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Abstract: Given a zero-mean Gaussian random field with a covariance
function that belongs to a parametric family of covariance functions, we
introduce a new notion of likelihood approximations, termed truncated-
likelihood functions. Truncated-likelihood functions are based on direct
functional approximations of the presumed family of covariance functions.
For compactly supported covariance functions, within an increasing-domain
asymptotic framework, we provide sufficient conditions under which consis-
tency and asymptotic normality of estimators based on truncated-likelihood
functions are preserved. We apply our result to the family of generalized
Wendland covariance functions and discuss several examples of Wendland
approximations. For families of covariance functions that are not compactly
supported, we combine our results with the covariance tapering approach
and show that ML estimators, based on truncated-tapered likelihood func-
tions, asymptotically minimize the Kullback-Leibler divergence, when the
taper range is fixed.
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1. Introduction

1.1. On infill- and increasing-domain asymptotics

Maximum likelihood (ML) estimators for covariance parameters are highly pop-
ular in inference for random fields. Aiming towards asymptotic properties of such
estimators, one needs to specify how the observation points and the associated
sampling domain behave as the number of observation points increases. Two
well-studied asymptotic frameworks are referred to as infill-domain asymptotics
(also termed fixed-domain asymptotics) and increasing-domain asymptotics (see
[13, p. 100], for an introduction of terms). In infill-domain asymptotics, ob-
servation points are sampled within a bounded sampling domain, whereas in
increasing-domain asymptotics, the sampling domain grows as the number of
observation points increases. When referring to infill- and increasing-domain
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asymptotics, one often places additional assumptions on the minimum distance
between any two distinct observation points. In increasing-domain asymptotics,
the latter distance is often assumed to be bounded away from zero, while in infill-
domain asymptotics, one frequently assumes that distinct observation points
can be sampled arbitrarily close to each other (see for example [37]). There is
a fair amount of literature which demonstrates that asymptotic properties of
ML estimators for covariance parameters can be quite different under the two
mentioned asymptotic frameworks (see [37] or more lately [6]). For example, it
is known that some covariance parameters can not be estimated consistently
under an infill-domain asymptotic framework ([34, 36]), whereas they can be
estimated consistently, under given regularity conditions, within an increasing-
domain asymptotic framework ([25, 4]). It is worth noting that in infill-domain
asymptotics, these results can depend on the dimension d of the Euclidean space
R

d, where the random field is assumed to be observed. For example, when the
true covariance function belongs to the Matérn family ([26]), and smoothness
parameters are given, it is shown in [36], that for d = 1, 2, 3, the scale and
variance parameters can not be estimated consistently via an ML approach in
an infill-domain asymptotic framework. The case where d = 4 is still open, but
for d ≥ 5, it is shown in [2] that under infill-domain asymptotics, all covariance
parameters of the Matérn family can be estimated consistently using an ML
approach.

1.2. Compactly supported covariance functions

In recent years, the dataset sizes have steadily increased such that statistical
analyses on random fields can become quite expensive in terms of computa-
tional resources (see for example [15] for a recent discussion). One prominent
issue with large datasets is the large size of covariance matrices, constructed
upon applying an underlying covariance function to given data. However, in
certain fields of application, observed correlations are assumed to vanish be-
yond a certain cut-off distance (see [18, pp. 750–751], and references therein, for
an example in meteorology or also [10] and [19]). On the other hand, in the con-
text of real valued random fields, it is common practice to multiply a presumed
covariance function with a known positive-definite and compactly supported
covariance function, called the covariance taper. The resulting compactly sup-
ported covariance function is referred to as the tapered covariance function. For
an introduction to covariance tapering we refer to [17]. The use of compactly
supported covariance functions can thus be of great importance for some fields
of application. Not only do they potentially reflect the nature of the underlying
covariance structure, but also, their application can lead to sparse covariance
matrices. The latter are helpful in terms of the high computational costs in the
context of large datasets. An excellent introduction to the construction of com-
pactly supported covariance functions, associated to stationary and isotropic
Gaussian random fields, is given in [21]. Additional results are available in [35],
[28] and [11].
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1.3. Motivation

The parametric family of generalized Wendland covariance functions represents
one example of a family of compactly supported covariance functions which al-
lows, similar to the Matérn family, for a continuous parametrization of smooth-
ness (in the mean square sense) of the underlying random field. Its origin is due
to Wendland ([32]) and an early adaptation for statistical applications was given
by Gneiting ([20]). In its general form (see [21] and [28] for special cases) the
generalized Wendland covariance function with smoothness parameters ν and
κ, variance parameter σ2 and range parameter β is given by

