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Abstract: This paper introduces a new class of space-time integer-valued
ARMA models referred to as STINARMA. This class arises as the natural
space-time extension of the INARMA models and, simultaneously, as the
integer-valued counterpart of the conventional STARMA models. In this
work, the moving average subclass STINMA(qm1,...,mq ) is studied in de-
tail. Particular attention is given to the derivation of first- and second-order
moments, including space-time autocorrelations. Due to its large potential
use in real-data applications, the Poisson STINMA(11) process is analyzed
in further detail. Estimation methods are also addressed and their perfor-
mance is demonstrated through a simulation study and by analysing the
daily number of hospital admissions observed over time in three Portuguese
locations.
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1. Introduction

The statistical characterization of the temporal dependence structure of count
time series is a topic of active research nowadays. To this end, several fami-
lies of models have been proposed in the literature being the equation-based
models one of the most popular. This family includes the thinning-operator-
based models [40] such as the integer-valued ARMA (INARMA), in which the
multiplication of the ordinary ARMA recursion is replaced by the binomial thin-
ning operator (BTO hereafter). While univariate INARMA models have been
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intensively discussed in the literature [e.g. 11, 12, 54], the development of its
multivariate extensions progresses slowly. Multivariate INAR (MINAR) models
based upon either independent BTOs or generalized thinning operators were
first introduced in the 1990s by Franke and Subba Rao [17] and Latour [24], re-
spectively. Several further contributions can be found in the literature including
periodic MINAR [39], MINAR with seasonally varying autocorrelation param-
eters [9], non-stationary bivariate INAR [23], bivariate binomial INAR [41] and
full bivariate INAR [30, 31]. By contrast, however, multivariate integer-valued
moving averages (MINMA) models emerged considerably later with the pro-
posal of a bivariate INMA (BINMA) model [37] and its generalization to higher
dimensions [38]. More recent papers on BINMA models include [42], [49] and
[47]. It is worth to mention that the family of full multivariate INARMA models
is hardly ever addressed in the literature with some exceptions e.g. Sunecher,
Mamode Khan and Jowaheer [48], Sunecher [46] and McKenzie [28].

As far as parameter estimation is concerned, conditional least squares (CLS)
and conditional maximum likelihood (CML) have been conducted for MINAR
models [17, 24] while CLS, generalized method of moments (GMM) and gener-
alized quasi-likelihood (GQL) have been established for BINMA models [37, 38,
47, 42, 49].

Since most contributions to multivariate BTO-based models have been in-
troduced during the last few years, it is not surprising that both purely spatial
and space-time INARMA models are still quite underdeveloped and limited to
a few applications with autoregressive approaches [e.g. 20, 19, 1, 22, 50]. There-
fore, this work intends to contribute to this direction by introducing a novel
space-time extension of the full INARMA model, hereafter referred to as STIN-
ARMA class. This new class constitutes the integer BTO-based counterpart of
the space-time ARMA (STARMA) class first introduced by Pfeifer and Deutsch
[35], in which the spatial component is expressed by a W (�) matrix providing
weighted information on the spatial neighbors of order �. Following the same line
of reasoning, the novel class is designated to as STINARMA(pf1,...,fp , qm1,...,mq )
highlighting that different spatial lags f1, . . . , fp and m1, . . . ,mq are allowed for
each temporal lag of the AR and MA component of the class; see Section 2 for
details. This paper further explores the stationary STINMA(qm1,...,mq ) subclass
of models (a particular case of p = 0 in the STINARMA class). Specifically, the
second-order model structure is derived in Section 3 along with the space-time
autocovariance and autocorrelation functions. Moreover, Section 4 presents ex-
haustive research on the Poisson STINMA(11) model, including the derivation
of its moments and estimation methods based on the method of moments (MM),
CLS and CML, being their performance compared through a simulation study;
see Section 5. In Section 6, the Poisson STINMA(11) model is applied to a real-
world data example concerning a space-time process on the daily number of
hospital admissions in Portugal. Finally, Section 7 is devoted to the conclusions
and perspectives for future research in the STINARMA class.
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2. The STINARMA class for spatio-temporal counts

The STINARMA class is proposed as an extension of the univariate INARMA
class to the space dimension. Both classes are based on the BTO defined as

ψ ◦X :=
X∑
i=1

ui, X > 0 (1)

and 0 otherwise [44]. In this formulation, X is a discrete random variable with
range N0 and ui, i = 1, . . . , X are independent and identically distributed (i.i.d.)
Bernoulli-distributed random variables with probability of success ψ ∈ (0, 1),
being independent of X. The boundary cases are defined as 0 ◦ X = 0 and
1 ◦X = X. The general INARMA(p, q) model [13] makes use of the BTO and
is defined by the recursive scheme

Yt =
p∑

i=1
αi ◦ Yt−i +

q∑
j=1

βj ◦ εt−j + εt, t ∈ Z = {. . . ,−1, 0, 1, . . .}, (2)

where εt ∈ N0 are i.i.d. count innovations with με := E(εt) < ∞ and σ2
ε :=

V (εt) < ∞, being independent of Yu for u < t. Within this setting, the BTOs
are assumed to be performed independently of each other and of εt, for each
t. These operations make use of the model parameters αi, βj ∈ [0, 1) defined
for i = 1, . . . , p and j = 1, . . . , q such that αp �= 0 and βq �= 0, where p and q
denote, respectively, the temporal AR and MA orders of the INARMA model.

From the INARMA representation in (2), the novel STINARMA class is
defined as follows. Set Y t = (Y1,t, . . . , YS,t)� ∈ N

S
0 as the (S × 1)-vector of a

multivariate count process at locations s = 1, . . . , S and time t ∈ Z. (Y t) it is
said to be a STINARMA process if it admits the representation

Y t =
p∑

i=1

fi∑
�=0

αi�W
(�) ◦ Y t−i +

q∑
j=1

mj∑
�=0

βj�W
(�) ◦ εt−j + εt, t ∈ Z, (3)

where εt = (ε1,t, . . . , εS,t)� ∈ N
S
0 are i.i.d. with εs,t being the innovation at

location s = 1, . . . , S and time t ∈ Z. The STINARMA model introduces the
spatial dependency through the (S × S)-matrix of weights W (�) for the spatial
lags � = 0, . . . ,max{f1, . . . , fp, m1, . . . ,mq} < S, where fi and mj are the spatial
orders for the ith autoregressive and the jth moving-average term, respectively.
The model in (3) is hereafter referred to as STINARMA(pf1,...,fp , qm1,...,mq ). In
analogy to the STARMA and INARMA classes, the STINARMA can be reduced
to either a purely autoregressive (STINAR) or moving-average (STINMA) class
by setting q = 0 or p = 0, respectively.

The STINARMA representation in (3) highlights that Y t is expressed as
a sum of time-lagged BTOs that introduces the temporal dependence to the
multivariate process. Moreover, the spatial dependence is expressed through
the multiplication of the parameters αi�, βj� ∈ [0, 1) by the weight matrix W (�),
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which is endowed into the BTO that takes a matrix formulation [17]. The BTO
between a matrix Ψ with (fixed) entries in [0, 1) and a random vector X is
defined as

Ψ ◦X :=

⎛
⎜⎜⎜⎝
ψ11 ψ12 · · · ψ1S
ψ21 ψ22 · · · ψ2S
...

...
. . .

...
ψS1 ψS2 · · · ψSS

⎞
⎟⎟⎟⎠ ◦

⎛
⎜⎜⎜⎝
X1
X2
...

XS

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S∑
n=1

ψ1n ◦Xn

S∑
n=1

ψ2n ◦Xn

...
S∑

n=1
ψSn ◦Xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4)

where ψsn ◦ Xn, for a given n and s is performed according to (1). Useful
properties of such matricial operators can be found in Franke and Subba Rao
[17] and [24]. In the default version of the STINARMA model, all BTOs in (3)
and (4) are performed independently of each other. However, this assumption is
easily modified if required by the application context. In Section 4, for example,
a modified STINMA(11) model is considered, imposing the same observed value
for ψin ◦Xn and ψjn ◦Xn such that ψin = ψjn, i �= j in a matricial BTO (4)
performed at a given time t. The interpretation is that if the spatial contribution
of location n to its neighbors i and j is the same, then the result of these two
BTOs should be the same for both neighbors at a time instant t. Therefore, the
BTOs conveyed in this restricted STINARMA formulation of (3) are performed
independently in time but not necessarily independently for different spatial
locations at a given time t.

The innovation process εt in (3) is assumed to be i.i.d. in time with με :=
E(εt) = (με1 , . . . , μεS )� where μεs := E(εs,t) < ∞ and σ2

εs := V (εs,t) < ∞, for
each spatial component s = 1, . . . , S. Furthermore, it is assumed that εt follows a
(trivial) discrete multivariate distribution, i.e. with mutually independent com-
ponents. Such assumption, however, might be relaxed if a more sophisticated
cross-dependence structure is required for Y t; see Section 7 for details. Under
the mutual independence assumption, it holds that

Cov
[
εt, ε

�
t+h

]
=
{
G, h = 0,
OS , h �= 0,

(5)

where G = diag(σ2
ε1 , . . . , σ

2
εS ) with zero off-diagonal entries, and OS denotes

the (S × S)-zero matrix. To sum up, the multivariate process εt is assumed
to be i.i.d. in time and independent in space, but not necessarily identically
distributed in space.

A key component of the STINARMA model is the set of neighbor matrices
W (�), � < S, which reflects the hierarchical ordering of the spatial neighbors,
namely the first-order neighbors (� = 1) are those closest to each other, second-
order neighbors (� = 2) are farther apart, and so on. For a given �, the entries
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of W (�) are such that

w(�)
sn :=

{
κ

(�)
sn , if s and n are �th-order neighbors,

0, otherwise,
(6)

where κ
(�)
sn quantifies the influence of location n in s provided that these are

�th-order neighbors. Note that locations s and n cannot be simultaneously �th-
order and kth-order neighbors with � �= k, i.e. at most one of {w(0)

sn , w
(1)
sn , . . .} is

non-zero. From (6) it follows that W (0) is a diagonal matrix since each location
is its (only) zero-order neighbor; the normalized W (0) = IS (identity matrix) is
considered. Also, w(�)

ss = 0 for � ≥ 1 since each location is not a neighbor of order
� ≥ 1 of itself, which implies that tr

(
W (�)) = 0, � ≥ 1. Finally, it is important

to remark that the matrix W (�) is not necessarily symmetric for � > 0.
Dealing with BTO implies that all entries of the matrices αi�W

(�) and
βj�W

(�) must range between 0 and 1. Since αi�, βi� ∈ [0, 1), it suffices to as-
sume that w

(�)
sn ∈ [0, 1] to comply with such BTO restriction. This holds for

row-normalized W (�) matrices (i.e. such that
∑S

s=1 w
(�)
sn = 1 for each n and �),

by defining the spatial weights as in (6) with κ
(�)
sn = 1/m(�)

s , where m
(�)
s ≤ S

denotes the number of �th-order neighbors of location s [35]. As an example,
Figure 1(a) shows a 3×3 grid layout with a reference location in the centre and
eight surrounding neighbor locations. According to the previous definition each
first-order neighbor n of the reference location s has κ

(1)
sn = 1/4.

