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Abstract: The problem of determining whether a given point, or set of
points, lies within the convex hull of another set of points in d dimen-
sions arises naturally in the context of certain exponential family models
in statistics. This article discusses the general convex hull problem and its
application to the particular problem of modelling network data using an
exponential-family random graph model (ERGM). While the convex hull
question may be solved via a simple linear program, this approach is not
well known in the statistical literature. The article also details several sub-
stantial improvements to the convex hull-testing algorithm currently imple-
mented in the widely used ergm package for network modeling. It provides
direct numerical comparisons of two linear programming packages for R
that can be called by ergm and offers several illustrative examples.
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1. Monte Carlo maximum likelihood estimation for exponential
families

Suppose that we observe a complex data structure Y from a sample space Y ,
and we believe that the process that produced Y may be captured sufficiently
by the d-dimensional vector statistic g : Y �→ R

d. A natural probability model
for such an object—one that minimizes the additional assumptions made in the
sense of maximizing entropy—is the exponential family class of models [16].
If Y modeled via a discrete or a continuous distribution, the probability mass
function or density has the form, parameterized by the canonical parameter
θ ∈ R

d [1, among others],

pθ;Y,h,g(Y ) = h(Y )exp{θ�g(Y )}
κY,h,g(θ)

, Y ∈ Y.

The form is then a product of a function h(·) of the data alone specifying the
distribution under θ = 0, a function κ(·) of the parameter alone, defined below,
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and an exponential with the interaction between data and parameter. The exact
form of κ(θ) depends on the type of distribution:

discrete: κY,h,g(θ) =
∑
Y ′∈Y

h(Y ′) exp{θ�g(Y ′)} (1a)

continuous: κY,h,g(θ) =
∫
Y
h(Y ′) exp{θ�g(Y ′)}dY ′. (1b)

A full measure-theoretic formulation is also possible for distributions that are
neither discrete nor continuous; and a θ ∈ R

q for q ≤ d may be mapped through
a vector function η : Rq �→ R

d. Likelihood-based inference for exponential-family
models centers on the log-likelihood function

�(θ) = θ�g(Yobs) − log κY,h,g(θ). (2)

Likelihood calculations can be highly computationally challenging when the sum
or integral (1) is intractable [e.g., 10].

For the sake of brevity, we will omit “Y , h, g” from the subscript of pθ;Y,h,g(Y )
and κY,h,g(θ) for the remainder of this paper, unless they differ from these
defaults.

Most commonly, exponential families are used as a tool for deriving in-
ferential properties of families that belong to this class, albeit with a differ-
ent parametrization. For a common example, the canonical parameter of the
Normal(μ, σ2) distribution in its exponential family form is θ = [μσ−2, σ−2],
which is far less convenient and interpretable.

However, there are domains in which an exponential family model is specified
directly through its sufficient statistics, often with the help of the Hammersley–
Clifford Theorem [3, among others]. These include the Strauss spatial point
processes [25], the Conway–Maxwell–Poisson model for count data [22], and
exponential-family random graph models (ERGMs) [13, 6, for original deriva-
tions] for networks and other relational data. While our development is moti-
vated by and focuses on ERGMs, it applies to other scenarios involving expo-
nential-family models with intractable normalizing constants because the meth-
ods we discuss operate on the sufficient statistic g(Y ) rather than on the original
data structure.

Consider a graph Y on n vertices, with the vertices being labelled
1, . . . , n. We will focus on binary undirected graphs with no self-loops and no fur-
ther constraints—a discrete distribution. Thus, we can express Y =
2{{i,j}∈{1,...,n}2:i �=j}, the power set of the set of all distinct unordered pairs of
vertex indices.

An exponential family on such a sample space is called an exponential-family
random graph model (ERGM). Substantively, elements of g(Y ) then represent
features of the graph—e.g., the number of edges or other structures, or connec-
tions between exogenously defined groups—whose prevalence is hypothesised to
influence the relative likelihoods of different graphs.

For example, an edge count statistic would, through its corresponding pa-
rameter, control the relative probabilities of sparser and denser graphs, and in



Likelihood inference for ERGMs 3339

turn the expected density of the graph, conditional on other statistics. Some of
the graph statistics, the most familiar being the number of triangle, or “friend
of a friend is a friend,” configurations, induce stochastic dependence among the
edges. The triangle statistic in particular is problematic for reasons reviewed by
a number of authors [e.g., Section 3.1 of 21] and has been largely superseded by
statistics proposed by [24] and others.

For our special case, κ(θ) has the form (1a), a summation over all possible
graphs. For the population of binary, undirected, vertex-labelled graphs with no
self-loops, the cardinality of Y is 2(n2), a number exponential in the square of the
number of vertices. Thus, even for small networks, this sum is intractable. For ex-
ample, for n = 10, summation is required of |Y| ≈ 3.5×1013 elements—too many
to compute by “brute force.” Under some choices of g(·), the summation (1a)
simplifies, but for most interesting models—those involving complex dependence
among relationships in the network represented by the graph—maximization of
�(θ) can be an enormous computational challenge.

