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1. Introduction

Estimation of the Hurst parameter is an old problem in statistics of time series.
A benchmark model is the fractional Brownian motion (fBm) B = (B, te
R, ), that is, the centered Gaussian process with covariance function
HpH _ 1,2H | 1 2H 1 2H
EBt Bs =§t +§S —§|t—3|

where H € (0,1) is its Hurst exponent. The fBm is a well studied stochastic
process with a variety of interesting and useful properties, see, e.g., [34, 16].
Its increments are stationary and, for H > %, positively correlated with the
long-range dependence

0
> EBfI(BY ~ BI,) = .
n=1

It is this feature which makes the fBm relevant to statistical modeling in many
applications.

A basic problem is to estimate the Hurst parameter H € (0,1) and the
additional scaling parameter o2 € R, given the data

XT .= (eBF, te[0,T)).

Since both parameters can be recovered from X7 exactly for any 7 > 0, a
meaningful statistical problem is to estimate them from the discretized data

XT4 .= (oBR, ..., oBL)) (1.1)

where A > 0 is the discretization step and n = [T'/A]. The two relevant regimes,
in which consistent estimation from (1.1) is feasible, are the large time asymp-
totics with a fixed A > 0 and T" — o0, and the high frequency asymptotics with
A — 0 and a fixed T > 0.
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Often it is more realistic to consider the partially observed setup in which
the trajectory is contaminated by additive noise. One possibility is to assume
that the noise is added after discretization so that the available data is given by

xTa .= (an +&m, - JBfA + fn,n), (1.2)

where &;,, are i.i.d. random variables independent of B, Such observation
scenario fits the situation when a signal, e.g., the position of a particle or a
stock price, is measured periodically by a noisy sensor. Statistical properties of
this model are relatively well understood (see some details in Sect. 4.2 below).

Another possibility is to assume that the noise is added directly in continuous
time. In this case a natural setup to consider is the mixture of the fBm with an
independent standard Brownian motion Bj:

X" = (0B + /By, t € [0,T)) (1.3)

where € > 0 is the known noise intensity. The formal derivative of this process
is the basic noise model in engineering applications, such as astronomical data
processing [45], GPS communications [31], analysis of seismic data [22]. The
estimation problem for the observation model (1.3) corresponds to calibration
of the parameters of its fractional component [1, 2, 44, 3, 4].

From the statistical standpoint, a peculiar feature of the process (1.3), called
the mized fBm in the probabilistic literature, is that consistent estimation in
the high frequency regime is possible only for H < 3/4, see [13]. It was shown in
[7] that for H > 3/4 the probability measures induced by the the process (1.3)
and the Brownian motion 4/ B are mutually absolutely continuous. This implies
that the parameters in question cannot be recovered exactly from the sample
X7 for any finite T and, a fortiori, from its discretization.

In this paper we consider estimation problem for the parameters H and o2
from the sample (1.3) when H € (3/4,1). Our objective is to identify the best
achievable minimax rates in the large time (¢ > 0 is fixed and T' — o) and small
noise (T' < o is fixed and € — 0) asymptotic regimes. To this end, we prove
the Local Asymptotic Normality (LAN) property in both cases and discuss the
construction of the rate optimal estimators.

The rest of the paper is organized as follows. Section 2 outlines the essential
background needed to formulate the main results in Sect. 3. The results are
discussed and compared to the relevant literature in Sect. 4. The proofs appear
in Sects. 5-7.

2. The LAN property and Hajek’s bound

Let us briefly recall Le Cam’s LAN property and its role in the asymptotic theory
of estimation. A comprehensive account on the subject can be found in, e.g., [21].
An abstract parametric statistical experiment consists of a measurable space
(X, A), where A is a o-algebra of subsets of X', a family of probability measures
(Pg)oco on A with the parameter space © < R* and the sample X ~ Py, for
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some fixed true unknown value 6y € O of the parameter variable. Asymptotic
theory is concerned with a family of statistical experiments (X", A", (P%)pco)
indexed by a real valued variable h > 0.

Definition 2.1. A family of probability measures (P})pee is Locally Asymp-
totically Normal (LAN) at a point 6y as h — 0 if there exist nonsingular k x k
matrices ¢(h) = ¢(h,0p) such that, for any u € R¥, the Radon-Nikodym deriva-
tives (likelihood ratios) satisfy the scaling property

dpP?
(XM = T Zhg, — §lul® + i, 00) (2.1)
dPy.
where the random vector Zj, g, converges weakly under PZD to the standard
normal law on R* and 7y, (u, ) vanishes in Pgo—probability as h — 0.

Define a set Wy, of loss functions £ : R* - R, which are continuous and
symmetric with £(0) = 0, have convex sub-level sets {u : £(u) < ¢} for all ¢ > 0
and satisfy the growth condition lim,_qexp(—allu|?)¢(u) = 0, Va > 0. The
following theorem establishes asymptotic lower bound for the corresponding
local minimax risks of estimators in LAN families.

Theorem 2.2 (Hajek). Let (Ph)geo satisfy the LAN property at 6 with matri-

ces ¢p(h,0p) — 0 as h — 0. Then for any family of estimators gh, a loss function
le Wy and any § > 0,

lim sup Ej¢(o(h, 00)~ 1 (6, — 0)) = | Uz)y(z)d,
h—0 [§—6o] <6 R¥

where vy, is the standard normal density on RF.
Proof. [21, Theorem 12.1]. O

Estimators which achieve Hajek’s lower bound are called asymptotically ef-
ficient in the local minimax sense. Usually likelihood based estimators, such as
the Maximum Likelihood or the Bayes estimators with positive prior densities,
are asymptotically efficient. However, they can be excessively complicated and
thus it often makes sense to construct simpler estimators, which are at least rate
optimal. In complex models this is sometimes done separately for each compo-
nent of the parameter vector, following some ad-hoc heuristics. Proving rate
optimality of the obtained estimators requires finding the best minimax rates
for each entry of the parameter vector.

Let us explain how such entrywise rates can be derived using the bound of
Theorem 2.2. Analysis of the likelihood ratio in (2.1) typically shows that in
LAN families ¢(h,fy) must satisfy the condition

d(h,00) " M(h,00)I(80) M (h,6) " o(h, ) —1d, (2.2)

where the matrices M (h,0y) and I(6y) are determined by the statistical model
under consideration. The matrix I(y) is positive definite and independent of
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h, and it can be often regarded as the analog of the usual Fisher information
matrix.
Consider the Cholesky decomposition

L(h,00)L(h,00)" = M (h,00)I(60)M(h,6)"

where L(h,0p) is the unique lower triangular matrix with positive diagonal en-
tries. Then (2.2) holds with ¢(h,6y)" := L(h,0y)~! and the last entry of the

vector ¢(h, 90)_1(§h — 0) is given by
[6(h,00) (0 — 0)],, = [L(h,00)T (O — 0)],, = Lise(h, 00) (Onx — O)-

Let { € W31 be a loss function of a scalar variable, /R — R, and define

0(z) := 0(xx), € R*. This loss function belongs to Wa,, and Hajek’s bound
implies

lim sup ESC(Lir(h, 00)Ons — Or)) = f (B (t)dt > 0. (2.3)
h—0 [[6—80| <6 R

This inequality identifies the last diagonal entry of L(h,6p) as the best minimax
rate in estimation of 0. Similar bound for an arbitrary entry can be obtained
by permuting the components of 6 so that it becomes the last.

A commonly encountered instance of (2.2) is when the matrix M (h,6p) is
diagonal. Then L(h,6y) = M (h,00)S(6p) where S(6p) is the Cholseky factor of
I(6y). Since I(6y) is positive definite, all diagonal entries of S(fy) are positive
(and constant in h) and, in view of (2.3), the best minimax rate is determined
only by My (h,6p). This is the case for our model in the large time asymptotic
regime with h := 1/T (see Theorem 3.1). In the small noise regime with h :=
g, the matrix M (h,0y) is non-diagonal (see Theorem 3.2), which results in a
logarithmic discrepancy between the best minimax rates in estimation of each
parameter.

3. Main results
3.1. Large time asymptotics

Covariance function of the fBm with parameter variable 6§ = (H, 0?) € (3/4,1) x
(0,00) =: © can be written as

s ot
cov(BH, BI') = f J Ko(u — v)dudv
0 Jo

where
Ko(t) = 0?H(2H — 1)|7]*H 2. (3.1)

The Fourier transform of this kernel has the explicit formula

Ko(\) = J Ko(m)e dr = o?ag| A2, X eR\{0}, (3.2)
R
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with the constant ay := I'(2H + 1) sin(wH). The function Kg(A) does not decay
sufficiently fast to be integrable on R and hence, strictly speaking, it is not a
spectral density of a stochastic process in the usual sense. Roughly, it can be
thought of as the spectral density of the fractional noise, a formal derivative of
the fBm.

Denote by P} the probability measure on the space of continuous functions
C([0,T],R) induced by the mixed fBm (1.3) with parameter 6 and a fixed noise
intensity € > 0.

