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Abstract: How can increasingly available observational data be used to
improve the design of randomized controlled trials (RCTs)? We seek to de-
sign a prospective RCT, with the intent of using an Empirical Bayes esti-
mator to shrink the causal estimates from our trial toward causal estimates
obtained from an observational study. We ask: how might we design the
experiment to better complement the observational study in this setting?

We show that the risk of such shrinkage estimators can be computed
efficiently via numerical integration. We then propose three algorithms for
determining the best allocation of units to strata given the estimator’s
plannned use: Neyman allocation; a “naïve” design assuming no unmea-
sured confounding in the observational study; and a robust design account-
ing for the imperfect parameter estimates we would obtain from the ob-
servational study with unmeasured confounding. We propose guardrails on
the designs, so that our experiment could be reasonably analyzed without
shrinkage if desired.

We demonstrate the viability of these experimental designs through a
simulation study involving a rare, binary outcome. Lastly, we deploy our
methods on real data from the Women’s Health Initiative, a 1991 study es-
timating the health effects of hormone therapy on postmenopausal women.
In particular, we determine how many units should be allocated to each
treatment arm in each stratum of interest in order to maximally reduce
estimation risk given the planned use of the shrinkage estimator. We find
improved design provides further benefits over and above the benefit of the
shrinkage estimator itself.
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1. Introduction

Recent years have seen increased interest in methods to integrate observational
data with experimental data [9]. Such methods have been used to estimate aver-
age causal effects in target populations [4, 22], identify heterogeneous treatment
effects [31], and improve precision in causal estimation [13].

This surge in methodological development is motivated, at least in part, by
the proliferation of observational databases. Such repositories provide statisti-
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cians with rich new data sources from which to learn. Yet the lurking danger of
unmeasured confounding yields rightful trepidation about incorporating these
data into estimation procedures [9]. In [36], the authors proposed a procedure
for shrinking causal estimates for the individual strata of a stratified experi-
ment toward the analogous estimates from an observational study. Shrinkage
estimators are attractive in that they allow researchers to use observational
data in tandem with experimental data, while protecting the integrity of the
randomization of the experiment. Under testable conditions, they provide a
guaranteed reduction in expected loss, relative to using the experimental data
alone.

Separately, [38] proposed a method to design more powerful stratified exper-
iments by utilizing information from an observational study to inform decisions
about how to allocate a sample across given strata and treatment arms. Risk
reductions from this method are more modest, owing to the fact that the obser-
vational data is used only for design and not for inference.

Here, we combine the approaches of design and shrinkage. In particular, if we
plan to use shrinkage, how – given a fixed budget of units – should we allocate
units across strata, and determine the proportion to treat within each stratum,
in a prospective RCT to minimize estimation risk? We answer this question with
an optimization: we minimize expressions for the risk of the shrinkage estima-
tor across possible experimental designs, using information estimated from the
observational study. We thus design to make our planned experiment serve as a
good “complement” to the observational data, allowing for significant gains in
estimation precision when eventually deploying the shrinkage estimator. How-
ever, we also want the experiment to be usable in its own right, and therefore
impose guardrails on the design such that the stratum-specific conditional av-
erage treatment effect (CATE) estimates will be sufficiently precise even if we
do not ultimately decide to shrink these estimates toward those obtained from
the observational study.

The remainder of this paper proceeds as fellow. In Section 2, we define our
problem and introduce notation and assumptions. Section 3 introduces our
choice of shrinkage estimator, κ1, and demonstrates how to compute its risk
efficiently. This section also discusses three different heuristics under which an-
alysts can design prospective experiments with the intent of leveraging κ1 on
the final results, while also protecting the utility of the experiment on its own.
Section 4 contains two simulation studies that highlight the risk improvements
that can be attained by designing toward shrinkage. In section 5 we turn to a
real data application of the Women’s Health Initiative (WHI), a 1991 study of
the effects of hormone therapy (HT) on health outcomes for postmenopausal
women. In particular, we design a small RCT to test the effect of hormone
therapy (HT) on coronary heart disease using the methods of this paper, find-
ing that our proposed design would be likely to have improved risk over designs
that did not take the planned use of shrinkage estimators into account. Section 6
concludes.
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2. Set-up

2.1. Notation

We operate in a stratified setting, with fixed subgroups k = 1, . . . ,K. The sub-
groups could be defined by subject matter knowledge, a consequence of a set
of baseline covariates, or the result of a modern machine learning method for
uncovering heterogeneous treatment effects [20, 46]. Regardless, the stratifica-
tion scheme is taken to be known prior to the experimental design phase. Our
goal is solely to determine sample sizes per stratum and treatment status for a
future experiment on similar units. We suppose we have access to a pilot dataset
obtained from an observational study.

The pilot dataset comprises no total units, indexed by j. With each unit,
we associate two potential outcomes, Yj(0), Yj(1) ∈ R, representing the unit’s
outcome in the presence and absence of treatment (see [40] for the introduction
of potential outcomes and [34] for an overview). We also define a treatment
variable Wj ∈ {0, 1}, representing whether unit j is treated or not; and a vector
Xj ∈ R

p representing measured covariates.
Stratum membership is denoted by a variable Sj where Sj is fully determined

by the values of the observed covariates Xj , i.e. Sj = k ⇐⇒ Xj ∈ Xk for
some set of covariate values Xk. As discussed in Assumption 2, the stratification
is intended to incorporate known effect moderators. In typical cases, we expect
the covariates which define stratum membership (the set of effect moderators)
to be much smaller than the full set of observed covariates.

The quartets (Xj ,Wj , Yj(0), Yj(1)) are sampled i.i.d. from the observational
distribution Fo. Denote as Eo and varo the expectation and variance operators
under Fo.

We design a future blocked experiment of the same treatment. For the exper-
iment, we will recruit nrk units for each stratum k. Within the stratum, we will
then randomize nrkt of those units to receive the treatment and nrkc = nrk−nrkt

to receive the control. We call the set of tuples d = {(nrkt, nrkc)}Kk=1 ∈ Z
K×2

the “design.” We impose a total sample size constraint such that∑
k

nrkt + nrkc = nr,

for some fixed integer nr.
Denote as Fr the sampling distribution for the triplets (Xi, Yi(0), Yi(1))

among units i in the future experimental population. We denote the condi-
tional sampling distribution for units in stratum k as Fr|Si=k. The experiment
can be understood as, for each stratum k, drawing nrk units from Fr|Si=k and
then assigning Wi by choosing a simple random sample of size nrkt from the set
of nrk recruited units. We define as Er and varr the expectation and variance
operators over both the sampling and treatment randomization in the future
experiment.
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2.2. Assumptions and loss function

We make the following standard assumption.

Assumption 1 (Consistency). For each unit � in the pilot study or the future
experiment, the observed outcome Y� ∈ R is given by

Y� = W�Y�(1) + (1 −W�)Y�(0),

that is, there is only one “version” of the treatment.

A key, domain-specific assumption is that the conditional average treatment
effects (CATEs) within each stratum are shared between the pilot observational
and future RCT datasets, i.e.

Assumption 2 (Common Conditional Average Treatment Effects). For each
stratum k = 1, . . . ,K,

Eo (Y (1) − Y (0) | S = k) = Er (Y (1) − Y (0) | S = k) ≡ τk.

Assumption 2, sometimes called a “transportability condition” [9], imposes a
congruency on the distributions Fo and Fr. This assumption gives us a common
target of estimation, the vector of shared CATEs:

τ = (τ1, . . . , τK)T .

We will typically invoke the following slightly stronger version of Assumption 2:

Assumption 3 (Common Conditional Potential Outcome Moments). For each
stratum k = 1, . . . ,K, and w ∈ {0, 1},

Eo (Y (w) | S = k) = Er (Y (w) | S = k) and
varo (Y (w) | S = k) = varr (Y (w) | S = k) .

Neither Assumption 2 nor Assumption 3 can be tested prior to the design
of the experiment, as data from the experimental population will not yet have
been acquired at that stage. Hence, the viability of these assumptions must be
informed exclusively by subject matter knowledge. In cases where the pilot and
experimental populations differ markedly conditional on the stratification—e.g.
if the pilot data and experimental data are collected at very different timepoints
or in very different geographies—then these assumptions may be suspect. How-
ever, if the stratification meaningfully captures population heterogeneity and
the pilot observational and experimental populations are comparable, these as-
sumptions are reasonable to make.

We define
τ̂o = (τ̂o1, . . . , τ̂oK)T ,

as the set of stratum causal estimates arising from the pilot study. These esti-
mates can be obtained using a difference-in-means estimator, or a more complex
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estimator. Though not yet realized, denote as τ̂r the vector of difference-in-
means estimates from the future experiment.

Our eventual causal estimator,

τ̂ ≡ f (τ̂r, τ̂o, . . . ) = (τ̂1, . . . , τ̂K)T,

will be a function of τ̂o and τ̂r, as well as other quantities estimated from
the data. The target of estimation is not an overall average treatment effect
over the experimental population. Rather, we seek to obtain good estimates
simultaneously for each of the stratum CATEs, τ1, . . . , τK . Under Assumption 2,
we can define a loss function under which we evaluate τ̂ . We use the simple,
unweighted L2 loss,

L(τ , τ̂ ) =
∑
k

(τk − τ̂k)2 .

In designing our experiment, we seek to minimize the expected L2 loss of τ̂ in
estimating τ . We treat τ̂o as fixed, yielding the risk expression,

R(τ , τ̂ ) = Er (L(τ , τ̂ )) .

We optimize over an estimator’s risk—rather than its precision—because we
typically use Empirical Bayes estimators for τ̂ , and these estimators are not
unbiased.

2.3. Related problems

We can relate the problem of optimizing our experiment to several well-studied
problems in causal inference and experimental design.