Various authors have proposed methods for approximately maximizing the
log-likelihood function. For instance, [23] introduced a Robbins–Monro algo-
rithm [19] based on the fact that when θ̂ denotes the maximum likelihood esti-
mator (MLE),

Eθ̂[g(Y )] = g(Yobs).
Alternatively, the MCMC MLE idea of [10] was adapted to the ERGM frame-
work by, among others, [14]. This idea is based on the fact that the log-likelihood-
ratio

λ(θ, θ0) ≡ �(θ) − �(θ0) = (θ − θ0)�g(Yobs) − logEθ0 [exp{(θ − θ0)�g(Y )}],
suggesting that if we sample r networks Y1, . . . , Yr from the approximate distri-
bution pθ0(·) via MCMC, we can employ an estimator

λ̂(θ, θ0) ≡ (θ − θ0)�g(Yobs) − log
[

1
r

r∑
i=1

exp{(θ − θ0)�g(Yi)}
]

(3)

as an approximation to λ(θ, θ0).
In some cases, the network may be partially unobserved, i.e., Yobs is not a

complete network in Y . Letting Y(Yobs) denote the set of all networks in Y that
coincide with Yobs wherever Yobs is observed, we may generalize (2) as in [11]
by writing

�(θ) = log
∑

Y ′∈Y(Yobs)

pθ(Y ′) = log κY(Yobs)(θ) − log κY(θ). (4)

Equation (4) generalizes (2) because Y(Yobs) consists of the singleton {Yobs}
when the network is fully observed.

This likelihood may be approximated using the approach of [7] and [8]: For
a known θ0, draw samples Y1, . . . , Yr and Z1, . . . , Zs from Y and Y(Yobs), re-
spectively via MCMC, such that the stationary distributions are pθ0;Y(·) and
pθ0;Y(Yobs)(·), respectively. The generalization of (3) is then
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λ̂(θ, θ0) ≡ log
[

1
s

s∑
i=1

exp{(θ − θ0)�g(Zi)}
]

− log
[

1
r

r∑
i=1

exp{(θ − θ0)�g(Yi)}
]
. (5)

The idea of Markov chain Monte Carlo maximum likelihood estimation, or
MCMC-MLE, is to use maximize (5) instead of (4) as a function of θ. One po-
tential problem with this approach is the focus of this article: It is not always the
case that (5) has a maximizer, nor even an upper bound. Thus, we address the
question of when there exists an MCMC-MLE based on the samples Y1, . . . , Yr

and Z1, . . . , Zs. This does not directly address the question of whether an MLE
itself exists, which is an important question in its own right.

To characterize precisely when the approximation of (5) has a maximizer, we
first define a term that will be important throughout this article: The convex
hull of any set of points in d-dimensional Euclidean space is the smallest convex
set containing that set, i.e., the intersection of all convex sets containing that
set. According to exponential family theory [e.g., Theorem 9.13 of 1], λ̂(θ, θ0)
in (3) has a maximizer if and only if g(Yobs) is contained in the interior of
the convex hull of {g(Y1), . . . , g(Yr)}. Indeed, it is straightforward to show that
λ̂(θ, θ0) in the more general expression (5) does not have a maximum if any of
{g(Z1), . . . , g(Zs)} lies outside the convex hull of {g(Y1), . . . , g(Yr)}. We prove
this in Section 2.

The question of determining when a point lies within the convex hull of
another set of points is thus relevant when using approximations (3) and (5).
The remainder of this article shows how to determine whether a given point or
set of points lies inside a given convex hull using linear programming. It also
describes various improvements to the linear programming algorithm originally
proposed and implemented in the ergm package by [14]. These improvements
are all implemented in in the most recently released version of ergm, version
4.5.0 [12].

2. Convex hull testing as a linear program

We introduce the terms target set and test set to refer to the set T = {g(Y1), . . . ,
g(Yr)} and the set S = {g(Z1), . . . , g(Zs)}, respectively. To reiterate, the convex
hull of any set of d-dimensional points is the smallest convex set containing that
set, and the convex hull is always closed in R

d. We let C(T ) denote the convex
hull of a set T ⊂ R

d. The interior of this convex hull, denoted C◦(T ), will play a
special role in this article. If the points in T satisfy a linear constraint, C◦(T ) is
empty since in this case the convex hull lies in an affine subspace of dimension
smaller than d. We assume here that C◦(T ) is nonempty.

As mentioned near the end of Section 1, the approximation in (5) fails to
admit a maximizer whenever S 	⊂ C(T ), which may be proved directly:

Proposition 1. If S 	⊂ C(T ), then supθ λ̂(θ, θ0) = ∞.
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Proof. Suppose there exists an element of S, say g(Z1), in the open set Rd\C(T ).
By the convexity of C(T ), this means there exists a hyperplane H—that is,
an affine (d − 1)-dimensional subspace—containing g(Z1) and such that H ∩
C(T ) = ∅. In other words, there exist a scalar z0 and a d-vector z such that
z0 + z�g(Z1) = 0 and z0 + z�g(Yi) < 0 for i = 1, . . . , r.

If we now let θ = θ0 + αz for a real number α, (5) gives

exp{λ̂(θ, θ0)} = r

s
× exp{αz�g(Z1)} +

∑s
i=2 exp{αz�g(Zi)}∑r

i=1 exp{αz�g(Yi)}

≥ r

s
× 1∑r

i=1 exp[αz�{g(Yi) − g(Z1)}]
.

Since z0 + z�g(Z1) = 0 and z0 + z�g(Yi) < 0 imply that z�{g(Yi)− g(Z1)} < 0
for i = 1, . . . , r, every term in the denominator goes to zero as α → ∞.

