data-driven formula to specify
MU in the MIQP, which can be solved with any MIQP solver, such as CPLEX.

Input: Input a model with index set M , least squared estimator B̂·M ,
the full design matrix X, Σ̂(M), a pre-specified ε > 0 and an
initial solution Binit with number of columns with non-zero
norm less than |M | − 1;

Output: Value of hε(B̂·M );
1 Calculate L = λmax(XX�)λ−1

min(Σ̂(M)) and set Bcur = Binit;
2 Calculate the objective function

g(Bcur) = 1
2‖Σ̂

−1/2
(M) (B̂·MXM · − BcurX)‖2

F;
3 while diff > threshold or g(Bcur) > ε do
4 Calculate B = Bcur − 1

LΣ̂−1
(M)

(
BcurXX� − B̂·MXM ·X�

)
;

5 Obtain indices i1, i2, . . . , i|M |−1 such that
‖Bi1‖ ≥ ‖Bi2‖ · · · ≥

∥∥Bi|M|−1

∥∥ ≥ ∥∥Bi|M|

∥∥ · · · ≥ ∥∥Bip

∥∥ ;
6 Set Bj = 0 for all j ∈ {1, 2, . . . , p} \

{
i1, i2, . . . , i|M |−1

}
;

7 Calculate diff = |g(Bcur) − g(B)|;
8 Update Bcur = B ;
9 end

10 return hε(B̂·M ) = I (g(Bcur) > ε);
Algorithm 3.1: Pseudocode for projected gradient descent to compute
hε(B̂·M ).
Although a single MIQP is typically fast to solve in practice, we need to

compute hε(B̂·M ) for different models M at each step of the MCMC, so fur-
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ther streamlining of the computations are needed. First, observe that a solu-
tion, Bmin, to the MIQP is not always necessary to evaluate hε(B̂·M ); rather
hε(B̂·M ) = 0 if there exists any B (satisfying the MIQP constraints) such that
1
2‖Σ̂

−1/2
(M) (B̂·MXM · − BX)‖2

F < ε. If this ‘stopping’ condition is met prior to
obtaining Bmin, then the MIQP solver can be terminated early. Second, as an
alternative to an explicit MIQP solver, a discrete first-order gradient-descent
based algorithm proposed in [6] can be implemented for a crude but super-
efficient computation of hε(B̂·M ), when hε(B̂·M ) = 0. This ‘projected gradient-
descent’ algorithm is advocated as a warm start to the MIQP in [6], and the
pseudocode for our implementation of it is given in Algorithm 3.1. Note that
the gradient of objective function in the optimization problem in Definition 2.1
is Lipschitz continuous with Lipschitz constant L = ‖Σ̂−1

(M)‖‖XX�‖. For B̂·M
that are not ε-admissible, we observed in empirical experimentation that by ini-
tializing Algorithm 3.1 at B̂·M , with its column having minimum norm set to
zero, it usually finds a solution to determine that hε(B̂·M ) is zero within a few
iterations.

Input: An index set M and ε > 0
Output: A new index set M∗

1 Calculate

M̃ =

⎧⎪⎨⎪⎩
M ∪ {a new covariate} w.p. 1/3
M \ {a existing covariate} w.p. 1/3
M \ {a existing covariate} ∪ {a new covariate} w.p. 1/3

;

2 Calculate LS estimator of B̂·M and Σ̂(M) corresponding to M ;
3 Calculate LS estimator of B̂· M̃ and Σ̂(M̃) corresponding to the proposal

M̃ ;
4 Compute hε(B̂·M ) and hε(B̂· M̃ ) using Algorithm 3.1;
5 Calculate r̂ε (M | Y) and r̂ε

(
M̃ | Y

)
as in (11) ;

6 M∗ =

⎧⎨⎩M̃ w.p. ρ
(
M, M̃

)
M w.p. 1 − ρ

(
M, M̃

) , where ρ
(
M, M̃

)
:= min

{
r̂ε

(
M̃ |Y

)
r̂ε(M |Y) , 1

}
;

Algorithm 3.2: Pseudocode for one step of the MCMC algorithm
to estimate rε(M | Y). Note that weights can be used for randomly
adding/dropping/switching covariates in the proposed index set M̃ in line
2 (e.g., correlation-based weights). In that case, the Metropolis-Hasting
ratio ρ(M, M̃) in line 7 needs to be updated accordingly.
Now that we have a computationally efficient algorithm for computing the

hε(B̂·M ), the remaining task is to demonstrate the mechanism for generating
samples from the GF distribution of M . Estimating E [hε (B·M )] by hε(B̂·M ),
the GF probability mass function rε(M | Y) can be approximated as

r̂ε(M | Y) := Γq

(
n− |M |

2

)
π

q|M|
2

(
det Σ̂(M)

)−(n−|M|−q
2

)
hε

(
B̂·M
)
. (11)



1960 S. Koner and J. P. Williams

We present the pseudocode for our implementation in Algorithm 3.2. We demon-
strate empirically in Section 5 that this approximation gives results that are
competitive with the state-of-the-art Bayesian and frequentist methods for the
MLR, both in terms of performance and computation time.

4. Theoretical results

The main objective of this section is to establish the consistency of our model
selection procedure, particularly in the high-dimensional setting (i.e., p � n)
with the assumption that the true model is sparse. We begin by stating and
describing essential conditions and necessary supporting results to show that
rε(Mo | Y) converges in probability to 1 as n → ∞. Our strong model selection
consistency result is stated as Theorem 4.10. Throughout this section we a-
priori fix the following values. Let

¯
λv and λ̄v be the minimum and maximum

eigenvalues of the true covariance matrix, V0
(Mo), respectively. Denote by Py(·)

be the probability measure associated with the sampling distribution of the
response Y, as in (3), and denote by P(·) the probability measure associated with
the GF distribution of the parameters. Similarly, denote by Ey(·) the expectation
with respect to the sampling distribution of the response Y, as in (3), and denote
by E(·) the expectation with respect to the GF distribution of the parameters.

The major theoretical intricacies that we deal with while extending from
the high-dimensional univariate linear regression case are, first, the residual
sum of squares in the multivariate linear model is no longer a scalar, indeed a
q× q matrix. As evident from the equation (9), in order to establish asymptotic
variable selection selection consistency of the true model, we must derive the
concentration bound on the ratio of the determinant of residual sum of squares of
matrix for any arbitrary model to that for the true model. This calls for a lower
bound on the size of minimum eigenvalue of the Σ̂(M), for which the exisiting
theoretical results are sparse, compared to the well-established standard chi-
squared tail bounds that apply to the RSS in univariate setting. Second, the non-
asymptotic bound for the ratio of the determinant of error covariance matrix
is sharper in the sense that it does not pivot upon the growth of Δ(M) :=
B0

·Mo
XMo ·(In − H(M))X�

Mo ·B0�
·Mo

. Consequently, we establish strong variable
selection consistency of the true model without imposing any rate on Δ(M) [53,
first part of Condition 3.2], quite distinctly from the univariate paper. Third, the
concentration bounds for the E(hε(B·M )) are derived explicitly as a function of
n, in contrast to Theorem 3.7 and 3.8 of [53] where the bounds are expressed
as a function of ε, which demands for an additional non-intuitive assumption
[53, Condition 3.4] on the rate of ε. Theorem 4.10 in our paper guarantees that
such a condition is not essential to establish variable selection consistency as
long as ε satisfies Condition 4.6 and 4.8, which are fundamental to the EAS
methodology.

Conditon 4.1 requires that the true covariance matrix of the response is
positive-definite and finite, which implies that none of the components of the
multivariate response are degenerate and they all have finite second moments.
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Since the dimension of the multivariate response, q, is fixed, this assumption is
rather routine.

Condition 4.1 (Non-singularity of true covariance). The dimension of the
multivariate response vector, q, is fixed, and 0 <

¯
λv < λ̄v < ∞.

In our methods, it is important that V0
(Mo) is positive-definite so that there

exists a positive-definite, consistent estimator of it, for example, Σ̂(Mo)/(n −
|Mo|). This estimator plays an essential role in our definition of the h function
(among other roles). In particular, Condition 4.1 makes it possible that, for
large n, the minimum eigenvalue of Σ̂(M)/(n − |M |) is bounded away from 0
with high probability, for an important class of models. This fact is established
in Lemma 4.2, presented next.

Lemma 4.2. Assume the data generating model (3), and that Condition 4.1
holds. Then for sufficiently large n, and for any fixed 0 < τ < 1, and for any
M ⊆ {1, 2, . . . , p} satisfying n > |M | + 2q,

Py

(
λmin
(
Σ̂(M)

)
≥ τ(n− |M |)

¯
λv

)
> 1 − e−(1−√

τ)2(n−|M |)/2

Condition 4.3 specifies that the number of predictors are allowed to grow
at sub-exponential rate with the sample size, n, ensuring that our method is
suitable to perform in the high-dimensional setting. Model selection consistency
with this size of p relative to n is on par with the state-of-the-art results in the
literature [1].

Condition 4.3. For some fixed α ∈ (0, 1), log p = o(n1−α).

For a given model M , if |M | is on the order of n, then the row space of XM ·
might span Rn leading to a rank deficient empirical error covariance matrix,
Σ̂(M). Accordingly, rε(M | Y) from equation (9) will be undefined in this case.
Since we assume that the data arise from the non-degenerate statistical model
(3), we must exclude index sets M with nα < |M | < n − q for some fixed
α ∈ (0, 1) arising in Condition 4.3. Recall, however, that the h-function already
assigns the value 0, by definition, to M with |M | ≥ n − q, and that q is small
and fixed. Throughout the remainder of this section, we assume α ∈ (0, 1) to
be some a-priori fixed value with |Mo| ≤ nα. Condition 4.3 is quintessential for
LASSO to achieve variable selection consistency in high-dimensional settings
[Theorem 3 of 56]. It will be observed in the coming results that the fraction
α can be interpreted as a tuning parameter that balances the maximum model
size to be considered versus the rate of convergence of the EAS procedure.

Moving along, Condition 4.4 ensures that the design matrix for the true model
has full row rank, This type of restricted eigenvalue condition is routinely needed
in the variable selection literature; e.g., see Condition 6 of [56] and [26] in the
context of LASSO.

Condition 4.4. For the true model Mo, XMo ·X�
Mo · is non-singular.

Next, in order to the show that rε(Mo | Y) → 1 in probability, we must show
that rε(M | Y)/rε(Mo | Y) → 0 in probability, at a rate vanishing faster than
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2−nα uniformly for every model M 	= Mo with |M | ≤ nα. Recall that the proba-
bility mass function rε(M | Y), in equation (9), is proportional to a polynomial
of the inverse of the determinant of the empirical error covariance matrix. That
being so, we must bound the ratio of determinant, as in Theorem 4.5. This ratio
is analogous to the ratio of RSS that commonly appears in univariate model se-
lection problems, though, the multivariate situation is much more complicated
requiring delicate handling of minimum eigenvalues close to zero. That being
so, this result is interesting in its own right for (high-dimensional) MLR.

For for any model M with |M | ≤ nα, it is understood that the determinant
of Σ̂(Mo) as a proportion of that of Σ̂(M) will behave differently depending on
whether M � Mo or M 	⊆ Mo. In the first case, when M � Mo, the ratio will be
strictly less than 1 since M is missing at least one oracle predictor. Conversely,
the extreme scenario in the other case is that M ⊃ Mo, in which case the ratio
exceeds 1, but by some bound that converges to 1 as n tends to infinity.

Theorem 4.5. Assume Conditions 4.1, 4.3, and 4.4. Then for sufficiently large
n, the following approximations hold.

Case 1: This case pertains to the models M � Mo.

Py

⎛⎝ ⋂
M :M�Mo

⎧⎨⎩Y :
(

det Σ̂Mo

det Σ̂M

)n−|M|−q
2

≤ e−qnα log|Mo|

⎫⎬⎭
⎞⎠ ≥ 1 − V1,n,

where,

V1,n := |Mo| q exp
(
−
ξn,|Mo|n

α log |Mo| ¯
λv

2λ̄v

− 0.09 (n− |Mo|) + |Mo| log(|Mo|)
)

+ 2 |Mo| exp (−0.04(n− |Mo|) + |Mo| log |Mo|) ,

with ξn,|M | := 1 − 2nα log|Mo|
n−|M |−q such that ξn,|M | ∈ (0, 1) for large n.