Theorem 3.1. The family (Pg)ee@ is LAN at any 0y € © as T — o0 with
¢(T) = T~?1(6,2) "/

where 1(6y,€) is the Fisher information matriz
1 (™ ~ ~
I(6,¢) = 4—J- VTlog (e + Kog(\)) Vlog (¢ + Kg(\))dA > 0 (3.3)
T J_—o

with V being the gradient with respect to parameter variable 6.

In view of the discussion in the previous section, this result implies that the
rate T~/2 is minimax optimal for both H and o2. As explained in Sect. 4.3,
this rate is achievable and, moreover, Hijek’s lower bound can be approached
arbitrarily close by estimators based on sufficiently dense grid of discretized
observations. The Fisher information matrix in (3.3) remains finite if and only
if H > 3/4, in agreement with the absolute continuity of measures [7]. It admits
of an explicit though somewhat cumbersome expression.

3.2. Small noise asymptotics

With a convenient abuse of notations, let P§ now denote the probability measure
induced by the mixed fBm (1.3) with parameter § and a fixed interval length
T > 0. Define the matrix

_ 9.2 —1/(2H-1)
_ —1/(4H-2) 1 20 10g€
M(e,0)=¢ (0 1 .

Theorem 3.2. Assume that ¢(e, 6p) satisfies the scaling condition

¢(e,00) " M(e,00)TI(00,1)M (e, 00) " d(c,00) P Id, (3.4)

with I(6p,1) defined in (3.3). Then the family (P§)oco is LAN at 6y € © as
e —0.

Condition (3.4) cannot be satisfied by any diagonal matrix ¢(e, 6p), since in
this case the limit, if exists and finite, must be a singular matrix. Otherwise the
choice of ¢(e,8p) is not unique. As explained in the previous section, the upper
and lower triangular Cholesky factors of the matrix M (g, 69)I(6o,1)M (g, 60y) "
reveal the optimal minimax estimation rates for H and o2.
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Corollary 3.3.

1) For any family of estimators I;TE, a loss function £ € Wy 1 on R and § > 0,

lim sup Egpf(e Y HOD(H, — H)) > fRé(x/J(Ho))v(ar)dx,

e—0 [9—0o] <5

where 7y is the standard normal density on R and

J(0) = \/T<I““” b= 2ET)

2) For any family of estimators 62, a loss function £ € Wa1 on R and 6 > 0,

1
lim sup E9€<€_1/(4H°_2) —
e—0 |6—60) <5 loge

52 —c5?)) = T o x)dz,
32 =) = | ta/Sten)a)d

where 7y is the standard normal density on R and

H-3 (6).

o2

S(0) :=

If only one parameter is to be estimated, while the other one is known, the
relevant LAN property corresponds to the respective one-dimensional family.
The following theorem shows that the optimal minimax rates is these cases
improve by a logarithmic factor.

Theorem 3.4.
1) For any fized o3 € Ry, the family (P?H"TS))HG(3/4,1) is LAN at any Hy €
(3/4,1) as e — 0 with
1 Ho—3 1
¢(e, Hy) := '/ (4Ho=2) ¢ 2 . (3.5)

loge=t  of T1I29(60,1)

2) For any fized Hy € (3/4,1), the family (PE 2 ) is LAN at any
(Ho,o?) 02€(0,00)
o2 eRy ase — 0 with
1
P(e,00) = e/ AHo=2 -
TIQQ(QO, 1)

4. A discussion
4.1. On the information matriz

The expression for the Fisher information matrix in (3.3) is known as Whittle’s
formula. It was discovered by P. Whittle [42, 43] and was originally derived for
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discrete time stationary Gaussian processes with continuous spectral densities,
see also [41]. Tts validity was extended in [11, 12] to sequences with long range
dependence, for which the spectral density has an integrable singularity at the
origin.

Whittle’s formula in continuous time is a more subtle matter due to complex-
ity of the absolute continuity relation between Gaussian measures on function
spaces. In fact, according to the survey [15], it was never rigorously verified
beyond processes with rational spectra. One important class for which further
generalization is plausible are processes observed with additive “white noise”,
that is,

Xt:Zt+Bt, tE[O,T],

where B is a standard Brownian motion and Z is a centered Gaussian process
with stationary increments. The mixed fBm is a special case from this class.

Results in [37] imply that the probability measure induced by X is equivalent
to the Wiener measure if and only if

t s
EZ,Z, = f J Kp(u — v)dudv
0 Jo

for some kernel Ky € L2?([0,T]). In this case, the Radon-Nikodym derivative
has the same form as in (5.4). Using the theory of finite section approximation
from [19] it is indeed possible to prove Theorem 3.1 for such processes under
the additional, crucial to the approach of [19], assumption K € L'(R).

This condition is violated by the kernel (3.1), which makes the method of [19]
inapplicable. This is not entirely surprising in view of the difficulties, needed to
be overcome in [11] to extend Whittle’s theory to discrete time processes with
the long range dependence. The results in our paper are proved using a different
approach, based on the ideas from [39] and their recent applications to processes
with the fractional covariance structure [8].

4.2. On the joint and separate estimation

Logarithmic discrepancy in the minimax rates between joint and separate es-
timation as in Corollary 3.3 and Theorem 3.4 is known to occur in the high-
frequency regime in experiments with discrete data such as (1.1). The optimal
rates for the separate estimation of H and o2 for A = T'/n are

n*l/ZL and n /2

logn

respectively, see [26] and references therein. These rates are achievable, e.g., by
estimators based on discrete power variations as in [24, 27, 10].

It was long noticed that analogous estimators achieve slower rates, degraded
by logarithmic factor:

n~Y2 and n"Y%logn (4.1)
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when both parameters are unknown. These rates were recently proved minimax
optimal in [5] where the LAN property was shown to hold with a non-diagonal
matrix M in (2.2).

High frequency estimation from the noisy data (1.2) was considered in [18],
where the optimal minimax rates for joint estimation of H > 1/2 and o were

found to be
nVEHE2) gnq o VEHE2) 00

respectively. These rates are slower than those in (4.1), confirming the intuition
that noise should make the estimation problem harder. For further developments
in the minimax theory of this and related models see [35, 36]. The same rates
are shown to remain optimal for H < % in the recent preprint [38].

Another important direction of research is concerned with construction of
consistent estimators with explicit asymptotic distribution. Such results can
be useful, e.g., for construction of asymptotic confidence intervals. In [29] the
authors consider a model more general than (1.2) where o Bf is replaced with

the process
t t
f bsds +J osdBH
0 0

with unknown, possibly random functions b = (b;,t € [0,T]) and o = (0y,t €
[0,T]). They construct a family of consistent estimators for H and prove their
asymptotic normality. Inference in presence of jumps is studied in [30].

Hurst parameter estimation for the mixed fBm (1.3) with H < 3/4 is ad-
dressed in [13], where estimators, consistent in the high frequency regime, are
constructed using the power variations technique. Recently it was shown in [9]
that if BY and B in (1.3) are correlated, H becomes identifiable and can be es-
timated consistently in the high frequency setup for the whole range H € (0, 1).
The case of complete correlation is studied in [14].

4.3. On the rate optimal estimators

It is typical for the LAN models in general that Hajek’s asymptotic bound
(Theorem 2.2) is attained by the Maximum Likelihood estimator and Bayes
estimators with positive prior densities, see [21]. However, this is not automatic
and, in our case, the proof would require estimates on the solution to the integral
equation (5.3), more delicate than those needed for the LAN analysis presented
in this paper. Such estimates currently remain out of reach and thus the question
of exact attainability of Hajek’s bound remains open.

On the more practical side, likelihood based estimators for the model under
consideration are of limited interest, since their realization needs a high precision
numerical solution of (5.3) and approximation of the stochastic integrals in (5.4).
A less ambitious but still meaningful objective is to construct simpler estimators
whose asymptotic risk exceeds the bound only by a constant.

In our case, such a rate optimal estimator in the large time asymptotic regime
can be constructed using increments of the observed continuous path on a dis-
crete grid of points with a step § > 0. These increments form a stationary
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sequence to which, e.g., Whittle’s spectral estimator applies directly. The the-
ory from [11] then tells that it achieves the rate T2, optimal by Theorem 3.1.
Moreover, its limit risk can be made arbitrarily close to Hajek’s bound with the
Fisher information matrix (3.3) if § is chosen small enough.

In the small noise regime, rate optimal estimators can be constructed by
means of the method suggested in [18], see some details in Appendix A. These
estimators attain the best possible minimax rates derived in Corollary 3.3 and
Theorem 3.4. However, they can hardly be expected to attain Hajek’s bound
exactly.

5. The proof roadmap

In this section we detail the principle steps of the proof, deferring its more
technical parts to the next sections. Let B = (By,t € R,) and BY = (BH t e
R, ) be independent standard and fractional Brownian motions on a probability
space (£, F,P). The mixed fBm (1.3) with § = (H,0?) € (3/4,1) x R, satisfies
the canonical innovation representation [20]

t
Xt = J Pt(X7 G)dt + \/ggt, te [O,T], (51)
0

where B is a Brownian motion with respect to F7X = o{Xs, s < t}, and

t

pi(X,0) = f olt,t — 5:0)dX,. (5.2)

and the function g(t, s; 0) solves the integral equation
t
eg(t,s; 0) + f Ky(r —s)g(t,r;0)dr = Kg(s), 0<s<t, (5.3)
0

with the kernel Ky(-) defined in (3.1). This equation has the unique solution in
L2([0,¢]) since its kernel is Hilbert-Schmidt for H > 3/4. The stochastic integral
in (5.2) can therefore be defined in the usual way, see [33].