However, S ⊂ C(T ) is merely a necessary, not sufficient, condition for (5) to
have a unique maximizer. Another necessary condition is that ∂2λ̂(θ,θ0)

∂θ must be
negative-definite for all θ and θ0, but it is not sufficient either, since a direction
of recession [9, for example] may exist. We are thus not aware of a necessary
and sufficient condition when S contains more than one point. As we see below,
for our purposes, the conditions that S ⊂ C◦(T ) and that Var(T ) − Var(S) is
positive-definite suffice.

Below in LP (6)—where ‘LP’ stands for ‘linear program’—we describe how
linear programming can provide a method of testing definitively whether S ⊂
C(T ) but not whether S ⊂ C◦(T ). As a practical matter, we can apply this
method to a slightly perturbed version of S in which each test point is expanded
away from the centroid of T by a small amount; if the perturbed S is contained in
C(T ), then S ⊂ C◦(T ). This approach has the added benefit of ensuring not only
that S ⊂ C◦(T ) but that each point in S is bounded away from the boundary
of C◦(T ) by a small amount, which can prevent some computational challenges
in using the approximation in (5). This ‘slightly perturbed’ algorithm had been
implemented in previous versions of the ergm package. On the other hand, the
recently released ergm version 4.5.0 uses an improved linear program, explained
in Section 3, that transforms the linear program so that it tests directly whether
S ⊂ C◦(T ).

In the particular case in which Yobs is a full network, i.e., there are no missing
data, S is the singleton {g(Yobs)}. In this case, checking whether S ⊂ C◦(T ) is the
same as checking whether S and T are separable by a hyperplane, a problem that
has a lengthy history in the linear programming literature [e.g., 5]. In general,
the linear separability check does not tell us whether S ⊂ C◦(T ), and we discuss
this more general case in Section 5.

We first frame the check of whether p ∈ C(T ), for an arbitrary column vector
p ∈ R

d, as a linear program. Let M be the (r × d)-dimensional matrix whose
rows M1, . . . ,Mr are the points in the target set T ; furthermore, let C(M)
denote C(T ). Because C(M) is convex in R

d, for any p /∈ C(M), we may find
an affine (d − 1)-dimensional subspace, which we call a separating hyperplane,
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that separates the points in T from the point p in the sense that p lies in one
(open) half-space defined by the hyperplane and the points in T—i.e., the rows
of M—all lie in the other (closed) half-space. Mathematically, this separating
hyperplane is determined by the affine subspace {x ∈ R

d : z0 + x�z = 0} for
some scalar z0 and d-vector z. Thus, z ∈ R

d and z0 ∈ R determine a separating
hyperplane whenever z0 + p�z < 0 while z0 + Miz ≥ 0 for each row Mi of M .

In other words, a hyperplane separating p from C(M) exists whenever the
minimum value of z0 + p�z is strictly negative, where the minimum is taken
over all z0 ∈ R and z = (z1, . . . , zd)� ∈ R

d such that Miz ≥ −z0 for i = 1, . . . , n.
Notationally, we will use inequality symbols to compare vectors componentwise,
so for example instead of “Miz ≥ −z0 for i = 1, . . . , n”, we may write “Mz ≥
−z01”. The existence of a separating hyperplane can thus be determined using
the following linear program:

minimize: z0 + p�z

subject to: Mz ≥ −z01
z ≥ −1
z ≤ 1.

(6)

If the minimum value of the objective function z0+p�z is exactly 0—it can never
be strictly positive because (z0, z) = 0d+1 determines a feasible point—then p is
in C(M). If the minimum value is strictly negative, then a separating hyperplane
not containing p exists and thus p 	∈ C(M). The bounds −1 ≤ z ≤ 1, which we
call box constraints, ensure that the linear program has a finite minimizer when
p 	∈ C(M): If z is unconstrained and there exists a feasible z0, z with z0+p�z < 0,
then (cz0) + (cp)�z < z0 + p�z for any c > 1 and no finite minimizer exists.

This case S = {g(Yobs)} is considered by [14], who propose an approximation
method that checks S ⊂ C◦(T ) and then replaces g(Yobs) by some other point
contained in C◦(T ) whenever S 	⊂ C◦(T ). In particular, the method defines a
“pseudo-observation”, ξ̂, as the convex combination γg(Yobs) + (1 − γ)t, where
t is the centroid of T and γ ∈ (0, 1]. To implement this idea, earlier versions
of ergm relied on a simplistic function called is.inCH() that simply retured
a TRUE or FALSE value, depending on whether g(Yobs) ∈ C(T ), after the
‘slight perturbation’ described earlier. This trial-and-error approach used either
a grid search or a bisection search to choose the largest γ ∈ (0, 1] such that
ξ̂ ∈ C◦(T ). This implementation required multiple is.inCH() function calls,
resulting in considerable inefficiency relative to the methods described in Sec-
tion 3. In ergm version 4.5.0, is.inCH() is deprecated in favor of a new function
called shrink_into_CH() that need only be called once. Online documentation
for this function is obtained in R by typing help(shrink_into_CH).

3. Reformulating the single-test-point algorithm

The trial-and-error algorithm of [14], which applies only to the case where the
test set S consists of the single point p, never exploits the fact that the separating
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hyperplane, if it exists, is the minimizer of a function. We propose to improve this
algorithm by reformulating the linear program and then using the minimizers
found. First, we establish a few basic facts that help us simplify the problem.

