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1. Introduction

Two-level orthogonal arrays are a very useful class of fractional factorial de-
signs for the planning of factorial experiments, especially for those studies that
involve a large number of factors. They can be classified into regular designs
and nonregular designs. Regular designs are easy to construct and have simple
aliasing structures, but their run sizes are limited to powers of two. By compar-
ison, nonregular designs allow for more flexible run sizes and also enjoy better
statistical properties in terms of generalized resolution ([6]), projectivity ([1]),
and hidden projection property ([25]). We refer to [27] for an excellent review
on nonregular designs.

[14, 15] investigated the theoretical construction of nonregular designs with
maximum generalized resolutions. Except for a special case, their results focus
on orthogonal arrays of strength two. Prior to [14, 15], finding designs with
maximum generalized resolution is largely computational; see, for example, [12]
and [13].

Among all the factors investigated in an experiment, very often only a few of
them are active. It is therefore important to examine the properties of a design
when projected onto low dimensions. One way to characterize the projection
properties of a design is through the concept of projectivity ([1]). A design is
said to have projectivity h if its projection design onto any h factors contains all
possible level combinations. For an orthogonal array of strength t, the existing
results can only be used to determine whether or not it has projectivity t + 1
([4, 1]).

The hidden projection property of a design provides another way of evaluating
its projection designs if only the main effects and two-factor interactions are of
interest ([25]). A design is said to have the hidden projection property for h
factors if its projection design onto any h factors allows estimation of all main
effects and all two-factor interactions. [4] showed that a strength-two orthogonal
array has the hidden projection property for 4 factors if it does not have defining
words of length 3 or 4. [5] further established that if a strength-three array does
not have any defining word of length 4, it has the hidden projection property
for 5 factors. [2] later proved that Paley designs with more than 8 runs do not
have any defining words of length 3 or 4, thereby showing that Paley designs
have the hidden projection property for 4 factors and their foldovers have the
hidden projection property for 5 factors.

In this article, we conduct a comprehensive study on three classes of designs
from Paley’s Hadamard matrices in terms of generalized resolution, projectivity
and hidden projection property. The three classes of designs are denoted by Pn,
P̃2n and Q2n, respectively, with their precise definitions to be given later in the
paper. For now, it suffices to say that Pn is a saturated orthogonal array of
strength two obtained from Paley’s first construction of Hadamard matrix, P̃2n
is the foldover of Pn, and Q2n is an orthogonal array of strength two obtained by
judiciously selecting n columns from Paley’s second construction of Hadamard
matrix of order 2n.

[15] examined theoretical construction of designs with maximum generalized
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resolutions with a focus on orthogonal arrays of strength two, and showed in
particular that Pn and Q2n and their subdesigns have maximum generalized
resolutions. We complete their investigations by showing that P̃2n and many of
its subdesigns, all of which are orthogonal arrays of strength three, also have
maximum generalized resolutions.

More importantly, we provide a general investigation of all three classes of
designs, Pn, P̃2n and Q2n into their projectivity and hidden projection property
for h factors. From [4, 5, 2], we can draw conclusions on the projectivity of Pn

and Q2n for h = 3 and of P̃2n for h = 4, and on the hidden projection property
of Pn and Q2n for h = 4 and of P̃2n for h = 5. As will be seen in Section 3, our
results substantially expand these existing results of [4, 5, 2].

For practical purposes, we also study the selection problem using the min-
imum G-aberration criterion from the designs with maximum generalized res-
olutions. Besides our main focus, which is the design selection from Pn, P̃2n
and Q2n, we also consider those designs with maximum generalized resolutions
obtained by [15] using tensor product construction. We tabulate our findings for
strength-two designs with 36, 44, 48, 52, 60, 64, 96 and 128 runs and strength-
three designs with 72, 88 and 120 runs.

The remainder of the paper is organized as follows. Section 2 of the paper
introduces necessary notation and reviews some background. Section 3 studies
strength-three orthogonal arrays with maximum generalized resolutions, and
examines the projectivity and hidden projection property of three classes of
designs Pn, P̃2n and Q2n. Section 4 looks into the design selection problem
using the minimum G-aberration criterion. The paper is concluded with some
further results on the type of Hadamard matrices in Section 5. All the proofs
are postponed to the Appendix.

2. Notation and background

A two-level orthogonal array of N runs, m factors and strength t, denoted by
OA(N, 2m, t), is an N ×m matrix of ±1 such that in any of its N × t submatrix,
the 2t possible level combinations occur equally often. Such an array can be
characterized by its J-characteristics. Suppose D = (dij) is an OA(N, 2m, t).
Given a set u ⊆ Zm = {1, . . . ,m}, the J-characteristic of the columns of D

indexed by u is defined as Ju(D) =
∑N

i=1
∏

j∈u dij . Clearly, we have Ju(D) = 0
if |u| ≤ t, where |u| is the cardinality of u. In addition, we note that |Ju(D)|
can only take values of {N,N − 8, . . . , N − 8�N/8�} for |u| = 3, 4 when t = 2,
and {N,N − 16, . . . , N − 16�N/16�} for |u| = 4 when t = 3, where �·� is the
floor function; see, for example, Lemma 3 of [17].

Let r be the smallest integer such that max|u|=r |Ju(D)| > 0. The generalized
resolution of D is defined as r+1−max|u|=r |Ju(D)|/N ([6]). When N/2 < m ≤
N−1, we have r = 3. [15] derived the following lower bound on max|u|=3 |Ju(D)|.
Lemma 1. Suppose D is an OA(N, 2m, 2) with N/2 < m ≤ N − 1. Then
max|u|=3 |Ju(D)| ≥ N −8�(N/8)(1− ξ1/2)�, where ξ = (2m−N)/((m−1)(m−
2)).
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To distinguish designs with the same generalized resolution, [6] further pro-
posed the minimum G-aberration criterion as a refinement. This criterion se-
quentially minimizes F1(N), . . . , F1(0), F2(N), . . . , F2(0), . . . , Fm(N), . . . ,
Fm(0), where Fk(l) is the frequency of u’s such that |u| = k and |Ju(D)| = l
for k = 1, . . . ,m and l = 0, . . . , N . For theoretical convenience, [21] introduced
the criterion of minimum G2-aberration, which aims to sequentially minimize
the entries of (A1(D), . . . , Am(D)) where Ak(D) =

∑
|u|=k |Ju(D)/N |2.

Orthogonal arrays can be constructed from Hadamard matrices. A Hadamard
matrix of order N is an N ×N matrix H of ±1 satisfying HTH = NIN , where
IN is the identity matrix of order N . Given a Hadamard matrix of order N ,
we can normalize one column by switching the signs of rows such that this
column contains all ones, and then obtain an OA(N, 2N−1, 2) by dropping this
normalized column.