Let PT and P be the probability measures on C([0,7],R) induced by the
Brownian motion 1/z B and the mixed fBm with parameter 6, respectively. By
the Girsanov theorem, applied to the innovation representation (5.1), these mea-
sures are mutually absolutely continuous P7 ~ Pg with the Radon-Nikodym
derivative

e A— 1 (T 11 (" )
W(X )zexp g . pt(X,o)dthig o pt(X,H) dt | . (54)
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5.1. The large time asymptotics

In view of (5.1) and (5.4) the likelihood ratio in Definition 2.1 takes the form

APy oy ory 1 [T B
log Tg)(X ) =\—@L (pe(X, 00 + ¢(T)u) — pi (X, 00))dB, 55
11 (T '
—52 JO (Pt(Xa o + ¢(T)u) - pt(Xv 90))2dt’

where X is the mixed fBm with parameter 6y and, cf. Theorem 3.1,
O(T) =T~ 21(0,2) .
The matrix I(6g,¢), defined in (3.3) is invertible, and establishing the LAN

property claimed in Theorem 3.1 amounts to proving that for any u € R?

T
%f (t(X, 00 +u/NT) = pu(X,60)) dt —— u"I(60,)u,  (5.6)

0 T—0

since by the CLT for stochastic integrals [28, Theorem 1.19], (5.6) implies the
convergence in distribution

Lt 7= 4P T 1/2
%L (pe(X, 00 + u/NT) — pe(X, 60))dB; el I(0o,e)?Z

where Z ~ N(0,1d).

Let us denote partial derivatives with respect to the entries of parameter
vector 6 by 01 := 0y and 0y := d,2. The kernel in (3.1) has partial derivatives
of all orders for 7 # 0 and

0iKo(-), 0:0;Ko(-) € L*([0,t]), 4.4 €{1,2}.
This implies that the solution to equation (5.3) also has partial derivatives
0ig(t,0), 0i0;9(t,0) € L*([0,4]), 7€ {1,2},
which can be interchanged with the stochastic integral in (5.2). Consequently
pt(X, 0) has partial derivatives and

t t
Voe(X,0) = J- Vy(t,s;0)dX,, Vip(X,0) = ‘[ V2g(t,s;0)dX,,
0 0

where V stands for the gradient and V? denotes the Hessian with respect to 6.
Therefore,

pt(Xa 90 + U/\/T) - pt(Xa 90) =
1 S e A (5.7)
ﬁth(X, Oo)u + 7)o o u' V2pi(X, 00 + su/NT)udsdr,
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and (5.6) will be true if we show that

11 (T L2(Q
,7] VT (X, 00)V pe (X, 60)dt = 1(60,¢) (5.8)
13 T 0 T

—00

and, for all sufficiently small § > 0,
L ’ sup  E[VZp (X 9)H2dt—>0. (5.9)
T2 Jo 0:10—00)<s 7 T—0

The main challenge in the proof consists of establishing the properties of the
gradient process Vp;(X, #) which guarantee these two limits. By definition (5.2),

Edips(X,00)0;pt(X, 00) =

f [ dvatons = asboatet i o) o — )y
EJO 0ig(s, 8 —x;00)0;9(t,t — x;6p)dx =

| t [ vato. st 560y 0 (o -+ = )+
€ f: 0i9(s,x;60)0;9(t,x +t — s;6p)dx.

Extending the domain of s — g(t, s; 6p) outside the interval (0, t) by zero, define
the Fourier transform

9:(iX, 6p) = J g(t, s;00)e " *%ds, AeR,
R
and the function R
A(N) = e+ Kg, (M) (5.10)
where IA(QO()\) is the Fourier transform (3.2). Then by Plancherel’s theorem

E alps(X7 Ho)ajpt(X7 90) =

L syt 5.11
[ s maamnmnoecna, O
Q —00

Using this formula and suitable estimates for the Fourier transform of the solu-
tion to (5.3) we will derive the following decomposition.

Lemma 5.1. The covariance function of the gradient process satisfies
EV ps(X;00)Vpi(X;00) = Q(t — ) + R(s,t)
where the matrices in the right hand side admit the bounds
[Q(t—s)| < C Alt—s|""log|t — s||3, Vs, t e Ry,

5.12
|R(s,t)| < C(t—l/2 +s7 V24 (st)_b), Vs, t € [Tinin, ), (5:12)
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with some constants b € (0, %), C > 0 and Tnin > 0. Moreover,

Q(0) = €I(0o, ), (5.13)
where 1(0,¢) is defined in (3.3).

This lemma implies that
EV'pi(X,00)Vpi(X, 0o) > Q0) = el(o,¢)

and
J f ‘EV ps(X,00)Vpu(X, 6o) l dsdt ——> 0.

T—o0

Since Vp(X,0p) is a centered Gaussian process, these two limits and Isserlis’
theorem ensure (5.8). In addition, the convergence in (5.9) holds due to the
following bound.

Lemma 5.2. For all sufficiently small 6 > 0, there exist constants C' > 0 and
Tmin > 0 such that

sup EHVth(X,Q)H2 <C, Vt=Tmin-
0:16—6o||<5

To recap, the proof of Theorem 3.1 now reduces to verifying Lemmas 5.1-5.2.
This is done by means of asymptotic analysis of the integral equation (5.3) as
T — o0, see Sect. 6.1. In essence, it yields quantitative bounds on the deviation
of g(t, s;0) from the the solution to the Wiener-Hopf equation on the semi-axis:

eg(s;0) + LOO Ko(r —s)g(r;0)dr = Ky(s), se€(0,0).

These bounds are obtained directly in terms of the Laplace transforms, which
turns out to be particularly convenient in view of the formula (5.11).

5.2. The small noise asymptotics

The relevant likelihood ratio in this case is, cf. (5.5),

APy () 1 —
1 __Yorote)u %T - = Xs € € B
08 dPs, (X7) NG L (pt( 0o + p(e)u) — pi (X ,90))d t

(5.14)

11

T
3¢ f (95 (X7, 00 + ble)u) — pf (X°,00)) dt,

where T is fixed and dependence on € is emphasized by superscripts. Here,
cf. (5.7),

Pi (X%, 00 + ¢(e)u) — pf (X, 00) =

Vi (X®,00)p(e)u + J f e) V205 (X, 00 + sp(e)u)p(e)udsdr.
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We will argue that for an appropriate choice of ¢(g) := ¢(¢,0)

T
uT (o) (j VTP?(X5790)VP§(X6790)6115> de)u — ul?  (5.15)

€ 0

and
T 2
0

E% f ( L 1 LTuw(e)Tv?pg(Xs,eO+s¢(a)u)¢(e)udsdr) dt ——0. (5.16)

Then the second term in (5.14) converges to —3|u[? in probability and the
stochastic integral converges in distribution to v Z with Z ~ N(0,1d), see [25,
Ch. IX.5.

Equation (5.3) degenerates as ¢ — 0 to the integral equation of the first kind
t
j Ky(r —s)g(t,r;0)dr = Ko(s), 0<s<t,
0

which does not have a classic solution. This makes the direct proof of (5.15)—
(5.16) complicated. The main tool in proving these limits is a certain scaling
property of the solution to (5.3) (see Lemma 7.2), which relates the small noise
to the large time asymptotics from the previous subsection. This scaling stems
from the structure of kernel (3.1), corresponding to self-similarity of the fBm.

6. Proof of Theorem 3.1

As argued in Sect. 5.1, the assertion of Theorem 3.1 follows once we prove
Lemmas 5.1 and 5.2. This is done in Sects. 6.2 and 6.3, respectively. The proofs
are based on representation of the solution to equation (5.3) derived in Sect. 6.1.

6.1. Equation (5.3)

In this subsection we show that solution to (5.3) can be decomposed into a
sum of the main term independent of ¢ and the residual term which vanishes
as t — o0, see Lemma 6.4 below. Our approach is inspired by the method,
pioneered in [39] in the context of spectral analysis of the integral operator
with weakly singular kernel (3.1). Recently it was generalized to covariance
operators of related stochastic processes [8, 32]. Here we will adapt this method
to a different problem, namely solving an integral equation of the second kind.
For brevity, 6 will be omitted from the notations in this section.

Let us first sketch the main ideas. Consider the Laplace transform of the
solution to (5.3)

o ¢
Gi(z) = J g(t,s)e *%ds = J g(t,8)e*ds, zeC, (6.1)
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where the domain of g(¢,-) is extended to the real whole axis by zero.
Using the specific structure of kernel (3.1) it is possible (Lemma 6.1) to derive

the representation
~ (1)0(2) + Bitz(bl(fz)
—1= . 2

Here ®y(z) and ®;(z) are functions, holomorphic on the cut plane C\R; with
a discontinuity across the cut R, with

OF(t) = lim ®;(z), teRy,
z—tt

where + and — correspond to the limits taken in the upper and lower half-planes,
respectively. Such functions are called sectionally holomorphic, [17]. The func-
tion A(z) is defined by an explicit formula, see (6.4) below, it is non-vanishing
and sectionally holomorphic on C\R.