Were the pilot study itself randomized, then under Fo we would have W ⊥⊥
Y (0), Y (1) | X. Then, this problem would be closely related to adaptive exper-
imental designs. Adaptive designs refer to trials conducted in multiple phases,
in which information from early phases can be used to design later phases. Such
designs can encompass a wide variety of study choices [17]. In our case, we are
interested in using prior information to determine how many individuals are
allocated to each stratum and treatment arm. This problem has a rich history,
stretching back to the work of Thompson [44, 45]. While Thompson sampling
was originally designed for a more generic problem involving maximizing the
expected reward, it can be used for estimation of average stratum treatment
effects, as discussed in [30]. Adaptive experimental design is an area of active
research, though much recent work has focused on methods that define strata in
the second phase, rather than taking strata as fixed [42, 2]. For modern methods
that incorporate a fixed stratification scheme (as we do in this manuscript), see
[18] and [5].

Another related setting is one in which the pilot study is an observational
study, but our ultimate causal estimator τ̂ would simply be τ̂r, the vector
of difference-in-means estimators arising from the experiment. This problem
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is closely related to the survey sampling work of Neyman [27]. Neyman com-
puted the optimal allocation for a stratified survey—under a budget constraint—
supposing pilot estimates of variance could be obtained for each stratum. These
ideas can easily be extended to the causal inference setting. Under Assump-
tion 3, pilot stratum variance estimates are obtainable from the observational
study [21]. [38] demonstrates that efficiency gains are possible even if there is
unmeasured confounding in the observational study, as long as we can bound
the magnitude of the unmeasured confounding using a sensitivity model [43].
This is because the observational data can indicate parts of the covariate space
where variation is higher or lower—and hence, where experimenters should over-
or undersample.

Lastly, suppose that the pilot study were an observational study, but that the
experimental study were already completed, and our goal would be to choose
an estimator τ̂ to trade off between causal estimates derived from the two data
sources. This is an example of a “data fusion” problem [4]. Many methods rely on
unconfoundedness in the observational study [37, 1]. Other papers have sought
to weaken this condition, frequently utilizing alternative assumptions to proceed
with merged estimations. Kallus [22] assumes that the hidden confounding has
a parametric structure that can be modeled effectively. Peysakhovich and Lada
[31] propose a method for when the observational data are time series and the
bias preserves a unit-level rank ordering. Recent years have seen several new
proposals for adaptive estimators [7, 29, 47, 6]. For an excellent overview of
some of the available methods, see [9].

2.4. Principles guiding estimator choice and experimental design

In the remainder of this manuscript, we suppose the pilot is an observational
study, and the experimental study has yet to be implemented. We will choose a
causal estimator τ̂ = f (τ̂r, τ̂o, . . . ) for combining the observational and experi-
mental data within each stratum. Then, we will design our experiment explicitly
to minimize the risk of this estimator. Our approach is analogous to an adaptive
trial, but distinct because we are using non-experimental evidence to choose the
allocation at the design phase of the experiment.

Because the observational study is not randomized, we will typically conduct
some form of statistical adjustment to reduce confounding bias in the obser-
vational data. In particular, we use stabilized inverse probability of treatment
weighting (SIPW) as our adjustment. SIPW involves estimating the propensity
score—the probability of treatment in the observational study—as a function
of the observed covariates, and reweighting the units by the inverses of their
estimated propensity score. For more details, see [21].

We highlight several characteristics of the shrinkage estimator and experi-
mental design procedure that we consider ideal.

First, we would like our estimator to be robust to unmeasured confounding in
the observational study. The assumption of unconfoundedness—roughly, that
all variables affecting both the treatment probability and the outcome have
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been measured in the observational study—is fundamentally untestable, and
rarely holds in practice [21]. Moreover, our problem is somewhat asymmetric:
a simple vector of difference-in-means estimates from the experimental study
will be unbiased, and will be “good enough” in many cases. Hence, we do not
want to incorporate the observational data unless we have strong guarantees
that it will reduce statistical risk. Thus, our chosen estimator should not be
overly susceptible to bias due to unmeasured confounding in the observational
study.

One might think of using simpler data fusion estimators, based on precision-
weighted convex combinations of τ̂o and τ̂r, to achieve this end (see, e.g., [37]).
Unfortunately, these estimators were designed under the assumption that un-
confoundedness holds in the observational study. Hence, they do not exhibit the
desired robustness property.

Our second criterion is that we would like our procedure to generate ex-
periments that are still valid if they are analyzed alone. We term this feature
detachability. To motivate this idea, consider an extreme case where our design
algorithm tells us not to sample any experimental units for a given stratum,
under the assumption that the observational study estimate from that stratum
is sufficiently accurate. Suppose that we later learn from stakeholders that they
would prefer to report causal estimates using exclusively the experimental data.
In this case, we would be out of luck: the experiment cannot provide a causal
estimate from the given stratum, so we must either redefine our estimand or con-
duct another experiment. To avoid such extreme cases, we would like to limit
the space of possible designs to those that would yield reasonable estimates in
the case that we choose to use τ̂r alone. Note also that achieving detachability
will still require the approximate validity of Assumption 3, as an experiment
designed under faulty pilot variance estimates may have imprecise estimates of
the stratum-specific CATEs due to poor allocation of units across strata and
treatment arms.

3. Designing towards shrinkage

3.1. Shrinkage estimators for the CATE

In [15] and [16], Green and Strawderman consider how to shrink between an
unbiased estimator and a biased estimator. Their goal is to derive Empirical
Bayes estimators that guarantee a risk reduction relative to using the unbi-
ased estimator alone. The problem turns out to be quite similar to James-Stein
estimation.

In this paper, we primarily consider κ1, a shrinkage estimator introduced
in [36], which builds on the work of Green and Strawderman. In particular,
let τ̂r ∈ R

K be the unbiased (RCT) estimator of the K strata CATEs, and
τ̂o ∈ R

K be the corresponding biased (observational study) estimator. Denote
as Σr = diag(σ2

rk) ∈ R
K×K the diagonal covariance matrix of τ̂r; the square

root of the diagonal of Σr would be the standard errors for the strata-level
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estimates τ̂r. Under mild conditions, we can assume τ̂r ∼ N (τ ,Σr) [see e.g.
26], where τ is the vector of true causal estimates. We primarily focus on

κ1 = τ̂r −
(

tr(Σr)
(τ̂o − τ̂r)T(τ̂o − τ̂r)

)
(τ̂r − τ̂o) .

κ1 shrinks each component of the unbiased estimator toward its counterpart
in the biased estimator by the same multiplicative factor in parentheses. This
estimator is intuitive to understand, and it often outperformed competitor
estimators—including those proposed by Green and Strawderman—in simula-
tions based on data from the Women’s Health Initiative [36]. We discuss the use
of alternative estimators, such as those that differentially shrink each component
of τ̂r toward its corresponding entry in τ̂o, in the Supplementary Material.

Using results from [41], the risk of κ1 is:

R(κ1) =tr(Σr)
K

(
1 + Er

(
4(τ̂r − τ̂o)TΣr(τ̂r − τ̂o)
((τ̂r − τ̂o)T(τ̂r − τ̂o))2 − tr(Σr)

(τ̂r − τ̂o)T(τ̂r − τ̂o)

))
,

(1)

where risk is defined as Er (L(τ ,κ1)), and L(τ ,κ1) = ‖κ1 − τ‖2. The expec-
tation is with respect to τ̂r only. τ̂o is treated as a constant vector: we are
interested in the risk of our future experiment, given the data we have up to the
point of planning that experiment.

As shown in [36], the estimator is guaranteed to dominate τ̂r under the
squared-error loss as long as the condition

4 max
k

σ2
rk <

∑
k

σ2
rk (2)

is satisfied. In other words, if Condition 2 holds, τ̂r is inadmissible with respect
to squared error risk.

The κ1 estimator’s shrinkage is an estimated expression that could be neg-
ative, which would push κ1 away from the randomized trial estimates. We can
instead truncate negative shifts at 0. This positive part analogue of κ1 is

κ1+ = τ̂o +
(

1 − tr(Σr)
(τ̂o − τ̂r)T(τ̂o − τ̂r)

)
+

(τ̂r − τ̂o) ,

which constrains the shrinkage estimator from “over-adjusting.” The risk of κ1+
is guaranteed to be strictly lower than that of κ1. In the simulations of [36],
κ1+ routinely dominated τ̂r even when Condition 2 was not met.

3.2. Exact risk calculation under known parameters

Our goal will be to optimize the experimental design over the risk given in
Expression (1). Define ξ as the (negative) error of the observational study:

ξ = τ − τ̂o = Er(τ̂r) − τ̂o.
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This error is both the bias of the observational study and any stochastic error; we
are conditioning on both these things. Nonetheless, for simplicity of exposition,
we will often refer to ξ as the “bias vector.”

We can then express the risk in Expression (1) as the expectation of a ratio of
quadratic forms of a multivariate normal variable centered at Σ−1/2

r ξ, assuming
Σr and ξ are both known:

R(κ1) = tr(Σr)
K

(
1 + E

(
4 · νTΣ2

rν

(νTΣrν)2 − tr(Σr)
νTΣrν

))
,

where ν ∼ N (Σ−1/2
r ξ, IK).

Exact integral expressions for the above components can be found in [3]. In
particular,

E

(
νTΣ2

rν

(νTΣrν)2

)
=

∫ ∞

0
det(IK + 2tΣr)−1/2 ·

exp
(

1
2

(
ξTΣ−1/2

r (IK + 2tΣr)−1Σ−1/2
r ξ − ξTΣ−1

r ξ
))

·(
tr(R) + (LΣ−1/2

r ξ)TR(LΣ−1/2
r ξ)

)
tdt, and

E

(
1

(νTΣrν)

)
=

∫ ∞

0
det(IK + 2tΣr)−1/2 ·

exp
(

1
2

(
ξTΣ−1/2

r (IK + 2tΣr)−1Σ−1/2
r ξ − ξTΣ−1

r ξ
))

dt

(3)
where

L = (IK + 2tΣr)−1/2, and
R = LTΣ2

rL.

