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1. Introduction

Estimation of the Hurst parameter is an old problem in statistics of time series.
A benchmark model is the fractional Brownian motion (fBm) BH “ pBH

t , t P

R`q, that is, the centered Gaussian process with covariance function

EBH
t BH

s “
1
2 t

2H
`

1
2s

2H
´

1
2 |t ´ s|

2H

where H P p0, 1q is its Hurst exponent. The fBm is a well studied stochastic
process with a variety of interesting and useful properties, see, e.g., [34, 16].
Its increments are stationary and, for H ą

1
2 , positively correlated with the

long-range dependence

8
ÿ

n“1
EBH

1 pBH
n ´ BH

n´1q “ 8.

It is this feature which makes the fBm relevant to statistical modeling in many
applications.

A basic problem is to estimate the Hurst parameter H P p0, 1q and the
additional scaling parameter σ2 P R` given the data

XT :“ pσBH
t , t P r0, T sq.

Since both parameters can be recovered from XT exactly for any T ą 0, a
meaningful statistical problem is to estimate them from the discretized data

XT,Δ :“
`

σBH
Δ , . . . , σBH

nΔ
˘

(1.1)

where Δ ą 0 is the discretization step and n “ rT {Δs. The two relevant regimes,
in which consistent estimation from (1.1) is feasible, are the large time asymp-
totics with a fixed Δ ą 0 and T Ñ 8, and the high frequency asymptotics with
Δ Ñ 0 and a fixed T ą 0.
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Often it is more realistic to consider the partially observed setup in which
the trajectory is contaminated by additive noise. One possibility is to assume
that the noise is added after discretization so that the available data is given by

XT,Δ :“
`

σBH
Δ ` ξ1,n, . . . , σB

H
nΔ ` ξn,n

˘

, (1.2)

where ξj,n are i.i.d. random variables independent of BH . Such observation
scenario fits the situation when a signal, e.g., the position of a particle or a
stock price, is measured periodically by a noisy sensor. Statistical properties of
this model are relatively well understood (see some details in Sect. 4.2 below).

Another possibility is to assume that the noise is added directly in continuous
time. In this case a natural setup to consider is the mixture of the fBm with an
independent standard Brownian motion Bt:

XT :“
`

σBH
t `

?
εBt, t P r0, T s

˘

(1.3)

where ε ą 0 is the known noise intensity. The formal derivative of this process
is the basic noise model in engineering applications, such as astronomical data
processing [45], GPS communications [31], analysis of seismic data [22]. The
estimation problem for the observation model (1.3) corresponds to calibration
of the parameters of its fractional component [1, 2, 44, 3, 4].

From the statistical standpoint, a peculiar feature of the process (1.3), called
the mixed fBm in the probabilistic literature, is that consistent estimation in
the high frequency regime is possible only for H ď 3{4, see [13]. It was shown in
[7] that for H ą 3{4 the probability measures induced by the the process (1.3)
and the Brownian motion

?
εB are mutually absolutely continuous. This implies

that the parameters in question cannot be recovered exactly from the sample
XT for any finite T and, a fortiori, from its discretization.

In this paper we consider estimation problem for the parameters H and σ2

from the sample (1.3) when H P p3{4, 1q. Our objective is to identify the best
achievable minimax rates in the large time (ε ą 0 is fixed and T Ñ 8) and small
noise (T ă 8 is fixed and ε Ñ 0) asymptotic regimes. To this end, we prove
the Local Asymptotic Normality (LAN) property in both cases and discuss the
construction of the rate optimal estimators.

The rest of the paper is organized as follows. Section 2 outlines the essential
background needed to formulate the main results in Sect. 3. The results are
discussed and compared to the relevant literature in Sect. 4. The proofs appear
in Sects. 5–7.

2. The LAN property and Hájek’s bound

Let us briefly recall Le Cam’s LAN property and its role in the asymptotic theory
of estimation. A comprehensive account on the subject can be found in, e.g., [21].
An abstract parametric statistical experiment consists of a measurable space
pX ,Aq, where A is a σ-algebra of subsets of X , a family of probability measures
pPθqθPΘ on A with the parameter space Θ Ď R

k and the sample X „ Pθ0 for
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some fixed true unknown value θ0 P Θ of the parameter variable. Asymptotic
theory is concerned with a family of statistical experiments pX h,Ah, pPh

θ qθPΘq

indexed by a real valued variable h ą 0.

Definition 2.1. A family of probability measures pPh
θ qθPΘ is Locally Asymp-

totically Normal (LAN) at a point θ0 as h Ñ 0 if there exist nonsingular k ˆ k
matrices φphq “ φph, θ0q such that, for any u P R

k, the Radon-Nikodym deriva-
tives (likelihood ratios) satisfy the scaling property

log
dPh

θ0`φphqu

dPh
θ0

pXh
q “ uJZh,θ0 ´

1
2}u}

2
` rhpu, θ0q (2.1)

where the random vector Zh,θ0 converges weakly under Ph
θ0

to the standard
normal law on R

k and rhpu, θ0q vanishes in Ph
θ0

-probability as h Ñ 0.

Define a set W2,k of loss functions � : Rk ÞÑ R`, which are continuous and
symmetric with �p0q “ 0, have convex sub-level sets tu : �puq ă cu for all c ą 0
and satisfy the growth condition lim}u}Ñ0 expp´a}u}2q�puq “ 0, @a ą 0. The
following theorem establishes asymptotic lower bound for the corresponding
local minimax risks of estimators in LAN families.

Theorem 2.2 (Hájek). Let pPh
θ qθPΘ satisfy the LAN property at θ0 with matri-

ces φph, θ0q Ñ 0 as h Ñ 0. Then for any family of estimators pθh, a loss function
� P W2,k and any δ ą 0,

lim
hÑ0

sup
}θ´θ0}ăδ

Eh
θ �
`

φph, θ0q
´1

ppθh ´ θq
˘

ě

ż

Rk

�pxqγkpxqdx,

where γk is the standard normal density on R
k.

Proof. [21, Theorem 12.1].

Estimators which achieve Hájek’s lower bound are called asymptotically ef-
ficient in the local minimax sense. Usually likelihood based estimators, such as
the Maximum Likelihood or the Bayes estimators with positive prior densities,
are asymptotically efficient. However, they can be excessively complicated and
thus it often makes sense to construct simpler estimators, which are at least rate
optimal. In complex models this is sometimes done separately for each compo-
nent of the parameter vector, following some ad-hoc heuristics. Proving rate
optimality of the obtained estimators requires finding the best minimax rates
for each entry of the parameter vector.

Let us explain how such entrywise rates can be derived using the bound of
Theorem 2.2. Analysis of the likelihood ratio in (2.1) typically shows that in
LAN families φph, θ0q must satisfy the condition

φph, θ0q
JMph, θ0qIpθ0qMph, θ0q

Jφph, θ0q ÝÝÝÑ
hÑ0

Id, (2.2)

where the matrices Mph, θ0q and Ipθ0q are determined by the statistical model
under consideration. The matrix Ipθ0q is positive definite and independent of
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h, and it can be often regarded as the analog of the usual Fisher information
matrix.

Consider the Cholesky decomposition

Lph, θ0qLph, θ0q
J

“ Mph, θ0qIpθ0qMph, θ0q
J

where Lph, θ0q is the unique lower triangular matrix with positive diagonal en-
tries. Then (2.2) holds with φph, θ0qJ :“ Lph, θ0q´1 and the last entry of the
vector φph, θ0q´1ppθh ´ θq is given by

“

φph, θ0q
´1

ppθh ´ θq
‰

k
“
“

Lph, θ0q
J

ppθh ´ θq
‰

k
“ Lkkph, θ0qppθh,k ´ θkq.

Let r� P W2,1 be a loss function of a scalar variable, r� : R ÞÑ R`, and define
�pxq :“ r�pxkq, x P R

k. This loss function belongs to W2,k and Hájek’s bound
implies

lim
hÑ0

sup
}θ´θ0}ăδ

Eh
θ
r�
`

Lkkph, θ0qppθh,k ´ θkq
˘

ě

ż

R

r�ptqγ1ptqdt ą 0. (2.3)

This inequality identifies the last diagonal entry of Lph, θ0q as the best minimax
rate in estimation of θk. Similar bound for an arbitrary entry can be obtained
by permuting the components of θ so that it becomes the last.

A commonly encountered instance of (2.2) is when the matrix Mph, θ0q is
diagonal. Then Lph, θ0q “ Mph, θ0qSpθ0q where Spθ0q is the Cholseky factor of
Ipθ0q. Since Ipθ0q is positive definite, all diagonal entries of Spθ0q are positive
(and constant in h) and, in view of (2.3), the best minimax rate is determined
only by Mkkph, θ0q. This is the case for our model in the large time asymptotic
regime with h :“ 1{T (see Theorem 3.1). In the small noise regime with h :“
ε, the matrix Mph, θ0q is non-diagonal (see Theorem 3.2), which results in a
logarithmic discrepancy between the best minimax rates in estimation of each
parameter.

3. Main results

3.1. Large time asymptotics

Covariance function of the fBm with parameter variable θ “ pH,σ2q P p3{4, 1qˆ

p0,8q “: Θ can be written as

covpBH
s , BH

t q “

ż s

0

ż t

0
Kθpu ´ vqdudv

where
Kθpτq “ σ2Hp2H ´ 1q|τ |

2H´2. (3.1)
The Fourier transform of this kernel has the explicit formula

pKθpλq “

ż

R

Kθpτqe´iλτdτ “ σ2aH |λ|
1´2H , λ P Rzt0u, (3.2)
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with the constant aH :“ Γp2H `1q sinpπHq. The function pKθpλq does not decay
sufficiently fast to be integrable on R and hence, strictly speaking, it is not a
spectral density of a stochastic process in the usual sense. Roughly, it can be
thought of as the spectral density of the fractional noise, a formal derivative of
the fBm.

Denote by PT
θ the probability measure on the space of continuous functions

Cpr0, T s,Rq induced by the mixed fBm (1.3) with parameter θ and a fixed noise
intensity ε ą 0.

Theorem 3.1. The family pPT
θ qθPΘ is LAN at any θ0 P Θ as T Ñ 8 with

φpT q “ T´1{2Ipθ0, εq
´1{2

where Ipθ0, εq is the Fisher information matrix

Ipθ, εq “
1
4π

ż 8

´8

∇J log
`

ε ` pKθpλq
˘

∇ log
`

ε ` pKθpλq
˘

dλ ą 0 (3.3)

with ∇ being the gradient with respect to parameter variable θ.

In view of the discussion in the previous section, this result implies that the
rate T´1{2 is minimax optimal for both H and σ2. As explained in Sect. 4.3,
this rate is achievable and, moreover, Hájek’s lower bound can be approached
arbitrarily close by estimators based on sufficiently dense grid of discretized
observations. The Fisher information matrix in (3.3) remains finite if and only
if H ą 3{4, in agreement with the absolute continuity of measures [7]. It admits
of an explicit though somewhat cumbersome expression.

3.2. Small noise asymptotics

With a convenient abuse of notations, let Pε
θ now denote the probability measure

induced by the mixed fBm (1.3) with parameter θ and a fixed interval length
T ą 0. Define the matrix

Mpε, θq “ ε´1{p4H´2q

ˆ

1 ´2σ2 log ε´1{p2H´1q

0 1

˙

.

Theorem 3.2. Assume that φpε, θ0q satisfies the scaling condition

φpε, θ0q
JMpε, θ0qTIpθ0, 1qMpε, θ0q

Jφpε, θ0q ÝÝÝÑ
εÑ0

Id, (3.4)

with Ipθ0, 1q defined in (3.3). Then the family pPε
θqθPΘ is LAN at θ0 P Θ as

ε Ñ 0.