Since integration in (6.1) is carried out over a bounded interval, g;(z) is an
entire function. This implies that the discontinuity in the right hand side of (6.2)
must be removable, i.e.,

o Do(2) +e Dy (—2)
R A(2) = lim Az) ’

VreR.  (6.3)

A calculation shows that this is equivalent to a boundary condition, see (6.13),
which must be satisfied by ®¢(z) and ®1(z) on the cut R, It turns out that this
condition along with certain a priori growth estimates (see Lemma 6.1) deter-
mine these functions uniquely and they can be expressed in terms of solutions to
a system of auxiliary integral equations on R, see (6.21). Plugging back these
expressions into (6.2) yields the desired decomposition for the Laplace trans-
form g;(z), see Lemma 6.4. Moreover, using the auxiliary equations (6.21) it is
possible to derive useful bounds for the residual term in this decomposition, see
Lemma 6.6.
The rest of this section details the implementation of this program.

6.1.1. The Laplace transform

The following lemma derives representation (6.2) for the Laplace transform of
solution to (5.3).

Lemma 6.1. The Laplace transform (6.1) satisfies (6.2) where

Aiz)=e+ %QI‘(ZH + 1) (212 4 (—2)t2H) (6.4)

and the functions ®q(z) and ®1(2) are sectionally holomorphic on C\R, and
satisfy
o(2) = —e + Oz 2H) and @,(2) = O(z*72H), 2z — o, (6.5)

and

Bo(2) = O(' 1) and ®,(2) = O(z'2H), 2 0. (6.6)
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Proof. By the definition of Euler’s gamma function, the kernel in (3.1) satisfies
the integral formula

Ky(u) = LOO k(T)e MTdr, uweR, (6.7)

where
oHQ2H —1) 1 oy

K(T)=0 F(2—2H)T )

Replacing the kernel in equation (5.3) with expression (6.7) gives

T€R+.

t o0 0
eg(t,s) + f g(t, r)f k(T)e T drdr = J k(T)e *"dr. (6.8)
0 0 0
The Laplace transform of the integral in the left hand side is
t ot ©
J (J g(t, r)f H(T)e_ls_rleTdT‘> e ds =
o \Jo
¢ ¢
J g(t U e”ls7rlme Sst> drdr =
0 0
t —rz 7tz
J g(t <6 ¢ > drdr =
0

T—Zz T+ =z
() (1) + (=) - f

Gu(r)dr — et r ™) 5(r)dr,

T—Z o T+=z

where gi(z) := So g(t,t — r)e”*"dr is the Laplace transform of time reversed
solution and

pu(z) = JOO M) gy ";r(zﬂ +1)(—2) ' 2H

Similarly,
t
I

Thus applying the Laplace transform to (6.8) we obtain (6.2) with

J B H(T)e“dr) e~ ds = p(—z) — e foo ()

0 0 T+ 2z

Bo() =~ =) + [ 29 (rya,
P4 (2) :—L f(_)ze tTdT-I—L T(_T)th(T)dT,

and A(z) = e+p(z) +u(—2). The functions g:(7) and g;(7) are bounded over 7 €
R, and the estimates (6.5)—(6.6) are derived from these formulas by standard
calculations. O
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The next lemma gathers some useful properties of A(z).

Lemma 6.2. The function A(z) defined in (6.4) is non-vanishing and section-
ally holomorphic on C\R with the limits

+(H—3)mi

A (T) = e+ Pay|r| 2 IV, TRy,
- o

eFH=-2)m  reR_,

where ag = T'(2H + 1)sin(wH). These functions satisfy the symmetries

AT () = A= (7), (6.9)
AT(r) _AT(=7)

= 6.10
A=(1)  At(-7)’ (6.10)

and the principal branch of the argument o(t) := arg {A* (1)},

o?ay sin ((H — 3)7)

= arct 2 i , 6.11
a(T) = arctan TP 4 0%an cos ((H — 1) sign() (6.11)

is an odd decreasing function, continuous on R\{0}, satisfying
a(0+)=n(H-3%) and a(r)=0(""?) as7— . (6.12)
Proof. All the claims are derived by direct calculations using (6.4). O

6.1.2. An equivalent representation

In this section we will use (6.2) to show that Laplace transform (6.1) can
be expressed in terms of solutions to certain auxiliary equations (6.21), see
Lemma 6.4. The key observation to this end is that g.(z) is an entire function
and hence discontinuity in the right hand side of (6.2) must be removable, that
is, (6.3) must hold. Due to the symmetries in (6.10), this condition reduces to

AT(T) o —tr AT (1)
R M q)l(iT)(A_(T) - vreR (6.13)
¥ (1)~ 40 0r(r) = e ao(or) (12 - 1),
where, in view of (6.9),
(r
ﬁg& = exp(2ia(T)).

The functions ®o(z) and P;(z) are sectionally holomorphic on C\R ., satisfy
the boundary conditions (6.13) and the growth estimates (6.5). Using the usual
technique of solving the Hilbert boundary value problems, such functions can be
expressed in terms of solutions to certain auxiliary integral equations as follows.
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The first step consists of finding a function X (z), sectionally holomorphic on
C\R, and satisfying the homogeneous boundary condition, cf. (6.13),

X (r)=0, VYreRy.

This is a standard instance of the homogeneous Hilbert boundary value problem
[17]. Since the function

A*(7)
A=(7)
satisfies the Holder condition on R u {00}, all solutions to this problem, which
do not vanish on C\{0}, have the form X (z) = z¥X,(z) for some integer k € Z,
where the canonical part is found by the Sokhotski—Plemelj formula

1 JOO log AT (7)/A(7) dT) _

Xc(z) =exp (—
0 T—Z

2mi
o0
exp (l J MdT), z € C\R;..

Ty T—2

log

= 2ia(T)

(6.14)

The following lemma summarizes some of its useful properties.

Lemma 6.3. The function defined in (6.14) satisfies the asymptotics

Xo(z) = {O(ZEH)’ o (6.15)

1, z — 00,

and is related to A(z), defined in (6.4), by the identity
1
X (2)X(—2) = EA(Z), z € C\R. (6.16)

Proof. Asymptotics (6.15) readily follows from (6.12). To prove (6.16), we can
write

log X.(2)X.(—2) =

1 (™ 1 | e AT (T) 1 (™ 1 e AT (7)
0g

— — dr.
2mi Jy T — 2 e 1A= (7) T 2mi Jo T+ 2 Og{—:*lA*(T) T

By changing the integration variable and using the symmetry (6.10), the second
integral can be written as

L (* 1 e7IAT (1) IR | e A (1)
log dr = log =TAT(7)

- - dr.
2ri )y T+2z e 1A (1) 2w J_ o T — 2 T

Since log (A*(7)/e) = O(7'72H), this implies

log Xo(2)X.(—2) = 1 foo Mdr b JOO Mdr

2mi J_ o T—Z 2mi J_ o T—z
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The function A(z) is non-vanishing and holomorphic on the lower and upper
half-planes, hence each of the integrals can be computed by the standard contour
integration. When Im(z) > 0 the first integral gives log(A(z)/e) and the second
vanishes, which proves validity of (6.16) in the upper half-plane. The same
argument applies to the lower half-plane. O

Now let us define
Do(2) + P1(2)

2X(2) ’
Do(z) — P1(2)

2X(z)
These functions are also sectionally holomorphic on C\R and, in view of (6.13),
satisfy the decoupled boundary conditions

ST(r) =S~ (1) = 2ih(r)e " S(—1),
DY (1) — D™ (1) = — 2ih(1)e " D(~7),

S(z) =
(6.17)
D(z) :=

VreR,, (6.18)

where we defined

1 X*(7) X(—71)
W) = E(X—(T) - 1) X+(r)

This function is, in fact, real valued:

hr) = (e?ia(ﬂ _ 1) exp ( - Q_TJ[OOO s;&ds N io‘(T)) -

2i s — 72

(6.19)

o0

exp ( - %L a'(s) log‘

where the dashed integral is the Cauchy principle value.

