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Abstract: The variance of noise plays an important role in many change-
point detection procedures and the associated inferences. Most commonly
used variance estimators require strong assumptions on the true mean
structure or normality of the error distribution, which may not hold in
applications. More importantly, the qualities of these estimators have not
been discussed systematically in the literature. In this paper, we introduce
a framework of equivariant variance estimation for multiple change-point
models. In particular, we characterize the set of all equivariant unbiased
quadratic variance estimators for a family of change-point model classes,
and develop a minimax theory for such estimators.
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1. Introduction

This paper focuses on the variance estimation under the presence of change
points. Our goal is to estimate the noise variance without identifying the loca-
tions of the changes, so that the variance estimator can be used in the subsequent
change-point detection procedures. We characterize the finite sample minimax
risk of the proposed estimator, over a broad model class with little restrictions
on the change-point structure. Our estimator is equivariant over the data se-
quence, which greatly simplifies the calculations and leads to explicit minimax
risk bounds.

Change points or structural changes have emerged from many applications,
and thus been extensively studied in statistics [13, 12, 20], biological science
[39, 30], econometrics [4, 1, 5, 19, 31], engineering [21, 3] and many other fields.
The literature on the change point analysis has been vast, so we only sample a
small portion here. For overviews, see [33], [7], [29] and [38].

A premier goal of change-point detection is to estimate and make inferences
about the change-point locations. A good variance estimator is vital in many
change-point detection procedures. For example, in binary segmentation and
related methods [32, 13], the variance is required to decide when to stop the
recursive procedure. In other methods, for example, the screening and ranking
algorithm (SaRa) in [30] and the simultaneous multiscale change-point estima-
tor (SMUCE) in [12], the choice of tuning or thresholding parameters depends
on the variance. In general, it is important to gauge the noise level, which de-
termines the optimal detection boundary and detectability of the change-point
problem [2]. Moreover, an accurate and reliable estimate of the variance is nec-
essary for constructing confidence sets of the change points. In practice, the
noise variance is usually needed and estimated as the first step of a change-
point analysis. However, most commonly used variance estimators, reviewed in
Section 2.1, are based on some technical assumptions and can be severely biased
when these assumptions fail to hold. The quality of these estimators, such as un-
biasedness and efficiency, has been less studied. In fact, to our best knowledge,
the exact unbiased variance estimator under a finite sample setup has not been
discussed before this work. There are two main challenges to the error variance
estimation for change-point models. First, the information on the mean struc-
ture such as the number of change points and jump magnitudes is unknown,
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while complex mean structures often make the variance estimation more diffi-
cult. Second, the noise may not be Gaussian in practice, while many methods
work well only under normality. In spite of the importance of this problem and
these issues, there has been no systematic study on variance estimation for the
multiple change-point model (2.1). This work aims to fill this gap.

Our approach is inspired by the classical difference-based variance estimation
in nonparametric regression, studied in [35, 15, 27, 16], among many others.
In particular, [28] innovatively builds a variance estimator by regressing the
lag-k Rice estimators on the lags, in the context of nonparametric regression
with discontinuities. Recent developments along this direction include [37, 36];
see also a recent review [24]. These works focused on asymptotic analysis of
variance estimation for more flexible models, and hence required much stronger
conditions on the number of change points or discontinuities. In contrast to the
existing literature, we narrow down to change-point models, but the thrust of our
study is to have exact and non-asymptotic results regarding the unbiasedness
and the minimax risk of the variance estimators, under minimal conditions. To
the best of our knowledge, similar results have not appeared in the literature,
and are difficult to obtain without the equivariance framework introduced in
this paper.

In this paper, we develop a new framework of equivariant variance estima-
tion. Roughly speaking, we will embed the data index set [n] = {1, . . . , n} on
a circle instead of the usual straight line segment so the indices n and 1 are
neighbors. In other words, there is no ‘head’ or ‘tail’ in the index set, and every
position plays the same role. As we will illustrate in Section 2.4, there is a natu-
ral cyclic group action on the index set, which leads to an equivariant estimation
framework. Under this framework, we are able to characterize all the equivari-
ant unbiased quadratic variance estimators for a family of change-point model
classes, and establish a minimax theory on variance estimation. This family of
change-point model classes, denoted by ΘL, is indexed by a positive integer L,
which is the minimal distance between change-point locations allowed for any
mean structure in the class. In general, a smaller L leads to a broader model
class, and hence, a higher minimax risk. In this work, we give both lower and
upper bounds in nonasymptotic forms for the minimax risk of equivariant un-
biased quadratic estimators for these model classes. Another advantage of the
equivariant framework is that it requires minimal assumptions on the noise dis-
tribution. In fact, our theoretical analysis relies on no other assumption than the
existence of the fourth moment. In particular, the performance of the proposed
framework is guaranteed also for skewed or heavy-tailed distributions. We also
note that the notion of equivariance has not been sufficiently explored in the
literature except [32], which focuses on short segment detection rather than a
framework of equivariant estimation.

To summarize the main contributions of our work, first, we introduce a new
framework on equivariant variance estimation, and characterize the equivari-
ant unbiased quadratic variance estimators for a family of change-point model
classes. This framework resembles the classical theory of linear unbiased estima-
tion, but is also technically more complicated. Second, we derive nonasymptotic
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lower and upper minimax risk bounds for the proposed estimators. In particular,
in Corollary 2.2, we give a surprisingly simple and exact answer to the minimax
problem with an explicit minimax risk for the broad change-point model class
Θ2. Third, our approach requires minimal model assumptions on the noise dis-
tribution and mean structure, which can hardly be weaken further. Last but not
least, we suggest an equivariant variance estimator that is computationally sim-
ple and practically useful in applications. As a by-product, we show the �2 risk
explicitly for the regression based estimator proposed by [28] and theoretically
compare its risk with our method. Therefore, our theoretical result implies that
the Müller-Stadtmüller estimator is nearly minimax. In the numerical studies,
compared to an oracle variance estimator that knows the true mean, the relative
efficiency of our methods is often within 1.5 across different scenarios.

2. Variance estimation

2.1. Existing variance estimators

In this paper, we focus on the problem of noise variance estimation for a multi-
ple change-point model. In particular, consider a sequence of random variables
X1, . . . , Xn satisfying

Xi = θi + εi, 1 ≤ i ≤ n, with (2.1)
θ1 = · · · = θτ1 �=θτ1+1 = · · ·=θτ2 �= θτ2+1 = · · · · · · = θτJ �= θτJ+1 = · · · = θn,

(2.2)

where the mean vector θ = (θ1, . . . , θn)� is piecewise constant, and τ =
(τ1, . . . , τJ)� is the location vector of change points. We assume that the noises
{εi}ni=1 are independent and identically distributed (i.i.d.) with E(ε1) = 0 and
Var(ε1) = σ2 > 0.

Many estimators for the variance or standard deviation of the additive noise
have been employed in recent works on change-point detection. One is the me-
dian absolute deviation (MAD) estimator [17], defined by

σ̂1 = 1.4826 ∗ med(|X − med(X)|), (2.3)

where med(X) is the median of the vector X = (X1, . . . , Xn)�, the constant
1.4826 the ratio between standard deviation and the third quartile of the Gaus-
sian distribution. One advantage of this estimator is that it is robust against
outliers. Obviously, the method depends on Gaussianity assumption and a spar-
sity assumption that θ is a constant vector except a small number of entries.

[12] suggests an estimator used in [8],

σ̂2 = 1.48√
2

∗ med(|X(−1) −X(−n)|), (2.4)

where X(−1) = (X2, . . . , Xn)� and X(−n) = (X1, . . . , Xn−1)�. This estimator
is similar to the MAD except that it does not require θ to be an almost constant
vector. Nevertheless, it still needs the normality of the noises.
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The Rice estimator, introduced in [35],

σ̂2
3 = 1

2n‖X(−1) −X(−n)‖2 (2.5)

is another popular method. For example, [34] uses it for variance estimation.
It does not depend on Gaussianity of the noise. But it might be seriously bi-
ased. In fact, as an immediate consequence of Proposition 2.2, the bias of σ̂2

3
is 1

n (V (θ)/2 − σ2), where V (θ) =
∑n−1

i=1 (θi − θi+1)2. To eliminate the bias and
improve the efficiency, [28] proposed a regression based estimator via lag-k Rice
estimators. As we will see in Section 2.3, it is a special case of difference-based
quadratic variance estimator, which has been a popular approach in nonpara-
metric regression [9]. Nevertheless, it seems that this approach has not been
widely recognized and employed in change-point analysis. There are a few in-
teresting open problems to be answered for the Müller-Stadtmüller estimator.
First, can we find its risk with respect to a loss function, e.g., �2 loss? Sec-
ond, the quality of any variance estimators to a change-point model highly
depends on the mean structure θ. It is desirable to find optimal or nearly opti-
mal variance estimators for certain change-point model classes. In particular, is
the Müller-Stadtmüller estimator optimal? Undoubtedly, affirmative answers to
these questions will promote the applications of the difference-based quadratic
variance estimator including the Müller-Stadtmüller estimator in the field of
change-point analysis.

In fact, direct answers to these questions are difficult, as we will explain in the
appendix. Instead, we take a detour via an equivariance framework and answer
all questions above.

2.2. Model descriptions

In model (2.1), the data vector X = (X1, X2, . . . , Xn)� is observed and indexed
by the set [n] = {1, . . . , n}. We define a segment, denoted by [k, �], as a subset of
[n] consisting of consecutive integers {k, k + 1, . . . , �}. The working model (2.1)
is standard and widely used in the literature. Here we make and emphasize a
key extension. That is, the index set is arranged on a circle, and the indices 1
and n do not play special roles as start and end points. Consequently, a segment
[k, �] with k ≥ � is also well-defined. For example, [n− 1, 3] = {n− 1, n, 1, 2, 3}.
For the mean vector θ with the form (2.2), we assume that it consists of J
segments with constant means, [τ1 + 1, τ2], . . . , [τJ + 1, τ1], which are separated
by the change points 1 ≤ τ1 < τ2 < · · · < τJ ≤ n. Denote the common value
of θi on the segment [τj + 1, τj+1] by μj . For a mean vector θ, we denote by
L(θ) the minimal length of all constant segments in θ. The magnitude of L(θ)
is a complexity measure of a change-point model. We will consider a family of
nested model classes Θ2 ⊃ Θ3 ⊃ · · · , where

ΘL = {θ ∈ R
n : L(θ) ≥ L}. (2.6)

In general, the larger L is, the easier the change-point analysis. In particular,
when L(θ) = 1, each observation can have its own mean different from all others,



3816 N. Hao et al.

and there is no sensible change-point problem. Therefore, we only consider the
case L(θ) ≥ 2 in this paper. Note that, by definition, L(θ) = n if θ is a constant
vector, and otherwise, L(θ) ≤ n/2.

Note that the classical model treats the first segment and the last segment of
θ as two separated segments. That is, the index n is treated as a known change
point, no matter whether θ1 = θn or not. The classical model classes can be
defined by

Θc
L = {θ ∈ R

n : L(θ) ≥ L, τJ = n}. (2.7)
In fact, ΘL ⊃ Θc

L by definition. For example, let θ = (0, 0, 1, 1, 1, 1, 0, 0)�. We
have θ ∈ Θ4 but θ /∈ Θc

4. The larger generality of ΘL over Θc
L can be negligible

in real applications. However, as we will see, it is advantageous to work on the
family (2.6) to obtain neat theoretical results.

We use i, k, h, � ∈ [n] to denote the index of the data, and K and L to denote
the length of segments. Occasionally, an index i in Xi or θi may go beyond [n]
in formulas. In that case, we use the convention Xi = Xi−nM where M is the
unique integer such that i − nM ∈ [n]. Similarly, we use j ∈ [J ] to denote
the index of change points and use the convention τJ+1 = τ1. The length of a
segment [k, �] is defined as the cardinality of the set [k, �], which is � − k + 1
when k ≤ � and n + �− k + 1 otherwise.

We assume the following condition on the error distribution in this paper.
Condition 1. ε1, . . ., εn are i.i.d. with E(ε1) = 0, Var(ε1) = σ2, and κ4 =
E(ε4

1)/σ4 < ∞.
We view this assumption as a “minimal” one for the variance estimation

problem, because there is no distributional assumption. The existence of the
4-th moment is necessary for studying the mean squared error of the variance
estimator.