Case 2: This case pertains to the models M 	⊆ Mo such that |M | ≤ nα.

Py

⎛⎜⎜⎝ ⋂
M :M �⊆Mo

|M|≤nα

⎧⎨⎩Y :
(

det Σ̂Mo

det Σ̂M

)n−|M|−q
2

≤ eq(n
α log(n−|Mo|)+|M| log p)

⎫⎬⎭
⎞⎟⎟⎠ ≥ 1 − V2,n,

where,

V2,n := 2q exp
(
−nα

2 log (n− |Mo|) + α logn + (|Mo| + 1)
2 log (ζn,nα)

)
,

and ζn,|M | := 1 + 2(nα log(n−|Mo|)+|M | log p)
n−|M |−q .

Observe that both quantities V1,n and V2,n vanish exponentially fast for large
n, by Condition 4.3. There are two key facts that we learn from Theorem 4.5.
The first is that the ratio of the determinants, of the empirical error covariances
raised to the power on the order of n, will drive rε(M | Y)/rε(Mo | Y) to 0
for M � Mo (i.e., Case 1). The second fact is that the ratio of the determi-
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nants, of the empirical error covariances raised to the power on the order of
n, will perhaps grow at a sub-exponential rate for large n, for M 	⊆ Mo such
that |M | ≤ nα (i.e., Case 2). As such, the role of the h-function is to control
the explosive nature of these ratios for models with redundant predictors. The
following two theorems establish that E(hε(B·M )) and E(hε(B·Mo)) are adept
at accomplishing this task. Sufficient conditions on the choice of ε are stated in
the order that they are needed.

Condition 4.6 (ε-admissibility). The size of the true model |Mo| is less than
nα. Moreover, for large n, the true model Mo satisfies,

1
36q(n− |Mo|)

∥∥∥∥(V0
(Mo)

)−1/2 (
B0

Mo
XMo · − B̃minX

)∥∥∥∥2
F

> ε,

where B̃min is the solution to the optimization problem,

B̃min := arg min
B∈Rq×p

∥∥∥∥(V0
(Mo)

)−1/2 (
B0

·Mo
XMo · − BX

)∥∥∥∥2
F
,

subject to |{j : ‖Bj‖ 	= 0}| ≤ |Mo| − 1.

Condition 4.6 provides the maximum rate of growth for the size of the true
model. This is analogous to the sparsity assumption for the LASSO [Condition
7 of 56]. It also furnishes an upper bound for the choice of ε that is sufficient
for the identifiability of the true model and coefficients, as in Definition 2.1 of
the h function. Notice that given an ε, the smaller the norm of the regression
coefficient matrix B0

·Mo
, the more difficult it becomes to identify the true model

as ε-admissibile. It is in this sense that ε-admissibility defines redundancy both
in the sense of correlated predictors and in the sense of predictors with weak
signal (after scaling for the response covariance). This is related to the ‘beta-
min’ condition discussed for variable selection via LASSO ([Section 7.4 of 11]
and [Condition 8 of 56]).

With the addition of Condition 4.6, Theorem 4.7 ensures that the oracle
model is ε-admissible. In our proof strategy of Theorem 4.10 (Appendix B), this
theorem provides a non-asymptotic probabilistic guarantee that E (hε (B·Mo))
in the denominator of rε(M | Y)/rε(Mo | Y) is bounded away from zero, so
long as ε is not too large.

Theorem 4.7. Assume Conditions 4.1 and 4.4. Then, for every ε > 0 satisfying
Condition 4.6,

Py

[
E (hε (B·Mo)) ≥ 1 − exp

(
−ε (n− |Mo|)

36 + q |Mo|
2

)
− 2e−

1
8

{√
n−|Mo|−2√q

}2]
≥ 1 − V3,n,

where,

V3,n := exp
(
−ε (n− |Mo|) ¯

λv

4 λ̄v

+ q |Mo|
2

)
+ exp (−0.04(n− |Mo|)) + exp (−0.15q(n− |Mo|)) .
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Lastly, to justify that rε(M | Y)/rε(Mo | Y) → 0 for all redundant models, it
remains to establish that E (hε (B·M )) vanishes rapidly for all models M 	⊆ Mo
with |M | ≤ nα (recall the cases in Theorem 4.5). This brings us to the final
major supporting result, Theorem 4.9, for establishing strong model selection
consistency. However, in contrast to the the upper bound condition on ε in
Condition 4.6, a lower bound condition on ε is sufficient to ensure that hε (B·M )
assigns negligible probability mass to redundant models via rε(M | Y).

Condition 4.8 (Redundancy). For any model M with M 	⊆ Mo with |M | ≤ nα,
for large n,

9

¯
λv (n− |M |)

∥∥B0
·Mo

XMo ·
(
H(M) − H(M)(−1)

)∥∥2
F < ε,

where H(M)(−1) := H(M\{j∗}) is the projection matrix for the size that is con-
structed after omitting the predictor j∗ from the model M that minimizes

j∗ = arg min
j∈M

∥∥B0
·Mo

XMo ·
(
H(M) − H(M\{j})

)∥∥2
F .

Condition 4.8 is sufficient for showing that E(hε(B·M )) → 0 in probability for
all redundant models, and further characterizes the non-ε-admissible notion for
redundancy. The quantity on the left side of the condition is the mean difference
in the prediction between models M and M\{j∗}. Condition 4.8 implies that
models M with M 	⊆ Mo are redundant in the sense that they contain at least
one predictor whose omission will not change the mean predicted response by
more than ε, as measured by the properly scaled squared Frobenius norm. This
requires that none of the predictors in model M \Mo can be replaced by some
predictors in the true model to provide a significantly better prediction than ε
(in the appropriate scale). Intuitively, this means that the correlations between
the predictors in the true model and the ones not in the true model cannot
be large. Resembling the notion of the irrepresentability condition necessary
for LASSO model selection consistency [56], this is to say that the irrelevant
covariates cannot be well-represented by any of the covariates in the true model.

Condition 4.6 coupled with Condition 4.8 provides the crucial interval for the
choice of ε within which the oracle model is identifiable and the EAS procedure
achieves strong model selection consistency. Notably, due to the appropriate
scaling of quantities in the h function, this interval neither depends on the
sample size n nor the size of the model M .
Theorem 4.9. Assume Conditions 4.1, 4.3, and 4.4. Then, for sufficiently large
n, and for every ε > 0 satisfying Condition 4.8,

Py

⎡⎢⎢⎣ ⋂
M �⊆Mo
|M|≤nα

{
Y : E (hε (B·M )) ≤ exp

(
− ε (n− |M |)

36 + q |M |
2

)
+ 2e−

1
8

{√
n−|M|−2√q

}2}⎤⎥⎥⎦
≥ 1 − V4,n,
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where,

V4,n := nα

{
exp
(
− ε (n− nα)

¯
λv

36 λ̄v

+ qnα

2 + nα log p
)

+ 2 exp (−0.04(n− nα) + nα log p)
}
.

Theorem 4.9 is a non-asymptotic concentration bound for E (hε (B·M )) that
applies uniformly over all model M 	⊆ Mo. This is the critical theoretical aspect
of the h function that compensates for the explosive nature of the ratios of the
determinants of the empirical error covariances raised to the power on the order
of n, uniformly over all models M 	⊆ Mo such that |M | ≤ nα, as exhibited in
Case 2 of Theorem 4.5.

To this point in the article, sufficient analysis has be constructed to argue
the pairwise model selection consistency result that rε(M | Y)/rε(Mo | Y) →
0 in probability for any M 	= |Mo| with |M | ≤ nα. For the case when p is
fixed, this also implies strong model selection consistency. In the case when
p → ∞ and particularly for p � n, however, further justification is required
because the number of candidate models to consider is 2nα . Theorems 4.7 and 4.9
are able to manage this exponential-sized class of candidate model with the
essential attribute that they provide concentration inequalities of tails that are
uniform and vanish exponentially fast in n. This fact is stated as our main result,
Theorem 4.10.

Theorem 4.10. Assume the data generating model (3), and suppose that Con-
ditions 4.1, 4.3 and 4.4 are satisfied. Then for every ε > 0 satisfying Condi-
tions 4.6 and 4.8,

rε (Mo|Y)∑
M :|M |≤nα rε (M |Y)

Py−→ 1,

as n → ∞ or n, p → ∞.

The proof of Theorem 4.10 and the proofs of all other results are organized in
the Supplementary Material. Note that Theorem 4.10 is the only non-asymptotic
result in our theoretical developments, and so as long as the conditions are
satisfied, it is expected that it is reasonably illustrative of the performance
of our constructed EAS procedure on observed data. We provide evidence to
substantiate this claim in finite sample numerical studies, presented next in
Section 5.

5. Numerical results

In this section we demonstrate the performance of our EAS method in compari-
son to the state-of-the-art variable selection procedures for MLR. Very recently
[1] developed the MBSP method that is equipped to perform variable selection
for MLR. They demonstrate a distinctly superior performance of MBSP over all
the existing methods, especially in a high-dimensional setting. To make stan-
dard the comparison between the MBSP and EAS approaches, we mimic the
exact same synthetic data simulation study design constructed in [1].
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The simulation design can be broadly categorized into three parts, low dimen-
sional (LD) (n > p), high-dimensional (HD) (p > n) and ultra high-dimensional
(UHD) (p � n). Two sub-categories are considered within each of these cate-
gories, to analyze performance for varying sizes of the true model, |Mo|, versus
the total number of predictors, p. Within each category the dimension of the
multivariate response, q, is also varied to study the effect of q on the model se-
lection performance. In total, there are six experiments, summarized in Table 1.

For each of the first six simulation designs, we generate synthetic data by the
following mechanism: The n columns of the design matrix X are sampled from
a multivariate normal distribution with mean zero and covariance matrix Γ,
that has an AR(1) structure with correlation coefficient 0.5 (i.e., Γij = 0.5|i−j|,
for i, j ∈ {1, . . . , p}). The true model Mo is constructed by randomly selecting
|Mo| elements from {1, . . . , p}. Once the true model Mo is constructed, each
component of the q×|Mo| true regression coefficient matrix B0

·Mo
is set as a value

generated from the random variable U+I(U > −0.5), with U ∼ Uniform(−5, 4),
so that the values always lie within [−5,−0.5] ∪ [0.5, 5]. The response vectors
Y1, . . . ,Yn are independently generated from a multivariate normal distribution
with mean B0

·Mo
XMo · and covariance V0

(Mo), where V0
(Mo) also has an AR(1)

structure with V0
(Mo),ij = σ20.5|i−j| for i, j ∈ {1, . . . , q} and σ2 = 2.

Table 1

n is the sample size, p is the number of predictors, q is the dimension of multivariate
response vectors, and |Mo| is the size of the true model.
Dimension Sparsity n p q |Mo|

LD (n > p) Sparse 60 30 3 5
Dense 80 60 6 40

HD (p > n) Sparse 50 200 5 20
Dense 60 100 6 40

UHD (p � n) Ultra-sparse 100 500 3 10
Sparse 150 1000 4 50

In order to further investigate the performance of the EAS method under chal-
lenging scenarios, we conduct additional experiments beyond those presented in
[1]. Specifically, we consider three additional experimental settings, described
in Table 2. In the first experiment, we increase the dimension of the response
variable to q = 60, which is ten times larger than the dimension considered
in Table 1. In the second experiment, we increase the difficulty of the design
matrix by introducing a non-decaying structure for Γ, while keeping the error
covariance V0

(Mo) fixed at AR(1). In the third experiment, we introduce a dense
structure for the error covariance matrix.