The integrals in Expression (3) can be computed via numerical integration,
yielding an efficient evaluation of the risk for each possible choice of the param-
eter values.

3.3. Variance estimation

The exact risk calculation discussed in the prior subsection relies on knowl-
edge of ξ and Σr. We use the observational study to motivate plausible values
for these quantities, and then optimize the risk over allowed sets of such val-
ues.

We determine Σr by expressing it in terms of strata-specific variances, follow-
ing classic analysis of randomized trials. In particular, for a standard difference-
in-means estimator for each stratum-specific CATE, the entries in Σr =diag(σ2

rk)
are functions of the RCT design d = {(nrkt, nrkc)}Kk=1 as well as the stratum-
specific potential outcome variances V =

{(
σ2
rkt, σ

2
rkc

)}K

k=1 via the standard
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relation
σ2
rk = σ2

rkt

nrkt
+ σ2

rkc

nrkc
.

Hence, if we can obtain a reasonable estimate of V , we have a reasonable esti-
mate of Σr.

To estimate Σr, we make an appeal to our assumptions. In the abstract, As-
sumption 3 is strong. However, in the settings in which our data-combination
methods are useful – that is, settings where we assume strong congruency be-
tween the observational and experimental data, such that Assumption 2 holds
approximately – Assumption 3 is often plausible. Hence, to estimate V , we
suppose Assumption 3 and unconfoundedness both hold, and then use the ob-
servational study to estimate the variance of the potential outcomes in each
stratum. It is possible that residual unmeasured confounding may induce some
bias in the estimation, even after statistical adjustment. However, while the
magnitude of such biases is a concern for precise causal point estimation, it
is typically small enough as to not pose a major challenge for pilot variance
estimation.

Denote the strata-specific variance estimates obtained from the observational
data as

σ̂2
kt = v̂ar (Y (1) | S = k) and σ̂2

kc = v̂ar (Y (0) | S = k) .

We plug these into our expression for Σr to obtain an estimate of this quantity
for any value of the design d.

The bias vector ξ cannot be estimated before experimental data is collected,
as we would not have any form of “ground truth” against which to compare τ̂o.
That being said, if our observational study is large, our statistical adjustment
strategy is sound, and our selection on observables assumptions hold, we would
expect ξ to be small. In the next sections we offer heuristics for how to proceed
under uncertainty regarding ξ and the estimated Σr.

3.4. Design options

In this section, we consider several heuristics for designing the experiment in
the absence of perfect knowledge of Σr and ξ.

3.4.1. Neyman allocation

A simple approach to the experimental design problem is to assume that there
is no residual unmeasured confounding in the observational study. Importantly,
we make the unconfoundedness assumption for the purposes of design only.
The unconfoundedness assumption need not be strictly true to ensure good
performance of κ1 once our experiment is completed. The shrinkage properties
of κ1 ensure that its risk will be lower than τ̂r as long as Condition 2 is met,
irrespective of the presence of residual confounding in the observational study
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or error in estimating τ̂o. Hence, we retain the implicit guarantee against a risk
increase when it comes to estimation, even if this assumption turns out to be
incorrect.

The simplest design heuristic is to then use a Neyman allocation [40] without
a cost constraint, plugging in our observational-study based estimates of the
variances, e.g.

nrkt = nr
σ̂kt∑

k σ̂kt + σ̂kc
and nrkc = nr

σ̂kc∑
k σ̂kt + σ̂kc

.

Such a design would be optimal if the risk of our estimator were only tr(Σr)/K,
the first term in Expression (1). Though the design does not directly optimize
over the shrinkage portion of the risk, it serves as a reasonable starting point
for the purposes of design. As we will see in Section 4, it also typically yields
good performance for κ1 in simulations.

3.4.2. Heuristic optimization assuming ξ = 0

Per the discussion in Section 3.2, we can compute the risk exactly if both Σr

and ξ = Er(τ̂r)−τ̂o are known. Under Assumption 3 and unconfoundedness, Σr

can be estimated unbiasedly for any choice of d = {(nrkt, nrkc)}Kk=1. However, ξ
may be nonzero even if unconfoundedness holds, because we consider τ̂o to be a
fixed draw from the observational distribution, rather than a random variable.

In this section, we make the additional assumption that ξ = 0. This is again
an assumption of convenience: if we are wrong, our design is possibly suboptimal,
but our future analysis would still be valid and we could still achieve benefit
over other default designs such as equal allocation. Given ξ, we have all the
necessary parameter estimates to optimize R(κ1) over the choice of d This
problem is encoded in Optimization Problem 4:

minimize R(κ1)

subject to σ2
rk = σ̂2

kt

nrkt
+ σ̂2

kc

nrkc
, k = 1, . . . ,K,

0 < nrkt, nrkc, k = 1, . . . ,K,

nr =
∑
k

nrkt + nrkc,

(4)

Unfortunately, R(κ1) is not convex in d. However, Optimization Problem 4
can be approximately solved using a greedy algorithm. Define

dj = {(n(j)
rkt, n

(j)
rkc)}k ∈ Z

K×2

as the allocation of RCT units to strata and treatment level at iteration j of
the algorithm. Next, define

Dj = {d ∈ Z
K×2 | d swaps exactly 1 unit across strata or treatment from dj}.
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Because there are K strata and two treatment levels, the “swap set” Dj will
contain

2
(

2K
2

)
= 2K × (2K − 1)

possible allocations. Some of these allocations may correspond to invalid designs,
as will be discussed in Section 3.5.

Define R1(d,V , ξ) as the value of R(κ1) evaluated under the design d with
estimated stratum potential outcome variances V and bias vector ξ. We will
evaluate R1 under estimated variances V̂ =

{(
σ̂2
kt, σ̂

2
kc

)}K

k=1 and ξ = 0.
Now, we can approximately solve Optimization Problem 4 by running Algo-

rithm 5:

Start with design d0 = {(n(0)
rkt, n

(0)
rkc}k.

For iteration j = 1, 2, . . . :
For each design d in Dj−1:

Compute R1(d, V̂ ,0).
Set dj = arg min

d∈Dj−1

R1(d, V̂ ,0)

If R1(dj , V̂ ,0) >= R1(dj−1, V̂ ,0)
Return dj−1.

(5)
In words, Algorithm 5 will continue to swap units between strata and treat-

ment levels until no swap will further reduce the estimated risk of the shrinkage
estimator. The algorithm naturally enforces the sample size constraint and en-
sures that the returned values will be integers.

If the number of strata K is large, then Algorithm 5 may be slow to search
the space of possible allocations, and hence slow to converge. An alternative
approach can be found in projected gradient descent. This can be implemented
via Algorithm 6,

Start with design d0 = {(n(0)
rkt, n

(0)
rkc}k.

For iteration j = 1, 2, . . . :
Compute g = ∇dR1(dj−1, V̂ ,0)
Set dj = Proj (dj−1 − γ · g)
If R1(dj , V̂ ,0) >= R1(dj−1, V̂ ,0)

Return dj−1,
(6)

where γ is a learning rate and Proj(·) represents a projection onto the con-
straint set. Practically speaking, ∇dR1(dj−1, V̂ ,0) (the gradient of the shrinker
risk with respect to the design) can be computed via numerical differentiation.
Projection onto the constraint set can be closely approximated by a two-step
process. First, we find the point in R

K×2 nearest to dj−1 − γ · g which satisfies
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the non-negativity and sample size constraints; this is a simple convex optimiza-
tion problem with affine constraints. Second, we take this projected point and
round up its components in descending order of the decimal term, such that the
resulting sample sizes are integers and the sum of the rounded sample sizes is
preserved at exactly nr.

These two algorithms can also be composed: we run Algorithm 6 until a
stopping condition is reached, and then run Algorithm 5 until convergence.
This approach yields significant speed improvements, since the gradient descent
method of Algorithm 6 rapidly gets close to an optimum, and the greedy ap-
proach of Algorithm 5 quickly converges to it. This compound algorithm is used
in the simulation study in Section 4.

Because the objective is non-convex, it is plausible that Algorithm 5, Algo-
rithm 6, or their composition could get stuck at local optima. Practically, we
recommend running the algorithm at a few different starting points (e.g. an
equally allocated design, the Neyman allocation, and several randomly chosen
designs), and choosing the design which achieves the minimum value of the
risk. While this approach is not guaranteed to find the global optimum, it will
nonetheless find a point with a reduced value of the objective function. Each
step will consistently find an improved design. In particular, if the relevant as-
sumptions hold, the best found local minimum will be guaranteed to improve
efficiency relative to a Neyman allocation.

3.4.3. Heuristic optimization assuming worst-case error under Γ-level
unmeasured confounding

The assumption that ξ = 0 is fundamentally optimistic: it is unlikely to hold
even in the absence of unmeasured confounding. If there are unmeasured con-
founders, it may be far from the truth. We can take a more defensive approach by
imposing a sensitivity model on the observational study, and optimizing under
the worst-case choice of ξ.

In particular, we constrain the magnitude of the unmeasured confounding
by imposing the marginal sensitivity model of Tan [43]. Under this model, a
key odds ratio—between the treatment probability conditional on the potential
outcomes and covariates and the treatment probability conditional on covari-
ates only—is bounded between 1/Γ and Γ, for a user-chosen parameter Γ ≥ 1.
The Tan model can be seen as extending the popular Rosenbaum sensitivity
model [35] to the setting of inverse probability weighting. Practical methods for
calibrating the choice of Γ, using observed covariates, can be found in [11] and
[23], among others.