Remark 2.1. Other approaches for expressing the relation between �th-order
neighbors are possible, e.g. by transforming values ν(�)

sn ∈ R
+
0 into κ

(�)
sn = f(ν(�)

sn ) ∈

Fig 1. (a) Schematic representation of a 3×3 grid with an anchor location (yellow) and
its eight surrounding neighbor locations of different orders. (b) Examples of continuous
transformations κ

(�)
sn = f(ν(�)

sn ) of spatial weights ν
(�)
sn ∈ R

+
0 into κ

(�)
sn ∈ [0, 1], namely (1)

κ
(�)
sn = exp

(
− ν

(�)
sn

)
, (2) κ

(�)
sn = 2/

(
exp

(
ν
(�)
sn

)
+ 1

)
, (3) κ

(�)
sn = 1/

(
exp

(
ν
(�)
sn

)
+ 1

)
and (4)

κ
(�)
sn = 1/

(
exp

(
ν
(�)
sn

)2 + 1
)
.
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[0, 1] with subsequent row-normalization. For instance, one may consider all lo-
cations as first-order neighbors and take ν

(1)
sn as the Euclidean distance between

locations s and n [45]. Figure 1(b) displays examples of transformations f that
comply with the [0, 1)-restriction and follow an inverse relation between distance
and weights (higher distance associated with smaller weights). These functions
satisfy f(0) = 1 and limx→∞ f(x) = 0, but exhibit different decay ratios that
lead to different weighting schemes for the neighbor locations.

The new STINARMA class thus constitutes the BTO-based integer counter-
part of the STARMA class introduced by [35]. The STARMA recursion, which
refers to a multivariate real-valued process, does not differ considerably from
that in (3) except for the fact that the BTO is replaced by the conventional
multiplication, the STARMA parameters αi� and βj� (and their scalar products
with W (�)) are not restricted to the [0, 1) interval, and the εt components are
normally distributed with mean 0S (zero vector) and diagonal cross-covariance
matrix with variance σ2

ε1 = · · · = σ2
εS = σ2. Furthermore, the connections of

the new STINARMA model (3) to the INARMA framework are obvious: setting
the spatial orders fi = mj = 0 for all i, j leads to a multivariate INARMA(p, q)
model, while setting the number of locations to S = 1 leads to the univariate
INARMA(p, q) formulation in (2). The novel STINARMA class also includes
the so-called GSTAR(1; 1) model of Huda, Mukhaiyar and Pasaribu [22] as a
special case (p = 1, f1 = 1, and q = 0), but it differs from the SINAR(1, 1) model
of Ghodsi, Shitan and Bakouch [20] and the multiple PoINAR(1) proposal of
Aldor-Noiman et al. [1] with correlated innovations.

Finally, the conditions for the STINARMA model to become a stationary
process are closely linked to those of the STARMA process [35] through the
results conveyed in Latour [24] regarding the MGINAR(p) model. Noticing that
at most one of {w(0)

sn , w
(1)
sn , . . .} is non-zero, the STINARMA recursion (3) can

be rewritten as

Y t =
p∑

i=1

(
fi∑
�=0

αi�W
(�)

)
︸ ︷︷ ︸

=:Ai

◦ Y t−i +
q∑

j=1

(
mj∑
�=0

βj�W
(�)

)
︸ ︷︷ ︸

=:Bj

◦ εt−j + εt, t ∈ Z, (7)

which shows that the STINARMA class can be understood as a special type of an
S-variate INARMA model. This relation can be used to establish the existence
of a unique stationary solution. Needless to say that the STINMA model is
stationary by construction, so the focus should be put on the autoregressive
part. According to (7), any STINAR(pf1,...,fp) model constitutes a MGINAR(p)
model in the sense of Latour [24], for which a stationary solution exists if the
roots of det(IS−A1z−· · ·−Apz

p) are outside the unit circle. Thus, the existence
of a stationary STINAR(pf1,...,fp) process is ensured if

det
(
IS −

p∑
i=1

fi∑
�=0

αi�W
(�)zi

)
�= 0 for |z| ≤ 1, (8)
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which is equivalent to the stationarity condition of the continuous STAR model
[35, p. 37].

3. The general STINMA(qm1,...,mq) process

The STINMA(qm1,...,mq ) process satisfies the recursion

Y t =
q∑

j=1

mj∑
�=0

βj�W
(�) ◦ εt−j + εt, (9)

where εt = (ε1,t, . . . , εS,t)� is an i.i.d. multivariate process with finite E(εs,t) =
μεs and V (εs,t) = σ2

εs for each s = 1, . . . , S. Furthermore, the matrix-BTO is
defined according to equation (4) with all ◦-operations being independent. The
previous recursion can be written as⎡

⎢⎣Y1,t
...

YS,t

⎤
⎥⎦ =

q∑
j=1

mj∑
�=0

βj�

⎡
⎢⎢⎣
w

(�)
11 . . . w

(�)
1S

...
. . .

...
w

(�)
S1 . . . w

(�)
SS

⎤
⎥⎥⎦ ◦

⎡
⎢⎣ε1,t−j

...
εS,t−j

⎤
⎥⎦+

⎡
⎢⎣ε1,t

...
εS,t

⎤
⎥⎦ , (10)

which highlights that the spatial component Ys,t is modelled as the sum of
thinning operations involving εt−j , either through its sth component or the
components associated with the �th-order neighbors of location s. As W (0) = IS

by definition, it is clear that an S-variate MINMA(q) driven by space-time
independent innovations arises by setting m1 = · · · = mq = 0. In this case,
Ys,t is formulated as the sum of thinning operations with εs,t alone and its time
lagged versions up to order q, which resumes (10) to a system of independent
equations. A workaround to use the MINMA(q) model in the context of spatial
data analysis is to consider component-wise correlated innovations (see e.g. [42]
for the bivariate case). However, this differs from the new STINMA(qm1,...,mq )
proposal where the spatial component is explicitly considered in the model’s
definition through the W (�) matrices, and the innovation process is assumed to
be temporally and spatially independent.

3.1. First- and second-order moments

Basic properties of the BTO can be used to show that the component-wise mean
and variance of the STINMA(qm1,...,mq ) process are given by

E[Ys,t] =
q∑

j=1

mj∑
�=0

S∑
n=1

(
βj�w

(�)
snμεn

)
+ μεs (11)

V [Ys,t] =
q∑

j=1

mj∑
�=0

S∑
n=1

(
β2
j�

(
w(�)

sn

)2
σ2
εn + βj�w

(�)
sn

(
1 − βj�w

(�)
sn

)
μεn

)
+ σ2

εs (12)
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for a given location s = 1, . . . , S. The complete proofs are presented in Ap-
pendix A. The mean and variance of the S-variate MINMA(q) process are ob-
tained for the particular case m1 = · · · = mq = 0 [52]. Compared to the conven-
tional STMA process with εt ∼ N (με,G), the STINMA exhibits the same mean
but the variance includes the additional terms βj�w

(�)
sn (1 − βj�w

(�)
sn )μεn steam-

ing from replacing the multiplication by the ◦-operation. Finally, the mean and
variance of the STMA process with εt ∼ N (0S ,G) are included in the above
equations by setting μεs = 0 [35] which certainly is not well-defined in the
count-data case.

In the matricial formulation, the linearity of the expected value and the
E[ψ ◦X] = ψE[X] property [17] can be used to write the expected value of the
STINMA(qm1,...,mq ) as

E[Y t] =
q∑

j=1

mj∑
�=0

βj�W
(�)με + με. (13)

Furthermore, the autocovariance function Γ*(h) at time lag h ≥ 0 is given in
Theorem 3.1, with complete proof in Appendix B. It is noteworthy that the
result in Theorem 3.1 stands for the assumption that all BTOs are performed
independently, which implies that calculations involving expected values of cross
products are based on the matrix-BTO properties of Franke and Subba Rao
[17]. Noticing that V [ψ ◦ X] �= V [ψX], the main diagonal of Γ*(0) (i.e. the
component-wise variances of the process) differs for the STINMA and STMA
processes. As the BTOs are independent, the variance terms only appear at the
Γ*(0) diagonal, and the STINMA process exhibits off-diagonal covariances in
Γ*(h) for h ≥ 0 equal to those of the STMA process [35].

Theorem 3.1. Let (Y t) be the STINMA(qm1,...,mq ) process

Y t =
q∑

j=1
Bj ◦ εt−j + εt, (14)

where Bj :=
∑mj

�=0 βj�W
(�) and εt is a multivariate i.i.d. process with mean

με := E[εt] < ∞ and Cov(εt, ε�t+h) defined as in (5). Then, the autocovariance
Γ*(h) = Cov(Y t,Y

�
t+h), h ≥ 0 is given by

Γ*(h) =
q−h∑
j=1

BjGB�
j+h + GB�

h , 0 < h < q + 1 (15)

and

Γ*(0) =
q∑

j=1

(
G
(
IS + BjB

�
j

)
+

mj∑
�=0

diag
(
C(�)με

))
, (16)

where C(�) is the (S × S)-matrix with entries c
(�)
ij = βj�w

(�)
ij (1− βj�w

(�)
ij ), i, j =

1, . . . , S and IS is the (S×S) identity matrix. Moreover, Γ*(h) = OS, h ≥ q+1.
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The space-time autocovariance between the weighted rth- and kth-order neigh-
bors at time lag h ≥ 0 is based on Γ*(h) and defined as

γrk(h) = tr
(
W (k)�W (r)Γ*(h)

S

)
, (17)

where tr(·) represents the trace of the squared matrix [26, 35]. Note that γrk(h)
should not to be confused with the entries γ*

ij(h) of the temporal autocovariance
function Γ*(h). Given that Γ*(h) = Γ*(−h), the space-time autocovariance
exhibits the γrk(h) = γkr(−h) symmetry [34]. Furthermore, we consider the
space-time autocorrelation function defined by

ρrk(h) = γrk(h)[
γrr(0)γkk(0)

]1/2 , (18)

which is obtained by normalizing the space-time autocovariance with the
variance parcels [35]. The space-time autocovariance γrk(h) of the
STINMA(qm1,...,mq ) process is calculated by replacing Γ*(h) in (17) with the ad-
equate expressions given in Theorem 3.1. The computation of γrk(h) is straight-
forward as it solely requires the evaluation of the trace of a product of matri-
ces. Alternatively, general expressions for γrk(h) can be derived as weighted
sums of Γ*(h) by taking into account that tr(A + B) = tr(A) + tr(B) for
any matrices A and B of the same dimension. For instance, the calculation of
γ00(h) for 0 ≤ h < q + 1 requires the evaluation of the Γ*(h) trace and since
W (0) = W (0)� = IS , it follows that

γ00(h) = v00(GB�
h ) +

q−h∑
j=1

[
v00
(
BjGB�

j+h

)
+ 1(h=0)

mj∑
�=0

v00

(
diag

(
C(�)με

))]
,

(19)
where B0 = β00W

(0) = IS , vrk(X) = tr
(
W (k)�W (r)X

)
/S and 1(h=0) is the

indicator function. Similar expressions can be obtained for other evaluations of
γrk(h), however noting that γrk(h) = 0, h ≥ q + 1 since Γ*(h) = OS .