The EAS procedure is implemented by computing Algorithm 3.2 described
in Section 3 to draw MCMC samples from the space of all 2p candidate models.
Observe that Algorithm 3.2 is developed to work for a fixed ε. We propose
two methods for selecting the tuning parameter ε; (i) 10-fold CV and (ii) via
Bayesian IC (BIC) by searching over a pre-specified grid of ε values. For both
the CV and BIC routines, we take a uniform grid of 24 possible values for ε, from
0.05 to 10 in all six experiments. In the CV procedure, for each of the 10 folds we
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Table 2

The notation is defined as follows: n is the sample size, p is the number of predictors, q is
the dimension of multivariate response vectors, |Mo| is the size of the true model, and Γij

and V0
(Mo),ij are (i, j)th element of Γ (i.e., the variance of the columns of the design
matrix of X) and V0

(Mo) (i.e., the error covariance matrix), respectively.

Dimension Set up q Γij V0
(Mo),ij

n = 150,

p = 1000,

Mo = 50

Large q 60 0.5|i−j| 2 × 0.5|i−j|

Large q and
Non-decaying correlation of

design matrix
60 0.5{1 + I(i = j)} 2 × 0.5|i−j|

Large q, non-decaying correlation
of design matrix, and dense

error covariance matrix
60 0.5{1 + I(i = j)} 1 + I(i = j)

implement our EAS method on the training set by running the MCMC 500 steps,
discarding the first 200 steps, and evaluating the performance on the validation
set, as follows. The initial estimates from the multivariate LASSO (MLASSO) [19]
serve as the weights for proposing/removing predictors in the MCMC algorithm.
The expectation of hε(B·M ) for any model M is approximated by evaluating
the h at the least square estimator B̂·M , which makes the computation very
fast compared to the previous version of EAS procedures. The MAP estimated
model from the MCMC sample is taken as a point estimator to compute the
mean squared prediction error (MSPE) on the validation set. The optimal ε is
chosen as the one that minimizes the average of the MSPE over the 10 folds.
Finally, we re-run Algorithm 3.2 on the entire dataset using the optimal selected
ε for 10,000 MCMC steps and discard the first 5,000.

For the BIC procedure, the computational cost is much less. In this case,
for every ε in the grid, we run Algorithm 3.2 for 5,000 steps, discard the initial
2,000 in obtaining the MAP estimated model, and compute the BIC for the MAP
model. The ε corresponding to the minimum BIC value is selected as optimal.
The advantage of using BIC is that we do not need to run the algorithm again
for the optimally chosen ε, we can simply use the MCMC chain from the initial
runs as our estimated sample for the chosen ε.

We compare the performance of our EAS method with (1) the MBSP approach
as implemented in the R package MBSP [2]; (2) the multivariate group lasso with
spike and slab prior (MBGL-SS) method as implemented in the R package MBSGS
[32] with the natural grouping (i.e., each predictor represents one group); (3) the
sparse reduced rank regression (SRRR) method as implemented in the R package
rrpack [12], with pre-specified rank q and adaptive group LASSO penalty; (4) the
sparse partial least squares (SPLS) approach as implemented in the R package
spls [16], with the thresholding parameter η selected by CV, and the number
of hidden components is set as q; (5) the multivariate sparse group LASSO
(MSGLASSO) method as implemented via R package MSGLasso [30] with each
predictor representing its own group; (6) the MLASSO method as implemented via
the glmnet package [19] that penalizes the norm of each of the columns of the
coefficient matrix; and (7) Multivariate square-root grouped LASSO (MSRL) with
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each predictor representing its own group [34], with tuning parameter selected
via 5-fold CV and the range of candidate tuning parameters, δ, set at 0.1.

For the frequentist procedures, the estimated model is defined to be the
non-zero columns of the estimated coefficient matrix. For MBGL-SS the median
thresholding estimator is used, and for MBSP the coefficients selected in the
estimated model are those for which the 95% credible interval does not contain
0. For our EAS method we take the least square estimator of the MAP model
as the point estimator for B0

·Mo
.

The metrics we use to evaluate the performance of the various methods,
over 1,000 synthetic data sets for each of the six experiments in Table 1 and
three experiments in Table 2, are the following. We report median MSPE on
an out-of-sample test set, Ynew, that is of the same size as Y. We also report
the average false discovery rate (FDR), the average false negative rate (FNR),
average mis-classification probability (MP), average proportion of correct model
selection (PCM), and median computation time. The results of the experiments
in Table 1 are displayed in Table 3, and the results of the experiments in Table 2
are displayed in Table 4. The results are a bit less noisy than those reported in
the simulation study in [1] because they only generated 100 synthetic datasets,
and they did not report the out-of-sample prediction performance.

The explicit formulas for computing the metrics are, MSE := ‖Y− Ŷ‖2
F/nq,

MSPE := ‖Ynew−Ŷnew‖2
F/nq, FDR := FP/(FP+TP), FNR := FN/(FN+TN),

and MP := (FP + FN)/pq, where TP, FP, TN, and FN are, respectively, the
number of true positives, false positives, true negatives, and false negatives.
Moreover, we also present the average estimated posterior probability of the
true model, denoted P(Mo | Y), for the Bayesian procedure and average fiducial
probability, rε(Mo | Y), for the EAS procedure. Note that neither rε(Mo | Y)
nor P(Mo | Y) can be calculated for the frequentist methods, or the MAP or
credible region based Bayesian methods, like MBSP.

From Table 3, in the generic n > p case for both sparsity levels of the true
model, irrespective of whether ε is chosen based on BIC or CV, our EAS method
performs on par with all other methods in terms of predictive performance, ex-
cept SPLS which tends to exhibit inferior level of accuracy. In terms of variable
selection performance, our EAS method chooses the correct model with a high
probability and very low FDR and FNR, similar to the Bayesian methods MBGL-
SS, MBSP and frequentist method SRRR. Other frequentist procedures tend to ex-
hibit a lot of false positives. our EAS method does an excellent job in assigning
a very high (GF) probability to the true model. Moreover, it is an advantage
of our EAS method, and MBGL-SS, that they provide a probabilistic assessment
of the competing models M so that inference can be made on how much bet-
ter, say the MAP estimated model is from the second best model and so on.
For instance, if there are many models that are assigned similar probabilities,
then the practitioner is warned not to over-interpret inference based on a single
model. This situation would possibly happen if there is sufficient collinearity (as
defined by ε) among the important predictors. In that case, it is not reasonable
to think that there is a unique choice of correct model (for fixed sample size) or
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Table 3

Performance of EAS compared other methods over 1,000 replications.

Method MSPE FDR FNR MP P(Mo | Y) PCM time
(in sec)

LD (n > p), sparse : n = 60, p = 30, q = 3, |Mo| = 5
EAS-BIC 2.17 0.0096 0 0.0007 0.952 0.952 143
EAS-CV 2.17 0.0148 0 0.0014 0.951 0.951 714
MBGL-SS 2.17 0.0042 0 0.0003 0.903 0.976 92
MBSP 2.28 0.0194 0 0.0013 N/A 0.891 20
MLASSO 2.47 0.6683 0 0.1245 N/A 0 0.6
MSGLASSO 2.65 0.4393 0 0.0553 N/A 0.032 0.6
SPLS 6.66 0.1419 0.023 0.0178 N/A 0.175 2.9
SRRR 2.17 0.0113 0 0.0008 N/A 0.939 0.1
MSRL 2.49 0.6603 0 0.1197 N/A 0 21

LD (n > p), dense : n = 80, p = 60, q = 6, |Mo| = 40
EAS-BIC 4.14 0.0129 0 0.0021 0.9309 0.932 343
EAS-CV 4.12 0 0.0004 0 0.997 0.997 1944
MBGL-SS 4.10 0.0007 0 0.0001 0.9383 0.972 358
MBSP 4.25 0.0028 0 0.0003 N/A 0.897 30
MLASSO 5.94 0.331 0 0.055 N/A 0 1.1
MSGLASSO 6.23 0.3118 0 0.0505 N/A 0 3.0
SPLS 145.08 0.2738 0.2291 0.0467 N/A 0 7
SRRR 4.14 0.0033 0 0.0004 N/A 0.886 0.4
MSRL 5.69 0.3282 0 0.0543 N/A 0 32

HD (p > n), sparse : n = 50, p = 200, q = 5, |Mo| = 20
EAS-BIC 3.40 0.0351 0.0002 0.0015 0.8798 0.882 368
EAS-CV 3.36 0.0075 0.0005 0.0004 0.9509 0.951 1811
MBGL-SS 52.29 0.5503 0.0076 0.0561 0.2029 0.232 3158
MBSP 4.43 0.0124 0 0.0003 N/A 0.778 95
MLASSO 15.85 0.7818 0.0001 0.0721 N/A 0 1.1
MSGLASSO 21.10 0.737 0.0049 0.0568 N/A 0 7.3
SPLS 112.05 0.5214 0.0401 0.0307 N/A 0 9.2
SRRR 15.54 0.7448 0.0016 0.0582 N/A 0 7.1
MSRL 16.69 0.7885 0.0002 0.0758 N/A 0 65

HD (p > n), dense : n = 60, p = 100, q = 6, |Mo| = 40
EAS-BIC 6.91 0.0589 0.0135 0.0065 0.6673 0.669 441
EAS-CV 6.45 0.0203 0.0089 0.0026 0.8599 0.858 2252
MBGL-SS 6.31 0.0026 0.0002 0.0002 0.7697 0.936 861
MBSP 9.78 0.0297 0.0002 0.0021 N/A 0.339 56
MLASSO 34.86 0.5281 0.0006 0.0748 N/A 0 1.3
MSGLASSO 32.95 0.5265 0.001 0.0748 N/A 0 6.3
SPLS 197.30 0.4721 0.1437 0.0659 N/A 0 8.7
SRRR 22.03 0.474 0.0031 0.0603 N/A 0 2.7
MSRL 34.48 0.5511 0.001 0.0821 N/A 0 40

UHD (p � n), ultra-sparse : n = 100, p = 500, q = 3, |Mo| = 10
EAS-BIC 2.23 0.0143 0 0.0004 0.9609 0.9609 241
EAS-CV 3.98 0.6135 0 0.0222 0.2116 0.2116 1645
MBGL-SS 2.23 0.0032 0 0.0001 0.7691 0.9729 18901
MBSP 2.86 0.0666 0 0.0005 N/A 0.5366 491
MLASSO 3.09 0.841 0 0.0396 N/A 0 1.3
MSGLASSO 16.71 0.7683 0.0013 0.0228 N/A 0 7.7
SPLS 27.54 0.2405 0.0055 0.0039 N/A 0.001 14
SRRR 5.91 0.9363 0 0.0981 N/A 0 20
MSRL 3.10 0.7890 0 0.0277 N/A 0 163

UHD (p � n), sparse : n = 150, p = 1000, q = 4, |Mo| = 50
EAS-BIC 3.00 0 0 0 0.9944 0.995 1144
EAS-CV 3.00 0.0013 0 0.0001 0.9913 0.991 7095
MBGL-SS 354.19 0.932 0.0175 0.1532 0 0 116522
MBSP 3.46 0.0026 0 0 N/A 0.871 2316
MLASSO 19.00 0.8143 0 0.055 N/A 0 2.3
MSGLASSO 90.39 0.7995 0.0081 0.0455 N/A 0 74
SPLS 306.63 0.5796 0.0221 0.0193 N/A 0 91
SRRR 34.99 0.8052 0.0006 0.0514 N/A 0 88
MSRL 17.82 0.8323 0 0.0643 N/A 0 346
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that the practitioner should choose a single model. For example, if two covari-
ates are perfectly correlated, then the notion of best subset of the two covariates
is not meaningful. Statistical inference guides data driven decisions, but such
inference should also have the capability to suggest when there is not enough
information in the data to make a decision; this embodies the EAS approach to
model selection, and it also enables the EAS method to meaningfully be applied
even in the absence of an underlying sparse data generating structure.

Continuing on Table 3, in the p > n and p � n scenarios, our EAS method
does fulfill the expectations consistent with the strong model selection consis-
tency. This is demonstrated by the fact that the EAS procedure, either using the
BIC or CV tuning selection procedures, outperforms MBSP in terms of both the
prediction performance and the average proportion of correct model selections.
It also assigns a very high GF probability to the true model, which, again is
consistent with our strong model selection consistency theoretical result.