Condition (3.4) cannot be satisfied by any diagonal matrix φpε, θ0q, since in
this case the limit, if exists and finite, must be a singular matrix. Otherwise the
choice of φpε, θ0q is not unique. As explained in the previous section, the upper
and lower triangular Cholesky factors of the matrix Mpε, θ0qIpθ0, 1qMpε, θ0qJ

reveal the optimal minimax estimation rates for H and σ2.
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Corollary 3.3.

1) For any family of estimators pHε, a loss function � P W2,1 on R and δ ą 0,

lim
εÑ0

sup
}θ´θ0}ăδ

Eθ�
`

ε´1{p4H0´2q
p pHε ´ Hq

˘

ě

ż

R

�px{Jpθ0qqγpxqdx,

where γ is the standard normal density on R and

Jpθq :“

d

T
´

I11pθ, 1q ´
I12pθ, 1q2

I22pθ, 1q

¯

.

2) For any family of estimators pσ2
ε , a loss function � P W2,1 on R and δ ą 0,

lim
εÑ0

sup
}θ´θ0}ăδ

Eθ�
´

ε´1{p4H0´2q 1
log ε´1

`

pσ2
ε ´ σ2˘

¯

ě

ż

R

�px{Spθ0qqγpxqdx,

where γ is the standard normal density on R and

Spθq :“
H ´

1
2

σ2 Jpθq.

If only one parameter is to be estimated, while the other one is known, the
relevant LAN property corresponds to the respective one-dimensional family.
The following theorem shows that the optimal minimax rates is these cases
improve by a logarithmic factor.

Theorem 3.4.

1) For any fixed σ2
0 P R`, the family

´

Pε
pH,σ2

0q

¯

HPp3{4,1q
is LAN at any H0 P

p3{4, 1q as ε Ñ 0 with

φpε,H0q :“ ε1{p4H0´2q 1
log ε´1

H0 ´
1
2

σ2
0

1
a

TI22pθ0, 1q
. (3.5)

2) For any fixed H0 P p3{4, 1q, the family
´

Pε
pH0,σ2q

¯

σ2Pp0,8q
is LAN at any

σ2
0 P R` as ε Ñ 0 with

φpε, σ0q :“ ε1{p4H0´2q 1
a

TI22pθ0, 1q
.

4. A discussion

4.1. On the information matrix

The expression for the Fisher information matrix in (3.3) is known as Whittle’s
formula. It was discovered by P. Whittle [42, 43] and was originally derived for
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discrete time stationary Gaussian processes with continuous spectral densities,
see also [41]. Its validity was extended in [11, 12] to sequences with long range
dependence, for which the spectral density has an integrable singularity at the
origin.

Whittle’s formula in continuous time is a more subtle matter due to complex-
ity of the absolute continuity relation between Gaussian measures on function
spaces. In fact, according to the survey [15], it was never rigorously verified
beyond processes with rational spectra. One important class for which further
generalization is plausible are processes observed with additive “white noise”,
that is,

Xt “ Zt ` Bt, t P r0, T s,

where B is a standard Brownian motion and Z is a centered Gaussian process
with stationary increments. The mixed fBm is a special case from this class.

Results in [37] imply that the probability measure induced by X is equivalent
to the Wiener measure if and only if

EZtZs “

ż t

0

ż s

0
Kθpu ´ vqdudv

for some kernel Kθ P L2pr0, T sq. In this case, the Radon-Nikodym derivative
has the same form as in (5.4). Using the theory of finite section approximation
from [19] it is indeed possible to prove Theorem 3.1 for such processes under
the additional, crucial to the approach of [19], assumption K P L1pRq.

This condition is violated by the kernel (3.1), which makes the method of [19]
inapplicable. This is not entirely surprising in view of the difficulties, needed to
be overcome in [11] to extend Whittle’s theory to discrete time processes with
the long range dependence. The results in our paper are proved using a different
approach, based on the ideas from [39] and their recent applications to processes
with the fractional covariance structure [8].

4.2. On the joint and separate estimation

Logarithmic discrepancy in the minimax rates between joint and separate es-
timation as in Corollary 3.3 and Theorem 3.4 is known to occur in the high-
frequency regime in experiments with discrete data such as (1.1). The optimal
rates for the separate estimation of H and σ2 for Δ “ T {n are

n´1{2 1
logn and n´1{2

respectively, see [26] and references therein. These rates are achievable, e.g., by
estimators based on discrete power variations as in [24, 27, 10].

It was long noticed that analogous estimators achieve slower rates, degraded
by logarithmic factor:

n´1{2 and n´1{2 logn (4.1)



Estimation of the Hurst parameter 2351

when both parameters are unknown. These rates were recently proved minimax
optimal in [5] where the LAN property was shown to hold with a non-diagonal
matrix M in (2.2).

High frequency estimation from the noisy data (1.2) was considered in [18],
where the optimal minimax rates for joint estimation of H ą 1{2 and σ2 were
found to be

n´1{p4H`2q and n´1{p4H`2q logn,
respectively. These rates are slower than those in (4.1), confirming the intuition
that noise should make the estimation problem harder. For further developments
in the minimax theory of this and related models see [35, 36]. The same rates
are shown to remain optimal for H ă

1
2 in the recent preprint [38].

Another important direction of research is concerned with construction of
consistent estimators with explicit asymptotic distribution. Such results can
be useful, e.g., for construction of asymptotic confidence intervals. In [29] the
authors consider a model more general than (1.2) where σBH

t is replaced with
the process

ż t

0
bsds `

ż t

0
σsdB

H
s

with unknown, possibly random functions b “ pbt, t P r0, T sq and σ “ pσt, t P

r0, T sq. They construct a family of consistent estimators for H and prove their
asymptotic normality. Inference in presence of jumps is studied in [30].

Hurst parameter estimation for the mixed fBm (1.3) with H ă 3{4 is ad-
dressed in [13], where estimators, consistent in the high frequency regime, are
constructed using the power variations technique. Recently it was shown in [9]
that if BH and B in (1.3) are correlated, H becomes identifiable and can be es-
timated consistently in the high frequency setup for the whole range H P p0, 1q.
The case of complete correlation is studied in [14].

4.3. On the rate optimal estimators

It is typical for the LAN models in general that Hájek’s asymptotic bound
(Theorem 2.2) is attained by the Maximum Likelihood estimator and Bayes
estimators with positive prior densities, see [21]. However, this is not automatic
and, in our case, the proof would require estimates on the solution to the integral
equation (5.3), more delicate than those needed for the LAN analysis presented
in this paper. Such estimates currently remain out of reach and thus the question
of exact attainability of Hájek’s bound remains open.

On the more practical side, likelihood based estimators for the model under
consideration are of limited interest, since their realization needs a high precision
numerical solution of (5.3) and approximation of the stochastic integrals in (5.4).
A less ambitious but still meaningful objective is to construct simpler estimators
whose asymptotic risk exceeds the bound only by a constant.

In our case, such a rate optimal estimator in the large time asymptotic regime
can be constructed using increments of the observed continuous path on a dis-
crete grid of points with a step δ ą 0. These increments form a stationary
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sequence to which, e.g., Whittle’s spectral estimator applies directly. The the-
ory from [11] then tells that it achieves the rate T´1{2, optimal by Theorem 3.1.
Moreover, its limit risk can be made arbitrarily close to Hájek’s bound with the
Fisher information matrix (3.3) if δ is chosen small enough.

In the small noise regime, rate optimal estimators can be constructed by
means of the method suggested in [18], see some details in Appendix A. These
estimators attain the best possible minimax rates derived in Corollary 3.3 and
Theorem 3.4. However, they can hardly be expected to attain Hájek’s bound
exactly.

5. The proof roadmap

In this section we detail the principle steps of the proof, deferring its more
technical parts to the next sections. Let B “ pBt, t P R`q and BH “ pBH

t , t P

R`q be independent standard and fractional Brownian motions on a probability
space pΩ,F ,Pq. The mixed fBm (1.3) with θ “ pH,σ2q P p3{4, 1q ˆ R` satisfies
the canonical innovation representation [20]

Xt “

ż t

0
ρtpX, θqdt `

?
εBt, t P r0, T s, (5.1)

where B is a Brownian motion with respect to FX
t “ σtXs, s ď tu, and

ρtpX, θq “

ż t

0
gpt, t ´ s; θqdXs, (5.2)

and the function gpt, s; θq solves the integral equation

εgpt, s; θq `

ż t

0
Kθpr ´ sqgpt, r; θqdr “ Kθpsq, 0 ă s ă t, (5.3)

with the kernel Kθp¨q defined in (3.1). This equation has the unique solution in
L2pr0, tsq since its kernel is Hilbert-Schmidt for H ą 3{4. The stochastic integral
in (5.2) can therefore be defined in the usual way, see [33].

Let PT and PT
θ be the probability measures on Cpr0, T s,Rq induced by the

Brownian motion
?
εB and the mixed fBm with parameter θ, respectively. By

the Girsanov theorem, applied to the innovation representation (5.1), these mea-
sures are mutually absolutely continuous PT „ PT

θ with the Radon-Nikodym
derivative

dPT
θ

dPT
pXT

q “ exp
˜

1
ε

ż T

0
ρtpX, θqdXt ´

1
2

1
ε

ż T

0
ρtpX, θq

2dt

¸

. (5.4)
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5.1. The large time asymptotics

In view of (5.1) and (5.4) the likelihood ratio in Definition 2.1 takes the form

log
dPT

θ0`φpT qu

dPT
θ0

pXT
q “

1
?
ε

ż T

0

`

ρtpX, θ0 ` φpT quq ´ ρtpX, θ0q
˘

dBt

´
1
2

1
ε

ż T

0

`

ρtpX, θ0 ` φpT quq ´ ρtpX, θ0q
˘2
dt,

(5.5)

where X is the mixed fBm with parameter θ0 and, cf. Theorem 3.1,

φpT q “ T´1{2Ipθ0, εq
´1{2.

The matrix Ipθ0, εq, defined in (3.3) is invertible, and establishing the LAN
property claimed in Theorem 3.1 amounts to proving that for any u P R

2

1
ε

ż T

0

`

ρtpX, θ0 ` u{
?
T q ´ ρtpX, θ0q

˘2
dt

P
ÝÝÝÝÑ
TÑ8

uJIpθ0, εqu, (5.6)

since by the CLT for stochastic integrals [28, Theorem 1.19], (5.6) implies the
convergence in distribution

1
?
ε

ż T

0

`

ρtpX, θ0 ` u{
?
T q ´ ρtpX, θ0q

˘

dBt
dpPq

ÝÝÝÝÑ
TÑ8

uJIpθ0, εq
1{2Z

where Z „ Np0, Idq.
Let us denote partial derivatives with respect to the entries of parameter

vector θ by B1 :“ BH and B2 :“ Bσ2 . The kernel in (3.1) has partial derivatives
of all orders for τ ‰ 0 and

BiKθp¨q, BiBjKθp¨q P L2
pr0, tsq, i, j P t1, 2u.