Since translating p and all points in T by the same constant d-vector does not
change whether p ∈ C(M), we assume throughout this section that all points
are translated so that the origin is a point in C◦(M) that we refer to as the
“centroid” of M . In practice, we often take the centroid of M to be the sample
mean of the points in the target set. Yet none of the results of this section rely on
any particular definition of “centroid”; here, we assume only that the centroid
0 ∈ R

d lies in the interior of the convex hull of the target set.
Since p may be assumed not to coincide with the centroid, else the question

of whether p ∈ C◦(M) is answered immediately, at least one of the coordinates
of p is nonzero. We assume without loss of generality that p1 	= 0; otherwise, we
may simply permute the coordinates of all the points without changing whether
p ∈ C(M). Below, we define a simple invertible linear transformation that maps
p to the unit vector e1 = (1, 0, . . . , 0)�. Applying this transformation allows us
to simplify the original linear program and thereby clarifies our exposition while
facilitating establishing results; then, once we have proved our results, we will
apply the inverse transformation to restore the original coordinates, achieving
a simplification of the linear program in the process.

One important fact about any invertible linear transformation, when applied
to p and M , is that it does not change whether or not p ∈ C(M). For if p ∈ C(M),
there exists a ∈ R

r such that p� = a�M and
∑r

i=1 ai = 1. Since (Rp)� =
a�MR�, we conclude that Rp ∈ C(MR�). The converse follows via the same
argument because R−1 is full rank whenever R is.

Consider the full-rank linear transformation defined by

R =

⎡
⎢⎢⎢⎢⎣

1
p1

0 · · · 0
−p2
p1

1 · · · 0
...

...
. . . 0

−pd

p1
0 · · · 1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
p1 0 · · · 0
p2 1 · · · 0
...

...
. . . 0

pd 0 · · · 1

⎤
⎥⎥⎥⎦
−1

(7)

that maps p to the standard basis vector e1 ∈ R
d. After applying this linear

transformation, we want to know whether a hyperplane exists that separates
the point e1 from the rows of MR�.

Such a hyperplane, if it exists, may be written as {x ∈ R
d : z0 + x�z = 0}

for some z0 ∈ R and z ∈ R
d. Since the origin is in C◦(MR�), no separating

hyperplane may pass through the origin. Therefore, we may limit our search to
those cases where z0 	= 0, which means that we may divide by z0 the equation
defining the hyperplane. Stated differently, we may take z0 = 1 and rewrite our
hyperplane as {x ∈ R

d : 1 + x�z = 0} without loss of generality.
Summarizing the arguments above, we now seek a d-vector z satisfying 1 +

e1
�z < 0 and 1 + (MR�)iz ≥ 0 for i = 1, . . . , r. Furthermore, fixing z0 = 1

means that no box constraints are necessary in the reformulation of the linear
program designed to search for a separating hyperplane. Therefore, our new
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linear program, after transformation by R, becomes

minimize: z1

subject to: [MR�]z ≥ −1.
(8)

The zero vector is a feasible point in both LP (6) and LP (8). However, unlike
LP (6), zero cannot be the optimum of LP (8) because 0 does not lie on the
boundary of the set of feasible points of LP (8). In other words, a solution
z∗ of LP (8), if it exists, is not zero so it defines a hyperplane H∗ = {x ∈
R

d : x�z∗ = −1}. The constraints of LP (8) imply that H∗ is a supporting
hyperplane of C(MR�), whether or not it separates C◦(MR�) from e1. We now
demonstrate the existence of a solution to LP (8) and show how to determine
whether p ∈ C(M):

Proposition 2. Let M be a full-rank matrix so that C◦(M) is nonempty, with
0 ∈ C◦(M), let p ∈ R

d satisfy p1 	= 0, and let R be defined as in (7). Then a
(nonzero) minimizer z∗ of LP (8) exists, and the ray with endpoint at the origin
and passing through e1 intersects the boundary of C(MR�) at −(1/z∗1)e1. In
particular, e1 ∈ C(MR�) if and only if −1 ≤ z∗1 .

Proof. Since 0 is contained in the open set C◦(MR�), there exists δ > 0 such
that δe1 ∈ C◦(MR�). Thus, any feasible point z of LP (8) must satisfy 1 +
δe1

�z = 1 + δz1 ≥ 0, which implies z1 ≥ −1/δ. Since the objective function has
a lower bound, it must attain its minimum on the closed set of feasible points,
so a solution z∗ to LP (8) exists.

Now define the point a = −(1/z∗1)e1. If a lies in the open set C◦(MR�),
then there exists ε > 0 such that (1 + ε)a also lies in C◦(MR�); but this is
impossible since (1 + ε)a�z∗ = −(1 + ε) < −1 and thus (1 + ε)a violates the
constraint that must be satisfied by every point in C◦(MR�) due to convexity.
On the other hand, a must lie in C(MR�) since otherwise there exists ε > 0 such
that (1 − ε)a 	∈ C(MR�), which in turn means that there exists a hyperplane
separating C(MR�) from (1 − ε)a. But this means there exists a supporting
hyperplane of C(MR�) that intersects the positive x1-axis at a point between the
origin and (1−ε)a, contradicting the fact that −(1/z∗1) is the smallest coordinate
among all such points of intersection. We conclude that a = −(1/z∗1)e1 must lie
on the boundary of C◦(MR�), so e1 ∈ C(MR�) if and only if −1 ≤ z∗1 .