The selection performance of the frequentist procedures seems to degrade
rapidly when one moves from small to large p. They tend to select a lot of false
signals in the estimated model. An interesting remark in support of MBGL-SS
is that it seems to perform on par with the EAS procedure and outperform
MBSP in some of the high-dimensional designs considered, arguably when either
p is not so much larger than n or when the true model is ultra-sparse. This
contradicts the numerical results presented in [1] where MBGL-SS is shown to
perform poorly in all of the high-dimensional scenarios. In the p � n and the
ultra-sparse, when the optimal ε is chosen by CV, it seems to commit a lot of
false discoveries. This might be attributed to the lack of identifiability of the
true model in some of the folds, thus choosing an ε that it is relatively smaller
than the optimal one. However, choosing ε through BIC seems to mitigate these
computational bottlenecks observed with the CV procedure.

Table 4 compares performance of the methods with respect to challenges re-
lating to larger dimension of the response, non-decaying correlation structure
among the columns of the design matrix, and dense error covariance matrix.
We do not present the results of MBGL-SS method because it takes more than
96 hours for a single dataset when q is increased to 60. Our results demonstrate
that using either the BIC or CV tuning selection procedures, our EAS method
outperforms all other methods in terms of both prediction performance and the
average proportion of correct model selections. Furthermore, our EAS approach
assigns a high GF probability to the true model, which aligns with our theoret-
ical result regarding strong model selection consistency. In comparison to the
frequentist approaches, SPLS is the only method that performs relatively well,
whereas all other procedures tend to have a high FDR.

Lastly, observe that when the error covariance matrix is dense and the de-
sign matrix is complex—in addition to a large number of predictors—our EAS
approach tends to result in higher false discoveries when optimal ε is selected
by CV. As mentioned before, this issue may be due to a lack of identifiability of
the true model in certain folds, resulting in the selection of a suboptimal ε that
is relatively smaller than the optimal one. Nevertheless, selecting the regulariza-
tion parameter using BIC appears to mitigate these computational bottlenecks
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observed with the CV procedure. Overall, our findings demonstrate that our
EAS method offers superior performance in these challenging scenarios, and
may prove beneficial in various applied settings.

Table 4

Performance of EAS compared other methods for large dimension of the multivariate
response, dense (non-decaying) correlation of the columns of the design matrix and error

covariance matrix. Throughout this experiment, we consider UHD (p � n) and sparse case,
i.e., the sample size, the number of predictors, and the size of the true model is fixed at

n = 150, p = 1000, and |Mo| = 50.

Method MSPE FDR FNR MP P(Mo | Y) PCM time
(in sec)

Large dimension of response: q = 60
AR(1) correlation for the column of design matrix X: Γij = 0.5|i−j|

AR(1) error covariance matrix: V0
(Mo),ij = 2 × 0.5|i−j|

EAS-BIC 3.01 0.000 0.000 0.000 0.99 1 4680
EAS-CV 3.01 0.000 0.000 0.000 0.99 1 22896
MBSP 3.79 0.054 0.000 0.000 N/A 0.09 4587
MLASSO 6.52 0.914 0.000 0.009 N/A 0.00 40
MSGLASSO 8.37 0.871 0.001 0.006 N/A 0.00 618
SPLS 3.43 0.167 0.000 0.0002 N/A 0 4280
SRRR 32.76 0.927 0.000 0.011 N/A 0 1922
MSRL 6.91 0.9334 0 0.0117 N/A 0 262

Large dimension of response: q = 60
Non-decaying correlation for the column of design matrix X: Γij = 0.5{1 + I(i = j)}

AR(1) error covariance matrix: V0
(Mo),ij = 2 × 0.5|i−j|

EAS-BIC 3.01 0.000 0.000 0.000 0.99 1 3174
EAS-CV 3.01 0.000 0.000 0.000 0.99 1 17680
MBSP 3.97 0.053 0.000 0.000 N/A 0.08 4521
MLASSO 7.98 0.496 0.000 0.001 N/A 0.00 36
MSGLASSO 6.56 0.78 0.000 0.003 N/A 0.00 7298
SPLS 5.14 0.185 0.000 0.0002 N/A 0 4799
SRRR 15.19 0.931 0.000 0.011 N/A 0 2848
MSRL 6.56 0.9406 0 0.0132 N/A 0 7098

Large dimension of response: q = 60
Non-decaying correlation for the column of design matrix X: Γij = 0.5{1 + I(i = j)}

Dense error covariance matrix: V0
(Mo),ij = 1 + I(i = j)

EAS-BIC 3.00 0.000 0.000 0.000 0.99 1 3214
EAS-CV 3.11 0.119 0.000 0.0002 0.72 0.72 17808
MBSP 2.98 0.052 0.000 0.000 N/A 0.12 4720
MLASSO 7.27 0.531 0.000 0.001 N/A 0.00 41
MSGLASSO 5.47 0.734 0.000 0.002 N/A 0.00 7184
SPLS 4.57 0.186 0.0001 0.0002 N/A 0 4800
SRRR 10.34 0.928 0.000 0.011 N/A 0 2876
MSRL 4.51 0.9374 0 0.0125 N/A 0 47963

6. Yeast cell data analysis

This section presents the results of implementing the EAS algorithm on the
yeast cell cycle dataset [27]. The first part of the data contains yeast cell cy-
cle gene expression data consisting of 18 measurements of messenger ribonucleic
acid (mRNA) levels which are taken every 7 minutes of 119 minutes covering two
cell cycle periods, for 542 cell cycle-related genes. The second part of the data
contains binding information for a total of 106 transcription factors (TFs). TFs
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are essential regulators of gene expression, and the binding of these proteins to
specific DNA sequences controls the transcription of genes into mRNA, and ul-
timately the synthesis of functional proteins. The levels of mRNA, and therefore
protein, produced by a gene are determined by the activity of the associated TFs
[38, 51]. Therefore, it is important to identify the key TFs that regulate cell cy-
cles. The particular dataset we analyze here is taken from the R package spls [16].
The response matrix Y of gene-expression data is 18× 542 dimensional and the
design matrix X of TFs is 106×542 dimensional, i.e., n = 542, p = 106, and q =
18. The data has been previously analyzed for variable selection of TFs in [1, 15].

As not all TFs are significantly contributing to the gene expressions; we aim
to find a parsimonious set of cell-cycle regulating TFs by applying our EAS
algorithm to this data. We use only the CV method to select the optimal tuning
parameter ε for the real data application because we cannot rely on BIC due to
the probable violation of the Gaussian assumption. We use a uniform grid of 16
values ranging from 0.01 to 0.2 for selection of ε via CV. We do not extend the
grid endpoint over 0.2 because an implementation of Algorithm 3.2 did not select
any TFs as admissible for epsilon greater than 0.2. We run the EAS method on
the training set with the MCMC algorithm for 500 steps, discarding the initial
200 steps, and evaluate its performance on the validation set. The multivariate
LASSO estimates serve as weights for proposing or removing predictors in the
MCMC algorithm. We use the MAP estimated model from the MCMC sample
as a point estimator to calculate the MSPE on the validation set. We select the
optimal ε that minimizes the average MSPE across the 10 folds. The CV method
selects optimal ε as 0.09. Finally, using ε = 0.09, we implement Algorithm 3.2 on
the entire yeast cell cycle data ten times to account for random variation in the
MCMC chains, and each chain is run for 10,000 MCMC steps, discarding the
initial 5,000 steps. Thus, we arrive at ten MCMC chains, each containing 5,000
samples from the GF distribution of the ε-admissible models for the yeast data.

The first five rows of Table 5 present the GF probabilities of the model, based
on the ten MCMC chains. We truncate the table to display models with esti-
mated GF probabilities greater than .1. The MAP estimated model identifies
a rather parsimonious model, containing only 9 significant TFs. Interestingly,
except for HIR1 and GAT3, all of the selected TFs in the MAP model are among
the 21 experimentally confirmed cell-cycle-related TFs [52], supporting the rele-
vance of our EAS approach to select a parsimonious model in real applications.
Moreover, our research has identified HIR1 and GAT3 as two novel TFs. To
evaluate the predictive performance of each of the models in Table 5, we employ
ten-fold CV. Specifically, we use 90% of the data as the training set and obtain
the least squares estimator. We then calculate the MSE and median absolute
deviation (MAD) of the residuals on the remaining 10% of the data that we held
out. We repeat this process 1,000 times, each time using different training and
test sets, and compute the average MSE as MSPE and average MAD as mean
absolute prediction error (MAPE). Finally, we scale the MSPE and MAPE by
a factor of 100 for better clarity. The number of TFs in the optimally selected
model for most of the competing methods are presented in Table 3 of [1]. We
present the selected TFs in the optimal model for the Bayesian methods only,
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Table 5

Selected TFs for models with more than .1 estimated GF probability based on the EAS, MBSP
and MBGL-SS methods, respectively. The optimal tuning parameter is selected via CV.

Method Model Selected TFs # TFs GF probability
rε(M | Y) MSPE MAPE

1 ACE2 GAT3 HIR1 MBP1
MCM1 NDD1 STE12 SWI5 SWI6 9 48.9% 19.0 23.9

EAS-CV

2
ACE2 GAT3 HIR1 MBP1
MCM1 NDD1 STE12 SWI5
SWI6 YAP5

10 18.9% 19.0 23.9

3
ACE2 FKH2 GAT3 HIR1
MBP1 MCM1 NDD1 STE12
SWI4 SWI5

10 10% 19.0 23.6

MBSP
ACE2 FKH2 GAT3 HIR1
HIR2 MBP1 MET4 NDD1
REM1 STE12 SWI5 SWI6

12 NA 18.6 23.5

MBGL-SS GAT3 NDD1 SWI5 SWI6 4 NA 20.1 23.6

i.e., MBSP and MBGL-SS, in the last two rows of Table 5. The last two columns of
the table suggest that our EAS method does an outstanding job in terms of pre-
diction accuracy in comparison to the competing methods while simultaneously
maintaining parsimony in the selected model.

While models 2 and 3, each having 10 significant TFs, and the model selected
by MBSP (with 12 significant TFs) exhibit similar or slightly better MSPE and
MAPE compared to model 1, our EAS approach demonstrates remarkable per-
formance by assigning a higher GF probability to the more parsimonious model
1. As determined by the EAS approach, the marginal improvement in prediction
accuracy obtained with additional TFs is not substantial enough to justify the
increase in model complexity.

The GF construction used enables parametric inference similar to Bayesian
inference. In terms of quantifying uncertainty of the unknown parameters, the
standard deviation of the estimated GF distribution of regression coefficient for
each TFs, conditioned on a given model, plays a similar role to that of a standard
error if the posterior mean is used as the point estimate. In this setting, we do
not rely on p-values to determine statistical significance, but instead utilize the
marginal inclusion probability of a specific TFs across all models in the GF
distribution to establish its significance. The marginal inclusion probabilities of
all TFs are presented in Table 6. We have shortened the table to only include
TFs that have inclusion probabilities of at least .5. Remarkably, all the TFs with
marginal inclusion probabilities exceeding .8 are the components of the MAP
model listed in Table 5.

In this exposition, the real data analysis of yeast cell cycle data is not in-
tended as a comprehensive investigation. Rather, it serves as a proof of concept
for the practical utility of the EAS methodology for analyzing real data. It
should be noted that obtaining a probability distribution of all possible models
that are ε-admissible, as presented in Table 5, along with the marginal inclu-
sion probabilities of the TFs, as in Table 6, is not feasible using frequentist or
Bayesian point estimation-based procedures, such as MBSP. The ability of our
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Table 6

Marginal inclusion probabilities of the TFs based on ten independent MCMC chains on the
yeast cell cycle data. The optimal tuning parameter is selected via CV.

Transcription
factors

Marginal inclusion
probability (in %)

ACE2 100
HIR1 100
NDD1 100
STE12 100
SWI15 100
GAT3 99.9

MBP1 98.9
SWI16 95.0
MCM1 82.2

FKH2 58.5
RME1 53.5
HIR2 52.6
ARG81 50.0

EAS method to provide a probabilistic assessment of competing models stands
out as an attractive feature of our EAS method. Although MCMC-based ap-
proaches are computationally more expensive, they provide more comprehensive
information for uncertainty quantification.