We define two quantities related to the mean structure

V (θ) =
n−1∑
i=1

(θi − θi+1)2

W (θ) =
n∑

i=1
(θi − θi+1)2 = V (θ) + (θn − θ1)2 =

J∑
j=1

(μj − μj+1)2.

In fact, V (θ) and W (θ) measure the total variation of the mean vector in �2-
norm. There is no change point in the sequence if and only if V (θ) = W (θ) = 0.

With the convention that Xi = Xn+i, we define

Tk =
n∑

i=1
(Xi −Xi+k)2,

which plays a central role in our variance estimation framework. In fact, it can
be considered as a circular version of the lag-k Rice estimator, defined as

Sk =
n−k∑
i=1

(Xi −Xi+k)2.
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In particular, S1 is called Rice estimator, introduced in [35].

2.3. An equivariant approach for variance estimation

The means and covariances of Tk’s can be calculated as follows.

Proposition 2.1. Under Condition 1, for 1 ≤ k ≤ L(θ),

ETk = 2nσ2 + kW (θ).

Moreover, for 1 ≤ k ≤ L(θ)/2,

Var(Tk) = 4nκ4σ
4 + 8kσ2W (θ);

and for 1 ≤ k < h ≤ L(θ)/2,

Cov(Tk, Th) = 4n(κ4 − 1)σ4 + 8kσ2W (θ).

With Proposition 2.1, we rescale Tk and consider a regression model

Yk = α + kβ + ek, k = 1, . . . ,K (2.8)

where Yk = Tk/(2n), (α, β)� = (σ2,W (θ)/(2n))�, and ek is the noise term with
mean zero and covariance

Cov(e1, . . . , eK)� = Σ = σ4

n

[
IK + (κ4 − 1)1K1�

K + 2W (θ)
nσ2 HK

]
, (2.9)

where IK is the K × K identity matrix, 1K is a vector of length K with all
entries equal to 1, HK = (Hij) is a K × K matrix with Hij = min{i, j}. As
Yk and Tk are easily calculated from the data, we can estimate the variance,
i.e., the intercept α in the regression model (2.8), by the ordinary least squares
(OLS) estimator, denoted by α̂K . Specifically, let Y K = (Y1, . . . , YK)�, ηK =
(1, 2, . . . ,K)�, ZK = (1K ,ηK), then

α̂K = (1, 0)(Z�
KZK)−1Z�

KY K . (2.10)

Theorem 2.1. Assume Condition 1. The OLS estimator α̂K is unbiased when
2 ≤ K ≤ L(θ). Moreover, if K ≤ L(θ)/2, we have

Var(α̂K) = σ4

n

(
κ4 − 1 + 4K + 2

K(K − 1) + 2W (θ)
nσ2

(K + 1)(K + 2)(2K + 1)
15K(K − 1)

)
.

(2.11)

If K ≤ L(θ),

Var(α̂K) ≤ σ4

n

(
κ4 − 1 + 4K + 2

K(K − 1) + W (θ)
nσ2

(K + 1)(K + 2)2

3K(K − 1)

)
. (2.12)
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Theorem 1 gives an exact �2 risk of the variance estimator α̂K for 2 ≤ K ≤
L(θ)/2. Note that the risk depends on θ only through its total variation W (θ).
When K > L(θ)/2, the exact risk also depends on other information of the
mean, besides the total variation W (θ). See Theorem 2.3 for more details. In
the proof of Theorem 2.1 in the appendix, we show that the equality in (2.12)
is achieved for a specific θ satisfying: K = L(θ), n/K is an even number, all
segments are of the same length, and the segment means μj have the same
absolute value, but with alternating signs. Therefore, the upper bound provided
in (2.12) is tight.

There are three summands in the �2-risk of α̂K (2.11). The first summand
σ4

n (κ4 − 1) is equal to Var(σ̂2
O) where

σ̂2
O = 1

n

n∑
i=1

(Xi − θi)2 = 1
n

n∑
i=1

ε2
i (2.13)

is the oracle estimator when the true mean is known. When K ≤ L(θ)/2,
according to Proposition 2.1, the generalized least squares (GLS) estimator α̃K

based on model (2.8) is obtained using the covariance matrix (2.9). Clearly
α̃K depends on θ through W (θ)/σ2 in the covariance (2.9). In a special case
when W (θ) = 0, the covariance is compound symmetric, and the OLS and
GLS estimators coincide [26] and equal to σ̂2

O,K := 1
K

∑K
k=1 Yk with �2-risk

σ4

n

(
κ4 − 1 + 4K+2

K(K−1)

)
. Therefore, the first two summands in (2.11) can not be

reduced for any linear unbiased estimators based on {Yk}Kk=1. We will elaborate
the related minimax theory in Subsection 2.5.

We may also calculate the mean and covariance of Sk’s.

Proposition 2.2. Under Condition 1 with τJ = n, for 1 ≤ k ≤ L(θ),

ESk = 2nσ2 + k
[
V (θ) − 2σ2] .

Moreover, if E(ε3
1) = 0, for 1 ≤ k ≤ L(θ)/2,

Var(Sk) = 2(n− k)(κ4 + 1)σ4 + 2(n− 2k)(κ4 − 1)σ4 + 8kσ2V (θ);

and for 1 ≤ k < h ≤ L(θ)/2,

Cov(Sk, Sh) = (4n− 4h− 2k)(κ4 − 1)σ4 + 8kσ2V (θ).

To our best knowledge, Müller and Stadtmüller first constructed variance
estimators via a regression approach based on Sk’s [28]. They studied variance
estimation and tests for jump points in nonparametric estimation under an
asymptotic setting L(θ)/n → c as n → ∞.

Remark. The condition τJ = n in Proposition 2.2 means that when study the
properties of Sk’s, we consider the classical change-point model where the first
segment is [1, τ1], and the last segment is [τJ−1 + 1, n].
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Comparing with Tk’s, the mean and covariance structure of Sk’s is more
complex. Moreover, Proposition 2.2 requires one more condition Eε3

1 = 0, i.e.
zero skewness. The following proposition gives a precise comparison of the OLS
estimators based on Tk’s and Sk’s.

Proposition 2.3. Assume Condition 1, E(ε3
1) = 0, and τJ = n. Let α̌K be the

OLS estimator obtained by using Sk in place of Tk. Then α̌K is unbiased when
2 ≤ K ≤ L(θ). Moreover, if K ≤ L(θ)/2, we have

Var(α̌K) = σ4

n

(
κ4 − 1 + 4K + 2

K(K − 1) + 2V (θ)
nσ2 · (K + 1)(K + 2)(2K + 1)

15K(K − 1)

+ 1
n
· 2(K − 7)(K + 1)(K + 2)

15K(K − 1)

)
.

If K ≤ L(θ) and K ≤ n/2,

Var(α̌K) ≤ σ4

n

(
κ4 − 1 + 4K + 2

K(K − 1) + V (θ)
nσ2 · (K + 1)(K + 2)2

3K(K − 1)

+ 1
n
· 2(K − 7)(K + 1)(K + 2)

K(K − 1)

)
.

We call α̌K the Müller-Stadtmüller (MS) estimator. As an immediate conse-
quence of Theorem 2.1 and Proposition 2.3, when 2 ≤ K ≤ L(θ)/2,

Var(α̌K) − Var(α̂K) = σ2

n2

{[
σ2 − 2(θ1 − θn)2

]
· (K + 1)(K + 2)(2K + 1)

15K(K − 1)

−σ2 · (K + 1)(K + 2)
K(K − 1)

}
.

It follows that α̂K has a smaller variance if θ1 = θn and K ≥ 7; and α̌K has
a smaller variance if (θ1 − θn)2 > σ2/2. Asymptotically, Var(α̌K) − Var(α̂K) =
o(Var(α̌K)) when K(σ2 + (θ1 − θn)2) = o(n). So these two estimators often
perform similarly, which is also verified by our numerical studies. In this paper,
we aim to derive nonasymptotic and exact risk bounds for the variance esti-
mators, which seems too complicated using Sk’s. Therefore, we focus on Tk’s
subsequently and introduce the equivariant framework in the next subsection.

2.4. Equivariant unbiased estimation

Geometrically, we can embed the index set [n] = {1, . . . , n} into the unit circle
S1 ⊂ R

2 by the exponential map πn : i 
→ e
2πi

√
−1

n . The set [n] is invariant of
natural group action Zn ↪→ S1, where Zn is the cyclic group of order n, and the
unit element 1 ∈ Zn maps S1 to itself via a rotation by an angle 2π

n . This group
action naturally induces a group action of Zn on the sample space R

n, where
the unit element 1 ∈ Zn maps an n-vector (X1, . . . , Xn)� to (X2, . . . , Xn, X1)�.
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There is another way to represent this group action via n×n circulant matrices.
Define Ck as a circulant matrix with its (i, j) entry

Ck,ij =
{

1, j − i = k mod n
0, otherwise.

Again, we may treat the subscript k in Ck as a number modulo n. It is easy
to verify that CkC� = Ck+� holds under standard matrix multiplication and
C�

k = C−k = Cn−k, so Cn = {Ck} is a group isomorphic to Zn. Under this
isomorphism, the group action Zn ↪→ R

n can be represented by matrix multi-
plication X 
→ CkX. Note that both the parameter space of the mean vector,
Θ, and the sample space, X , are R

n for the change-point model. An estimator
θ̂ of the mean vector θ is called equivariant if and only if Ckθ̂(X) = θ̂(CkX)
for all k, i.e., the estimation procedure commutes with the group action. For the
problem of variance estimation, as the group action does not affect the value of
variance parameter σ2, a variance estimator σ̂2 is equivariant (or simply invari-
ant) if σ̂2(X) = σ̂2(CkX).

In this sense, Tk is an equivariant version of Sk because the values of Tk’s
remain the same under the group action. Consequently, we have

Proposition 2.4. α̂K is an equivariant variance estimator. Under condition 1,
α̂K is equivariant and unbiased for 2 ≤ K ≤ L(θ).

We consider the class of quadratic estimators of the form
∑n

i,j=1 aijXiXj ,
or X�AX, where A = (aij) is a symmetric matrix. It is straightforward to
see Yk = 1

2nTk = X�AkX with Ak = 1
n

(
I − 1

2Ck − 1
2C

�
k

)
. That is, {Tk}Lk=1

and their linear combinations are quadratic estimators. It turns out that any
equivariant unbiased quadratic variance estimator for model class ΘL must be
a linear combination of T1, . . . , TL, as characterized by the following theorem.

Theorem 2.2. The set of all equivariant unbiased quadratic variance estimators
for the model class ΘL is

QL =
{

1
2n

L∑
k=1

ckTk =
L∑

k=1
ckYk : c1, . . . , cL ∈ R,

L∑
k=1

ck = 1,
L∑

k=1
kck = 0

}
.

Interestingly, Q2 consists of only one estimator, i.e., α̂2 = 2Y1 − Y2. As a
corollary of Theorems 2.1 and 2.2, we have

Corollary 2.1. The OLS estimator α̂2 = 2Y1 − Y2 is the unique quadratic
equivariant unbiased variance estimator for model class Θ2. Its variance satisfies

Var(α̂2) ≤
σ4

n

(
κ4 + 4 + 8W (θ)

nσ2

)
.

Before we conclude this subsection, we point out that it is also possible to
characterize the unbiased quadratic estimators over the class of classical change-
point models Θc

L defined in (2.7). It turns out this characterization is much
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more complicated than Theorem 2.2. Furthermore, the variance of an unbiased
X�AX over Θc

L also depends on the mean vector θ in a more complicated
way. These observations give us another motivation to consider the equivariant
estimators over the larger class ΘL. We discuss the unbiased estimators over Θc

L

with more details in Appendix D.

2.5. Minimax risk

Theorem 2.2 concludes that all equivariant unbiased quadratic estimators for
model class ΘL are linear combinations of Y1, . . . , YL, including the OLS estima-
tor studied in Subsection 2.3. A natural question is whether the OLS estimator
is optimal, and if not, how far it is from an optimal estimator. In this subsection,
we will answer this question from the perspective of minimax theory.