Two constructions of Hadamard matrices were proposed by [11]. Suppose
s is a prime or prime power. Denote the Galois field of order s by GF (s) =
{α1, . . . , αs} and define the function χ over GF (s) such that χ(α) = 0 if α = 0,
χ(α) = 1 if α = β2 for some nonzero β ∈ GF (s), and χ(α) = −1 otherwise.
Let K be the s× s matrix with its (i, j)th entry being χ(αi −αj). Then Paley’s
first construction works if s = 4l + 3 for some integer l and leads to following
Hadamard matrix of order n = s + 1:

H =
[

1 −1T
s

1s K + Is

]
, (1)

where 1s is a column vector of s ones. The OA(n, 2n−1, 2) obtained by removing
the first column of H in (1) is called a Paley design and is denoted by Pn

hereafter. A sharp upper bound on max|u|=3,4 |Ju(Pn)| was established by [14].

Lemma 2. We have max|u|=3,4 |Ju(Pn)| ≤ UP (n) = n−8	n/8− (n−1)1/2/4−
1/2
, where 	·
 is the ceiling function.

Using Lemma 2 together with Lemma 1, [15] obtained many designs with
maximum generalized resolutions by dropping columns from Pn for n = 12,
20, 24, 28, 32, 44, 60, 72 and 80. Paley’s second construction applies to the
case s = 4l + 1 for some integer l, and yields a Hadamard matrix H of order
2n = 2s + 2, as displayed in (2).

H =

⎡
⎢⎢⎣

1 1T
s −1 1T

s

1s K + Is 1s K − Is
−1 1T

s −1 −1T
s

1s K − Is −1s −K − Is

⎤
⎥⎥⎦ , Q2n =

⎡
⎢⎢⎣
−1 1T

s

1s K − Is
1 1T

s

−1s −K − Is

⎤
⎥⎥⎦ . (2)

By multiplying the (s+ 2)th row of H in (2) by −1 and then removing the first
s+1 columns, [15] obtained the design Q2n in (2). [15] proved that Q2n achieves
the minimum possible max|u|=3 |Ju(D)| value, as given in the next lemma.

Lemma 3. The design Q2n in (2) is an OA(2n, 2n, 2) with max|u|=3 |Ju(Q2n)|=
4.
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3. Main results

3.1. Strength-3 arrays with maximum generalized resolutions

Lemma 1 provides a lower bound on max|u|=3 |Ju(D)| for orthogonal arrays of
strength 2. We establish a similar lower bound on max|u|=4 |Ju(D)| for strength-
3 arrays.

Theorem 1. Suppose D is an OA(N, 2m, 3) with N/3 ≤ m ≤ N/2. Then

max
|u|=4

|Ju(D)| ≥ N − 16
⌊
(N/16)(1 − ζ1/2)

⌋
,

where

ζ = 4m3 − 3m2N + mN2 − 3mN + 4m−N3/8 + 3N2/4 −N

m(m− 1)(m− 2)(m− 3) .

Based on Theorem 1, some designs can be shown to have maximum general-
ized resolutions. For a Paley design Pn, consider its foldover design

P̃2n =
[

1n Pn

−1n −Pn

]
.

Clearly, P̃2n is an OA(2n, 2n, 3). Since max|u|=4 |Ju(P̃2n)|=2 max|u|=3,4|Ju(Pn)|,
a sharp upper bound on max|u|=4 |Ju(P̃2n)| follows directly from Lemma 2:

max
|u|=4

|Ju(P̃2n)| ≤ 2UP (n) = 2n− 16	n/8 − (n− 1)1/2/4 − 1/2
. (3)

This shows that design P̃2n has a large generalized resolution as the upper
bound 2UP (n) on max|u|=4 |Ju(P̃2n)| is in the order of O(n1/2). Some of the
max|u|=4 |Ju(P̃2n)| values are given in Table 1 for small run sizes. Comparing
the upper bound in (3) with the lower bound in Theorem 1, we deduce the next
result.

Corollary 1. Designs obtained by selecting any m columns from P̃2n have the
maximum generalized resolutions for 2n = 24, 40, 48, 56, 64, 88, 120, 144, 160 and
2n/3 ≤ m ≤ n.

We note that the special cases given by m = n in Corollary 1 were previously
obtained in [14].

Remark 1. [14] found by computer search two Hadamard matrices H of order
36 with max|u|=4 |Ju(H)| = 12. Folding over any of these two Hadamard matri-
ces by [HT −HT ]T and then selecting any m columns, we obtain OA(72, 2m, 3)s
with the maximum generalized resolutions for 24 ≤ m ≤ 36 by an application of
Theorem 1.

Table 1

Some values of max|u|=4 |Ju(P̃2n)|.

run size 2n 24 40 48 56 64 88 96 120 136 144 160 168 208
max|u|=4 |Ju(P̃2n)| 8 24 16 24 16 24 32 24 40 32 32 40 48
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3.2. Projectivities of Pn, P̃2n and Q2n

[4] pointed out that the projection of an OA(N, 2m, t), say D, onto t+ 1 factors
indexed by u has (N −|Ju(D)|)/2t+1 copies of the full factorial plus |Ju(D)|/2t
copies of a half replicate of the full factorial. This settles projections of Pn, P̃2n
and Q2n onto 3, 4, and 3 factors, respectively. In this subsection, we investigate
the projections of these designs onto more factors. A result from [19] is useful
here. We describe it next.

For any s ⊆ Zm, let rs be an m-dimensional row vector with its jth entry
being 1 if j ∈ s, and −1 otherwise for j = 1, . . . ,m. Define a matrix C as

C =
[
rT∅ , rT{1}, rT{2}, rT{1,2}, rT{3}, rT{1,3}, rT{2,3}, rT{1,2,3}, rT{4}, . . . , rT{1,2,...,m}

]T
.

Clearly, C contains all possible level combinations for m factors as rows. For
u ⊆ Zm, let hu denote the Hadamard product of all the columns of C indexed
by u and define

H =
[
h∅,h{1},h{2},h{1,2},h{3},h{1,3},h{2,3},h{1,2,3},h{4}, . . . ,h{1,2,...,m}

]
,

where h∅ is a column of all ones. Then the result of [19] can be stated as follows.

Lemma 4. Suppose D is an OA(N, 2m, t). Let Ns be the frequency that rs
occurs in D for s ⊆ Zm. Then Ns = 2−m

∑
u⊆Zm

hsuJu(D), where hsu is the
element on the sth row and uth column of H.

Lemma 4 reveals that any design, up to row permutations, is uniquely de-
termined by its J-characteristics. This enables us to study the projections of a
design D onto k factors through Ju(D) for |u| ≤ k.

Proposition 1. The projection of Pn (respectively, P̃2n) onto any 4 (respec-
tively, 5) factors has at least 	n/16 − 5UP (n)/16
 copies of the full factorial.

Proposition 1 indicates that the number of full factorials contained in any
four-factor projection of Pn, or five-factor projection of P̃2n, is approximately
n/16 for large n, since UP (n) is of order O(n1/2). A design is said to have
projectivity h if its projection onto any h factors contains at least one full
factorial. Using Proposition 1, one can check that Pn (respectively, P̃2n) has
projectivity 4 (respectively, 5) when n ≥ 108. Next, we examine the projections
of Q2n onto 4 and 5 factors, for which we need the following knowledge on
|Ju(Q2n)| for |u| = 4 and 5.