This implies that the solution to equation (5.3) also has partial derivatives

Bigpt, ¨; θq, BiBjgpt, ¨; θq P L2
pr0, tsq, i, j P t1, 2u,

which can be interchanged with the stochastic integral in (5.2). Consequently
ρtpX, θq has partial derivatives and

∇ρtpX, θq “

ż t

0
∇gpt, s; θqdXs, ∇2ρtpX, θq “

ż t

0
∇2gpt, s; θqdXs,

where ∇ stands for the gradient and ∇2 denotes the Hessian with respect to θ.
Therefore,

ρtpX, θ0 ` u{
?
T q ´ ρtpX, θ0q “

1
?
T
∇ρtpX, θ0qu `

1
T

ż 1

0

ż τ

0
uJ∇2ρtpX, θ0 ` su{

?
T qudsdτ,

(5.7)
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and (5.6) will be true if we show that

1
ε

1
T

ż T

0
∇JρtpX, θ0q∇ρtpX, θ0qdt

L2
pΩq

ÝÝÝÝÑ
TÑ8

Ipθ0, εq (5.8)

and, for all sufficiently small δ ą 0,

1
T 2

ż T

0
sup

θ:}θ´θ0}ďδ

E
›

›∇2ρtpX, θq
›

›

2
dt ÝÝÝÝÑ

TÑ8
0. (5.9)

The main challenge in the proof consists of establishing the properties of the
gradient process ∇ρtpX, θq which guarantee these two limits. By definition (5.2),

E BiρspX, θ0qBjρtpX, θ0q “
ż t

0

ż s

0
Bigps, s ´ x; θ0qBjgpt, t ´ y; θ0qKθ0px ´ yqdxdy`

ε

ż s

0
Bigps, s ´ x; θ0qBjgpt, t ´ x; θ0qdx “

ż t

0

ż s

0
Bigps, x; θ0qBjgpt, y; θ0qKθ0py ´ px ` t ´ sqqdxdy`

ε

ż s

0
Bigps, x; θ0qBjgpt, x ` t ´ s; θ0qdx.

Extending the domain of s ÞÑ gpt, s; θ0q outside the interval p0, tq by zero, define
the Fourier transform

pgtpiλ, θ0q “

ż

R

gpt, s; θ0qe´iλsds, λ P R,

and the function
Λpiλq “ ε ` pKθ0pλq (5.10)

where pKθ0pλq is the Fourier transform (3.2). Then by Plancherel’s theorem

E BiρspX, θ0qBjρtpX, θ0q “

1
2π

ż 8

´8

Bjpgtpiλ, θ0qBipgspiλ, θ0qΛpiλqeipt´sqλdλ.
(5.11)

Using this formula and suitable estimates for the Fourier transform of the solu-
tion to (5.3) we will derive the following decomposition.

Lemma 5.1. The covariance function of the gradient process satisfies

E∇JρspX; θ0q∇ρtpX; θ0q “ Qpt ´ sq ` Rps, tq

where the matrices in the right hand side admit the bounds
›

›Qpt ´ sq
›

› ď C ^ |t ´ s|
´1ˇ

ˇ log |t ´ s|
ˇ

ˇ

3
, @s, t P R`,

›

›Rps, tq
›

› ď C
´

t´1{2
` s´1{2

` pstq´b
¯

, @s, t P rTmin,8q,
(5.12)
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with some constants b P p0, 1
2 q, C ą 0 and Tmin ą 0. Moreover,

Qp0q “ εIpθ0, εq, (5.13)

where Ipθ, εq is defined in (3.3).

This lemma implies that

E∇JρtpX, θ0q∇ρtpX, θ0q ÝÝÝÑ
tÑ8

Qp0q “ εIpθ0, εq

and
1
T 2

ż T

0

ż T

0

›

›

›
E∇JρspX, θ0q∇ρtpX, θ0q

›

›

›

2
dsdt ÝÝÝÝÑ

TÑ8
0.

Since ∇ρtpX, θ0q is a centered Gaussian process, these two limits and Isserlis’
theorem ensure (5.8). In addition, the convergence in (5.9) holds due to the
following bound.

Lemma 5.2. For all sufficiently small δ ą 0, there exist constants C ą 0 and
Tmin ą 0 such that

sup
θ:}θ´θ0}ďδ

E
›

›∇2ρtpX, θq
›

›

2
ď C, @t ě Tmin.

To recap, the proof of Theorem 3.1 now reduces to verifying Lemmas 5.1–5.2.
This is done by means of asymptotic analysis of the integral equation (5.3) as
T Ñ 8, see Sect. 6.1. In essence, it yields quantitative bounds on the deviation
of gpt, s; θq from the the solution to the Wiener-Hopf equation on the semi-axis:

εgps; θq `

ż 8

0
Kθpr ´ sqgpr; θqdr “ Kθpsq, s P p0,8q.

These bounds are obtained directly in terms of the Laplace transforms, which
turns out to be particularly convenient in view of the formula (5.11).

5.2. The small noise asymptotics

The relevant likelihood ratio in this case is, cf. (5.5),

log
dPε

θ0`φpεqu

dPε
θ0

pXT
q “

1
?
ε

ż T

0

`

ρεt pXε, θ0 ` φpεquq ´ ρεt pXε, θ0q
˘

dBt

´
1
2

1
ε

ż T

0

`

ρεt pXε, θ0 ` φpεquq ´ ρεt pXε, θ0q
˘2
dt,

(5.14)

where T is fixed and dependence on ε is emphasized by superscripts. Here,
cf. (5.7),

ρεt pXε, θ0 ` φpεquq ´ ρεt pXε, θ0q “

∇ρεt pXε, θ0qφpεqu `

ż 1

0

ż τ

0
uJφpεq

J∇2ρεt pXε, θ0 ` sφpεquqφpεqudsdτ.
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We will argue that for an appropriate choice of φpεq :“ φpε, θ0q

1
ε
uJφpεq

J

˜

ż T

0
∇Jρεt pXε, θ0q∇ρεt pXε, θ0qdt

¸

φpεqu
Pθ0

ÝÝÝÑ
εÑ0

}u}
2 (5.15)

and

E1
ε

ż T

0

ˆ
ż 1

0

ż τ

0
uJφpεq

J∇2ρεt
`

Xε, θ0 ` sφpεqu
˘

φpεqudsdτ

˙2

dt ÝÝÝÑ
εÑ0

0. (5.16)

Then the second term in (5.14) converges to ´
1
2}u}2 in probability and the

stochastic integral converges in distribution to uJZ with Z „ Np0, Idq, see [25,
Ch. IX.5].

Equation (5.3) degenerates as ε Ñ 0 to the integral equation of the first kind
ż t

0
Kθpr ´ sqgpt, r; θqdr “ Kθpsq, 0 ă s ă t,

which does not have a classic solution. This makes the direct proof of (5.15)–
(5.16) complicated. The main tool in proving these limits is a certain scaling
property of the solution to (5.3) (see Lemma 7.2), which relates the small noise
to the large time asymptotics from the previous subsection. This scaling stems
from the structure of kernel (3.1), corresponding to self-similarity of the fBm.

6. Proof of Theorem 3.1

As argued in Sect. 5.1, the assertion of Theorem 3.1 follows once we prove
Lemmas 5.1 and 5.2. This is done in Sects. 6.2 and 6.3, respectively. The proofs
are based on representation of the solution to equation (5.3) derived in Sect. 6.1.

6.1. Equation (5.3)

In this subsection we show that solution to (5.3) can be decomposed into a
sum of the main term independent of t and the residual term which vanishes
as t Ñ 8, see Lemma 6.4 below. Our approach is inspired by the method,
pioneered in [39] in the context of spectral analysis of the integral operator
with weakly singular kernel (3.1). Recently it was generalized to covariance
operators of related stochastic processes [8, 32]. Here we will adapt this method
to a different problem, namely solving an integral equation of the second kind.
For brevity, θ will be omitted from the notations in this section.

Let us first sketch the main ideas. Consider the Laplace transform of the
solution to (5.3)

pgtpzq “

ż 8

´8

gpt, sqe´zsds “

ż t

0
gpt, sqe´zsds, z P C, (6.1)
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where the domain of gpt, ¨q is extended to the real whole axis by zero.
Using the specific structure of kernel (3.1) it is possible (Lemma 6.1) to derive

the representation

pgtpzq ´ 1 “
Φ0pzq ` e´tzΦ1p´zq

Λpzq
. (6.2)

Here Φ0pzq and Φ1pzq are functions, holomorphic on the cut plane CzR` with
a discontinuity across the cut R` with

Φ˘
i ptq “ lim

zÑt˘
Φipzq, t P R`,

where ` and ´ correspond to the limits taken in the upper and lower half-planes,
respectively. Such functions are called sectionally holomorphic, [17]. The func-
tion Λpzq is defined by an explicit formula, see (6.4) below, it is non-vanishing
and sectionally holomorphic on CzR.

Since integration in (6.1) is carried out over a bounded interval, pgtpzq is an
entire function. This implies that the discontinuity in the right hand side of (6.2)
must be removable, i.e.,

lim
zÑτ`

Φ0pzq ` e´tzΦ1p´zq

Λpzq
“ lim

zÑτ´

Φ0pzq ` e´tzΦ1p´zq

Λpzq
, @τ P R. (6.3)

A calculation shows that this is equivalent to a boundary condition, see (6.13),
which must be satisfied by Φ0pzq and Φ1pzq on the cut R`. It turns out that this
condition along with certain a priori growth estimates (see Lemma 6.1) deter-
mine these functions uniquely and they can be expressed in terms of solutions to
a system of auxiliary integral equations on R`, see (6.21). Plugging back these
expressions into (6.2) yields the desired decomposition for the Laplace trans-
form pgtpzq, see Lemma 6.4. Moreover, using the auxiliary equations (6.21) it is
possible to derive useful bounds for the residual term in this decomposition, see
Lemma 6.6.

The rest of this section details the implementation of this program.

6.1.1. The Laplace transform

The following lemma derives representation (6.2) for the Laplace transform of
solution to (5.3).

Lemma 6.1. The Laplace transform (6.1) satisfies (6.2) where

Λpzq “ ε `
σ2

2 Γp2H ` 1q
`

z1´2H
` p´zq

1´2H˘

(6.4)

and the functions Φ0pzq and Φ1pzq are sectionally holomorphic on CzR` and
satisfy

Φ0pzq “ ´ε ` Opz1´2H
q and Φ1pzq “ Opz1´2H

q, z Ñ 8, (6.5)

and
Φ0pzq “ Opz1´2H

q and Φ1pzq “ Opz1´2H
q, z Ñ 0. (6.6)
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Proof. By the definition of Euler’s gamma function, the kernel in (3.1) satisfies
the integral formula

Kθpuq “

ż 8

0
κpτqe´|u|τdτ, u P R, (6.7)

where
κpτq “ σ2Hp2H ´ 1q

Γp2 ´ 2Hq
τ1´2H , τ P R`.

Replacing the kernel in equation (5.3) with expression (6.7) gives

εgpt, sq `

ż t

0
gpt, rq

ż 8

0
κpτqe´|s´r|τdτdr “

ż 8

0
κpτqe´sτdτ. (6.8)

The Laplace transform of the integral in the left hand side is
ż t

0

ˆ
ż t

0
gpt, rq

ż 8

0
κpτqe´|s´r|τdτdr

˙

e´szds “

ż t

0
gpt, rq

ż 8

0
κpτq

ˆ
ż t

0
e´|s´r|τe´szds

˙

dτdr “

ż t

0
gpt, rq

ż 8

0
κpτq

ˆ

e´rz ´ e´rτ

τ ´ z
`

e´rz ´ e´tz´pt´rqτ

τ ` z

˙

dτdr “

pgtpzq
`

μpzq ` μp´zq
˘

´

ż 8

0

κpτq

τ ´ z
pgtpτqdτ ´ e´tz

ż 8

0

κpτq

τ ` z
qgtpτqdτ,

where qgtpzq :“
şt

0 gpt, t ´ rqe´zrdr is the Laplace transform of time reversed
solution and

μpzq “

ż 8

0

κpxq

x ´ z
dx “

σ2

2 Γp2H ` 1qp´zq
1´2H .

Similarly,
ż t

0

ˆ
ż 8

0
κpτqe´sτdτ

˙

e´szds “ μp´zq ´ e´tz

ż 8

0
κpτq

e´tτ

τ ` z
dτ.

Thus applying the Laplace transform to (6.8) we obtain (6.2) with

Φ0pzq :“ ´ ε ´ μpzq `

ż 8

0

κpτq

τ ´ z
pgtpτqdτ,

Φ1pzq :“ ´

ż 8

0

κpτq

τ ´ z
e´tτdτ `

ż 8

0

κpτq

τ ´ z
qgtpτqdτ,

and Λpzq “ ε`μpzq`μp´zq. The functions pgtpτq and qgtpτq are bounded over τ P

R` and the estimates (6.5)–(6.6) are derived from these formulas by standard
calculations.
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The next lemma gathers some useful properties of Λpzq.