φ(t) := σ2

B(2κ, ν + 1)β2κ+ν

∫ β

t

w(w2 − t2)κ−1(β − w)νdw, (1)

if t ∈ [0, β) and is zero otherwise. In the above display, B is the beta function.
For technical details about valid parameter values, we refer to [9] or Section 6 of
the present article. Clearly, in comparison with closed-form covariance functions,
computing (1) is cumbersome, as it involves numerical integration. Depending
on the support β and a set of locations s1, . . . , sn ∈ R

d, the n × n covariance
matrix Σi,j = φ(‖si − sj‖) requires at most n(n− 1)/2 calculations of (1). One
strategy, which facilitates computing Σ, is to reduce the number of times (1)
must be calculated. As an illustration, we give three examples which involve
approximations φ̃i, i = 1, 2, 3, of φ (respectively approximations Σ̃i of Σ):
(φ̃1) Truncation of the support
(φ̃2) linear interpolation
(φ̃3) addition of a nugget effect

For φ̃1, we truncate φ to obtain φ̃1 which has a smaller support compared
to φ. This becomes especially interesting, when the original function φ tails off
slowly (high degree of differentiability at the origin). As a result, Σ̃1 will be more
sparse compared to Σ. Example φ̃2 is to predefine the numbers at which (1) is
calculated. This is achieved by introducing a partition 0 < t1 < . . . < tN = β of
the support of φ. Then, φ̃2 results in N calculations of φ. This defines a closed
form approximation of φ. Notice that t1, . . . , tN do not need to be equispaced.
Finally, φ̃3 can be interpreted as a tuning option for a given approximation φ̃∗
of φ:

φ̃3(t) :=
{
φ̃∗(t) + δ, t = 0,
φ̃∗(t), t �= 0,

δ ≥ 0.

With regard to practical usage, this form of approximation increases numerical
stability. Further, it allows for more flexibility in practice, where the number of
observations n is given and Σ̃∗ based on φ̃∗ might not be positive-definite.

Following up the above examples, we picture an approximation φ̃ of φ (re-
spectively approximation Σ̃ of Σ). Several questions arise:

• What are conditions on φ̃ to ensure that Σ̃ is asymptotically (as n −→
∞) equivalent to Σ and eventually (for n large enough) remains positive-
definite?
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• In terms of ML estimators for covariance parameters, how shall a log-
likelihood approximation based on φ̃ be defined?

• Under which conditions on φ̃ are ML estimators based on φ̃ consistent and
asymptotically normal?

In the more general setting of a given parametric family of covariance func-
tions, the present study gives a concrete context, where the latter questions are
answered by introducing the notion of truncated-ML estimators.

1.4. Framework and contribution

Truncated-ML estimators for covariance parameters are based on truncated-
likelihood functions. The latter are defined upon parametric families of se-
quences of functions, which approximate a presumed family of covariance func-
tions on a common domain. Colloquially we will call these parametric sequences
of functions covariance approximations. The respective matrices, constructed
upon applying covariance approximations to a given collection of observation
points, will be termed covariance matrix approximations. We will allow for co-
variance matrix approximations that are not necessarily positive semi-definite.
Therefore, truncated-likelihood functions are more general than existing likeli-
hood approximations methods such as low-rank, Vecchia, or covariance tapering
approaches (see [22] for a summary of commonly used methods).

We work in an increasing-domain asymptotic framework, where collections of
observation points are realizations of finite collections of a randomly perturbed
regular grid (see also [4]). We consider a stationary Gaussian random field, with
a zero-mean function and a true unknown covariance function that belongs to a
given parametric family of covariance functions. If the presumed family of covari-
ance functions is compactly supported, we provide sufficient conditions under
which truncated-ML estimators and (regular) ML estimators for covariance pa-
rameters are consistent and asymptotically normal. Some conditions imposed
on families of covariance functions are identical to the conditions that were al-
ready considered in [4]. The main difference is that we work with compactly
supported covariance functions. Therefore, it is possible to simplify some of the
conditions that were set up in [4]. As for statistical applications, we apply these
results to the family of generalized Wendland covariance functions. In contrast
to the infill-domain asymptotic framework considered in [9], we show that under
the studied increasing-domain asymptotic framework, under some conditions on
the parameter space, (regular) ML estimators for variance and range parame-
ters are consistent and asymptotically normal. Further, we show that the same
asymptotic results are recovered for truncated-ML estimators, based on various
generalized Wendland approximations, such as truncations, linear interpolations
and added nugget effects.

Additionally, we provide an extension to families of covariance functions
which are not compactly supported. We combine our results with the covari-
ance tapering approach. That is, we study covariance taper approximations and
their asymptotic influence on the conditional Kullback-Leibler divergence of the



3054 R. Furrer and M. Hediger

misspecified distribution from the true distribution (see also [5]). We show that
the latter divergence is minimized by truncated-tapered ML estimators.

