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Abstract: Hypothesis testing procedures are developed to assess linear
operator constraints in function-on-scalar regression when incomplete func-
tional responses are observed. The approach enables statistical inferences
about the shape and other aspects of the functional regression coefficients
within a unified framework encompassing three incomplete sampling sce-
narios; (i) partially observed response functions as curve segments over
random sub-intervals of the domain, (ii) discretely observed functional re-
sponses with additive measurement errors, and (iii) the composition of for-
mer two scenarios, where partially observed response segments are observed
discretely with measurement error. The latter scenario has been little ex-
plored to date, although such structured data is increasingly common in
applications. For statistical inference, deviations from the constraint space
are measured via integrated L2-distance between estimates from the con-
strained and unconstrained model spaces. Large sample properties of the
proposed test procedure are established, including the consistency, asymp-
totic distribution, and local power of the test statistic. The finite sample
power and level of the proposed test are investigated in a simulation study
covering a variety of scenarios. The proposed methodologies are illustrated
by applications to U.S. obesity prevalence data, analyzing the functional
shape of its trends over time, and motion analysis in a study of automotive
ergonomics.
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1. Introduction

We develop a new scope of statistical inference for regression coefficients when
functional responses are modeled by scalar covariates. The so-called function-on-
scalar regression model aims to describe the association between response tra-
jectories varying over the domain and scalar covariates. In this study, we propose
inferential procedures for testing the shape or other aspects of the functional re-
gression coefficients through the linear operator representation, especially when
functional responses are incompletely observed.

We assume that the functional response Yi(t) is available for t ∈ Ii, where
Ii ⊂ [0, 1] is an individual-specific random subset, independent of the stochastic
mechanism that generates the complete functional response Yi for i = 1, . . . , n.
We allow Ii for a union of sub-intervals, discrete subsets, or the composition
of the two scenarios. The functional response fully available on the domain
is a special case by simply letting Ii = [0, 1]. Recently [29, 33, 11] and [28]
studied functional data analysis of partially observed curves, including principal
component analysis, mean and covariance functions estimation, and optimal
reconstruction of individual curves, but hypothesis testing in this context has
been less developed.

For statistical analysis, we assume that the unobservable complete functional
response Y is associated with vector covariates X = (X1, . . . , Xp)� and Z =
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(Z1, . . . , Zq)� by the function-on-scalar regression model

Y (t) = X�β(t) + Z�α(t) + ε(t) (t ∈ [0, 1]), (1)

where β(t) = (β1(t), . . . , βp(t))� indicates the regression coefficients of inferen-
tial interest and α(t) = (α1(t), . . . , αq(t))� represents the nuisance coefficients
associated with other covariates Z that aid in modeling the mean of functional
responses but are not of direct interest for inference. We assume that β(t) and
α(t) are square-integrable vector coefficient functions and ε(t) is a mean-zero
error process with the covariance function γ(s, t) = Cov

(
ε(s), ε(t)

)
independent

of (X,Z). In this paper, we test the functional hypothesis for β(t) under linear
operator constraints, where X may or may not include the baseline constant
and Z is the nuisance covariate that can aid in modeling the regression model.

In the contexts of uncorrelated error processes and longitudinal data, the
model (1) is also known as a varying coefficient regression model [49, 21, 36, 12].
While varying coefficient models in conventional longitudinal data analysis have
mainly focused on responses collected over sparse and irregular grid points,
recent approaches for function-on-scalar regression accommodate some sam-
pling structures of response data collected from dense to relatively sparse grids
[59, 31]. Application fields include Genome-wise Association (GWAS) [1, 42],
Bioinformatics [51], and Kinematics [8], among others, where functional re-
sponses are modeled by covariates that remain constant over the study. Such
covariates might include SNPs, treatment assignments given to the subjects, or
demographic variables. Functional Analysis of Variance (fANOVA) is a widely
used special case of function-on-scalar regression model with purely categorical
variables as covariates [46, 57].

We consider a class of composite hypothesis testing problems for the func-
tional response model (1) with null hypotheses of the form

H0 : Cβ = 0, (2)

equivalently H0 : β ∈ ker(C), where C is a linear operator that maps vector
functions to the function space of inferential interest and ker(C) is the kernel
space of C. If the shape constraint on β can be characterized by linear combi-
nations of a basis V = {vl : l ≥ 1} in L2, then the dual formation of the null
hypothesis (2) can be expressed as

H0 : β ∈ span(V ), (3)

by letting ker(C) = span(V ). Another option is to use shape-restricted regression
splines, which can specify the kernel space with a convex cone as a subset of the
linear space [37, 38].

It is worth mentioning that (3) is a generalization of the classical linear con-
trast hypothesis. Specifically, let C ∈ R

d×p be of full rank d. Then the traditional
null hypothesis H ′

0 : Cβ(t) = 0 studied in [56] identifies β(t) = u0(t)+
∑d

l=1 blul

for some vector function u0(t) = (u0,1(t), . . . , u0,p(t))� satisfying Cu0(t) = 0
and b = (b1, . . . , bd)� ∈ R

d, where U(d) = {ul ∈ R
p : l = 1, . . . , d} is the
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orthonormal basis of ker(C) in R
p. Here, we extend the theory from the finite-

dimensional constraints such as H ′
0 to the potentially infinite dimensional linear

operator constraints in (2).
An important class of the null hypothesis (2) includes testing the shape of re-

gression coefficient functions. For example, [15] evaluated a physical mechanism
for the conjectured linear trend in the Northern Hemisphere cooling analysis.
Or, [22] tested linear or (piecewise) cubic time-course trend in gene expression
experiments. Here, the functional trends can be evaluated by the coefficient
function associated with the constant covariate X = 1 under (3), where V is
a set of L2-functions or a basis that specifies the functional trend of interest.
Previously [44] studied similar topics by testing individual probes in the form
of 〈c, βj〉 = 0 for a fixed known L2-function c as a special case of (2). Later,
[25] proposed a residual-based permutation test for performing a hypothesis test
on the shape of a mean function, although the large sample properties and the
power behaviors of the proposed method were not investigated. Related work
also includes [53, 3, 24, 55, 4, 23, 30, 45, 48, 50, 32, 14]. Recently, [10] and [7] de-
veloped goodness-of-fit tests for functional models via empirical processes using
the wild bootstrap method to test the significance of the family of models. But
their applications to statistical inference are mainly aligned with validating func-
tional linear models against a general class of non-structured functional models.
Moreover, the extension of the existing methods to incomplete functional data
has not been investigated.

The main contributions of our study are as follows. We extend the goodness-
of-fit test to the general testing framework (2) or (3), applicable to the model
with incomplete functional response data. Our framework includes three scenar-
ios that can often occur in practice:

(i) Partially observed functional responses with random missing segments,
where we have access to observations only on individual-specific sub-
interval of the domain, but observation is not available on its complement.

(ii) Functional responses observed with measurement errors on randomly
spaced discrete evaluation points asynchronous across subjects.

(iii) Composition of discrete evaluation and partial observation, where indi-
vidual curves are discretely observable over random sub-intervals of the
domain.

We develop large sample theory under composition of the sub-interval censoring
and discrete sampling of functional responses, where the proposed test procedure
is applicable to a wide class of incomplete functional data. The asymptotic null
distribution of the test statistic is derived together with the consistency and local
asymptotic power of the test for alternatives H1n : β = β0 + n−τ/2Δ, where
τ ∈ [0, 1], for some β0 = (β0,1, . . . , β0,p)� and Δ = (Δ1, . . . ,Δp)� satisfying
Cβ0 = 0 and CΔ �= 0, respectively.

The methodology and basic theory of the proposed test procedures under
incomplete functions responses are developed in Section 2. In Section 3, we
present numerical simulations, where the finite sample performance of the pro-
posed test is evaluated in several scenarios. We also illustrate two applica-
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tions from an obesity prevalence study and an automotive ergonomic experi-
ment in Section 4. Our concluding discussion is in Section 5. Technical details,
the numerical implementation, and theoretical proofs are provided in the Ap-
pendix.

2. Main results

2.1. Partially sampled functional responses

We first formulate the partially observed functional data as proposed in [29].
Let δ1, . . . , δn be a random sample of a stochastic process, defined on [0, 1],
satisfying the following conditions.

C1: The latent stochastic processes, (Yi, δi) := {(Yi(t), δi(t)) : t ∈ [0, 1]}, for
i = 1, . . . , n, are independent and identically distributed on (Ω,F ,P) and
jointly F -measurable.

C2: b(t) = E(δi(t)) is bounded away from zero; i.e., inft∈[0,1] b(t) > 0.
C3: There are i.i.d. random variables W i = (Wi1, . . . ,WiK) ∈ W, and there is

a measurable function f : [0, 1] ×W → {0, 1} such that δi(t) = f(t,W i).
C4: Yi and δi are independent for i = 1, . . . , n.

The partially observed functional responses are defined by {Yi(t) : t ∈ Ii, i =
1, . . . , n}, where Ii = {t ∈ [0, 1] : δi(t) = 1} denotes the individual-specific
random subset of [0, 1] for i = 1, . . . , n. Various types of incomplete functional
data structures satisfy conditions C1–C4, including dense functional snippets
[35], fragmented functional data [11], or functional data with single or multiple
random missing intervals. More examples can be found in [41]. Although C3
does not allow a sparse irregular sampling scheme, we consider the discretized
noisy collection of partial data under the unified framework in Section 2.3.

2.1.1. Estimation of functional regression coefficients and asymptotics

Let Yδ(t) = (Y δ
1 (t), . . . , Y δ

n (t))� and εδ(t) = (εδ1(t), . . . , εδn(t))�, where Y δ
i (t) =

Yi(t) and εδi (t) = εi(t) if δi(t) = 1, and Y δ
i (t) = 0 and εδi (t) = 0 otherwise for

t ∈ [0, 1]. That is, functional values over unobserved segments, [0, 1]\Ii, are
replaced by zeros. For an n×n diagonal matrix W(t) = diag{δi(t)}ni=1, we write

Yδ(t) −W(t)Xβ(t) = W(t)Zα(t) + εδ(t), (4)

which leads to α̂w(t;β(t)) = (Z�
W(t)Z)−1

Z
�
W(t)(Yδ(t)−Xβ(t)), the weighted

least-squares estimator of α(t), where X = (X1, . . . ,Xn)� and Z = (Z1, . . . ,Zn)�
denote (n×p)- and (n×q)-design matrices of full rank, respectively. By substitut-
ing α̂w(t;β(t)) for α(t) in (4), we obtain (I−P)Yδ(t) = (I−P)W(t)Xβ(t)+εδ(t),
where I = diag(1n) and P = Z(Z�

Z)−1
Z
� are the projection matrices that only

depend on 1n and Z. Then it follows that

β̂
w
(t) = (X̃�

W(t)X̃)−1
X̃

�
W(t)Yδ(t) (5)
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is the weighted least-squares estimator of β(t), where X̃ = (I − P)X is the
design matrix orthogonal to Z. This enables testing the hypothesis for β(t)
while the nuisance regression coefficients related to Z are unspecified. Indeed,
β̂
w
(t) represents a pointwise least-square estimator calculated based on a subset

of samples, where its response information is available at given location t. It also
follows from α̂w(t) = (Z�

Z)−1
Z
�
W(t)(Yδ(t) − Xβ̂

w
(t)) that

μ̂(t) = X̃β̂
w
(t) + Zη̂w(t) (6)

fits μ(t) = E(Y(t) |X,Z) in a point-wise manner, where η̂w(t) = α̂w(t; β̂
w
(t))+

(Z�
Z)−1

Z
�
Xβ̂

w
(t). The expression (6) will be used in the next subsection to

define the model space.