Consider the class QL of all equivariant unbiased estimators over the model
class

ΘL,w = {(θ, σ2) : L(θ) ≥ L, W (θ)/(nσ2) ≤ w, σ2 > 0}, where L ≥ 2, w ≥ 0.

For any estimator σ̂2, define the �2 risk up to a factor σ4

n

r(σ̂2) = n

σ4 E(σ̂2 − σ2)2.

This risk is scale invariant by definition. As we will show soon, for a fixed
model (θ, σ2), the risk of the optimal estimator depends on the minimal segment
length L(θ) and the ratio W (θ)/(nσ2). Therefore, we consider the model class
ΘL,w in our minimax analysis, where the two parameters L and w bound these
two quantities respectively. Define the minimax risk of all equivariant unbiased
estimators in QL over model class ΘL,w as follows.

rL,w = min
σ̂2∈QL

max
(θ,σ2)∈ΘL,w

r(σ̂2). (2.14)

We can solve the minimax problem for the case L = 2 as a simple corollary
of Theorems 2.1 and 2.2.

Corollary 2.2. α̂2 = 2Y1 − Y2 is the minimax estimator for model class Θ2,w
with minimax risk r2,w ≤ κ4 +4+8w with equality holding when n is a multiple
of 4.

Corollary 2.2 gives an elegant minimax solution for the broadest model class
considered in this paper. At the level of L = 2, the OLS estimator is optimal, no
matter what value w takes. Intuitively, as L grows and the model class shrinks,
we may borrow more information from neighbors because of the piecewise con-
stant mean structure, and get lower minimax risk. Nevertheless, the minimax
estimator and the exact risk are difficult to find for L ≥ 3. We will provide
instead both lower and upper bounds of the minimax risk. We first calculate
the risk of any equivariant unbiased estimator in QL.
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Theorem 2.3. Let c = (c1, c2, . . . , cL)� such that
∑L

k=1 ck = 1 and
∑L

k=1 kck =
0. For (θ, σ2) ∈ ΘL,w, the risk of σ̂2

c =
∑L

k=1 ckYk ∈ QL is

r(σ̂2
c) = κ4 − 1 + c�

(
IL − W (θ)

nσ2 G(θ)
)
c, (2.15)

where G(θ) = (Gk�) is a L× L matrix with

Gk� = |k − �| + 1
W (θ)

n∑
i=1

(θi − θi+k+�)2. (2.16)

As shown in the proof of Proposition 2.5, the quadratic form in (2.15) is
positive definite on the constrained linear space which c lies in. Therefore, we can
minimize the risk (2.15) to get the optimal solution in QL for any model in ΘL,w,
putting aside the fact that the solution may depend on unknown parameters.
Because all estimators in QL are linear combinations of Yk’s, they are also
linear estimators of the intercept in model (2.8). It is not surprising that the
optimization problem (2.15) has the same optimal solution as the least squares
problem (2.8). We state the result formally as below.

Proposition 2.5. There is a unique solution to the optimization problem

minimize r(σ̂2
c) subject to

L∑
k=1

ck = 1,
L∑

k=1

kck = 0.

Let cθ,σ2 be the minimizer for a model (θ, σ2) ∈ ΘL,w. Then σ̂2
cθ,σ2 is the GLS

estimator of model (2.8) with K = L. Moreover, if (θ, σ2) ∈ Θ2L,w ⊂ ΘL,w,
then cθ,σ2 depends on the model (θ, σ2) only through W (θ)/(nσ2).

By minimizing (2.15) with linear constraints, we can easily find the optimal
c and corresponding risk for an individual model (θ, σ2) ∈ ΘL,w. Nevertheless,
we see from (2.16) that the value of Gk� depends on

∑n
i=1(θi − θi+k+�)2, which

is not a function of W (θ) when k + � > L(θ). Thus, there is no simple way to
characterize the behavior of G(θ) for all models in ΘL,w. As a result, it is a
highly nontrivial problem to identify the minimax estimator and the minimax
risk.

In Theorem 2.4, we will provide both lower and upper bounds of the mini-
max risk. We first introduce the main ideas and some necessary notations. We
consider the OLS and GLS estimators and their risks over the model class to
bound the minimax risk. For OLS, formula (2.12) in Theorem 2.1 implies an
upper bound of minimax risk.

min
σ̂2∈QL

max
(θ,σ2)∈ΘL,w

r(σ̂2) ≤ max
(θ,σ2)∈ΘL,w

r(α̂L)

= κ4 − 1 + 4L + 2
L(L− 1) + (L + 1)(L + 2)2

3L(L− 1) w. (2.17)
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For GLS, we consider a smaller model class Θ2L,w, over which the GLS esti-
mator in QL depends on θ only through W (θ)/(nσ2). Specifically, let ΣL,w be
the covariance matrix (2.9) with K = L and W (θ)/(nσ2) = w, we define α̃L,w

as the GLS estimator based on (2.8) and covariance matrix ΣL,w, i.e.

α̃L,w = (1, 0)(Z�
LΣ−1

L,wZL)−1Z�
LΣ−1

L,wY L.

The maximal risk of the GLS α̃L,w over Θ2L,w can be derived to offer a lower
bound of the minimax risk. Finally, we study a GLS estimator based on an
upper bound of the covariance structure (2.9) and its maximal risk over ΘL,w,
which leads to a minimax upper bound different from (2.17).

Let {Dk} be the sequence defined recursively by Dk = (2 + λ)Dk−1 −Dk−2
with initial values D0 = 1, D1 = 1 + λ. Define the matrix

V L,λ :=
(

1−DL−1/DL

λ
DL−1
λDL

DL−1
λDL

DL−1/DL+λL−1
λ2

)
,

and define
gL(λ) := κ4 − 1 + V −1

L,λ[1, 1], (2.18)

where V −1
L,λ[1, 1] is the top left entry of the 2 × 2 matrix V −1

L,λ.

Theorem 2.4. Let rL,w be the minimax risk defined in (2.14), and gL(·) be a
function defined in (2.18). For the subclass Θ2L,w, the GLS estimator α̃L,w ∈ QL

is minimax with the risk

min
σ̂2∈QL

max
(θ,σ2)∈Θ2L,w

r(σ̂2) = max
(θ,σ2)∈Θ2L,w

r(α̃L,w) = gL(2w),

The minimax risk on the model class ΘL,w satisfies (2.17) and

gL(2w) ≤ rL,w ≤ gL(4w). (2.19)

The function gL(·) in (2.18) is defined through the sequence {Dk}. Although
the explicit expression of Dk and hence gL(·) can be derived, it is complicated
and barely provides any additional insight, so we choose not to present it. In-
stead, we characterize the behavior of gL(·) around 0 in the following proposi-
tion.

Proposition 2.6. gL(·) is a nonnegative increasing function on [0,∞) with

gL(0) = κ4 − 1 + 4L + 2
L(L− 1) , and g′L(0) = (L + 1)(L + 2)(2L + 1)

15L(L− 1) .

This proposition, together with (2.17), shows that the exceeded minimax risk
of the OLS estimator is bounded by

(L + 1)(L + 2)2

3L(L− 1) w − 2(L + 1)(L + 2)(2L + 1)
15L(L− 1) w + o (w)

=(L + 1)(L + 2)(L + 8)
15L(L− 1) w + o(w).

As an immediate consequence, we have the following corollary.
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Corollary 2.3. The OLS estimator α̂L is asymptotically minimax under con-
dition w = o(1), i.e.,

lim
n→∞

max
(θ,σ2)∈ΘL,w

r(α̂K) = lim
n→∞

min
σ̂2∈QL

max
(θ,σ2)∈ΘL,w

r(σ̂2) = κ4 − 1 + 4L + 2
L(L− 1) .

In Figure 1, we illustrate the minimax risk bounds discussed above. In par-
ticular, we plot the upper bounds given by OLS in (2.17) (labeled by OLS-L)
and by GLS in (2.19) (labeled by GLS-L). (2.17) is tighter when w is small,
and (2.19) gives a sharper bound when w is large. Two other lines in Figure 1,
labeled by OLS-2L and GLS-2L, are for the risks of the OLS and GLS estima-
tors over a smaller model class Θ2L,w, as in (2.11) and (2.19). In particular, as
stated in Theorem 2.4, the GLS-2L line, corresponding to gL(2w), gives a lower
bound of the minimax risk over ΘL,w. All the curves are plotted over a big range
0 ≤ w ≤ 0.8. For example, a model class ΘL,w with w = 0.8 would include a
model θ which changes mean at a level of 2 standard deviation every 5 data
points, or at a level of 4 standard deviation every 20 data points. In general, a
large ratio W (θ)/(nσ2) indicates that either the magnitude of mean changes is
large or the mean changes frequently. In the former scenario, we may detect the
obvious change points first and reduce the total variation W (θ), then estimate
the variance, which facilitate the detection of subtle change points. In the second
scenario, it would be difficult to identify all the change points simultaneously
even if we know the true variance. Therefore, it is reasonable to consider variance
estimation for a class ΘL,w with small or moderate w. Finally, we conclude that
the OLS estimator α̂K , defined in (2.10) and considered in Section 2.3, gives a
simple and good solution to the variance estimation problem, especially for a
model class ΘL,w where w is not too big. We call α̂K the equivariant variance
estimator (EVE), whose numerical performance will be presented next.

Fig 1. Lower (GLS-2L) and upper (OLS-L, GLS-L) bounds of the minimax risk rL,w with respect
to w. The left and right panels correspond to L = 10 and L = 15 respectively.
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3. Numerical studies

3.1. Simulated data examples

We illustrate the performance of our method using simulated data. We consider
three error distributions, standard Gaussian distribution εi ∼ N(0, 1), a scaled t-
distribution εi ∼

√
2
3 t6, and a translated exponential distribution εi ∼ Exp(1)−

1, all of which have mean zero and variance one, with κ4 = 3, 6, 9, respectively.
Note that the exponential distribution is non-symmetric with a nonzero third
moment. We fix n = 1, 000 and consider three mean structures. Specifically, we
consider a null model without any change point in scenario 1, a sparse mean
model with few change points in scenario 2, and a model with frequent changes
in scenario 3, as detailed below.

Scenario 1: θ = 0.
Scenario 2: θi = 1 when 100m+1 ≤ i ≤ 100m+10, m ∈ {1, 2, . . . , 6}; θi = −3

when 801 ≤ i ≤ 820, and θi = 0 otherwise.
Scenario 3: θi = 1 when 20m + 1 ≤ i ≤ 20m + 10, m ∈ {0, 1, . . . , 49}, and

θi = −1 otherwise.

We report the simulation results for different methods by the average values
and standard errors over 500 independent replicates for each scenario. Because
practically it is more often to use standard deviation σ rather than the variance
σ2 in inference, we take square root to all variance estimators and report the
results on standard deviation estimation. In total, there are 9 scenarios (3 mean
scenarios × 3 error distributions), labeled by S1-G,S1-T, . . . ,S3-E in tables. For
example, S1-G indicates Scenario 1 with Gaussian error.

To show the sensitivity to the choice of K of our method, we compare the
performance of the EVE for K = 5, 10, 15, and 20 in Table 1. For the null model
(Scenario 1), larger K leads to a better performance, as affirmed in Theorem 2.1.
Nevertheless, the improvement using a K larger than 10 is marginal. In contrast,
in Scenario 3 when there are many change points, there is an upward bias when
K is larger than 10. In Scenario 2, a larger K leads to slightly larger bias but
smaller variance. In this case, our method is not sensitive to the choice of K.
We observe that the standard errors of all estimators for the exponential and
t distributions are larger than the Gaussian distribution because their fourth
moments are larger. This is consistent with Theorem 2.1.