7. Concluding remarks

The theoretical results presented in this article assume that the dimension q
of response is fixed. However, we kept careful account of all instances of q in
all of the non-asymptotic results presented, leaving an indication for the reader
to understand the influence of q in the consistency rates. An obvious extension
of our work is to allow q to grow, and in that case a careful account of the
role of q in the theory is critical to determine the circumstances in which the
EAS method remains a consistent model selection procedure. A field where this
extended theory could be applied is functional data analysis (FDA), where the
response is measured very densely for each subject and naturally the dimension
of the response grows. Although smoothness in the mean and the covariance
function is fundamental to the analysis of FDA, many FDA procedures simply
rely on techniques that are developed for multivariate response data. Thus, we
view this article as a promising first step on the pathway to a novel functional
variable selection procedure.

Appendix A: Generalized fiducial distribution for multivariate
linear regression

Here, we will derive the joint GF distribution of (B·MA(M)) presented in (9).
The data generating equation corresponding to i-th data, Yi is,

Gi := G(B·M ,A(M),Ui) = B·MXM ·,i + A(M)Ui i = 1, 2, . . . , n,
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where, XM ·,i is the ith column of the matrix XM ·. Then,

∂Gi

∂B·M
=
[
∂(B·MXM ·,i)

∂b11
, . . . ,

∂(B·MXM ·,i)
∂bq|M|

]
=
[
J11XM ·,i · · · J1|M |XM ·,i · · · Jq1XM ·,i · · · Jq|M |XM ·,i

]
= Iq ⊗ X�

M ·,i ∈ Rq×q|M |,

where Jkl ∈ Rq×|M | is a sparse matrix of which (k, l)th element is 1 and all
others are zero. Similarly, ∂Gi

∂A(M)
= Iq⊗U�

i ∈ Rq×q2 . So the matrix of derivatives
corresponding to the i-th data generating equation is,

D(M),i =
[

∂Gi

∂B·M

... ∂Gi

∂A(M)

]
=
[
Iq ⊗ X�

M ·,i
... Iq ⊗ U�

i

]
∈ Rq×q|M |+q2

.

The entire matrix of derivative corresponding to all observations is,

D(M) =

⎡⎢⎣Iq ⊗ X�
M ·,1 Iq ⊗ U�

1
...

...
Iq ⊗ X�

M ·,n Iq ⊗ U�
n

⎤⎥⎦ ∈ Rqn×q|M |+q2
,

which is almost surely of full column rank if n > |M |+ q. Now, define, P(M) :=[
Iq ⊗ X�

M · Iq ⊗ U�], and evaluate the derivatives at U = A−1
(M)Ũ with Ũ =

Y − B·MXM · ∈ Rq×n. Because P(M) is obtained rearranging rows of D(M),
D�

(M)D(M) = P�
(M)P(M) and P�

(M)P(M) equal to⎡⎣Iq ⊗ XM ·X�
M · Iq ⊗ XM ·U�

Iq ⊗ UX�
M · Iq ⊗ UU�

⎤⎦

=

⎡⎢⎢⎣
Iq ⊗ XM ·X�

M · Iq ⊗
(
XM ·Ũ

�
A−1

(M)
�)

Iq ⊗
(
A−1

(M)ŨX�
M ·

)
Iq ⊗ A−1

(M)ŨŨ
�
A−1

(M)
�

⎤⎥⎥⎦

=

⎡⎣Iq ⊗ I|M | 0

0 Iq ⊗ A−1
(M)

⎤⎦
⎡⎢⎣Iq ⊗ XM ·X�

M · Iq ⊗ XM ·Ũ
�

Iq ⊗ ŨX�
M · Iq ⊗ ŨŨ

�

⎤⎥⎦

×

⎡⎢⎣Iq ⊗ I|M | 0

0 Iq ⊗ A−1
(M)

�

⎤⎥⎦ .
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Then,

detD�
(M)D(M) =

(
detA(M)A�

(M)

)−q

det

⎡⎢⎣Iq ⊗ XM ·X�
M · Iq ⊗ XM ·Ũ

�

Iq ⊗ ŨX�
M · Iq ⊗ ŨŨ

�

⎤⎥⎦ .
After row and column operations,

det

⎡⎢⎣Iq ⊗ XM ·X�
M · Iq ⊗ XM ·Ũ

�

Iq ⊗ ŨX�
M · Iq ⊗ ŨŨ

�

⎤⎥⎦ = det

⎧⎪⎨⎪⎩Iq ⊗

⎡⎢⎣XM ·X�
M · XM ·Ũ

�

ŨX�
M · ŨŨ

�

⎤⎥⎦
⎫⎪⎬⎪⎭

=

⎛⎜⎝det

⎡⎢⎣XM ·X�
M · XM ·Ũ

�

ŨX�
M · ŨŨ

�

⎤⎥⎦
⎞⎟⎠

q

.

Further, by property of determinant of block matrices,

det

⎡⎢⎣XM ·X�
M · XM ·Ũ

�

ŨX�
M · ŨŨ

�

⎤⎥⎦ =
(
detXM ·X�

M ·
)

×

det
[
ŨŨ

� − ŨX�
M ·
(
XM ·X�

M ·
)−1 XM ·Ũ

�]
.

Analogous to univariate linear regression,

Y − B̂·MXM · = Y − YX�
M ·
(
XM ·X�

M ·
)−1 XM · = Y

(
I − H(M)

)
,

and,

ŨŨ
� − ŨX�

M ·
(
XM ·X�

M ·
)−1 XM ·Ũ

�

=
(
Ũ− B̂·MXM · + B̂·MXM ·

) [
I − H(M)

] (
Ũ− B̂·MXM · + B̂·MXM ·

)�
=
(
Y − B̂·MXM ·

) [
I − H(M)

] (
Y − B̂·MXM ·

)�
= Σ̂(M).

The Jacobian is obtained as

J(Y, (B·M ,A(M))) :=
√

detD�
(M)D(M) = CM

(
detV(M)

)−q/2
,

where CM :=
(
detΩ(M)

)q/2 (det Σ̂(M)

)q/2
and Ω(M) = XM ·X�

M ·. Note that
CM does not depend on either of B·M or A(M). The likelihood function is,

f(Y, (B·M ,A(M))) ∝
(
detV(M)

)−n
2 exp

[
−1

2 tr
(
R(M)V−1

(M)

)]
,
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where,

R(M) = (Y − B·MXM ·) (Y − B·MXM ·)�

= Σ̂(M) +
(
B·M − B̂·M

)
XM ·X�

M ·

(
B·M − B̂·M

)�
.

Under the matrix change of variables V(M) = A(M)A�
(M), we use Theorem

1.4.10 of [23], to derive the marginal GF distribution of model M as,

rε(M |Y) ∝
∫ ∫

f(Y, (B·M ,A(M)))J(Y, (B·M ,A(M)))hε(B·M )d(A(M),B·M )

∝ CM

∫
B·M

∫
A(M)

(
detV(M)

)− q+n
2 e

− 1
2 tr
(
R(M)V

−1
(M)

)
hε (B·M ) dA(M)dB·M

∝ CM

∫
B·M

∫
V(M)>0

(
detV(M)

)− q+n+1
2 e

− 1
2 tr
(
R(M)V

−1
(M)

)
hε (B·M ) dV(M)dB·M

∝ CM

∫
B·M

[
detR(M)

]−n
2 hε (B·M ) dB·M (w.r.t inverse-wishart kernel)

= CM

∫ (
det
[
Σ̂(M) +

(
B·M − B̂·M

)
Ω(M)

(
B·M − B̂·M

)�])−n
2
hε (B·M ) dB·M

= CM

∫ (
det
[
IM + Ω(M)

(
B·M − B̂·M

)�
Σ̂

−1
(M)

(
B·M − B̂·M

)]
det Σ̂(M)

)−n
2

× hε (B·M ) dB·M

∝ Γq

(
n− |M |

2

)
π

q|M|
2
(
det Σ̂(M)

)−(n−|M|−q
2

)
E (hε (B·M )) ,

where the last line is obtained by integrating with respect to matrix-t kernel.
This completes the derivation of the GF distribution of (B·MA(M)) for multi-
variate linear regression setting under the model (1).

Appendix B: Proof of lemmas and theorems

Proof of Lemma 4.2.

¯
λ−1
v λmin

(
Σ̂(M)

)
= ‖A0−1

(Mo)‖
2λmin(Y(In − H(M))Y�)

≥ λmin(A0−1

(Mo)Y(In − H(M))Y�A0−�

(Mo))

= λmin(Z(In − H(M))Z�)

where Z := A0−1

(Mo)Y = E(Z) + U, with E(Z) = A0−1

(Mo)B
0
·Mo

XMo ·. Recall
that H(M) is the symmetric projection matrix onto row space of XM ·, and
let r := rank(H(M)). Since In − H(M) is symmetric and idempotent with rank
n − r, there exists a G(M) ∈ Rn×(n−r) such that G(M)G�

(M) = (I − H(M))
and G�

(M)G(M) = In−r. Define Z̃M := ZG(M) = E(ZG(M)) + UG(M). Then,
Z(In − H(M))Z� = Z̃(M)Z̃�

(M) and the minimum eigenvalue of Z̃(M)Z̃�
(M) will
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be the minimum singular value of Z̃(M) (in the compact SVD notation). Notice
that, (UG(M))� ∼ Matrix-Normaln−r,q (0, In−r, Iq). Applying Theorm 2.1 of
[44] for independent non-centered Gaussian design for sufficiently large n with
t =

√
n− r − q −√

q − 1 −√
τ
√
n− r > 0, n− r > 2q, and 0 < τ < 1, we get

Py

(
σmin
(
Z̃(M)
)
≥
√

τ(n− r)
)
> 1 − e−

{√
n−r−q−√

q−1−√
τ
√
n−r
}2
.

Since, (
√
n− r − q −√

q − 1 −√
τ
√
n− r)/(1 −√

τ)
√
n− r → 1 as n → ∞, for

sufficiently large n, the exponent in the right hand of the above expression will
be larger than (1 − √

τ)
√
n− r/

√
2. The proof is completed by observing that

n− r ≥ n− |M | and
¯
λv > 0, by Condition 4.1.

Proof of Theorem 4.5. Case 1. First we consider models M with M � Mo. Let
rn,M = 1 −

(
1 + ξn,|M |¯

λv/λ̄v

)
/2. Then for sufficiently large n, rn,M ∈ (0, 1/2).

We take τ = rn,M in Lemma 4.2 to get,

Py

(
λmin

(
Σ̂(M)

)
< rn,M¯

λv(n− |M |)
)
≤ e−(1−1/

√
2)2(n−|M |)/2 < e−0.04(n−|M |),

Then,

Py

(
det Σ̂(Mo)

det Σ̂(M)
> ξqn,|M |

)
≤ Py

(
det Σ̂(Mo) ≥ ξqn,|M |

(
λmin

(
Σ̂(M)

))q)
≤ Py

(
det Σ̂(Mo) ≥ ξqn,|M | (rn,M¯

λv(n− |M |))q
)

+ P
(
λmin

(
Σ̂(M)

)
< rn,M¯

λv(n− |M |)
)

≤ Py

(
det Σ̂(Mo)

detV0
(Mo)

≥ ξqn,|M |

(
¯
λv

λ̄v

)q

(rn,M (n− |M |))q
)

+ e−0.04(n−|M |),

and by Theorem 3.3.22 of [23] with ξ∗n,|M | = ξn,|M |¯
λv/λ̄v ∈ (0, 1),

Py

(
det Σ̂(Mo)

det Σ̂(M)
> ξqn,|M |

)

≤
q∑

i=1
Py

(
χ2

n−|Mo|−i+1 ≥ rn,Mξ∗n,|M |(n− |M |)
)

+ e−0.04(n−|M |)

≤
q∑

i=1
e
−s rn,M ξ∗n,|M|(n−|M |)−

(
n−|Mo|−i+1

2

)
log(1−2s) + e−0.04(n−|M |)

≤ q exp
(
−(n− |M |)

(
s rn,M ξ∗n,|M | + 1

4 log(1 − 2s)
))

+ e−0.04(n−|M |),

where the second to last inequality holds for any s < 1/2 by Chernoff’s bound,
and the last inequality holds for any n > 2 |Mo| + 2q − |M | ≥ 2q + 1. Taking
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s = 1
2

(
1 − 1

2rn,M ξ∗n,|M|

)
< 0,

s rn,M ξ∗n,|M | + 1
4 log(1 − 2s)

= 1
4

(
ξ∗n,|M |(1 − ξ∗n,|M |) − 1 − log

(
ξ∗n,|M |(1 − ξ∗n,|M |)

))
≥ 1

4

(
ξ∗n,|M |(1 − ξ∗n,|M |) − 1 + log 4

)
≥

ξn,|M |¯
λvn

α log |Mo|
2λ̄v(n− |M |)

+ 0.09 > 0,

which implies that,

Py

(
det Σ̂(Mo)

det Σ̂(M)
> ξqn,|M |

)
≤ qe

−
ξn,|M|n

α log|Mo|
¯
λv

2λ̄v
−0.09(n−|M |) + e−0.04(n−|M |).