Lemma 6.2. The function Λpzq defined in (6.4) is non-vanishing and section-
ally holomorphic on CzR with the limits

Λ˘
pτq “ ε ` σ2aH |τ |

1´2H

#

e˘pH´ 1
2 qπi, τ P R`,

e¯pH´ 1
2 qπi, τ P R´,

where aH “ Γp2H ` 1q sinpπHq. These functions satisfy the symmetries

Λ`
pτq “ Λ´pτq, (6.9)

Λ`pτq

Λ´pτq
“

Λ´p´τq

Λ`p´τq
, (6.10)

and the principal branch of the argument αpτq :“ arg
�

Λ`pτq
(

,

αpτq “ arctan
σ2aH sin

`

pH ´
1
2 qπ

˘

ε|τ |2H´1 ` σ2aH cos
`

pH ´
1
2 qπ

˘ signpτq, (6.11)

is an odd decreasing function, continuous on Rzt0u, satisfying

αp0`q “ πpH ´
1
2 q and αpτq “ Opτ1´2H

q as τ Ñ 8. (6.12)

Proof. All the claims are derived by direct calculations using (6.4).

6.1.2. An equivalent representation

In this section we will use (6.2) to show that Laplace transform (6.1) can
be expressed in terms of solutions to certain auxiliary equations (6.21), see
Lemma 6.4. The key observation to this end is that pgtpzq is an entire function
and hence discontinuity in the right hand side of (6.2) must be removable, that
is, (6.3) must hold. Due to the symmetries in (6.10), this condition reduces to

Φ`
0 pτq ´

Λ`pτq

Λ´pτq
Φ´

0 pτq “ e´tτΦ1p´τq

´Λ`pτq

Λ´pτq
´ 1

¯

,

Φ`
1 pτq ´

Λ`pτq

Λ´pτq
Φ´

1 pτq “ e´tτΦ0p´τq

´Λ`pτq

Λ´pτq
´ 1

¯

,

@τ P R`, (6.13)

where, in view of (6.9),
Λ`pτq

Λ´pτq
“ expp2iαpτqq.

The functions Φ0pzq and Φ1pzq are sectionally holomorphic on CzR`, satisfy
the boundary conditions (6.13) and the growth estimates (6.5). Using the usual
technique of solving the Hilbert boundary value problems, such functions can be
expressed in terms of solutions to certain auxiliary integral equations as follows.
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The first step consists of finding a function Xpzq, sectionally holomorphic on
CzR` and satisfying the homogeneous boundary condition, cf. (6.13),

X`
pτq ´

Λ`pτq

Λ´pτq
X´

pτq “ 0, @τ P R`.

This is a standard instance of the homogeneous Hilbert boundary value problem
[17]. Since the function

log Λ`pτq

Λ´pτq
“ 2iαpτq

satisfies the Hölder condition on R` Y t8u, all solutions to this problem, which
do not vanish on Czt0u, have the form Xpzq “ zkXcpzq for some integer k P Z,
where the canonical part is found by the Sokhotski–Plemelj formula

Xcpzq “ exp
´ 1

2πi

ż 8

0

log Λ`pτq{Λ´pτq

τ ´ z
dτ

¯

“

exp
´ 1
π

ż 8

0

αpτq

τ ´ z
dτ

¯

, z P CzR`.

(6.14)

The following lemma summarizes some of its useful properties.

Lemma 6.3. The function defined in (6.14) satisfies the asymptotics

Xcpzq “

#

Opz
1
2 ´Hq, z Ñ 0,

1, z Ñ 8,
(6.15)

and is related to Λpzq, defined in (6.4), by the identity

XcpzqXcp´zq “
1
ε
Λpzq, z P CzR. (6.16)

Proof. Asymptotics (6.15) readily follows from (6.12). To prove (6.16), we can
write

logXcpzqXcp´zq “

1
2πi

ż 8

0

1
τ ´ z

log ε´1Λ`pτq

ε´1Λ´pτq
dτ `

1
2πi

ż 8

0

1
τ ` z

log ε´1Λ`pτq

ε´1Λ´pτq
dτ.

By changing the integration variable and using the symmetry (6.10), the second
integral can be written as

1
2πi

ż 8

0

1
τ ` z

log ε´1Λ`pτq

ε´1Λ´pτq
dτ “ ´

1
2πi

ż 0

´8

1
τ ´ z

log ε´1Λ´pτq

ε´1Λ`pτq
dτ.

Since log
`

Λ˘pτq{ε
˘

“ Opτ1´2Hq, this implies

logXcpzqXcp´zq “
1

2πi

ż 8

´8

log
`

Λ`pτq{ε
˘

τ ´ z
dτ ´

1
2πi

ż 8

´8

log
`

Λ´pτq{ε
˘

τ ´ z
dτ.
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The function Λpzq is non-vanishing and holomorphic on the lower and upper
half-planes, hence each of the integrals can be computed by the standard contour
integration. When Impzq ą 0 the first integral gives logpΛpzq{εq and the second
vanishes, which proves validity of (6.16) in the upper half-plane. The same
argument applies to the lower half-plane.

Now let us define
Spzq :“Φ0pzq ` Φ1pzq

2Xpzq
,

Dpzq :“Φ0pzq ´ Φ1pzq

2Xpzq
.

(6.17)

These functions are also sectionally holomorphic on CzR` and, in view of (6.13),
satisfy the decoupled boundary conditions

S`
pτq ´ S´

pτq “ 2ihpτqe´tτSp´τq,

D`
pτq ´ D´

pτq “ ´ 2ihpτqe´tτDp´τq,
@τ P R`, (6.18)

where we defined
hpτq :“ 1

2i

´X`pτq

X´pτq
´ 1

¯Xp´τq

X`pτq
.

This function is, in fact, real valued:

hpτq “
1
2i

´

e2iαpτq
´ 1

¯

exp
´

´
2τ
π

´

ż 8

0

αpsq

s2 ´ τ2 ds ´ iαpτq

¯

“

exp
´

´
1
π

ż 8

0
α1

psq log
ˇ

ˇ

ˇ

τ ` s

τ ´ s

ˇ

ˇ

ˇ
ds
¯

sinαpτq,

(6.19)

where the dashed integral is the Cauchy principle value.
In view of estimates (6.6) and (6.15), the functions Sp´τq and Dp´τq will

have at most square integrable singularities at the origin if we choose k ď 0.
From here on we will fix k “ 0 so that Xpzq “ Xcpzq. This choice is not the
only possible, but it makes further calculations simpler. Thus the expressions
in the right hand side of (6.18) satisfy the Hölder condition on R` Y t8u and
therefore, by the Sokhotski-Plemelj theorem, the functions (6.17) satisfy

Spzq “
1
π

ż 8

0

hpτqe´tτ

τ ´ z
Sp´τqdτ ´

ε

2 ,

Dpzq “ ´
1
π

ż 8

0

hpτqe´tτ

τ ´ z
Dp´τqdτ ´

ε

2 ,
z P CzR`. (6.20)

Constants in the right hand side match the growth of Spzq and Dpzq as z Ñ 8

in view of estimates (6.5) and (6.15).
Consider now a pair of auxiliary integral equations

ptpsq “
1
π

ż 8

0

hpτqe´tτ

τ ` s
ptpτqdτ ´

1
2 ,

qtpsq “ ´
1
π

ż 8

0

hpτqe´tτ

τ ` s
qtpτqdτ ´

1
2 ,

s P R`. (6.21)
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In the next subsection we will argue that, for all sufficiently large t, they have
unique solutions such that qtp¨q`

1
2 and ptp¨q`

1
2 belong to L2pR`q. Setting z :“

´τ for τ P R` in (6.20) shows that Sp´τq and Dp´τq solve (6.21) multiplied by
ε. Since by construction Sp´τq and Dp´τq are square integrable near the origin,
due to uniqueness of the solutions to (6.21), they must coincide with εptpτq and
εqtpτq and, consequently,

Spzq “ εptp´zq and Dpzq “ εqtp´zq,

where qtpzq and ptpzq are the unique sectionally holomorphic extensions to
CzR´. Plugging these expressions along with (6.16) and (6.17) into (6.2) we
obtain the following result.

Lemma 6.4. The Laplace transform (6.1) satisfies

pgtpzq ´ 1 “ ´
1

Xp´zq
` pRtpzq, z P C, (6.22)

where

pRtpzq :“ 1
Xp´zq

`

ptp´zq ` qtp´zq ` 1
˘

` e´tz 1
Xpzq

`

ptpzq ´ qtpzq
˘

. (6.23)

6.1.3. The auxiliary equations (6.21)

Consider the integral operator in (6.21)

pAtfqpsq :“ 1
π

ż 8

0

hpτqe´tτ

τ ` s
fpτqdτ. (6.24)

The following lemma asserts that it is a contraction on L2pR`q for all sufficiently
large t.

Lemma 6.5. For any closed ball B Ă Θ, there exist Tmin ą 0 and β P p0, 1q

such that

}Atf} ď p1 ´ βq}f}, @f P L2
pR`q, @t ě Tmin, θ P B.

Proof. The function hpτq defined in (6.19) is continuous, nonnegative, vanishes
as τ Ñ 8 and satisfies, cf. (6.12),

hp0`q “ sinαp0`q “ sin
`

πpH ´
1
2 q
˘

P p0, 1q.

Then c :“ supθPB hp0`q P p0, 1q and there exists r ą 0 such that hpτq ď
1
2c `

1
2 “: 1 ´ β P p0, 1q for all τ P r0, rs. Then for any τ ě 0,

hpτqe´τt
ď p1 ´ βq1tτďru ` }h}8e´rt1tτąru ď 1 ´ β,

where the last inequality holds for all t ě
1
r log }h}8

1´β “: Tmin.
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Thus for all t ě Tmin and any f, g P L2pR`q, by the Cauchy–Schwarz inequal-
ity,

ˇ

ˇxg,Atfy
ˇ

ˇ ď
1 ´ β

π

ż 8

0
|gpsq|

ż 8

0

1
τ ` s

|fpτq|dτds ď

1 ´ β

π

˜

ż 8

0
fpτq

2
ż 8

0

a

τ{s

τ ` s
dsdτ

¸1{2 ˜
ż 8

0
gpsq

2
ż 8

0

a

s{τ

τ ` s
dτds

¸1{2

“

p1 ´ βq}g}}f}.

Hence }Atf}2 “ xAtf,Atfy ď p1 ´ βq}Atf}}f}, which proves the clam.

The equations in (6.21) can be written as

f `
1
2 “ ˘Atpf `

1
2 q ¯

1
2 pAt1q. (6.25)

A direct calculation shows that At1 P L2pR`q. Hence these equations have
unique solutions in L2pR`q given, e.g., by the Neumann series. The estimates
for these solutions, derived in the next lemma, play the key role in the asymptotic
analysis.
Lemma 6.6. For any closed ball B Ă Θ, there exist constants rmax ą 0,
Tmin ą 0 and C ą 0 such that for any r P r0, rmaxs and all t ě Tmin

ż 8

´8

ˇ

ˇmtpiλq
ˇ

ˇ

2
|λ|

´rdλ ď Ctr´1,

where mtpzq is any of the functions in
!

ptpzq `
1
2 , qtpzq `

1
2 , Bjptpzq, Bjqtpzq, BiBjptpzq, BiBjqtpzq

)

. (6.26)

Proof. Let us start with proving the bound for the first two functions in (6.26).
Calculations are similar for both equations in (6.21) and we will consider the
first one for definiteness. Rearranging it as in (6.25) and multiplying by s´r

shows that the function φpsq :“
`

ptpsq `
1
2
˘

s´r solves the equation

φ “ Btφ ` ψ, (6.27)

where ψpsq :“ ´
1
2 pAt1qpsqs´r with At as in (6.24) and

pBtfqpsq :“ 1
π

ż 8

0

hpτqe´tτ

τ ` s
pτ{sq

rfpτqdτ.