Theorem 2.1. Under tr(γ) < ∞ and conditions C1–C4,
√
n
(
β̂
w − β

) d→ GPp

(
0p, ϑΨ−1), (7)

where Ψ = E(Var(X|Z)) and ϑ(s, t) = γ(s, t)υ(s, t)
/
b(s)b(t) with γ(s, t) =

Cov(Y (s), Y (t)), υ(s, t) = E(δ(s)δ(t)), and b(t) = E(δi(t)), for s, t ∈ [0, 1].

Theorem 2.1 implies that pointwise β̂
w
(t) uniformly converges to β(t) over

t ∈ [0, 1] and further follows asymptotic Gaussian process with root-n rates
of convergence even under partial sampling structure. We also note that the
condition on covariance function tr(γ) =

∫ 1
0 γ(t, t) dt < ∞ is commonly adopted

in developing asymptotic theories on regression coefficient estimators under fully
observed functional response. In practice, if we observe an undefined β̂

w
(t) at

a certain range of the domain under a finite sample size, it can be estimated
using interpolation or smoothing methods when the smooth continuity of β(t)
is assumed.

2.1.2. The test statistic

To test the appropriateness of the shape-constrained null hypothesis (2), we
compare the model estimates from the unrestricted space M = {μ = X̃β+Zη :
βj ∈ L2[0, 1], j = 1, . . . , p} and the reduced space M0 = {μ0 = X̃β0 + Zη :
Cβ = 0}. To this end, we construct a test statistic which is based on the L2-
distance between μ̂ and μ̂0 defined by

μ̂ = argmin
h∈M

∫ 1

0
‖W(t){Yδ(t) − h(t)}‖2 dt,

μ̂0 = argmin
h∈M0

∫ 1

0
‖W(t){Yδ(t) − h(t)}‖2 dt,

(8)

where ‖ · ‖ denotes the standard L2-norm in R
n. The objective functions with

the weight matrix W(t) imply the pointwise optimization under the partially
sampled responses. It can be verified that μ̂(t) = X̃β̂

w
(t) + Zη̂w(t) as in (6).
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Then, we propose a test statistic

Tn =
∫ 1

0
‖μ̂(t) − μ̂0(t)‖2 dt

=
∫ 1

0

(
β̂
w
(t) − β̂

w

0 (t)
)�(

X̃
�
X̃
)(
β̂
w
(t) − β̂

w

0 (t)
)
dt,

(9)

where β̂
w

0 is an estimate of β under the null hypothesis (2). Even though we
have partial response information for each observation, the uniformly consistent
estimator β̂

w
provides the consistent model estimates μ̂(t) and μ̂0(t) over t ∈

[0, 1]. Note that Tn is the integrated squared distance between the model fits
obtained under M and M0, respectively, and we reject the null hypothesis if
Tn is large. Under the orthogonality between X̃ and Z, distance between μ̂ and
μ̂0 is translated to the weighted distance between two coefficient estimates β̂

w

and β̂
w

0 . If we consider the the null hypothesis (3) with an orthonormal basis
and define a linear operator L : L2[0, 1] → span(V ) as Lβ =

∑
l≥1〈β, vl〉vl

under 〈g1, g2〉 =
∫ 1
0 g1(t)g2(t) dt, we have β̂

w

0 = Lβ̂
w
, where L denote the

multivariate operator that applies L in an element-wise fashion. While similar
types of the L2-norm based test-statistic have been employed in [46, 56], and
[55] for conventional hypothesis testing, such as testing the nullity of functional
coefficients, our study considers a more general scope of the null hypothesis,
using linear operator constraints, under the broader scope of response function
sampling mechanism.

2.1.3. Asymptotics and power considerations

In this section, we derive the limit law of the proposed test statistic Tn under
the null and local alternative hypotheses. Suppose that we have a sequence of
local alternatives of the form

H1n : β = β0 + n−τ/2Δ, (10)

where τ ∈ [0, 1] and Δ(t) = (Δ1(t), . . . ,Δp(t))� represents a normalized func-
tional deviation from the null hypothesis such that CΔ �= 0, independent of n.
Consider local alternatives under (3) with orthonormal basis vl. Then we ob-
tain μ̂0(t) = X̃β̂

w

0 (t) + Zη̂w(t), where β̂
w

0 = Lβ̂
w

using L as defined in the
Section 2.1.2. Since a Gaussian process is closed under a linear operator and
X̃

�
X̃/n converges to Ψ in probability, under the null hypothesis (3), we can

derive (
X̃

�
X̃
)1/2(

β̂
w − β̂

w

0
)

= Ψ1/2√nC(β̂
w − β0

)
+ oP (1)

d→ GPp

(
0p, ϑ̃Ip

)
,

(11)
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where C = I −L with the element-wise identity map I and

ϑ̃(s, t) − ϑ(s, t)

= −
∑
k≥1

(∫ 1

0
ϑ(s, t)vk(s) ds

)
vk(t) −

∑
l≥1

(∫ 1

0
ϑ(s, t)vl(t) dt

)
vl(s)

+
∑
k≥1

∑
l≥1

(∫ 1

0

∫ 1

0
ϑ(s, t)vk(s)vl(t) dsdt

)
vk(s)vl(t).

(12)

We then obtain the following result, proven in the Appendix, which provides
the local asymptotic distribution of the test statistic.

Theorem 2.2. Suppose that tr(γ) < ∞. And let {H1n : n ≥ 1} be a sequence of
local alternatives with square-integrable functions Δj(t), j = 1, . . . , p in (10). Let
Δ̃ = Ψ1/2 CΔ = (Δ̃1, . . . , Δ̃p)� and define π2

m =
∑p

j=1 ‖〈Δ̃j , φm〉‖2, where φm,
m = 1, 2, . . ., are eigenfunctions of ϑ̃(s, t). Then, the test statistic Tn converges
to TΔ in probability, defined as

TΔ
d=

∞∑
m=1

λmBm, (13)

where λm are the eigenvalues of ϑ̃(s, t), in decreasing order, corresponding to
eigenfunctions φm, and Bm

i.i.d.∼ χ2
p(κ2

m) denotes the non-central χ2-distribution
with p degrees of freedom and non-centrality parameter κ2

m = π2
m/λm.

Based on Theorem 2.2, we obtain the null distribution of the test statistic Tn

and asymptotic power derivations as follows.

Corollary 2.3. Assume the same conditions as in Theorem 2.2.

(i) Under the null hypothesis, i.e., CΔ = 0, Theorem 2.2 implies that the null
distribution of the test statistic Tn converges to T0 in distribution, where
T0 =

∑∞
m=1 λmAm with λm, decreasing-ordered eigenvalues of ϑ̃(s, t), and

Am
i.i.d.∼ χ2

p.
(ii) Suppose that CΔ �= 0, that is, the local alternative, and

∑∞
m=1 π

2
m = ∞

or τ ∈ [0, 1). Then, Theorem 2.2 yields the asymptotic power of the test
as; limn→∞ P (Tn ≥ tα|H1n) = 1, where tα is the upper-α quantile of the
null distribution T0 in the case (i).

As we can see in the proof of the Corollary 2.3 in the Appendix, the asymp-
totic power of the test goes 1 under H1n of (10) with any τ ∈ [0, 1) and non-zero
Δ, which is desirable. When considering τ = 1, where the local alternative tends
to the null with root-n rate, the non-trivial asymptotic power goes to 1 when∑∞

m=1 π
2
m = ∞. In Section 3 of simulation studies, we consider different magni-

tudes of non-null signals π2
m with τ = 1 to investigate the power in the practical

setting.
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2.2. Discrete observations with measurement errors

In this section, we extend the proposed test to the case where functional re-
sponses are observed with measurement errors over finite discrete points in their
domains, and possibly sampled asynchronously across subjects. Being different
from the partially observed sampling scheme with continuum measurement over
the subset of [0, 1], we consider the case that functional measurements are col-
lected on a discrete subset of the functional domain with additive measurement
errors. Specifically, let {(Y∗

i ,Ti,Xi,Zi) : i = 1, . . . , n} be a random sample of
(Y∗,T,X,Z), where Y∗

i = (Y ∗
i,1, . . . , Y

∗
i,Ni

)� is the finite observations of the i-th
subject associated with evaluation points Ti = (Ti,1, . . . , Ti,Ni)� as

Y ∗
i,m = X�

i β(Ti,m) + Z�
i α(Ti,m) + εi(Ti,m) + εi,m. (14)

The sampling design differs from the ones considered in the previous subsections
as functional outcomes are prone to measurement errors, denoted by εi,m, and
finite observations are only available. We note that εi,m = 0 is a special case that
follows the same model (1). For statistical analysis, we assume that εi,1, . . . , εi,Ni

are i.i.d. as ε such that E(ε|X,Z) = 0 and E|ε|k < ∞ for some k > 2. The
finite evaluation points Ti,1, . . . , Ti,Ni are randomly generated by a probability
density function λ(t) bounded away from zero and infinity whose derivative
also exists and is bounded. We also assume that N1, . . . , Nn are i.i.d. as an
independent random integer N ≥ 1 that asymptotically increases as the sample
size n becomes large. This sampling framework is similar to those considered by
[54, 58, 43], and [19]. We refer to the theorem and remark below for technical
details.

However, it is infeasible to apply the same procedure demonstrated in Sec-
tion 2.1 because functional responses are only available at discrete evaluation
points invalidating continuous point-wise functional estimates (5) to calculate
the test statistic (9). More importantly, even if infinitely many evaluation points
are available, the coefficient function estimates will be biased as we may not
achieve consistency in the presence of measurement errors. As a result, Corol-
lary 2.3 may not serve as a reference distribution for testing (3).