Lemma 5. We have that max|u|=4 |Ju(Q2n)| ≤ UQ(2n) = 2n − 8	n/4 − (n −
1)1/2/2
 and that |Ju(Q2n)| is either 0 or 8 for |u| = 5.

Remark 2. The bound UQ(2n) for Q2n appears quite sharp. We have checked
that the bound is attained by all 2n = 2s + 2 < 600 with s being a prime power
and all 2n = 2s + 2 < 5000 with s being a prime. We also see that UQ(2n)
is asymptotically equivalent to the bound 2UP (n) for P̃2n. This is because the
inequalities (4) in the proof of Lemma 5 hold no matter whether s ≡ 1 (mod 4)
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or s ≡ 3 (mod 4), and are therefore an intrinsic property of the matrix K
in (1) and (2). We note that this property has been used to construct definitive
screening designs by [26] recently.

Lemma 5 allows us to study the projections of Q2n onto 4 and 5 factors.

Proposition 2. The projection of Q2n onto any 4 (respectively, 5) factors has
at least 	n/8 − UQ(2n)/16 − 1
 (respectively, 	n/16 − UQ(2n)/8 − 6/5
) copies
of the full factorial.

The proof of Proposition 2 is similar to that of Proposition 1 and thus
omitted. It follows immediately that Q2n has projectivity 4 when the run size
2n ≥ 36, and projectivity 5 when the run size 2n ≥ 196.

We now use a computer to take a closer look at the projections of Pn, P̃2n
and Q2n for small run sizes. For a design D with N runs, we denote by fk(l)
the proportion of k-factor projections of D that contains l full factorials, and
summarize the k-factor projection properties of D by the vector

PVk(D) = (fk(0), fk(1), . . . , fk(�N/2k�)).

The vectors PV4(Pn), PV4(Q2n) and PV5(Q2n) are displayed in Tables 2 and 3.
The vectors PV5(P̃2n) are omitted because we find PV4(Pn) = PV5(P̃2n) for
all n < 108. We conjecture this relationship holds for all n, though we cannot
prove it for the moment.

Table 3 suggests that the bound 	n/8 − UQ(2n)/16 − 1
 on the number of
full factorials in 4-factor projections of Q2n is sharp as it is attained by all run
sizes less than 196. More importantly, combining the computational results in
Tables 2 and 3 and theoretical results in Propositions 1 and 2, we know exactly
when designs Pn, P̃2n and Q2n have projectivities 4 or 5. This we summarize as
Theorem 2.

Theorem 2. The design Pn (respectively, P̃2n) has projectivity 4 (respectively,
5) when n ≥ 68. The design Q2n has projectivity 4 when 2n ≥ 36, and projec-
tivity 5 when 2n ≥ 180.

Table 2

The four-factor projections of Pn for n < 108.
n PV4(Pn) = (f4(0), f4(1), . . . , f4(�n/16�))
20 (100%, 0)
24 (57.1%, 42.9%)
28 (50.0%, 50.0%)
32 (39.4%, 59.1%, 1.4%)
44 (7.3%, 67.1%, 25.6%)
48 (6.1%, 51.5%, 42.4%, 0)
60 (0.4%, 24.4%, 65.8%, 9.4%)
68 (0, 10.1%, 56.7%, 33.2%, 0)
72 (0, 6.4%, 43.7%, 44.8%, 5.1%)
80 (0, 2.1%, 29.9%, 53.7%, 14.4%, 0)
84 (0, 0.9%, 18.5%, 63.9%, 16.7%, 0)
104 (0, 0.2%, 1.2%, 22.0%, 55.3%, 20.2%, 1.2%)
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Table 3

The four- and five-factor projections of Q2n for 2n < 196.
2n PV4(Q2n) = (f4(0), f4(1), . . . , f4(�n/8�)) PV5(Q2n) = (f5(0), f5(1), . . . , f5(�n/16�))
20 (100%, 0) 100%
28 (27.3%, 72.7%) 100%
36 (0, 100%, 0) (100%, 0)
52 (0, 8.7%, 91.3%, 0) (90.0%, 10.0%)
60 (0, 0, 55.6%, 44.4%) (76.6%, 23.3%)
76 (0, 0, 0, 57.1%, 42.9%) (39.1%, 57.2%, 3.7%)
84 (0, 0, 0, 23.1%, 76.9%, 0) (22.9%, 76.3%, 7.7%)
100 (0, 0, 0, 0, 31.9%, 68.1%, 0) (7.7%, 65.2%, 27.0%, 0)
108 (0, 0, 0, 0, 5.9%, 70.6, 23.5%) (4.5%, 65.8%, 29.7%, 0)
124 (0, 0, 0, 0, 0, 13.6%, 45.8%, 40.7%) (1.9%, 32.4%, 59.8%, 5.9%)
148 (0, 0, 0, 0, 0, 0, 0, 45.1%, 54.9%, 0) (0.1%, 8.9%, 59.4%, 30.4%, 1.1%)
164 (0, 0, 0, 0, 0, 0, 0, 1.2%, 53.2%, 45.6%, 0) (0.4%, 0.3%, 42.9%, 45.8%, 10.4%, 0)
180 (0, 0, 0, 0, 0, 0, 0, 0, 6.9%, 37.9%, 55.2%, 0) (0, 0.1%, 22.4%, 58.5%, 18.3%, 0.6%)

3.3. Hidden projection properties of Pn, P̃2n and Q2n

An orthogonal array is said to have the hidden projection property for h fac-
tors if in its projection onto any h factors, all the main effects and two-factor
interactions are estimable under the assumption that higher-order interactions
are negligible.

[2] showed that Pn does not have defining words of lengths three or four as
long as n ≥ 12 and thus has the hidden projection property for 4 factors by a
result of [4]. It is also easy to deduce, according to [5], that P̃2n has the hidden
projection property for 5 factors as long as the run size 2n is at least 24. In
this subsection, we show that even better hidden projection properties can be
achieved by Pn, P̃2n and also Q2n for moderate n.

Lemma 6. The design Pn (respectively, P̃2n) has the hidden projection property
for h (respectively, h+1) factors if n > (h− 1)(h− 2)UP (n)/2. The design Q2n
has the hidden projection property for h factors if 2n > 4(h− 2) + (h− 2)(h−
3)UQ(2n)/2.

Lemma 6 guarantees that Pn (respectively, P̃2n) has the hidden projection
property for 5 (respectively, 6) factors when n = 132, 140, 152 and n ≥ 168,
and that Q2n has the hidden projection property for 5 factors when 2n ≥ 76,
and for 6 factors when 2n ≥ 300. We then proceed with a computer study of
those cases not covered by Lemma 6. Combining our computational findings
with Lemma 6, we obtain Theorem 3.

Theorem 3. The design Pn (respectively, P̃2n) has the hidden projection prop-
erty for 5 (respectively, 6) factors when n ≥ 28. The design Q2n has the hidden
projection property for 5 factors when 2n ≥ 28, and for 6 factors when 2n = 28
and 2n ≥ 52.