Therefore,

Py

⎛⎝ ⋃
M�Mo

⎧⎨⎩Y :
(

det Σ̂(Mo)

det Σ̂(M)

)n−|M|−q
2

> ξ
q(n−|M|−q)

2
n,|M |

⎫⎬⎭
⎞⎠

≤
Mo∑
j=1

(
|Mo|
j

)
max

M�Mo:|M |=j
Py

⎛⎝Y :
(

det Σ̂(Mo)

det Σ̂(M)

)n−j−q
2

> ξ
q(n−j−q)

2
n,j

⎞⎠
≤

Mo∑
j=1

ej log(|Mo|) max
M�Mo:|M |=j

{
qe

− ξn,jn
α log|Mo|

¯
λv

2λ̄v
−0.09(n−j) + e−0.04(n−j)

}

≤ |Mo| q exp
(
−
ξn,|Mo|n

α log |Mo| ¯
λv

2λ̄v

− 0.09 (n− |Mo|) + |Mo| log(|Mo|)
)

+ 2 |Mo| exp (−0.04(n− |Mo|) + |Mo| log |Mo|) ,

The proof for Case 1 completes by noting that,(
det Σ̂(Mo)

det Σ̂(M)

)n−|M|−q
2

≤ ξ
q(n−|M|−q)

2
n,|M |

≤
(

1 − 2nα log |Mo|
n− |M | − q

) q(n−|M|−q)
2

≤ e−qnα log|Mo|.

Case 2. Fix an arbitrary model M such that M 	⊆ Mo and |M | ≤ nα, and
construct a new model M ′ := M ∪ Mo where |M ′| = |M | + � for some � ∈
{1, . . . , |Mo|}. Further, M ′ ⊃ Mo implies

(
H(M ′) − H(Mo)

) (
I − H(M ′)

)
= 0,

which means Σ̂(Mo) − Σ̂(M ′) is independent of Σ̂(M ′). For sufficiently large n,

Σ̂(M ′) ∼ Wishartq
(
n− r − �,V0

(Mo)

)
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Σ̂(Mo) − Σ̂(M ′) ∼ Wishartq
(
r + �− |Mo| ,V0

(Mo)

)
,

where r := rank(XM ·) ≤ |M |. Without loss of generality for the bounds we
derive it suffices to work with r = |M |. By Theorem 10.5.3 of [35],

det Σ̂(M ′)

det Σ̂(Mo)
∼

⎧⎪⎨⎪⎩
∏q

i=1 V
(1)
i if |M | + �− |Mo| ≥ q

∏|M |+�−|Mo|
i=1 V

(2)
i if |M | + �− |Mo| < q

where

V
(1)
i

ind∼ Beta
(

1
2 (n− |M | − �− i + 1) , 1

2 (|M | + �− |Mo|)
)
,

V
(2)
i

ind∼ Beta
(

1
2 (n− |Mo| − q − i + 1) , q2

)
.

We will handle the two cases separately.
Case 2a: Suppose |M | + �− |Mo| ≥ q. Because, M ′ ⊃ M , Σ̂(M) − Σ̂(M ′) is

a positive definite matrix and that implies det Σ̂(M) ≥ det Σ̂(M ′). Hence,

Py

(
det Σ̂(Mo)

det Σ̂(M)
> ζqn,|M |

)
≤ Py

(
det Σ̂(Mo)

det Σ̂(M ′)
> ζqn,|M |

)

≤
q∑

i=1
Py

(
V

(1)
i < ζ−1

n,|M |

)
.

The probabilities in the sum on the right side are bounded by approximating the
CDF of the Beta density, and approximating of the beta function by Theorem
2 of [25] as,

Py

(
V

(1)
i < ζ−1

n,|M |

)
=
(
B

(
n− |M | − �− i + 1

2 ,
|M | + �− |Mo|

2

))−1

×
∫ ζ−1

n,|M|

0
y

1
2 (n−|M |−�−i+1)−1(1 − y) 1

2 (|M |+�−|Mo|)−1 dy

≤

(
n−|Mo|−i+1

2

)( |M|+�−|Mo|
2

)

Γ
(

|M |+�−|Mo|
2

) ζ
−
(

n−|M|−�−i−1
2

)
n,|M |

⎡⎣1 −
(
ζn,|M | − 1
ζn,|M |

) |M|+�−|Mo|
2

⎤⎦
≤
(
n− |Mo|

2

) |M|
2

ζ
−
(

n−|M|−q
2

)
+ |Mo|+1

2

n,|M | · 1

Case 2b: Suppose |M | + �− |Mo| < q. Then similar to the previous case,

Py

(
det Σ̂(Mo)

det Σ̂(M)
> ζqn,|M |

)
≤ Py

(
det Σ̂(Mo)

det Σ̂(M ′)
> ζ

|M |+�−|Mo|
n,|M |

)
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≤
|M |+�−|Mo|∑

i=1
Py

(
V

(2)
i < ζ−1

n,|M |

)
,

and,

Py

(
V

(2)
i < ζ−1

n,|M |

)
= 1

B
(

n−|Mo|−q−i+1
2 , q

2

) ∫ ζ−1
n,|M|

0
y

1
2 (n−|Mo|−q−i+1)−1(1 − y)

q
2−1 dy

≤

(
n−|Mo|−i+1

2

) q
2

Γ
(
q
2
) ζ

−
(

n−|Mo|−q−i−1
2

)
n,|M |

[
1 −
(
ζn,|M | − 1
ζn,|M |

) q
2
]

≤
(
n− |Mo|

2

) q
2

ζ
−
(

n−|M|−q
2

)
+ |Mo|+1

2

n,|M | .

Thus, in any case, for sufficiently large n,

Py

(
det Σ̂(Mo)

det Σ̂(M)
> ζqn,|M |

)

≤ 2q exp
(
−nα log (n− |Mo|) + max

{
|M |
2 ,

q

2

}
log
(
n− |Mo|

2

)
− |M | log p + (|Mo| + 1)

2 log
(
ζn,|M |

))
.

Therefore,

Py

⎛⎝ ⋃
M �⊆Mo:|M |≤nα

⎧⎨⎩Y :
(

det Σ̂(Mo)

det Σ̂(M)

)n−|M|−q
2

> ζ
q(n−|M|−q)

2
n,|M |

⎫⎬⎭
⎞⎠

≤
nα∑
j=1

(
p

j

)
max

M �⊆Mo:|M |=j
Py

⎛⎝(det Σ̂(Mo)

det Σ̂(M)

)n−j−q
2

> ζ
q(n−j−q)

2
n,j

⎞⎠
≤

nα∑
j=1

{
2q exp

(
−nα log (n− |Mo|) + max

{
j

2 ,
q

2

}
log (n− |Mo|)

+(|Mo| + 1)
2 log (ζn,j)

)}
≤ 2q exp

(
−nα

2 log (n− |Mo|) + α logn + (|Mo| + 1)
2 log (ζn,nα)

)
.

The proof is completed by noting that ζ
q(n−|M|−q)

2
n,|M | ≤ eq(n

α log(n−|Mo|)+|M | log p).
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Proof of Theorem 4.7. To prove Theorem 4.7 and Theorem 4.9 we need two
additional results, stated below. The proofs of Lemma B.1 and Lemma B.2 are
provided after the proof of the Theorem 4.9. Since these two lemmas are only
necessary to bound the E(hε(B·M )) from above for the large models, without
loss of generality we assume that XM · is of full row rank, as in the statement
of both the lemmas. If XM · is not of full rank, hε(B·M ) is automatically zero.

Lemma B.1. For model M with |M | < n− 4q,

B·M ∼ Tq,M

(
n− |M | − q + 1, B̂·M , Σ̂(M),

(
XM ·X�

M ·
)−1)

,

where B̂·M = YX�
M ·
(
XM ·X�

M ·
)−1, and for any ε > 0,

P

(
1
2

∥∥∥∥Σ̂−1/2
(M)

(
B·MXM · − B̂·MXM ·

)∥∥∥∥2
F

≤ ε

9

)
≥ 1 − V5,n,M ,

with,

V5,n,M := exp
(
−ε (n− |M |)

36 + q |M |
2

)
+ 2 exp

⎛⎜⎝−
(√

n− |M | − 2√q
)2

8

⎞⎟⎠ .

Lemma B.2. For any model M such that |M | < n− 4q, then the least-squared
estimator,

B̂·M ∼ Matrix-Normalq,|M |

(
Ey

(
B̂·M
)
,V0

(Mo),
(
XM ·X�

M ·
)−1)

,

and for sufficiently large n,

Py

(
1
2

∥∥∥∥Σ̂−1/2
(M)

[
B̂·M − Ey

(
B̂·M
)]

XM ·

∥∥∥∥2
F
≤ ε

9

)
≥ 1 − V6,n,M ,

where,

V6,n,M := exp
(
−ε (n− |M |)

¯
λv

36 λ̄v

+ q |M |
2

)
+ exp (−0.04(n− |M |)) .

Let B̃min minimizes 1
2

∥∥∥A0−1
(Mo)
(
B0

·MoXMo · − BX
)∥∥∥2

F
subject to the constraint

|{j : ‖Bj‖ 	= 0}| less than equal to |Mo| − 1. Also, suppose Bmin minimizes∥∥∥Σ̂−1/2
(Mo) (B·MoXMo · − BX)

∥∥∥2
F

subject to |{j : ‖Bj‖ 	= 0}| ≤ |Mo| − 1. Then,∥∥∥A0−1

(Mo)

(
B0

·Mo
XMo · − B̃minX

)∥∥∥
F

≤
∥∥∥A0−1

(Mo)
(
B0

·Mo
XMo · − BminX

)∥∥∥
F
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≤
∥∥∥∥A0−1

(Mo)Σ̂
1/2
(Mo)

∥∥∥∥
F

∥∥∥∥Σ̂−1/2
(Mo)
(
B0

·Mo
XMo · − BminX

)∥∥∥∥
Since A0−1

(Mo)Σ̂(Mo)A0−T

(Mo) ∼ Wishartq (n− |Mo| , Iq),
∥∥∥∥A0−1

(Mo)Σ̂
1/2
(Mo)

∥∥∥∥2
F

follows a

chi-squared distribution with q (n− |Mo|) degrees of freedom. Using triangle
inequality,∥∥∥∥Σ̂−1/2

(Mo)
(
B0

·Mo
XMo · − BminX

)∥∥∥∥
F

≤
∥∥∥∥Σ̂−1/2

(Mo)

[
B·Mo − B̂·Mo

]
XMo ·

∥∥∥∥
F

+
∥∥∥∥Σ̂−1/2

(Mo)

(
B̂·Mo − B0

·Mo

)
XMo ·

∥∥∥∥
F

+
∥∥∥∥Σ̂−1/2

(Mo) (B·MoXMo · − BminX)
∥∥∥∥

F
. (12)

Then,

I
(∥∥∥A0−1

(Mo)

(
B0

·Mo
XMo · − B̃minX

)∥∥∥2
F
> 36q (n− |Mo|)ε

)
≤ I

(
1
2

∥∥∥∥Σ̂−1/2
(Mo)

[
B·Mo − B̂·Mo

]
XMo ·

∥∥∥∥2
F
> ε

)
+

I
(

1
2

∥∥∥∥Σ̂−1/2
(Mo)

(
B̂·Mo − B0

·Mo

)
XMo ·

∥∥∥∥2
F
> ε

)
+

I
(

1
2

∥∥∥∥Σ̂−1/2
(Mo) (B·MoXMo · − BminX)

∥∥∥∥2
F
> ε

)
+

I
(∥∥∥∥A0−1

(Mo)Σ̂
1/2
(Mo)

∥∥∥∥2
F
> 2q(n− |Mo|)

)
.