Table 1 provides the first- and second-order moments of the STINMA(11)
process

Y t = β10 ◦ εt−1 + β11W
(1) ◦ εt−1 + εt, (20)

by considering all locations as first-order neighbors [45]. The theoretical results
presented in Table 1 remain valid for any weighting scheme W (1), including
one-dimensional line sites and two-dimensional grid systems [35]. Moreover, the
component-wise expected value and variance of the STINMA(11) arise as par-
ticular cases of equations (11) and (12) for q = m1 = 1, respectively. Similarly,
the temporal autocovariance is a particular case of the result in Theorem 3.1
for q = m1 = 1. Regarding the space-time autocovariance function γrk(h), the
expressions for h = 0 and even r+ k exhibit the additional terms related to the



STINARMA class of models 3481

Table 1

First- and second-order moments of the STINMA(11) model.

Moment Expression

E[Ys,t] μεs

(
1 + β10) + β11

∑S
n=1 w

(1)
sn μεn

V [Ys,t] σ2
εs (1 + β2

10) + β10(1 − β10)μεs + β2
11
∑S

n=1
(
w

(1)
sn

)2
σ2
εn +

∑S
n=1 β11w

(1)
sn

(
1 − β11w

(1)
sn

)
μεj

Γ*(0) G(IS + β2
10 + β10β11W (1)� + β10β11W (1) + β2

11W
(1)W (1)� ) + diag

(
C(0)με

)
+ diag

(
C(1)με

)
Γ*(1) G(β10 + β11W (1)� )

Γ*(h) 0, h ≥ 2

γ00(0) (1 + β2
10)v00(G) + β2

11v00
(
W (1)GW (1)�)+ v00(diag

(
C(0)με

)
) + v00(diag

(
C(1)με

)
)

γ10(0) β10β11(v10(W (1)�G) + v10(W (1)G))

γ11(0) (1 + β2
10)v11(G) + β2

11v11
(
W (1)GW (1)�)+ v11(diag

(
C(0)με

)
) + v11(diag

(
C(1)με

)
)

γ20(0) (1 + β2
10)v20

(
G
)
+ β2

11v20
(
W (1)GW (1)�)+ v20(diag

(
C(0)με

)
) + v20(diag

(
C(1)με

)
)

γ21(0) β10β11[v21
(
GW (1)�)+ v21

(
W (1)G

)
]

γ22(0) (1 + β2
10)v22

(
G
)
+ β2

11v22
(
W (1)GW (1)�)+ v22(diag

(
C(0)με

)
) + v22(diag

(
C(1)με

)
)

γ00(1) β10v00(G)

γ10(1) β11v10(GW (1)� )

γ11(1) β10v11(G)

γ21(1) β11v21
(
GW (1)�)

γ22(1) β10v22
(
G
)

γr0(1) 0, r ≥ 2

γrk(h) 0, h ≥ 2

Remark: vrk(X) = tr
(
W (k)�W (r)X

)
/S, G = diag(σ2

ε1 , . . . , σ
2
εS

), and C(�) is the (S × S)
matrix with entries c

(�)
sn = βj� w

(�)
sn

(
1 − βj� w

(�)
sn

)
s, n = 1, . . . , S.

BTO variance. By contrast, γrk(1) assume simpler expressions that rely either
on β10 or β11. Finally, γr0(1) = 0 for r ≥ 2, as tr

(
W (r)GW (1)�) = 0. Note that

the results in Table 1 are in accordance with those derived for the conventional
STMA(11) with G = ISσ

2 [35] except for the autocovariances at lag 0, which
exhibit the extra terms due to the BTO variances.

4. The Poisson STINMA(11) model

Since the Poisson distribution plays a central role in integer-valued time series
modelling, this section presents further results for the STINMA(11) process
in (20) driven by Poisson distributed innovations. This case considers S = 3
locations, linearly placed next to each other as illustrated in Fig. 2.

Fig 2. Spatial distribution of 3 linear locations showing (1,2) and (2,3) as two pairs of first-
order neighbors.
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Following the definition of spatial weights in equation (6) with κ
(�)
sn = 1/m(�)

s ,
the first-order neighbor matrix is given by

W (1) =

⎡
⎣ 0 1 0

1/2 0 1/2
0 1 0

⎤
⎦ (21)

and the STINMA(11) process becomes⎡
⎣Y1,t
Y2,t
Y3,t

⎤
⎦ =

⎡
⎣ β10 ◦ ε1,t−1 + β11 ◦ ε2,t−1 + ε1,t
β10 ◦ ε2,t−1 + 1

2β11 ◦ (ε1,t−1 + ε3,t−1) + ε2,t
β10 ◦ ε3,t−1 + β11 ◦ ε2,t−1 + ε3,t

⎤
⎦ . (22)

With the extra assumption that the innovation process is such that εs,t ∼
Poi(λs), s = 1, 2, 3 and the variance-covariance matrix is G = diag(λ) with
λ = (λ1, λ2, λ3)�, the process Y t in (22) is addressed as Poisson STINMA(11).

4.1. Moments and other distributional properties

Theorem 4.1 states that the joint distribution of the Poisson STINMA(11) pro-
cess with S = 3 is a trivariate Poisson distribution; see Appendix C for details. It
is shown that, regardless of the innovations’ distribution the probability gener-
ating function (p.g.f.) of any STINMA(11) process can be written as the product
of six p.g.f. functions, associated with the marginal p.g.f.s of the trivariate inno-
vation process and the parameters related to the STINMA recursion. Further-
more, the result in Theorem 4.1 stands independently of the weighting scheme
in W (1) as long as the BTO restrictions are satisfied. Moreover, it is shown that
the p.g.f. of the Poisson STINMA(11) process can also arise by applying the re-
duction method with seven independent univariate Poisson r.v.’s [25]. This work
considers the notation X = (X1, X2, X3)� ∼ TPoi(a1, a2, a3, a12, a13, a23, a123)
as a trivariate Poisson random vector with 23 − 1 = 7 nonnegative parameters
whenever

Xr = Zr +
3∑

k=1
r<k

Zrk + Z123, r, k = 1, 2, 3 and r < k, (23)

being Zr, Zrk, Z123 independent univariate Poisson r.v.’s with parameters ar,
ark, a123, respectively. For simplicity, the notation for the multivariate distribu-
tion of vector X = (X1, X2, X3)�∼TPoi(a1, a2, a3) :=TPoi(a1, a2, a3, 0, 0, 0, 0)
is used whenever a12 = a13 = a23 = a123 = 0, i.e., a trivariate Poisson distribu-
tion with mutually independent (uncorrelated) components.

Theorem 4.1. Let Y t be the STINMA(11) process in (22) and let the innova-
tions εt ∼ TPoi(λ1, λ2, λ3). It follows that Y t ∼ TPoi(a1, a2, a3, a12, a13, a23,
a123) where

a1 = λ1(1 + β10 − 1
2β10β11) + λ2(1 − β10 − β11 + β10β11)β11,
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a2 = λ1(1
2 − β10)β11 + λ2(1 + β10 − 2β11β10 + β10β

2
11) + λ3(1

2β11 − 1
2β10β11),

a3 = λ3(1 + β10 − 1
2β10β11) + λ2(1 − β10β11 + β10β11)β11,

a12 = λ1
1
2β10β11 + λ2(1 − β11)β10β11,

a13 = λ2(1 − β10)β2
11,

a23 = λ3
1
2β10β11 + λ2(1 − β11)β10β11,

a123 = λ2β10β
2
11.

The proof of Theorem 4.1 is postponed to the Appendix C considering a
general W (1) matrix with S = 3. Clearly, Theorem 4.1 can be generalized for
any dimension S > 3, by following the proof for S = 3 and acknowledging that
the results stand true by changing the upper limits in sums and products of
parcels along the proof.

It follows from the trivariate Poisson distribution of the Poisson STINMA(11)
process that

E[Y t] = V [Y t] = λ + β10λ + β11W
(1)λ. (24)

Regarding the autocovariance of the Poisson STINMA(11) process, Γ*(h) =
OS , h ≥ 2. Also, it follows from the result in Theorem 3.1 that

Γ*(0)=

⎡
⎢⎢⎣

(1 + β10)λ1 + β11λ2 β10β11
( 1

2λ1 + λ2
)

β2
11λ2

β10β11
( 1

2λ1 + λ2
)

(1 + β10)λ2 + 1
2β11(λ1 + λ3) β10β11

(
λ2 + 1

2λ3
)

β2
11λ2 β10β11

(
λ2 + 1

2λ3
)

(1 + β10)λ3 + β11λ2

⎤
⎥⎥⎦

(25)

and

Γ*(1) =

⎡
⎣β10λ1

1
2β11λ1 0

β11λ2 β10λ2 β11λ2
0 1

2β11λ3 β10λ3

⎤
⎦ . (26)

It is easy to check that the Γ*(0) of the Poisson STINMA(11) is equivalent
to that of the conventional STMA with εt ∼ N (0S ,G) and W (1) as in equa-
tion (21) [36]. Furthermore, it is important to highlight that Γ*(1) is not nec-
essarily symmetric and that γ*

13(1) = γ*
31(1) = 0 as locations 1 and 3 are not

first-order neighbors. Finally, the space-time autocovariance and autocorrela-
tion functions follow directly by plugging Γ*(h) into equations (17) and (18),
respectively, and constitute a particular case of the expressions presented in
Table 1.

A closer look at the STINMA(11) process in (22) highlights that β11 ◦ ε2,t−1
is performed twice for each time t. With the BTO independence assumption,
both evaluations are not necessarily equal, for a given t, even if location 2
equally contributes for locations 1 and 3. The alternative assumption that both
evaluations should be equal for each time t, leads to the reparametrization of
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the model (22) into⎡
⎣Y1,t
Y2,t
Y3,t

⎤
⎦ =

⎡
⎣ β10 ◦ ε1,t−1 + rt + ε1,t
β10 ◦ ε2,t−1 + 1

2β11 ◦ (ε1,t−1 + ε3,t−1) + ε2,t
β10 ◦ ε3,t−1 + rt + ε3,t

⎤
⎦ , (27)

where rt := β11 ◦ ε2,t−1 represents the common factor in both equations. Under
this assumption, the BTOs are still performed independently in time, similarly
to the INARMA model, but not independently in space.