For a design D, let hmax(D) be the largest integer h such that D has the
hidden projection property for h factors. We obtain the following computational
results on hmax(Pn), hmax(P̃2n) and hmax(Q2n) as displayed in Table 4, which
strengthen the general theoretical results in Theorem 3 for many cases.
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Table 4

Some values of hmax(Pn), hmax(P̃2n) and hmax(Q2n).

n 20 24 28 32 44 48 60 68 72 80 84
hmax(Pn) 4 4 5 6 8 7 ≥ 7 ≥ 7 ≥ 7 ≥ 6 ≥ 6
hmax(P̃2n) 5 5 6 7 9 8 ≥ 8 ≥ 8 ≥ 8 ≥ 7 ≥ 7

2n 20 28 36 52 60 76 84 100 108 124 148
hmax(Q2n) 4 6 5 6 7 7 ≥ 8 ≥ 8 ≥ 8 ≥ 7 ≥ 7

When n ≥ 60 for Pn, P̃2n and 2n ≥ 84 for Q2n, we only provide a lower
bound for hmax as the computation becomes too heavy to handle. Nonetheless,
we can still see a trend that better hidden projection properties can be achieved
by designs with larger run sizes. This is expected because, by Lemma 6, hmax
should be in the order of O(n1/4).

4. Design selection by minimum G-aberration

The generalized resolution, as a design selection criterion, only looks at the most
severe aliasing among factorial effects. A more general design selection criterion
is that of minimum G-aberration. This section is devoted to finding minimum
G-aberration designs from those with maximum generalized resolutions. Our
focus is on design selection from the three classes of designs Pn, P̃2n and Q2n.
Also considered are some designs by tensor product construction from [15]. In
our computer search, we use J-characteristics for up to four factors, as done by
most authors.

A brief review on designs with minimum G-aberration is necessary. Specifi-
cally, such OA(N, 2m, t)s are already available for N = 12, 16, 20 and m ≤ N−1
([18]); N = 24 and m ≤ 23, N = 28 and m ≤ 14, N = 36 and m ≤ 18 ([13]);
N = 32, 40 and 48 and m ≤ N/2 ([12]). Recently, [24, 22, 23] algorithmically
studied some strength-3 designs with larger run sizes. It should be noted that
[13, 23, 22] have examined strength-2 designs from projections of P32, strength-3
designs from projections of P̃56 and P̃64, respectively.

4.1. Designs from Paley’s constructions

The orthogonal arrays in this subsection come from Paley’s constructions of
Hadamard matrices, except for those with 36 and 72 runs, which are from the
two Hadamard matrices of order 36 in Remark 1.

We first consider Hadamard matrices from Paley’s first construction as well
as the two of order 36. Given a Hadamard matrix of order n, we first randomly
select a submatrix with m columns, then obtain an OA(n, 2m−1, 2) by normaliz-
ing and removing a randomly selected column, and an OA(2n, 2m, 3) by folding
over the submatrix. The procedure is repeated 200,000 times and the designs
with minimum G-aberrations are selected. A complete search is done when

(
n
m

)
is less than 200,000. We apply this approach to Paley’s first Hadamard matrices
of order 44, 60 and the two Hadamard matrices of 36. It should also be men-
tioned that the strength-2 designs of 44 and 60 runs obtained this way may not
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be subdesigns of P44 and P60, since the normalized column need not be the first
column of the Hadamard matrix. We present the search results for strength-2
orthogonal arrays of n = 36, 44 and 60 runs in Table 5 and strength-3 orthogo-
nal arrays of 2n = 72, 88 and 120 runs in Table 6. Details of all the designs in
this paper are available upon request.

For these projection designs the |Ju|’s can only take two values, thus the crite-
ria of minimum G- and G2-aberration are equivalent. Let E be the complement
of an OA(n,m, 2, 2), say D, in an OA(n, n − 1, 2, 2). Then the complementary
design theory ([21]) states that the sequential minimization of A3(D) and A4(D)
can be done by sequentially maximizing A3(E) and minimizing A4(E), where
the latter is much faster when m > n/2. In addition, when |Ju(E)| can only
be 4 or 12, we have A3(E) ≤

(
n−1−m

3
)
(12/n)2 and A4(E) ≥

(
n−1−m

4
)
(4/n)2.

Similar bounds can also be derived for strength-3 designs. These simple bounds
enable us to identify the best projection designs when the search is incomplete.
In Tables 5 and 6, we mark a value or a vector by an asterisk if it is minimized
or sequentially minimized among all projections, respectively.

Table 5

Strength-2 designs of 36, 44 and 60 runs.
n×m (A3, A4) (F3(12), F4(12)) n×m (A3, A4) (F3(12), F4(12))
36 × 19 (26.6, 122.5) (148, 756) 36 × 26 (76.5, 456.9) (450, 2757)
36 × 20 (32.2, 150.4) (184, 917) 36 × 27 (86.2, 536.5) (507, 3238)
36 × 21 (37.7, 187.0) (215, 1145) 36 × 28 (97.9, 622.7) (582, 3745)
36 × 22 (44.1, 225.9) (254, 1373) 36 × 29 (109.1∗, 722.6) (648∗, 4347)
36 × 23 (50.7, 273.7) (292, 1664) 36 × 30 (122.2∗, 831.7) (730∗, 4995)
36 × 24 (59.5, 324.7) (349, 1959) 36 × 31 (135.9∗, 953.9) (814∗, 5725)
36 × 25 (67.7, 386.3) (398, 2330) 36 × 32 (150.2, 1089.8)∗ (901, 6539)∗

44 × 23 (41.5, 216.9) (407, 2174) 44 × 32 (120.0, 878.1) (1195, 8786)
44 × 24 (47.7, 262.4) (469, 2641) 44 × 33 (132.2, 999.5) (1317, 10003)
44 × 25 (54.4, 311.5) (536, 3130) 44 × 34 (145.2, 1131.5) (1448, 11317)
44 × 26 (61.9, 365.0) (611, 3652) 44 × 35 (159.0, 1277.4) (1587, 12776)
44 × 27 (69.9, 430.5) (691, 4317) 44 × 36 (173.7, 1437.2) (1734, 14374)
44 × 28 (78.4, 501.0) (777, 5019) 44 × 37 (189.1, 1611.3) (1889, 16116)
44 × 29 (87.9, 582.0) (872, 5834) 44 × 38 (205.5, 1800.5) (2054, 18006)
44 × 30 (97.9, 670.5) (973, 6715) 44 × 39 (222.8, 2006.2) (2227, 20063)
44 × 31 (108.6, 767.8) (1081, 7680) 44 × 40 (240.9, 2229.1)∗ (2409, 22291)∗