We see that the choice of K is crucial when the mean variation is large as
in scenario 3. We develop a simple method to tune K. Given a range of K, say
Kmin = 5 ≤ K ≤ Kmax = 20, we calculate Y1, . . . , YKmax+1 and use Y1, . . . , YK

to predict YK+1 based on the linear model (2.8). We calculate a score defined
by SC(K) = |ŶK+1 − YK+1|/σ̂e, where σ̂e is estimated based on the RSS. A K
is selected by

K̂ = argmax
{Kmin≤K≤Kmax}

SC(K).
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Table 1

Average values of estimators with standard errors in parenthesis over 500 replicates.
K = 5 K=10 K = 15 K = 20 tuned Oracle

S1-G 0.999(0.029) 1.000(0.026) 1.000(0.025) 1.000(0.024) 0.999(0.028) 1.000(0.023)
S1-T 0.999(0.039) 0.999(0.037) 0.999(0.036) 0.999(0.035) 0.999(0.038) 1.000(0.034)
S1-E 0.998(0.048) 0.998(0.046) 0.998(0.046) 0.998(0.046) 0.998(0.047) 0.998(0.046)
S2-G 1.000(0.029) 1.000(0.026) 1.004(0.026) 1.009(0.025) 1.000(0.028) 1.000(0.023)
S2-T 0.999(0.039) 0.999(0.037) 1.003(0.036) 1.008(0.035) 1.000(0.038) 1.000(0.034)
S2-E 0.998(0.049) 0.998(0.046) 1.003(0.046) 1.007(0.046) 0.999(0.047) 0.998(0.046)
S3-G 1.000(0.034) 1.000(0.030) 1.253(0.026) 1.468(0.031) 1.001(0.030) 1.000(0.023)
S3-T 0.999(0.043) 0.999(0.040) 1.254(0.033) 1.469(0.035) 1.000(0.041) 1.000(0.034)
S3-E 0.998(0.052) 0.998(0.049) 1.252(0.041) 1.467(0.041) 0.999(0.049) 0.998(0.046)

This tuning process chooses K = 10 with high probability (96.8%, 96.0%, and
95.2%) in S3-G, S3-T, and S3-E, respectively. In the first two scenarios, the
choice of K is not crucial. Overall, the tuning method works well. In practice,
we suggest that one should plot the first few Yk’s, e.g., Y1, . . . , Y20, and see
whether there is an obvious change on the slope. If not, K = 10 seems a safe
choice and can be used as a rule of thumb. Otherwise, the tuning method can
be used.

We compare the variance estimators introduced in Section 2.1 with the EVE.
The simulation results are summarized in Table 2. The regression based esti-
mators EVE and MS with K = 10 are labeled by MS(K=10) and EVE(K=10),
respectively. The EVE with tuned K is labeled by EVE. The estimators de-
fined in (2.3), (2.4), (2.5), and the oracle estimator (2.13) are labeled by MAD,
DK, Rice, and Oracle, respectively. We also report the relative efficiency of each
estimator to the oracle one (2.13) in Table 3. It is clear from the results that
the regression based methods MS and EVE perform best among all except the
oracle one in all scenarios. The relative efficiency of the EVE and MS to the
oracle is constantly low. The tuning method works well. All of the MAD, DK
and Rice estimators are seriously biased in some scenarios. In general, MAD and
DK estimators tend to be biased upward when the mean structure is complex,
e.g., in S2-G and S3-G, and to be biased downward when the noise distribution
is t or exponential, e.g., in S1-T and S1-E. The Rice estimator is immune to the
error distribution, but is biased upward when the mean structure is complex,
e.g., in Scenario 3. As illustrated in our theoretical result, the EVE and MS
estimator perform similarly. The EVE is slightly better when θ1 = θn, and the
MS estimator is better in Scenario 3 when |θ1 − θn| is large.

Table 2

Average values of estimators with standard errors in parenthesis over 500 replicates.
EVE EVE(K=10) MS(K=10) MAD DK Rice Oracle

S1-G 0.999(0.027) 1.000(0.026) 1.000(0.026) 1.001(0.040) 1.001(0.041) 0.999(0.028) 1.000(0.023)
S1-T 0.999(0.038) 0.999(0.037) 0.999(0.037) 0.867(0.036) 0.916(0.038) 0.999(0.039) 1.000(0.034)
S1-E 0.998(0.047) 0.998(0.046) 0.998(0.046) 0.714(0.033) 0.727(0.038) 0.998(0.048) 0.998(0.046)
S2-G 1.001(0.028) 1.000(0.026) 1.000(0.026) 1.049(0.042) 1.005(0.041) 1.007(0.028) 1.000(0.023)
S2-T 1.000(0.038) 0.999(0.037) 0.999(0.037) 0.921(0.036) 0.921(0.039) 1.006(0.039) 1.000(0.034)
S2-E 1.000(0.047) 0.998(0.046) 0.998(0.046) 0.781(0.034) 0.735(0.038) 1.005(0.048) 0.998(0.046)
S3-G 1.001(0.030) 1.000(0.030) 1.000(0.030) 1.557(0.052) 1.071(0.043) 1.094(0.028) 1.000(0.023)
S3-T 1.000(0.041) 0.999(0.040) 0.999(0.040) 1.556(0.046) 0.994(0.041) 1.094(0.038) 1.000(0.034)
S3-E 0.999(0.049) 0.998(0.049) 0.998(0.049) 1.575(0.066) 0.821(0.043) 1.093(0.046) 0.998(0.046)
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Table 3

Estimated relative efficiency of each method to the oracle estimator based on 500 replicates.
EVE EVE(K=10) MS(K=10) MAD DK Rice

S1-G 1.39 1.21 1.22 2.87 3.06 1.44
S1-T 1.21 1.13 1.13 15.85 7.25 1.30
S1-E 1.06 1.02 1.03 39.84 36.45 1.12
S2-G 1.47 1.25 1.25 7.74 3.12 1.52
S2-T 1.24 1.14 1.14 6.40 6.54 1.33
S2-E 1.05 1.02 1.03 23.54 34.54 1.12
S3-G 1.70 1.61 1.60 575.87 12.72 17.63
S3-T 1.39 1.33 1.32 262.07 1.43 8.75
S3-E 1.17 1.14 1.14 161.15 16.26 5.16

3.2. Error from real data

In real applications, the noise distributions are unknown and often far from
being Gaussian, which makes the variance estimation even more challenging.
To illustrate the performances of different variance estimators, we use a SNP
genotying data set produced by Illumina 550K platform, available in web site
http://penncnv.openbioinformatics.org/. The log R ratio (LRR) sequence
of the data set has mean zero except a few short segments, called copy number
variations (CNVs). We pick the LRR sequence of Chromosome 11 of the subject
father with 27272 data points. As the CNVs are few and short in this data set,
we treat all data points as random noise. We standardize the data to have mean
zero and variance one. We use the same mean structures as before and draw
the errors randomly from the standardized sequence. The results are shown in
Tables 4 and 5. We observe that the performance of the EVE and MS estimator
is similar to the oracle estimator and better than other estimators.

Table 4

Average values of estimators with standard errors in parenthesis over 500 replicates.
EVE EVE(K=10) MS(K=10) MAD DK Rice Oracle

S1 1.000(0.034) 1.000(0.033) 1.000(0.033) 0.886(0.034) 0.930(0.041) 1.001(0.036) 1.000(0.031)
S2 1.002(0.035) 1.001(0.034) 1.001(0.034) 0.939(0.033) 0.935(0.041) 1.008(0.036) 1.000(0.031)
S3 1.001(0.036) 1.001(0.035) 1.001(0.035) 1.555(0.046) 1.005(0.042) 1.096(0.035) 1.000(0.031)

Table 5

Estimated relative efficiency of each method to the oracle estimator based on 500 replicates.
EVE EVE(K=10) MS(K=10) MAD DK Rice

S1 1.19 1.11 1.12 14.45 6.72 1.32
S2 1.28 1.17 1.18 4.95 5.99 1.41
S3 1.31 1.27 1.27 314.77 1.82 10.67

3.3. Labor productivity

This example is motivated by [18]. We consider the variance estimation of the
U.S. labor productivity of major sectors: manufacturing/durable (DUR), man-
ufacturing/nondurable (NDUR), business (BUS), nonfarm business (NFBUS),

http://penncnv.openbioinformatics.org/
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and nonfinancial corporations (NFC). All the series range from 1987 Q1 to 2019
Q4 (with length 132). We aim to estimate the variance of the quarterly growth
rates in percentages. The data is obtained from U.S. Bureau of Labor Statistics
(https://www.bls.gov/lpc/). The five series are plotted in Figure 2. It turns
out there are no obvious change points for the last three sectors. For DUR and
NDUR, we identify and show the change points locations by vertical lines. The
sample ACF plots (for DUR and NDUR, we plot the ACF for the segment-wise
demeaned series) are also included to show that the serial correlation can be
ignored for these data. We report the estimated standard deviations of the five
series in Table 6. Besides the estimators introduced earlier, the sample standard
deviation (SD) is also included for comparison. Furthermore, we report SDs as a
benchmark. The SDs is the sample standard deviation of the segmented series,
which is different from the SD for DUR and NDUR, and same as SD for the
other three series. We find that SD might overestimate σ for DUR and NDUR as
it ignores the potential change points. DK often underestimates σ possibly due
to non-Gaussian noise distribution. The MAD estimator seems to be unstable,
with larger biases. The Rice estimator is similar to the proposed EVE estimator
(with data-driven choice of K), which provides most reliable estimates. Overall,
the EVE is very close to the benchmark SDs, but without segmenting the series
first. This is exactly what we propose to achieve: a reliable variance estimator
before identifying the locations of the change points.

Table 6

Variance estimation for the US labor productivity indices.
SDs EVE MAD DK Rice SD

DUR 3.82 3.61 5.49 3.40 3.80 5.20
NDUR 3.59 3.49 3.71 3.30 3.39 3.81
BUS 2.59 2.49 2.37 2.41 2.50 2.59
NFBUS 2.60 2.54 2.37 2.62 2.55 2.60
NFC 3.62 3.60 3.11 3.40 3.76 3.62

4. Discussion

The detection or segmentation procedures for change-point models often require
the prior knowledge of the variance, and it is a common practice to estimate
the variance as the first step of the analysis. We find that the regression based
quadratic variance estimators, such as MS estimator [28] and the EVE proposed
in this work, perform better than other popular approaches. We show the �2 risk
explicitly for both the EVE and MS estimator. These two estimators are based
on leg-k Rice estimators Sk and a circular version Tk, respectively. Practically,
the EVE is slightly preferred when the noises are skewed as it does not require
vanished third moment. Theoretically, it is easier to work with Tk because of the
symmetric set-up, and all unbiased equivariance quadratic variance estimators
are linear combinations of Tk, as shown in Theorem 2.2. It is more difficult to
characterize all unbiased quadratic variance estimators (without equivariance),

https://www.bls.gov/lpc/
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Fig 2. Time series plots and the ACF plots after segmentation.

which are not necessarily linear combinations of Sk. As a conclusion, we recom-
mend both the EVE and MS estimator for variance estimation in change-point
analysis.

There are a few interesting research directions for future works. As a next
step, it is natural to consider the change-point model where the observations
are serially correlated. In this time series context, not only the marginal vari-
ance, but also the autocovariances and the long run variance are all of critical
importance in change point analysis. It is desirable to construct easy-to-do yet
accurate estimators of these quantities as well. The framework and idea intro-
duced in this paper will be indispensable for this direction of future research. As
a referee pointed out, an estimator to W (θ) is automatically obtained based on
the estimator for the slope β in the regression model (2.8). A reliable estimate
to W (θ) might be helpful to test the existence of mean changes of the sequence,
i.e., W = 0 versus W �= 0, especially when the changes are frequent and noises
are far from normal. Moreover, good estimates to W (θ) and κ4 can lead to a
decent approximation to the GLS, which is competitive estimator.

Appendix A: Proof of Theorem 2.1

We start this section with a lemma which facilitates our proof of Propositions
2.1 and 2.2, and conclude with the proof of Theorem 2.1.

Lemma A.1. Let i ∈ [n], j ∈ [J ] and θi = μj for a model θ. For k ≤ L(θ),
θi−θi+k is either 0 or μj −μj+1. For k ≤ L(θ)/2, (θi−θi+k)(θi+k−θi+2k) = 0.

Proof of Lemma A.1. For k ≤ L(θ), there is at most one change point between
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i and i + k. Therefore,

θi − θi+k =
{
μj − μj+1, when τj < i ≤ τj+1 < i + k;
0, when τj < i < i + k ≤ τj+1.