1.5. Structure of the article

The rest of the article is organized as follows. Section 2 establishes the context.
We introduce some primary notation, define the sampling domain and the ran-
dom field itself. In Section 3 we introduce regularity conditions on covariance
functions and approximations. In Section 4 we present intermediate asymptotic
results on covariance matrices and approximations. Section 5 contains our main
results: We introduce truncated-ML estimators and present results on consis-
tency and asymptotic normality. In Section 6, we apply our results to the family
of generalized Wendland covariance functions and discuss several examples of
generalized Wendland approximations. Then, in the context of non-compactly
supported covariance functions, Section 7 contains results on the asymptotic
influence of taper approximations on the Kullback-Leibler divergence. Section 8
gives an outlook and some final comments. The Appendix is split into three
parts. Covariance approximations for isotropic random fields are discussed in
Appendix A. Appendix B contains additional supporting results, whereas all
the proofs are left for Appendix C.

2. Context

2.1. Primary notation

The set N+ and R+ shall represent the set of positive integers and non-negative
real numbers, respectively. For d ∈ N+, we use the notation B(x; r) (B[x; r]) for
the open (closed) ball of radius r > 0 with center x ∈ R

d. Given n ∈ N+, for
some set A ⊂ R

n, we write B(A) for the Borel σ-algebra on A.
For a vector (w1, . . . , wd) = w ∈ R

d, we write ‖w‖ =
(
w2

1 + · · · + w2
d

)1/2 for
the Euclidean norm of w on R

d. In the case of d = 1 we use the notation |·| for
the Euclidean norm. For two vectors w,w′ ∈ R

d, 〈w,w′〉 = wtw′ =
∑d

i=1 wiw
′
i

represents the inner product that induces ‖·‖ on R
d. Given D ⊂ R

d, we write
BC(D;S) for the space of real valued, uniformly bounded functions on D, having
compact support S ⊂ D. If f ∈ BC(D;S) and f is also continuous, we use the
notation CC(D;S) instead of BC(D;S). For f ∈ CC(D;S) we write ‖f‖∞ =
sup{|f(h)| : h ∈ D} for the uniform norm on CC(D;S). For vectors w ∈ R

d,
|w|∞ = maxi=1,...,d |wi| denotes the uniform norm on R

d.
For a real n × n matrix A, ‖A‖2 = max{z : ztz=1}〈z,AtAz〉1/2 denotes the

spectral norm of A. We write A � 0 (A ≺ 0) to indicate that A is positive-
definite (negative-definite). Further, λ1(A) ≥ · · · ≥ λn(A) denote the n real
eigenvalues of a matrix A ∈ Sn×n(R), where Sn×n(R) represents the space of
real symmetric n× n matrices.

We use the notation ∇f(x) =
(

∂f
∂x1

(x), . . . , ∂f
∂xp

(x)
)

for the gradient of f

at x, where x �→ f(x) is any differentiable, real valued function, defined on
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some E ⊂ R
p. Further, for a vector valued, differentiable function g(x) =

(g1(x), . . . , gm(x)), with values in R
m, defined on some U ⊂ R

p, we write
Jg(x)l,k = ∂gl

∂xk
(x), 1 ≤ l ≤ m, 1 ≤ k ≤ p, for the Jacobi-matrix of g at x.

A mapping Y from a probability space (Ω,F ,P) to a measure space (E,A)
will be called a random element if it is F/A measurable. If we write that
Y : (Ω,F) → (E,A) is measurable, we mean that it is F/A measurable. If
(Yn)n∈N+ denotes a sequence of random elements, where for any n ∈ N+, Yn is
a mapping form a probability space (Ω,F ,P) to a measure space (E,A), we use
the notation

Yn
P−−−−→

n→∞
Y and Yn

d−−−−→
n→∞

L,

to indicate convergence of (Yn)n∈N+ to a random element Y in probability and
in distribution, respectively. Note that for convergence in distribution, the in-
troduced notation indicates that the limit Y has law L on (E,A). A sequence of
estimators (θ̂n)n∈N+ for θ0 ∈ R

p will be referred to as consistent if it converges in
probability to θ0. Finally, N (μ,Σ) indicates a multivariate normal distribution
with mean vector μ and covariance matrix Σ.

2.2. Random sampling scheme

On a probability space (Ω,F ,P), we consider a real valued Gaussian random
function Z, which has sample functions on R

d. We assume that Z is stationary
(homogeneous) with zero-mean function and covariance function cθ0(s), s ∈ R

d,
where θ0 ∈ Θ, with Θ ⊂ R

p, compact and convex. Thus, we consider a real
valued random field {Zs : s ∈ R

d}, which has true and unknown covariance
function cθ0 that belongs to a family of covariance functions {cθ : θ ∈ Θ}.