To tackle the bottleneck, we employ kernel smoothing to recover the unob-
served functional responses, where the false signals produced by measurement
errors are mitigated, and substitute the estimated curves for the true functional
responses to perform the test demonstrated in Section 2.1. Formally, as a two-
step procedure, we first kernel smooth discrete observations for each subject as
the Nadaraya-Watson kernel estimator of E(Yi(T ) |T = t)

Ỹ ∗
i (t) =

∑Ni

m=1 Kh(Ti,m − t)Y ∗
i,m∑Ni

m′=1 Kh(Ti,m′ − t)
(t ∈ [0, 1]) (15)

for each i = 1, . . . , n. Ỹ ∗
i (t) is, where h > 0 is a bandwidth and Kh(t) =

K(t/h)/h is the scaled kernel of a symmetric density function K. Then, we
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define a kernel-smoothed test statistic as

T ∗
n =

∫ 1

0

(
β̃
∗(t) − β̃

∗
0(t)

)�(
X̃

�
X̃
)(
β̃
∗(t) − β̃

∗
0(t)

)
dt, (16)

where β̃
∗(t) = (X̃�

X̃)−1
X̃

�Ỹ∗(t) and β̃
∗
0 = Lβ̃∗. Finally, we reject the null

hypothesis (3) if T ∗
n > tα, where tα is the level-α critical value for T0 in Corol-

lary 2.3.
In the pre-smoothing approach, it is critical to recover individual curves

with a uniform rate of convergence on the entire domain [0, 1] since the kernel-
smoothed test statistic T ∗

n is defined as a weighted L2 norm of Cβ̃∗, while β̃
∗(t)

is given by a point-wise estimate. The local constant smoothing, also known as
Nadaraya-Watson type estimation, is easy to implement, although it may not
be optimal when the reconstruction of individual curves is the primary interest
due to boundary issues. However, Theorem 2.4 below shows that we already
have consistency of the test procedure with this simple procedure.

Theorem 2.4. Assume that E‖Y ‖k∞ < ∞ for some k > 2 and max1≤i≤n ‖Y ′‖∞
is bounded in probability. If h  n−θ/5 and P (N < nθ) = o(n−1) for some
θ > 5/3, then T ∗

n − Tn = oP (1), where we define Tn in (9) with δi = 1 for all
i = 1, . . . , n.

Remark 2.5. For each i-th subject, the optimal rate of univariate bandwidth
for kernel estimation is typically given by h  N

−1/5
i [17, 18]. Since Ni ≥ nθ

for all 1 ≤ i ≤ n with probability tending to 1 (Lemma A.2 in the Appendix),
the use of a common rate h  n−θ/5 in Theorem 2.4 allows us to employ the
existing bandwidth selectors [40, 26].

However, we note that the classical pre-smoothing approach such as [44]
requires densely observed functional responses over the entire domain for all
subjects. In practice, this requirement is implausible when the observations are
relatively sparse. In the following subsection, we introduce a new scope of par-
tially observed functional data to ease the limitation.

2.3. Composition of partial filtering and discrete sampling

In Section 2.1, partially observed data were assumed to be evaluated over con-
tinuous subsets of the functional domain. If such data are observed discretely
rather than continuously, then the observation framework reduces to that of
discretely observed functional response data, and the smoothing approach of
Section 2.2 may be applied. In this case, we assume that the complete obser-
vations for responses are given by {Y δ

i : i = 1, . . . , n}. For random evaluation
points Ti = (Ti,1, . . . , Ti,Ni)� and the indicator process δi, we define a random
subset I ∗

i = {j : δi(Ti,j) = 1, j = 1, . . . , Ni}. We assume that Ti and δi are
independent.

It is worth noting that the composition sampling schedule I ∗
i not only cov-

ers discrete observations but also accommodates subject-specific subdomain Ii,
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where we may encounter limitations in accessing additional observations. This
aspect, often overlooked in the standard literature that assumes discrete sam-
pling is available across the entire domain, is a key feature that facilitates sta-
tistical inference with sparse functional data under mild conditions.

The corresponding discrete functional observations are given by {Y ∗
i,m, T ∗

i,m :
m ∈ I ∗

i }, where Y ∗
i,m = Y δ

i (T ∗
i,m)+ εi,m and T ∗

i,m = Ti,j for some j = jm ∈ I ∗
i ,

which can be viewed as the discrete sampling of Yi composed with the partial
filtering process δi. Then, we define

Ỹ ∗∗
i (t) =

∑Ni

m=1 Kh(T ∗
i,m − t)Y ∗

i,m∑Ni

m′=1 Kh(T ∗
i,m′ − t)

(t ∈ Ii) (17)

for each i = 1, . . . , n. Also, we define a kernel-smoothed test statistic as

T ∗∗
n =

∫ 1

0

(
β̃
∗∗(t) − β̃

∗∗
0 (t)

)�(
X̃

�
X̃
)(
β̃
∗∗(t) − β̃

∗∗
0 (t)

)
dt, (18)

where β̃
∗∗(t) = (X̃�

W(t)X̃)−1
X̃

�
W(t)Ỹ∗∗(t) and β̃

∗∗
0 = Lβ̃∗∗.

To investigate the theoretical property of the proposed method, we assume
that

E

∣∣∣∣∣ 1∫ 1
0 δi(v) dv

∣∣∣∣∣
p

< ∞, (19)

for some p > 2. Also, suppose that there exists an absolute constant C > 0
satisfying

P (δi(s) �= δi(t)) ≤ C|s− t|p (20)

The reciprocal moment condition (19) implies that that the length of the random
sub-interval Ii =

∫ 1
0 δi(v) dv is positive (a.s.). Hence, together with (20), the

composition sampling has discrete observations densely available on each sub-
interval, but not necessarily over the entire domain. We also refer to Remark
2.7 below for the equivalent expression of (20).

Theorem 2.6. Assume the same conditions as Theorem 2.1 and Theorem 2.4.
If (19) and (20) hold for some p > 2, then T ∗∗

n − Tn = oP (1).

Remark 2.7. Letting Γ(s, t) = Cov
(
δi(s), δi(t)

)
and noting that Γ(t, t) =

b(t)(1 − b(t)), the condition in (20) is equivalent to

|Γ(s, t) − Γ(t, t)| ≤ C|s− t|p. (21)

For details, see the Appendix.

Remark 2.8. We provide one simple example of δ that satisfies the conditions
(19) and (20). Suppose that U(1) < · · · < U(2p+k+2) be order statistics of a
Uniform(0, 1) random sample of size (2p+k+2) for some k ≥ p = 3. Let δ(t) =
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I(U(p+1) ≤ t ≤ U(p+k+2)). Since S = U(p+k+2)−U(p+1) has a Beta(k+1, 2p+2)
distribution, the condition (19) holds, i.e.,

E

∣∣∣∣∣ 1∫ 1
0 δ(v)dv

∣∣∣∣∣
p

= E|1/Sp| = (k − p)! (k + 2p + 2)!
k! (k + p + 2)! < ∞.

See the Appendix for the verification of the condition (20).

3. Simulation studies

In this section, we study the finite sample performance of the proposed test-
ing procedure in terms of size control and powers under various settings. The
performances under incomplete functional response models are compared to the
benchmark performance, where functional responses are fully observed without
measurement errors.

3.1. Simulation setting

We consider models of the form

Yi(t) = X�
i β(t) + Z�

i α(t) + εi(t), (t ∈ [0, 1]) (22)

for i = 1, . . . , n, where covariates Xi = (1{Ui1>0},Φ(Ui2), Ui3)� and Zi =
(1, Ui4)� are from Ui

i.i.d.∼ N4(0,Σ) with Σ = [σij ]1≤i,j≤4 for σij = 0.5|i−j|, and
Φ denoting the cdf of N(0, 1). The functional coefficients α(t) = {α1(t), α2(t)}�
associated with Zi are generated by αk(t) =

∑5
l=4(k + l)−1/2(−1)lvl(t)

/
{
∑5

l=4(k + l)−1}1/2 for k = 1, 2, where V (5) = {vl(t); t ∈ [0, 1]}5
l=1 is an

orthonormal polynomial basis derived from polynomials P (5) = {tl−1; t ∈
[0, 1]}5

l=1, that is, αk ∈ span{V (5)} satisfying ‖αk‖2 = 1. The random error
is independently and identically generated from εi(t) =

∑100
m=1 emφm(t), where

φm(t) =
√

2 sin(2mπt) and em
i.i.d.∼ N(0, 4m−4), for m = 1, . . . , 100. Functional

trajectories are generated at a regular grid of 100 points in [0, 1] and the sample
size n is chosen to be 100 and 200.

Let β0(t) = {β0,1(t), β0,2(t), β0,3(t)}�, where β0,j(t) = {v1(t) + vj+1(t)}/
√

2,
for j = 1, 2, 3, implying that β0,j ∈ span{V (4)} and ‖β0,j‖2 = 1. We then
consider two scenarios A and B on β(t). In scenario A, we set β(t) = β0(t) +
n−τ/2{dAδA(t)}, where dA > 0 and δA(t) = {δA,1(t), δA,2(t), δA,3(t)}T with
δA,j(t) =

∑100
m=1(j + m)−1/2φm(t)

/
{
∑100

m=1(j + m)−1}1/2. And we consider a
hypothesis testing for the null hypothesis

H0 : βj ∈ span{V (4)}, ∀j = 1, 2, 3. (23)

It aims to find statistical evidence on whether βj(t) coefficients can be ex-
pressed exclusively by polynomials up to order three. We investigate the em-
pirical size and power of the proposed method under different magnitudes of
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Fig 1. Regression coefficients under scenario A, βj(t) = β0,j(t) + n−1/2{dAδA,j(t)}, and
under scenario B, βj(t) = β0,j(t)+n−1/2{dBδB,j(t)}, for (a) j = 1, (b) j = 2, and (c) j = 3,
under n = 100, dA = 3, and dB = 0.6. The straight lines in each plot represent β0,j(t),
j = 1, 2, 3, respectively.

the null-deviated signals by setting dA = 0, 1, 3, 5, 7, 9. For each dA, we fur-
ther set τ = 1, 0.8, 0.67, corresponding to the rates of the local alternative
approaching to the null as n1/2, n1/2.5, n1/3, respectively, to examine the per-
formance under different rates that the null-deviated model tends to the null
model. In scenario B, we consider a test for the same hypothesis of (23) under
β(t) = β0(t) + n−τ/2{dBδB(t)}, where δB(t) = {δB,1(t), δB,2(t), δB,3(t)}T with
δB,j(t) = v5(t). we set dB = 0, 0.3, 0.6, 0.9, 1.2, 1.5, and τ = 1, 0.8, 0.67. Figure 1
illustrates deviations of β(t) from β0(t) under two scenarios for dA = 3 and
dB = 0.6, respectively, when τ = 1 and n = 100.