In view of estimates (6.6) and (6.15), the functions S(—7) and D(—7) will
have at most square integrable singularities at the origin if we choose k < 0.
From here on we will fix & = 0 so that X(z) = X.(z). This choice is not the
only possible, but it makes further calculations simpler. Thus the expressions
in the right hand side of (6.18) satisfy the Holder condition on Ry u {oo} and
therefore, by the Sokhotski-Plemelj theorem, the functions (6.17) satisfy

S(z) = lfo MS(—r)dT— =

T+ S

‘ds) sin a(7),

T—S

71T o h(T )—_th 2 e C\R,. (6.20)
T)E 9

Constants in the right hand side match the growth of S(z) and D(z) as z — o
in view of estimates (6.5) and (6.15).
Consider now a pair of auxiliary integral equations

1 [* h(r)e 7 1

e Rt
0 C seR,. (6.21)

(5) 1J h(r)e T (r)d 1

=— = ——q(7)ar —

qt ™) T s qt 9
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In the next subsection we will argue that, for all sufficiently large ¢, they have
unique solutions such that g,(-) + 2 and p,(-) + 2 belong to L*(R.). Setting z :=
—7 for 7 € Ry in (6.20) shows that S(—7) and D(—7) solve (6.21) multiplied by
e. Since by construction S(—7) and D(—7) are square integrable near the origin,
due to uniqueness of the solutions to (6.21), they must coincide with ep;(7) and
eqi(7) and, consequently,

S(z) =epi(—2) and D(z) = eq(—=2),

where ¢:(z) and p¢(z) are the unique sectionally holomorphic extensions to
C\R_. Plugging these expressions along with (6.16) and (6.17) into (6.2) we
obtain the following result.

Lemma 6.4. The Laplace transform (6.1) satisfies

~ 1 5

gi(z) —1= X + Ri(z), ze€eC, (6.22)
where

Ri(2) := 1_ (pe(=2) + qu(—2) + 1) + e ! (pe(2) — qi(2)).  (6.23)
X(—=2) X(z)
6.1.3. The auziliary equations (6.21)
Consider the integral operator in (6.21)
1 (* h(r)e '™

The following lemma asserts that it is a contraction on L?(R ) for all sufficiently
large t.

Lemma 6.5. For any closed ball B — O, there exist Trin > 0 and 8 € (0,1)
such that
”Atf“ < (1_6)”f||a VfELQ(R-‘r)a v.leT;miym 0 e B.

Proof. The function h(7) defined in (6.19) is continuous, nonnegative, vanishes
as 7 — o0 and satisfies, cf. (6.12),

h(0+) = sin(0+) = sin (7(H — §)) € (0,1).

Then ¢ := supyep h(0+) € (0,1) and there exists » > 0 such that h(7) <
ic+3=1-8€(0,1) for all 7 € [0,7]. Then for any T > 0,

h(r)e ™ < (1= B)Llirery + |hlwe " 1ayy < 1= 5,

log Irls . Tonin-

1
T 1-p8

where the last inequality holds for all ¢ >
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Thus for all ¢ > Tpi, and any f, g € L?(R, ), by the Cauchy-Schwarz inequal-
ity,

o aepl < 2 [ o)l [ s Irlaras <

N e A [ R CEA

(1 =B)lgllr1-
Hence || A f|? = (A f, Aef) < (1 — B)| Acf|| f]l, which proves the clam. O

The equations in (6.21) can be written as
f+% = iAt(f+%)$%(At1). (6.25)

A direct calculation shows that A;1 € L?(R.). Hence these equations have
unique solutions in L?(R,) given, e.g., by the Neumann series. The estimates
for these solutions, derived in the next lemma, play the key role in the asymptotic
analysis.

Lemma 6.6. For any closed ball B < ©, there exist constants rmax > 0,
Tmin > 0 and C > 0 such that for any r € [0, "max] and all t = Tiin

oe]
f Im(IN)[ATdx < cE Y,

—0

where my(2) is any of the functions in

{pt(z) + 3, a(2) + 3, Opi(2), 0iau(2), 0id;pe(2), aiant(Z)}- (6.26)

Proof. Let us start with proving the bound for the first two functions in (6.26).
Calculations are similar for both equations in (6.21) and we will consider the
first one for definiteness. Rearranging it as in (6.25) and multiplying by s—"
shows that the function ¢(s) := (p;(s) + 1)s™" solves the equation

¢ = B + 1, (6.27)
where ¢(s) := —3(A4,1)(s)s™" with 4, as in (6.24) and

(Ben(s) =+ [ MDD

s

(7/8)" f(r)dr.

By applying the generalized Minkowski inequality we get

= ([ (B[ M ) )
0 2T 0 T+ S =
0 0 h( )eft-r 2 1/2
f (J <:+Ssr> d5> dr = (6.28)
0 0

0 Q0 u72r 1/2
—tT 7%77‘ < rfé
L h(r)e "t (L (CEIE du) dr < Ct
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where 7 < 1/2 is assumed. Calculations as in the proof of Lemma 6.5 show that

By is a contraction on L?(Ry) for all ¢+ > Tp,. Indeed, for any f,g € L?(R,)
and r < 1/4,

|<g,Btf>|<f \g<s>|1j0 MO sy () drds <

™ T+s
S j%f( )|(://£}ldrds< )
(o [ 2] ([ [ )
L0 g,

A/ cos(27r)

where 4 is given in Lemma 6.5. Hence | B, f|| < (1 — )| f| with some 3 > 0 if r
is small enough. This implies |¢| < 87|, that is,

0 1/2 )
(J (pt(s)+§)2s2rds> <Ot 2. (6.29)
0
We can now prove the bound for the first function in (6.26),
) © ] [© h(T)e—tT 2
i lZA‘TdA:f —J 2UC  pi(r)dr| ATTdA <
|y« Pan= [ [ E a1
N (* h(r)e T 1 2 CN(* h(T)e T 2 .
—_— =)dr| | A|TTdA ————dr| |A7"dA.
|1 52 e+ harl ran+ [ [ HEE L]

Due to the generalized Minkowski inequality, the last integral satisfies

o0 2 0 o |)\|—r 1/2 2
J dr ‘)\|_Td)\ < J h(T)e_tT f dX dr
—® 0 o 7—2 + >\2

00 2
=C (f e—tTT—T/2—1/2d7_> < Ctr_l.
0

The other integral can be bounded similarly,

0
J (pt(T)-f—%)dT
RPN
7t‘r 1
(J pe ) + 31 ([ ) dr) <
2
C’(J |p é}TT/21/2dT> <
0

JOO h(T)e '™

0 7'+1)\

2

oo] —tT
f h(r)e™ ™ AT <

o TH+IiA
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o0
Cf pi(T % _QTde e 2T lar < Ot Y,
0

where we used (6.29) and applied the generalized Minkowski and the Cauchy-
Schwarz inequalities. This completes the proof for the first two functions in (6.26).

The other two bounds are verified similarly. Note that ¢(s) := 0;pi(s)s™"
also solves the equation (6.27) with

© h(r)e

'l/)(s) : - ; o T 1s pt(T)dT.
In view of (6.11)
o(1), T —0,
0; = 6.30
5o (7) {O( 1=2H1og7), 7> 0 ( )

and, consequently, due to (6.19),

0(1), T —0,

i log h() = {O(logT) T — 0.

Calculations as in (6.28) then show that ||| < Ct"~'/2 and the claimed bound
for the next two functions in (6.26) are proved as above. The last two bounds
for the second order derivatives are verified along the same lines. ([

6.2. Proof of Lemma 5.1

In this subsection we will omit 6y from the notations for brevity. Covariance
function of the gradient process satisfies (5.11), where A(i)) introduced in (5.10)
is exactly the restriction of A(z) defined in (6.4) to the imaginary axis. Due to
Lemma 6.4,

Edips(X)0;p0(X) = Qij(t — 8) + R (s,8) + R (s,8) + R (s,1),  (6.31)

where we defined

Qij(t —s) == ifoo ; ! ———0; #A(u\) it=9)A g\ (6.32)

a7 ), XN X Wy
and
RW(s,1) = — f T o L G ANy (6.33)
(%) ’ 2’]T jX(—A) 14+ls 5
RO (5,1) = — f 0,106, ﬁA(iA)ei“—sﬂdx, (6.34)
R (s,1) := —f 0; Ry(iX)0; Ry (N AGN) e =92, (6.35)

The first bound in (5.12) is derived in the following lemma.
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Lemma 6.7. There exists C > 0 such that
|Qij(t —s)| < C At —s| 7| log |t — s||3, Vs, te R,.
Proof. Let us estimate the growth of the integrand in (6.32),

1 1

XX

at the origin and at infinity. In view (6.30) and (6.14),

oy _ L [7 dal) Olog [AI1), A =0,
oo X = = =
0;log X (iA) 7TJ-0 T—i)\dT {O(|)\|12H0 10g|)\|)7 \ — +oo.

Combining this estimate with (6.15) gives

& - -
O(AI"2Holog|Al), A — +oo.

1 COilog X(iIA)  JO(ATo 2 log A1), A =0,
X (i\) X (iN)

Consequently, in view of formula (6.4),

O(log? A7), A—0,
R i A
O(JA[** 0 log” [A]), A — £oo,

so that f € L'(R) and
Qi (=) < [ £l

Similarly we can estimate the derivative f’(\) with respect to A,

£ = O(IATMog? (A1) A —0,
O(I\'=*o log? |A]), X — +oo.

Standard bounds for the Fourier integral of such functions [23] imply

o0
Qi (t — s)| < ‘ f f(A)ei“—S”dA' < cft — 5| log [t — s||°,
—

(6.36)

(6.37)

for some constant ¢ > 0. The claimed estimate follows by combining the two

bounds.

The next lemma proves the second bound in (5.12).