Let Q := [−1, 1]d and X : Ω → QN+ be a stochastic process, defined on the
same probability space (Ω,F ,P), but independent of Z. We assume that the
sequence (Xi)i∈N+ is a sequence of independent random vectors with common
law on Q, which has a strictly positive probability density function on Q (see
also Remark 2.1). Given τ ∈ [0, 1/2) and a sequence of deterministic points
(vi)i∈N+ , with vi ∈ N

d
+, we define a randomly perturbed regular grid S as the

process {
Si := vi + τXi : i ∈ N+

}
, (2)

where we assume that for all I ∈ N+,
{
vi, 1 ≤ i ≤ Id

}
=

{
1, . . . , I

}d. There-
fore, for any ω ∈ Ω, S(ω) is a sequence on N+, with image S[N+](ω) ⊂∏∞

i=1
(
vi+τQ

)
=: G and any first Id coordinates are in {1, . . . , I}d+τQ (see also

Figure 1). At this point we remark that if nothing is mentioned, the parameter
τ ∈ [0, 1/2) and the sequence (vi)i∈N+ shall be fixed. Let X(n) := (X1, . . . , Xn)
and S(n) := (S1, . . . , Sn) denote finite collections of X and S, respectively. We
use the notation x(n) := (x1, . . . , xn) for a vector that contains the first n entries
of a given sequence in QN+ . Correspondingly, given τ ∈ [0, 1/2), v1, . . . , vn and
x(n) ∈ Qn, we write s(n) := (s1, . . . , sn), si = vi + τxi, for n perturbed grid
locations in Gn :=

∏n
i=1(vi + τQ).
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Fig 1. For τ = 0.4 and I ∈ N+, a random field Z is observed at two realizations si and sj
of Si = vi + τXi and Sj = vj + τXj , i �= j, 1 ≤ i, j ≤ I2. Dotted and dashed lines mark the
borders of the ranges of Si and Sj , respectively.

On (Ω,F ,P), we define the random vector

ω �→ Z(n)(ω) :=
(
ZS1(ω)(ω), . . . , ZSn(ω)(ω)

)
= (zs1 , . . . , zsn) =: z(n), (3)

which denotes Z observed at a finite collection of S. The situation, where a Gaus-
sian random field is assumed to be observed at a randomly perturbed regular
grid, with parameter τ and deterministic points (vi)i∈N+ , as introduced above,
is also considered in [4]. Given θ ∈ Θ, we let Σθ(s(n)) := [cθ(si − sj)]1≤i,j≤n de-
note the non-random n× n covariance matrix based on an arbitrary s(n) ∈ Gn.
On (Ω,F ,P), we write

ω �→ Σn,θ(ω) := Σθ(S(n)(ω)), θ ∈ Θ,

for the n× n random covariance matrix based on a finite collection S(n) of S.
Remark 2.1. Some technical remarks are worth pointing out. We assume that
the random function Z(s, ω) := Zs(ω), s ∈ R

d, is measurable as a function
from the measure space (Rd × Ω,B(Rd) ⊗ F) to (R,B(R)). That is to say
that Z is (jointly) measurable. This condition makes sure that the components
ω �→ ZSi(ω)(ω) = Z(Si(ω), ω), i = 1, . . . , n, of (3) are F/B(R) measurable as the
composition of the measurable functions ω �→ (Si(ω), ω) and (s, ω) �→ Z(s, ω).
Thus, the random vector Z(n) is well defined. Since Z and S are independent,
it is readily seen that the conditional distribution of Z(n) given S(n) = s(n)
is Gaussian, with characteristic function exp(−(1/2)atΣn,θ0(ω)a), a ∈ R

n. In
addition, we note that for fixed ω ∈ Ω, S[N+](ω) is not bounded and if we
define Δτ := 1 − 2τ , we are given some fixed Δτ > 0, which is independent of
n ∈ N+ and θ ∈ Θ, such that

inf
n∈N+

inf
1≤i,j≤n

i �=j

‖si − sj‖ ≥ Δτ . (4)

Hence, we are in an increasing-domain asymptotic framework where the min-
imum distance between any two distinct observation points is bounded away
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from zero. The assumption that for any given i ∈ N+, Xi has strictly positive
probability density function on Q, is purely technical (see also the proof of The-
orem 5.2). As it can be seen from the mentioned proof, if τ = 0, the assumption
becomes redundant.

3. Regularity conditions on covariance functions and covariance
approximations

3.1. Regularity conditions on the family of covariance functions

Assumption 3.1 (Regularity conditions on cθ).

(1) There exist real constants C, L < ∞, which are independent of θ ∈ Θ,
such that cθ ∈ BC(Rd;Sθ), with Sθ ⊂ B[0;C] and ‖cθ‖∞ ≤ L.