For k ≤ L(θ)/2, there is at most one change point between i and i + 2k. At
least one of θi − θi+k and θi+k − θi+2k is zero, so is the product.

Proof of Propositions 2.1 and 2.2. Within this proof, i, i′, i′′ ∈ [n] are three
different indices, and j, j′, j′′ ∈ [J ] such that θi = μj , θi′ = μj′ and θi′′ = μj′′ .

Under Condition 1, it is straightforward to obtain

E(εi − εi′)2 = 2σ2, (A.1)
E(Xi −Xi′)2 = (θi − θi′)2 + 2σ2 = (μj − μj′)2 + 2σ2. (A.2)

It follows Lemma 1
n∑

i=1
(θi − θi+k)2 = k

J∑
j=1

(μj − μj+1)2.

So we have

ETk =
n∑

i=1
(Xi −Xi+k)2

=
n∑

i=1
(θi − θi+k)2 + 2σ2

= k

J∑
j=1

(μj − μj+1)2 + 2nσ2

= 2nσ2 + kW (θ).

Similarly, we have

ESk = 2nσ2 + k
(
V (θ) − 2σ2) .

For the covariance part, we start with

Var(εi − εi′)2

=E(εi − εi′)4 −
[
E(εi − εi′)2

]2
=E(ε4

i − 4ε3
i εi′ + 6ε2

i ε
2
i′ − 4εiε3

i′ + ε4
i′) − (2σ2)2

=2κ4σ
4 + 6σ4 − 4σ4

=2(κ4 + 1)σ4,

Cov[(εi − εi′)2, (εi′ − εi′′)2]
=E(εi − εi′)2(εi′ − εi′′)2 − E(εi − εi′)2E(εi′ − εi′′)2
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=E(ε2
i ε

2
i′ + ε2

i ε
2
i′′ + ε4

i′ + ε2
i′ε

2
i′′ + terms with odd degrees) − (2σ2)2

=3σ4 + κ4σ
4 − 4σ2

=(κ4 − 1)σ4.

Recall our convention that θi = μj , θi′ = μj′ , θi′′ = μj′′ .

Var(Xi −Xi′)2

=Var(εi − εi′ + μj − μj′)2

=Var
[
(εi − εi′)2 + 2(εi − εi′)(μj − μj′) + (μj − μj′)2

]
=Var[(εi − εi′)2] + 4(μj − μj′)2Var(εi − εi′)

+ 4(μj − μj′)Cov
[
(εi − εi′)2, (εi − εi′)

]
=2(κ4 + 1)σ4 + 4(μj − μj′)22σ2 + 0
=2(κ4 + 1)σ4 + 8σ2(μj − μj′)2.

The second to last equality follows the fact Cov
[
(εi − εi′)2, (εi − εi′)

]
= E(εi −

εi′)3 = 0. It follows directly, for k ≤ L(θ),
n∑

i=1
Var(Xi −Xi+k)2 = n[2(κ4 + 1)σ4] + k

J∑
j=1

8σ2(μj − μj+1)2. (A.3)

Cov[(Xi −Xi′)2, (Xi′ −Xi′′)2]
=Cov[(εi − εi′)2 + 2(εi − εi′)(μj − μj′) + (μj − μj′)2, (εi′ − εi′′)2

+ 2(εi′ − εi′′)(μj′ − μj′′) + (μj′ − μj′′)2]
=Cov[(εi − εi′)2 + 2(εi − εi′)(μj − μj′), (εi′ − εi′′)2 + 2(εi′ − εi′′)(μj′ − μj′′)]
=(κ4 − 1)σ4 − 2(μj − 2μj′ + μj′′)Eε3

i′

+ 4(μj − μj′)(μj′ − μj′′)Cov[εi − εi′ , εi′ − εi′′ ]
=(κ4 − 1)σ4 − 2(μj − 2μj′ + μj′′)Eε3

i′ − 4(μj − μj′)(μj′ − μj′′)σ2

=(κ4 − 1)σ4 − 2(θi − 2θi′ + θi′′)Eε3
i′ − 4(θi − θi′)(θi′ − θi′′)σ2.

As we will see in the next a few lines, the second summand above involving
the third moment will be canceled out in calculating the covariance structure
of Tk’s because of equivariance. For Sk’s, we will need an additional condition
Eε3

i′ = 0 in order to get a neat formula.
It follows last equation that, for k ≤ L(θ)/2,∑
1≤i,i′≤n,i 	=i′

Cov[(Xi −Xi+k)2, (Xi′ −Xi′+k)2]

=2
n∑

i=1
Cov[(Xi −Xi+k)2, (Xi+k −Xi+2k)2]

=2
n∑

i=1
(κ4 − 1)σ4 − 2(θi − 2θi+k + θi+2k)Eε3

i+k − 4(θi − θi+k)(θi+k − θi+2k)σ2
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=2n(κ4 − 1)σ4,

where the last equality is implied by two facts,
n∑

i=1
θi − 2θi+k + θi+2k = 0 (A.4)

and

(θi − θi+k)(θi+k − θi+2k) = 0. (A.5)

In particular, (A.4) holds because of the equivariant formulation of Tk; (A.5) fol-
lows Lemma A.1. To summarize, we have∑

1≤i,i′≤n,i 	=i′

Cov[(Xi −Xi+k)2, (Xi′ −Xi′+k)2] = 2n(κ4 − 1)σ4. (A.6)

For k ≤ L(θ)/2, by (A.3) and (A.6), we have

Var(Tk) = Var
n∑

i=1
(Xi −Xi+k)2

=
n∑

i=1
Var(Xi −Xi+k)2 +

∑
i 	=i′

Cov[(Xi −Xi+k)2, (Xi′ −Xi′+k)2]

= n[2(κ4 + 1)σ4] + k

J∑
j=1

8σ2(μj − μj+1)2 + 2n(κ4 − 1)σ4

= 4nκ4σ
4 + 8kσ2

J∑
j=1

(μj − μj+1)2

= 4nκ4σ
4 + 8kσ2W (θ)

For k < h ≤ L(θ)/2,

Cov(Tk, Th) = Cov
(

n∑
i=1

(Xi −Xi+k)2,
n∑

i=1
(Xi −Xi+h)2

)

=
n∑

i=1

n∑
i′=1

Cov
(
(Xi −Xi+k)2, (Xi′ −Xi′+h)2

)
,

where the summands are not zero only when i = i′, i = i′ + h, i + k = i′ or
i + k = i′ + h. For the case i = i′, we have

n∑
i=1

Cov
(
(Xi −Xi+k)2, (Xi −Xi+h)2

)

=
n∑

i=1

(
(κ4 − 1)σ4 − 2(θi+k − 2θi + θi+h)Eε3

i − 4(θi+k − θi)(θi − θi+h)σ2)
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=n(κ4 − 1)σ4 + 0 +
n∑

i=1
4(θi − θi+k)(θi − θi+h)σ2,

where the last summand is not zero only when τj < i ≤ τj+1 < i + k < i + h <
τj+2. So it equals to

4kσ2
J∑

j=1
(μj − μj+1)2 = 4kσ2W (θ).

It is straightforward to verify that the sum is the same when i+ k = i′ +h, and
the sum is n(κ4 − 1)σ4 when i = i′ + h or i + k = i′. Overall, we have

Cov(Tk, Th) = 4n(κ4 − 1)σ4 + 8kσ2W (θ).

The computation for covariance among Sk’s is similar except that it requires
vanished third moment condition as they are not equivariant.

We need the following lemma to prove Theorem 2.1.

Lemma A.2. Let ϑ2 = W (θ)/σ2 for simple notation. The variance of least
squares estimator (α̂, β̂)� is

σ4

n

[
2

K(K − 1)

(
2K + 1 −3
−3 6

K+1

)
+ (κ4 − 1)

(
1 0
0 0

)
+

2ϑ2

n

1
K(K − 1)

( 1
15 (K + 1)(K + 2)(2K + 1) − 1

10 (K + 2)(K + 3)
− 1

10 (K + 2)(K + 3) 6
5
K2+1
K+1

)]
.

Proof of Lemma A.2. Denote by a K × 2 matrix Z the design matrix of the
regression model (2.8), i.e.,

Z =
(

1 1 · · · 1
1 2 · · · K

)�
. (A.7)

The covariance matrix of OLS is (Z�Z)−1Z�ΣZ(Z�Z)−1.

Z�ΣZ = σ4

n
Z�(I + (κ4 − 1)11� + 2ϑ2

n
H)Z

= σ4

n

[
Z�Z + (κ4 − 1)Z�11�Z + 2ϑ2

n
Z�HZ

]
.

(Z�Z)−1Z�ΣZ(Z�Z)−1

=σ4

n

[
(Z�Z)−1 + (κ4 − 1)(Z�Z)−1Z�11�Z(Z�Z)−1

+2ϑ2

n
(Z�Z)−1Z�HZ(Z�Z)−1

]
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=σ4

n
[S1 + S2 + S3] .

It is straightforward to calculate

Z�Z =
(

K 1
2K(K + 1)

1
2K(K + 1) 1

6K(K + 1)(2K + 1)

)
,

S1 =(Z�Z)−1 = 2
K(K − 1)

(
2K + 1 −3
−3 6

K+1

)
,

S2 =(κ4 − 1)(Z�Z)−1Z�11�Z(Z�Z)−1

=(κ4 − 1)
(

1 0
0 0

)
.

The above equation follows the fact that 1 is the first column of the matrix Z,
and (Z�Z)−1Z�1 is the first column of (Z�Z)−1Z�Z = I.

To calculate S3, we rewrite H as

H =11� +
K−1∑
k=1

ηkη
�
k =

K∑
k=1

ηkη
�
k ,

where ηK = 1, and for k < K, ηk is a vector (0, . . . , 0, 1, . . . , 1)� with first
K − k entries 0 and last k entries 1.

S3 =2ϑ2

n
(Z�Z)−1Z�HZ(Z�Z)−1

=2ϑ2

n
(Z�Z)−1Z�

(
K∑

k=1
ηkη

�
k

)
Z(Z�Z)−1

=2ϑ2

n

K∑
k=1

(Z�Z)−1Z�ηkη
�
k Z(Z�Z)−1

=2ϑ2

n

K∑
k=1

(Z�Z)−1
(

k
k(2K+1−k)

2

)
η�
k Z(Z�Z)−1

=2ϑ2

n

K∑
k=1

2
K(K − 1)

(
2K + 1 −3
−3 6

K+1

)(
k

k(2K+1−k)
2

)
η�
k Z(Z�Z)−1

=2ϑ2

n

K∑
k=1

k

K(K − 1)

(
3k − 2K − 1

6K−k
K+1

)
η�
k Z(Z�Z)−1

=2ϑ2

n

K∑
k=1

(
k

K(K − 1)

)2 (3k − 2K − 1
6K−k
K+1

)(
3k − 2K − 1

6K−k
K+1

)�

=2ϑ2

n

[
K∑

k=1

k2

K2(K − 1)2

(
(3k − 2K − 1)2 6(3k − 2K − 1)K−k

K+1
6(3k − 2K − 1)K−k

K+1 36(K−k
K+1 )2

)]
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With the help of equations

K∑
k=1

k2(K − k) = 1
12K

2(K − 1)(K + 1),

K∑
k=1

k2(K − k)2 = 1
30K(K − 1)(K + 1)(K2 + 1),

we can calculate
K∑

k=1
k2[3k − 2K − 1]2

=
K∑

k=1

k2[3(k −K) + K − 1]2

=
K∑

k=1

k2[9(K − k)2 − 6(K − k)(K − 1) + (K − 1)2]

=9
K∑

k=1

k2(K − k)2 − 6(K − 1)
K∑

k=1

k2(K − k) + (K − 1)2
K∑

k=1

k2

= 9
30K(K − 1)(K + 1)(K2 + 1) − 6(K − 1) 1

12K
2(K − 1)(K + 1)

+ (K − 1)2 1
6K(K + 1)(2K + 1)

= 1
15K(K − 1)(K + 1)(K + 2)(2K + 1),
K∑

k=1

k26(3k − 2K − 1)K − k

K + 1

= 6
K + 1

K∑
k=1

k2[3(k −K) + K − 1](K − k)

= 6
K + 1

K∑
k=1

[−3k2(K − k)2 + (K − 1)k2(K − k)

= 6
K + 1

(
−3 1

30K(K − 1)(K + 1)(K2 + 1) + (K − 1) 1
12K

2(K − 1)(K + 1)
)

= − 1
10K(K − 1)(K + 2)(K + 3),

K∑
k=1

k236(K − k

K + 1)2

= 36
(K + 1)2

K∑
k=1

k2(K − k)2
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= 36
(K + 1)2

1
30K(K − 1)(K + 1)(K2 + 1)

=6
5
K(K − 1)(K2 + 1)

K + 1 .