Under Assumption 3, we have

μkt ≡ Eo(Y (1) | S = k) = ER(Y (1) | S = k), and
μkc ≡ Eo(Y (0) | S = k) = ER(Y (0) | S = k),

for k = 1, . . . ,K. For any choice of Type I error bound α ∈ (0, 1), we can use the
method of Zhao, Small, and Bhattacharya [48] to obtain intervals

(
�
(Γ,α)
kt , u

(Γ,α)
kt

)
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and
(
�
(Γ,α)
kc , u

(Γ,α)
kc

)
such that parameters μkt and μkc reside within the intervals

with at least 1 − α probability as long as the true confounding structure lies
within the sensitivity model parameterized by Γ. The method relies on convex
optimization and the bootstrap in order to generate valid confidence sets.

Per the results in [38], if the outcome of interest is binary, we can use the
confidence sets on μkt and μkc to obtain valid confidence sets for the stratum
potential outcome variances σ2

kt and σ2
kc via the relations

σ2
kt = μkt · (1 − μkt) and σ2

kc = μkc · (1 − μkc).

For a full justification, see [38].
Putting these ideas together, we obtain a robust approach that can be utilized

for any problem with binary outcomes. Under our calibrated choice of Γ and a
reasonable choice of α, we set for each k = 1, . . . ,K,

ξk = max
(∣∣∣u(Γ,α)

kt − �
(Γ,α)
kc − τ̂ok

∣∣∣ , ∣∣∣�(Γ,α)
kt − u

(Γ,α)
kc − τ̂ok

∣∣∣) ,

the worst-case value of the error under our sensitivity model. We collect these
quantities into a vector ξ̃Γ. Next, we collect the corresponding values of the
variances, e.g.

σ̃2
kt =

{
u

(Γ,α)
kt · (1 − u

(Γ,α)
kt ) if

∣∣∣u(Γ,α)
kt −�

(Γ,α)
kc − τ̂ok

∣∣∣ > ∣∣∣�(Γ,α)
kt − u

(Γ,α)
kc − τ̂ok

∣∣∣
�
(Γ,α)
kt · (1 − �

(Γ,α)
kt ) otherwise

and

σ̃2
kc =

{
�
(Γ,α)
kc · (1 − �

(Γ,α)
kc ) if

∣∣∣u(Γ,α)
kt −�

(Γ,α)
kc − τ̂ok

∣∣∣ > ∣∣∣�(Γ,α)
kt − u

(Γ,α)
kc − τ̂ok

∣∣∣
u

(Γ,α)
kc · (1 − u

(Γ,α)
kc ) otherwise

into a matrix ṼΓ.
Finally, we can evaluate our function R1(d, ṼΓ, ξ̃Γ) to obtain the risk of

κ1 for any experimental design d under these parameters. The procedure is
henceforth analogous to the one used in the prior section: we run Algorithm 5 or
Algorithm 6, substituting R1(d, ṼΓ, ξ̃Γ) for R1(d, V̂ ,0), and obtain the design
that yields the lowest value of the risk.

The approach does not readily generalize to continuous outcomes. This is
because, if Yi(0), Yi(1) ∈ R, then the potential outcome variances corresponding
to the worst-case value of the error under the sensitivity model are not a simple
function of the potential outcome bounds. Hence, it is not immediately clear
how to populate the matrix ṼΓ under sensitivity parameter Γ. We highlight
this challenge as an opportunity for future work.

3.5. Imposing guardrails on designs

We discuss three plausible constraints that can be incorporated on the set of
possible designs. Generally, we suggest imposing a minimum sample size con-
straint such that the allocations to any stratum and treatment group cannot
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be lower than some value SSmin. This constraint serves two purposes. First, the
risk expression in Expression (1) depends explicitly on the normality of τ̂r. In
simulations, we find that this expression is still quite accurate under modest
deviations from normality. Nonetheless, if sufficiently few units are allocated to
any stratum or treatment arm, a Central Limit Theorem need not hold even
approximately. A minimum sample size constraint averts this problem. Second,
this constraint naturally helps improve detachability, because it prevents the
variance of any entry of τ̂r from growing too large.

Second, we suggest imposing an explicit detachability constraint on top of
the sample size constraint. The goal is to ensure that an analyst could analyze
the experiment on its own if case stakeholders ultimately decide not to use
the observational data. One constraint that can achieve this purpose is to first
select some baseline design d̃ = {ñrkt, ñrkc}k, e.g. equal allocation or Neyman
allocation, and then consider only designs d = {nrkt, nrkc}k for which∑

k

σ̂2
kt

nrkt
+ σ̂2

kc

nrkc
≤ δd

∑
k

σ̂2
kt

ñrkt
+ σ̂2

kc

ñrkc
,

where δd ≥ 1 is a user-chosen tolerance parameter. In words, this approach
restricts the set of possible designs to those designs d for which the estimated risk
of τ̂r exceeds the estimated risk of τ̂r under a default design d̃ by a multiplicative
factor no larger than δd (all assuming the observational study point estimates
of the strata potential outcome variances are correct).

In some cases, one may also want to impose a risk reduction constraint.
Imposing this constraint means that we consider only those designs that are
estimated to satisfy Condition 2, i.e. designs d = {nrkt, nrkc}k for which

4 max
k

(
σ̂2
kt

nrkt
+ σ̂2

kc

nrkc

)
<

∑
k

(
σ̂2
kt

nrkt
+ σ̂2

kc

nrkc

)
.

Unlike the minimum sample size and detachability constraints, the risk reduc-
tion constraint may not be appropriate in many cases. Its imposition guarantees
that the estimator τ̂r will be inadmissible relative to κ1+, which may give greater
confidence to analysts in using the shrinkage estimator. However, the condition
cannot be satisfied if there are fewer than five strata, and may be unnecessarily
restrictive if the potential outcome variances are highly heteroscedastic across
strata. Moreover, we find in simulation that κ1+ very frequently achieves risk
reductions relative to τ̂r even in cases when Condition 2 is not met. Thus, this
constraint should be imposed with caution.

Algorithm 5 can easily incorporate each of these three constraints. When eval-
uating the risk of any potential design d in the swap set Dj−1, one can check if
it satisfies the constraint and, if not, set the risk equal to infinity. This will nat-
urally force the algorithm to choose among designs that satisfy the constraints.
Algorithm 6 can incorporate the minimum sample size and detachability con-
straints in the projection step, as the former is an affine inequality and the latter
a convex inequality. However, the risk reduction constraint cannot be easily in-
corporated into Algorithm 6, as it involves an inequality between two convex
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functions of the design d and hence is not compliant with disciplined convex
programming [14].

In the Supplementary Material, we discuss alternative versions of the de-
tachability and risk reduction constraints, which seek to incorporate greater
robustness to unmeasured confounding.

4. Simulation study

4.1. Simulation set-up

We pattern our simulations on those in [37], considering a situation with a
relatively rare, binary outcome and a modest effect size.

We first generate an observational super-population of 1× 106 units, and an
experimental super-population of the same size. We suppose that the completed
observational study comprises 20,000 units, sampled a single time from the
corresponding super-population. The prospective RCT comprises 1,000 units,
which will be sampled repeatedly from the experimental super-population.

We define j ∈ O as the indexing variable for the observational super-popula-
tion and i ∈ E as the indexing variable for the experimental super-population.
We use � as an index over both populations. For each unit � ∈ O∪E , we suppose
there is a covariate vector X� ∈ R

5 where X�
iid∼ N (0,Σ) for Σ such that each

covariate has unit variance and roughly a quarter of the covariances are +0.1,
roughly a quarter are −0.1, and the remainder are 0. Such a covariance structure
is roughly consistent with the applied data analysis from the Women’s Health
Initiative, as used in [37].

The untreated potential outcomes Y�(0) are sampled as independent Bernoulli
random variables with

Pr(Y�(0) = 1 | Xj) = 1
1 + e−α−βTXj

, for β = (1, 1, 1, 1, 1)T

where α is chosen such that the average incidence rate is 10%. The treatment
variables in the observational study are independent Bernoulli random variables
with

Pr(Wj = 1 | Xj) = 1
1 + e−γTXj

, for γ = (
√

2,
√

2,
√

2, 0, 0)T.

Because β and γ point in similar directions, we see strong selection bias in the
observational study. In particular, treated units are much likelier to have large
untreated potential outcomes.

For both datasets, we suppose the data is split into twelve strata based on
the first and second covariates, which are assumed to define meaningful sub-
groups for which there is substantive interest in obtaining the CATEs. The
strata boundaries are defined by the 25th and 50th quantiles of the first covari-
ate and by the quartiles of the second covariate. We seek to obtain estimates of
the average causal effect in each of the resultant strata.
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In both datasets, we assign individual treatment effects to match three dif-
ferent structures. We number the strata from k = 1, . . . , 12 such that stratum 1
corresponds to the lowest stratum on both covariates, stratum 2 corresponds to
the lowest stratum on the first covariate and the second quartile of the second
covariate, stratum 3 corresponds to the lowest stratum on the first covariate
and the third quartile of the second covariate, etc. We consider three different
treatment effect models. The values of τk, the stratum average treatment effects,
in the constant, linear, and quadratic strata-level treatment effect models are

τk = T, τk = −T × k

K
, and τk = T ×

(
k

K

)2
(7)

respectively. In each case we choose the scale T > 0 so that Cohen’s d [8] in the
observational study precisely equals 0.5 marginally across the entire population.
Cohen calls this a “medium” effect size.

We generate Y (1) as a binary potential outcome as follows: set the initial
values of Y�(1) to Y�(0) for all units. Then randomly select τk×nk units for which
Y�(0) = 0, and set Y�(1) = 1 for those units, where nk is the number of units
in stratum k in the super-population. Because we use the same process across
both super-populations, Assumption 3 holds: the the observational and RCT
data distributions have the same stratum-specific causal effects and potential
outcome means and variances.