(2) For any s ∈ R
d, the first, second and third order partial derivatives of

θ �→ cθ(s) exist. In addition, for any q = 1, 2, 3, i1, . . . , iq ∈ {1, . . . , p},
∂qcθ

∂θi1 ···∂θiq
∈ BC

(
R

d;Sθ(i1, . . . , iq)
)
, where there exist constants C ′, L′ <

∞, which are independent of θ ∈ Θ, such that Sθ(i1, . . . , iq) ⊂ B[0;C ′]
and

∥∥ ∂qcθ
∂θi1 ···∂θiq

∥∥
∞ ≤ L′.

(3) Fourier inversion holds, that is for any θ ∈ Θ

cθ(s) =
∫
Rd

ĉθ(f) ei〈f,s〉 df,

with Θ × R
d � (θ, f) �→ ĉθ(f) continuous and strictly positive.

Remark 3.1. Note that (1) and (2) of Assumption 3.1 are different to the con-
ditions assumed in [4] (compare also to Condition 3.2 imposed in [5], or Con-
dition 4 stated in [7]). In [4] it is assumed that a given covariance function kθ
is not only bounded on R

d, but also it decays sufficiently fast in the Euclidean
norm on R

d. Explicitly, it is assumed in Condition 2.1 of [4] that there exists
a finite constant A, which is independent of θ ∈ Θ, such that for any s ∈ R

d,
|kθ(s)| ≤ A/(1 + ‖s‖d+1). This polynomial decay condition on kθ can be inter-
preted as a summability condition on the entries of the respective covariance
matrices Kθ(s(n))i,j := kθ(si − sj), which guaranties that the maximal eigen-
values of Kθ(s(n)) are uniformly bounded in n ∈ N+, s(n) ∈ Gn and θ ∈ Θ (see
Lemmas D.1 and D.5 in [4]). Note that the exponent d + 1 can be replaced
by d + α, with α > 0 some fixed constant (see also (6) in [6]). In the present
study we show that under the assumption of a minimal spacing between any
two distinct observation points, if cθ has compact support on R

d, the number
of possible observation points, which are covered by the support of cθ, must be
bounded uniformly in n ∈ N+, s(n) ∈ Gn and θ ∈ Θ (see Lemma B.1). This,
together with the condition that cθ is also uniformly bounded on Θ and R

d,
will be sufficient to conclude that the maximal eigenvalues of Σθ(s(n)) are uni-
formly bounded in n ∈ N+, s(n) ∈ Gn and θ ∈ Θ (see Lemmas 4.1 and B.3).
Similar remarks can be made with regard to the conditions imposed on the
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partial derivatives of cθ with respect to θ (see Lemma B.5). In addition, (3) of
Assumption 3.1 is also imposed in [4] (compare also to [8] and [7]). It guarantees
that the minimal eigenvalues of Σθ(s(n)) are bounded from below, uniformly in
n ∈ N+, s(n) ∈ Gn and θ ∈ Θ (see Lemmas 4.1 and B.3). Finally, we remark that
within the framework of compactly supported covariance functions, the given
conditions are very minimal and can be considered as classical in the context
of ML estimation. Especially, if one is not interested in the asymptotic distri-
bution, and rather seeks conditions under which ML estimators are consistent
(with regard to a concrete example, we refer to Remark 6.2).

3.2. Regularity conditions on the family covariance approximations

Given θ ∈ Θ, we let (c̃m,θ)m∈N+ denote a sequence of real valued functions
defined on R

d. The families
{
(c̃m,θ)m∈N+ : θ ∈ Θ

}
can be put under the following

assumption.
Assumption 3.2 (Regularity conditions on c̃m,θ).

(1) For any θ ∈ Θ and m ∈ N+, the function c̃m,θ :
(
R

d,B(Rd)
)
→

(
R,B(R)

)
is measurable and such that c̃m,θ(s) = c̃m,θ(−s) for any s ∈ R

d.
(2) For any m ∈ N+, c̃m,θ satisfies (1) of Assumption 3.1, where respective

constants C̃ and L̃ can be further chosen independently of m ∈ N+.
(3) supθ∈Θ ‖c̃m,θ − cθ‖∞

m→∞−−−−→ 0.
(4) For any m ∈ N+, c̃m,θ satisfies (2) of Assumption 3.1, where respective

constants C̃ ′ and L̃′ can be further chosen independently of m ∈ N+.
(5) For any q = 1, 2, 3, i1, . . . , iq ∈ {1, . . . , p}, we have that

sup
θ∈Θ

∥∥∥∥ ∂q c̃m,θ

∂θi1 · · · ∂θiq
− ∂qcθ

∂θi1 · · · ∂θiq

∥∥∥∥
∞

m→∞−−−−→ 0.