60 × 31 (77.2, 554.0) (1610, 11647) 60 × 44 (231.3, 2382.9) (4849, 50049)
60 × 32 (85.2, 631.4) (1775, 13262) 60 × 45 (248.0, 2615.0) (5201, 54923)
60 × 33 (94.1, 718.0) (1964, 15078) 60 × 46 (265.4, 2863.7) (5566, 60143)
60 × 34 (103.3, 813.9) (2156, 17093) 60 × 47 (283.6, 3130.1) (5948, 65739)
60 × 35 (113.0, 920.2) (2360, 19336) 60 × 48 (302.7, 3414.5) (6351, 71709)
60 × 36 (123.7, 1033.2) (2586, 21697) 60 × 49 (322.5, 3717.9) (6768, 78081)
60 × 37 (134.8, 1158.5) (2820, 24327) 60 × 50 (343.2, 4041.0) (7202, 84867)
60 × 38 (146.4, 1295.4) (3062, 27206) 60 × 51 (364.9, 4384.8) (7659, 92085)
60 × 39 (158.8, 1444.4) (3323, 30343) 60 × 52 (387.3, 4750.1) (8130, 99755)
60 × 40 (171.8, 1603.3) (3597, 33670) 60 × 53 (410.7, 5137.6) (8623, 107891)
60 × 41 (185.7, 1777.6) (3889, 37337) 60 × 54 (435.0, 5548.5) (9133, 116520)
60 × 42 (200.1, 1964.4) (4193, 41258) 60 × 55 (460.2, 5983.5)∗ (9663, 125654)∗
60 × 43 (215.3, 2166.2) (4514, 45497) 60 × 56 (486.3, 6443.7)∗ (10212, 135318)∗

Next we study designs from Q2n’s with run sizes 52, 60 and 76 and search for
those with minimum G-aberration. Although the minimum G2-aberration cri-
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Table 6

Strength-3 designs of 72, 88 and 120 runs.
2n×m A4 F4(24) 2n×m A4 F4(24) 2n×m A4 F4(24)
72 × 9 2.8 13 72 × 17 70.2 413 72 × 25 381.9 2285
72 × 10 5.1 25 72 × 18 90.7 536 72 × 26 451.7 2705
72 × 11 8.5 45 72 × 19 115.5 685 72 × 27 530.8 3181
72 × 12 13.4 74 72 × 20 144.9 861 72 × 28 619.6 3714
72 × 13 20.0 113 72 × 21 179.4 1068 72 × 29 719.2 4313
72 × 14 28.5 163 72 × 22 219.8 1311 72 × 30 830.2∗ 4980∗
72 × 15 39.4 228 72 × 23 266.7 1593 72 × 31 953.4∗ 5720∗
72 × 16 53.2 311 72 × 24 320.4 1916 72 × 32 1089.7∗ 6538∗

88 × 9 2.0 14 88 × 20 115.5 1142 88 × 31 765.7 7648
88 × 10 3.9 33 88 × 21 143.1 1416 88 × 32 875.6 8748
88 × 11 6.8 61 88 × 22 175.6 1741 88 × 33 996.8 9961
88 × 12 10.6 98 88 × 23 213.1 2116 88 × 34 1129.9 11293
88 × 13 15.7 148 88 × 24 256.5 2552 88 × 35 1276.0 12754
88 × 14 22.4 214 88 × 25 305.8 3044 88 × 36 1436.0 14357
88 × 15 31.2 302 88 × 26 362.0 3607 88 × 37 1610.4 16102
88 × 16 42.1 409 88 × 27 425.3 4239 88 × 38 1800.1∗ 18000∗
88 × 17 55.3 539 88 × 28 497.1 4959 88 × 39 2006.0∗ 20060∗
88 × 18 72.0 707 88 × 29 577.2 5762 88 × 40 2229.0∗ 22290∗
88 × 19 91.8 904 88 × 30 666.4 6654

120 × 9 1.6 29 120 × 25 218.6 4567 120 × 41 1774.2 37241
120 × 10 2.9 55 120 × 26 259.1 5418 120 × 42 1961.4 41172
120 × 11 4.7 92 120 × 27 304.3 6365 120 × 43 2162.8 45403
120 × 12 7.5 149 120 × 28 355.6 7443 120 × 44 2379.6 49957
120 × 13 11.2 227 120 × 29 413.0 8646 120 × 45 2612.0 54839
120 × 14 15.9 323 120 × 30 477.3 9998 120 × 46 2861.3 60075
120 × 15 22.0 449 120 × 31 548.3 11488 120 × 47 3127.9 65677
120 × 16 29.9 614 120 × 32 627.3 13148 120 × 48 3412.5 71654
120 × 17 39.5 813 120 × 33 714.3 14975 120 × 49 3716.1 78030
120 × 18 51.4 1062 120 × 34 810.4 16996 120 × 50 4039.6 84825
120 × 19 65.5 1359 120 × 35 915.3 19197 120 × 51 4383.6 92051
120 × 20 82.2 1707 120 × 36 1030.3 21613 120 × 52 4749.1 99727
120 × 21 101.9 2118 120 × 37 1155.6 24245 120 × 53 5137.0 107874
120 × 22 125.3 2611 120 × 38 1292.0 27111 120 × 54 5548.1∗ 116508∗
120 × 23 152.2 3175 120 × 39 1439.9 30216 120 × 55 5983.4∗ 125650∗
120 × 24 183.3 3826 120 × 40 1600.6 33592 120 × 56 6443.7∗ 135317∗

terion and complementary design theory cannot be applied to find such designs
because |Ju(Q2n)| takes three values for |u| = 4, we can still use the mini-
mum Ge-aberration to accelerate the search as suggested by [8]. For a design
D with N runs, the criterion of minimum Ge-aberration sequentially minimizes
A1,e(D), . . . , Am,e(D) where Ak,e(D) =

∑
|u|=k |Ju(D)/N |e for some e > 0. It

can be shown that for OA(2n, 2m, 2)s studied here, the minimum G- and Ge-
aberration criteria are equivalent if we take e > log

(
m
4
)
/{log(20) − log(12)}.

For each 2n × m, a complete search is done if
(
n
m

)
< 200,000 otherwise a to-

tal of 200,000 random subdesigns from Q2n are compared then the best one is
selected. The results are displayed in Table 7. We mark a value or a vector by
an asterisk if it is minimized or sequentially minimized among all projections,
respectively.
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Table 7

Strength-2 designs of 52, 60 and 76 runs.
2n×m A4 F4(20, 12) 2n×m A4 F4(20, 12) 2n×m A4 F4(20, 12)
52 × 4 0.01∗ (0, 0)∗ 52 × 12 17.84 (30, 225) 52 × 20 178.07 (420, 1896)
52 × 5 0.08∗ (0, 1)∗ 52 × 13 25.77 (50, 305) 52 × 21 220.08∗ (520, 2341)∗
52 × 6 0.37 (0, 6) 52 × 14 36.46 (74, 423) 52 × 22 269.08∗ (636, 2862)∗
52 × 7 1.01 (0, 17) 52 × 15 49.97 (110, 555) 52 × 23 325.77∗ (770, 3465)∗
52 × 8 2.02 (0, 34) 52 × 16 66.15 (149, 723) 52 × 24 390.92∗ (924, 4158)∗
52 × 9 3.96 (5, 53) 52 × 17 86.89 (201, 935) 52 × 25 465.38∗ (1100, 4950)∗
52 × 10 6.92 (9, 93) 52 × 18 112.02 (260, 1204)
52 × 11 11.89 (20, 150) 52 × 19 142.32 (334, 1520)