For each scenario, we apply three incomplete sampling schemes. First, we con-
sider the partially observed functional responses with the random missing period
Mi, on which functional values on the ith trajectory are removed. By following
a part of the setting in Remark 2.8, we generate Mi = [U(p+1), U(p+k+2)], where
U(1) < · · · < U(2p+k+2) are order statistics of independent random samples of a
size (2p+k+2) from Uniform(0,1). We note that 1−δ(t) in Remark 2.8 is set as
our indicator process, where employing reversed indicator process does not affect
the remarked conclusion. We here set constant parameters p, k, as p = k = 3. On
average, for each simulation set, 30.4 % of each trajectory is removed by missing
interval Mi. Second, we consider functional responses irregularly collected over
80 asynchronous grid points with i.i.d. measurement errors following N(0, 0.52)
added to each Yi(Ti,m), m = 1, . . . , 80. The locations of 80 grid points are uni-
formly sampled among 100 grids from each observation. Lastly, we consider the
partially observed noisy responses collected over irregular grids under the set-
ting in Remark 2.8 with the reserved indicator process specified above. That
is, Mi = [U(p+1), U(p+k+2)], Ni = 60, and i.i.d. additive measurement errors
generated from N(0, 0.52). Here, locations of 60 grid points are uniformly sam-
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Fig 2. Randomly selected six simulated trajectories of (a) fully observed response data, (b)
partially observed response data filtered by independent missing intervals, (c) irregularly ob-
served data with added measurement, and (d) partially observed data over irregular grids with
measureme errors.

pled among available grids on partially sampled trajectories, if there are more
than 60 grids on the filtered set. Figure 2 (a) illustrates a randomly selected
set of fully observed response trajectories, and three other sets of trajectories in
Figure 2 (b), (c), (d) display partially observed response trajectories filtered by
missing random intervals, noisy responses generated over irregular grid points
with additive measurement errors, and noisy partially observed responses over
irregular grids with additive measurement errors, respectively.

3.2. Empirical size and power

We examine the empirical sizes and powers of the proposed procedures for mod-
els from fully, partially, irregular, and partially irregular error-prone functional
response data using their corresponding test statistics, denoted as TFull

n , Tn,
T ∗
n , and T ∗∗

n respectively. Practical implementation steps for each test statistic
are provided in the Appendix. All simulation results below were based on 5,000
simulation replicates, and the critical value of the test was estimated by 5,000
bootstrap samples in each simulation run. To calculate the test statistic T ∗

n and
T ∗∗
n involving kernel smoothing, we chose a common bandwidth that minimizes

the leave-one-out cross-validation [52, 20] across all subjects in each simulation
sample.

Table 1 summarizes results for hypothesis (23) at 5% nominal level under sce-
nario A from test statistics from corresponding functional response data struc-
tures, for τ = 1, 0.8, 0.67. It can be seen that the empirical sizes are reason-
ably controlled around the nominal level 0.05. Although the sizes under error-
prone partially observed structure, corresponding to the test statistic T ∗∗

n , show
slightly larger values around 0.07, and it is due to loss of original information
with missing intervals and additive noise. In terms of power, we investigate the
results depending on τ , which regulates the rate that the null-deviated model
approaches the null model. As expected, the empirical power increases as τ
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Table 1. Empirical size and power at the 5% nominal level for testing H0 : βj(t) ∈ span{V (4)} under scenario A from fully observed response data
(TFull

n ), partially observed response data (Tn), irregularly observed response data with additive measurement errors (T ∗
n), and irregularly observed

partial response data with additive measurement errors (T ∗∗
n ).

dA n τ = 1 τ = 0.8 τ = 0.67

TFull
n Tn T ∗

n T ∗∗
n TFull

n Tn T ∗
n T ∗∗

n TFull
n Tn T ∗

n T ∗∗
n

0 100 0.060 0.068 0.061 0.072 0.065 0.060 0.064 0.072 0.061 0.050 0.066 0.071
200 0.055 0.052 0.057 0.073 0.053 0.057 0.057 0.073 0.050 0.062 0.050 0.071

1 100 0.075 0.067 0.067 0.070 0.082 0.81 0.076 0.074 0.107 0.085 0.096 0.078
200 0.065 0.065 0.063 0.084 0.081 0.085 0.075 0.078 0.112 0.103 0.094 0.077

3 100 0.153 0.101 0.118 0.086 0.354 0.288 0.21 0 0.095 0.679 0.529 0.480 0.181
200 0.140 0.124 0.098 0.101 0.404 0.314 0.222 0.124 0.815 0.576 0.597 0.255

5 100 0.384 0.230 0.223 0.108 0.900 0.670 0.555 0.263 1.000 0.913 0.881 0.492
200 0.398 0.258 0.207 0.111 0.958 0.752 0.634 0.349 1.000 0.996 0.900 0.608

7 100 0.789 0.474 0.443 0.152 0.999 0.951 0.902 0.510 1.000 1.000 0.999 0.916
200 0.775 0.504 0.417 0.172 1.000 0.996 0.956 0.564 1.000 1.000 1.000 1.000

9 100 0.977 0.809 0.700 0.458 1.000 1.000 0.995 0.808 1.000 1.000 1.000 0.999
200 0.985 0.833 0.728 0.480 1.000 1.000 0.999 0.964 1.000 1.000 1.000 1.000
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decreases or as dA increases. In addition, the power reasonably approaches to
1 under all settings. Especially for τ = 1 of TFull

n , the power approaches 1
even with moderate magnitudes of the null-deviated signals, indicating that the
condition of

∑∞
m=1 π

2
m = ∞ in Theorem 2.3 is not restrictive in practical ap-

plication. The relatively deflated powers from T ∗
n might be due to some loss

of the null-deviated signal after applying the smoothing process to noisy data.
We observe that the power from Tn goes to 1 with a reasonable but slightly
slower rate than TFULL

n shows, and it is from the smaller effective sample sizes
at each grid due to partial sampling. Although the lowest powers are observed
from T ∗∗

n under all settings due to most significant loss of original information
with missing periods and noisy discretized measurements, we still see the power
gradually increases towards 1. Indeed, our extra simulations considering larger
values of dA show that powers under τ = 1 from T ∗

n and T ∗∗
n become 1 when

dA = 13 and 17, respectively.
The simulation results from scenario B are illustrated in Figure 3. The results

under n = 100 and n = 200 are represented by full and dotted lines, respectively.
We observe a very similar pattern to that under scenario A with reasonable size
controlling at the 0.05 nominal levels and with the behaviors of the power for
dB > 0. We again confirm that power approaches to 1 when τ = 1 under the
moderate magnitudes of the null-deviated signals. The power tends to 1 with
relatively slower but reasonable rates with an increase of dB for Tn and T ∗

n due
to the same reasons described in results from scenario A. Again, we observe
the lowest powers achieved from T ∗∗

n under dB > 0, they gradually approaches
towards 1. We note that extra simulations considering larger values of dB show
that powers under τ = 1 for T ∗ and T ∗∗ are attained as 1 when dB = 2.1 and 3,
respectively. It implies empirically consistent properties of our proposed tests.

Although we have only illustrated the simulation result for investigating the
finite sample performance of T ∗

n with Ni = 80 in Table 1 and Figure 3, we ob-
served that the power and size of the proposed test are also well achieved with
Ni = 60, where relatively rich response information is available over the do-
main. However, under the sparse setting, Ni = 10 or 30, we observed relatively
unsatisfactory results with the finite sample analysis. We note that, in our sim-
ulation setting, the null-deviated signals visualized in Figure 1 are quite subtle,
with a delicate difference in the trend and visually detectable discrepancies only
at boundaries. Hence, we report a limitation of the proposed method for T ∗

n

such that the estimated regression coefficients calculated from noisy functional
responses collected over sparse grids may not be able to effectively detect subtle
trend differences near the boundary.

4. Real data application

4.1. The obesity prevalence trend change

We illustrate the practical application of the proposed testing procedure through
an analysis of the U.S. overweight and obesity prevalence data from 2011 to
2020. It is a part of the data of the U.S. residents regarding their health-
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Fig 3. Empirical size and power at the 5% nominal level for testing H0 : βj(t) ∈ span{V (4)}
under scenario B for (a) fully observed response data, (b) partially observed response data,
(c) irregularly observed functional data with additive measurement errors, and (d) irregularly
observed partial functional data with additive measurement errors (�, τ = 1; �, τ = 0.8;
�, τ = 0.67; , n = 100; , n = 200).

Fig 4. Percentages (%) of (a) obese, (b) overweight, and (c) normal weight adults among the
U.S. adults aged 20 and over populations from 2011 to 2020, from 50 states (gray lines) and
sample means (solid lines).

related risk behaviors and chronic health conditions, collected by the Behav-
ioral Risk Factors Surveillance System (BRFSS) through the state-based tele-
phone interview survey in cooperation with the Centers for Disease Control
and Prevention (CDC). The dataset contains crude rates of obese, overweight,
normal weight, and underweight groups for adults (aged 20 and over) from
50 states. Along with weight status, socioeconomic status is also measured
through educational and income levels of samples. In terms of income, each
survey sample is classified into one of five categories; less than $15,000, $15,000-
$24,999, $25,000-$34,999, $35,000-$49,999, and over $50,000. The full dataset
can be found at: https://chronicdata.cdc.gov/Behavioral-Risk-Factors/
Behavioral-Risk-Factor-Surveillance-System-BRFSS-P/dttw-5yxu.

Despite growing recognition of the problem, the obesity epidemic continues
in the U.S. with steadily rising obesity rates. For example, 1999–2000 through
2017–2018, U.S. obesity prevalence increased from 30.5% to 42.4%. Figure 4 il-

https://chronicdata.cdc.gov/Behavioral-Risk-Factors/Behavioral-Risk-Factor-Surveillance-System-BRFSS-P/dttw-5yxu
https://chronicdata.cdc.gov/Behavioral-Risk-Factors/Behavioral-Risk-Factor-Surveillance-System-BRFSS-P/dttw-5yxu
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lustrates such trends during recent 10 years from 50 states for obese, overweight,
and normal weight groups. The bold lines represent the sample mean trajectories
of each group, where its calculation is specified later with the model specifica-
tion (24). With the rising obesity rates, we observe decreasing proportions of
normal weight population along with seemingly constant rates of overweight
population. We apply the proposed methods to identify shape of the tendency
on prevalence rates for each group of the weight status. Furthermore, the gap
of obesity prevalence between low and high income groups changes during this
time is also examined.

We first investigate the shape of overall prevalence trend for each weight
group. Since data is collected over regular grids for all states with a few missing
values, we adopt the test statistic Tn for partially observed functional data. Let
Yi(tm) denote the observed prevalence rate for given weight status group from
ith state. We formulate the intercept-only model with Z = 0 in (1) and rescaled
discrete time points 2011, . . . , 2020 to equally spaced tm ∈ [0, 1],

Yi(tm) = β(tm) + ε(tm), i = 1, . . . , 50, m = 1, . . . , 10. (24)

Based on it, we obtain the least square estimates β̂(tm) =
∑50

i=1 Yi(tm)/50
as the sample trajectories of each weight group, illustrated with bold lines in
Figure 4. To identify its shape, we consider the null hypotheses for the constant
and linear spaces, corresponding to H0,c : β(t) ∈ span{V (1)} and H0,l : β(t) ∈
span{V (2)}, respectively. Here, V (r) = {vl(t); t ∈ [0, 1]}rl=1 is an orthonormal
set we obtain by applying the Gram-Schmidt process to the polynomial basis
P (r) = {tl−1 : t ∈ [0, 1]}rl=1, for r ≥ 1. Table 2 shows calculated test statistic Tn

and corresponding calculated p-values for each null hypothesis from each weight
group. Calculation details and numerical implementation steps are provided in
the Appendix. In Table 2, we reject the null hypothesis of constant space H0,c
for the obese and normal groups, but not H0,l. That is, at a significance level
less than 0.001, obesity prevalence has linearly risen over time, while rates of
normal weight population is linearly decreased. On the other hand, we could
not find any significant trend as we retain the constant shape hypothesis H0,c
at level 0.1 for the null hypothesis H0,c.