To make the notation easier, we write (c̃m,θ) := (c̃m,θ)m∈N+ . In the fol-
lowing, we formally introduce covariance matrix approximations (random and
non-random versions). To do so, let r : N+ → N+ be such that r(n) −→ ∞ as
n −→ ∞. Given s(n) ∈ Gn, we let Σ̃θ(s(n)) := [c̃r(n),θ(si − sj)]1≤i,j≤n denote
the non-random n × n matrix based on a given family

{
(c̃m,θ) : θ ∈ Θ

}
. Then,

on (Ω,F ,P), if
{
(c̃m,θ) : θ ∈ Θ

}
is a family of Borel measurable sequences of

functions, we write

ω �→ Σ̃n,θ(ω) := Σ̃θ(S(n)(ω)),

for the n× n random matrix based on a finite collection S(n) of S. Colloquially
we will use the term covariance approximation when we refer to a given fam-
ily

{
(c̃m,θ) : θ ∈ Θ

}
, which can approximate a family of covariance functions

{cθ : θ ∈ Θ} in the sense of Assumption 3.2. In these terms {cθ : θ ∈ Θ} itself is
a covariance approximation. The expression covariance matrix approximation
will be used for both, Σ̃θ(s(n)) and its random version Σ̃n,θ. Similar, we use the
expression covariance matrix for both, Σθ(s(n)) and Σn,θ.
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Remark 3.2. (1), (2) and (4) of Assumption 3.2 are natural extensions of (1) and
(2) of Assumption 3.1. Notice that the measurability condition imposed in (1) of
Assumption 3.2 makes sure that Σ̃n,θ is F/B(Rn2) measurable. Condition (3) of
Assumption 3.2 specifies in which sense a family

{
(c̃m,θ) : θ ∈ Θ

}
approximates

the family {cθ : θ ∈ Θ}. We require that (c̃m,θ) converges uniformly on R
d to cθ,

where the convergence is also uniform on the parameter space Θ. In fact, we will
show (see Lemmas B.3 and 4.1) that the uniform convergence of (c̃m,θ) to cθ,
together with the condition that the families {cθ : θ ∈ Θ} and

{
(c̃m,θ) : θ ∈ Θ

}
have uniformly bounded compact support, are, among others, sufficient criteria
to proof that the matrices Σθ(s(n)) and Σ̃θ(s(n)) are asymptotically (as n −→ ∞)
equivalent, uniformly on Θ and G. Condition (5) of Assumption 3.2 will allow us
to conclude that a similar result holds true for the first, second and third order
partial derivatives (with respect to θ) of Σ̃θ(s(n)) and Σθ(s(n)). For concrete
examples of covariance approximations, where the conditions of Assumption 3.2
are verified, we refer to Section 6.

4. Uniform asymptotic equivalence of covariance matrices and
covariance matrix approximations

This section presents intermediate results on covariance matrices and approx-
imations. In particular, Lemma 4.1 gives precise conditions under which Σ̃n,θ

eventually (for n large enough) remains positive-definite with P probability one.

Lemma 4.1. Assume that the family {cθ : θ ∈ Θ} satisfies (1) and (3) of As-
sumption 3.1. Consider

{
(c̃m,θ) : θ ∈ Θ

}
that satisfies (1), (2) and (3) of As-

sumption 3.2. Then, we have that P a.s.

sup
n∈N+

sup
θ∈Θ

∥∥Σn,θ

∥∥
2 < ∞ and sup

n∈N+

sup
θ∈Θ

∥∥Σ̃n,θ

∥∥
2 < ∞.

In particular we can conclude that P a.s.

sup
θ∈Θ

∥∥Σn,θ − Σ̃n,θ

∥∥
2

n→∞−−−−→ 0.

Further, it is true that P a.s.

inf
n∈N+

inf
θ∈Θ

λn

(
Σn,θ

)
> 0,

and there exists N ∈ N+ such that P a.s.

inf
n≥N

inf
θ∈Θ

λn

(
Σ̃n,θ

)
> 0.

5. Truncated-ML estimators

Given a square matrix A, we define det+(A) to be the product of the strictly
positive eigenvalues of A. If all of the eigenvalues are less or equal to zero,
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det+(A) = 1. Further, we use the notation A+ for the pseudoinverse of A (some-
times called Moore-Penrose inverse). For the given collection {cθ : θ ∈ Θ}, we
define, on (Ω,F ,P), for any n ∈ N+ and θ ∈ Θ, the random variable

ln(θ) := 1
n

log
(
det+(Σn,θ)

)
+ 1

n

〈
Z(n),Σ+

n,θZ(n)
〉
. (5)

Given ω ∈ Ω, θ �→ ln(θ)(ω) shall be called the truncated-modified log-likelihood
function based on {cθ : θ ∈ Θ}. A sequence of estimators

(
θ̂n(c)

)
n∈N+ , defined

on (Ω,F ,P), will be called a sequence of truncated-ML estimators for θ0 based
on {cθ : θ ∈ Θ}, if for any n ∈ N+,

θ̂n(c) ∈ argmin
θ∈Θ

ln(θ).