By applying the generalized Minkowski inequality we get

›

›ψ
›

› “

˜

ż 8

0

ˆ

1
2

1
π

ż 8

0

hpτqe´tτ

τ ` s
s´rdτ

˙2

ds

¸1{2

ď

ż 8

0

˜

ż 8

0

ˆ

hpτqe´tτ

τ ` s
s´r

˙2

ds

¸1{2

dτ “

ż 8

0
hpτqe´tττ´ 1

2 ´r

ˆ
ż 8

0

u´2r

pu ` 1q2
du

˙1{2

dτ ď Ctr´ 1
2

(6.28)
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where r ă 1{2 is assumed. Calculations as in the proof of Lemma 6.5 show that
Bt is a contraction on L2pR`q for all t ě Tmin. Indeed, for any f, g P L2pR`q

and r ă 1{4,

ˇ

ˇxg,Btfy
ˇ

ˇ ď

ż 8

0
|gpsq|

1
π

ż 8

0

hpτqe´tτ

τ ` s
pτ{sq

r
|fpτq|dτds ď

1 ´ β

π

ż 8

0

ż 8

0
|gpsq|

ps{τq
1
4

?
τ ` s

|fpτq|
pτ{sqr` 1

4
?
τ ` s

dτds ď

1 ´ β

π

˜

ż 8

0
gpsq

2
ż 8

0

ps{τq
1
2

τ ` s
dτds

¸1{2 ˜
ż 8

0
fpτq

2
ż 8

0

pτ{sq2r` 1
2

τ ` s
dsdτ

¸1{2

“

1 ´ β
a

cosp2πrq
}g}}f},

where β is given in Lemma 6.5. Hence }Btf} ď p1 ´ rβq}f} with some rβ ą 0 if r
is small enough. This implies }φ} ď rβ´1}ψ}, that is,

ˆ
ż 8

0
pptpsq `

1
2 q

2s´2rds

˙1{2

ď Ctr´ 1
2 . (6.29)

We can now prove the bound for the first function in (6.26),

ż 8

´8

ˇ

ˇptpiλq `
1
2
ˇ

ˇ

2
|λ|

´rdλ “

ż 8

´8

ˇ

ˇ

ˇ

ˇ

1
π

ż 8

0

hpτqe´tτ

τ ` iλ ptpτqdτ

ˇ

ˇ

ˇ

ˇ

2

|λ|
´rdλ ď

ż 8

´8

ˇ

ˇ

ˇ

ˇ

ż 8

0

hpτqe´tτ

τ ` iλ pptpτq `
1
2 qdτ

ˇ

ˇ

ˇ

ˇ

2

|λ|
´rdλ `

ż 8

´8

ˇ

ˇ

ˇ

ˇ

ż 8

0

hpτqe´tτ

τ ` iλ dτ

ˇ

ˇ

ˇ

ˇ

2

|λ|
´rdλ.

Due to the generalized Minkowski inequality, the last integral satisfies

ż 8

´8

ˇ

ˇ

ˇ

ˇ

ż 8

0

hpτqe´tτ

τ ` iλ dτ

ˇ

ˇ

ˇ

ˇ

2

|λ|
´rdλ ď

˜

ż 8

0
hpτqe´tτ

ˆ
ż 8

´8

|λ|´r

τ2 ` λ2 dλ

˙1{2

dτ

¸2

“C

ˆ
ż 8

0
e´tττ´r{2´1{2dτ

˙2

ď Ctr´1.

The other integral can be bounded similarly,
ż 8

´8

ˇ

ˇ

ˇ

ˇ

ż 8

0

hpτqe´tτ

τ ` iλ pptpτq `
1
2 qdτ

ˇ

ˇ

ˇ

ˇ

2

|λ|
´rdλ ď

˜

ż 8

0
hpτqe´tτ

ˇ

ˇptpτq `
1
2
ˇ

ˇ

ˆ
ż 8

´8

|λ|´r

τ2 ` λ2 dλ

˙1{2

dτ

¸2

ď

C

ˆ
ż 8

0
e´tτ

ˇ

ˇptpτq `
1
2
ˇ

ˇτ´r{2´1{2dτ

˙2

ď
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C

ż 8

0

`

ptpτq `
1
2
˘2
τ´2rdτ

ż 8

0
e´2tττ r´1dτ ď Ctr´1,

where we used (6.29) and applied the generalized Minkowski and the Cauchy-
Schwarz inequalities. This completes the proof for the first two functions in (6.26).

The other two bounds are verified similarly. Note that φpsq :“ Bjptpsqs´r

also solves the equation (6.27) with

ψpsq :“ s´r 1
π

ż 8

0

Bjhpτqe´tτ

τ ` s
ptpτqdτ.

In view of (6.11)

Bjαpτq “

#

Op1q, τ Ñ 0,
Opτ1´2H log τq, τ Ñ 8,

(6.30)

and, consequently, due to (6.19),

Bj log hpτq “

#

Op1q, τ Ñ 0,
Oplog τq, τ Ñ 8.

Calculations as in (6.28) then show that }ψ} ď Ctr´1{2 and the claimed bound
for the next two functions in (6.26) are proved as above. The last two bounds
for the second order derivatives are verified along the same lines.

6.2. Proof of Lemma 5.1

In this subsection we will omit θ0 from the notations for brevity. Covariance
function of the gradient process satisfies (5.11), where Λpiλq introduced in (5.10)
is exactly the restriction of Λpzq defined in (6.4) to the imaginary axis. Due to
Lemma 6.4,

E BiρspXqBjρtpXq “ Qijpt ´ sq ` R
p1q

ij ps, tq ` R
p2q

ij ps, tq ` R
p3q

ij ps, tq, (6.31)

where we defined

Qijpt ´ sq :“ 1
2π

ż 8

´8

Bj
1

Xp´iλq
Bi

1
Xpiλq

Λpiλqeipt´sqλdλ (6.32)

and

R
p1q

ij ps, tq :“ ´
1
2π

ż 8

´8

Bj
1

Xp´iλq
Bi
pRspiλqΛpiλqeipt´sqλdλ, (6.33)

R
p2q

ij ps, tq :“ ´
1
2π

ż 8

´8

Bj
pRtpiλqBi

1
Xp´iλq

Λpiλqeipt´sqλdλ, (6.34)

R
p3q

ij ps, tq :“ 1
2π

ż 8

´8

Bj
pRtpiλqBi

pRspiλqΛpiλqeipt´sqλdλ. (6.35)

The first bound in (5.12) is derived in the following lemma.
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Lemma 6.7. There exists C ą 0 such that
ˇ

ˇQijpt ´ sq
ˇ

ˇ ď C ^ |t ´ s|
´1ˇ

ˇ log |t ´ s|
ˇ

ˇ

3
, @s, t P R`.

Proof. Let us estimate the growth of the integrand in (6.32),

fpλq :“ Bj
1

Xp´iλq
Bi

1
Xpiλq

Λpiλq,

at the origin and at infinity. In view (6.30) and (6.14),

Bi logXpiλq “
1
π

ż 8

0

Biαpτq

τ ´ iλ dτ “

#

Oplog |λ|´1q, λ Ñ 0,
Op|λ|1´2H0 log |λ|q, λ Ñ ˘8.

(6.36)

Combining this estimate with (6.15) gives

Bi
1

Xpiλq
“ ´

Bi logXpiλq

Xpiλq
“

#

Op|λ|H0´1{2 log |λ|´1q, λ Ñ 0,
Op|λ|1´2H0 log |λ|q, λ Ñ ˘8.

(6.37)

Consequently, in view of formula (6.4),

fpλq “

#

Oplog2
|λ|´1q, λ Ñ 0,

Op|λ|2´4H0 log2
|λ|q, λ Ñ ˘8,

so that f P L1pRq and
|Qijpt ´ sq| ď }f}1.

Similarly we can estimate the derivative f 1pλq with respect to λ,

f 1
pλq “

#

Op|λ|´1 log2
|λ|´1q λ Ñ 0,

Op|λ|1´4H0 log2
|λ|q, λ Ñ ˘8.

Standard bounds for the Fourier integral of such functions [23] imply

|Qijpt ´ sq| ď

ˇ

ˇ

ˇ

ˇ

ż 8

´8

fpλqeipt´sqλdλ

ˇ

ˇ

ˇ

ˇ

ď c|t ´ s|
´1ˇ

ˇ log |t ´ s|
ˇ

ˇ

3
,

for some constant c ą 0. The claimed estimate follows by combining the two
bounds.

The next lemma proves the second bound in (5.12).

Lemma 6.8. There exist constants b P p0, 1
2 q, C ą 0 and Tmin ą 0 such that

for all s, t ě Tmin,
ˇ

ˇR
p1q

ij ps, tq
ˇ

ˇ ď Cs´1{2,
ˇ

ˇR
p2q

ij ps, tq
ˇ

ˇ ď Ct´1{2,
ˇ

ˇR
p3q

ij ps, tq
ˇ

ˇ ď Cpstq´b.

(6.38)
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Proof. The expression in (6.23) satisfies the bound
ˇ

ˇXpiλqBi
pRtpiλq

ˇ

ˇ ď

ˇ

ˇ

ˇ

`

ptp´iλq ` qtp´iλq ` 1
˘

Bi logXpiλq

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ

`

ptpiλq ´ qtpiλq
˘

Bi logXpiλq

ˇ

ˇ

ˇ
` 2

ˇ

ˇBiptpiλq
ˇ

ˇ ` 2
ˇ

ˇBiqtpiλq
ˇ

ˇ,
(6.39)

where we used the conjugacy Xpiλq “ Xp´iλq. Thus the expression for Rp1q

ij ps, tq
in (6.33) satisfies

ˇ

ˇR
p1q

ij ps, tq
ˇ

ˇ ď

ż 8

´8

ˇ

ˇ

ˇ
Bj

1
Xp´iλq

Bi
pRspiλqΛpiλq

ˇ

ˇ

ˇ
dλ “

ż 8

´8

ˇ

ˇ

ˇ
Bj logXpiλq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
XpiλqBi

pRspiλq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Λpiλq

Xp´iλqXpiλq

ˇ

ˇ

ˇ

ˇ

dλ ď

2
ż 8

´8

f1pλq

´

ˇ

ˇBipspiλq
ˇ

ˇ `
ˇ

ˇBiqspiλq
ˇ

ˇ

¯

dλ` (6.40)

2
ż 8

´8

f2pλq

´

ˇ

ˇpspiλq `
1
2
ˇ

ˇ `
ˇ

ˇqspiλq `
1
2
ˇ

ˇ

¯

dλ,

where we used (6.39) and defined

f1pλq :“ε
ˇ

ˇ

ˇ
Bj logXpiλq

ˇ

ˇ

ˇ
,

f2pλq :“ε
ˇ

ˇ

ˇ
Bj logXpiλqBi logXpiλq

ˇ

ˇ

ˇ
.

Due to the estimate (6.36),

f1pλq “

#

O
`

log |λ|´1˘, λ Ñ 0,
O
`

|λ|1´2H0 log |λ|
˘

, λ Ñ ˘8,

and

f2pλq “

#

O
`

log2
|λ|´1˘, λ Ñ 0,

O
`

|λ|2´4H0 log2
|λ|

˘

, λ Ñ ˘8.

Thus f1, f2 P L2pRq. By estimate (6.26) with r “ 0,
ż 8

´8

f1pλq
ˇ

ˇBipspiλq
ˇ

ˇdλ ď
›

›f1
›

›

›

›Bips
›

› ď Cs´1{2.