The reparameterized STINMA(11) process in (27) also follows a trivariate
Poisson distribution, being Y t ∼ TPoi(a1, a2, a3, a12, a13, a23, a123) with

a1 = λ1(1 + β10 − 1
2β10β11),

a2 = λ2(1 + β10 − β10β11) + (λ1 + λ3)(1
2β11) − 1

2β10β11,

a3 = λ3(1 + β10 − 1
2β10β11), (28)

a12 = λ1
1
2β10β11, a13 = λ2(β11 − β10β11), a23 = λ3

1
2β10β11,

a123 = λ2β10β11,

as clarified by Remark C.1. Note that the set of parameters of the joint dis-
tribution for the STINMA(11) processes in (22) and (27) differ. In particular,
it is clear that the parameter a2 in the (27) formulation (see equation (28))
contemplates a joint contribution with the term (λ1 + λ3), while for the (22)
formulation, λ1 and λ3 have different terms/contributions (see Theorem 4.1).

The expected value and variance of the reparametrized Poisson STINMA(11)
process are still those given in (24). The autocovariance Γ*(h) of the reparam-
eterized process, however, does not follow from the result in Theorem 3.1 as
this is derived with matrix-BTO properties assuming independent ◦-operations
[17]. Indeed, the autocovariance of the reparametrized model can be obtained
by the arguments presented in the proof in Appendix B, along with the result
in Lemma 4.2 for the calculation of the expected value of cross products.

Lemma 4.2. Let A be a matrix with fixed entries in [0, 1) and X be a trivari-
ate count random variable. Assume that all the counting series in A ◦ X are
independent, except for the ◦-operations involving the same constant and r.v.,
for which the realisation of the underlying Bernoulli sequence coincide. Then, it
follows that

E
[(
A ◦X

)(
A ◦X

)�] = AE
[
XXT

]
A� +

3∑
r=1

Q(r)E[X] e�r , (29)

where Q(r), r = 1, 2, 3, is the (3×3)-matrix with entries q
(r)
ij = 1(aij=arj)aij(1−

aij), i, j = 1, 2, 3, and er denotes the rth unit vector.

Notice that the matrix-BTO property introduced in (29) generalizes the cor-
responding result of [17], admitting off-diagonal variance parcels. The proof of
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the Lemma can be found in Appendix D. Nevertheless, it is clear that this re-
sult can be easily generalized to a higher dimension by considering that X is a
multivariate vector and, by replacing the summation r = 1, 2, 3 for r = 1, . . . S.

The assumption of a common factor in the STINMA(11) process changes
(solely) the covariance matrix Γ*(0) for the independent case (see (25)). Specifi-
cally, the covariance between Y1,t and Y3,t is now given by γ*

13(0) = Cov(rt, rt) =
V [rt] = V [β11 ◦ ε2,t−1] = V [β11ε2,t−1] + E[β11(1 − β11)ε2,t−1] = β11λ2 instead
of γ*

13(0) = Cov(β11 ◦ ε2,t−1, β11 ◦ ε2,t−1) = β2
11λ2, which is larger if consid-

ering the common factor rt = β11 ◦ ε2,t−1. This modification in Γ*(0) has an
inherent repercussion in the space-time γ11(0), while γ00(0) and γ10(0) remain
unchanged. Therefore, space-time autocorrelations involving the calculation of
γ11(0), such as ρ10(1), will also be modified. Table 2 presents the space-time
autocovariance γrk(h) for the Poisson STINMA(11) in (27), evaluated for sev-
eral r, k, and h values. Due to the equidispersion property of the Poisson dis-
tribution, there are no terms in β2

10 nor in β2
11 appearing in the Poisson-case

γrk(h), by contrast to that of the general model displayed in Table 1. Moreover,
note that γrk(0) depends on both β10 and β11, while γrk(1) relies either on β10
or β11.

Table 2

Space-time autocovariance γrk(h) of the Poisson STINMA(11) process in (27), evaluated
for several {r, k, h} values.

γrk(h) Expression
γ00(0) (1 + β10)( 1

3 (λ1 + λ2 + λ3)) + β11( 1
6 (λ1 + λ3) + 2

3λ2)
γ10(0) β10β11(λ2 + 1

4 (λ1 + λ3))
γ11(0) (1 + β10)( 1

12 (λ1 + λ3) + 2
3λ2) + β11( 1

3 (λ1 + λ2 + λ3)
γ20(0) β11( 2

3λ2)
γ21(0) β10β11( 1

6 (λ1 + λ3) + 2
3λ2)

γ22(0) (1 + β10)( 1
3 (λ1 + λ3)) + β11( 2

3λ2)
γ00(1) β10( 1

3 (λ1 + λ2 + λ3)
γ10(1) β11( 1

12 (λ1 + λ3) + 2
3λ2)

γ11(1) β10( 1
12 (λ1 + λ3) + 2

3λ2)
γ21(1) β11( 1

6 (λ1 + λ3))
γ22(1) β10( 1

3 (λ1 + λ3))
γr0(1) 0, r ≥ 2

It is straightforward that ρ00(0) = ρ11(0) = 1, and ρ10(0) exhibits crossed
and squared terms in β10 and β11, which arguments against the use of equations
based on ρrk(0) for parameter estimation. On the other hand, ρrk(1) exhibits
dependency either on β10 or β11, e.g.

ρ00 : = ρ00(1) = β10a

(1 + β10)a + β11b
, (30)

ρ10 : = ρ10(1) = β11c[[
(1 + β10)a + β11b

][
(1 + β10)c + β11a

]] 1
2
, (31)
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where a = 1
3 (λ1 + λ2 + λ3), b = 1

6 (λ1 + λ3) + 2
3λ2 and c = 1

12 (λ1 + λ3) + 2
3λ2.

Figure 3 illustrates that ρ00 and ρ10 show a monotonic and inverse variation with
changes in β10 and β11. In addition, ρ00 in (a) increases for increasing β10 and
for decreasing β11 while ρ10 in (b) increases for decreasing β10 and increasing
β11. Figure 3 also highlights that ρ00 exhibits larger variations with changes in
β10 rather than in β11, whereas ρ10 exhibits larger variations for changes in β11.
Furthermore, the Poisson parameters have a negligible effect on ρ00 although
having a greater impact on ρ10, in particular for increasing values of β11 for
which the surfaces exhibit a larger variability for a given combination of β10
and β11.

Fig 3. Theoretical ρ00 (a) and ρ10 (b) for the Poisson STINMA(11) process in (27) as a
function of β10 and β11, and evaluated for several {λ1, λ2, λ3} ∈ (0, 10]. The color bar is set
for the range 0 ≤ ρ10 < 2/3.

It is clear that both ρ00 and ρ10 are bounded functions with range smaller
than the (−1, 1) interval. Moreover, 0 ≤ ρ00 < 0.5 is obtained by setting β10 = 0
or (β10 → 1, β11 = 0) in (30), which is corroborated in Figure 3(a). Further-
more, 0 ≤ ρ10 < 2

3 , where the lower bound is determined for β11 = 0 in (31)
and corroborated in Figure 3(b). The upper bound is less trivial due to its de-
pendencies on parameters (λ1, λ2, λ3, β10 and β11). However, ρ10 exhibits a
monotonic behaviour with λ1, λ2, and λ3, namely increasing for larger λ2 and
decreasing for larger λ1 + λ3, regardless of β10 and β11. As ρ10 is maximal if
β10 = 0 and β11 → 1, and by studying the limits for the Poisson parameters,
one can conclude that ρ10 is maximal (and tends to 2/3) for λ2 → +∞ and
λ1 + λ3 → 0.

The λ1 = λ2 = λ3 = λ setting in equations (30) and (31) leads to a = b = λ
and c = 5

6λ and, consequently, ρ00 and ρ10 do not depend on the Poisson parame-
ter λ. Figure 4(a,b) displays the shape of the theoretical ρ00 and ρ10 as a function
of β10 and β11, again showing the inverse relation of these functions with respect
to β10 and β11 changes. Also, the comparison between Figures 4(a,b) and 4(c,d)
shows that the theoretical and empirical surfaces, obtained from the sample
autocorrelation of simulated STINMA(11) paths, exhibit good agreement with
each other.
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Fig 4. Theoretical (a,b) and empirical (c,d) ρ00 and ρ10 for λ1 = λ2 = λ3 = λ, as a
function of β10 and β11. The empirical values are based on the sample autocorrelation of a
STINMA(11) path generated for each (β10, β11) combination. The black points identify the
paths with empirical autocorrelation outside the theoretical range (approx. 8% of the paths).

Given the boundedness and the monotonic behaviour of ρ00 and ρ10 in (30)
and (31), respectively, it is possible to construct an analytical region containing
the (ρ00, ρ10) values for all admissible Poisson STINMA(11) processes (i.e. those
for which β10, β11 ∈ [0, 1) and λi > 0, i = 1, 2, 3). The delimitation of such region
is obtained by varying the β- and λ-parameters within the admissible intervals
in the following equation

ρ10 = β11c(
β10a

) 1
2
([

(1 + β10)c + β11a
]) 1

2

(
ρ00
) 1

2 , (32)

where a = 1
3 (λ1 + λ2 + λ3) and c = 1

12 (λ1 + λ3) + 2
3λ2, and ρ00 is evaluated

according to (30).
As illustrated in Figure 5, different settings for λ generate admissible regions

with different areas but similar shapes, delimited by a trapezoid-like contour
with 4 anchor points obtained from the 4 combinations among the limiting values
for the β’s. The black contour (circles) in Figure 5 delimits the admissible region
with the largest area possible, which is obtained for λ2 → +∞ and λ1 +λ3 → 0.
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Fig 5. Theoretical region containing the (ρ00,ρ10) values for all admissible Poisson
STINMA(11) processes (i.e. those with β10 and β11 ∈ [0, 1) and λi > 0, i = 1, 2, 3), for
λ2 → +∞ and λ1 + λ3 → 0 (black circles), λ2 → 0 and λ1 + λ3 → +∞ (red squares) and
λ1 = λ2 = λ3 = λ (blue triangles). The corresponding (β10, β11) coordinates are presented
for each anchor point of the admissible regions.

For this case, the above equation simplifies to

ρ10 =
β11

2
3(

β10
1
3
) 1

2
([

(1 + β10)2
3 + β11

1
3
]) 1

2

(
ρ00
) 1

2 , (33)

which allows to evaluate the vertices and edges of this contour. For example, the
(ρ00, ρ10) vertices are {(0, 0), (0.5, 0), (0.25,

√
20/10), (0, 2/3)} for the (β10, β11)

limits in {(0, 0), (1, 0), (1, 1), (0, 1)}.
Figure 5 also shows a red contour (squares) that delimits the admissible

region with the smallest area, constructed similarly by setting λ2 → 0 and
λ1+λ3 → +∞. Other λ values lead to admissible regions with limits in-between
the previous cases, e.g. the blue contour (triangles) constructed for the λ1 =
λ2 = λ3 = λ setting. Overall, Figure 5 highlights that the admissible region for
(ρ00, ρ10) of the Poisson STINMA(11) is smaller than the possible full [−1, 1]
range, only includes positive values, and its size depends on the values in λ.