We next investigate the obesity prevalence over time associated with income
levels. In recent literature, statistical analyses on the association between in-
come levels and obesity rates have repeatedly reported that obesity prevalence
has been significantly increased at a faster rate mostly in relatively low-income
levels [39, 2, 27]. Figure 5 (a) illustrates obesity prevalence rates for five income
levels and their mean trajectories. While all five income levels present increasing

Table 2

Calculated test statistic Tn and p-values (in parentheses) for null hypotheses of constant
and linear trends from each group of weight status.

Obesity Overweight Normal weight
H0,c : β(t) ∈ span{V (1)} 23.13 (< 0.001) 1.16 (0.162) 14.74 (< 0.001)
H0,l : β(t) ∈ span{V (2)} 0.34 (0.822) 0.16 (0.974) 0.17 (0.967)
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Fig 5. (a) Percentages (%) of obese prevalence by five income levels from 50 states and
(b) mean of differences of the obesity rates between group of income less than $15,000 and
group of income over $50,000, with fitted lines using linear bases ( ), using quadratic
bases ( ) and piecewise linear bases ( ).

obesity prevalence over time, the group of income less than $15,000 shows the
highest rates while the groups of income over $50,000 illustrates the lowest rates.
We first apply the functional ANOVA to this data, a special case of our proposed
testing procedures corresponding to a part of [57]. To do this, we formulate the
model based on (4) by setting (250× 4) matrix for X = diag{150, . . . ,150} and
(250×1) vector of 1’s for Z. The null hypothesis for fANOVA corresponds to (3),
where V = {0}; i.e., H0 : βj(t) = 0, for t ∈ [0, 1], and j = 1, . . . , 4. By applying
the proposed testing procedure, we obtain p-value < 0.001 and conclude that
significant differences on obesity rates among different income groups exist. We
then apply a type of post hoc test, specifically to examine how the gap of preva-
lence among lowest highest income group changes over time. Figure 5 (b) shows
mean trajectory of gap in obesity rates between the lowest and highest income
groups. It is observed that this gap tends to decrease over time and fitted linear
and quadratic trending lines are illustrated, respectively. We also consider the
fit with the piecewise linear bases, where its fitting details and testing results are
specified later. We apply the proposed procedure based on the test statistic Tn

to identify the shape of this gap. Let Y(tm) = {Ylevel1(tm)�,Ylevel5(tm)�}�,
where Ylevel1(tm) is a vector of length 50 with the elements of obesity rates
for the lowest income group from 50 states at mth year. Similarly, Ylevel5(tm)
denotes a vector for the highest income group. We then specify the model based
on (4) with X = (150,050)� and Z the length 100 vector of 1’s. Under given
model formulation, β(t) represents the difference between two groups means.
Then two null hypotheses of linear and quadratic functional spaces are consid-
ered, H0,l : β(t) ∈ span{V (2)} and H0,q : β(t) ∈ span{V (3)}, respectively. By
applying the proposed testing procedures; for the test under H0,l, we obtain
Tn = 10.75 with the p-value 0.02; and for the test under H0,q, Tn = 5.03 and
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p-value is 0.23. Under significance level α = 0.05, we fail to reject the quadratic
null space and conclude that the gap of obesity prevalence between lowest and
highest income groups is significantly decreasing with the quadratic shape. To
demonstrate the further application of our method with null hypothesis with
other types of bases, we try the hypothesis testing for H0,pl : β(t) ∈ span{U(3)},
where U(3) represent a set of three orthonormal B-spline bases derived from the
piecewise linear functions with knots at 0, 0.5, and 1, where the internal knot 0.5
is chosen by the estimated peak from the quadratic fit. Under this null hypoth-
esis, we obtain Tn = 4.70 and p-value 0.28. By comparing obtained p-value 0.28
with the p-value 0.23 derived from the null hypothesis H0,q, we observe slightly
stronger statistical evidence on the conclusion for the piecewise linear shape on
gap between two groups under given sample sizes. We note that results from
smoothed trajectories through the test statistic T ∗

n leads the same inferential
conclusions for H0,l, H0,q, and H0,pl, although they are not presented here. It
empirically demonstrates the performance of our proposed method in detecting
significant functional shape even under non-smoothed raw trajectories.

4.2. Human motion analysis in ergonomics

We illustrate another data example in automotive ergonomics, previously ana-
lyzed by [13, 46, 55, 7], and among others. The Center for Ergonomics at the
University of Michigan collected data on body motions of an automobile driver.
As part of the project, the right elbow angles of the test driver were captured
as time-varying responses when the driver’s hand leaves the steering wheel until
reaching 20 different locations in the car. There were 3 repeated reaches to each
of the different targets located near the glove compartment, headliner, radio
panel, and gear shifter.

We associate observed discrete trajectories of elbow angles Rij(tij,m) with
with the (x, y, z)-coordinate of a reaching target with extra variables as

Rij(tij,m) = μ0(t) +
3∑

k=1

αk(tij,m)dik +
3∑

l=1

βl(tij,m)cil

+
3∑

k=1

3∑
l=k

γkl(tij,m)cikcil + εij(tij,m),

(25)

for i = 1, . . . , 20, j = 1, 2, 3, and k = 1, . . . , Ni, where (ci1, ci2, ci3) represents
the (x, y, z)-coordinate of a target location with its origin at the initial hand
posture on the steering wheel and dik’s are 0-1 dummy variables indicating four
nominal areas of different targets. Specifically, di1 = 1 if the target is located
near the headliner, di2 = 1 if the radio, di3 = 1 if the gear shifter, and zeros
otherwise so that we set the glove compartment for the baseline location. By
adding the nominal target information to the conventional model, we are able
to statistically compare the changes of elbow angles from different experimental
conditions. Among 60 experiments, we drop one trial which has been excluded in
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the literature, where the researchers revealed that the driver’s motion was mis-
taken while reaching the target. See [13] for more details about the experimental
settings.

Since the observed discrete trajectories of elbow angles reveal some noise due
to measurement error, [13] applied the smoothing splines to raw data to respect
the smoothness of human motion and obtained pre-smoothed angle random
curve. We denote it as R̃∗

ij(t), where the tracking time points tij,1, . . . , tij,Nij

were re-scaled to [0, 1] for each of 60 reaches. The pre-smoothed random sample
{R̃∗

ij : i = 1, . . . , 20, j = 1, 2, 3} can be analyzed by the standard one-way
functional ANOVA. We note that the model (25) turns out to be adequate for the
data as the bootstrap-based test [13] does not reject the lack of fit compared with
the functional ANOVA model (p-value = 0.436). [5, 6] also considered similar
approaches to the driver’s motion prediction in a larger dataset by adding extra
variables to statistically control different experimental conditions.

In this example, we aim to analyze the shape of the time-varying motion
changes rather than find a predictive model for an arbitrary target location.
Based on the asymptotic equivalence between splines and certain class of kernel
estimates [47, 34], we apply the proposed method to the pre-smoothed ran-
dom sample {R̃∗

ij : i = 1, . . . , 20, j = 1, 2, 3} to test the null hypothesis Hα
0 :

{α1, α2, α3} ∈ span{V (2)} with the same V (2) defined in Section 4.1. We per-
form inference using T ∗

n from Section 2.2 and find that the null hypothesis
cannot be rejected (T ∗

n = 3.16, p-value = 0.660). This result together with
Figure 6 shows that, compared to the glove reaching experiment, the driver
stretched their elbow less and moved slower at a constant relative angular ve-
locity when reaching different area. We also individually test several hypothe-
ses such as Hβ

0 : {β1, β2, β3} ∈ span{V (2)} (T ∗
n = 3.88, p-value = 0.930),

Hγkk

0 : {γ11, γ22, γ33} ∈ span{V (2)} (T ∗
n = 2.86, p-value = 0.710), and Hγkl

0 :
{γ12, γ13, γ23} ∈ span{V (2)} (T ∗

n = 4.68, p-value = 0.409). We close this section
by reporting that all twelve hypotheses we have tested were still not rejected
after applying the multiple comparison adjustment, both the Bonferroni and
Benjamini-Hochberg corrections, at 5% significance level, implying statistically
significant linear trends on them.

5. Discussion

We have presented a statistical procedure for testing shape-constrained hypothe-
ses on regression coefficients in function-on-scalar regression models, generaliz-
ing existing methods such as fANOVA that consider nullity hypotheses only. The
approach presented here enables inferences about temporal/spatially varying co-
efficient effects as well. The large sample properties of the proposed test were
investigated by deriving the asymptotic null distribution of the test statistic and
consistency of the test against local alternatives. The methodology was demon-
strated under three incomplete sampling situations; (i) partially observed, (ii)
irregularly observed error-prone, and (iii) composition of former two incomplete
functional response data. A few studies have recently illustrated goodness-of-fit
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Fig 6. The regression coefficient estimates of the model (25) are depicted. The solid and
dot-dashed lines are coefficient estimates and their 95% confidence bands, respectively. The
long-dashed lines show the estimates under the null hypotheses H0,l.

tests for functional linear models under fully observed responses, but handling
incomplete sampling designs was not studied either in theory or practice. Fur-
thermore, the critical value in our methodology can be approximated with the
spectral decomposition of covariance function, for which one can easily exploit
the existing methods in the recent developments in functional data analysis.
A key aspect of the methodology developed here is the specification of a rele-
vant shape hypothesis of interest. Ideally, the application defines the relevant
shape space. Otherwise, we can use standard curve-fitting hypotheses defined
by, for example, polynomial basis functions, exponential functions, or periodic
functions cycling at different frequencies.

In Section 2.2, we considered functional data, where each sample path is ob-
served on randomly spaced discrete points of size Ni. Assuming that Ni’s are



Linear operator constraints with incomplete functional data 3165

increasing as the sample size increase, which is often called “densely observed”
functional data, we adopted the individual smoothing strategy as interpolation.
Another interesting and challenging situation is when the functional data are
so sparsely observed that the individual smoothing strategy employed here is
not effective. In this case, one may consider a functional principal components
based approach to reconstruct individual curves. Recently, [28] proposed op-
timal reconstruction of individual curves in which each of the incomplete n
functions is observed at discrete points considerably smaller than n in finite
sample analysis. They showed that the functional principal components based
approach can provide better rates of convergence than conventional smoothing
methods, where mini{Ni}  nθ as n → ∞ for some θ > 0. However, hypothesis
testing under the functional principal component analysis framework remains
to be developed.