60 × 5 0.02∗ (0, 0)∗ 60 × 14 31.15 (97, 460) 60 × 23 283.91 (980, 3938)
60 × 6 0.28 (0, 6) 60 × 15 41.80 (135, 600) 60 × 24 340.88 (1179, 4722)
60 × 7 0.80 (0, 18) 60 × 16 57.44 (188, 824) 60 × 25 405.91∗ (1405, 5620)∗
60 × 8 1.63 (0, 37) 60 × 17 75.68 (251, 1078) 60 × 26 479.85∗ (1661, 6644)∗
60 × 9 3.23 (5, 60) 60 × 18 97.19 (328, 1367) 60 × 27 563.33∗ (1950, 7800)∗
60 × 10 5.91 (14, 98) 60 × 19 123.50 (420, 1729) 60 × 28 657.22∗ (2275, 9100)∗
60 × 11 9.68 (26, 153) 60 × 20 154.69 (529, 2158) 60 × 29 762.38∗ (2639, 10556)∗
60 × 12 14.86 (43, 227) 60 × 21 191.29 (656, 2664)
60 × 13 22.24 (66, 338) 60 × 22 234.18 (805, 3257)

76 × 6 0.04∗ (0, 0)∗ 76 × 17 58.80 (514, 814) 76 × 28 522.71 (4666, 7030)
76 × 7 0.47 (2, 11) 76 × 18 75.62 (660, 1050) 76 × 29 606.27 (5417, 8138)
76 × 8 1.06 (5, 24) 76 × 19 96.90 (853, 1329) 76 × 30 699.85 (6253, 9396)
76 × 9 2.32 (17, 38) 76 × 20 122.14 (1079, 1669) 76 × 31 803.95 (7186, 10787)
76 × 10 4.11 (33, 60) 76 × 21 150.89 (1336, 2053) 76 × 32 918.94 (8216, 12324)
76 × 11 7.23 (60, 105) 76 × 22 185.18 (1641, 2519) 76 × 33 1045.96 (9352, 14028)
76 × 12 11.43 (92, 178) 76 × 23 224.66 (1999, 3034) 76 × 34 1185.53∗ (10600, 15900)∗
76 × 13 16.78 (142, 242) 76 × 24 270.32 (2405, 3655) 76 × 35 1338.53∗ (11968, 17952)∗
76 × 14 24.14 (205, 349) 76 × 25 322.13 (2868, 4351) 76 × 36 1505.84∗ (13464, 20196)∗
76 × 15 33.32 (285, 478) 76 × 26 381.22 (3399, 5137) 76 × 37 1688.37∗ (15096, 22644)∗
76 × 16 44.71 (385, 635) 76 × 27 447.44 (3996, 6009)

4.2. Designs from the tensor product method

Besides designs from Paley’s constructions, [15] constructed some strength-2
orthogonal arrays with maximum generalized resolutions by the tensor product
D = Hn1 ⊗B for n1 = 2 and 4, where B = (b1, . . . , bm2) is an OA(n2, 2m2 , 2),

H2 =
[
1 1
1 −1

]
, and H4 =

⎡
⎢⎢⎣
−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

⎤
⎥⎥⎦ .

We provide some theoretical results to select such designs by the minimum G-
aberration criterion. For convenience, we use again the equivalence of minimum
G- and Ge-aberrations for large e and present our results in terms of the latter.

Proposition 3. Suppose D = Hn1 ⊗B for n1 = 2 or 4.

(i) We have A3,e(D) = γ1A3,e(B) and A4,e(D) = γ2A4,e(B) + γ3, where γ1,
γ2 and γ3 are positive constants depending on Hn1 and e.

(ii) Let g(k) =
∑

i<j |J(bi, bj , bk)/n2|e for k = 1, . . . ,m2 and suppose g(k0) =
max1≤k≤m2 g(k). Then designs obtained by successively removing columns
of Hn1 ⊗ bk0 from D have minimum A3,e values among all projections
of D.
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With a sufficiently large e, part (i) of Proposition 3 implies that the G-
aberration property of D is determined by that of B, and that it is preferable
to use a B with minimum G-aberration. This is feasible as catalogues of designs
with minimum or small G-aberration for small run sizes are readily available in
[18] and [13]. After that, we apply part (ii) of Proposition 3 to delete columns
from Hn1 ⊗B to cover all cases. Following this procedure, we obtain the designs
of 48, 64, 96 and 128 runs displayed in Tables 8 and 9. We note that when m ≤ 56
for 64-run designs, it is better to take A = H4 and B as 16-run minimum G-
aberration designs in [18] than to take A = H2 and B as the 32-run designs in
[13].

5. Further results

The three- and four-column J-characteristics of a design, as we have seen, play a
crucial role in its generalized resolutions and projection properties. [14] showed
that these J-characteristics bear a close relationship to the type of Hadamard
matrices. We conclude the paper with more results on the type of certain
Hadamard matrices.

The concept of type was introduced by [10] and further studied in [9]. Let
H be a Hadamard matrix of order N . By permutation and negation of rows
and columns, any four columns of H that can be transformed into the following
form ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1a 1a 1a 1a

1b 1b 1b −1b

1b 1b −1b 1b

1a 1a −1a −1a

1b −1b 1b 1b

1a −1a 1a −1a

1a −1a −1a 1a

1b −1b −1b −1b

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

where a + b = N/4 and 0 ≤ b ≤ �N/8�, is said to be of type b. A Hadamard
matrix is of type b if it has a set of four columns of type b but has no set of
four columns of type less than b. [14] established a connection between the type
of H and the OA(N, 2N−1, 2) derived from H, which can be rephrased as the
following lemma.

Table 8

Strength-2 designs of 48 runs.
N ×m A3 F3(8) N ×m A3 F3(8) N ×m A3 F3(8)
48 × 25 42.2 1520 48 × 32 99.6 3584 48 × 39 197.3 7104
48 × 26 48.9 1760 48 × 33 112.0 4032 48 × 40 213.3 7680
48 × 27 55.6 2000 48 × 34 124.4 4480 48 × 41 233.3 8400
48 × 28 62.2 2240 48 × 35 136.9 4928 48 × 42 253.3 9120
48 × 29 71.6 2576 48 × 36 149.3 5376 48 × 43 273.3 9840
48 × 30 80.9 2912 48 × 37 165.3 5952 48 × 44 293.3 10560
48 × 31 90.2 3248 48 × 38 181.3 6528
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Table 9