O

Lemma 6.8. There exist constants b e (0,1), C > 0 and Typin > 0 such that

’2
for all s,t = Tin,
|R(1-)(s,t)| < Cs™V2,
IR (s,1)| < Ct112,

IR (s,1)] < C(st) "

(6.38)
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Proof. The expression in (6.23) satisfies the bound

X (N0 By (iN)] < ’(pt(—i)\) + (=) + 1) log X (i) [+ o0
[(pe(i0) — (1) 21 log X (1) + 21 2ipe(10)] + 2/iau ()], '

where we used the conjugacy X (i\) = X (—i)). Thus the expression for RS) (s,t)
n (6.33) satisfies

R (s,1)] < fo ‘aJX( )aR AR, (INA(N)|ar =
J ’a log X (ix HX i) Ry (i "Xi)\)@/\)
2 foo ) (12040 + [2sg )] )t (6.40)

s

0
2| 22O () + 3]+ ) + )
—00
where we used (6.39) and defined

A _s‘a logX(l)\)‘

F2(N) i=¢|0; (1)\)6ilogX(i/\)‘.
Due to the estimate (6.36),
O(log|A|™1), A — 0,
\) =
fi(N) {O<)\|1—2H0 log|)\|), A — 00,

and

O(log? |A|7Y), A =0,
) =
) {O(|>\|24H°10g2)\|), A — oo,

Thus fi, f> € L?(R). By estimate (6.26) with r = 0,

[ nolam i< 5l Jom) < 057

The same estimate is valid for the rest of the integrals in (6.40) and the first
bound in (6.38) follows. The second bound is proved similarly. To prove the
third bound, note that

,
IR (s,0)] < J ‘X(iA)ath(iA)X(iA)&iRS(iA)‘d/\ < (6.41)
—00

- X (iA)d; Ry (iN) “in . X(iN); Ry (iN) " 1/2.
(. o) ([ [)
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In view of (6.39),

f - ‘X(i)\)&’jﬁt(i)\)rd)\ <
4JOO (pe(=1iX) + g:(—iA) + 1), log X(i)\)‘2d)\+

. , (6.42)
4 J (p1(00) — a:(10)) 2 log X ()] A+

—00

0 2
SJ (%-pt(i)\)‘ dA+8J

—o0 —0o0

0

2
8iqt(i)\)‘ A,

Due to (6.36), |0; logX(i)\,n)’2 < CIA|7" for any r € (0,1). Hence, with r > 0
small enough, Lemma 6.6 guarantees that all the integrals in (6.42) are bounded
by Ct"~. Applying the same argument to the second term in (6.41) we conclude
that

|R§?)(S,t)| < Os"/2=1/24r/2=1/2,

This verifies the last bound in (6.38) with b:=1/2 —r/2 € (0,1/2). d
Finally, the next lemma verifies formula (5.13).

Lemma 6.9.
o0
Qij (0) = i J 61 log (6 + Kgo ()\))6] log (6 + K@O ()\))d)\
e
Proof. In view of (6.16) the expression in (6.32) can be written as

Qi5(0) - foo f%;ai#z\(m)cu =
or ) XN X
— fi 0; log X (i\)@; log X (—iA)dA.
On the other hand,

0
= f 0;10g A(iA)0; log A(IN)dA =
dm J_

0 a0
= f 0 log X (iX)d; log X (—iA)dA + ij d;1og X (iX)9; log X (i\)dA.
2 J_ o 2 J_op

Hence the formula in question is true if we show that the latter integral vanishes.
In view of (6.14),

o0
J 0;log X (1A)0; log X (iX)dA =
0

Ffo fo dia(T)0j(r) (J ey i)\d)\) drdr = 0.

The last equality holds since for any r,7 € R, the integral in the brackets
vanishes, as can be readily checked by the standard contour integration. O
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6.3. Proof of Lemma 5.2

This lemma involves only one dimensional distributions of the process p:(X, 6)
and its partial derivatives. On the other hand, unlike in Lemma 5.1, § may
be distinct from 6y, the true value of the parameter, which determines the
distribution of the sample X T In this subsection, we will stress this distinction
by adding the relevant parameter value to the notations.

We have to show that for all sufficiently small § > 0 there exist constants
C' > 0 and Ty,in > 0 such that

sup E(&iﬁjpt(X, 0))2 <C, Vt=Tun.
[0—0o] <6

Similarly to (6.31)

1 [~ 2
E(0:0; (X, 0))° = —J (0,0X:0)] A(X:00)dA <

J\OO
where the bound holds due to decomposition (6.22). It remains to prove that
both terms in the right hand side are bounded functions of ¢ € [Tyin, 00) for some

Tmin > 0, uniformly over 0 in a J-vicinity of 8y. This is done in the following
two lemmas.

~ 2
; (u;o)( A(X; 60)dA,

0
o H‘Am 00)d>\+f

Lemma 6.10. For all sufficiently small § > 0, there exists a constant C > 0

such that
o0
sup f
[0—8o]l<6 J—o00

Proof. The second order derivatives of (7, 6) defined in (6.11) are continuous
in 7 and satisfy, cf. (6.30)

aaJX )\9

‘ A(iN: 60)d < C.

0(1), T—0,
0;0;0(T,0) =
s(7.6) {O(leH log?7), T — 0.
Consequently
0;0;a(T,0) O(log |A|71), A—0,
0;0;log X (iX, 0 S dr =
oexin0) = [ 222 {O(IAI”H log? Al), A — £o0,

and in view of (6.15) and (6.36),

1 1
aian(i/\;G) T X(iN0)

A =210g” N7, A =0,
A 2H 1og? | A, A — .

(ai log X (iX: 0)d; log X (iX; 8) — 0,0 log X (i); 9)) -
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This estimate and (6.4) imply

1

2 A2 log! [AI7L, A —
00~ A(iA;Ho)—{' e A, A0,

6.43
IA2=*H1log? |\, A — o0 (6.43)

T X(i); 0)

This function is integrable on R for all sufficiently small § > 0 which verifies the
claim. O

Lemma 6.11. For all sufficiently small § > 0, there exist positive constants C,
Tmin and ¢ such that

o0
sup J
16—60[<é J—c0

Proof. In view of formula (6.23), it suffices to show that for all sufficiently small
& > 0, there exist positive constants C', Ty, and ¢ such that

~ 2
; (m;e)] A(iN;0o)d\ < Ct=¢, Yt = Tonin.

o0
. PR : INIE e
L(t) == LD ) (pr(iX, 0) + 2)) A(IX; 00)d) < CE°,
a0 1 2
L(t) = f sy e )] A Bo)dA < O, (6.44)
e (/\ 9)
0
I5(t) := fioo XOn 9)8 i0ipe (I, 9)‘ A(iX; 0p)dA < Ct™°,

for all @ such that |6 — 0| < d and all ¢ = Tpyi,. The same bounds are obviously
true for ¢;(i), @) and its derivatives as well.

Take an r > 0 small enough so that the assertion of Lemma 6.6 holds. Then
for any sufficiently small 6 > 0, the estimate (6.43) implies that

D) M ‘ A(iX;60) < ChIA|

for some constant C7 > 0, and the first bound in (6.44) holds with ¢ = 1 —r
by Lemma 6.6. The second bound holds by the same argument since, in view
of (6.37) and (6.4),

o ‘ (X ) = 4 OIAI log® A7), - A~ 0,
TX(iN,0) m 0) 0 O(A>*H1og? |N|), A — +o0.

To prove the third bound, note that by (6.16) and (6.4),

AiXb) oy _ [OUN#), A0,
‘Xl)\H ‘AIA o) - 5( 1)

A(iA;@) O(|)\‘1_2H0+25), A — +oo.
Thus
o0 2
I5(t) gEJ i jpt(i)\,e)‘ dA+
—

.

where the last bound is true due to Lemma 6.6. O

]ptme‘ HXI)\G‘AMHO )dA Ctl 4 ot
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7. Proofs of Theorems 3.2 and 3.4

As explained in Sect. 5.2, the LAN property in the small noise setting is derived
from the large time asymptotics. It will be convenient to change some notations
in order to emphasize the more relevant variables. In particular, we will indicate
the dependence of solution to (5.3) on € by the subscript and keep in mind its
dependence on #, omitting it from the notations. Thus the equation (5.3) reads

t
ege(t,s) + J- ocyls — P29 (t,r)dr = o%eys®T2, 0<s<t, (7.1)
0

where we defined cy = H(2H — 1).

7.1. The key lemmas

The following lemma reveals a useful relation between derivatives of g. (¢, s) with
respect to the parameter and time variables.

Lemma 7.1. The solution to (7.1) with e = 1 satisfies

0 0 5 0
tagl(t,s) + s&gl(t,s) +g1(t,s) = (2H — 1)o ﬁgl(t,s), 0<s<t.

Proof. The function g1 (¢, s) diverges to o0 as s — 0, which makes a useful differ-
entiation formula from [40] inapplicable, cf. (7.4) below. To avoid this difficulty,
define the function h(s,t) = sgi1(t, s), then

0 0
s%gl(t,s) +g1(t,s) = %(sgl(t,s)).