Taking expectation with respect to Fiducial distribution of B·Mo given Y,

I
(∥∥∥A0−1

(Mo)

(
B0

·Mo
XMo · − B̃minX

)∥∥∥2
F
> 36q (n− |Mo|) ε

)
≤ P

(
1
2

∥∥∥∥Σ̂−1/2
(Mo)

[
B·Mo − B̂·Mo

]
XMo ·

∥∥∥∥2
F
> ε

)

+ I
(

1
2

∥∥∥∥Σ̂−1/2
(Mo)

(
B̂·Mo − B0

·Mo

)
XMo ·

∥∥∥∥2
F
> ε

)
(13)

+ E (hε (B·Mo)) + I
(∥∥∥∥A0−1

(Mo)Σ̂
1/2
(Mo)

∥∥∥∥2
F
> 2q(n− |Mo|)

)
. (14)

Next,

Py

({
I
(

1
2

∥∥∥∥Σ̂−1/2
(Mo)

(
B̂·Mo − B0

·Mo

)
XMo ·

∥∥∥∥2
F
> ε

)
= 0
} ⋂
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I
(∥∥∥∥A0−1

(Mo)Σ̂
1/2
(Mo)

∥∥∥∥2
F
> 2q(n− |Mo|)

)
= 0
})

≥ Py

(
1
2

∥∥∥∥Σ̂−1/2
(Mo)

(
B̂·Mo − B0

·Mo

)
XMo ·

∥∥∥∥2
F
≤ ε

)

+ Py

(∥∥∥∥A0−1

(Mo)Σ̂
1/2
(Mo)

∥∥∥∥2
F
≤ 2q(n− |Mo|)

)
− 1

≥ 1 − e
− ε(n−|Mo|)

¯
λv

4 λ̄v
+ q|Mo|

2 − exp (−0.04(n− |Mo|)) − e−0.15q(n−|Mo|),

where the first probability is obtained by an application of Lemma B.2 and the
second probability is computed by the Chernoff bound for the χ2 distribution
with q(n− |Mo|) degrees of freedom evaluated at 1/4. The proof is complete by
applying Lemma B.1 to the first term in (14).

Proof of Theorem 4.9. Let, j∗ := arg min
j

‖B̂·M,j‖2, where B̂·M,j is the jth

column of the least square coefficient matrix B̂·M for model M . Construct the
model M(−1) := M \ {j∗} with |M | − 1 covariates from model M . Suppose
B̂·M(−1) be the least-squared estimator corresponding to the model M(−1).
Because Bmin minimizes the objective function corresponding to the h function,∥∥∥∥Σ̂−1/2

(M) (B·MXM · − BminX)
∥∥∥∥2

F

≤
∥∥∥∥Σ̂−1/2

(M)

(
B·MXM · − Ey

(
B̂·M(−1)

)
XM(−1) ·

)∥∥∥∥2
F
.

By triangle inequality for the Frobenius norm,

E (hε(B·M ))

= P

(
1
2

∥∥∥∥Σ̂−1/2
(M) (B·MXM · − BminX)

∥∥∥∥2
F

≥ ε

)

≤ P

(
1
2

∥∥∥∥Σ̂−1/2
(M)

(
B·MXM · − Ey

(
B̂·M(−1)

)
XM(−1) ·

)∥∥∥∥2
F
≥ ε

)

≤ I
(

1
2

∥∥∥∥Σ̂−1/2
(M)

(
B̂·MXM · − Ey

[
B̂·M
]
XM ·
)∥∥∥∥2

F
≥ ε

9

)

+ I
(

1
2

∥∥∥∥Σ̂−1/2
(M)

(
Ey

[
B̂·M
]
XM · − Ey

(
B̂·M(−1)

)
XM(−1) ·

)∥∥∥∥2
F

≥ ε

9

)

+ P

(
1
2

∥∥∥∥Σ̂−1/2
(M)

(
B·MXM · − B̂·MXM ·

)∥∥∥∥2
F

≥ ε

9

)

≤ I
(

1
2

∥∥∥∥Σ̂−1/2
(M)

(
B̂·MXM · − Ey

[
B̂·M
]
XM ·
)∥∥∥∥2

F
≥ ε

9

)
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+ I
(

1
2

∥∥∥∥Σ̂−1/2
(M) B0

·Mo
XMo ·

(
H(M) − H(M)(−1)

)∥∥∥∥2
F

≥ ε

9

)

+ e−
ε(n−|M|)

36 + q|M|
2 + 2e−

(√
n−|M|−2√q

)2
8 , (15)

where the first probability is computed by Lemma B.1. Next,

Py

({∥∥∥∥Σ̂−1/2
(M)

(
B̂·MXM · − E

[
B̂·M
]
XM ·
)∥∥∥∥2

F
<

2ε
9

} ⋂
{∥∥∥∥Σ̂−1/2

(M) B0
·Mo

XMo ·
(
H(M) − H(M)(−1)

)∥∥∥∥2
F

<
2ε
9

})

≥ 1 − Py

(
1
2

∥∥∥∥Σ̂−1/2
(M)

[
B̂·M − E

(
B̂·M
)]

XM ·

∥∥∥∥2
F
≥ ε

9

)

− Py

(
1
2

∥∥∥∥Σ̂−1/2
(M) B0

·Mo
XMo ·

(
H(M) − H(M)(−1)

)∥∥∥∥2
F
≥ ε

9

)
. (16)

By Condition 4.8 and putting τ = 1/2 in Lemma 4.2,

Py

(
1
2

∥∥∥∥Σ̂−1/2
(M) B0

·Mo
XMo ·

(
H(M) − H(M)(−1)

)∥∥∥∥2
F
≥ ε

9

)

≤ Py

(
λmin

(
Σ̂(M)

)
≤ 9

2ε
∥∥B0

·Mo
XMo ·

(
H(M) − H(M)(−1)

)∥∥2
F

)
≤ Py

(
λmin

(
Σ̂(M)

)
≤ ¯

λv(n− |M |)
2

)
≤ e−0.04(n−|M |). (17)

Bounding the first probability in equation (16) by Lemma B.2 and combining
equation (15),(16), and (17),

Py

[
E (hε (B·M )) ≥ e−

ε(n−|M|)
36 + q|M|

2 + 2e−
1
8

{√
n−|M |−2√q

}2]
≤ V7,n,M

where

V7,n,M := exp
(
−ε (n− |M |)

¯
λv

36 λ̄v

+ q |M |
2

)
+ 2 exp (−0.04(n− |M |))

Finally,

Py

⎡⎢⎢⎣ ⋃
M �⊂Mo
|M |≤nα

{
Y : E (hε (B·M )) ≥ e−

ε(n−|M|)
36 + q|M|

2 + 2e−
1
8

{√
n−|M |−2√q

}2}⎤⎥⎥⎦
≤

nα∑
j=1

∑
M :|M |=j
M �⊆Mo

{
exp
(
−ε (n− |M |)

¯
λv

36 λ̄v

+ q |M |
2

)
+ 2 exp (−0.04(n− |M |))

}
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≤
nα∑
j=1

{
exp
(
−ε (n− j)

¯
λv

36 λ̄v

+ qj

2 + j log p
)

+ 2 exp (−0.04(n− j) + j log p)
}

≤ nα

{
exp
(
−ε (n− nα)

¯
λv

36 λ̄v

+ qnα

2 + nα log p
)

+ 2 exp (−0.04(n− nα) + nα log p)
}
.

This concludes the proof of the theorem.

Proof of Lemma B.1. We define B̃·M equal to Σ̂
−1/2
(M)

(
B·M − B̂·M

)
and Ω(M)

equal to XM ·X�
M ·, observe that,∥∥∥∥Σ̂−1/2

(M)

(
B·MXM · − B̂·MXM ·

)∥∥∥∥2
F

=
∥∥∥∥Σ̂−1/2

(M)

(
B·M − B̂·M

)
XM ·

∥∥∥∥2
F

= tr
(
B̃·MΩ(M)B̃�

·M

)
=
∥∥∥∥Σ̂−1/2

(M)

(
B·M − B̂·M

)
Ω1/2

(M)

∥∥∥∥2
F
.

By the property of Matrix-t distribution, (see Theorem 4.3.5, page 137 of [23])

Σ̂
−1/2
(M)

(
B·M − B̂·M

)
Ω1/2

(M) ∼ Tq,M

(
n− |M | − q + 1,0, Iq, I|M |

)
.

Additionally, by Theorem 4.2.1 (page 134) of [23],

Σ̂
−1/2
(M)

(
B·M − B̂·M

)
Ω1/2

(M)
d=
(
W−1/2

)�
Z,

where W ∼ Wishartq (n− |M | , Iq) and Z ∼ Matrix-Normal
(
0, Iq, I|M|

)
. Then,∥∥∥∥Σ̂−1/2

(M)

(
B·MXM · − B̂·MXM ·

)∥∥∥∥2
F
≤ λ−1

min (W) tr
(
ZZ�
)
,

where λmin (W) > 0 with probability 1 as n−|M | > q. Since, tr
(
ZZ�
)
∼ χ2

q|M |,

P

(
1
2

∥∥∥∥Σ̂−1/2
(M)

(
B·MXM · − B̂·MXM ·

)∥∥∥∥2
F

≥ ε

9

)

≤ P

⎛⎝ tr
(
ZZ�
)

λmin (W) ≥ 2ε
9

⎞⎠
≤ P

⎛⎝ tr
(
ZZ�
)

λmin (W) ≥ 2ε
9 , λmin (W) ≥ (n− |M |)

4

⎞⎠
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+ P

⎛⎝ tr
(
ZZ�
)

λmin (W) ≥ 2ε
9 , λmin (W) < (n− |M |)

4

⎞⎠
≤ P

(
tr
(
ZZ�
)

≥ ε (n− |M |)
18

)
+ P

(
λmin (W) < 1

4 (n− |M |)
)

≤ P

(
χ2
q|M | ≥ ε (n− |M |)

18

)
+ P

(
λmin (W) < 1

4 (n− |M |)
)

≤ exp
(
−ε (n− |M |)

72 + q |M |
2

)
+ 2 exp

⎛⎜⎝−
(√

n− |M | − 2√q
)2

8

⎞⎟⎠ ,

where the first probability in the second to last line is obtained by using the
Chernoff’s bound for χ2 distribution and and the second probability by sub-
stituting t = (1/2)

√
n− |M | − √

q > 0 (by the condition on |M | in the state-
ment of the lemma) in the corollary 5.35 (page 21) of [49] and noting that any
central Wishartq (n− |M | , Iq) matrix is identically distributed as Z̃

�
Z̃ where

Z̃ ∼ Matrix-Normaln−|M |,q
(
0, In−|M |, Iq

)
, provided n− |M | > q which is again

true by the specified condition in the lemma. This completes the proof.

Proof of Lemma B.2. Defining, Ω(M) = XM ·X�
M ·, the quadratic form can be

alternatively written as∥∥∥∥Σ̂−1/2
(M)

[
B̂·MXM · − Ey

(
B̂·M
)
XM ·
]∥∥∥∥2

F

= tr
[
Σ̂

−1
(M)

(
B̂·M − Ey

(
B̂·M
))

Ω(M)

(
B̂·M − Ey

(
B̂·M
))�]

≤ λ−1
min

(
Σ̂(M)

)
λ̄v

∥∥∥A0−1

(Mo)

(
B̂·M − Ey

(
B̂·M
))

Ω1/2
(M)

∥∥∥2
F
.