Applying the full-rank transformation R−1, in order to transform back to the
original coordinates, establishes the following corollary:

Corollary 1. Let z∗ denote a minimizer of LP (8). Then the ray with end-
point at the origin and passing through p intersects the boundary of C◦(M) at
−(1/z∗1)p. In particular, p is in C◦(M) if and only if z∗1 > −1.

This result gives a way to determine when p lies in C◦(M), not merely C(M),
which is an improvement over LP (6). It also suggests that we may reconsider
LP (8) after transforming by R−1 back to the original coordinates. Indeed, since
z in LP (8) may take any value in R

d and R has full rank, there is no loss of
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generality in replacing z by (R�)−1z, which allows us to rewrite LP (8) as

minimize: p�z

subject to: Mz ≥ −1.
(9)

Taking z∗ and z∗∗ as minimizers of LP (8) and LP (9), respectively, we must
have z∗1 = p�z∗∗ since the minimum objective function value must be the same
for the two equivalent linear programs. We conclude by Corollary 1 that p is in
C◦(M) if and only if p�z∗∗ > −1 and, furthermore, the point −p/(p�z∗∗) is the
point in C(M) closest to the origin in the direction of p.

According to standard linear program theory [28, Section 5.8], LP (9) is
precisely what is known as the dual of the following linear program:

maximize: − 1�y
subject to: M�y = p

y ≥ 0.
(10)

LP (10) may be derived from first principles, since C(M) consists precisely of
those points that may be expressed as a convex combination of the rows of M ,
i.e., p ∈ C(M) if and only if p = M�y for some y ≥ 0 such that 1�y = 1. In other
words, p ∈ C(M) if and only if there exists a solution y∗ of LP (10) satisfying
−1�y∗ ≥ −1. (The maximum value of −1�y∗ could be strictly greater than −1
because zero is in C◦(M).)

Furthermore, if z ∈ R
d satisfies the r constraints in LP (9) and y ∈ R

r is
nonnegative, we may multiply the ith constraint by yi and then sum over i to
obtain y�Mz ≥ −y�1. If the constraints in LP (10) are completely satisfied,
we may replace y�M by p�. Minimizing with respect to z and maximizing with
respect to y yields

min
z

p�z ≥ max
y

−1�y. (11)

Inequality (11) is sometimes called the weak duality theorem. The strong duality
theorem, which we do not prove here, says that equality holds in (11) [28, Section
5.4]. In our convex hull problem, strong duality implies among other things that
p is on the boundary of C(M) if and only if the maximum objective function
value in LP (10) equals −1.

4. Applications and benchmarks

To illustrate the results of Section 3, we first consider problems in 2 dimen-
sions since they are easy to visualize. Such low-dimensional examples are also
helpful since they sometimes lend themselves to closed-form solutions of linear
programs.

For the following benchmarks and examples, the following relevant R [20]
package versions were used: ergm 4.5.0, Rglpk 0.6.5, and lpSolveAPI 5.5.2.0.17.9.
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Fig 1. A toy example with three points. The centroid is marked with C; arrows indicate
standard basis vectors in each dimension on the original scale, target set points are dots,
supporting lines are colored red, the initial test point is 0, and its successive iterations are
labeled with integers. Clockwise from upper left, we see (a) LP (8) with test point on the
x1-axis, where a simple closed-form solution exists; (b) LP (6) on the original scale with box
constraints, where a suboptimal first solution results; and (c) LP (8) on transformed scale
and without box constraints, where the intersection point is found immediately.

4.1. A three-point example

Let us consider a particularly simple example in which the target set consists
of the 2-vectors (−1, 0)�, (a, 1)�, and (b,−1)� for a > 0 and b > 0. This choice
guarantees that the convex hull is a triangle containing the origin, so we shall
consider the origin to be the centroid in this example, regardless of the actual
value of the mean of the three points.

When the test point p equals (1, 0)�, we are in a situation that could arise
after transforming by R. This leads to LP (8), which may be solved in closed
form because in this case the constraints become

max
{
−1
a
− z2

a
,−1

b
+ z2

b

}
≤ z1 ≤ 1.

Since the lines x2 = −1/a− x1/a and x2 = −1/b+x1/b have one positive slope
and one negative slope, we minimize the maximum at the point of intersection,
i.e., when −1/a− z2/a = −1/b+ z2/b, which implies z∗2 = (a− b)/(a+ b), which
in turn implies z∗1 = −2/(a + b). By simple examination, we know that (1, 0)�
is interior to the convex hull exactly when the line through (a, 1)� and (b,−1)�
intersects the x1-axis at a value larger than 1. Thus, p ∈ C◦(M) if and only if
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(a + b)/2 > 1, which is equivalent to z∗1 = −2/(a + b) > −1, thus verifying the
result of Corollary 1 for this simple example.

To make the example more concrete, let us take a = 2 and b = 1. Then,
we see in Figure 1(a) that p = e1 (labeled with 0) is in the convex hull, and,
furthermore, that the x1 coordinate of the point of intersection is (2+1)/2 = 3/2,
and the separating line’s location does not depend where, along the ray from
the origin, p is. Now, instead, let p equal (3, 2)�. This is the situation depicted
in Figure 1(b). The original LP (6), which includes box constraints, finds one
separating line—in two dimensions, a hyperplane is a line—but the intersection
of this line and the segment connecting 0 to p, labeled with the digit 1, is not
optimal. A second application of LP (6) finds the optimal point labeled 2. In this
case, point 2 lies on the line {x : 1+x1 +3x2 = 0}, and it is instructive that the
box constraints alone prevent LP (6) from finding this solution when p = (3, 2)�
but not when p = (3/2, 1)�, where the latter point is the intermediate point
labeled 1 in Figure 1(b).