Multiplying the equation

¢
g1(t, s) + j oZepls — [P 2gi(t,r)dr = 0cys?2 0< s <t, (7.2)
0

by s and rearranging terms gives

¢
h(s,t) + J o?cyls — P 2h(r, t)dr =
0

t
o’cy <f s =[PP 72 (r — s)ga (¢, 7)dr + sQH—l) . (7.3)
0

The expression in the brackets in the right hand side is differentiable in s with
the derivative

¢
< <52H1 + f |s —r|2H72(r — s)gl(t,r)dr> =
0s 0

% <52H1 - f (s — 12 g (4 r)dr + f(r - 3)2H191(t,7~)dr) -

0 s
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t

(2H — 1) <s2H2 — J:(s — 2120, (¢, r)dr — L
(2H — 1) <52H2 B LS s T|2H291(t7r)dr> _

Since the solution h(s,t) is differentiable at any s € (0,t) (see [40])

(r—s)* 29, (t, r)dr) =

a t
% f h(r,t)|s — r|* 1 =2dr =
oo (7.4)

t
|s — T|2H72§h(7‘, t)dr + h(0, t)sQH*2 — h(t,t)(t — 5)2H*27
0 r

where h(0,t) = 0 by (7.3). Thus the right hand side of (7.3) is differentiable and
in view of the above formulas

¢
%h(s,t) + Jo ocy|s — 7*|2H*26—ih(r7 t)dr =
(2H — 1)g1(t, ) + o2cutgi (t,t)(t — )22 2. (7.5)
Arguing differentiability of g; (¢, s) with respect to ¢ as in [6, Lemma 3.5(i)] and
taking the derivative of (7.2) we get

0 t 50 _
%gl(t, s) + L ach\s - r|2H 2%gl(t,r)dr = —02cHgl(t,t)(t — s)2H 2,

Multiplying this equation by ¢ and adding the result to (7.5) gives
0 0
(t501(t5) + <-his,t)) +
J oZcy|s — r|PH 2 (t—gl(tﬂ") + —h(r, t))dr = (2H — 1)g1(t, s).
0 515 57"
On the other hand, differentiating (7.2) with respect to o shows that

0 ¢ 5 0
mgl(t,s) —&—f U2cH\s—r|2H Qﬁgl(t,r)dr—l-
0

t
| el =P 2gn ) = st 2,
0

or equivalently,

J t om—2 0 1
@gl(t,s)JrLa cHls — 7| ﬁgl(t,r)drz ﬁgl(t,s).

Comparing this equation to (7.6) we conclude that

0 5 O
gh(s,t) =(2H — 1)o ﬁgl(t,s)

by unignuness of the solution. O

Y g ( )
ot o
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The solution to (7.1) satisfies the following pivotal scaling property with
respect to €.

Lemma 7.2. Let v = 1/(2H — 1) and define
(1 —20%loge™” _ (40%log?e™"  —2loge
M(e,0) = (0 1 ) » V(e 0) = ( —2loge™" 0 ’

Then for anye >0 andt > s > 0,

ge(t,s) = Vg1 (te™7,5e77), (7.7)
Vye(t,s) ="V (ts*”’, SS*V)M(s, 07,

_ 0 IV
V2g.(t,s) =¢ 71/(5,0)?91 (te™7,5e77)
+e T M(c,0)V2g (te™ 7, 5277 ) M(£,0) 7. (7.9)

Proof. Identity (7.7) is obtained by scaling all the variables in equation (7.2)
by €77. To verify the identities for derivatives it will be convenient to use the
short notations

¢ —a1(t,s),

g1 (t,s) :== o

0
gl(t 5) oo 291<t’5)’
2
glll(tas) = ng(t,s),
0

0
ﬁﬁgl(t#),
52
g1 (t,s) := ng(ta 5),

g’ (t,s) =

and define the variables u := se~7 and v := te~ 7. Then

0
ﬁgE(t’ s)=¢e¢ g} (11, u)

and, in view of Lemma 7.1,

ﬁge(tv S) = Eiﬂygll (Ua U)+

OV ( Ay 0u 0 4OV 0 _
P17t (s loge tgi(v,u) + ¢ o 6ugl( u) +¢e- o 8 g1 (v, u)) =
i 9 _ _1 0 0

71 (v,u) = 292 log e (10, 0) + u-g1(v,0) + V31 (v,)) =
e~ (g’l(v7 u) —2loge Vo%gl (v, u))7

which verifies (7.8). Taking another derivative with respect to H we get
92
Sgade(s:t) = — 2%V loge™! (91(1& u) - 2loge~"o’g] (v, U)> +
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2 (40, ) ~ 2100 0, ).

Here
0 0 0
1 (0,1) =g} (v,0) = 292 log e ™ (u=-g} (v,0) + v2-g) (v,0)).
By Lemma 7.1
0 ’ J / ’ 2 e o? o
UZ (00 + ot (0,) + 4 (0.) = 2077 (0,) + g7 (v.0)
and hence

2

0 - . 0" .
SR ) = o) = 297 loge (2007 (0) + Tgf (v.0) = g} (0,1)).

Similarly,

a . _ 2 e a . —
ﬁ@gl(v,U)) = —277g1 (v, u) +’Yﬁ91 (v,u) =

’ a a
9.2, . 9.2 —1(, 7 e U
27791 (v, u) +7<91 (v,u) — 2y~ loge (uaugl(v,U) +vavgl(v7U)))-

By Lemma 7.1
a L] a L] L] 1 L] 0-2 LX]
U%gl (v,u) + ua_’u,gl (’1)7’11,) + 91 (U’u) = ;gl (’U7’U,) + 791 (’Uvu)’

and hence

a [ ] [ ] ./
T (vgl (v, U)) =—29g} (v,u) + 79} (v, u)

— 1 L] 0-2 o0 L]
— 29%1oge ™ (Zg3 (v, u) + Zg1* (u,v) — g1 (v, w)).
Y v
Plugging these equations we get

62
mga(t7 s) =g " (gi’(v, u) — 4loge Yo%} (v, u) + 40t log® eV g* (v, u))

+4e Y log? e Yo% gt (v, u).
The other two second order derivatives are

32

mgg(t,s) =c"7g7* (ts_w,sa_w),
mgs(t, s) =7 (g'l'(v,u) —2loge ™ Vo%g7% (v, u) — 210g5*7g1(v,u)).

In matrix notation this gives (7.9).
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7.2. Proof of Theorem 3.2
In view of Lemma 7.2,
t
V05 (X5, 00) = j Vg (t,t — )dX =
f V. (t,t — s)ogdBHo + (/e J Ve (t,t — s)dB, =
J e °Vygq (ts ot — s)e’VO)M(s,HO)TJOdBSHO—k
0

t
\@f eV gy (te™°, (t — 8)e ™) M (e, 0p) " d B, 4
0

te— 70
g 0gr0Ho (J Vi (te ", te™ " — s)aodBf"> M (e,00) "+
0

t5770
gl/2=v0g0/2 (J Vg, (155*”*0,15577O - s)st> M(s,HO)T =
0

5(1_7")/2V,0%€,70 (XY, 00)M(e,00) T,
where the equality in distribution holds by the self-similarity of the fBm. This

equality holds simultaneously for all t € R, and hence the two processes coincide
in distribution. Consequently

1 T r T € 5 £ 5 d
SO | T X 00) Vi (X Guhitote) £
e 0¢(e) T M (e, o) <f VPt (X,00)Vpess (Xl,ﬁo)dt)M(e,Go)Taé(e) =
1 Te Y0
T57°¢(6)TM(5,00)<WJ V(XY 00)Vpr (X1 oo)d) (,60) T p(e).

0

In view of (5.8)

1 e T 1 1 Q)
Tg*'YOJO V (X HO)th(X 90) j](eo,l),

and hence (5.15) holds if ¢(e) = ¢(e,6p) satisfies (3.4). It remains to show
that (5.16) holds for the same choice of ¢(g,6p). To this end,

2

J (JJ 'V (X6’90+3¢(6)U)¢(6)udsd7> dt <

EL L E UTQZ’(&)Tvzpf(XE,Qo + 5¢(5)U)¢(€)u)2dtd5,
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Under the condition (3.4), |¢(,00)| = O(7/2loge™1) and it suffices to check
that

T 2
5270*110g4sflf EHV2p§(X€,9)H dt —— 0,
0

e—0

uniformly over {6 : |6y — 0|| < 6} for all § > 0 small enough. Recall that
¢ ¢
V2p5 (X<, 0) = J V2g.(t,t — s)oedBo + \/gf V2g.(t,t — s)dBs.
0 0
In view of Lemma 7.2
¢
J V2ge(t,t — s)dBHo =
0
¢
5_7M(€,9)f Vg1 (te™7, (t — s)e V) dBHo M (e,0) T+
0

t
e (e, 0) J ngl (te™7, (t — s)e"y)dBfo 4
0 60'
te™ Y

o= M (g, 0) J V2 (te 7, te™ — s)dBHoM(c,0) T+
0

te Y
eTHo=vy ¢, H)J 202 (te™,te™ = 5)dBIo =: Jy(e, te™7) + Ja(e,te 7).
0

The first term satisfies

T 2
g0 ]pgt e 71 J EHJl(E, te™7)| dt =
0

g0 logt eI

1 (T 9
— L EHJl(s,t)H dt <

2701150t o1 27H072~/HM( 9)H4 r TE_WE 2dt<
€ og e ¢ g, Te <

t
M Vg (¢, t — s)dBHo
0 0

g2(vo=7)+2(Ho—H)v+y log8 e ' TC — 0
e—0

where the last bound is due to Lemma 5.2 and the convergence holds uniformly
over {0 : |0 — 0y| < 4} for all sufficiently small § > 0. Similarly,