Appendix A: Technical details

A.1. Numerical implementation

We first present the numerical implementation of the proposed test for the fully
observed response data. In practice, the response Yi(t) is collected in a discrete
manner over a dense grid t1, . . . , tNi . For simplicity, we focus on the case Ni = N
and all the individual functions are observed at a common grid of design time
points. If the design time points are different for different individual trajectories,
we can apply the kernel smoothing to obtain the evaluations at a common grid
points under its uniform consistency property, demonstrated in Section 2.2.

Suppose that two design matrices X and Z are orthogonalized as in (4) and a
set of orthonormal bases {vl; l = 1, . . . , r} is given for the null hypothesis (3). We
calculate (p×N) matrix β̂ = (β̂

�
1 , . . . , β̂

�
p )�, where β̂j = {β̂j(t1), . . . , β̂j(tN )}�

is the least square estimator of βj at each grid. The test statistic TFull
n is ob-

tained based on D = β̂−Lβ̂, where (p×N) matrix D = (D1, . . . , DN ) is defined
with length p vector Dm, m = 1 . . . , N , and consists of jth row representing the
length N regression residuals by fitting the linear regression for the response
β̂j with r-columns of matrix V as covariates. Here, each column of matrix V
are discretized orthonormal bases v1, . . . , vr evaluated at N grid points. Then,
the test statistic TFull

n is approximated by N−1∑N
m=1 D

�
m(X̃�

X̃)Dm. We next
find the empirical critical value for the level α test. We calculate the (N ×N)
covariance matrix of residuals, denoted as Γ = [γmm′ ]1≤m,m′≤N , based on ri =
{ri(t1), . . . , ri(tN )}�, i = 1, . . . , n, where ri(tm) = Yi(tm) − X̃β̂(tm) − Zη̂(tm)
under η̂(tm) = (Z�

Z̃)
−1

Z
�Y(tm). We then derive the discretized γ̃(s, t) follow-

ing the formula in (12), denoted as Γ̃, by calculating Γ̃ = Γ−Γ(c)−Γ(r) +Γ(c,r),
where Γ(c) = (γ̂(c)1, . . . , γ̂(c)N )� is the matrix of the fitted multi-response re-
gression values based on N separate regressions, with each column of Γ as the
response, and the r-columns of V as covariates. Simiarly, Γ(r) is the matrix of
fitted multi-response regression values, with each row of Γ as the response, and
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the r-columns of V as covariates. Lastly, Γ(c,r) is the matrix of fitted values by
applying previous two steps to Γ subsequently. We then generate a large boot-
strap samples of T̂0 =

∑K̂
k=1 λ̂kAk, Ak

i.i.d.∼ χ2
p, where K̂ denotes the number of

positive eigenvalues of Γ̃, and use its (1 − α)% quantile as the critical value.
To perform the proposed hypothesis testing under irregularly collected re-

sponse data with additive measurement errors, we replace Yi(t) by kernel smooth
estimates of Ỹ ∗

i (t), obtained by (15), and apply the procedures described for the
fully observed response data. To find the optimal smooth parameter in kernel
estimation, one may adopt the leave-one-out cross-validation.

For the application of the proposed testing procedure to partially observed
functional response data, we calculate (p×N) matrix Dw = β̂

w −Lβ̂w
, where

Dw = (Dw
1 , . . . , D

w
N ) and β̂

w

j = (β̂w
j (t1), . . . , β̂w

j (tN ))�, and approximate Tn =
N−1∑N

m=1 D
w
m

�(X̃�
X̃)Dw

m. To find the empirical critical value for the level
α test, we estimate Γ by employing nonparametric covariance surface estima-
tion method applicable to sparse functional data, available through the function
GetCovSurface in R package ‘fdapace’. The optimal bandwidth for the surface
estimation can be found through the cross-validation steps. Next, we calculate
v̂(tm, tm′) =

∑n
i=1 δi(tm)δi(tm′)/n, and b̂(tm) =

∑n
i=1 δi(tm)/n. Then (N ×N)

matrix Ξ, discretized version of ϑ(s, t) in Theorem 2.1, can be derived, where
its (m,m′)-th element is calculated as Ξmm′ = Γmm′Πmm′ . Here, (N ×N) ma-
trix Π has its (m,m′)-th element as Πmm′ = v̂(tm, tm′)b̂(tm)−1b̂(tm′)−1. We
next calculate Ξ̃ = Ξ − Ξ(c) − Ξ(r) + Ξ(c,r), where Ξ(c) and Ξ(r) are obtained
by following definitions of each term, described in the implementation for the
fully observed data. In practical application, we adopt the standardized test
statistic T̆n = N−1∑N

m=1 D̆
w�
m (X̃�

X̃)D̆w
m, where D̆w

m = Dw
mb̂(tm)v̂(tm, tm)−1/2

and obtain an approximate critical value from Ξ̃∗ = Ξ∗ − Ξ∗
(c) − Ξ∗

(r) + Ξ∗
(c,r),

where Ξ∗
mm′ = Γmm′Π∗

mm′ with Π∗ representing the standardized matrix of Π
having unit variance for diagonals. The standardized testing procedure empir-
ically shows the improved performance in size controlling in simulation stud-
ies.

Lastly, we can calculate T ∗∗
n by combining two previous steps, smoothing

process over observed trajectories and calculation of test-statistic under partial
structures.

A.2. Technical details for Section 2.1

Proof of Theorem 2.1

Suppose E(X̃|Z) = 0 without loss of generality. Under the null hypothesis,

β̂
w
(t) = (X̃�

W(t)X̃)−1
X̃

�
W(t){X̃�β0(t) + Z

�η(t) + ε(t)}
= β0(t) + (X̃�

W(t)X̃)−1
X̃

�
W(t)ε(t),
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and let Zn(t) =
√
n(β̂

w
(t) − β0(t)). Then, we can write

Zn(t) =
(
X̃

�
W(t)X̃
nb(t)

)−1
√
nX̃�

W(t)ε(t)
nb(t)

= nb(t)∑n
i=1 δi(t)

(
X̃

�
W(t)X̃∑n

i=1 δi(t)

)−1
√
nX̃�

W(t)ε(t)
nb(t) .

Let X̃ = (X̃1, . . . , X̃n)�, where X̃i = (x̃i1, . . . , x̃ip)�, and let

Vn(t) = n−1/2
X̃

�
W(t)ε(t)/b(t) (26)

be the p-variate random functions with the zero mean, corresponding to the third
term in (26). Its j-th element is specifically written as n−1/2∑n

i=1 x̃ijδi(t)εi(t)/
b(t). Let Vn = (Vn(t1), . . . ,Vn(tQ)), where TQ = {tq ∈ [0, 1] : q = 1, . . . , Q} is
a finite collection of any Q time points, for Q ≥ 1. By the multivariate CLT and
the mutual independence among x̃ij , δi, and εi, we have

vec(Vn) =
(
Vn(t1), . . . ,Vn(tQ)

)� d→ MVN(0pQ,Ξ ⊗ Ψ),

where Ξ =
[
ϑqq′

]
1≤q,q′≤Q

is the Q×Q covariance matrix with

ϑqq′ = γ(tq, tq′)v(tq, tq′)b(tq)−1b(tq′)−1,

Ψ =
[
Ψjj′

]
1≤j,j′≤p

is the p × p matrix with Ψ = E(Var(X|Z)), and the Kro-
necker product of Ξ and Ψ is given by

Ξ ⊗ Ψ =

⎡
⎢⎣

ϑ11Ψ · · · ϑ1QΨ
...

. . .
...

ϑQ1Ψ · · · ϑQQΨ

⎤
⎥⎦ ∈ R

(pQ)×(pQ).

We specifically derive Ξ ⊗ Ψ as follows. For p-variate random variable Vn(tq),
the diagonal of its asymptotic covariance matrix, i.e., (j, j)-th element of the
matrix, is derived as γ(tq, tq)b(tq)−1E(x̃2

ij) = ϑqqVar(x̃ij), and the (j, j′)-th
element of the covariance matrix, for j �= j′, is γ(tq, tq)b(tq)−1E(x̃ij x̃ij′) =
ϑqqCov(x̃ij , x̃ij′). That is, the block diagonal covariance matrix of vec(Vn) is
ϑ(tq, tq)Ψ. We then examine the block off-diagonal covariance matrix of vec(Vn)
by calculating the covariance between Vn(tq) and Vn(tq′), for q �= q′. we can
show that the diagonal (j, j)-th element of the covariance matrix is ϑqq′Var(x̃ij)
and the (j, j′)-th element of the matrix, for j �= j′, is ϑqq′Cov(x̃ij , x̃ij′). That
is, p × p off-diagonal block covariance matrix of vec(Vn) is written as ϑqq′Ψ.
By [16] and [9], the multivariate process {Vn(t) : t ∈ [0, 1]} converges to the
multivariate Gaussian process in distribution as

{Vn(t) : t ∈ [0, 1]} d→ GPp(0p, ϑΨ),

where the finite-dimensional restrictions of ϑ is given by the covariance matrix Ξ.
Next, we can show that the (p× p) matrix X̃

�
W(t)X̃/

∑n
i=1 δi(t) in the second

term of (26) converges to Ψ in probability, under the conditions C2 and C4.
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Let Ṽn(t) = (X̃�
W(t)X̃/

∑n
i=1 δi(t))−1 Vn(t), then Ṽn(t) d→ GPp(0p, ϑΨ−1),

for t ∈ [0, 1], by the Slutksy’s lemma. Note that

sup
t∈[0,1]

∣∣Ṽn(t) − Zn(t)
∣∣ ≤ sup

t∈[0,1]
|Ṽn(t)| · sup

t∈[0,1]

∣∣∣∣1 − nb(t)∑n
i=1 δi(t)

∣∣∣∣ ,
where supt∈[0,1] |Z(t)| � supt∈[0,1] supj∈{1,...,p} Zj(t), for p-variate random func-
tions Z(t) = (Z1(t), . . . , Zp(t))�. Following the similar lines of the proof of
Theorem 4 and the Lemma 2.1 provided in [41], we have

sup
t∈[0,1]

∣∣Ṽn(t) − Zn(t)
∣∣ = Op(n−1/2).

Then Corollary 2.1 is an immediate consequence of Slutksy’s lemma.