Lastly, we illustrate the linear transformation of the previous problem by R.
Figure 1(c) shows the problem transformed using (7), with the dotted lines and
arrows showing the original coordinate system, then LP (8) is applied to find
the intersection point in one iteration.

4.2. Benchmarking Rglpk against lpSolveAPI

Here, we define two simple functions that each use LP (9) to search for the point
on the ray from 0 through p that intersects the boundary of C(M). Each of these
functions exploits an existing R package that wraps open-source code solving
linear programs: respectively, Rglpk [26] wraps the GNU Linear Programming
Kit (GLPK) [17] and lpSolveAPI [18] wraps the lp_solve library [2]. Here is
a function that uses lpSolveAPI:

library(lpSolveAPI)
LPmod1 <- function(M, p) { # it is assumed the centroid is the zero vector

lp <- make.lp(n <- nrow(M), d <- ncol(M))
for(k in seq_len(d)) set.column(lp, k, M[,k])
set.constr.type(lp, rep(">=", n))
set.rhs(lp, rep(-1.0, n))
set.bounds(lp, lower = rep(-Inf, d), upper = rep(Inf, d)) # z unbounded
set.objfn(lp, p) # objective function is p %*% z
solve(lp)
return(get.objective(lp))

}

Similarly, this code uses Rglpk:

library(Rglpk)
LPmod2 <- function(M, p) { # it is assumed the centroid is the zero vector

n <- nrow(M); d <- ncol(M)
bounds <- list(lower = list(ind = seq(d), val = rep(-Inf, d)),

upper = list(ind = seq(d), val = rep(Inf, d)))
ans <- Rglpk_solve_LP(obj = p, mat = M, dir = rep(">=", n),

rhs = rep(-1.0, n), bounds=bounds)
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return(ans$optimum)
}

A test case simulates n = 100,000 points uniformly distributed in the d = 20-
dimensional unit cube, then verifies that the point p = (1, . . . , 1)� is not inside
the convex hull by finding the smallest γ > 0 such that γp is on the boundary:

set.seed(123)
M <- matrix(runif(1e5 * 20), ncol=20) ; Mbar <- colMeans(M)
M <- sweep(M, 2, Mbar) # Translate M so sample mean is at origin
p <- rep.int(1, 20) - Mbar
lpstime <- system.time(lpsstep<--1/LPmod1(M, p))[1]
glpktime <- system.time(glpkstep<--1/LPmod2(M, p))[1]
stopifnot(isTRUE(all.equal(lpsstep, glpkstep)))

Both implementations produce the same result: γ ≈ 0.4801, but Rglpk takes
5 seconds, whereas lpSolveAPI takes 24. However, Rglpk requires GLPK to be
installed separately on some platforms; for this reason, version 4.5.0 of ergm first
tests to see whether Rglpk is installed and, if so, uses that package; otherwise,
it uses ‘lpSolveAPI’.

5. Testing multiple points

As explained at the beginning of Section 2, the approximated difference of log-
likelihoods in (5) requires that every g(Zi) ∈ S be contained in C◦(T ) in order for
the approximation to have a maximizer. We might therefore consider a strategy
of checking, prior to using (5), whether g(Zi) ∈ C◦(T ) for all i = 1, . . . , s using
the single-test-point methods discussed earlier. This strategy has two potential
drawbacks: First, the computational burden might be quite high if any of the
dimension d, the number of test points s, or the number of target points r is
large. Second, we must decide what to do in the case where one or more of the
points in S is found to be outside C◦(T ). This section addresses each of these
questions and then presents an illustrative example using a network dataset
with missing edges.

5.1. Reducing computational burden

There are evidently many possible ways to approach the question of how to
efficiently decide which test points, if any, lie outside C◦(T ). Even if we only
consider ideas for reducing the size of the set T in such a way as to have little or
no influence on the answer, we might attempt to search for and eliminate target
set points either that lie entirely inside C◦(T ), since eliminating such points
from T does not change C◦(T ) at all, or that lie close to other points in T , since
eliminating such points does not change C◦(T ) very much. Here, we merely
suggest a simplistic version of the first approach, as a thorough exploration of
methods for reducing the size of T without altering C◦(T ) is well beyond the
scope of this article.
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Fig 2. In this example where d = 20 and n = 100,000, half of the target set can be eliminated
using a simplistic Mahalonobis distance-based algorithm without appreciably degrading the
quality of the convex hull scaling factor.

Whether a point in T is interior to C◦(T ) or whether it lies on the boundary of
C◦(T ) has to do with that point’s so-called data depth, a concept often attributed
(in the two-dimensional case) to [27]. Because the deepest points are the ones
that can be eliminated without changing C◦(T ), the sizable literature on data
depth [see, e.g., the discussion by 29] may be relevant to our problem. For
the d = 2-dimensional case, several authors have developed efficient methods
for identifying exactly the points lying on the convex hull boundary; this is a
particular case of the so-called convex layers problem [4].