T 2
g210-1]pgt e 71 f EHJQ(s, ts_"Y)H dt =
0

oty 1 L [T 2
Y01 Jogh e EH t H dt =
€ og” € TE—VL Ja(e,t)

. . T Te " t P " 2
£290-121H0=27 | gfluy(g,g)”?Tg_vf EM 2391(tt—s)dBI | di <
0 0

20— +2(Ho—H)v+7 1008 =17 —, (),
e—0
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where the last inequality is due to Lemma 5.1. Analogously,
t
\/Ef V2g.(t,t — s)dB, =
0

Vee "M (e,0) ( J: Vg1 (te™, (t — S)E_V)dBS) M(e,0)" +

x/Ea‘*”V(e,f))f %gl (te™7, (t — 5)e ") dB, <
0

te ™
D207, 9) (J V2gi (te ™7, te™ — s)st>M(6, 0)" +
0
te™ 7
=12y (e, H)J 252 (te™7,te™7 — 5)dB,s =: Ji(e,te ™) + Ja(e, te™ 7).
0 o

The first term vanishes asymptotically as € — 0,
T 2
g2~ ]og? sflj EHJ1(5,t6*7)H dt =
0

g2 ogt e~ T

Te Y 2
Tgﬂjo EHJl(e,t)H dt <

2
dt <

Te 7 t
I og! O Ty [ e [ Vit - o)am,
0 0

g10Ft00=N Jog* 71| M (e, 0)|[*TC — 0

where the last inequality holds by Lemma 5.2. Similarly,

e—0

T 2
g2l pgt g1 J EHJQ(E,ts’V)H dt — 0.
0
This verifies (5.16) and completes the proof.

7.8. Proof of Corollary 3.3

For brevity denote the matrices in (3.4) by M := M(e,6p) and I := I(0p;1).
Consider the Cholesky decomposition

MIM"T =LLT,

where L is the unique lower triangular matrix with positive diagonal entries.
A simple calculation shows that

m(e)v/ Iz 0

L=\ m %m (1+0(1)), &—0
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where m(e) = 202 loge~"/(2Ho=1) Hence the matrix

1
£, 00)T = V/(4Ho=2) -1
¢( 0) ﬁ

satisfies condition (3.4). The assertion (2) of Corollary 3.3 is obtained by apply-
ing Theorem 2.2 to loss functions constant in the first variable. The assertion
(1) is proved similarly, using the upper triangular Cholesky decomposition.

7.4. Proof of Theorem 3./

For a fixed 02, the LAN property of the one dimensional family (P?H,ag))He(3/4,1)

is obtained by considering the likelihood ratio (5.14) with diagonal ¢(e, 8y) and
u restricted to the line {uje; : u; € R} where e; = (1,0)". For the vectors from
this subspace, the limit (5.15) holds if, cf. (3.4),

e~ V/CH=D T o2 00) T M (e,00)T1(0o; 1) M (<, 00) T d(e, 00)es - 1.

For diagonal ¢(¢,8y), this convergence is true if

1 1
203 log e=V/(2Ho=1) \ /TT50(0g; 1)

P11(e,00) = c1/(4Ho—2)

which is the scaling claimed in (3.5). The property (5.16) continues to hold
as before. This proves assertion (1) of Theorem 3.4. Assertion (2) is proved
analogously, by restricting u to the subspace {u = usey : us € R} with ey =
(0,1)7.

Appendix A: Rate optimal estimation in the small noise regime

In the small noise regime the optimal rates of Corollary 3.3 and Theorem 3.4 can
be achieved by a modification of the estimator suggested in [18]. Let us briefly
sketch the idea. Take any mother wavelet function v with compact support and
two vanishing moments. Define its translates and dilations

VYie(t) = 272927t — k), jeN, kel

Consider the wavelet coefficients of o B
dj’k = J Qﬁj’k(t)Ung{ (Al)
R

and define the energy of the j-th resolution level

27711

Q; = Z d3 .
k=0
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Standard calculations show that these random variables satisfy

2
Q, = %CH(w)zf@ 2H) 4 Op (279 H=92) - j s oo, (A.2)
where
J f Y(u H(2H —1)|u — v|*"~2dudv.
Consequently,
Qé“ =227 L Op(279/%), j— . (A.3)
J

Natural estimators for the wavelet coefficients are obtained by replacing the
fBm in (A.1) with its noisy observation

Ti= | dutiax, (A4)

Since Ed2 & = Ed3 )+ €][? it makes sense to estimate d7 ; by

e~

iy = (djr)? — elvl?

and, accordingly,
211

-2 z,

In view of (A.3), the method of moments suggests the estimators

The bias of these estimators decreases with j whereas their variance increases.
In view of the residual in (A.3) and the optimal rate, known from Corollary 3.3,
it is reasonable to suggest that the optimal choice of j should be such that

9=i/2 _ (1/(4H-2), (A.5)

This choice is only an “oracle” since it requires H to be known. To mimic this
choice of j, asymptotics (A.2) can be used again. To this end (A.5) can be
rewritten as 2/(=2H) — 27¢ which, in view of (A.2), suggests the selector

J¥ =max{l<j<J€:@j > e},

where J. = [2log,e71] and J is an arbitrary nonessential constant. It can be
shown that with high probability J* will be close to 57— logye™ L' < J. and
the ultimate estimator is set to be

H(e) := Hys. (A.6)
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Proposition A.1. The estimation error e=V/AH=2)(H(e) — H) is bounded in
Pg-probability, uniformly over compacts in ©, as € — 0.

Proof. (Adaptation of [18].) O

Remark A.2. In the context of Theorem 3.2, this result implies rate optimality
for a particular class of loss functions of the form

EM(u) = (|u| — M)+ Al < 1{|u\;M}7
since the above estimator satisfies

lim sup Egls (5_1/(4H_2)(I§(5) - H)) <1
e=0¢eK

for any compact K < © and all M large enough.

Estimation of o2 can be based on (A.2) as well. The method of [18] implies
that the estimator ~
2 Qx

Chi(eyn1 (V) 272220 ()

where ﬁ(e) is defined in (A.6), is rate optimal.

52(e) =

(A7)

Proposition A.3. The estimation error

1
I /( )1—1<0- (E) — 0 )

is bounded in Pg-probability, uniformly over compacts in ©, as € — 0.

Similarly, the estimators

2 Qj.(e)

&2(5) = cH(w) 2j-(2—2H)

with j. = [ﬁloge’l] and

N 1 2
H()=1——1log, [ ————Q«
2.Jx 2 <a2cﬁ(E)A1(¢) Je

are rate optimal for the corresponding parameter, when the other parameter is
known.

A.1. A numerical illustration

Below is a numerical illustration of the estimators ﬁ(e) from (A.6) and &(¢)
from (A.7). We used db2 Daubechies wavelet function ¢ with two vanishing
moments and approximated the stochastic integrals in (A.4) by the Riemann-
Stieltjes sums on the uniform grid of 2V points with N = 23. Figure 1 depicts the
empirical distributions of the estimation errors around the true values H = 0.8
and 0 = 1in M = 10,000 Monte-Carlo trials for a decreasing sequence of values
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Fic 1. Estimation errors for the estimators (A.6) and (A.7) in M = 10,000 Monte Carlo
trials. The true values of parameters are H = 0.8 and o = 1.

of e. The errors of the estimator H (¢) appear to be evenly dispersed around the
true value of H and become more concentrated as € decreases. The empirical
error distribution of the estimator & (e) also shrinks when e decreases but is
visibly skewed towards positive errors. The large outliers correspond to those
estimates of H which are close to 1. This effect is due to the function cg (1) in the
denominator (A.7) which vanishes at H = 1. It becomes practically insignificant
as the estimator of H gets more accurate and the denominator departs from the
near zero values.

Next we approximated the Root Mean Squared (RMS) error of the estima-
tor (A.6) by averaging over M = 10,000 Monte-Carlo experiments (so that the
statistical approximation error is of order 0.01). The result is depicted in Fig. 2
in the log-log scale. The obtained plot appears to be well fitted to a straight line
whose slope is predicted by Proposition A.1 to be equal to 1/(4H —2) asymptot-
ically as € — 0. Remarkably the actual slope turns out to be very close to this
prediction in spite of the imprecisions introduced by the Monte-Carlo averaging,
discrete approximation of the stochastic integrals and finitely small values of €.
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F1G 2. The log-log plot of the empirical RMS error of the estimator (A.6) as a function of €.
The linear fit line has slope of 0.8492 which equals 1/(4H — 2) for H = 0.7944. This fits the
true value H = 0.8 with only 0.7% deviation.
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