Proof of Theorem 2.2 and Corollary 2.3

We first present the proof of Theorem 2.2. Following the similar arguments used
in Theorem 1 by [55], we have

Tn =
p∑

j=1

∫ 1

0
Wj(t)2 dt + oP (1) =

p∑
j=1

∞∑
m=1

ψ2
jm + oP (1), (27)

where W = (W1, . . . ,Wp)� ∼ GPp(Δ̃, ϑ̃Ip). The eigen-decomposition of ϑ̃(s, t)
leads to Wj(t) =

∑∞
m=1 ψjmφm(t), where the series converges in L2, uniformly

for t ∈ (0, 1), and ψjm = 〈Wj , φm〉 ∼ N(〈Δ̃j , φm〉, λm) independent for all
j = 1, . . . , p and m ≥ 1. Since ‖Δ̃j‖2

2 =
∑∞

m=1 |〈Δ̃j , φm〉|2 < ∞ it follows that
∞∑

m=1
Var

(
ψ2
jm

)
=

∞∑
m=1

2λm

(
1 + 2|〈Δ̃j , φm〉|2/λm

)
< ∞

for all j = 1, . . . , p. Therefore,

TΔ
a.s.=

∞∑
m=1

p∑
j=1

ψ2
jm

d=
∞∑

m=1
λmBm, (28)

where Bm =
∑p

j=1 ψ
2
jm/λm has the non-central χ2-distribution with p degrees

of freedom and the non-central parameter κ2
m = π2

m/λm. Since W1, . . . ,Wp

are independent Gaussian processes, B1, B2, . . . are independent. The proof of
Corollary 2.3 case (i) is a special case with non-centrality parameter on χ2

distribution with p degrees of freedom.

Proof of Corollary 2.3 case (ii)

The proof with τ ∈ [0, 1) follows from Theorem 2.2 as Ψ1/2(I−L)(n−τ/2Δ) →
∞ as n → ∞. When τ = 1, we assume that

∑∞
m=1 π

2
m = ∞. Let ζjm denote a
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standard normal random variable independent for all j = 1, . . . , p and m ≥ 1.
We note that

Bm =
p∑

j=1
ψ2
jm/λm

d=
p∑

j=1
ζ2
jm + 2

p∑
j=1

ζjm〈Δ̃j , φm〉/
√

λm +
p∑

j=1
|〈Δ̃j , φm〉|2/λm

d= Am + 2ρ̃mζ1m + π2
m/λm,

(29)

where ρ̃m =
∑p

j=1〈Δ̃j , φm〉/
√
λm for m ≥ 1 with Am and Bm defined in the

previous theorems. It follows from Corollary 2.3 case (i) and (13) that

lim
n→∞

P (TΔ ≥ tα|H1n) = P

( ∞∑
m=1

λmBm ≥ tα

)

= P

(
T0 + 2

∞∑
m=1

λmρ̃mζ1m +
∞∑

m=1
π2
m ≥ tα

)
.

(30)

Let Π2 =
∑∞

m=1 λmπ2
m. We note that

∞∑
m=1

Var(λmρ̃mζ1m) =
∞∑

m=1
λ2
m

( p∑
j=1

〈Δ̃j , φm〉/
√

λm

)2

≤ p2
∞∑

m=1
λmπ2

m = p2Π2,

(31)

where Π2 ≤ λ1
∑∞

m=1 π
2
m = λ1

∑p
j=1 ‖Δ̃j‖2

2 < ∞. Therefore, we can write∑∞
m=1 λmρ̃mζ1m

d= ΠZ0, where Z0 ∼ N(0, 1) is independent of T0. This com-
pletes the proof.

A.3. Technical details for Section 2.2

Lemma A.1. Let η1(t), . . . , ηN (t) be independent and random functions. Sup-
pose that there exists BN > 0 such that max1≤j≤N E‖ηj‖k∞ = O(BN ) for some
k > 2 and max1≤j≤N Lip(ηj) = OP (1), where Lip(f) denotes the Lipschitz con-
stant of f . Suppose that h  N−α for some α ∈

(
0, k−2

k

)
and that BN = O(1).

Then,

sup
t∈[0,1]

∣∣∣∣N−1
N∑
j=1

ξN,j(t)
∣∣∣∣ = OP

(
N−1/2h−1/2

√
logN

)
(32)

where ξN,j(t) = Kh(Tj − t)ηj(t) − E
(
Kh(Tj − t)ηj(t)

)
.
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Proof. For 0 < c < k−2−kα
2k , let η̃j(t) = ηj(t)I

(
‖ηj‖∞ ≤ N1/2−ch1/2) be the

truncation of ηj(t) by the magnitude of N1/2−ch1/2. We claim that

N−1
N∑
j=1

ξN,j(t) = N−1
N∑
j=1

ξ̃N,j(t) + oP
(
N−1/2h−1/2) (33)

uniformly for t ∈ [0, 1], where ξ̃N,j(t) = Kh(Tj − t)η̃j(t) − E
(
Kh(Tj − t)η̃j(t)

)
.

Then, it can be verified that

sup
t∈[0,1]

∣∣∣∣N−1
N∑
j=1

ξ̃N,j(t)
∣∣∣∣ = OP

(
N−1/2h−1/2

√
logN

)
(34)

as (32). To see this, let Tδ(m) denote a finite δ-covering of [0, 1] such that
1/δ ≤ |Tδ(m)| ≤ Nm, i.e., any t ∈ [0, 1], there exists t′ ∈ Tδ(m) such that
|t− t′| ≤ N−m ≤ δ. It follows that

sup
t∈[0,1]

∣∣∣∣N−1
N∑
j=1

ξ̃N,j(t)
∣∣∣∣

≤ sup
t∈Tδ(m)

∣∣∣∣N−1
N∑
j=1

ξ̃N,j(t)
∣∣∣∣+ sup

t,t′∈[0,1]: |t−t′|≤N−m

∣∣∣∣N−1
N∑
j=1

(
ξ̃N,j(t) − ξ̃N,j(t′)

)∣∣∣∣.
(35)

We note that the second term is negligible as

sup
t,t′∈[0,1]: |t−t′|≤N−m

∣∣∣∣N−1
N∑
j=1

(
ξ̃N,j(t) − ξ̃N,j(t′)

)∣∣∣∣
≤ 2N−m

(
Lip(K)N1/2−ch−3/2 + ‖K‖∞h−1 max

1≤j≤N
Lip(ηj)

)

= OP

(
N−1/2h−1/2N−m

(
N1+α−c ∨N (1+α)/2))

= oP
(
N−1/2h−1/2)

(36)

for some m > 0. Also, applying the standard techniques for the exponential
bound of large deviations, we get

P

(
sup

t∈Tδ(m)

∣∣∣∣N−1
N∑
j=1

ξ̃N,j(t)
∣∣∣∣ > C ·N−1/2h−1/2

√
logN

)

≤
∑

t∈Tδ(m)

P

(∣∣∣∣N−1/2+ch1/2
N∑
j=1

ξ̃N,j(t)
∣∣∣∣ > C ·N c

√
logN

)

≤ 2Nm+c0−C → 0 (N → ∞)

(37)

for some large C > 0, where c0 = c0(K,α, c) > 0 is a constant that depends on
K, α, c but Tδ(m). Therefore, (35) together with (36) and (37) gives (34).
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Now, we prove the claim (33). Define Ej =
(
‖ηj‖∞ ≤ N1/2−ch1/2) for j =

1, . . . , N . It follows from Markov’s inequality that

P

( N⋂
j=1

Ej
)

≥ 1 −
N∑
j=1

P
(
‖ηj‖∞ > N1/2−ch1/2)

≥ 1 −BNN1−k
(

1
2−c
)
h−k/2

= 1 −BNN−k
(

k−2−kα
2k −c

)
→ 1 (N → ∞).

(38)

This implies that the ηj(t) and η̃j(t) are equivalent to each other with probability
tending to 1 uniformly for t ∈ [0, 1]. We also note that

sup
t∈[0,1]

∣∣∣E(Kh(Tj − t)
(
ηj(t) − η̃j(t)

))∣∣∣
= sup

t∈[0,1]

∣∣∣E(Kh(Tj − t)ηj(t)I
(
‖ηj‖∞ > N1/2−ch1/2))∣∣∣

≤ ‖K‖∞BNN−(k−1)
(

1
2−c
)
h−1−(k−1)/2

≤ ‖K‖∞BNN−c−k
(

k−2−kα
2k −c

)
N−1/2h−1/2 = o

(
N−1/2h−1/2).

(39)

Finally, (38) and (39) imply (33), which completes the proof of the lemma.

Lemma A.2. Let μ(t) = EY (t) be continuously twice differentiable in t ∈ [0, 1],
where ‖μ′‖∞ and ‖μ′′‖∞ exist and are finite. Suppose that E‖Y ‖k∞ < ∞ for
some k > 2 and that max1≤i≤n ‖Y ′‖∞ is bounded in probability. If P (N <
an) = o(n−1), where an  nθ for some θ > 0, then

Ỹ ∗
i (t) − Yi(t) = OP

(
rn(t) + n−θ/2h−1/2

√
logn

)
(i = 1, . . . , n) (40)

uniformly for t ∈ [0, 1], where h  n−θα for some α ∈
(
0, k−2

k

)
, rn(t)  h2 if

t ∈ [h, 1 − h], and rn(t)  h otherwise.

Proof of Lemma A.2

Let {Sn : n ≥ 1} be a sequence of events defined as Sn = (Ni ≥ an for all i =
1, . . . , n). Then, P (Sn) ≥ 1 −

∑n
i=1 P (Ni < an) → 1 as n → ∞. We claim

that the stochastic expansion of (40) holds conditioning on Sn. Then, the the-
orem follows since Ni’s are independent of (Y∗

i ,Ti,Xi,Zi)’s, where P (Sn) → 1
as n → ∞. For simplicity, we may assume that N1, . . . , Nn are deterministic
integers bounded below from nδ.
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To prove the stochastic expansion of (40), let λ̂i(t) = N−1
i

∑Ni

j=1 Kh(Ti,j − t)
denote the kernel density estimator of λ(t) and define

ĝAi (t) = λ̂i(t)−1N−1
i

Ni∑
j=1

Kh(Ti,j − t)εi,j ,

ĝBi (t) = λ̂i(t)−1N−1
i

Ni∑
j=1

Kh(Ti,j − t)
(
Yi(Ti,j) − Yi(t)

)
,

(41)

where εi,j = Y ∗
i,j − Yi(Ti,j) in (14), so that we re-write Ỹ ∗

i (t) − Yi(t) = ĝAi (t) +
ĝBi (t). It follows from Lemma A.1 that

N−1
i

Ni∑
j=1

Kh(Ti,j − t)

= N−1
i

Ni∑
j=1

E(Kh(Ti,j − t)
)

+ OP

(
n−θ/2h−1/2

√
logn

)
,

N−1
i

Ni∑
j=1

Kh(Ti,j − t)εi,j = OP

(
n−θ/2h−1/2

√
logn

)
,

N−1
i

Ni∑
j=1

Kh(Ti,j − t)ηi,j(t)

= N−1
i

Ni∑
j=1

E
(
Kh(Ti,j − t)ηi,j(t)

)
+ OP

(
n−θ/2h1/2

√
logn

)

(42)

uniformly for t ∈ [0, 1], where ηi,j(t) = Yi(Ti,j) − Yi(t). We note that the mag-
nitude of stochastic remainders are of the same order for all i = 1, . . . , n as
(Y∗

i ,Ti,Xi,Zi) are iid. By the standard theory of kernel smoothing, we also
get

E(Kh(Ti,j − t)
)

= κ0(t)λ(t) + o(1),
E
(
ηi,j(t)

)
=
{
h2{ 1

2μ
′′(t)λ(t) + μ′(t)λ′(t)

}
κ2(t) + o(h2) if t ∈ [h, 1 − h],

hμ′(t)λ(t)κ1(t) + o(h) otherwise,

(43)

uniformly for t ∈ [0, 1], where

κr(t) =

⎧⎪⎪⎨
⎪⎪⎩
∫ 1
− t

h
urK(u) du if t ∈ [0, h),∫ 1

−1 u
rK(u) du if t ∈ [h, 1 − h],∫ 1−t

h

−1 urK(u) du if t ∈ (1 − h, 1]
(44)

for r = 0, 1, 2. Since κ0(t) does not vanish and |κ1(t)| and |κ2(t)| are bounded,
we get (40).