Since, A0−1

(Mo)

(
B̂·M − Ey

(
B̂·M
))

Ω1/2
(M) ∼ Matrix-Normalq,|M |

(
0, Iq, I|M |

)
,

∥∥∥A0−1

(Mo)

(
B̂·M − Ey

(
B̂·M
))

Ω1/2
(M)

∥∥∥2
F
∼ χ2

q|M |.

Choosing τ = 1/2 in Lemma 4.2,

Py

(
λmin

(
Σ̂(M)

)
<

¯
λv(n− |M |)/2

)
≤ exp (−0.4(n− |M |)) .

Finally,

Py

(
1
2

∥∥∥Â−1
(M)

[
B̂·M − E

(
B̂·M
)]

XM ·

∥∥∥2
F
≥ ε

9

)
≤ Py

(
λ−1

min

(
Σ̂(M)

)
λ̄v

∥∥∥V0−1/2

(Mo)

(
B̂·M − Ey

(
B̂·M
))

Ω1/2
(M)

∥∥∥2
F
≥ 2ε

9

)
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≤ Py

⎛⎝ λ̄vχ2
q|M |

λmin

(
Σ̂(M)

) ≥ 2ε
9

⎞⎠
≤ Py

⎛⎝ λ̄vχ2
q|M |

λmin

(
Σ̂(M)

) ≥ 2ε
9 , λmin

(
Σ̂(M)

)
> ¯

λv(n− |M |)
2

⎞⎠
+ Py

(
λmin

(
Σ̂(M)

)
≤ ¯

λv(n− |M |)
2

)
≤ Py

(
χ2

q|M | ≥
ε (n− |M |)

¯
λv

9λ̄v

)
+ Py

(
λmin

(
Σ̂(M)

)
≤ ¯

λv(n− |M |)
2

)

≤ exp
(
−ε (n− |M |)

¯
λv

36 λ̄v

+ q |M |
2

)
+ exp (−0.04(n− |M |)) ,

where the first quantity in the last line is obtained by Chernoff’s bound for
chi-square distribution. This completes the proof of Lemma B.2.

Proof of Theorem 4.10. The statement of the theorem is equivalent to showing
that, ∑

M :|M |≤nα

M �=Mo

rε (M | Y)
rε (Mo | Y)

Py−→ 0, (18)

as n → ∞ or n, p → ∞. To show this, observe that the ratio in sum has the
form,

rε(M | Y)
rε(Mo | Y) = π

q(|M|−|Mo|)
2

Γq

(
n−|M |

2

)
Γq

(
n−|Mo|

2

) [det Σ̂(Mo)

det Σ̂(M)

]n−|M|−q
2

×

(
det Σ̂(Mo)

) |M|−|Mo|
2 E(hε(B·M ))

E(hε(B·Mo))
.

The multivariate gamma function is defined as the product of univariate gamma
functions, and so, using the gamma function inequalities in [25], the ratio of the
multivariate gamma functions is bounded by,

Γq

(
n−|M |

2

)
Γq

(
n−|Mo|

2

) =
q∏

j=1
Γ
(
n− |M | − j + 1

2

)[
Γ
(
n− |Mo| − j + 1

2

)]−1

≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∏q

j=1

(
n−|Mo|−j+1

2

)(
n−|M |−j+1

2

) |Mo|−|M|
2 −1

if |Mo| ≥ |M |

∏q
j=1

(
n−|M |−j+1

2 − 1
) |Mo|−|M|

2 otherwise
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Moreover, for the true model Mo, because Σ̂(Mo) ∼ Wishartq(n−|Mo| ,V0
(Mo)),

det Σ̂(Mo)

detV0
(Mo)

∼
q∏

j=1
χ2

n−|Mo|−j+1,

by Theorem 3.2.15 of [35]. Applying the Chernoff bound for the chi-square
distribution and using the sub-additivity property of the probability measure,

Py

⎛⎝det Σ̂(Mo) >

q∏
j=1

3λ̄v (n− |Mo| − j + 1)

⎞⎠
≤ q exp

(
−n− |Mo| − q + 1

4

)
:= V5,n.

Expanding the quantity in (18),

∑
M :|M |≤nα

M �=Mo

rε (M | Y)
rε (Mo|Y) =

∑
M :M�Mo

rε (M | Y)
rε (Mo | Y) +

∑
M :|M |≤nα

M �⊆Mo

rε (M | Y)
rε (Mo | Y)

=
|Mo|∑
j=1

∑
M :|M |=j
M�Mo

rε (M | Y)
rε (Mo | Y)

︸ ︷︷ ︸
:= T1

+
nα∑
j=1

∑
M :|M |=j
M �⊆Mo

rε (M | Y)
rε (Mo | Y)

︸ ︷︷ ︸
:= T2

.

(19)

Denote the two terms on the right side as T1 and T2, respectively. First consider
T1. By Theorem 4.7, with probability exceeding 1−V3,n, E(hε(B·Mo)) is bounded
from below by 1 − gn(Mo, ε) with,

gn(Mo, ε) := exp
(
−ε (n− |Mo|)

36 + q |Mo|
2

)
+2 exp

(
−1

8

{√
n− |Mo| − 2√q

}2
)
.

Since the quantity gn(Mo, ε) vanishes as n → ∞, for sufficiently large n, gn(Mo, ε)
less than K for some K ∈ (0, 1). Bounding the ratio of the determinants of the
residual matrices by Case 1 of Lemma 4.5, choosing n large enough so that
E(hε(B·Mo)) > 1 −K, and bounding the E(hε(B·M )) for any model M 	⊆ Mo
by 1,

rε(M | Y)
rε(Mo | Y) ≤ e−qnα log|Mo|

1 −K

q∏
j=1

(
n−|Mo|−j+1

2

) (
3πλ̄v (n− |Mo| − j + 1)

) |M|−|Mo|
2(

n−|M |−j+1
2

)1− |Mo|−|M|
2

≤ e−qnα log|Mo|

1 −K

q∏
j=1

[
n− |M | − j + 1

6πλ̄v (n− |Mo| − j + 1)

] |Mo|−|M|
2
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≤ e−qnα log|Mo|

1 −K

q∏
j=1

[
n

6πλ̄v (n− |Mo| − j + 1)

] |Mo|−|M|
2

≤ 1
1 −K

e−qnα log|Mo|−q log(λ̄v)(|Mo|−|M |)/2,

where the last inequality holds for n > |Mo|+q
1−1/6π . This implies that with probability

exceeding 1 − V1,n − V3,n − V5,n,

T1 =
|Mo|∑
j=1

∑
M :|M |=j
M�Mo

rε (M | Y)
rε (Mo | Y) ≤

|Mo|∑
j=1

(
|Mo|
j

)
max

M�Mo;|M |=j

rε(M | Y)
rε(Mo | Y)

≤
|Mo|∑
j=1

(1 −K)−1
e−qnα log|Mo|−q log(λ̄v)(|Mo|−j)/2+j log|Mo|

≤ 1
K − 1 |Mo| e−qnα log|Mo|+|Mo| log|Mo|−qI(λ̄v<1) log(λ̄v)|Mo|/2.

By Condition 4.3, 1 − V1,n − V3,n − V5,n → 1 as n → ∞ or n, p → ∞, and so
T1 → 0 in probability as n → ∞ or n, p → ∞.

Next, consider T2. Note that for models M such that M 	⊂ Mo and |M | ≤ nα,
By Theorem 4.9, for large n, with probability exceeding 1−V4,n, E(hε(B·M )) ≤
g̃n(ε,M) where,

g̃n(ε,M) := exp
(
−ε (n− |M |)

36 + q |M |
2

)
+ 2 exp

(
−1

8

{√
n− |M | − 2√q

}2
)
.

Bounding the ratio of the determinants of the residual matrices as in Case 2 of
Theorem 4.5, and choosing n large enough so that E(hε(B·Mo)) > 1 −K with
high probability, for all M 	⊆ Mo with |M | ≤ nα,

rε(M | Y)
rε(Mo | Y) ≤⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[

n
6πλ̄v(n−|Mo|−q)

] q(|Mo|−|M|)
2 g̃n(ε,M)

1−K eq(n
α log(n−|Mo|)+|M | log p) if |M | ≤ |Mo|

(
6πλ̄v(n−|Mo|)
n−|M |−q−1

)q( |M|−|Mo|
2

)
g̃n(ε,M)

1−K eq(n
α log(n−|Mo|)+|M | log p) if otherwise.

T2 =
|Mo|∑
j=1

∑
M :|M |=j
M �⊆Mo

rε (M | Y)
rε (Mo | Y)

︸ ︷︷ ︸
:= T21

+
nα∑

j=|Mo|+1

∑
M :|M |=j
M �⊆Mo

rε (M | Y)
rε (Mo | Y)

︸ ︷︷ ︸
:= T22

Consider T21 and T22 separately. For sufficiently large n, using g̃n(ε,M) to bound



EAS for variable selection in multivariate regression 1991

E(hε(B·M )), with probability exceeding 1 − V2,n − V3,n − V4,n − V5,n,

T21 ≤
|Mo|∑
j=1

(
p

j

)
max

M �⊆Mo;|M |=j

rε(M | Y)
rε(Mo | Y)

≤ 2
1 −K

|Mo|∑
j=1

e−
n−j

8 −q log(λ̄v)(|Mo|−j)/2+qnα log(n−|Mo|)+(q+1)j log p

+ 1
1 −K

|Mo|∑
j=1

e−
ε(n−j)

36 + qj
2 −q log(λ̄v)(|Mo|−j)/2+qnα log(n−|Mo|)+(q+1)j log p

≤ |Mo|
1 −K

{
2e−

n−|Mo|
8 − q|Mo|

2 I(λ̄v<1) log(λ̄v)+qnα log(n−|Mo|)+(q+1)|Mo| log p

+ e−
ε(n−|Mo|)

36 +qnα log(n−|Mo|)+(q+1)|Mo| log p+ q|Mo|
2 {1−I(λ̄v<1) log(λ̄v)}

}
.

For T22, because (n− |Mo| /(n− |M | − q − 1) converges to 1 for all M with
|M | ≤ nα, we can choose n large enough so that (n−|Mo| /(n−|M |−q−1) < 2.
Then, again using the bound g̃n(ε,M), we obtain that for all M 	⊆ Mo such that
|Mo| ≤ |M | ≤ nα, with probability exceeding 1 − V2,n − V3,n − V4,n − V5,n,

T22 :=
nα∑

j=|Mo|+1

∑
M :|M |=j
M �⊆Mo

rε (M | Y)
rε (Mo | Y)

≤
nα∑
j=1

(
p

j

)
max

M �⊆Mo;|M |=j

rε(M | Y)
rε(Mo | Y)

≤ 2
1 −K

nα∑
j=1

e−
n−j

8 + qj
2 log

(
12πλ̄v

)
+qnα log(n−|Mo|)+(q+1)j log p

+ 1
1 −K

nα∑
j=1

e−
ε(n−j)

36 + qj
2 (1+log

(
12πλ̄v

)
)+qnα log(n−|Mo|)+(q+1)j log p

≤ 2nα

1 −K
exp
(
−n− nα

8 + nα {q log (n− |Mo|) + (q + 1) log p}

+q

2 log
(
12πλ̄v

)
{nαI(λ̄v >

1
12π ) + 1}

)
+ nα

1 −K
exp
(
−ε(n− nα)

36 + qnα log (n− |Mo|) + (q + 1)nα log p

+ q

2
(
1 + log

(
12πλ̄v

))
{nαI(λ̄v > 1/12πe) + 1}

)
.

Lastly, by Condition 4.3 since 1 − V2,n − V3,n − V4,n − V5,n → 1 as n → ∞
or n, p → ∞, T2 = T21 + T22 → 0 in probability as n → ∞ or n, p → ∞. This
completes the proof of Theorem 4.10.
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