The observational data is sampled a single time. Next, leveraging the obser-
vational sample, we compute the allocations of units to strata in the RCT (the
RCT “design”) using each of the methods discussed in the prior section. Our
optimization approach is the composition approach discussed in Section 3.4.2.
Namely, we run gradient descent (Algorithm 6) until we see no improvement,
and then run the greedy swapping approach (Algorithm 5) until convergence.
For each of our optimized designs, we provide seven starting points to the algo-
rithm: the equal allocation, the Neyman allocation, and five randomly chosen
starting points.1 Happily, we find that the starting point makes no difference:
we always convergence to precisely the same design, regardless of starting point,
in every tested condition in the simulations. This increases confidence that the
optimization approach is not very sensitive to the starting point for the algo-
rithm.

Once we have each of the designs computed, we can simulate actual experi-
ments. Under each design, we sample the RCT units from the super-population
25,000 times. For each iteration, for each stratum k, we assume treatment is
assigned via a simple random sample of nrkt units out of the nrkt + nrkc units
recruited for the stratum. Once the units are drawn and treatments are assigned,
we compute the estimators τ̂r, κ1, and κ1+. We compute the L2 distance be-
tween each estimate and the true treatment effects τ , and take the average over
all 25,000 simulations.

1The random starting points are generated by sampling 2×K values from a Uniform(0, 1)
distribution; normalizing by their sum to turn them into proportions; scaling the proportions
by nr ; and then projecting the resultant values onto our constraint set such that the final
values are integers and respect the minimum sample size constraint.
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Table 1

Risk over 25,000 iterations of τ̂r,κ1, and κ1+ under various experimental designs, in the
case of no unmeasured confounding in the observational study. Risks are expressed as a
percentage of the risk of τ̂r using an equally allocated experiment, for each of the three
treatment effect models. The minimum non-oracle risk in each row is denoted with an

underline.
Max Bias, Γ Value

Est. Trt. Equal Neyman Naïve 1.0 1.1 1.2 1.5 Oracle
τ̂r

c
100% 85% 89% 89% 89% 90% 91% 87%

κ1 45% 38% 36% 37% 37% 37% 37% 36%
κ1+ 32% 28% 28% 28% 28% 28% 28% 28%
τ̂r

�
100% 91% 93% 94% 95% 94% 97% 92%

κ1 50% 41% 42% 43% 42% 43% 44% 42%
κ1+ 37% 34% 34% 35% 35% 35% 35% 34%
τ̂r

q
100% 87% 85% 90% 91% 92% 94% 85%

κ1 42% 34% 33% 34% 35% 36% 36% 31%
κ1+ 26% 24% 23% 24% 24% 24% 24% 23%

The code to implement these simulations, along with a README file, is
provided as Supplementary Material to this manuscript.

4.2. Ideal case: no unmeasured confounding

We begin with the simplest case: we suppose all of the covariates are measured
in the observational study, so there is no residual unmeasured confounding.
This is an idealized case, in which all of the selection bias in the observational
study can be removed with a statistical adjustment. We fit a propensity score to
the observational study data and use stabilized inverse probability of treatment
weighting (SIPW) to compute the observational causal estimates.

In Table 1, we show the average L2 errors over 25,000 simulations. We con-
sider the equal allocation and Neyman allocation designs, as well as the “naïve”
design assuming ξ = 0. We also consider the “worst case” defensive approach
discussed in Section 3.4.3, and compute the optimal design under errors com-
puted with the Tan sensitivity model parameter set to 1.0, 1.1, 1.2, and 1.5.
Lastly, we consider an “oracle” design, in which we run our composed optimiza-
tion algorithm, but provide it with the true values of the potential outcome
variances and the error in the observational study. Results are given for the
three different treatment effect models: constant (c), linear (�), and quadratic
(q). Risk estimates are expressed as percentages of the risk of τ̂r when using an
equal allocation for the given treatment effect model.

Across the three treatment effect models, we see that results are relatively
consistent in the ordering of the estimators. When using τ̂r alone, the Neyman
and naïve allocations typically perform similarly, realizing a roughly 10-15%
error reduction relative to the equal allocation. The other allocations achieve
slightly more modest error reductions when using τ̂r.

If we stick with the Neyman allocation but switch to using either the shrink-
age estimator κ1 or its positive part analogue κ1+, we can realize massive addi-
tional error reductions on the order of 60 to 75%, depending on the treatment
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effect model. However, the naïve allocation is typically slightly better. It per-
forms the best among all realizable (i.e. non-oracle) designs when using κ1+
under all three treatment effect models, and when using κ1 in the constant and
quadratic treatment effect models.

The robust allocations typically perform nearly as well as the Neyman and
naïve allocations, achieving risk reductions a point or two higher. These alloca-
tions may pay a small penalty for robustness—and hence, cannot outperform
the naïve approach when there is no unmeasured confounding.

4.3. Practical case: unmeasured confounding

The assumption of unconfoundedness is not defensible in many practical set-
tings, in which a relatively sparse set of covariates are measured in the observa-
tional study. Moreover, the assumption is not testable. Hence, we run a second
set of simulations in which we induce confounding by assuming that the third
entry in Xj is not measured. This third covariate affects both treatment prob-
abilities and outcomes, so bias in the observational study can no longer be fully
corrected with a propensity score adjustment.

Results are given in Table 2. Notably, the residual bias in the observational
study attenuates the risk reduction achievable through shrinkage and design.
Relative to the risk of using τ̂r under an equally allocated experiment, our best
shrinker and design combinations can realize risk reductions of about 43% in the
constant treatment effect model (vs. about 72% when there was no unmeasured
confounding); about 27% in the linear treatment effect model (vs. 66% with no
unmeasured confounding); and about 57% under the quadratic treatment effect
model (vs. 77% with no unmeasured confounding).

Optimal performers differ slightly from the simulations assuming no unmea-
sured confounding. Under the constant treatment effect model, we find that
the robust design under Γ = 1.0 perform the best when using τ̂r,κ1, and κ1+.
Under the linear treatment effect model, the best performer is the naïve de-
sign when using all three estimators. And under the quadratic treatment effect
model, the best performer is the Neyman design when using τ̂r and the naïve
design when using the shrinkers. More generally, under all treatment conditions,
the Neyman, naïve, and robust designs under Γ = 1 all typically perform well.

These results point to a few practical guidelines for designing toward shrink-
age. First, we find that the naïve allocation is quite robust, even when ξ is far
from zero. This is evident from the fact that the naïve allocation always yields
significant performance gains over the equal allocations when using a shrinkage
estimator, even when unmeasured confounding is present.

Second, in the presence of unmeasured confounding, one may sometimes
achieve modest further improvements from enforcing a robust design at a rela-
tively low value of Γ. In this example, we have not constructed the confounding
such that it matches the form of our sensitivity model. Exclusion of the third
covariate induces enormous discrepancies in the treatment odds between the
true and estimated propensity scores in a small proportion of individuals: for
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Table 2

Risk over 25,000 iterations of τ̂r,κ1, and κ1+ under various experimental designs, in the
case of unmeasured confounding in the observational study via failure to measure the third
covariate. Risks are expressed as a percentage of the risk of τ̂r using an equally allocated

experiment, for each of the three treatment effect models. The minimum non-oracle risk in
each row is denoted with an underline.

Max Bias, Γ Value
Est. Trt. Equal Neyman Naïve 1.0 1.1 1.2 1.5 Oracle
τ̂r

c
100% 91% 92% 91% 94% 94% 98% 90%

κ1 69% 60% 60% 59% 61% 61% 63% 58%
κ1+ 64% 58% 58% 57% 59% 59% 61% 57%
τ̂r

�
100% 93% 93% 93% 95% 97% 99% 89%

κ1 82% 74% 73% 74% 75% 75% 78% 70%
κ1+ 81% 74% 73% 74% 75% 75% 77% 70%
τ̂r

q
100% 88% 90% 91% 92% 92% 97% 87%

κ1 58% 48% 48% 49% 50% 50% 51% 47%
κ1+ 47% 43% 43% 43% 44% 44% 45% 42%

about 0.2% of the super-population units, the difference exceeds a multiplica-
tive factor of 100. For most of the population, however, the true and estimated
treatment odds differ by a much smaller factor. The Tan model imposes a worst-
case bound on the deviation between the true and estimated odds of treatment,
so no value of Γ between 1.0 and 2.0 is large enough to account for our most
extreme deviations.

Nonetheless, the magnitude of the worst-case error under the Tan model
correlates reasonably well with the true values of ξ when choosing Γ = 1.0, 1.1,
or 1.2, offering one explanation for the strong performance of the allocations
designed under these schemes. In a more general sense, the robust allocations
under Γ serve as a form of regularization, bringing the design closer to an equal
allocation to hedge against the possibility that τ̂o is far off from τ . In doing
so, the robust designs may improve empirical performance even when the Tan
model does not accurately characterize the form of unmeasured confounding.

5. Application to the Women’s Health Initiative data

5.1. Setup

The Women’s Health Initiative (WHI), a 1991 study of the effects of hormone
therapy on health outcomes for postmenopausal women, comprises both an ex-
perimental arm, with 16,608 women enrolled in the trial, and an observational
dataset of 53,054 women deemed clinically comparable to women in the trial.
The treatment of interest was a 625 mg daily dosage of estrogen and a 2.5 mg
dosage of progestin. Half the women in the RCT were randomized to receive
the treatment, while about a third of women in the observational study were
taking estrogen and progestin as part of a standard medical regimen [32]. In the
WHI results, there was substantial disagreement in the causal effect estimates
between the observational and experimental components, leading to several de-
tailed reanalyses (see e.g. [19]).
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Here, we ignore the realized WHI experimental results and pretend we are
designing a small RCT of nr = 1,000 units, with the intent of using κ1 to shrink
the results toward those of the WHI observational study. Though many clinical
outcomes were measured in the WHI, our interest is in the effect of hormone
therapy on coronary heart disease (CHD). We plan to stratify our experiment
on two clinically relevant variables: age and history of cardiovascular disease.
The trial protocol discusses age as an important subgroup variable to consider
[12], while subsequent papers note the importance of a history of cardiovascular
disease [33].