4.2. Parameter estimation of STINMA

This section discusses parameter estimation strategies for the Poisson
STINMA(11) model in (27) with εt ∼ TPoi(λ1, λ2, λ3), based on a trivari-
ate series of T observations of the process. Estimation strategies for θ :=
(λ�, β10, β11), with λ := (λ1, λ2, λ3)�, consider the Method of Moments (MM),
Conditional Least Squares (CLS) and Conditional Maximum Likelihood (CML).
Furthermore, inference based on parametric bootstrap is described to provide a
strategy to compare the aforementioned estimation approaches.
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All computations were accomplished through the statistical software R, ver-
sion 4.1.2 [51]. The MM estimation was based on the Newton–Raphson numer-
ical procedure (package rootSolve, [43]). The CLM was efficiently implemented
using sparse matrices (Matrix, [4]), compiled C++ code (Rcpp [14] and RcppAr-
madillo [15]), and parallelized optimization procedures (optimParallel [18]). The
packages R.utils [5], HelpersMG [21], doParallel [10] were additionally used to
aid estimation. Data manipulation and visualisation was carried out with ggplot2
[56], patchwork and plot3D [33], sf [29], dplyr [57], ggsn [3] and ggforce [32].

4.2.1. Method of moments (MM)

The MM requires the construction of a system with S + 2 independent equa-
tions to estimate the S innovational parameters λ in addition to (β10, β11), to
be solved numerically via Newton-Raphson algorithm. The first S equations
arise from the relation between the first-order moments of Y t and εt, in equa-
tion (24), where E(Y t) is replaced by its empirical counterpart Ȳ = (Ȳ1, Ȳ2, Ȳ3).
Note that, for the λ1 = λ2 = λ3 = λ case, the (univariate) equation (24) is also
used to estimate λ. The MM-estimation of (β10, β11) should be based on sample
space-time autocorrelations, avoiding second-order neighbors and β10β11 terms
to simplify the estimation procedure. As presented in Table 2, β10 estimation
should consider either γ00(1) or γ11(1), whereas β11 estimation should be based
on γ10(1). Therefore, (Ȳ , ρ̂00, ρ̂10) and (Ȳ , ρ̂11, ρ̂10) will be considered as two
competing estimation alternatives, where ρ̂00, ρ̂10 and ρ̂11 are the sample esti-
mators for ρ00 and ρ10 given in (30) and (31), respectively, and

ρ11 := ρ11(1) = β10c

(1 + β10)c + β11a
, (34)

with a and c as previously defined for ρ00 and ρ10. This approach makes use of
the following estimators for the mean and the (temporal) covariance

Ȳ = 1
T

T∑
t=1

Y t, and Γ̂*(h) = 1
T

T−h∑
t=1

(Y t − Y )(Y t+h − Y )�.

The proposed MM-estimation for the Poisson STINMA(11) model shares sim-
ilarities with that of other models. Namely, the sample space-time autocorrela-
tions (ρ̂00, ρ̂10) are used in the MM-estimation of (β10, β11) for the conventional
STMA(11) model [35, 36] while the MM-estimation of (λ, β10) in the univariate
INMA(1) process Yt = β10 ◦ εt−1 + εt with εt ∼ Poi(λ), considers the sample
mean Ȳ and the (temporal) autocorrelation at lag 1 [2].

4.2.2. Conditional least squares (CLS)

The CLS approach is based on the minimization of the sum of squared deviations

S(λ) =
T∑

t=q+1
e�t et =

T∑
t=2

(εt − λ)�(εt − λ), (35)
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where et = εt − λ is the error function [7, 8, 38]. Straightforwardly, the roots
of the partial derivatives of S(λ) lead to the estimator

λ̂ = 1
T − 1

T∑
t=2

εt. (36)

The β10 and β11 estimates are obtained by solving two out of the three equations

E[Y1,t|εt−1] = λ1 + β10ε1,t−1 + β11ε2,t−1, (37)

E[Y2,t|εt−1] = λ2 + β10ε2,t−1 + 1
2β11(ε1,t−1 + ε3,t−1), (38)

E[Y3,t|εt−1] = λ3 + β10ε3,t−1 + β11ε2,t−1, (39)

which correspond to the component-wise conditional mean of the STINMA(11)
process. The possible combinations of equations (37)–(39) lead to three dif-
ferent estimators (λ̂, Ȳi, Ȳj), i, j = 1, 2, 3, i �= j, which are evaluated as op-
posing strategies. The unobserved innovations are recursively computed from
εt = yt − β10 ◦ εt−1 − β11W

(1) ◦ εt−1, where yt are the observed count time
series, ε0 = (c1, c2, c3)� ∈ N

3
0 is constant and the MM-estimates for β10 and β11

are used as initial estimates. For the λ1 = λ2 = λ3 = λ case, it is clear that
equations (37)–(39) are redundant and do not allow the estimation of β10 and
β11. In such case, an additional equation based on a second-order moment that
leads to admissible solutions (e.g. ρ00) should be used.

4.2.3. Conditional maximum likelihood (CML)

The CML approach proposed for the Poisson STINMA(11) is based on the ML
estimation procedure for Hidden-Markov models [58] and constitutes a multi-
variate extension of the CML strategy developed for the INARMA(1, 1) process
[55]. Instead of obtaining the θ estimate as the maximizer of

L(θ) = P (Y T = yT ,Y T−1 = yT−1, . . . ,Y 2 = y2|Y 1 = y1), (40)

the likelihood function is decomposed into the following sum of parcels

L(θ) =
M1∑
k1,�1

M2∑
k2,�2

M3∑
k3,�3

bk1,k2,k3,�1,�2,�3(t) =
M∑
k,�

bk�(t), (41)

where, for a given k = (k1, k2, k3) and � = (�1, �2, �3), each parcel is

bk�(t) = P (εt = k, εt−1 = �,Y t = yt, . . . ,Y 2 = y2|Y 1 = y1). (42)

Given that εt ≤st Y t for all t (the operator “≤st” is defined via X ≤st Z iff
P (X > x) ≤ P (Z > x), x ∈ N

3
0) then the upper limits of the summations in
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(41) are finite and can be set as M = (M1,M2,M3) where Mi = maxt{yi,t} for
i = 1, 2, 3. Moreover, bk�(t) can be obtained recursively from

bk�(t + 1) = P (εt+1 = k) ×
[ Jk1k3∑

j2=0

(
�2
j2

)
βj2

11(1 − β11)�2−j2

(
�1

y1,t+1 − k1 − j2

)

× β
y1,t+1−k1−j2
10 (1 − β10)�1−y1,t+1+k1+j2

(
�3

y3,t+1 − k3 − j2

)
β
y3,t+1−k3−j2
10

× (1 − β10)�3−y3,t+1+k3+j2

]
×
[

y2,t−k2∑
j2=0

(
�2
j2

)
βj2

10 (1 − β10)�2−j2

(
�1 + �3

y2,t − k2 − j2

)

×
( 1

2β11
)y2,t−k2−j2 (1 − 1

2β11
)�1+�3−y2,t+k2+j2

]
×

yt−1∑
i=03

b�i(t), (43)

where Jk1k3 := mint{y1,t+1 − k1, y3,t+1 − k3}. Appendix E presents the detailed
derivation of the recursion in (43). This equation can be rewritten in the general
form at = DQtat−1, where D = diag

(
P (ε = 03), . . . , P (ε = M)

)
conveys the

innovations’ joint probabilities for any combination in k, and Qt represents
the matrix that stores in each entry the product of convolutions for a given
combination in k and �. Finally, both D and Qt have dimension

[
(M1 + 1) ×

· · ·×(M3+1)
]2. Moreover, at represents bk�(t+1) and at−1 provides the recursive

information on bk�(t) through the summation of b�i(t) terms, what should not
be confused with bk�(t) itself. Both at and at−1 are vectors with dimension
(M1 + 1) × · · · × (M3 + 1). In resume, the computation of the log-likelihood
function is outlined in the following steps (see algorithm below). Firstly, the
recursive scheme is initialized with a λ estimate, either obtained from MM if
λ̂i > 0, i = 1, 2, 3, or simply the non-informative λ estimate ȳ. Secondly,
the at computation applies a scaling scheme to avoid numerical underflow [58].
Thirdly, the log-likelihood function is evaluated and subsequently maximized
via L-BFGS-B box-constrained optimization, where the solution is restricted to
be admissible.

1. Initialization:
(a) Compute initial estimate θ̂0.
(b) Initial evaluation: a1 = P (ε1 = �|ε1 ≤ Y 1), w1 = 1�a1, φ1 =

a1/w1.
2. For t = 2, . . . , T :

(a) Computation: ut = DQtφt−1.
(b) Scaling: wt

wt−1
= 1�ut, φt = ut/

(
wt

wt−1

)
.

3. Log-likelihood evaluation: �(θ) = ln wT = ln w1 +
∑T

t=2 ln wt

wt−1
.

Given the large similarities with the CML algorithm used in INARMA(1, 1)
identification [55] it is crucial to stress that the above presented algorithm has
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a multivariate dimension S > 1, for which the spatial component is embedded
into the D and Qt matrices as well as the at vector, through the combinations
in k and �. Not surprisingly, the multivariate algorithm is computationally more
demanding than the univariate counterpart, with its complexity increasing not
only with higher S but also with higher Mi values, for i = 1, . . . , S.

4.2.4. Statistical inference

Inference based on one sample requires the evaluation of a standard error. This
is available for the CML from the variance-covariance matrix of θ̂ estimated
from the numerical Hessian, even if reported that the numerical Hessian may be
unreliable when CML estimates are too close to the boundaries of the admissible
region [58]. Parametric bootstrap is one strategy to deal with this shortcoming
[16], with the additional advantage of allowing the comparison between different
estimation approaches. This strategy evaluates the standard errors as the stan-
dard deviation of the estimates obtained for a bootstrap sample, composed of B
paths (of length T ) simulated from a Poisson STINMA(11) data-generating pro-
cess (DGP). Given a trivariate time series of length T , the parametric bootstrap
is resumed in the following steps.

1. Compute θ̂ from the time series.
2. Set the Poisson STINMA(11) with parameters θ̂ as the DGP.
3. For b = 1, . . . , B = 1000:

(a) Simulate the bth bootstrap path from the DGP.

(b) Compute θ̂
*
b from the bth bootstrap path.

The set of bootstrap estimates θ̂
*
b , b = 1, . . . , B, for which the estimation method

converges is then used to carry out inference. Confidence intervals (CI) based
on the normal distribution can be computed if the bootstrap distribution of θ̂

*

is roughly normal (i.e. the asymptotic distribution as T → ∞). In this case, the
standard errors are evaluated from the square root of diag(Gθ̂), where Gθ̂ is the
(empirical) variance-covariance matrix obtained from the bootstrap estimates,

Gθ̂ = 1
B − 1

B∑
b=1

(θ̂
*
b − θ̄

*)�(θ̂
*
b − θ̄

*) with θ̄
* = 1

B

B∑
b=1

θ*
b . (44)

For smaller values of T , confidence intervals based on percentiles (percentile
intervals, PI) may be preferable as the normal approximation might be poor
[16]. Here, both CIs and PIs were evaluated at 95% confidence.