Strength-2 designs of 64, 96 and 128 runs.
N ×m A3 F3(16) N ×m A3 F3(16) N ×m A3 F3(16)
64 × 33 16.0 256 64 × 43 178.0 2848 64 × 53 376.0 6016
64 × 34 32.0 512 64 × 44 192.0 3072 64 × 54 400.0 6400
64 × 35 48.0 768 64 × 45 208.0 3328 64 × 55 424.0 6784
64 × 36 64.0 1024 64 × 46 224.0 3584 64 × 56 448.0 7168
64 × 37 92.0 1472 64 × 47 240.0 3840 64 × 57 477.9 7646
64 × 38 104.0 1664 64 × 48 256.0 4096 64 × 58 504.0 8064
64 × 39 116.0 1856 64 × 49 280.0 4480 64 × 59 532.0 8512
64 × 40 128.0 2048 64 × 50 304.0 4864 64 × 60 560.0 8960
64 × 41 150.0 2400 64 × 51 328.0 5248 64 × 61 590.0 9440
64 × 42 164.0 2624 64 × 52 352.0 5632 64 × 62 620.0 9920

96 × 49 124.0 4464 96 × 64 398.2 14336 96 × 79 821.3 29568
96 × 50 136.0 4896 96 × 65 427.1 15376 96 × 80 853.3 30720
96 × 51 148.0 5328 96 × 66 450.7 16224 96 × 81 904.0 32544
96 × 52 160.0 5760 96 × 67 474.2 17072 96 × 82 940.4 33856
96 × 53 191.1 6880 96 × 68 497.8 17920 96 × 83 976.9 35168
96 × 54 208.0 7488 96 × 69 522.7 18816 96 × 84 1013.3 36480
96 × 55 224.9 8096 96 × 70 547.6 19712 96 × 85 1053.3 37920
96 × 56 241.8 8704 96 × 71 572.4 20608 96 × 86 1093.3 39360
96 × 57 261.3 9408 96 × 72 597.3 21504 96 × 87 1133.3 40800
96 × 58 280.9 10112 96 × 73 634.7 22848 96 × 88 1173.3 42240
96 × 59 300.4 10816 96 × 74 664.9 23936 96 × 89 1217.3 43824
96 × 60 320.0 11520 96 × 75 695.1 25024 96 × 90 1261.3 45408
96 × 61 342.2 12320 96 × 76 725.3 26112 96 × 91 1305.3 46992
96 × 62 360.9 12992 96 × 77 757.3 27264 96 × 92 1349.3 48576
96 × 63 379.6 13664 96 × 78 789.3 28416

128 × 65 310.5 19872 128 × 85 749.2 47952 128 × 105 1476.2 94480
128 × 66 327.0 20928 128 × 86 778.5 49824 128 × 106 1521.5 97376
128 × 67 343.5 21984 128 × 87 807.8 51696 128 × 107 1566.8 100272
128 × 68 360.0 23040 128 × 88 837.0 53568 128 × 108 1612.0 103168
128 × 69 379.8 24304 128 × 89 869.2 55632 128 × 109 1660.8 106288
128 × 70 398.5 25504 128 × 90 901.5 57696 128 × 110 1709.5 109408
128 × 71 417.2 26704 128 × 91 933.8 59760 128 × 111 1758.2 112528
128 × 72 436.0 27904 128 × 92 966.0 61824 128 × 112 1807.0 115648
128 × 73 457.0 29248 128 × 93 1001.5 64096 128 × 113 1859.2 118992
128 × 74 478.0 30592 128 × 94 1037.0 66368 128 × 114 1911.5 122336
128 × 75 499.0 31936 128 × 95 1072.5 68640 128 × 115 1963.8 125680
128 × 76 520.0 33280 128 × 96 1108.0 70912 128 × 116 2016.0 129024
128 × 77 544.5 34848 128 × 97 1147.5 73440 128 × 117 2072.0 132608
128 × 78 568.0 36352 128 × 98 1186.0 75904 128 × 118 2128.0 136192
128 × 79 591.5 37856 128 × 99 1224.5 78368 128 × 119 2184.0 139776
128 × 80 615.0 39360 128 × 100 1263.0 80832 128 × 120 2240.0 143360
128 × 81 642.0 41088 128 × 101 1304.8 83504 128 × 121 2300.0 147200
128 × 82 668.0 42752 128 × 102 1346.5 86176 128 × 122 2360.0 151040
128 × 83 694.0 44416 128 × 103 1388.2 88848 128 × 123 2420.0 154880
128 × 84 720.0 46080 128 × 104 1430.0 91520 128 × 124 2480.0 158720

Lemma 7. A Hadamard matrix H has type b if and only if max|u|=4 |Ju(H)| =
N − 8b.

Lemma 7 is useful for finding the type of a Hadamard matrix; it can also
be taken as a definition of type for anyone who finds the original definition
cumbersome.
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Proposition 4. Let H1 and H2 be any two Hadamard matrices of orders N1
and N2, respectively. Then H1 ⊗H2 has type 0.

The special case that H1 is of order 2 was considered by [14]. Proposition 4
shows that a tensor product inevitably introduces defining words of lengths 4,
and thus cannot be used to construct designs with the attractive properties as
described in Section 3.

Proposition 5. Hadamard matrices from Paley’s second construction are of
type 1.

Proposition 2 implies that appending more columns to Q2n will lead to severe
aliasing among certain three or four columns. As a result, we cannot obtain
designs with large generalized resolutions or good projection properties from
them.

Propositions 4 and 5 are worth documenting even though they are somewhat
negative. They convey a message that we should look elsewhere if we want to
find Hadamard matrices of large types.

Appendix: Proofs

Proof of Theorem 1. [3] showed that for N/3 ≤ m ≤ N/2, any OA(N, 2m, 3)
can be written as D = [V T − V T ]T where V = [v1, . . . , vm] is an (N/2) × m
matrix of ±1 with orthogonal columns. Clearly, we have max|u|=4 |Ju(D)| =
2 max|u|=4 |Ju(V )|. The rest of the proof is similar to that for Theorem 1 in
[15]. Let n′ = N/2 and m′ = n′ −m. Then there exist real vectors w1, . . . , wm′

such that (n′)−1/2[v1, . . . , vm, w1, . . . , wm′ ] form an orthonormal basis for the
n′-dimensional Euclidean space. We first consider the scenario m′ ≥ 4. Note
that ∑
distinct i1,i2,i3,i4

J(vi1 , vi2 , vi3 , vi4)2

=
∑

distinct i1,i2,i3

⎧⎨
⎩(n′)2 −

m′∑
i4=1

J(vi1 , vi2 , vi3 , wi4)2
⎫⎬
⎭

= m(m− 1)(m− 2)(n′)2 −
∑
i1 �=i2

m′∑
i4=1

⎧⎨
⎩(n′)2 −

∑
i3 �=i4

J(vi1 , vi2 , wi3 , wi4)2
⎫⎬
⎭

= {m(m− 1)(m− 2) −m(m− 1)m′}(n′)2

+
m∑

i1=1

∑
i3 �=i4

⎧⎨
⎩(n′)2 −

∑
i2 �=i3,i4

J(vi1 , wi2 , wi3 , wi4)2
⎫⎬
⎭

= {m(m−1)(m−2)−m(m− 1)m′ + mm′(m′ − 1) −m′(m′ − 1)(m′ − 2)}(n′)2

+
∑

distinct i1,i2,i3,i4

J(wi1 , wi2 , wi3 , wi4)2,
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where, for example, we use J(vi1 , vi2 , vi3 , vi4) to denote the J-characteristics of
columns vi1 , vi2 , vi3 and vi4 . Thus we have that