The age variable has three levels: whether a woman was in her fifties, sixties,
or seventies at the start of the trial. The history of cardiovascular disease history
variable is a simple “yes” vs. “no” binary variable. The distributions of these
variables can be found in Tables 5 and 6 in the Supplementary Material. We
stratify on both variables, yielding a total of six strata.

5.2. Guardrails

We consider five experimental designs: a Neyman allocation, a “naïve” allocation
(assuming ξ = 0), and three robust allocations assuming worst-case error under
Γ = 1.0, 1.5, and 2.0 respectively. As in the simulations, allocations are solved
by running gradient descent (Algorithm 6) until we hit a stopping criterion,
and then running greedy swapping (Algorithm 5) to convergence. Due to the
non-convexity of the objective function for the naïve and robust designs, we
again tried seven starting points: the equal allocation, the Neyman allocation,
and five randomly chosen points. As in the simulations, we always reached the
same final allocation of units to strata and treatment assignment, regardless of
starting point.

We considered the guardrails discussed in Section 3.5. To preserve the viabil-
ity of our Central Limit Theorem, we imposed a minimum sample size constraint
of 30 units per stratum and treatment arm. To assess detachability, we evaluated
the final designs relative to an equal allocation. We first evaluated detachability
under V̂ , the “direct” stratum potential outcome variance estimates obtained
from the observational study, after a propensity score adjustment. As a ro-
bustness check, we also considered the three sets of stratum potential outcome
variances associated with the worst case bias under each of our sensitivity mod-
els: Ṽ1.0, Ṽ1.5, and Ṽ2.0. Reasonable performance under all of these candidate
variance estimates increases our confidence that detachability will hold in the
future experiment.

In Table 3, we report the value of δd—the ratio of the estimated risk under
a given design to the estimated risk under equal allocation—for each possible
method of computing the variance. Most values are less than 1.0, indicating that
the design would be more efficient than an equal allocation if τ̂r were used on
its own.

The largest value, which can be found in the first column in the final row, is
only 1.02. This means that—were we to design our experiment using a robust
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Table 3

Values for δd, the risk ratio using τ̂r, relative to an equal allocation, for each design (rows),
computed under different estimates for the stratum potential outcome variances (columns).

Variance Estimate
Design Direct Γ = 1.0 Γ = 1.5 Γ = 2.0
Neyman 0.87 0.86 0.87 0.89
Naïve 0.89 0.88 0.90 0.93
Γ = 1.0 0.92 0.86 0.84 0.86
Γ = 1.5 0.96 0.86 0.80 0.78
Γ = 2.0 1.02 0.89 0.80 0.77

Table 4

Checking Condition 2 (the condition under which κ1 is guaranteed to have risk lower than
τ̂r) for different designs and estimates of the potential outcome variances. A checkmark
signifies that the condition holds and a dash signifies that the condition does not hold.

Variance Estimate
Design Direct Γ = 1.0 Γ = 1.5 Γ = 2.0
Neyman − − − −
Naïve � � � �
Γ = 1.0 � � � �
Γ = 1.5. � − − −
Γ = 2.0 − − − −

allocation under Γ = 2.0 when the true stratum potential outcome variances
were the “direct” estimates obtained from the observational study, and were we
to use τ̂r alone as our estimator—we could incur a 2% risk penalty relative to
using an equally allocated experiment. We consider this well within a reasonable
tolerance range, given the potential upside to using κ1 instead of τ̂r.

Lastly, we consider the risk reduction constraint. As with detachability, we
consider the value of the constraint for each of our designs, under different
estimates of the potential outcome variances. In Table 4, we show the results,
with a checkmark signifying that the condition holds and a dash meaning it
does not. Using the direct estimates of the potential outcome variances, V̂ , we
find that the naïve design and the robust designs under Γ = 1.0 and Γ = 1.5
yield the guarantee that that κ1+ dominates τ̂r. By contrast, under the three
robust variance estimates—Ṽ1.0, Ṽ1.5, and Ṽ1.0—only the naïve and Γ = 1.0
designs satisfy the risk reduction condition.

The relative sparsity of Table 4 might give us pause. If we believe the variance
estimates under Γ = 1.0,Γ = 1.5 or Γ = 2.0 are plausible, for example, then we
might want to recompute the designs incorporating Condition 2 as a constraint.
However, we are afforded a certain amount of grace by the fact that we will be
able to obtain unbiased estimates of the stratum potential outcome variances
after the experiment is complete. Hence, we could instead proceed with one of
these designs and defer the decision as to whether to use κ1+ instead of τ̂r to
a later date. For now, we will proceed with the unconstrained designs.
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5.3. Allocation results

The allocations under each of our design heuristics are summarized in Figure 1.
In the left panel, we provide the direct estimates of the stratum potential out-
come variances, V̂ , obtained from the WHI observational study. These estimates
are corrected using stabilized inverse probability weighting, but may still be bi-
ased due to unmeasured confounding (for more details about the propensity
score computation, see [37]).

There is a high level of variability in the stratum potential outcome variance
estimates across strata. This follows from the fact that coronary heart disease
is a relatively rare, binary outcome. Women in their fifties with no history of
cardiovascular disease are very unlikely to have a coronary heart disease incident,
while the incidence rate is much higher among older women or women with a
history of cardiovascular disease. Because the variance of a binary outcome is
a direct function of its mean, the corresponding potential outcome variance
estimates fluctuate across strata. Note that the plotted values are the potential
outcome variance estimates used as the input V̂ to the design algorithm for
the Neyman and naïve allocations. The robust allocations, by contrast, use the
variance estimates Ṽ1.0, Ṽ1.5, and Ṽ1.0 corresponding to the worst-case bias
under these models. Nonetheless, the broad trends in variability across strata
are similar across the different potential outcome variance estimation methods.
More detail can be found in Figure 2 in the Supplementary Material.

We make a number of observations about the allocations given in the right
panel of Figure 1. The primary driver of all of the allocations is the estimated
potential outcome variances in each stratum: each allocation oversamples high-
variance strata and treatment arms, while undersampling low-variance strata
and treatment arms. The algorithm likely would have allocated even fewer units
to the stratum corresponding to women in their fifties with no history of car-
diovascular disease, were a minimum threshold of 30 units not provided as a
constraint.

In moving from a Neyman to a naïve allocation, we observe that this over- and
undersampling behavior becomes more extreme. The naïve design samples more
heavily from high variance strata and treatment arms, and less heavily from low
variance strata and treatment arms. Recall that the naïve allocation assumes ξ =
0. The sampling behavior may, then, reflect a notion that the observational study
estimates are generally reliable, and resources are best allocated to obtaining
precise experimental estimates in the highest variance strata and treatment
arms, while an imprecise estimate in the low-variance strata and treatment arms
can be sufficiently improved by shrinkage toward the observational estimate.

Interestingly, as we move to a robust allocation and progressively increase
Γ from 1.0 to 1.5 to 2.0, this pattern begins to reverse. At Γ = 1.0, we see
behavior similar to the naïve allocation, with perhaps slightly more aggressive
oversampling in high variance strata and treatment arms. However, as Γ grows,
the allocations are regularized back toward a more equal distribution across
strata and treatment arms. This is likely due to the fact that, at larger values
of Γ, the dominant form of error in the observational study estimates is bias,
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Fig 1. Experimental allocation results for nr = 1,000. The left panel shows the “direct”
stratum potential outcome variance estimates V̂ = {(σ̂2

kt, σ̂
2
kc)}6

k=1 obtained from the obser-
vational data. The right panel shows the allocations to each stratum and treatment arm under
each prospective design.

rather than variance. The observational study estimates cannot be relied upon
in any of the strata, and it becomes sensible to obtain high-quality estimates
from the RCT for all stratum treatment effects.

6. Discussion

We have considered the problem of designing a stratified experiment when we
plan to use an Empirical Bayes estimator, such as κ1 or κ1+, to shrink the
stratum causal estimates of our RCT toward estimates previously obtained from



3430 E. T. R. Rosenman and L. Miratrix

an observational study. As we have shown, the risk of κ1 can be computed
explicitly if the stratum potential outcome variances and the stratum-specific
errors of the observational study estimates, ξ, are known. In the absence of such
information, we have proposed three heuristics—Neyman allocation, “naïve”
allocation assuming ξ = 0, and robust allocation under the worst-case value
of ξ given a sensitivity model—for designing the experiment. We have also
emphasized “detachability,” the ability to do good causal inference using the
RCT on its own, and suggested imposing constraints on the experimental design
to ensure detachability is preserved.

We simulated a realistic scenario in which we have access to a large observa-
tional database and are interested in a relatively rare outcome. We considered
a stratification comprising twelve strata, across which the outcome frequency
varies dramatically. In this setting, there were significant risk improvements to
be realized by using a shrinkage estimator, even if the design were a simple
equal allocation. Additional gains were possible when designing the experiment
explicitly for use with a shrinkage estimator. In simulations with and without
unmeasured confounding in the observational study, we saw that the naïve al-
location typically performed well, exhibiting surprising robustness to the case
when ξ was far from zero. Our robust allocations performed well in the case
when unmeasured confounding was present in the data.

Using data from the Women’s Health Initiative, we designed a hypotheti-
cal 1,000-subject experiment that would incorporate these data. We explored a
menu of possible designs for the experiment, including three possible allocations
under different sensitivity models. We confirmed that the designs would all be
reasonably “detachable” from the observational study, meaning that τ̂r under
these designs would incur statistical risk not much greater than an equally al-
located RCT, under any of our plausible variance estimates. The designs also
exhibited a notion of regularization: the Neyman, naïve and Γ = 1.0 designs
relied increasingly heavily on the observational study in low-variance strata and
treatment arms, allocating most of the RCT units instead to high-variance strata
and treatment arms. As Γ rose to 1.5 and then 2.0, the algorithm contended
with the possibility that τ̂o incorporates large biases in all of its strata esti-
mates, and regularized the allocation back toward an equal distribution across
strata and treatment arms.