5. Simulation study

The MM, CLS, and CML approaches were implemented in order to estimate
the STINMA(11) parameters given one instance of S = 3 simultaneous time
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series of length T . Briefly, six estimation procedures were compared (2 MM,
3 CLS and 1 CML). The MM approach considered two competing strategies
based on either (Ȳ , ρ̂00, ρ̂10) or (Ȳ , ρ̂11, ρ̂10) denoted as “MM ρ̂00” and “MM
ρ̂11”, respectively. The three CLS alternatives are based on (ε̂, Ȳi, Ȳj) with com-
binations of i, j ∈ {1, 2, 3} and i �= j, and denoted as “CLS ȲiȲj”. The simu-
lation study uses 1000 replicates of the chosen DGP with S = 3 and different
lengths T ∈ {50, 100, 250, 500, 1000}. Motivated by the real data application
in Section 6, the data used in the simulation study was generated from the
Poisson STINMA(11) process in (27) with parameters θ = (λ�, β10, β11) where
λ = (2, 3, 4)�, β10 = 0.3 and β11 = 0.5.

Figure 6 presents the distributions of θ̂ for the comparison between the dif-
ferent estimation strategies concerning bias and variability. For T = 1000, the
CML approach exhibits the lowest sample bias and smallest variability among
the estimates. Both CML and MM distributions are fairly symmetric around
the true value of each parameter. Among the MM strategies, the variability of
the estimates is smaller for “MM ρ̂00” than for “MM ρ̂11”. Contrarily to the
MM and CML approaches, CLS shows a visible sample bias where, typically,
λ and β10 are overestimated whereas β11 is underestimated. The three CLS
approaches exhibit similar bias and variability for λ, which was expected as
the corresponding estimator is the same. However, the approaches differ with
respect to the estimation of β10 and β11. The “CLS Ȳ1Ȳ2” shows lower bias and
higher variability than the “CLS Ȳ1Ȳ3”, while “CLS Ȳ2Ȳ3” is the CLS approach
with largest bias and variability, also providing β10 and β11 estimates /∈ [0, 1)
in 49 out of 1000 paths.

Figure 7 displays the MM and CML comparison for T ≤ 1000. As expected,
the variability in the estimation increases as T decreases with the CML exhibit-

Fig 6. Violin plots of the estimates for the Poisson STINMA(11) parameters θ =
(2, 3, 4, 0.3, 0.5), considering MM, CLS and CML strategies (1000 paths with T = 1000).
The θ values are displayed in the red lines and the [0, 1) interval is delimited with the black
dotted lines. Violin plots use a Gaussian kernel with one unit of bandwidth. Boxplots are
presented in the background.
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ing the lowest variability across the different sample sizes. Also, the MM pro-
cedure fails to provide an estimate in 49/18/2 paths of length T = 50/100/250
(e.g. due to non-positive values of the space-time autocovariance function γrk(h)
or singularity of the Jacobian matrix) in addition to 100/39/2 paths, where the
estimates were outside the admissible interval.

Furthermore, the MM bias increases considerably when T decreases while
CML distributions remain fairly symmetric even for small sample sizes. Having
in mind that, in general, the CML procedure is computationally more demand-
ing than the MM and requires an initial guess to trigger the algorithm, the
MM is a fair estimation strategy for large T . For lower values of T , the CML
approach clearly exhibits lower sample bias and lower variability thus making
it the preferable estimation strategy. The results from this study suggest that
the combined use of CML with the initial estimate provided by MM is an ad-
equate choice for all real-data applications as it reduced the computation time
by approx. 5% when compared to the CML combined with the non-informative
initial guess θ̂0 = (ȳ, 0.5, 0.5).

The CLS approach was also evaluated in a version of the procedure with
known innovations, accomplished by inserting the innovations used in the sim-
ulation of the DGP paths into the estimation procedure, see Figure 7 for the
resulting distributions. In comparison to the CLS with estimated innovations
(Figure 6, T = 1000), it is clear that the CLS approach with known innova-
tions has better performance. In particular, the bias and variance are notably
decreased at levels lower than those obtained for the MM approach. Hence, the

Fig 7. Violin plots of the estimates for the Poisson STINMA(11) parameters θ =
(2, 3, 4, 0.3, 0.5), considering the “MM ρ̂00” and the CML estimation strategies as well as
the “CLS Ȳ1Ȳ3” with known innovations (1000 paths and several values for T ). Similar rep-
resentation as in Figure 6.
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CLS is a suitable estimation approach in many applications when data on the
unobserved process is available, e.g. series of counts with the number of accesses
to a web server within a time interval, given the total number of the different
IP and the number of new IP addresses, the later constituting the time series
of observed innovations [53].

In order to evaluate the full potential of the CML approach regarding in-
ference in the Poisson STINMA(11), the standard error (SE) evaluated via the
Hessian matrix, for a single path, was compared to the SE obtained from the
1000 paths simulated via parametric bootstrap. As expected, Figure 8 shows
that the median Hessian-SE decreases as T increases, in a fairly similar trend to
that observed for the bootstrap-SE obtained for CML and MM from the 1000
paths (represented in orange and blue, respectively). Moreover, the interquartile
range of the Hessian-SE includes the CML bootstrap-SE (orange line), support-
ing that the CML inference via Hessian and bootstrap are concordant for most
of the Poisson STINMA(11) paths and even for small values of T . Finally, Fig-
ure 8 also points out that the Hessian-SE is lower than the MM bootstrap-SE
(blue line) for more than 95% of the paths, for each sample size T . The better
properties of the CML estimation approach, however, come at a computational
cost as one run of the CML algorithm (efficiently implemented via parallelisation
and C++ coding) with a non-informative initial estimate is yet more demanding
than 1001 runs (one to obtain the point estimate plus 1000 to carry out the sta-
tistical inference) of the MM algorithm. For instance, for T = 1000, 100 runs of
MM take about 0.002±0.001 seconds, while the iterative parallelized procedure
for CML optimization needs 11.973±4.372 minutes even for T = 50. Thus, when
considering larger spatial systems, it is reasonable to consider MM estimation.
For instance, if we take S = 18 (the number of Portugal mainland districts)
and S = 278 (the number of Portuguese municipalities), then MM is a good
choice to provide point estimates of a STINMA(11) taking about 0.058 ± 0.02
seconds (S = 18) and 3.76 ± 0.06 minutes (S = 278) in a common personal
computer, for 100 simulated paths of length T = 1000, where all locations are
considered first-order neighbours. This suggests that MM is a good choice even
for large systems since point estimates are obtained in a reasonable amount of
time. For inference, parallelization procedures are used to speed-up computa-

Fig 8. Boxplots of the standard error (SE) for the Poisson STINMA(11) with parameters θ =
(2, 3, 4, 0.4, 0.5) computed for CML via the Hessian matrix. The orange and blue dots/lines
show, respectively, the SE of the CML and the MM estimates for the 1000 paths.
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tion. Note that in these larger systems, all locations are considered first-order
(spatial) neigbors [45], for ease of establishing the spatial structure, since this
task becomes increasingly challenging as S increases.

6. Real data application

The Poisson STINMA(11) model is finally applied to real data, corresponding to
the daily number of hospital admissions in three Portuguese locations (Figure 9).
It is important to stress that the Poisson STINMA(11) modelling is used merely
for illustrative purposes and, as such, it is not expected that this process is
the true data-generating mechanism of the time series. Nevertheless, it will be
demonstrated that there is a significant spatial and temporal dependence for
this experimental setting. For each location, the integer-valued time series was
constructed by counting the daily episodes of respiratory system diseases’ (ICD-
9 codes 460–519 and ICD-10 codes J00–J99) from patients with residence within
a 20 km radius of the centre of the location. The spatial locations refer to existing
air quality monitoring stations, to keep the hospital anonymity and to set the
data ready for a future analysis of the counts in the light of environmental
correlates. We refer to [27] for further details on the data.

Figure 9 displays the map of Portugal highlighting the Algarve region and
the three geographical locations, linearly placed next to each other. The count
time series at each location are shown for the period between 17 February 2012
and 26 May 2012 (T = 100). The data clearly exhibit low counts ranging within
the [0,14] interval, and the three time series have the same median of 4 hospital
admissions per day. The empirical space-time autocorrelations at lag 1 are ρ̂00 =
0.200 and ρ̂10 = 0.203, respectively, which suggest that the Poisson STINMA(11)
is a potential good candidate for modeling purposes, since (ρ̂00, ρ̂10) fall within
the admissible region in Figure 5.

Table 3 presents the MM and CML estimates for the parameters of the Pois-
son STINMA(11) process fitted to the experimental data. Both MM and CML
approaches indicate that all parameters are statistically significant at 95% con-
fidence level. For a given parameter, the CIs are wider for MM than for CML
and overlap. Regarding the point estimates, λ̂1 ≈ λ̂3 < λ̂2 for both approaches.
Finally, λ̂ are smaller for the MM approach, which is compensated by larger
estimates for the temporal parameter β10 and the spatial parameter β11.

The performance of the STINMA(11) model was compared to that of the
MINMA(1) model, which is obtained from (9) by setting m1 = 0. This im-
plies that the STINMA(11) process extends the MINMA(1) by additionally
including β11, i.e. the spatio-temporal parameter that reflects the dependence
between the process in a given location and the past history of its neighbor
locations. As expected, the MINMA thinning parameter was found to be sig-
nificant at a 5% level, with estimates β̂10 = 0.250 [0.086; 0.413] (for MM) and
β̂10 = 0.194[0.192; 0.196] (for CML). The STINMA and MINMA modelling ap-
proaches were compared through the maximum log-likelihood values and likeli-
hood ratio test (LRT), to assess whether the MINMA model is preferable against
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Fig 9. Portugal map highlighting the Algarve region. The data consists of time series with
the daily number of hospital admissions from the residents within the 20 km radius around
three locations (DAVI, MALP, JOAQ). The medians are shown with the black dotted lines.
Further details of the experimental setting in [27].

the fully specified STINMA, as well as via goodness-of-fit criterion (i.e. AIC,
BIC and AICc) to assess the balance between performance and complexity of
the model. The MINMA exhibits a smaller log-likelihood value than that of the
STINMA model (−678.13 vs. −675.07) thus favouring the STINMA approach.
The LRT returned a p-value = 0.013, which lead to the conclusion that the hy-
pothesis of the MINMA being preferable against the STINMA model is rejected
(at 5% level). Additionally, the goodness-of-fit measures consistently favoured
the STINMA model (AIC: 1360.14 vs. 1364.27; AICc: 1360.78 vs. 1364.69; BIC:
1373.17 vs. 1374.69). Furthermore, in the presence of spatial data, the STINMA
emerges as the natural modelling approach because it incorporates a parameter
that facilitates spatial interpretability.

7. Conclusions and future research

This work extensively analyzed the characteristics of the STINMA model, which
constitutes a special case of the new STINARMA class of models. In compari-
son to the continuous STMA model, the second-order moments of the general
STINMA(qm1,...,mq ) exhibit extra additive terms that steam from independent
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Table 3

Estimate, standard error (SE), 95% confidence and percentile intervals (CI and PI) for MM
and CML. SE is computed via parametric bootstrap for MM and via Hessian matrix for

CML.