Similarly, on (Ω,F ,P), for a given collection of sequences of real valued functions{
(c̃m,θ) : θ ∈ Θ

}
, we introduce, for any n ∈ N+ and θ ∈ Θ, the random variable

l̃n(θ) := 1
n

log
(
det+(Σ̃n,θ)

)
+ 1

n

〈
Z(n), Σ̃+

n,θZ(n)
〉
. (6)

Then, for ω ∈ Ω, the function θ �→ l̃n(θ)(ω) denotes the truncated-modified
log-likelihood function based on

{
(c̃m,θ) : θ ∈ Θ

}
. A sequence of estimators(

θ̂n(c̃)
)
n∈N+ , defined on (Ω,F ,P), will be called a sequence of truncated-ML

estimators for θ0 based on
{
(c̃m,θ) : θ ∈ Θ

}
, if for any n ∈ N+

θ̂n(c̃) ∈ argmin
θ∈Θ

l̃n(θ). (7)

At this point is important to note that for a given ω ∈ Ω, it is in general not true
that ln(θ)(ω) and l̃n(θ)(ω) are continuous in θ for any n ∈ N+. Nevertheless, a
consequence of Lemma 4.1 is the following proposition:

Proposition 5.1. Assume that the family {cθ : θ ∈ Θ} satisfies (1) and (3)
of Assumption 3.1. Consider

{
(c̃m,θ) : θ ∈ Θ

}
that satisfies (1), (2) and (3) of

Assumption 3.2. Then, we have that for any n ∈ N+, P a.s.,

ln(θ) = 1
n

log
(
det(Σn,θ)

)
+ 1

n

〈
Z(n),Σ−1

n,θZ(n)
〉
.

Further there exists N ∈ N+ such that for any n ≥ N , P a.s.,

l̃n(θ) = 1
n

log
(
det(Σ̃n,θ)

)
+ 1

n

〈
Z(n), Σ̃−1

n,θZ(n)
〉
,

and we have that

sup
θ∈Θ

∣∣ln(θ) − l̃n(θ)
∣∣ P−−−−→

n→∞
0.
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Using Proposition 5.1, we notice that if, for any s ∈ R
d and m ∈ N+, both

θ �→ cθ(s) and θ �→ c̃m,θ(s) are k times differentiable, we have that θ �→ ln(θ)(ω)
and θ �→ l̃n(θ)(ω) are k times differentiable for n large enough, respectively.

For the rest of the article, if we refer to truncated-ML estimators (without
mentioning further whether estimators are based on families of covariance func-
tions or approximations), we refer to both, truncated-ML estimators based on
families of covariance functions and approximations. The same is applied for the
notion of truncated-modified log-likelihood functions based on either covariance
functions or approximations. However, if {cθ : θ ∈ Θ} satisfies the assumptions
of Proposition 5.1, a sequence of truncated-ML estimators

(
θ̂n(c)

)
n∈N+ shall be

simply called a sequence of ML estimators for θ0. Similarly, we will simply refer
to a modified log-likelihood function when the given family {cθ : θ ∈ Θ} is under
the assumptions of Proposition 5.1.
Remark 5.1. The introduction of truncated-modified log-likelihood functions is
not standard. Modified refers to the fact that the log-likelihood for the Gaussian
density function of a random vector (Zs1 , . . . , Zsn) is scaled by −2/n. This is
common practice in the literature about ML estimators for covariance param-
eters under an increasing-domain asymptotic framework (see for instance [4, 5]
and also [7]). The matrices Σn,θ(ω) and Σ̃n,θ(ω) are not necessarily positive-
definite. In particular, Σ̃n,θ(ω) can be negative-definite. If the matrices Σn,θ(ω)
and Σ̃n,θ(ω) are not positive-definite, we truncate the log-likelihood by a pseudo-
determinant and -inverse to obtain the functions θ �→ ln(θ)(ω) and θ �→ l̃n(θ)(ω).
Hence, the use of the expression “truncated”.
Remark 5.2. As it was mentioned in Remark 2.2 of [5], for given ω ∈ Ω, we
allow the functions θ �→ ln(θ)(ω) and θ �→ l̃n(θ)(ω) to have more than one
minimizer. In which case the asymptotic results given in Section 5.1 hold true
for any given sequence of truncated-ML estimators. With regard to the existence
of a minimizer we refer to Remark 2.1 in [4].