The same estimate is valid for the rest of the integrals in (6.40) and the first
bound in (6.38) follows. The second bound is proved similarly. To prove the
third bound, note that

ˇ

ˇR
p3q

ij ps, tq
ˇ

ˇ ď

ż 8

´8

ˇ

ˇ

ˇ
XpiλqBj

pRtpiλqXpiλqBi
pRspiλq

ˇ

ˇ

ˇ
dλ ď (6.41)

ˆ
ż 8

´8

ˇ

ˇ

ˇ
XpiλqBj

pRtpiλq

ˇ

ˇ

ˇ

2
dλ

˙1{2 ˆż 8

´8

ˇ

ˇ

ˇ
XpiλqBi

pRspiλq

ˇ

ˇ

ˇ

2
dλ

˙1{2

.
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In view of (6.39),
ż 8

´8

ˇ

ˇ

ˇ
XpiλqBj

pRtpiλq

ˇ

ˇ

ˇ

2
dλ ď

4
ż 8

´8

ˇ

ˇ

ˇ

`

ptp´iλq ` qtp´iλq ` 1
˘

Bi logXpiλq

ˇ

ˇ

ˇ

2
dλ`

4
ż 8

´8

ˇ

ˇ

ˇ

`

ptpiλq ´ qtpiλq
˘

Bi logXpiλq

ˇ

ˇ

ˇ

2
dλ`

8
ż 8

´8

ˇ

ˇ

ˇ
Biptpiλq

ˇ

ˇ

ˇ

2
dλ ` 8

ż 8

´8

ˇ

ˇ

ˇ
Biqtpiλq

ˇ

ˇ

ˇ

2
dλ.

(6.42)

Due to (6.36),
ˇ

ˇBi logXpiλ, ηq
ˇ

ˇ

2
ď C|λ|´r for any r P p0, 1q. Hence, with r ą 0

small enough, Lemma 6.6 guarantees that all the integrals in (6.42) are bounded
by Ctr´1. Applying the same argument to the second term in (6.41) we conclude
that

ˇ

ˇR
p3q

ij ps, tq
ˇ

ˇ ď Csr{2´1{2tr{2´1{2.

This verifies the last bound in (6.38) with b :“ 1{2 ´ r{2 P p0, 1{2q.

Finally, the next lemma verifies formula (5.13).

Lemma 6.9.

Qijp0q “
ε

4π

ż 8

´8

Bi log
`

ε ` pKθ0pλq
˘

Bj log
`

ε ` pKθ0pλq
˘

dλ.

Proof. In view of (6.16) the expression in (6.32) can be written as

Qijp0q “
1
2π

ż 8

´8

Bj
1

Xp´iλq
Bi

1
Xpiλq

Λpiλqdλ “

ε

2π

ż 8

´8

Bi logXpiλqBj logXp´iλqdλ.

On the other hand,

ε

4π

ż 8

´8

Bi log ΛpiλqBj log Λpiλqdλ “

ε

2π

ż 8

´8

Bi logXpiλqBj logXp´iλqdλ `
ε

2π

ż 8

´8

Bi logXpiλqBj logXpiλqdλ.

Hence the formula in question is true if we show that the latter integral vanishes.
In view of (6.14),

ż 8

´8

Bi logXpiλqBj logXpiλqdλ “

1
π2

ż 8

0

ż 8

0
BiαpτqBjαprq

ˆ
ż 8

´8

1
τ ´ iλ

1
r ´ iλdλ

˙

dτdr “ 0.

The last equality holds since for any r, τ P R` the integral in the brackets
vanishes, as can be readily checked by the standard contour integration.
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6.3. Proof of Lemma 5.2

This lemma involves only one dimensional distributions of the process ρtpX, θq

and its partial derivatives. On the other hand, unlike in Lemma 5.1, θ may
be distinct from θ0, the true value of the parameter, which determines the
distribution of the sample XT . In this subsection, we will stress this distinction
by adding the relevant parameter value to the notations.

We have to show that for all sufficiently small δ ą 0 there exist constants
C ą 0 and Tmin ą 0 such that

sup
}θ´θ0}ďδ

E
`

BiBjρtpX, θq
˘2

ď C, @t ě Tmin.

Similarly to (6.31)

E
`

BiBjρtpX, θq
˘2

“
1
2π

ż 8

´8

ˇ

ˇ

ˇ
BiBjpgtpiλ; θq

ˇ

ˇ

ˇ

2
Λpiλ; θ0qdλ ď

ż 8

´8

ˇ

ˇ

ˇ
BiBj

1
Xpiλ; θq

ˇ

ˇ

ˇ

2
Λpiλ; θ0qdλ `

ż 8

´8

ˇ

ˇ

ˇ
BiBj

pRtpiλ; θq

ˇ

ˇ

ˇ

2
Λpiλ; θ0qdλ,

where the bound holds due to decomposition (6.22). It remains to prove that
both terms in the right hand side are bounded functions of t P rTmin,8q for some
Tmin ą 0, uniformly over θ in a δ-vicinity of θ0. This is done in the following
two lemmas.

Lemma 6.10. For all sufficiently small δ ą 0, there exists a constant C ą 0
such that

sup
}θ´θ0}ďδ

ż 8

´8

ˇ

ˇ

ˇ
BiBj

1
Xpiλ; θq

ˇ

ˇ

ˇ

2
Λpiλ; θ0qdλ ď C.

Proof. The second order derivatives of αpτ, θq defined in (6.11) are continuous
in τ and satisfy, cf. (6.30)

BiBjαpτ, θq “

#

Op1q, τ Ñ 0,
Opτ1´2H log2 τq, τ Ñ 8.

Consequently

BiBj logXpiλ, θq “
1
π

ż 8

0

BiBjαpτ, θq

τ ´ iλ dτ “

#

Oplog |λ|´1q, λ Ñ 0,
Op|λ|1´2H log2

|λ|q, λ Ñ ˘8,

and in view of (6.15) and (6.36),

BiBj
1

Xpiλ; θq
“

1
Xpiλ; θq

´

Bi logXpiλ; θqBj logXpiλ; θq ´ BiBj logXpiλ; θq

¯

“

#

|λ|H´1{2 log2
|λ|´1, λ Ñ 0,

|λ|1´2H log2
|λ|, λ Ñ 8.
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This estimate and (6.4) imply
ˇ

ˇ

ˇ
BiBj

1
Xpiλ; θq

ˇ

ˇ

ˇ

2
Λpiλ; θ0q “

#

|λ|´2δ log4
|λ|´1, λ Ñ 0,

|λ|2´4H log4
|λ|, λ Ñ 8.

(6.43)

This function is integrable on R for all sufficiently small δ ą 0 which verifies the
claim.

Lemma 6.11. For all sufficiently small δ ą 0, there exist positive constants C,
Tmin and c such that

sup
}θ´θ0}ďδ

ż 8

´8

ˇ

ˇ

ˇ
BiBj

pRtpiλ; θq

ˇ

ˇ

ˇ

2
Λpiλ; θ0qdλ ď Ct´c, @t ě Tmin.

Proof. In view of formula (6.23), it suffices to show that for all sufficiently small
δ ą 0, there exist positive constants C, Tmin and c such that

I1ptq :“
ż 8

´8

ˇ

ˇ

ˇ
BiBj

1
Xpiλ, θq

`

ptpiλ, θq `
1
2
˘

ˇ

ˇ

ˇ

2
Λpiλ; θ0qdλ ď Ct´c,

I2ptq :“
ż 8

´8

ˇ

ˇ

ˇ
Bj

1
Xpiλ, θq

Biptpiλ, θq

ˇ

ˇ

ˇ

2
Λpiλ; θ0qdλ ď Ct´c,

I3ptq :“
ż 8

´8

ˇ

ˇ

ˇ

1
Xpiλ, θq

BiBjptpiλ, θq

ˇ

ˇ

ˇ

2
Λpiλ; θ0qdλ ď Ct´c,

(6.44)

for all θ such that }θ´θ0} ď δ and all t ě Tmin. The same bounds are obviously
true for qtpiλ, θq and its derivatives as well.

Take an r ą 0 small enough so that the assertion of Lemma 6.6 holds. Then
for any sufficiently small δ ą 0, the estimate (6.43) implies that

ˇ

ˇ

ˇ
BiBj

1
Xpiλ; θq

ˇ

ˇ

ˇ

2
Λpiλ; θ0q ď C1|λ|

´r

for some constant C1 ą 0, and the first bound in (6.44) holds with c “ 1 ´ r
by Lemma 6.6. The second bound holds by the same argument since, in view
of (6.37) and (6.4),

ˇ

ˇ

ˇ
Bj

1
Xpiλ, θq

ˇ

ˇ

ˇ

2
Λpiλ; θ0q “

#

Op|λ|´2δ log2
|λ|´1q, λ Ñ 0,

Op|λ|2´4H log2
|λ|q, λ Ñ ˘8.

To prove the third bound, note that by (6.16) and (6.4),
ˇ

ˇ

ˇ

1
Xpiλ, θq

ˇ

ˇ

ˇ

2
Λpiλ; θ0q ´ ε “ ε

´Λpiλ; θ0q

Λpiλ; θq
´ 1

¯

“

#

Op|λ|´2δq, λ Ñ 0,
Op|λ|1´2H0`2δq, λ Ñ ˘8.

Thus

I3ptq ď ε

ż 8

´8

ˇ

ˇ

ˇ
BiBjptpiλ, θq

ˇ

ˇ

ˇ

2
dλ`

ż 8

´8

ˇ

ˇ

ˇ
BiBjptpiλ, θq

ˇ

ˇ

ˇ

2ˇ
ˇ

ˇ

ˇ

ˇ

ˇ

1
Xpiλ, θq

ˇ

ˇ

ˇ

2
Λpiλ; θ0q ´ ε

ˇ

ˇ

ˇ
dλ ď Ct´1

` Ct1´r,

where the last bound is true due to Lemma 6.6.
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7. Proofs of Theorems 3.2 and 3.4

As explained in Sect. 5.2, the LAN property in the small noise setting is derived
from the large time asymptotics. It will be convenient to change some notations
in order to emphasize the more relevant variables. In particular, we will indicate
the dependence of solution to (5.3) on ε by the subscript and keep in mind its
dependence on θ, omitting it from the notations. Thus the equation (5.3) reads

εgεpt, sq `

ż t

0
σ2cH |s ´ r|

2H´2gεpt, rqdr “ σ2cHs2H´2, 0 ă s ă t, (7.1)

where we defined cH “ Hp2H ´ 1q.

7.1. The key lemmas

The following lemma reveals a useful relation between derivatives of gεpt, sq with
respect to the parameter and time variables.

Lemma 7.1. The solution to (7.1) with ε “ 1 satisfies

t
B

Bt
g1pt, sq ` s

B

Bs
g1pt, sq ` g1pt, sq “ p2H ´ 1qσ2 B

Bσ2 g1pt, sq, 0 ă s ă t.

Proof. The function g1pt, sq diverges to 8 as s Ñ 0, which makes a useful differ-
entiation formula from [40] inapplicable, cf. (7.4) below. To avoid this difficulty,
define the function hps, tq “ sg1pt, sq, then

s
B

Bs
g1pt, sq ` g1pt, sq “

B

Bs

`

sg1pt, sq
˘

.

Multiplying the equation

g1pt, sq `

ż t

0
σ2cH |s ´ r|

2H´2g1pt, rqdr “ σ2cHs2H´2, 0 ă s ă t, (7.2)

by s and rearranging terms gives

hps, tq `

ż t

0
σ2cH |s ´ r|

2H´2hpr, tqdr “

σ2cH

ˆ
ż t

0
|s ´ r|

2H´2
pr ´ sqg1pt, rqdr ` s2H´1

˙

. (7.3)

The expression in the brackets in the right hand side is differentiable in s with
the derivative

B

Bs

ˆ

s2H´1
`

ż t

0
|s ´ r|

2H´2
pr ´ sqg1pt, rqdr

˙

“

B

Bs

ˆ

s2H´1
´

ż s

0
ps ´ rq

2H´1g1pt, rqdr `

ż t

s

pr ´ sq
2H´1g1pt, rqdr

˙

“
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p2H ´ 1q

ˆ

s2H´2
´

ż s

0
ps ´ rq

2H´2g1pt, rqdr ´

ż t

s

pr ´ sq
2H´2g1pt, rqdr

˙

“

p2H ´ 1q

ˆ

s2H´2
´

ż s

0
|s ´ r|

2H´2g1pt, rqdr

˙

“
2H ´ 1
cHσ2 g1pt, sq.