A natural question is how our framework works for designing experiments
using alternate definitions of outcomes, such as log odds ratios. The design
ideas in principle extend, as estimators of these quantities tend to be asymptot-
ically normal. To assess performance with non-normal outcomes we conducted
additional simulations, following the template of our primary simulation. See
the Supplementary Material for full details on these simulations. We find that
indeed, our methods are valid when estimating quantities that are not simple
averages. That being said, because asymptotic approximations can be slow to
kick in, some gains in smaller sample contexts were negligible. In practice, we
would encourage analysts to, as part of the planning of an experiment, simulate
under expected stratum-specific parameter values to ensure that delta method
variance approximations are valid given the planned size of the experiment.
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There are many plausible extensions to this line of work. Approaches dis-
cussed in this paper have somewhat limited utility in smaller trials, which may
be powered to estimate only an average treatment effect (ATE) rather than
a vector of conditional average treatment effects. Future work should quantify
the benefits for estimation of the overall ATE by weighting the stratum-specific
estimates.

Another important use case is that of multiple observational studies. Interest
in an experiment may be particularly high when several observational studies
yield conflicting results. In this case, we may want methods that can incorpo-
rate more than one observational dataset. A simple approach is to pre-aggregate
the evidence from the competing observational studies: one could simply pool
the data together, or use a more complex weighting scheme to account for data
quality and representativeness. Then, one could proceed with the existing tech-
niques, extracting the estimates τ̂o and the pilot potential outcome variances
from the merged observational data. A more complex approach would involve de-
signing an estimator to incorporate multiple observational point estimates. The
URE-minimization procedure described in [36] is a general purpose “recipe” for
shrinkers, and makes it straightforward to design such an estimator. With such
an estimator in hand, the design problem would be substantively similar to the
one described in this manuscript: compute the unbiased risk estimate; treat the
data from the multiple observational datasets as fixed; and estimate the risk via
numerical integration for any desired heuristic discussed in Section 3.4.

On a similar note, adaptive procedures that incorporate the RCT data in
waves—rather than all at once—have direct utility when combined with our
design procedure. The veracity of Assumption 2 and Assumption 3 cannot be
ascertained until RCT data is collected, and strong subject matter knowledge is
required to assess their plausibility. Adaptive approaches would allow researchers
to collect some data to assess the validity of these assumptions and, optionally,
revert to a more standard design in later data-collection waves if the assump-
tions do not hold. Such an approach is analogous to pre-test estimation in the
Empirical Bayes literature [see e.g. 39, 24]. The test itself could be conducted
via a standard F-testing approach or using more modern methods from the
causal inference literature [47]. This is a promising future direction for this line
of research.

Lastly, we have assumed a rigid model for treatment effect heterogeneity in
this paper: treatment effects vary according to a known stratification on ob-
served covariates. More modern work [25, 28] focuses on estimating heteroge-
neous treatment effects empirically, allowing for greater flexibility in how the
effects differ across units. Incorporating such ideas into this work, we might
imagine using some of the observational data in a first stage to estimate a
stratification scheme, and using the remaining data for shrinkage in a second
stage. Alternatively, we could consider modeling the causal effect explicitly as
a function of the covariates, e.g. defining τ(Xi) rather than a vector of true
treatment effects τ . We could then define a flexible shrinker to trade off be-
tween estimates not within strata, but within nearby values of the covariates
themselves.
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Supplementary Material

Alternative shrinkers to κ1

We have supposed that, after the experiment’s conclusion, we will use κ1 or
κ1+ to shrink causal estimates from τ̂r toward τ̂o. However, our results are not
dependent on the form of the shrinkage estimator. Our goal is to apply Theorem
3.1 in [41] to compute the exact risk of the estimator. Hence, we can use any
estimator θ of the form

θ = τ̂r + Σrgθ(τ̂r, τ̂o)

where gθ(x, y) is weakly differentiable in x and Er

(
‖gθ‖2) < ∞.

A plausible alternative estimator proposed in [36] is

κ2 = τ̂o +
(
IK − tr(Σ2

r)Σr

(τ̂o − τ̂r)TΣ2
r(τ̂o − τ̂r)

)
(τ̂r − τ̂o) .

and its positive part analogue, κ2+. Two other standard alternatives, introduced
in [16], are

δ1 = τ̂r +
(

K − 2
(τ̂r − τ̂r)TΣ−1

r (τ̂r − τ̂o)

)
(τ̂o − τ̂r)

and

δ2 = τ̂r +
(

(K − 2)Σ−1
r

(τ̂r − τ̂o)TΣ−2
r (τ̂r − τ̂o)

)
(τ̂o − τ̂r).

Each also has a positive part version that is straightforward to define.
Once a suitable estimator θ is chosen, we can redefine our procedures to work

with that estimator. The first step is to apply Theorem 3.1 from [41] to compute
its risk conditional on τ̂o,

R(θ) = 1
K

(
tr(Σr) + Er

(∑
k

σ4
rk

(
g2
θ,k(τ̂r, τ̂o) + 2∂gθ,k(τ̂r, τ̂o)

∂τrk

)))
.

Next, we can deploy the method from Section 3.2 to obtain an exact integral
expression for the the risk of the estimator. [3] contains a detailed explanation
of how to construct each component of the integral. For example, if we use κ2,
we obtain

R(κ2) = 1
K

(
tr(Σr) + tr(Σ2

r)Er

(
4(τ̂r − τ̂o)TΣ4

r(τ̂r − τ̂o)
((τ̂r − τ̂o)TΣ2

r(τ̂r − τ̂o))2
−

tr(Σ2
r)

(τ̂r − τ̂o)TΣ2
r(τ̂r − τ̂o)

))
,
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and the relevant integrals can be computed as

Er

(
νTΣ5

rν

(νTΣ3
rν)2

)
=

∫ ∞

0
det(IK + 2tΣ3

r)−1/2 ·

exp
(

1
2

(
ξTΣ−1/2

r (IK + 2tΣr)−1Σ−1/2
r ξ − ξTΣ−1

r ξ
))

(
tr(R) + (LΣ−1/2

r ξ)TR(LΣ−1/2
r ξ)

)
tdt

Er

(
1

(νTΣ3
rν)

)
=

∫ ∞

0
det(IK + 2tΣ3

r)−1/2 ·

exp
(

1
2

(
ξTΣ−1/2

r (IK + 2tΣr)−1Σ−1/2
r ξ − ξTΣ−1

r ξ
))

dt

(8)
where

L = (IK + 2tΣ3
r)−1/2, and

R = LTΣ5
rL.

This process can be repeated for any estimator θ. Once integral expressions
for the risk have been obtained, the design heuristics described in Section 3.4
can be deployed, using R(θ) as the objective function rather than R(κ1).

Robust versions of constraints

A more robust version of the detachability constraint can be imposed if the
analyst assumes the Tan sensitivity model, as discussed in Section 3.4.3. Under
a given choice of Γ and α, we can obtain bounds on the potential outcome means
in each stratum. We reject any design such that

max
μkc∈(�(Γ,α)

kc
u
(Γ,α)
kc

),

μkt∈(�(Γ,α)
kt

,u
(Γ,α)
kt

)

∑
k

μkt(1−μkt)
n′
rkt

+ μkt(1−μkt)
ñrkc∑

k
μkt(1−μkt)

n′
rkt

+ μkc(1−μkc)
ñrkc

≥ δd. (9)

In words, this means that we are rejecting any design d′ such that the risk of
τ̂r under design d′ is larger than the estimated risk under the default design
by a factor greater than δd, for any configuration of the potential outcome
means consistent with our sensitivity bounds. Practically, the left-hand-side of
Inequality (9) can be reduced to a quadratic fractional programming problem
and solved via Dinkelbach’s method [10].

The robust version of the risk reduction incorporates the parameter bounds
from the Tan sensitivity model. We reject any design such that

4 max
k

min
μkc∈(�(Γ,α)

kc
u
(Γ,α)
kc

),

μkt∈(�(Γ,α)
kt

,u
(Γ,α)
kt

)

(
μkt(1 − μkt)

n′
rkt

+ μkc(1 − μkc)
n′
rkc

)2

>
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),
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,u
(Γ,α)
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)

∑
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(
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+ μkc(1 − μkc)
n′
rkc

)2
.
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WHI experimental design: further details

The age variable has three levels: whether a woman was in her fifties, sixties, or
seventies at the start of the trial. The history of cardiovascular disease history
variable is a simple “yes” vs. “no” binary variable. The distributions of these
variables can be found in Tables 5 and 6 below.

Table 5

Distribution of age variable values in the WHI observational study and RCT.
Age Observational Study RCT

50–59 17,447 (33.0%) 5,491 (33.2%)
60–69 23,030 (43.6%) 7,473 (45.2%)
70–79 12,388 (23.4%) 3,573 (21.2%)

Table 6

Distribution of history of cardiovascular disease in the WHI observational study and RCT.
History of CVD Observational Study RCT

Yes 8,709 (16.5%) 1,828 (11.1%)
No 44,156 (83.5%) 14,709 (88.9%)

In Figure 2, we provide a slightly more detailed version of Figure 1, where we
include the variance estimates under each of the sensitivity models in the left
panel of the plot. Observe that the Neyman and naïve allocations both utilize
the direct variance estimates, so those are plotted a single time but with double
the width in the left panel.

Extension to multiple observational studies

There are two potential avenues to extend this approach to the “multiple ob-
servational studies” use case: a simple approach based on pre-aggregation, and
a more complex approach that requires use of a different estimator.