Finally, we get

S3 =2ϑ2

n

1
K(K − 1)

( 1
15 (K + 1)(K + 2)(2K + 1) − 1

10 (K + 2)(K + 3)
− 1

10 (K + 2)(K + 3) 6
5
K2+1
K+1

)
.

Taking sum of S1, S2 and S3, we can get the conclusion of the lemma.

Proof of Theorem 2.1. The first conclusion (2.11) of Theorem 2.1 follows Lem-
ma A.2 immediately.

Now we prove (2.12). Denote d�
K = (d1, . . . , dK) = (1, 0)(Z�Z)−1Z�, i.e.

d1, . . . , dK are the coefficients of the OLS α̂K . Define B1 = 1
2n

∑K
k=1 dk(I−Ck),

then the OLS α̂K can be equivalently represented as α̂K = X�BX, where
B = B1 + B�

1 . By Lemma C.1, the variance of α̂K can be expressed as

Var(α̂K) = σ4

n

(
κ4 − 1 + d�

KdK

)
+ 4σ2‖Bθ‖2

= σ4

n

(
κ4 − 1 + 4K + 2

K(K − 1)

)
+ 4σ2‖Bθ‖2.

Let U be the K dimensional upper triangular matrix with 1 on and above
the diagonal, and 0 below the diagonal. Let lj = τj+1 − τj , and define the
lj-dimensional vector

sj :=
(
UdK

0

)
,

where the last lj − K entries are zero. The elements of B�
1 θ at the locations

τj + 1, . . . , τj+1 is (μj − μj−1)sj/(2n). Define the operation ←−· as arranging the
rows of a matrix upside-down. In particular, ←−sj is the upside-down version of
the vector sj . The elements of B1θ at the same locations is (μj −μj+1)←−sj/(2n).
Note that the supports of sj and ←−sj do not overlap if lj ≥ 2K, and overlap
completely if lj = K, so the value of the inner product s�j

←−sj varies according
to the segment length lj . It can be shown that the absolute value of the inner
product is maximized when lj = K, and the value s�j

←−sj = d�
KU�←−UdK < 0

when lj = K. Therefore, it holds that

‖(μj − μj+1)sj + (μj − μj−1)←−sj‖2

≤ (μj − μj+1)2‖sj‖2 + (μj − μj−1)2‖←−sj‖2

+ 2|(μj − μj−1)(μj − μj+1)d�
KU�←−UdK |

≤ [(μj − μj+1)2 + (μj − μj−1)2]d�
K(U�U −U�←−U )dK .

(A.8)
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Taking the sum over all segments,

‖Bθ‖2 ≤ 1
2n2 · d�

K(U�U −U�←−U )dK ·
J∑

j=1
(μj − μj+1)2

= W (θ)
2n2 · d�

K

(
U�U −U�←−U

)
dK .

Therefore, the variance of the OLS α̂K is bounded from above by

σ4

n
·
[
κ4 − 1 + 4K + 2

K(K − 1) + 2W (θ)
nσ2 d�

K

(
U�U −U�←−U

)
dK

]
.

The calculation of the quadratic term d�
K

(
U�U −U�←−U

)
dK is very similar

with the proof of Lemma A.2, so we omit the details, and directly give the result
as the upper bound in (2.12).

Finally, we argue that the upper bound in (2.12) can be achieved. Suppose
in model (2.2), K = L(θ), J = n/K is an even number, all segments are of
the same length, and the segments means μj have the same absolute value, but
with alternating signs. Then in (A.8), the two inequalities become identities
with |μj − μj+1| =

√
(W (θ)/J , and so is the one in (2.12).

Appendix B: Proof of Theorem 2.2

Let σ̂2
A = X�AX. The following Lemmas are helpful to prove Theorem 2.2.

Lemma B.1. σ̂2
A is equivariant if and only if A is circulant.

Lemma B.2. Define

I = {Λ ⊂ [n] : Λ consists of consecutive integers modulo n }
IL = {Λ ∈ I : L ≤ |Λ| ≤ n− L or |Λ| = n}

The variance estimate σ̂2
A is unbiased over model class ΘL if and only if

trA = 1, and
∑
i,j∈Λ

aij = 0, ∀Λ ∈ IL.

Proof of Lemma B.1. σ̂2
A is equivariant if and only if σ̂2

A(X) = σ̂2
A(CkX) for

all Ck ∈ Cn and X ∈ R
n, where Ck is a circulant matrix defined in Section 2.4.

Directly calculation shows

σ̂2
A(CkX) = (CkX)�A(CkX) = X�(C�

k ACk)X.

Therefore, σ̂2
A is equivariant if and only if A = C�

k ACk for all Ck, which implies
that A is a circulant matrix by classic result in linear algebra, e.g., Theorem
5.20 in [14].
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Proof of Lemma B.2. It is straightforward to show

Eσ̂2
A = E(X�AX) = θ�Aθ + σ2trA.

Therefore, Eσ̂2
A = σ2 for all θ ∈ ΘL if and only if trA = 1 and θ�Aθ = 0 for

all θ ∈ ΘL.
Now we show that θ�Aθ = 0 for all θ ∈ ΘL if and only if

∑
i,j∈Λ aij = 0,

for all Λ ∈ IL. Let 1Λ ∈ R
n be a vector with entries equal to 1 in index set

Λ, and equal to 0 otherwise. Note that 1Λ ∈ ΘL when Λ ∈ IL, and 1�
ΛA1Λ =∑

i,j∈Λ aij . This implies the “only if” part.
For the other direction, we first show that

∑
i,j∈Λ aij = 0 for all Λ ∈ IL

implies two facts: aij = 0 when L < |i − j| < n − L;
∑

i∈Λ;j∈Λ′ aij = 0 for
connected Λ and Λ′. Here we call that Λ, Λ′ ∈ IL are connected if Λ and Λ′ are
disjoint and Λ ∪ Λ′ ∈ IL.

For fact 1, let us start with showing a1,L+2 = 0. Consider four index set Λ1 =
{1, . . . , L+1}, Λ2 = {2, . . . , L+1}, Λ3 = {2, . . . , L+2} and Λ4 = {1, . . . , L+2}.
Because Λ1, Λ2, Λ3, Λ4 ∈ IL, we have

∑
i,j∈Λk

aij = 0 for 1 ≤ k ≤ 4, which
implies

a1,L+2 = aL+2,1 = 1
2

⎛
⎝ ∑

i,j∈Λ2

aij +
∑

i,j∈Λ4

aij −
∑

i,j∈Λ1

aij −
∑

i,j∈Λ3

aij

⎞
⎠ = 0.

Similar arguments show aij = 0 for all pairs (i, j) with L < |i− j| < n− L.
Fact 2 directly follows

∑
i∈Λ;j∈Λ′

aij = 1
2

⎛
⎝ ∑

i,j∈Λ∪Λ′

aij −
∑
i,j∈Λ

aij −
∑

i,j∈Λ′

aij

⎞
⎠ .

Now for θ ∈ ΘL, either θ is a constant vector (trivial case) or we have a se-
quence of disjoined index sets Λ1, . . . ,ΛM ∈ IL such that the pairs (Λ1,Λ2), . . . ,
(ΛM ,Λ1) are connected, and θ =

∑M
m=1 μm1Λm

for some μm’s. Therefore,

θ�Aθ

=
(

M∑
m=1

μm1Λm

)�

A

M∑
m=1

μm1Λm

=
M∑

m=1

M∑
t=1

μmμt1�Λm
A1Λt

=
M∑

m=1

M∑
t=1

⎛
⎝μmμt

∑
i∈Λm;j∈Λt

aij

⎞
⎠

=0

The last equality follows the fact that
∑

i∈Λm;j∈Λt
aij = 0 for all m, t. We have

to show the equation for only two cases: Λm and Λt are connected, and they are
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not connected. The connected case follows fact 2 directly. If Λm and Λt are not
connected, then any i ∈ Λm and j ∈ Λt satisfy L < |i − j| < n − L, so aij = 0
by fact 1.

Proof of Theorem 2.2. By definition we have

Tk =
n∑

i=1
(Xi −Xi+k)2 = 2

n∑
i=1

X2
i − 2

∑
i 	=j

XiXj = 2nX�AkX,

where Ak = 1
n

(
I − 1

2Ck − 1
2C

�
k

)
. For any estimator

∑L
k=1 ckYk ∈ QL, we

can write it as σ̂2
A = X�AX where A =

∑L
k=1 ckAk with

∑L
k=1 ck = 1 and∑L

k=1 kck = 0. Ak is circulant, so is A. Therefore, σ̂2
A is equivariant by Lemma

B.1. Moreover,

trA = tr
L∑

k=1

ckAk =
L∑

k=1

cktrAk =
L∑

k=1

ck = 1.

It is easy to check the sum of all entries in a principal submatrix of Ak over
the index set Λ ∈ IL is k

n . Then for A =
∑L

k=1 ckAk, we have

∑
i,j∈Λ

aij =
L∑

k=1

ck
k

n
= 1

n

L∑
k=1

kck = 0.

We conclude that σ̂2
A is also unbiased by Lemma B.2, and hence, all estimators

in QL are equivariant and unbiased.
Now we have any unbiased and equivariant quadratic estimator σ̂2

A = X�AX
is in QL. If σ̂2

A is equivariant, then A is circulant by Lemma B.1. In the
proof of Lemma B.2, we show that aij = 0 for all L < |i − j| < n − L
if σ̂2

A is unbiased for model class ΘL. Therefore, A is in the linear space
spanned by symmetric circulant matrices {I,Ck + C−k, k = 1, . . . , L}. We
may write A as an element in this linear space with b0I +

∑L
k=1 bk(Ck +C−k).

By Lemma B.2, we have
∑

1≤i,j≤n aij = 0, which implies b0 = −2
∑L

k=1 bk.
That is, A =

∑L
k=1 −2bk(I − 1

2 (Ck + C−k)) that is in a subspace spanned
by {A1, . . . , AL}. Therefore, we may write A =

∑L
k=1 ckAk. Again by Lemma

B.2, unbiasedness implies trA = 1 and
∑

1≤i,j≤L aij = 0, which further im-
ply the constraints

∑L
k=1 ck = 1 and

∑L
k=1 kck = 0. Thus, we give a complete

description of all unbiased equivariant quadratic variance estimators.

Proof of Corollary 2.1. By Theorem 2.2, Q2 consists of c1Y1+c2Y2 with c1+c2 =
1, c1 +2c2 = 0, which determine a unique estimator 2Y1 −Y2. The upper bound
for the variance directly follows formula (2.12) in Theorem 2.1 with K = 2.
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Appendix C: Proof of Theorems 2.3–2.4

Proof of Corollary 2.2. As α̂2 is the unique element in Q2, it is the minimax
estimator. By Theorem 2.1,

max
(θ,σ2)∈Θ2,w

r(α̂2)

≤ max
(θ,σ2)∈Θ2,w

κ4 − 1 + 5 + 8W (θ)
nσ2

= κ4 + 4 + 8w.

In the proof of Theorem 2.1, we show that the minimax risk is achieved when
n is a multiple of 2L = 4.

We need a lemma before proving Theorems 2.3 and 2.4.

Lemma C.1. Assume the same conditions of Theorem 2.3. Write the unbiased
and equivariant estimator σ̂2

c as σ̂2
c = X�AcX, where Ac =

∑L
k=1 ckAk with

Ak = 1
n

(
I − 1

2Ck − 1
2C

�
k

)
. Then its risk can be expressed as

r(σ̂2
c) = κ4 − 1 + c�c + 4n

σ2 ‖Acθ‖2.