Among the most simplistic ideas is to use Mahalanobis distance from the
centroid, defined for any point x ∈ T as

d(x) =
√

x�Σ̂−1x,

where Σ̂ is the sample covariance matrix, as a measure of data depth. For the
|T | = 100,000-point example of Section 4.2, we also sample |S| = 5 corners of
the unit cube in R

20 and try eliminating the fraction f = i/10 for i = 1, . . . , 10
of the deepest points as measured by Mahalanobis distance:

p <- sweep(matrix(rbinom(5 * 20, 1, 0.5), ncol = 20), 2, Mbar)
d <- rowSums((M %*% solve(cov(M))) * M) # Find squared Mahalanobis distances
M <- M[order(d, decreasing=TRUE),]
b <- rep(Inf, 10) # Vector for storing LP minima
for (i in 10:1) {

for (j in 1:nrow(p)) {
b[i] <- min(b[i], LPmod2(M[1:(i*nrow(M)/10),], p[j,]))

}
}

In this 20-dimensional problem, we see that we can effectively disregard half
the points in T , using a simple Mahalanobis ordering, without degrading the
solution appreciably. Since computing effort scales linearly with the number of
points in T , this seems like a useful tool. We nonetheless recommend caution,
as our experiments indicate that the fraction of points that may be discarded
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by their Mahalanobis distances varies considerably for different choices of d. For
example, we find for d = 50 that each of the 100,000 points sampled uniformly
randomly in the unit cube lies on the boundary of the convex hull.

5.2. Rescaling observed statistics

Recalling the case of a completely observed network, where S consists of a single
point g(Yobs), the strategy used by [14] is to find a point, say ξ̂, between 0 and
g(Yobs) that lies inside C◦(T ) yet close to the boundary. By treating ξ̂ as though
it is g(Yobs) in constructing approximation (3), the approximation will have
a well-defined maximizer, and this maximizer is then used to generate a new
target set in the next iteration of the algorithm.

In analogous fashion, when S consists of multiple points and some of them
lie outside C◦(T ), we propose to shrink each of these points toward 0 using the
same scaling factor, say γ, where γ ∈ (0, 1] is chosen so that every element of S
lies within C◦(T ) after the scaling is applied. Since LP (9) yields the optimal step
length for each point p, we obtain this step length by iterating through the points
in S and selecting the least of the resulting step lengths. This transformation
also has the effect of shifting the sample mean of the points in S to a point
somewhere between 0 and the sample mean of the untransformed points in S.

5.3. Example

This section illustrates the idea of Section 5.2 using a network representing a
school friendship network based on a school community in the rural western
United States. The synthetic faux.mesa.high network in the ergm package
includes 205 students in grades 7 through 12. We may create a copy of this
network and then randomly select 10% of the edge observations (whether the
edge is present or absent) to be categorized as missing:

library(ergm)
data(faux.mesa.high)
fmh <- faux.mesa.high
m <- as.matrix(fmh)
el <- cbind(row(m)[lower.tri(m)], col(m)[lower.tri(m)])
set.seed(123)
s <- sample(nrow(el), round(nrow(el) * 0.1))
fmh[el[s,]] <- NA

If we now define an ERGM using a few statistics related to those originally
used to create the faux.mesa.high network—details are found via
help(faux.mesa.high)—we begin with an estimator that can be derived using
straightforward logistic regression. We denote this maximum pseudo-likelihood
estimator or MPLE, details of which may be found in Section 5.2 of [15], by
theta0 or θ0.
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fmhFormula <- fmh ~ edges + nodematch("Grade") +
gwesp(log(3/2), fixed=TRUE)

theta0 <- coef(ergm(fmhFormula, estimate="MPLE"))

To construct approximation (5), we need two samples of random networks,
Y1, . . . , Yr and Z1, . . . , Zs from Y and Y(Yobs), respectively. For the latter, we
employ the constraints capability of the ergm package.

gY <- simulate(fmhFormula, coef = theta0, nsim = 500, output = "stats",
control = snctrl(MCMC.interval = 1e4))

gZ <- simulate(fmhFormula, coef = theta0, nsim = 100, output = "stats",
constraints = ~observed,
control = snctrl(MCMC.interval = 1e4))

We can use the code developed earlier in this article to show that the g(Zj)
statistics are not interior to the convex hull of the g(Yi) statistics:

centroid <- colMeans(gY)
gY <- sweep(gY, 2, centroid) # Translate the g(Y) statistics
gZ <- sweep(gZ, 2, centroid) # Translate the g(Y) statistics
scale <- Inf
for (j in 1:nrow(gZ)){

scale <- min(scale, -1/LPmod2(gY, gZ[j,]))
}

The code above finds that 0.733 is the largest scaling factor that, when mul-
tiplied by each g(Zj) vector, ensures that the result is on or inside the boundary
of the convex hull of the target points g(Y1), . . . , g(Y100). Since this scaling fac-
tor is less than 1, at least one element in the test set lies outside C◦(T ) and so
the approximation in (5) has no maximizer. Figure 3 depicts the target points,
the test points, and the test points after scaling by 0.733.