Parameter
MM CML

Estimate SE 95% CI 95% PI Estimate SE 95% CI

λ1 2.680 0.389 [1.856, 3.504] [2.103, 3.558] 3.439 0.292 [2.867, 4.011]
λ2 1.730 0.396 [0.890, 2.570] [1.140, 2.656] 2.603 0.294 [2.027, 3.179]
λ3 2.673 0.390 [1.838, 3.508] [2.075, 3.584] 3.415 0.295 [2.837, 3.993]
β10 0.351 0.136 [0.070, 0.631] [0.116, 0.635] 0.164 0.067 [0.033, 0.295]
β11 0.468 0.172 [0.120, 0.816] [0.127, 0.801] 0.159 0.076 [0.010, 0.308]

BTOs executed at lag zero. The Poisson STINMA(11) model was explored for
S = 3 locations (with results easily generalized for S > 3), and its second-order
moments coincide with those of the STMA(11).

The case considering non-independent spatial BTOs was further addressed.
This situation leads to off-diagonal variance parcels in the Poisson STINMA(11)
autocovariance and modifications on the space-time autocovariance. Strategies
for parameter estimation (MM, CLS and CML) were derived for the Poisson
STINMA(11) model under the non-independent BTO paradigm. The simulation
study shows that the CML achieves the optimal performance (lowest bias and
variance) among all strategies, even for small sample sizes. For larger sizes, MM
also presents reduced bias and variability but, for small sizes, fails to converge or
returns non-admissible estimates for some cases. CML also has the advantage of
allowing inference through the Hessian matrix, unlike MM, which requires e.g. a
bootstrap procedure for inference purposes (which implies several runs of the
MM procedure). Balancing all pros and cons, the CML strategy has preferable
properties (bias and variance) at the expense of a higher computational burden,
while MM constitutes a faster and fair estimation strategy for large samples.
Finally, in real applications with known innovations, CLS is also a good option
for the estimation of the Poisson STINMA(11) parameters.

There are several topics of future research that can bring more flexibility
to the STINARMA class of models. Firstly, more flexibility could be added
to the model by allowing that the temporal and spatial parameters to vary
per location, similarly to what has been done for continuous models [6]. Sec-
ondly, one may consider an innovations’ distribution allowing for overdispersion,
e.g. negative-binomial. A third relevant topic is the inclusion of time-dependent
covariates either through time-dependent innovations or probability parameters,
introduced via an appropriate link function. Additional cross-dependence can
be added to the model e.g. through the use of a non-independent innovations
process or by using a copula-based approach. Lastly, non-stationary modelling
approaches are also an interesting topic for future research since the stationarity
assumption may be too restrictive in some applied settings.
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Appendix A: Expected value and variance of the general STINMA
process

The proofs for the component-wise expected value and variance of the general
STINMA(qm1,...,mq ) process are set by rewriting the system of equations (10)
such that, for a given location s, the model equation can be written as

Ys,t =
q∑

j=1

[ mj∑
�=0

S∑
n=1

(βj�w
(�)
sn ) ◦ εn,t−j

]
+ εs,t

=
q∑

j=1

[ S∑
n=1

( mj∑
�=0

βj�w
(�)
sn

)
◦ εn,t−j

]
+ εs,t. (45)

Proof. (Expected Value – Component-wise) By applying the linearity of
the expected value and the well-known property E[ψ ◦ X] = E[ψX] to equa-
tion (45), the expected value is obtained as follows

E
[
Ys,t

]
= E

[
q∑

j=1

mj∑
�=0

S∑
n=1

(βj�w
(�)
sn ) ◦ εn,t−j + εs,t

]

=
q∑

j=1

mj∑
�=0

S∑
n=1

E
[
βj�w

(�)
sn ◦ εn,t−j

]
+ E

[
εs,t
]

=
q∑

j=1

mj∑
�=0

S∑
n=1

E
[
βj�w

(�)
sn εn,t−j

]
+ E

[
εs,t
]

=
q∑

j=1

mj∑
�=0

S∑
n=1

(
βj�w

(�)
snμεn

)
+ μεs . (46)

Proof. (Variance – Component-wise) The component-wise variance for a
given location s is based on the result V [(ψ ◦X)] = V [ψX]+E[ψ(1−ψ)X] and
the independence between innovations.

V
[
Ys,t

]
= V

[
q∑

j=1

[ S∑
n=1

( mj∑
�=0

βj�w
(�)
sn

)
◦ εn,t−j

]
+ εs,t

]

ind.=
q∑

j=1
V

[ S∑
n=1

( mj∑
�=0

βj�w
(�)
sn

)
◦ εn,t−j

]
+ V

[
εs,t
]

= (independence in time)

ind.=
q∑

j=1

S∑
n=1

V

[( mj∑
�=0

βj�w
(�)
sn

)
◦ εn,t−j

]
+ V

[
εs,t
]

= (independence in space)
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=
q∑

j=1

S∑
n=1
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V

[( mj∑
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βj�w
(�)
sn

)
εn,t−j

]
+ E

[( mj∑
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βj�w
(�)
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)
×

×
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(�)
sn

)
εn,t−j
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]]
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]
.

However, taking into account that W (0) = IS , diag
(
W (�)) = 0,∀ � ≥ 1 and

the fact that for a given s, n at most one of {w(0)
sn , w

(1)
sn , . . . } is non-zero, one can

write more simply,

V [Ys,t] =
q∑
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S∑
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mj∑
�=0

β2
j�

(
w(�)

sn
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σ2
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Appendix B: Temporal covariance of the general STINMA process

Theorem 3.1 specifies the temporal covariance function Γ*(h) for the general
STINMA(qm1,...,mq ) process. The proof is constructed by steps. First, Γ*(0) is
obtained for the STINMA(1m1) and extended to the STINMA(qm1,...,mq ). Then,
Γ*(h) is obtained by induction.

Proof. Let h = 0. For simplicity of the derivation of results we start by proving
the result of equation (16) for a STINMA(1m1)

Y t =
m1∑
�=0

β1�W
(�) ◦ εt−1 + εt, (48)

which can be rewritten using the “trick” (7),

Y t =
m1∑
�=0

β1�W
(�)

︸ ︷︷ ︸
=:B1

◦ εt−1 + εt. (49)

Using the properties of the covariance operator,

Γ*(0) = Cov
(
Y t,Y

�
t

)
= Cov

(
B1 ◦ εt−1 + εt,

(
B1 ◦ εt−1 + εt

)�)
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= Cov
(
B1 ◦ εt−1,

(
B1 ◦ εt−1

)�)+
+ Cov

(
B1 ◦ εt−1, ε

�
t

)
︸ ︷︷ ︸

=OS

+Cov
(
εt,
(
B1 ◦ εt−1

)�)
︸ ︷︷ ︸

=OS

+Cov(εt, ε�t )︸ ︷︷ ︸
=G eq. (5)

.

The computation of the covariance of the first parcel, requires the property
E
[(
A ◦X

)(
A ◦X

)�] = AE
[
XXT

]
A� + diag

(
CE[X]

)
where diag(CE[X])

is a diagonal matrix and C is the squared matrix (S × S) with entries cij =
aij(1 − aij), i, j = 1, . . . , S [17]. This implies, in terms of covariance, that

Cov
(
A ◦X,

(
A ◦X

)�) = ACov
(
X,X�)A� + diag

(
CE[X]

)
. (50)

Therefore, from (50) the general expression can be written as

Γ*(0) = G
(
IS + B1B

�
1
)

+
m1∑
�=0

diag
(
C(�)E[εt]

)
. (51)

Note that C(�) has entries c(�)ij := a
(�)
ij (1−a

(�)
ij ), for � = 1, . . . ,m1. Now, for a gen-

eral STINMA(qm1,...,mq ) it is straightforward to obtain the variance-covariance
matrix, since Γ*(0) will be of the same form as equation (51) with an additional
summation up to the order q of the process, i.e.

Γ*(0) =
q∑

j=1

(
G
(
IS + BjB

�
j

)
+

mj∑
�=0

diag
(
C(�)E[εt]

))
. (52)

Now, let h = 1. Then,

Γ*(1) = Cov
(
Y t,Y

�
t+1
)

= Cov

(
q∑

j=1
Bj ◦ εt−j+εt,

q∑
j=1

(
Bj ◦ εt−j+1+εt+1

)�)

= Cov

(
q∑

j=1
Bj ◦ εt−j + εt,

q−1∑
i=0

(
Bi ◦ εt−i+1 + εt+1

)�)

=
q∑

j=1

q−1∑
i=0

Cov
(
Bj ◦ εt−j ,

(
Bi ◦ εt−i+1

)�)
︸ ︷︷ ︸

�=0,when i=j+1

+
q∑

j=1
Cov

(
Bj ◦ εt−j , ε

�
t+1

)
︸ ︷︷ ︸

OS

+

+
q−1∑
i=0

Cov
(
εt,
(
Bi ◦ εt−i+1

)�)
︸ ︷︷ ︸

�=0,when i=1

+Cov(εt, ε�t+1)︸ ︷︷ ︸
OS

=
q−1∑
j=1

Cov
(
Bj ◦ εt−j , (Bj+1 ◦ εt−j)�

)
+ Cov

(
εt,
(
B1 ◦ εt

)�)

=
q−1∑
j=1

BjGB�
j+1 + GB�

1 . (53)
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By induction, for 0 < h < q + 1, it can be shown that

Γ*(h) =
q−h∑
j=1

BjGB�
j+h + GB�

h . (54)

For h = q, it is straightforward that Γ(q) = GB�
q . Finally, by definition Bh = 0,

h ≥ q + 1 and Γ*(h) = OS , h ≥ q + 1.

Appendix C: Joint distribution of the Poisson STINMA(11) process

Theorem 4.1 specifies the joint distribution of the Poisson STINMA(11) pro-
cess under the independent thinnings assumption. The proof is based on the
derivation of the p.g.f. of the Poisson STINMA(11) process Y t = β10 ◦ εt−1 +
β11W

(1) ◦ εt−1 + εt, with

W (1) =

⎡
⎢⎣ 0 w

(1)
12 w

(1)
13

w
(1)
21 0 w

(1)
23

w
(1)
31 w

(1)
32 0

⎤
⎥⎦ . (55)

Proof. For the sake of simplicity we define B = β10I3 + β11W
(1) with entries

bij , i, j = 1, 2, 3, and rewrite the STINMA model as Y t = B ◦ εt−1 + εt. By
definition, the p.g.f. of Y t is

GY (s1, s2, s3) = E
[
s
Y1,t
1 s

Y2,t
2 s

Y3,t
3

]
= E

[ 3∏
r=1

s
εr,t+

∑3
j=1 brj◦εr,t−1

r

]
and by independence in time it follows that

=
3∏

r=1
E
[
sεr,tr

]
×

3∏
r=1

E
[ 3∏
j=1

s
brj◦εr,t−1
j

]
, (56)

where E
[
s
εr,t
r

]
= Gεr (sr) is the p.g.f. of the univariate innovation process εr,t.