Proof of Lemma C.1. By Theorem 2.2 and its proof, we consider an estimator
of the form

σ̂2
c = X�AcX =

L∑
k=1

ckYk ∈ QL,

where Ac =
∑L

k=1 ckAk, and Ak = 1
n

(
I − 1

2Ck − 1
2C

�
k

)
. As c is a fixed vector

in this proof, we use A to denote Ac for simple notation. Note that all entries
in the diagonal of A are 1

n , and A1 = 0.
We calculate the variance of a general estimator in QL. X�AX is unbiased

for σ2, so

Var(X�AX) = E[(X�AX)2] − σ4. (C.1)

We calculate the second moment

E[(X�AX)2]
=E[(θ�Aθ + 2ε�Aθ + ε�Aε)2]
=E[(0 + 2ε�Aθ + ε�Aε)2]
=E[4(ε�Aθ)2 + (ε�Aε)2 + 4ε�Aθε�Aε]
=E[4(ε�Aθ)2 + (ε�Aε)2], (C.2)

where the last equation follows the fact E[4ε�Aθε�Aε] = 0. Since ε�Aθε�Aε
is a homogeneous cubic polynomial on εi’s, all terms in this polynomial have
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expectation zero except the ones involving ε3
i ’s. Moreover, by the fact aii = 1

n ,
we have

E[4ε�Aθε�Aε] = E
[

4
n
θ�Aε◦3

]
= 4Eε3

1
n

θ�A1 = 0,

where ε◦3 denotes entry-wise cube of the vector ε.
Now we calculate the two summands in (C.2).

E[4(ε�Aθ)2] = 4Var[(Aθ)�ε] = 4σ2(Aθ)�Aθ = 4σ2θ�A2θ. (C.3)

(ε�Aε)2

=

⎛
⎝ ∑

1≤i,j≤n

εiaijεj

⎞
⎠

2

=
∑

1≤i,j,i′,j′≤n

εiεjεi′εj′aijai′j′

=2
∑

1≤i<j≤n

ε2
i ε

2
jaiiajj + 4

∑
1≤i<j≤n

ε2
i ε

2
ja

2
ij +

n∑
i=1

ε4
i a

2
ii + · · ·

where the omitted part has zero expectation. Therefore,

E[(ε�Aε)2]

=2
∑

1≤i<j≤n

σ4aiiajj + 4
∑

1≤i<j≤n

σ4a2
ij +

n∑
i=1

σ4κ4a
2
ii

=σ4

⎛
⎝2

∑
1≤i<j≤n

aiiajj + 4
∑

1≤i<j≤n

a2
ij +

n∑
i=1

κ4a
2
ii

⎞
⎠

=σ4

⎛
⎝(

n∑
i=1

aii)2 −
n∑

i=1
a2
ii + 2

n∑
i=1

n∑
j=1

a2
ij − 2

n∑
i=1

a2
ii +

n∑
i=1

κ4a
2
ii

⎞
⎠

=σ4

(
(trA)2 + 2tr(A2) + (κ4 − 3)

n∑
i=1

a2
ii

)

=σ4
(

1 + 2tr(A2) + 1
n

(κ4 − 3)
)

Finally, we have

Var(X�AX)

=4σ2θ�A2θ + σ4
(

1 + 2tr(A2) + 1
n

(κ4 − 3)
)
− σ4

=4σ2θ�A2θ + σ4
(

2tr(A2) + 1
n

(κ4 − 3)
)
. (C.4)
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It is easy to find tr(A2) = 1
n

(
1 + 1

2
∑L

k=1 c
2
k

)
= 1

n

(
1 + 1

2c
�c

)
as A is circu-

lant. By (C.4),

r(σ̂2
c) = n

σ4 Var(X�AX)

= 4n
σ2 ‖Aθ‖2 + κ4 − 1 + c�c.

We complete the proof of the lemma.

Proof of Theorem 2.3. We will follow the notation of Lemma C.1 and write the
risk as a quadratic function of ci’s with coefficients depending on the mean θ.
The only nontrivial part is ‖Aθ‖2 = θ�A2θ. Now we calculate A2.

A2 =
(

L∑
k=1

ckAk

)2

=
(

L∑
k=1

ck
1
n

(I − 1
2Ck − 1

2C−k)
)2

= 1
n2

(
I − 1

2

L∑
k=1

ck(Ck + C−k)
)2

= 1
n2

⎛
⎝I −

L∑
k=1

ck(Ck + C−k) + 1
4

(
L∑

k=1

ck(Ck + C−k)
)2⎞⎠

= 1
n2

(
I −

L∑
k=1

ck(Ck + C−k)

+1
4

L∑
k=1

L∑
�=1

ckc�(Ck+� + C−k−� + Ck−� + C�−k)
)
. (C.5)

Note that when 0 < k ≤ L, we have

θ�Ckθ =
n∑

i=1
θiθi+k

=
n∑

i=1

1
2 [θ2

i + θ2
i+k − (θi − θi+k)2]

=‖θ‖2
2 −

1
2
∑
i=1

(θi − θi+k)2

=‖θ‖2
2 −

1
2kW (θ). (C.6)

Combining (C.5) and (C.6),

θ�A2θ
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= 1
n2

⎛
⎝‖θ‖2 −

L∑
k=1

ck2(θ�Ckθ) + 1
2

L∑
k,�+1

ckc�(θ�Ck+�θ + θ�Ck−�θ)

⎞
⎠

= 1
n2

⎛
⎝‖θ‖2 −

L∑
k=1

ck(2‖θ‖2 − kW (θ)) + 1
2

L∑
k,�=1

ckc�(2‖θ‖2

−1
2

n∑
i=1

(θi − θi+k+�)2 −
1
2 |k − �|W (θ))

)

= 1
n2

⎛
⎝‖θ‖2 −

L∑
k=1

ck2‖θ‖2 +
L∑

k=1
ckkW (θ) + 1

2

L∑
k,�=1

ckc�2‖θ‖2

−1
4

L∑
k,�=1

ckc�(
n∑

i=1
(θi − θi+k+�)2 + |k − �|W (θ))

⎞
⎠ .

As
∑

ck = 1 and
∑

kck = 0, the first four terms in last line are canceled,
and we have

θ�A2θ = − 1
4n2

L∑
k,�=1

ckc�

(
|k − �|W (θ) +

n∑
i=1

(θi − θi+k+�)2
)
. (C.7)

Note that (C.7) is a quadratic form of ck’s, so we can write it by −W (θ)
4n2 c�G(θ)c,

where c = (c1, . . . , cL)�, G = (Gk�) with

Gk� = |k − �| + 1
W (θ)

n∑
i=1

(θi − θi+k+�)2. (C.8)

Putting all terms together, we have

Var(X�AX)

= − W (θ)σ2

n2 c�G(θ)c + σ4

n
(κ4 − 1 + ‖c‖2)

=σ4

n

(
κ4 − 1 + c�

(
IL − W (θ)

nσ2 G(θ)
)
c

)
. (C.9)

It follows (C.9) that

r(σ̂2
c) = κ4 − 1 + c�

(
IL − W (θ)

nσ2 G(θ)
)
c, (C.10)

where the vector c satisfies linear constraints
L∑

k=1

ck = 1,
L∑

k=1

kck = 0. (C.11)
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Proof of Proposition 2.5. First of all, the set QL is all linear unbiased estimators
to the intercept in model (2.8) with K = L, and the two linear constraints
are sufficient and necessary conditions for a linear estimator to be unbiased.
Secondly, the risk (2.15) is, up to a constant σ4

n , the variance of a linear unbiased
estimator. By Gauss-Markov theorem, the GLS estimator is the best linear
unbiased estimator, and hence, the minimizer of (2.15). Here is a remark on
the quadratic form (2.15). Although the quadratic form in (2.15) is not positive
definite over RL, it is positive definite on the constrained linear subspace which c
lies in. The positive definiteness can be seen from (C.7), where the left hand side
is always positive and the right hand side is −c�Gc up to a positive constant.

By (C.8), if L(θ) ≥ 2L, then Gk� = |k − �| + (k + �) = 2 max{k, �}, which
implies that G is a L × L matrix independent of θ. Therefore, the quadratic
form (2.15) depends on only W (θ)/(nσ2).

Proof of Theorem 2.4. In the first part of the proof, we work on the minimax
risk of estimator class QL over model class Θ2L,w, which is a subset of ΘL,w.
This will give a lower bound of the minimax risk.

For any estimator in QL, its risk over Θ2L,w is an increasing function of
W (θ)/(nσ2) because of two facts shown in proof of Proposition 2.5. First, G(θ)
is a constant matrix for θ ∈ Θ2L. Second, −c�Gc > 0 by positive definiteness.
Therefore, for all estimators in QL, the worst scenario (maximum risk) happens
when W (θ)/(nσ2) = w. It is sufficient to consider models with W (θ)/(nσ2) =
w for minimax estimation. Obviously, the GLS estimator, denoted by α̃L,w,
minimizes (2.15) and is the minimax estimator in this case.

Let UL be the upper triangular matrix with one on and above the diagonal,
ZL the L×2 matrix defined in (A.7) with K = L. For any model in Θ2L,w with
W (θ)/(nσ2) = w, the covariance matrix (2.9) of (Y1, . . . , YL)� is

ΣL,w := σ4

n

[
IL + (κ4 − 1)1L1�

L + 2wU�
LUL

]
,

Write the GLS estimator α̃L,w as α̃L,w = (Y1, . . . , YL)d̃L. By Proposition 2.5,

d̃L := argmin
d�ZL=(1,0)

d�
[
IL + (κ4 − 1)1L1�

L + 2wU�
LUL

]
d

= argmin
d�ZL=(1,0)

d�
[
IL + 2wU�

LUL

]
d.

Therefore, the maximum risk of α̃L,w over Θ2L,w is given by

gL(2w) = max
(θ,σ2)∈Θ2L,w

r(α̃L,w)

= (1, 0)
[
Z�

L

(
IL + 2wU�

LUL

)−1
ZL

]−1 (1
0

)
+ κ4 − 1. (C.12)

For notational simplicity, denote λ = 2w. We proceed to calculate the ele-
ments of the matrix Z�

L (IL+λU�
LUL)−1ZL. By the Woodbury matrix identity

(IL + λULU
�
L )−1 = IL − λUL(IL + λU�

LUL)−1U�
L .
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Denote (σk�)1≤k,�≤L := (IL + λU�
LUL)−1. Let ek be the L-dimensional coor-

dinate vector whose only nonzero entry is at the location k, with value 1. Note
that each of the matrices IL +λULU

�
L and IL +λU�

LUL can be obtained form
the other by reverting its columns and rows, and hence

σLL = e�1 (IL + λULU
�
L )−1e1 = 1 − λe�1 λUL(IL + λU�

LUL)−1U�
Le1

= 1 − λ1�
L (IL + λU�

LUL)−11L,

which implies that

[
Z�

L (IL + λU�
LUL)−1ZL

]
[1, 1] = 1 − σLL

λ
. (C.13)

Applying the Woodbury identity twice, we have

(IL + λU�
LUL)−1 = IL − λU�

LUL + λ2U�
LUL(IL + λU�

LUL)−1U�
LUL.

From the identity

σ1L = e�1 (IL + λU�
LUL)−1eL

= −λ + λ2e�1 λU
�
LU

(
LIL + λU�

LUL)−1U�
LULeL

= −λ + λ21�
L (IL + λU�

LUL)−1(1, 2, . . . , L)�,

we have [
Z�

L (IL + λU�
LUL)−1ZL

]
[1, 2] = σ1L + λ

λ2 . (C.14)

Furthermore, from the identity

σLL = e�L (IL + λU�
LUL)−1eL

= 1 − λL + λ2e�LλU
�
LU

(
LIL + λU�

LUL)−1U�
LULeL

= 1 − λL + λ2(1, . . . , L)(IL + λU�
LUL)−1(1, . . . , L)�,

we have [
Z�

L (IL + λU�
LUL)−1ZL

]
[2, 2] = σLL + λL− 1

λ2 . (C.15)

By Lemma C.2, we know that σLL = DL−1/DL and σ1L = −λ/DL. Combining
(C.13), (C.14) and (C.15), we see that the matrix Z�

L (IL + λU�
LUL)−1ZL

equals

V L,λ := Z�
L (IL + λU�

LUL)−1ZL =
(

1−DL−1/DL

λ
DL−1
λDL

DL−1
λDL

DL−1/DL+λL−1
λ2

)
.