With our samples in place, we may now construct approximation (5). Here,
we negate the function so that our objective is to minimize it:

l <- function(ThetaMinusTheta0, gY, gZ, scale) {
-log(mean(exp(scale * gZ %*% ThetaMinusTheta0))) +
log(mean(exp(gY %*% ThetaMinusTheta0))) }

Finally, we employ the optim function in R [20] to minimize the objective
function. We use a scale value of 90% of the value that places one of the test
values exactly on the boundary of the convex hull so that all of the scaled test
points are interior to the convex hull. We may repeat the whole process itera-
tively until the entire set of test points is well within the convex hull boundary:

multipliers <- scale; NewTheta <- theta0
while (scale < 1.11) { # We want 0.9 * scale > 1 when finished

NewTheta <- NewTheta + optim(0 * NewTheta, l, gY=gY, gZ=gZ,
scale=0.9 * scale)$par

theta0 <- rbind(theta0, NewTheta)
gY <- simulate(fmhFormula, coef=NewTheta, nsim=500, output="stats",

control=snctrl(MCMC.interval = 1e4))
gZ <- simulate(fmhFormula, coef=NewTheta, nsim=100, output="stats",
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Fig 3. Pairwise scatterplots of three-dimensional network statistics generated using the
MPLE, with statistics on the full sample space of networks as black dots and those on the
sample space constrained to coincide with the observed network as orange dots. The con-
strained points are rescaled as blue points so that none lies outside the convex hull of the
black points. In each plot, there are 500 black, 100 orange, and 100 blue points.

constraints=~observed,
control=snctrl(MCMC.interval = 1e4))

centroid <- colMeans(gY)
gY <- sweep(gY, 2, centroid) # Translate the g(Y) statistics
gZ <- sweep(gZ, 2, centroid) # Translate the g(Y) statistics
scale <- Inf
for (j in 1:nrow(gZ)){

scale <- min(scale, -1/LPmod2(gY, gZ[j,]))
}
multipliers <- c(multipliers, scale)

}

Table 1 gives successive values of θ0 that are determined as maximizers of (5)
after the test set points g(Z1), . . . , g(Zs) are rescaled to lie within the convex
hull of g(Y1), . . . , g(Yr). The maximum pseudo-likelihood estimate (MPLE) in
the first row of the table is obtained using logistic regression and is often used
as an initial approximation to the maximum likelihood estimator when employ-
ing MCMC MLE [15]. However, the MPLE fails to take the missing network
observations into account and, as demonstrated by [14], it is not the case that
the MPLE generates sample network statistics near the observed statistics.

Figure 4 shows that the final value of θ0 produces samples such that the whole
test set lies on the interior of the target set, which allows (5) to be maximized to
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Table 1

Values of theta0 and their associated test point mulipliers, starting with the maximum
pseudo-likelihood estimator.

Iteration edges nodematch.Grade gwesp.fixed.0.405 Multiplier
0 −6.302 2.264 1.249 0.733
1 −6.236 2.098 1.276 1.094
2 −6.223 1.981 1.302 2.043

Fig 4. At the final iteration, the test set (orange) is entirely within the convex hull of the
target set (black).

produce an approximate MLE. As recommended by [14], we might use moderate-
sized samples to obtain a viable θ0 value using the idea here, then use much
larger samples once θ0 has been found in order to improve the accuracy of
Approximation (5).

6. Discussion

This article discusses the problem of determining whether a given point, or set of
points, lies within the convex hull of another set of points in d dimensions. While
this problem, along with its solution via linear programming, is known, we are
not aware of any work that discusses it in the context of a statistical problem
such as one discussed here, namely, the maximization of an approximation to
the loglikelihood function for an intractable exponential-family model.

Here, we provide multiple improvements on the simplistic implementation
of the linear programming solution to the yes-or-no question involving a single
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test point that exists in the ergm package [15] as a means of implementing
the idea of [14]: First, we eliminate the need for the “box constraints” of ergm
and show how the dual linear program may be derived from first principles.
Second, we render the “trial-and-error” approach obsolete by showing how to
find the exact point of intersection between the convex hull boundary and the
ray originating at the origin and passing through the test point. Third, we
test the lpSolveAPI package that is currently used by ergm against the Rglpk
package, finding that the latter appears to be far more efficient at solving the
particular linear programs we encounter. Fourth, we discuss the statistical case
of missing network observations, in which the test set may consist of multiple
points, establish an important necessary condition, and suggest a method for
handling this case.

In addition, we point out several ways in which this work might be extended,
particularly in the case of multiple test points. For one, the question of how to
streamline computations is wide open, particularly since it is not necessary to
find the exact maximum scaling factor that maps each test point into the convex
hull. For the purposes of approximating a maximum likelihood estimator, we
seek only an upper bound on the acceptable scaling factors; indeed, in practice
we want to scale all test points so that they are inside the boundary. This means
that it might be possible to eliminate from the target set any points that are
sufficiently close to another target set point and that doing so would not change
the needed scaling factor too much.

We might also consider how to optimize the size of the sample chosen for the
test set in the first place. For instance, if the scaling factor needed is considerably
smaller than one, there might be an advantage in sampling just a handful of
points, possibly just a single point in order to move the initial value of θ0 closer
to the true MLE, when a larger sample of test points could be drawn. Another
question is whether it might be possible, if one finds s ∈ S with s 	∈ C◦(T ), to
add more sampled points to T , particularly near s, in order to diagnose whether
the lack of an MCMC-MLE might be correctable or whether an MLE does not
exist at all.

One thing that is clear is that the extensions described here would be much
more difficult, if not impossible, to consider without the improvements to the
ergm package’s convex-hull testing procedure outlined in this article.
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