Each mixed expected value takes the generic form E
[
sα1◦X
1 sα2◦X

2 sα3◦X
3

]
with

αi ◦ X =
∑X

j=1 uij and uij ∼ B(1, αi) being independent r.v.’s. Taking into
account that the thinning operations are independent,

E
[
sα1◦X
1 sα2◦X

2 sα3◦X
3

]
= E

[
E
[
sα1◦X
1 sα2◦X

2 sα3◦X
3

∣∣X]]
ind.= E

[
E
[
sα1◦X
1

∣∣X]E[sα2◦X
2

∣∣X]E[sα3◦X
3

∣∣X]], (57)

and, by replacing E
[
sαi◦X
i

∣∣X] = (1 − αi + αisi)X ∀ i = 1, 2, 3 results in

E
[ 3∏
i=1

(1 − αi + αisi)X
]

= GX

( 3∏
i=1

(1 − αi + αisi)
)
. (58)
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Furthermore,

3∏
i=1

(1 − αi + αisi) = 1 +
3∑

i=1

(
1 −

3∑
j=1
i �=j

αj +
3∑

k=1
k �=i �=j

αjαk

)
αi(si − 1)+

+
3∑

i=1
i<j

3∑
j=1

(
αj −

3∑
k=1

k �=i �=j

αjαk

)
αi(sisj − 1) + α1α2α3(s1s2s3 − 1). (59)

To construct the joint p.g.f. of the STINMA(11) process with S = 3, consider∏3
i=1(1 − αi + αisi) as a function η(α1, α2, α3). Using (59),

GY (s1, s2, s3) =
3∏

r=1
Gεr (sr) ×

3∏
j=1

Gεr (η(b1r, b2r, b3r)),

which constitutes the product of six p.g.f. functions. Since εr,t are marginally
Poisson distributed with parameter λr, we get

GY (s1, s2, s3) = exp
{ 3∑

r=1

[
λr +

( 3∑
j=1

λj

(
1 −

3∑
i=1
i �=r

bij +
3∏

k=1
k �=r

bkj

)
brj

)
(sr − 1)

]
+

+
3∑

r=1

3∑
k=1
k>r

[( 3∑
j=1

λj

(
bkj −

3∏
i=1
i �=r

bij

)
brj

)
(srsk − 1)

]
+

+
3∑

j=1
λjb1jb2jb3j(s1s2s3 − 1)

}
, (60)

where Yr, r = 1, 2, 3, is uniquely defined as

Yr = Zr +
3∑

k=1
k �=r

Zrk + Z123, (61)

with the Zr, Zrk, Z123 being independent Poisson r.v.’s with parameters ar, ark,
a123, respectively. This multivariate p.g.f. can be written as equation (4.1) of
[25], by defining the parameters of the seven independent Poisson r.v.’s as

ar = λr +
( 3∑

j=1
λj

(
1 −

3∑
i=1
i �=r

bij +
3∏

k=1
k �=r

bkj

)
brj

)
sr,

ark =
( 3∑

j=1
λj

(
bkj −

3∏
i=1
i �=r

bij

)
brj

)
srsk, k > r,
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a123 =
3∑

j=1
λjb1jb2jb3js1s2s3,

and by letting A3 be the sum of all terms multiplied by −1. Replacing (55) with
the first-order neighbor matrix of model (22) and applying (60), the parameters
of the seven Poisson distributions are obtained. This concludes the proof.
Remark C.1. The result of the previous theorem still holds for the reparame-
terized model in (27), where β11 ◦ ε2,t−1 in location 1 and 3 returns the same
observed value at time t. This becomes clear by following the above proof and
rewriting (57) for location 2 as

E
[
sα1◦X
1 sα2◦X

2 sα3◦X
3

]
= E

[
sα1◦X
1 sα2◦X

2 sα1◦X
3

]
ind.= E

[
E
[
(s1s3)α1◦X

∣∣X]E[sα2◦X
2

∣∣X]],
where the new joint terms are E[(1−α1+α1s1s3)X(1−α2+α2s2)X ] = GX

(
(1−

α1 + α1s1s3)(1 − α2 + α2s2)
)
. The remaining calculations are performed in

an equal manner leading to a trivariate Poisson distribution but with different
parameters than those of (22); see Theorem 4.1 and (28).

Appendix D: Lemma 4.2

The proof of Lemma 4.2 follows closely the arguments in the proof of Lemma 1
in [17].

Proof. For each component k, r = 1, . . . , 3, it follows that

E
[
(A ◦X)(A ◦X)�

]
k,r

=
3∑

s,n=1
E
[
(aks ◦Xs)(arn ◦Xn)

]
.

If aks �= arn or s �= n, then aks ◦Xs and arn ◦Xn are conditionally independent
binomial random variables given Xs and Xn, respectively, and

E
[
(aks ◦Xs)(arn ◦Xn)

]
= aksarnE

[
XsXn

]
.

However, the case aks = arn and s = n, leads to

E[(aks ◦Xs)(arn ◦Xn)] = E[(aks ◦Xs)2] = a2
ksE[X2

s ]+aks(1−aks)E[Xs], (62)

which includes the diagonal operations, i.e. those with k = r and s = n (which
implies that aks = arn, as well as the off-diagonal operations with aks = arn
and s = n. Therefore, with 1(aks=ars) = 1 if aks = ars and 0 otherwise, then

E
[
(A ◦X)(A ◦X)�

]
k,r

=
3∑

s,n=1
aksarnE[XsXn]+

+
3∑

s=1
1(aks=ars)aks(1 − aks)E[Xs]. (63)
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Finally, it should be noted that

3∑
r=1

Q(r)E[X] e�r =
3∑

r=1

⎛
⎜⎜⎜⎜⎝

...
3∑

s=1
1(aks=ars)aks(1 − aks)E[Xs]

...

⎞
⎟⎟⎟⎟⎠ e�r ,

represents a matrix in which the (k, r)th equals to 1(aks=ars)aks(1− aks)E[Xs],
by defining Q(r) properly and by setting er as the rth unit vector. This concludes
the proof.

Appendix E: CML recursive probabilities

This appendix presents the proof for the derivation of the recursive equation (43).

Proof. Replacing t by t + 1 in (42) (t ≥ 2) leads to

bk�(t + 1) = P (εt+1 = k, εt = �,Y t+1 = yt+1, . . . ,Y 2 = y2|Y 1 = y1). (64)

The recursive equation in t is constructed by introducing εt−1 in the above
probability which will bring an explicit expression on b..(t) to the equation.
Define i = (i1, i2, i3). From the law of total probability it follows that

bk�(t + 1) =

=
yt−1∑
i=03

P (εt+1 =k, εt=�, εt−1 =i,Y t+1 =yt+1,Y t=yt, . . . ,Y 2 =y2
∣∣Y 1 =y1)

=
yt−1∑
i=03

P (Y t+1 =yt+1, εt+1 =k
∣∣εt=�, εt−1 =i,Y t=yt, . . . ,Y 2 =y2,Y 1 =y1)×

× P (εt = �, εt−1 = i,Y t = yt, . . . ,Y 2 = y2
∣∣Y 1 = y1)

=
yt−1∑
i=03

P (Y t+1 =yt+1
∣∣εt+1 =k, εt=�, εt−1 =i,Y t=yt, . . . ,Y 2 =y2,Y 1 =y1)×

× P (εt+1 = k
∣∣εt = �, εt−1 = i,Y t = yt, . . . ,Y 2 = y2,Y 1 = y1)×

× P (εt = �, εt−1 = i,Y t = yt, . . . ,Y 2 = y2
∣∣Y 1 = y1).

Note that for any STINMA(11) model driven by i.i.d. innovations which are
independent of Y u for u < t, it follows that

bk�(t + 1) = P (εt+1 = k)P (Y t+1 = yt+1
∣∣εt+1 = k, εt = �)×

×
yt−1∑
i=03

P (εt = �, εt−1 = i,Y t = yt, . . . ,Y 2 = y2
∣∣Y 1 = y1), (65)
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and by (64) the last parcel is simply

yt−1∑
i=03

P (εt = �, εt−1 = i,Y t = yt, . . . ,Y 2 = y2
∣∣Y 1 = y1) =

yt−1∑
i=03

b�i(t), (66)

which constitutes the sum of b�i parcels evaluated at time t that will be subse-
quently used to quantify bk� at time t + 1 in a recursive manner. Moreover, for
the particular STINMA(11) model defined in (27),

P (Y t+1 = yt+1
∣∣εt+1 = k, εt = �)

= P
(
β10 ◦ �1+β11 ◦ �2+k1 =y1,t+1, β10 ◦ �2 + 1

2β11 ◦ (�1 + �3) + k2 = y2,t+1,

β10 ◦ �3 + β11 ◦ �2 + k3 = y3,t+1

)
= P

(
β10 ◦ �1 + β11 ◦ �2 = y1,t+1 − k1, β10 ◦ �3 + β11 ◦ �2 = y3,t+1 − k3

)
×

× P
(
β10 ◦ �2 + 1

2β11 ◦ (�1 + �3) = y2,t+1 − k2

)
= p13 × p2,

where

p13 =
Jk1k3∑
j2=0

P
(
β11 ◦ �2 = j2

)
P
(
β10 ◦ �1 = y1,t+1 − k1 − j2

)
×

× P
(
β10 ◦ �3 = y3,t+1 − k3 − j2

)
p2 =

y2,t+1−k2∑
j2=0

P
(
β10 ◦ �2 = j2

)
P
(1
2β11 ◦ (�1 + �3) = y2,t+1 − k2 − j2

)
with Jk1k3 = mint{y1,t+1−k1, y3,t+1−k3} due to the P (β11◦�2 ≤ y1,t+1−k1) = 1
and P (β11 ◦ �2 ≤ y3,t+1 − k3) = 1, restrictions that arise from the parcels
evaluating probabilities of sums of r.v.’s. Recalling that β ◦ � ∼ B(�, β) with
� ∈ N0 then the above parcels are of the type P (β ◦ � = x) =

(
�
x

)
βx(1 − β)�−x.

Altogether, it follows that

bk�(t + 1) = P (εt+1 = k) p13 p2

yt−1∑
i=03

b�i(t), (67)

resulting in (43), which concludes the proof.

Remark E.1. Note that the assumption that all thinning operations are inde-
pendent, such as in the STINMA(11) model (22), the above parcel p13 is replaced
by the following product of probabilities,

p13 = P (β10 ◦ �1 + β11 ◦ �2 + k1 = y1,t+1) × P (β10 ◦ �3 + β11 ◦ �2 + k3 = y3,t+1)
= p1 × p3
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with

p1 =
y1,t+1−k1∑

j1=0
P
(
β10 ◦ �1 = j1

)
P
(
β11 ◦ �2 = y1,t+1 − k1 − j1

)
,

p3 =
y3,t+1−k3∑

j3=0
P
(
β10 ◦ �3 = j3

)
P
(
β11 ◦ �2 = y3,t+1 − k3 − j3

)
, (68)

and consequently bk�(t+1) = P (εt+1 = k) p1 p2 p3
∑yt−1

i=03
b�i(t).
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