Linear operator constraints with incomplete functional data 3173

Proof of Theorem 2.4

Recall that

T ∗
n =

∫ 1

0

(
(I −L)β̃∗)(t)�(X̃�

X̃
)(

(I −L)β̃∗)(t) dt

=
∫ 1

0

∥∥∥(X̃�
X̃
)1/2((I −L)β̃∗)(t)∥∥∥2

dt

=
∫ 1

0

p∑
k=1

(
e�k (X̃�

X̃)−1
X̃

�Ỹ∗(t)
)2

dt,

(45)

where ek ∈ R
p be a unit vector whose k-th component is 1. We note that

β̃∗
j (t) = β̂j(t) + e�j (X̃�

X̃)−1
X̃

�(Ỹ∗(t) − Y(t)
)

for each j = 1, . . . , p, where
β̂j(t) = e�j (X̃�

X̃)−1
X̃

�Y(t) is the least-squares estimator of βj(t) with fully
observed data. The large sample property of β̂(t) = (β̂1(t), . . . , β̂p(t))� follows
from Theorem 2.1 by letting Ii = [0, 1] for all i = 1, . . . , n. Since ‖I−L‖op ≤ 1,
it follows from the Cauchy-Schwarz inequality and Lemma A.2 that∫ 1

0

∥∥∥e�j (X̃�
X̃
)1/2((I −L)(β̃∗ − β̂)

)
(t)
∥∥∥2

dt

≤ e�j X̃�
X̃ej

p∑
k=1

∫ 1

0

(
e�k (X̃�

X̃)−1
X̃

�(Ỹ∗(t) − Y(t)
))2

dt

≤
{
e�j X̃�

X̃ej
p∑

k=1

(
e�k (X̃�

X̃)−1ek
)} n∑

i=1

∫ 1

0

(
Ỹ ∗
i (t) − Yi(t)

)2 dt.

=
{
e�j Ψejtr

(
Ψ−1)+ oP (1)

}
·OP

(
nh3 + n1−θh−1 logn

)
= OP

(
n1−θ(3/5)) (∀j = 1, . . . , p).

(46)

The above result is analogous to the proof of theorems in [56]. On the other
hand, (11) gives∥∥e�j (X̃�

X̃
)1/2(I −L)β̂

∥∥ =
∥∥e�j Ψ1/2√n

(
I −L)(β̂ − β0

)∥∥+ oP (1)
= OP (1),

(47)

for all j = 1, . . . , p. Combining (46) and (47), we get

T ∗
n =

∫ 1

0

∥∥∥(X̃�
X̃
)1/2((I −L)β̃∗)(t)∥∥∥2

dt

= Tn +
∫ 1

0

∥∥∥(X̃�
X̃
)1/2((I −L)(β̃∗ − β̂)

)
(t)
∥∥∥2

dt

+ 2
∫ 1

0

[(
X̃

�
X̃
)1/2((I −L)(β̃∗ − β̂)

)
(t)
]�[(

X̃
�
X̃
)1/2((I −L)β̂

)
(t)
]
dt

= Tn + OP

(
n1−θ(3/5)). (48)

This completes the proof.
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A.4. Technical details for Section 2.3

Proof of Theorem 2.6

We note that

P (T ∗
i,m ∈ A) = E

[
P (Ti,jm ∈ A | δi(Ti,jm) = 1)

]
= E

[
P (Ti,jm ∈ A, δi(Ti,jm) = 1 | δi)

P (δi(Ti,jm) = 1 | δi)

]

= E

[∫
A
δi(u)λ(u) du∫ 1

0 δi(v)λ(v) dv

]
.

The above observation implies that, even if discrete observations are sampled
from the random segments of functional responses, the proposed method works
for this case if we impose additional conditions on the filtering process δi so that
the density of T ∗

i,m given by

λ∗(t) = E

[
δi(t)λ(t)∫ 1

0 δi(v)λ(v) dv

]
(t ∈ [0, 1])

satisfies the key design condition of Theorem 2.6.
For the boundedness of λ∗, we note that conditions (C1)-(C4) and the as-

sumptions on λ imply the uniform lower bound,

λ∗(t) ≥ E

[
δi(t)λ(t)
‖λ‖∞

]
= b(t)λ(t)

‖λ‖∞
≥ b0λ0

‖λ‖∞
> 0,

where b0 = inft b(t) and λ0 = inft λ(t). Also, (19) gives the uniform upper
bound,

λ∗(t) ≤ ‖λ‖∞
λ0

E

[
1∫ 1

0 δi(v)dv

]
. (49)

For the smoothness of λ∗, we note that

λ∗(s) − λ∗(t)
s− t

= 1
s− t

E

[
δi(s)λ(s) − δi(t)λ(t)∫ 1

0 δi(v)λ(v) dv

]

=
3∑

j=1
E

[
Aij(s, t)∫ 1

0 δi(v)λ(v) dv

]
,

(50)

where Ai1(s, t) = λ(s)−λ(t)
s−t I(s, t ∈ Ii), Ai2(s, t) = λ(s)

s−t I(s ∈ Ii, t �∈ Ii), and
Ai3(s, t) = −λ(t)

s−t I(s �∈ Ii, t ∈ Ii). Obviously, |Ai1(s, t)| is bounded (a.s.) since
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λ has a bounded derivative. The moment condition (19) and the dominated
convergence theorem give

lim
s→t

E

[
A1j(s, t)∫ 1

0 δi(v)λ(v) dv

]
= E

[
δi(t)λ′(t)∫ 1

0 δi(v)λ(v) dv

]
. (51)

To analyze Ai2(s, t), using Hölder’s inequality with p−1+q−1 = 1 for p, q > 1,
we have

E

∣∣∣∣∣ Ai2(s, t)∫ 1
0 δi(v)λ(v)dv

∣∣∣∣∣ ≤ ‖λ‖∞
λ0

{
E

∣∣∣∣ 1∫ 1
0 δi(v)dv

∣∣∣∣
p
}1/p{

E

∣∣∣∣ I(s ∈ Ii, t �∈ Ii)
s− t

∣∣∣∣
q}1/q

.

Doing the same with Ai3, we claim that

lim sup
s→t

P (δi(s) �= δi(t))
|s− t|q = 0 (52)

Indeed, it follows from (20) that

P (δi(s) �= δi(t))
|s− t|q ≤ 2C|s− t|p−q,

provided that p > 2 > p
p−1 = q. Therefore, combining (50), (51), and (52), we

conclude that the derivative of λ∗ is given by

(λ∗)′(t) = E

[
δi(t)λ′(t)∫ 1

0 δi(v)λ(v) dv

]
.

The boundedness of (λ∗)′ can also be shown similarly as (49).

Derivation in Remark 2.7

We note that

Γ(s, t) = Cov
(
δi(s), δi(t)

)
= E

[
δi(s)δi(t)

]
− E

[
δi(s)

]
E
[
δi(t)

]
= P

(
δi(s) = 1, δi(t) = 1

)
− b(s)b(t).

Similarly, we have

Γ(s, t) = Cov
(
1 − δi(s), 1 − δi(t)

)
= P

(
δi(s) = 0, δi(t) = 0

)
− (1 − b(s))(1 − b(t)).

It follows that

P
(
δi(s) �= δi(t)

)
= 1 − P

(
δi(s) = 0, δi(t) = 0

)
− P

(
δi(s) = 1, δi(t) = 1

)
=
{
b(s)(1 − b(t)) − Γ(s, t)

}
+
{
b(t)(1 − b(s)) − Γ(s, t)

}
.
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Indeed,

b(s)(1 − b(t)) − Γ(s, t) = b(s)(1 − b(t)) −E
[
δ(s)δ(t)

]
+ b(s)b(t)

= P
(
δi(s) = 1

)
− P

(
δi(s) = 1, δi(t) = 1

)
= P

(
δi(s) = 1, δ(t)i = 0

)
.

Similarly, we have

b(t)(1 − b(s)) − Γ(s, t) = P
(
δi(t) = 1

)
− P

(
δi(s) = 1, δi(t) = 1

)
= P

(
δi(s) = 0, δi(t) = 1

)
.

Therefore, (20) and (21) are equivalent because

P (δi(s) �= δi(t)) = b(s)(1 − b(t)) + b(t)(1 − b(s)) − 2Γ(s, t). (53)

Derivation in Remark 2.8

We note that

P
(
δ(s) = 1, δ(t) = 0

)
= P (U(p+1) ≤ s ≤ Up+k+1 < t)

= Cp,k

∫ t

s

∫ s

0
u3(v − u)k(1 − v)3 dudv,

where Cp,k = (2p+k+2)!
p! k! p! . For g(s, t) =

∫ t

s

∫ s

0 u3(v − u)k(1 − v)3 dudv satisfying
g(s, s) = 0, the Leibniz rule and integration by parts give

g(0,1)(s, t) = ∂

∂t
g(s, t) = (1 − t)3

∫ s

0
u3(t− u)k du

= (1 − t)3
3∑

	=0

c	s
3−	(t− s)k+1+	

(54)

for some non-zero constants c0, . . . , c3. Therefore, it follows from the mean value
theorem that

P
(
δ(s) = 1, δ(t) = 0

)
≤ Cp,k

∣∣g(s, t) − g(s, s)
∣∣

≤ Cp,k|s− t| sup
u∈[s,t]

∣∣g(0,1)(s, u)
∣∣

≤ C∗
p,k|s− t|k+2,

(55)

where C∗
p,k = Cp,k max	 c	. The case for P

(
δ(s) = 0, δ(t) = 1

)
can also be

verified similarly, and we get the condition (20).
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