Since the solution hps, tq is differentiable at any s P p0, tq (see [40])

B

Bs

ż t

0
hpr, tq|s ´ r|

2H´2dr “

ż t

0
|s ´ r|

2H´2 B

Br
hpr, tqdr ` hp0, tqs2H´2

´ hpt, tqpt ´ sq
2H´2,

(7.4)

where hp0, tq “ 0 by (7.3). Thus the right hand side of (7.3) is differentiable and
in view of the above formulas

B

Bs
hps, tq `

ż t

0
σ2cH |s ´ r|

2H´2 B

Br
hpr, tqdr “

p2H ´ 1qg1pt, sq ` σ2cHtg1pt, tqpt ´ sq
2H´2. (7.5)

Arguing differentiability of g1pt, sq with respect to t as in [6, Lemma 3.5(i)] and
taking the derivative of (7.2) we get

B

Bt
g1pt, sq `

ż t

0
σ2cH |s ´ r|

2H´2 B

Bt
g1pt, rqdr “ ´σ2cHg1pt, tqpt ´ sq

2H´2.

Multiplying this equation by t and adding the result to (7.5) gives
´

t
B

Bt
g1pt, sq `

B

Bs
hps, tq

¯

`

ż t

0
σ2cH |s ´ r|

2H´2
´

t
B

Bt
g1pt, rq `

B

Br
hpr, tq

¯

dr “ p2H ´ 1qg1pt, sq.

(7.6)

On the other hand, differentiating (7.2) with respect to σ2 shows that

B

Bσ2 g1pt, sq `

ż t

0
σ2cH |s ´ r|

2H´2 B

Bσ2 g1pt, rqdr`

ż t

0
cH |s ´ r|

2H´2g1pt, rqdr “ cHs2H´2,

or equivalently,

B

Bσ2 g1pt, sq `

ż t

0
σ2cH |s ´ r|

2H´2 B

Bσ2 g1pt, rqdr “
1
σ2 g1pt, sq.

Comparing this equation to (7.6) we conclude that

t
B

Bt
g1pt, sq `

B

Bs
hps, tq “ p2H ´ 1qσ2 B

Bσ2 g1pt, sq

by uniqnuness of the solution.
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The solution to (7.1) satisfies the following pivotal scaling property with
respect to ε.

Lemma 7.2. Let γ “ 1{p2H ´ 1q and define

Mpε, θq “

ˆ

1 ´2σ2 log ε´γ

0 1

˙

, νpε, θq “

ˆ

4σ2 log2 ε´γ ´2 log ε´γ

´2 log ε´γ 0

˙

.

Then for any ε ą 0 and t ą s ą 0,

gεpt, sq “ ε´γg1
`

tε´γ , sε´γ
˘

, (7.7)
∇gεpt, sq “ ε´γ∇g1

`

tε´γ , sε´γ
˘

Mpε, θq
J, (7.8)

∇2gεpt, sq “ ε´γνpε, θq
B

Bσ2 g1
`

tε´γ , sε´γ
˘

` ε´γMpε, θq∇2g1
`

tε´γ , sε´γ
˘

Mpε, θq
J. (7.9)

Proof. Identity (7.7) is obtained by scaling all the variables in equation (7.2)
by ε´γ . To verify the identities for derivatives it will be convenient to use the
short notations

g1
1pt, sq :“ B

BH
g1pt, sq,

g‚
1pt, sq :“ B

Bσ2 g1pt, sq,

g2
1pt, sq :“ B2

BH2 g1pt, sq,

g1‚
1 pt, sq :“ B

BH

B

Bσ2 g1pt, sq,

g‚‚
1 pt, sq :“ B2

Bσ22 g1pt, sq,

and define the variables u :“ sε´γ and v :“ tε´γ . Then
B

Bσ2 gεpt, sq “ ε´γg‚
1
`

v, u
˘

and, in view of Lemma 7.1,

B

BH
gεpt, sq “ ε´γg1

1pv, uq`

Bγ

BH

´

ε´γ log ε´1g1pv, uq ` ε´γ Bu

Bγ

B

Bu
g1pv, uq ` ε´γ Bv

Bγ

B

Bv
g1pv, uq

¯

“

ε´γg1
1pv, uq ´ 2γ2ε´γ log ε´1

´

g1pv, uq ` u
B

Bu
g1pv, uq ` v

B

Bv
g1pv, uq

¯

“

ε´γ
´

g1
1pv, uq ´ 2 log ε´γσ2g‚

1pv, uq

¯

,

which verifies (7.8). Taking another derivative with respect to H we get

B2

BH2 gεps, tq “ ´ 2γ2ε´γ log ε´1
´

g1
1pv, uq ´ 2 log ε´γσ2g‚

1pv, uq

¯

`
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ε´γ B

BH

´

g1
1pv, uq ´ 2 log ε´γσ2g‚

1pv, uq

¯

.

Here

B

BH
g1
1pv, uq “g2

1pv, uq ´ 2γ2 log ε´1
´

u
B

Bu
g1
1pv, uq ` v

B

Bv
g1
1pv, uq

¯

.

By Lemma 7.1

v
B

Bv
g1
1pv, uq ` u

B

Bu
g1
1pv, uq ` g1

1pv, uq “ 2σ2g‚
1pv, uq `

σ2

γ
g‚1
1 pv, uq

and hence

B

BH
g1
1pv, uq “ g2

1pv, uq ´ 2γ2 log ε´1
´

2σ2g‚
1pv, uq `

σ2

γ
g‚1
1 pv, uq ´ g1

1pv, uq

¯

.

Similarly,

B

BH

´

γg‚
1pv, uq

¯

“ ´2γ2g‚
1pv, uq ` γ

B

BH
g‚
1pv, uq “

´ 2γ2g‚
1pv, uq ` γ

´

g‚
1

1 pv, uq ´ 2γ2 log ε´1
´

u
B

Bu
g‚
1pv, uq ` v

B

Bv
g‚
1pv, uq

¯¯

.

By Lemma 7.1

v
B

Bv
g‚
1pv, uq ` u

B

Bu
g‚
1pv, uq ` g‚

1pv, uq “
1
γ
g‚
1pv, uq `

σ2

γ
g‚‚
1 pv, uq,

and hence

B

BH

´

γg‚
1pv, uq

¯

“ ´ 2γ2g‚
1pv, uq ` γg‚

1

1 pv, uq

´ 2γ2 log ε´γ
´ 1
γ
g‚
1pv, uq `

σ2

γ
g‚‚
1 pu, vq ´ g‚

1pv, uq

¯

.

Plugging these equations we get

B2

BH2 gεpt, sq “ ε´γ
´

g2
1pv, uq ´ 4 log ε´γσ2g‚1

1 pv, uq ` 4σ4 log2 ε´γg‚‚
1 pv, uq

¯

` 4ε´γ log2 ε´γσ2g‚
1pv, uq.

The other two second order derivatives are

B2

pBσ2q2
gεpt, sq “ε´γg‚‚

1
`

tε´γ , sε´γ
˘

,

B2

Bσ2BH
gεpt, sq “ε´γ

´

g1‚
1 pv, uq ´ 2 log ε´γσ2g‚‚

1 pv, uq ´ 2 log ε´γg‚
1pv, uq

¯

.

In matrix notation this gives (7.9).
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7.2. Proof of Theorem 3.2

In view of Lemma 7.2,

∇ρεt pXε, θ0q “

ż t

0
∇gεpt, t ´ sqdXε

s “

ż t

0
∇gεpt, t ´ sqσ0dB

H0
s `

?
ε

ż t

0
∇gεpt, t ´ sqdBs “

ż t

0
ε´γ0∇g1

`

tε´γ0 , pt ´ sqε´γ0
˘

Mpε, θ0q
Jσ0dB

H0
s `

?
ε

ż t

0
ε´γ0∇g1

`

tε´γ0 , pt ´ sqε´γ0
˘

Mpε, θ0q
JdBs

d
“

ε´γ0εγ0H0

˜

ż tε´γ0

0
∇g1

`

tε´γ0 , tε´γ0 ´ s
˘

σ0dB
H0
s

¸

Mpε, θ0q
J

`

ε1{2´γ0εγ0{2

˜

ż tε´γ0

0
∇g1

`

tε´γ0 , tε´γ0 ´ s
˘

dBs

¸

Mpε, θ0q
J

“

εp1´γ0q{2∇ρ1
tε´γ0 pX1, θ0qMpε, θ0q

J,

where the equality in distribution holds by the self-similarity of the fBm. This
equality holds simultaneously for all t P R` and hence the two processes coincide
in distribution. Consequently

1
ε
φpεq

J

ż T

0
∇Jρεt pXε, θ0q∇ρεt pXε, θ0qdtφpεq

d
“

ε´γ0φpεq
JMpε, θ0q

ˆ
ż T

0
∇Jρ1

tε´γ0 pX1, θ0q∇ρ1
tε´γ0 pX1, θ0qdt

˙

Mpε, θ0q
Jφpεq “

Tε´γ0φpεq
JMpε, θ0q

ˆ

1
Tε´γ0

ż Tε´γ0

0
∇Jρ1

t pX1, θ0q∇ρ1
t pX1, θ0qdt

˙

Mpε, θ0q
Jφpεq.

In view of (5.8)

1
Tε´γ0

ż Tε´γ0

0
∇Jρ1

t pX1, θ0q∇ρ1
t pX1, θ0qdt

L2pΩq
ÝÝÝÝÑ
εÑ0

Ipθ0; 1q,

and hence (5.15) holds if φpεq “ φpε, θ0q satisfies (3.4). It remains to show
that (5.16) holds for the same choice of φpε, θ0q. To this end,

E1
ε

ż T

0

ˆ
ż 1

0

ż τ

0
uJφpεq

J∇2ρεt pXε, θ0 ` sφpεquqφpεqudsdτ

˙2

dt ď

1
ε

ż 1

0

ż T

0
E
´

uJφpεq
J∇2ρεt pXε, θ0 ` sφpεquqφpεqu

¯2
dtds.
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Under the condition (3.4), }φpε, θ0q} “ O
`

εγ0{2 log ε´1˘ and it suffices to check
that

ε2γ0´1 log4 ε´1
ż T

0
E
›

›

›
∇2ρεt pXε, θq

›

›

›

2
dt ÝÝÝÑ

εÑ0
0,

uniformly over tθ : }θ0 ´ θ} ď δu for all δ ą 0 small enough. Recall that

∇2ρεt pXε, θq “

ż t

0
∇2gεpt, t ´ sqσ0dB

H0
s `

?
ε

ż t

0
∇2gεpt, t ´ sqdBs.

In view of Lemma 7.2
ż t

0
∇2gεpt, t ´ sqdBH0

s “

ε´γMpε, θq

ż t

0
∇2g1

`

tε´γ , pt ´ sqε´γ
˘

dBH0
s Mpε, θq

J
`

ε´γνpε, θq

ż t

0

B

Bσ2 g1
`

tε´γ , pt ´ sqε´γ
˘

dBH0
s

d
“

εγH0´γMpε, θq

ż tε´γ

0
∇2g1

`

tε´γ , tε´γ
´ s

˘

dBH0
s Mpε, θq

J
`

εγH0´γνpε, θq

ż tε´γ

0

B

Bσ2 g1
`

tε´γ , tε´γ
´ s

˘

dBH0
s “: J1pε, tε´γ

q ` J2pε, tε´γ
q.