We calculate a design using two summary elements of the observational study:
a vector of stratum-specific causal estimates τ̂o and a matrix of stratum-specific
potential outcome variance estimates {(σ̂2

kt, σ̂
2
kc)}Kk=1. In the case of multiple

observational studies, our first general approach is to aggregate the studies to
generate cross-study estimates of τ̂o and {(σ̂2

kt, σ̂
2
kc)}Kk=1, and then proceed as

though we only had a single observational study. A direct way for doing this,
if we had the raw data, would be to simply pool the observational data and
estimate on the full dataset. We could instead leverage meta-analysis techniques
to aggregate the estimates rather than the data, e.g. we could weight the impact
vector and variance estimates based on data quality.

Alternatively, we could construct a shrinkage estimator designed specifically
to incorporate multiple observational studies. The methods discussed in [36] can
be readily adapted to develop such a shrinker. We work through an example be-
low where there are two observational studies (rather than one), and we want to
utilize a shrinker that uses the same weighting scheme across all strata (analo-
gous to κ1 in the single-observational-study case). However, these methods are
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Fig 2. Experimental allocation results for nr = 1,000. The left panel shows the direct stratum
potential outcome variance estimates V̂ as well as the estimates Ṽ1.0, Ṽ1.5, and Ṽ2.0 under
each of the sensitivity models. The right panel shows the allocations to each stratum and
treatment arm under each prospective design. The reference line in blue in the right panel
reflects an equal allocation across all strata and treatment levels.

quite flexible and could incorporate more observational studies or alternative
shrinker constructions.

Denote as τ̂r the vector of estimates from the RCT, and τ̂o1 and τ̂o2 the
vector of estimates from the two observational studies. Utilizing the method in
[36] we can use URE minimization to obtain the shrinker:

ψ = (1 − λ1 − λ2)τ̂r + λ1τ̂o1 + λ2τ̂o2

where

λ1 = max
(

(τ̂o2 − τ̂r)T(τ̂o2 − τ̂o1) tr(Σr)
2(‖τ̂o1 − τ̂r‖2

2‖τ̂o2 − τ̂r‖2
2 − ((τ̂o1 − τ̂r)T(τ̂o2 − τ̂r))2)

, 0
)

and
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λ2 = max
(

(τ̂o1 − τ̂r)T(τ̂o1 − τ̂o2) tr(Σr)
2(‖τ̂o1 − τ̂r‖2

2‖τ̂o2 − τ̂r‖2
2 − ((τ̂o1 − τ̂r)T(τ̂o2 − τ̂r))2)

, 0
)
.

Using this estimator, the design problem would be substantively similar: com-
pute the unbiased risk estimate using the expression given in [36]; condition on
the values of τ̂o1 and τ̂o2; and estimate the risk via numerical integration under
the three different heuristics discussed in the paper.

The only remaining question would be how to obtain pilot estimates of the
stratum-specific potential outcome variance estimates {(σ̂2

kt, σ̂
2
kc)}Kk=1. As in the

pre-aggregation approach, one could simply pool the data to estimate these
variances. Alternatively, one could utilize a meta-analysis technique to account
for study quality, or any other data-combination approach.

Robustness to non-normality of τ̂r

In this Supplementary Material, we explore how well our framework operates in
non-normal contexts. Generally, our framework should be applicable to experi-
ments measuring such quantities as log odds or hazard ratios, as these estima-
tors tend to also be asymptotically normal. That being said, we find gains to
be muted in some contexts, as we discuss next.

First, the simulations in Section 4 indicate that the main results are fairly
robust to at least some types of non-normality. Recall that these simulations in-
volve 1,000 units across 12 strata and two treatment statuses, and the incidence
rate of the outcome is, on average, 10% in the treatment group and 11% in
the control group. Hence, even in an equally allocated experiment, most strata
would fail to satisfy the so-called “success-failure” condition stating that normal-
ity can be assumed for an average of binary outcomes only if there are at least
10 expected “successes” (e.g. outcomes of Yi = 1) and 10 expected “failures”
(e.g. outcomes Yi = 0) per draw. In our case, for many of the Neyman, naïve,
and robust designs, upwards of 50% of the strata k are expected to have fewer
than three successes due to the rarity of the outcome. Even so, the simulation
results broadly indicate that we are able to achieve gains by applying a descent
algorithm on the estimated risk of the shrinker. This suggests reasonably good
robustness to non-normality.

The optimization depends on the assumed potential outcome variances of
each stratum in the experiment. Section 3.3 discusses the assumptions that are
necessary for estimating these quantities when using a difference-in-means es-
timator. In the case of non-linear functions of the outcomes – such as log odds
ratios – there is another complication: if the number of units is small, the delta
method variance approximations may not be valid, and hence yield incorrect
estimates of Σr. This is true even if Assumption 3 and unconfoundedness hold
exactly.

For small experiments, the delta method variance estimates for quantities
such as log odds ratios are often not particularly accurate. We investigated this
issue by rerunning the simulations from Section 4 of the paper, but seeking to
estimate the log odds ratio rather than the difference in means. For simplicity,
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Table 7

Relative risk over 25,000 iterations of τ̂r,κ1, and κ1+, estimating a log odds ratio with a
sample size of 1,000 units, under various experimental designs. Designs under the header

“Estimated Parameters” use the observational study to estimate the stratum-specific
potential outcome means, whereas those under “True Parameters” are computed under the

true stratum-specific potential outcome means.
Estimated Parameters True Parameters

Est. Unmeasured
Confounding?

Trt. Equal Neyman Naïve Neyman Oracle

τ̂r
no c

100% 118% 126% 114% 121%
κ1 116% 91% 89% 84% 82%
κ1+ 57% 55% 55% 52% 53%
τ̂r

no �
100% 113% 120% 112% 121%

κ1 84% 67% 66% 61% 60%
κ1+ 19% 19% 19% 19% 19%
τ̂r

no q
100% 123% 132% 124% 132%

κ1 132% 93% 88% 92% 88%
κ1+ 24% 24% 24% 24% 24%
τ̂r

yes c
100% 116% 122% 116% 119%

κ1 85% 84% 86% 81% 83%
κ1+ 63% 66% 65% 63% 64%
τ̂r

yes �
100% 105% 108% 109% 109%

κ1 72% 80% 74% 77% 73%
κ1+ 61% 67% 64% 66% 64%
τ̂r

yes q
100% 123% 124% 134% 130%

κ1 120% 132% 117% 124% 117%
κ1+ 92% 101% 92% 99% 93%

we considered only the equal, Neyman, and naïve designs. Results for both simu-
lation settings given in the paper (no unmeasured confounding, and unmeasured
confounding induced by omitting the third variable) are given below in Table 7.
We again suppose a sample size of 1,000 units in the RCT and 20,000 units in
the observational study. For variance computations, we used the standard delta
method approximation to the variance of log odds ratios (given by the sum of
the reciprocals of the table-cell-specific counts).

Unlike the simulations estimating a difference in means, we do not find that
the Neyman and naïve designs consistently outperform the equal allocation de-
sign across all choices of estimator. These designs perform better for the shrinker
κ1 and its positive-part analogue κ1+ (as intended), but the equal design now
performs better when we use τ̂r on its own.

We then investigated why the Neyman design failed to yield superior results
when using τ̂r, given that the Neyman allocation does not rely on normality. Our
answer lies in the final two columns of the table, that show two additional designs
where we conduct an “oracle” optimization that has access to the true stratum-
specific potential outcome means and observational study bias parameters. The
first design is a Neyman allocation under the true parameters; the second is
the “oracle” design provided in the manuscript, where we optimize the risk of
κ1 under the true parameter values. We observe that the Neyman allocation
with access to the true stratum-specific potential outcome means still does not
outperform the equal allocation design when using τ̂r. This is because the delta
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Table 8

Risk over 25,000 iterations of τ̂r ,κ1, and κ1+, estimating a log odds ratio with a sample
size of 10,000 units, under various experimental designs. Designs under the header
“Estimated Parameters” use the observational study to estimate the stratum-specific

potential outcome means, whereas those under “True Parameters” are computed under the
true stratum-specific potential outcome means.

Estimated Parameters True Parameters
Est. Unmeasured

Confounding?
Trt. Equal Neyman Naïve Neyman Oracle

τ̂r
no c

100% 79% 82% 78% 79%
κ1 55% 44% 43% 43% 41%
κ1+ 48% 41% 41% 41% 40%
τ̂r

no �
100% 78% 85% 80% 81%

κ1 65% 53% 54% 53% 53%
κ1+ 62% 53% 54% 52% 53%
τ̂r

no q
100% 81% 86% 78% 78%

κ1 78% 66% 70% 65% 65%
κ1+ 78% 66% 70% 65% 65%
τ̂r

yes c
100% 84% 84% 79% 76%

κ1 83% 71% 71% 67% 66%
κ1+ 83% 71% 71% 67% 66%
τ̂r

yes �
100% 90% 89% 81% 82%

κ1 86% 78% 77% 71% 72%
κ1+ 86% 78% 77% 71% 72%
τ̂r

yes q
100% 83% 83% 76% 76%

κ1 86% 74% 74% 69% 68%
κ1+ 86% 74% 74% 69% 68%

method variance computation is not accurate in this regime, so even knowing the
true stratum-specific potential outcome means does not give us a good estimate
of the estimator variance.

In Table 8, we rerun the simulations with a much larger RCT sample size of
10,000 (leaving the size of the observational study unchanged). In this regime,
we see results more similar to those in the manuscript. Namely, the Neyman and
naïve allocations always perform better than the equal allocation, regardless of
the choice of estimator. In most cases, the Neyman allocation achieves slightly
better performance when using τ̂r, while the naïve allocation typically yields
slightly better performance when using the shrinkage estimators. The allocations
in the final two columns, computed using the true parameter values, also perform
as expected. The asymptotic normality is holding in this larger sample size
case.

Taken together, these simulations indicate that our methods are valid when
estimating quantities that are not simple averages. However, additional caution
should be taken when considering such quantities because asymptotic approxi-
mations may be slow to kick in. We would encourage analysts to simulate under
expected stratum-specific parameter values to ensure that delta method variance
approximations are valid given the expected size of the experiment.
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