∑
distinct i1,i2,i3,i4

J(vi1 , vi2 , vi3 ,
vi4)2 ≥ {m(m − 1)(m − 2) − m(m − 1)m′ + mm′(m′ − 1) − m′(m′ − 1)(m′ −
2)}(n′)2. It can be easily verified that the equality holds for m′ ≤ 3. Therefore,
max|u|=4 J

2
u(V ) ≥ {m(m− 1)(m− 2)−m(m− 1)m′ +mm′(m′ − 1)−m′(m′ −

1)(m′ − 2)}(n′)2/{m(m − 1)(m − 2)(m − 3)}. Note that n′ − max|u|=4 |Ju(V )|
must be a multiple of 8 ([14]). The result follows by some tedious algebra.

Proof of Proposition 1. Let D0 be the projected design of Pn onto certain 4
factors. By Lemma 4, for any s ⊆ Z4, the frequency of rs occurs in D0 is given
by Ns = 2−4{n +

∑
∅�=u⊆Z4

hsuJu(D0)}. Recall that Ju(D0) = 0 for |u| = 1, 2
and that |Ju(D0)| ≤ UP (n) for |u| = 3, 4. Then we have Ns ≥ 2−4{n− 5UP (n)}
since hsu = ±1. The result on Pn follows by the fact that Ns must be an integer
and that s is arbitrary. The proof for P̃2n can be done similarly by noting
that Ju(P̃2n) = 0 for |u| ≤ 3 and |u| = 5 and that |Ju(P̃2n)| ≤ 2UP (n) for
|u| = 4.

Proof of Lemma 5. The arguments are similar to the proofs for Theorem 2.1 of
[2] and Theorem 5 of [15]. For simplicity, we outline the proof for |u| = 4 and
omit that for |u| = 5. Let’s write Q2n = [q0, q1, . . . , qs], where s = n− 1. Then
for any distinct integers i1, i2, i3, i4 ∈ {1, . . . , s}, by some simple algebra we
have J(q0, qi1 , qi2 , qi3) = 2

∑
y∈GF (s)\{αi1 ,αi2 ,αi3}

χ((y − αi1)(y − αi2)(y − αi3))
and J(qi1 , qi2 , qi3 , qi4) = 2

∑
y∈GF (s)\{αi1 ,αi2 ,αi3 ,αi4}

χ((y − αi1)(y − αi2)(y −
αi3)(y−αi4))+2. Let N(s, k) be the number of solutions (z, y) ∈ GF (s)×GF (s)
of z2 =

∏k
j=1(y − αij ). Then we have J(q0, qi1 , qi2 , qi3) = 2N(s, 3) − 2s and

J(qi1 , qi2 , qi3 , qi4) = 2N(s, 4)+2−2s. By a result of [7] quoted by [16], we know
that

|N(s, 3) − s| ≤ 2s1/2 and |N(s, 4) − s + 1| ≤ 2s1/2, (4)

from which it follows that max|u|=4 |Ju(Q2n)| ≤ 4s1/2. The upper bound on
max|u|=4 |Ju(Q2n)| follows by noting that (2n− |Ju(Q2n)|)/8 must be an inte-
ger.

Proof of Lemma 6. Suppose X is a subdesign of Pn for h factors. Then the
model matrix M for all the main effects and two-factor interactions of these
h factors can be written as M = [1n X Y ], where Y is an n × {h(h − 1)/2}
matrix consisting of all the pairwise Hadamard products of columns of X. It can
then be checked that in each row of the information matrix MTM , there are
at most (h − 1)(h − 2)/2 nonzero off-diagonal elements whose absolute values
are all bounded above by max|u|=3,4 |Ju(Pn)| ≤ UP (n). A square matrix Z =
(zij) is said to be strictly diagonally dominant if |zii| >

∑
j �=i |zij | for all i;

by Levy-Desplanques theorem, such a matrix must be nonsingular. Therefore,
if n > (h − 1)(h − 2)UP (n)/2, MTM is strictly diagonally dominant and thus
nonsingular. This completes the proof for Pn. The proofs for P̃2n and Q2n are
similar and thus omitted.
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Proof of Proposition 3. With a slight abuse of notation, write Hn1 = [h1, . . . ,
hn1 ]. Then invoking Lemma 2 of [20], we have

A3,e(D) =
∑

distinct {(i1,i2), (j1,j2), (k1,k2)}
|J(hi1 ⊗ bi2 , hj1 ⊗ bj2 , hk1 ⊗ bk2)/(n1n2)|e

=
∑

1≤i1,j1,k1≤n1

∑
i2<j2<k2

|J(hi1 , hj1 , hk1)/n1|e|J(bi2 , bj2 , bk2)/n2|e,

since J(bi2 , bj2 , bk2) = 0 as long as i2, j2 and k2 have common elements. There-
fore A3,e(D) = γ1A3,e(B) with γ1 =

∑
1≤i1,j1,k1≤n1

|J(hi1 , hj1 , hk1)/n1|e. The
proof for the result on A4,e(D) is similar. Part (ii) can be done by observing
that at each time a column of H ⊗ bk0 is removed, A3,e decreases by the same
and also the maximum possible amount.

Proof of Proposition 4. Let h(1)
1 , h

(1)
2 be two columns of H1 and h

(2)
1 , h

(2)
2 be two

columns of H2. Then we have that J(h(1)
1 ⊗ h

(2)
1 , h

(1)
1 ⊗ h

(2)
2 , h

(1)
2 ⊗ h

(2)
1 , h

(1)
2 ⊗

h
(2)
2 ) = J(h(1)

1 , h
(1)
1 , h

(1)
2 , h

(1)
2 )J(h(2)

1 , h
(2)
2 , h

(2)
1 , h

(2)
2 ) = N1N2. Proposition 4 now

follows from Lemma 7.

Proof of Proposition 5. Write H in (2) as

H =
[
F G
G −F

]
, where F =

[
1 1T

s

1s K + Is

]
and G =

[
−1 1T

s

1s K − Is

]
.

For 1 ≤ i < j ≤ n, let fi and fj (respectively, gi and gj) be the ith and jth
column of F (respectively, G). Then the J-characteristic of the following four
columns of H [

fi fj gi gj
gi gj −fi −fj

]

is 2J(fi, fj , gi, gj) = 2J(figi, fjgj). Note that the column figi is all ones except
for the ith entry, which is −1. One can easily see that 2J(figi, fjgj) = 2{(n−2)−
2} = 2n−8. On the other hand, since 2n is not a multiple of 8, max|u|=4 |Ju(H)|
can be at most 2n− 8 ([4]). Therefore, we have max|u|=4 |Ju(H)| = 2n− 8 and
result follows by Lemma 7.
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