The proof of the first part of Theorem 2.4 is complete in view of (C.12).
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We now prove the second part of Theorem 2.4, i.e., the upper bound. Same as
the proof of Theorem 2.3, we consider an arbitrary σ̂2

c = X�AcX =∑L
k=1 ckYk ∈ QL. But this time we write Ac = B1 + B�

1 , where B1 =
1
2n

∑L
k=1 ck(I −Ck). As given in the proof of Theorem 2.1, it holds that

‖B1θ‖2 = ‖B�
1 θ‖2 = W (θ) · c�U�

LULc,

and hence

‖Bθ‖2 = ‖B1θ + B�
1 θ‖2 ≤ 4‖B1θ‖2 = 4W (θ) · c�U�

LULc.

Therefore, by Lemma C.1, on the class ΘL,w, the risk of σ̂2
c is bounded by

r(σ̂2
c) ≤ κ4 − 1 + c�

[
IL + 4wU�

LUL

]
c.

According to the proof of the first part of Theorem 2.4, we have

min
σ̂2
c∈QL

max
(θ,σ2)∈ΘL,w

r(σ̂2
c) ≤ gL(4w).

So the upper bound has been derived.

Lemma C.2. For any integer k ≥ 1, let Uk be the upper triangular matrix
with 1 on and above the diagonal. Assume λ ≥ 0.

(i) Let Dk be the determinant of the matrix Ik + λU�
k Uk, then Dk satisfies

the recursion Dk = (2 + λ)Dk−1 − Dk−2 with initial values D0 = 1 and
D1 = 1 + λ.

(ii) The cofactor of the (1, k)-th element of Ik + λU�
k Uk is always −λ.

Proof of Lemma C.2. Performing two operations on Ik + λU�
k Uk: subtracting

the (k−1)-th row from the last row, and subtracting the (k−1)-th column from
the last one, we have

Ik + λU�
k Uk −→

(
Ik−1 + λU�

k−1Uk−1 −ek−1
−e′k−1 λ + 2

)
,

where ek−1 is a (k−1)-dimensional vector whose only nonzero element is the last
one, with value 1. Therefore, it immediately follows that Dk = (λ + 2)Dk−1 −
Dk−2. It is straightforward to verify that the initial values D0 = 1 and D1 =
1 + λ.

For the second part of the corollary, let Mk1 be the (k− 1)× (k− 1) matrix
obtained by deleting the first column and the last row from Ik + λU�

k Uk.
Denote the rows of Mk1 by ri, 1 ≤ i ≤ k − 1. Performing the row operations
ri − i/(i + 1) · ri+1 successively for i = 1, . . . , k − 2, we end up with a lower
triangular matrix with diagonal entries {−1/2,−2/3, . . . ,−(k− 2)/(k− 1), (k−
1)λ}. Therefore, the cofactor is (−1)k+1

[∏k−2
i=1 −i/(i + 1)

]
· λ = −λ. The proof

is complete.
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Proof of Proposition 2.6. From (C.12), it is straightforward to verify the value
gL(0). For the derivative, we have

g′L(0)

=(1, 0) d

dw

(
Z�

L (I + wU�
LUL)−1ZL

)−1
|w=0

(
1
0

)

=(1, 0)
(
Z�

L (I + wU�
LUL)−1ZL

)−1
|w=0 ·

d

dw

(
Z�

L (I + wU�
LUL)−1ZL

)
|w=0

·
(
Z�

L (I + wU�
LUL)−1ZL

)−1
|w=0

(
1
0

)

=(1, 0)
(
Z�

LZL

)−1
· d

dw

(
Z�

L (I + wU�
LUL)−1ZL

)
|w=0 ·

(
Z�

LZL

)−1
(

1
0

)

=(1, 0)
(
Z�

LZL

)−1
Z�

L (I + wU�
LUL)−1|w=0 ·

d

dw
(I + wU�

LUL)|w=0

· (I + wU�
LUL)−1|w=0ZL

(
Z�

LZL

)−1
(

1
0

)

=(1, 0)
(
Z�

LZL

)−1
Z�

L (U�
LUL)ZL

(
Z�

LZL

)−1
(

1
0

)

=2(L + 1)(L + 2)(2L + 1)
15L(L− 1) .

Appendix D: The unbiased quadratic estimators over Θc
L

In this appendix we characterize the unbiased quadratic estimators over Θc
L,

defined in (2.7). Recall that any quadratic estimator of σ2 can be expressed as
X�AX, where A = (aij) is a n× n symmetric matrix. Let

IL := {I ⊂ [n] : I is a set of consecutive integers; |I| ≥ K;
either [L] ∈ J , or I ∩ [L] = ∅;
either [(n− L + 1), n] ∈ I, or [(n− L + 1), n] ∩ I = ∅.}

Proposition D.1. Assume n ≥ 2K. The variance estimate σ̂2
A is unbiased over

Θc
L if and only if

n∑
j=1

aii = 1, and
∑
i,j∈I

aij = 0, ∀ I ∈ IL.

The set of conditions given in Proposition D.1 includes redundant ones. We
provide an alternative set of conditions when n > 3L.

(C1)
∑n

j=1 aii = 1.
(C2) For each 2L + 1 ≤ i ≤ n− L,

∑L
j=1 aij = 0.



3848 N. Hao et al.

(C3) For each L + 1 ≤ i ≤ n− 2L,
∑n

j=n−L+1 aij = 0.
(C4)

∑L
i=1

∑n
j=n−L+1 aij = 0.

(C5) For each pair of i, j such that L < i, j ≤ n− L and |i− j| > L, aij = 0.
(C6)

∑i+L−1
j1,j2=i aj1,j2 = 0, for all i = 1, i = n−L+1, and L+1 ≤ i ≤ n−2L+1.

(C7)
∑i+L

j=i+1 aij + 1
2aii = 0, for L + 1 ≤ i ≤ n− 2L.

(C8)
∑n

j=i+1 aij + 1
2aii = 0, for n− 2L + 1 ≤ i ≤ n− L.

(C9)
∑i−1

j=1 aij + 1
2aii = 0, for L + 1 ≤ i ≤ 2L.

(C1)∼(C9) form a minimal set of conditions to guarantee the unbiasedness of
σ̂2
A on the parameter space Θc

L.

Appendix E: Additional proofs

We collect the Proofs of Proposition 2.3 and Proposition D.1 in this appendix.
They are both regarding the model class Θc

L.

Proof of Proposition 2.3. The proof is based on comparing the variances of
α̂K and α̌K through (C.4). Recall from the proof of Theorem 2.1 that dK =
(d1, . . . , dK)� is the coefficient vector of the OLS α̂K . It also holds that α̌K =
(d1S1 + · · · dKSK)/2n. The estimators α̂K and α̌K can both be expressed in the
quadratic form:

α̂K = 1
2nX

�A1X, α̌K = 1
2nX

�A2X,

where A1 is a circulant matrix with entries dk at locations (i, j) such that (i−j)
mod n = ±k, and 2 on the diagonal. The matrix A2 is obtained from A1 by
setting its upper-right and bottom-left K × K blocks as zero, the diagonal of
the top-left K ×K block as

diag{1, 1 + d1, 1 + d1 + d2, . . . , 1 + d1 + · · · + dK−1},

and the diagonal of the bottom-right K ×K block as

diag{1 + d1 + · · · + dK−1, . . . , 1 + d1, 1}.

Let us repeat (C.4) here for easy reference, which says that when Eε3
1 = 0, the

variance of any unbiased quadratic estimator X�AX equals

Var(X�AX) = 4σ2θ�A2θ + σ4
(

2tr(A2) + 1
n

(κ4 − 3)
)
.

We first calculate

tr(A2
2) − tr(A2

1) = 2
(

K∑
k=1

(1 + d1 + · · · + dk−1)2 − 4K
)

− 2
K∑

k=1

k · d2
k,
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where the first term is due to the difference in the upper-left and bottom-right
K×K blocks, and the second term comes from the upper-right and bottom-left
blocks. The first term can be further calculated as

K∑
k=1

(1 + d1 + · · · + dk−1)2 − 4K =
K∑

k=1

(2 − dk − · · · − dK)2 − 4K

=
K∑

k=1
(dk + · · · + dK)2 − 4

K∑
k=1

(dk + · · · + dK)

=
K∑

k=1

(dk + · · · + dK)2,

where in the first and last identities we have used the fact
∑K

k=1 dk = 1 and∑K
k=1 k · dk = 0 respectively. Now we calculate

θ�A2
2θ − θ�A2

1θ = 2(θn − θ1)2 ·
K∑

k=1

(dk + · · · + dK)2.

Similar calculations to Lemma A.2 give that

K∑
k=1

(dk + · · · + dK)2 = (K + 1)(K + 2)(2K = 1)
15K(K − 1) ,

K∑
k=1

k · d2
k = (K + 1)(K + 2)

K(K − 1) .

Combining the preceding results, we have

Var(X�A2X) − Var(X�A1X)

= 4σ2 [σ2 − 2(θn − θ1)2
]
· (K + 1)(K + 2)(2K − 1)

15K(K − 1) − 4σ4 · (K + 1)(K + 2)
K(K − 1)

= 4σ2
[
−2(θn − θ1)2 ·

(K+1)(K+2)(2K−1)
15K(K − 1) +σ2 · 2(K − 7)(K + 1)(K + 2)

15K(K − 1)

]
.

This completes the proof of Proposition 2.3 when K ≤ L(θ)/2.
We now consider the case K ≤ L(θ). By examining the proof of Theorem 2.1,

we see that on the model class Θc
L,

θ�A2
2θ ≤ V (θ) (K + 1)(K + 2)2

3K(K − 1) .

On the other hand, the difference between tr(A2
2) and tr(A2

1) remains the same
as the previous case. Combining these facts completes the proof.
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Proof of Proposition D.1. The proof of Proposition D.1 is very similar to that
of Lemma B.2, adapting it to the model class Θc

L. We omit the details. The
conditions (C1)–(C9) form a minimal set of conditions which will imply the
condition in Proposition D.1. The proof of its sufficiency is self evident, and will
be skipped as well.

Appendix F: Circular equivariance

Equivariance, or invariance, is an important concept in statistics, particularly
within the realms of statistical estimation, hypothesis testing, and decision the-
ory [10, 22, 23, 6]. It refers to a property of statistical procedures or estimators
that describes how they behave under certain transformations or symmetries
of the data or parameters. Equivariant procedures are desirable when there are
multiple ways to parameterize the data, or when certain statistical models ex-
hibit symmetries. For instance, we can measure temperature in different units
(Celsius or Fahrenheit), but this choice of units should not influence the sta-
tistical inference. When modeling a coin tossing process, it should not matter
whether we choose π as the probability of head or the probability of tail. Many
summary statistics naturally exhibit invariance (e.g., sample correlation), or
equivariance (e.g., sample proportion). We refer to aforementioned textbooks
for more examples.

In the literature, circular equivariance has received less attention due to
scarcity of circular data. Even in the classical book on circular data [11], equiv-
ariance is not emphasized. Nonetheless, recent research has delved into equiv-
ariant estimation concerning directional data, as seen in [25]. In our work, the
natural space of the location parameter [n] is by default a subset of real num-
bers rather than the unit circle. Embedding the parameter space [n] into the
unit circle by the map πn, as defined in Section 2.4, offers two distinct advan-
tages. First, because of the different topological structures of the unit circle
S1 and the real line R

1, it requires two points instead of one to segment the
circle into two parts. Consequently, circular-based segmentation methods are
more powerful in discovering short segments [32]. To our best knowledge, the
work [32] is the pioneering attempt to explore a circular parameter space for
change-point problems. However, it remains relatively untouched in the liter-
ature regarding the second advantage of this embedding, which facilitates an
elegant equivariant theory. We demonstrate this benefit through the lens of
variance estimation and anticipate further research to explore this direction in
greater depth.
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