The first term satisfies

ε2γ0´1 log4 ε´1
ż T

0
E
›

›

›
J1pε, tε´γ

q

›

›

›

2
dt “

ε2γ0´1 log4 ε´1T
1

Tε´γ

ż Tε´γ

0
E
›

›

›
J1pε, tq

›

›

›

2
dt ď

ε2γ0´1 log4 ε´1ε2γH0´2γ›
›Mpε, θq

›

›

4 T

Tε´γ

ż Tε´γ

0
E
›

›

›

ż t

0
∇2g1

`

t, t ´ s
˘

dBH0
s

›

›

›

2
dt ď

ε2pγ0´γq`2pH0´Hqγ`γ log8 ε´1TC ÝÝÝÑ
εÑ0

0

where the last bound is due to Lemma 5.2 and the convergence holds uniformly
over tθ : }θ ´ θ0} ď δu for all sufficiently small δ ą 0. Similarly,

ε2γ0´1 log4 ε´1
ż T

0
E
›

›

›
J2pε, tε´γ

q

›

›

›

2
dt “

ε2γ0´1 log4 ε´1T
1

Tε´γ

ż Tε´γ

0
E
›

›

›
J2pε, tq

›

›

›

2
dt “

ε2γ0´1ε2γH0´2γ log4 ε´1
}νpε, θq}

2 T

Tε´γ

ż Tε´γ

0
E
›

›

›

ż t

0

B

Bσ2 g1
`

t, t ´ s
˘

dBH0
s

›

›

›

2
dt ď

ε2pγ0´γq`2pH0´Hqγ`γ log8 ε´1TC ÝÝÝÑ
εÑ0

0,
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where the last inequality is due to Lemma 5.1. Analogously,

?
ε

ż t

0
∇2gεpt, t ´ sqdBs “

?
εε´γMpε, θq

´

ż t

0
∇2g1

`

tε´γ , pt ´ sqε´γ
˘

dBs

¯

Mpε, θq
J

`

?
εε´γνpε, θq

ż t

0

B

Bσ2 g1
`

tε´γ , pt ´ sqε´γ
˘

dBs
d
“

εp1´γq{2Mpε, θq

´

ż tε´γ

0
∇2g1

`

tε´γ , tε´γ
´ s

˘

dBs

¯

Mpε, θq
J

`

εp1´γq{2νpε, θq

ż tε´γ

0

B

Bσ2 g1
`

tε´γ , tε´γ
´ s

˘

dBs “: J1pε, tε´γ
q ` J2pε, tε´γ

q.

The first term vanishes asymptotically as ε Ñ 0,

ε2γ0´1 log4 ε´1
ż T

0
E
›

›

›
J1pε, tε´γ

q

›

›

›

2
dt “

ε2γ0´1 log4 ε´1T
1

Tε´γ

ż Tε´γ

0
E
›

›

›
J1pε, tq

›

›

›

2
dt ď

ε2γ0´1ε1´γ log4 ε´1
}Mpε, θq}

4T
1

Tε´γ

ż Tε´γ

0
E
›

›

›

ż t

0
∇2g1

`

t, t ´ s
˘

dBs

›

›

›

2
dt ď

εγ0`pγ0´γq log4 ε´1
}Mpε, θq}

4TC ÝÝÝÑ
εÑ0

0,

where the last inequality holds by Lemma 5.2. Similarly,

ε2γ0´1 log4 ε´1
ż T

0
E
›

›

›
J2pε, tε´γ

q

›

›

›

2
dt ÝÝÝÑ

εÑ0
0.

This verifies (5.16) and completes the proof.

7.3. Proof of Corollary 3.3

For brevity denote the matrices in (3.4) by M :“ Mpε, θ0q and I :“ Ipθ0; 1q.
Consider the Cholesky decomposition

MIMJ
“ LLJ,

where L is the unique lower triangular matrix with positive diagonal entries.
A simple calculation shows that

L “

¨

˝

mpεq
?
I22 0

?
I22

1
mpεq

b

I11 ´ I2
12{I22

˛

‚

`

1 ` op1q
˘

, ε Ñ 0
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where mpεq “ 2σ2
0 log ε´1{p2H0´1q. Hence the matrix

φpε, θ0q
J

“ ε1{p4H0´2q 1
?
T
L´1

satisfies condition (3.4). The assertion (2) of Corollary 3.3 is obtained by apply-
ing Theorem 2.2 to loss functions constant in the first variable. The assertion
(1) is proved similarly, using the upper triangular Cholesky decomposition.

7.4. Proof of Theorem 3.4

For a fixed σ2
0 , the LAN property of the one dimensional family

`

Pε
pH,σ2

0q

˘

HPp3{4,1q

is obtained by considering the likelihood ratio (5.14) with diagonal φpε, θ0q and
u restricted to the line tu1e1 : u1 P Ru where e1 “ p1, 0qJ. For the vectors from
this subspace, the limit (5.15) holds if, cf. (3.4),

ε´1{p2H0´1qeJ
1 φpε, θ0q

JMpε, θ0qTIpθ0; 1qMpε, θ0q
Jφpε, θ0qe1 ÝÝÝÑ

εÑ0
1.

For diagonal φpε, θ0q, this convergence is true if

φ11pε, θ0q “ ε1{p4H0´2q 1
2σ2

0 log ε´1{p2H0´1q

1
a

TI22pθ0; 1q

which is the scaling claimed in (3.5). The property (5.16) continues to hold
as before. This proves assertion (1) of Theorem 3.4. Assertion (2) is proved
analogously, by restricting u to the subspace tu “ u2e2 : u2 P Ru with e2 “

p0, 1qJ.

Appendix A: Rate optimal estimation in the small noise regime

In the small noise regime the optimal rates of Corollary 3.3 and Theorem 3.4 can
be achieved by a modification of the estimator suggested in [18]. Let us briefly
sketch the idea. Take any mother wavelet function ψ with compact support and
two vanishing moments. Define its translates and dilations

ψj,kptq “ 2j{2ψp2jt ´ kq, j P N, k P Z.

Consider the wavelet coefficients of σBH

dj,k “

ż

R

ψj,kptqσdBH
t (A.1)

and define the energy of the j-th resolution level

Qj “

2j´1
´1

ÿ

k“0
d2
j,k.
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Standard calculations show that these random variables satisfy

Qj “
σ2

2 cHpψq2jp2´2Hq
` OP

`

2´jp4H´3q{2˘, j Ñ 8, (A.2)

where
cHpψq “

ż

R

ż

R

ψpuqψpvqHp2H ´ 1q|u ´ v|
2H´2dudv.

Consequently,
Qj`1

Qj
“ 22´2H

` OPp2´j{2
q, j Ñ 8. (A.3)

Natural estimators for the wavelet coefficients are obtained by replacing the
fBm in (A.1) with its noisy observation

rdj,k :“
ż

R

ψj,kptqdXt. (A.4)

Since Erd2
j,k “ Ed2

j,k ` ε}ψ}2 it makes sense to estimate d2
j,k by

yd2
j,k “ prdj,kq

2
´ ε}ψ}

2

and, accordingly,

pQj “

2j´1
´1

ÿ

k“0

yd2
j,k.

In view of (A.3), the method of moments suggests the estimators

pHj “ 1 ´
1
2 log2

pQj`1
pQj

.

The bias of these estimators decreases with j whereas their variance increases.
In view of the residual in (A.3) and the optimal rate, known from Corollary 3.3,
it is reasonable to suggest that the optimal choice of j should be such that

2´j{2
“ ε1{p4H´2q. (A.5)

This choice is only an “oracle” since it requires H to be known. To mimic this
choice of j, asymptotics (A.2) can be used again. To this end (A.5) can be
rewritten as 2jp2´2Hq “ 2jε, which, in view of (A.2), suggests the selector

J˚
ε “ max

�

J ď j ď Jε : pQj ě 2jε
(

,

where Jε “ r2 log2 ε
´1s and J is an arbitrary nonessential constant. It can be

shown that with high probability J˚
ε will be close to 1

2H´1 log2 ε
´1 ă Jε and

the ultimate estimator is set to be

pHpεq :“ pHJ˚
ε
. (A.6)
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Proposition A.1. The estimation error ε´1{p4H´2qp pHpεq ´ Hq is bounded in
Pθ-probability, uniformly over compacts in Θ, as ε Ñ 0.

Proof. (Adaptation of [18].)

Remark A.2. In the context of Theorem 3.2, this result implies rate optimality
for a particular class of loss functions of the form

�M puq “ p|u| ´ Mq
`

^ 1 ď 1t|u|ěMu,

since the above estimator satisfies

lim
εÑ0

sup
θPK

Eθ�M

´

ε´1{p4H´2q
p pHpεq ´ Hq

¯

ă 1

for any compact K Ă Θ and all M large enough.
Estimation of σ2 can be based on (A.2) as well. The method of [18] implies

that the estimator
pσ2

pεq “
2

c
xHpεq^1pψq

pQJ˚
ε

2J˚
ε p2´2xHpεqq

, (A.7)

where pHpεq is defined in (A.6), is rate optimal.

Proposition A.3. The estimation error

ε´1{p4H´2q 1
log ε´1

`

pσ2
pεq ´ σ2˘

is bounded in Pθ-probability, uniformly over compacts in Θ, as ε Ñ 0.

Similarly, the estimators

rσ2
pεq “

2
cHpψq

pQjεpεq

2jεp2´2Hq

with jε “

”

1
2H´1 log ε´1

ı

and

rHpεq “ 1 ´
1

2J˚
ε

log2

˜

2
σ2c

xHpεq^1pψq
QJ˚

ε

¸

are rate optimal for the corresponding parameter, when the other parameter is
known.

A.1. A numerical illustration

Below is a numerical illustration of the estimators pHpεq from (A.6) and pσpεq

from (A.7). We used db2 Daubechies wavelet function ψ with two vanishing
moments and approximated the stochastic integrals in (A.4) by the Riemann-
Stieltjes sums on the uniform grid of 2N points with N “ 23. Figure 1 depicts the
empirical distributions of the estimation errors around the true values H “ 0.8
and σ “ 1 in M “ 10,000 Monte-Carlo trials for a decreasing sequence of values
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Fig 1. Estimation errors for the estimators (A.6) and (A.7) in M “ 10,000 Monte Carlo
trials. The true values of parameters are H “ 0.8 and σ “ 1.

of ε. The errors of the estimator pHpεq appear to be evenly dispersed around the
true value of H and become more concentrated as ε decreases. The empirical
error distribution of the estimator pσpεq also shrinks when ε decreases but is
visibly skewed towards positive errors. The large outliers correspond to those
estimates of H which are close to 1. This effect is due to the function cHpψq in the
denominator (A.7) which vanishes at H “ 1. It becomes practically insignificant
as the estimator of H gets more accurate and the denominator departs from the
near zero values.

Next we approximated the Root Mean Squared (RMS) error of the estima-
tor (A.6) by averaging over M “ 10,000 Monte-Carlo experiments (so that the
statistical approximation error is of order 0.01). The result is depicted in Fig. 2
in the log-log scale. The obtained plot appears to be well fitted to a straight line
whose slope is predicted by Proposition A.1 to be equal to 1{p4H´2q asymptot-
ically as ε Ñ 0. Remarkably the actual slope turns out to be very close to this
prediction in spite of the imprecisions introduced by the Monte-Carlo averaging,
discrete approximation of the stochastic integrals and finitely small values of ε.
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Fig 2. The log-log plot of the empirical RMS error of the estimator (A.6) as a function of ε.
The linear fit line has slope of 0.8492 which equals 1{p4H ´ 2q for H “ 0.7944. This fits the
true value H “ 0.8 with only 0.7% deviation.
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