5.1. Consistency and asymptotic normality of truncated-ML
estimators

The main results of this section are that under suitable conditions on the fam-
ilies of covariance functions and approximations, truncated-ML estimators for
covariance parameters are not only consistent (Theorem 5.2 and Corollary 5.3)
but also asymptotically normal (Theorem 5.4 and Corollary 5.5). In particular,
we will make use of the conditions presented in Assumptions 3.1 and 3.2. How-
ever, in the context of random fields that are observed at randomly perturbed
regular grid locations as defined in (2), we will further make use of the following
two technical conditions that were also imposed in [4]. Associated to the com-
mon range Q, of the process X, we define the set Dτ :=

⋃
z∈Zd\{0}(z + τUQ),

where UQ := {u1 − u2 : u1 ∈ Q, u2 ∈ Q} denotes the set of differences between
two points in Q.



3062 R. Furrer and M. Hediger

Assumption 5.1 (Asymptotic identifiability around θ0). For τ = 0, there does
not exists θ �= θ0 such that cθ(z) = cθ0(z) for all z ∈ Z

d. If τ �= 0, there does
not exists θ �= θ0 such that s �→ cθ(s) − cθ0(s) is zero a.e. with respect to the
Lebesgue measure on Dτ and cθ(0) = cθ0(0).
Assumption 5.2 (Local identifiability around θ0). For τ = 0, there does not
exists Rp \ {0} � α = (α1, . . . , αp) such that

∑p
k=1 αk

∂cθ0
∂θk

(z) = 0 for all z ∈ Z
d.

For τ �= 0, there does not exists R
p \ {0} � α = (α1, . . . , αp) such that s �→∑p

k=1 αk
∂cθ0
∂θk

(s) is zero a.e. with respect to the Lebesgue measure on Dτ and∑p
k=1 αk

∂cθ0
∂θk

(0) = 0.

Theorem 5.2. Let
(
θ̂n(c̃)

)
n∈N+ be a sequence of truncated-ML estimators for

θ0 based on
{
(c̃m,θ) : θ ∈ Θ

}
. Assume that {cθ : θ ∈ Θ} satisfies Assumption 3.1

(regarding (2), q = 1 and the continuity of first order partial derivatives is
sufficient) and Assumption 5.1. Suppose further that

{
(c̃m,θ) : θ ∈ Θ

}
satisfies

Assumption 3.2 (regarding (4) and (5), q = 1 and the continuity of first order
partial derivatives is sufficient). Then, we have that

θ̂n(c̃) P−−−−→
n→∞

θ0.

The following corollary is immediate.

Corollary 5.3. Suppose that {cθ : θ ∈ Θ} satisfies Assumption 3.1 (regard-
ing (2), q = 1 and the continuity of first order partial derivatives is sufficient)
and Assumption 5.1. Then, we can conclude that a sequence of ML estimators(
θ̂n(c)

)
n∈N+ for θ0 is consistent.

Before we present the results about asymptotic normality, it is helpful to
consider some additional notation. Let K ∈ N+, such that for any ω ∈ Ω, the
sequences of functions(

ln,K(θ)(ω)
)
n∈N+

:=
(
ln+K−1(θ)(ω)

)
n∈N+

(8)

and (
l̃n,K(θ)(ω)

)
n∈N+

:=
(
l̃n+K−1(θ)(ω)

)
n∈N+

(9)

are differentiable with respect to θ. Note that if {cθ : θ ∈ Θ} satisfies Assump-
tion 3.1 and the collection

{
(c̃m,θ) : θ ∈ Θ

}
satisfies Assumption 3.2, then we

know about the existence of such a K under application of Proposition 5.1. For
the given K ∈ N+, on (Ω,F ,P), we introduce the sequence of random functions{(

ω �→ Gn,K(ω, θ)︸ ︷︷ ︸
=:Gn,K(θ)

)
n∈N+

: θ ∈ Θ
}
,

where for n ∈ N+ and θ ∈ Θ, the random vector Gn,K(θ) has components
Gj,n,K(θ), j = 1, . . . , p, with

Gj,n,K(θ) = ∂ln,K
∂θj

(θ) − E

[
∂ln,K
∂θj

(θ)
∣∣∣∣ S(n)

]
,
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and thus
Gn,K(θ) = ∇ln,K(θ) − E

[
∇ln,K(θ)

∣∣ S(n)
]
. (10)

Similarly, on (Ω,F ,P), we introduce the sequence of random functions{(
ω �→ G̃n,K(ω, θ)︸ ︷︷ ︸

=:G̃n,K(θ)

)
n∈N+

: θ ∈ Θ
}
,

where for any n ∈ N+ and θ ∈ Θ, the components of G̃n,K(θ) are given by

G̃j,n,K(θ) = ∂l̃n,K
∂θj

(θ) − E

[
∂l̃n,K
∂θj

(θ)
∣∣∣∣ S(n)

]
, j = 1, . . . , p,

and thus
G̃n,K(θ) = ∇l̃n,K(θ) − E

[
∇l̃n,K(θ)

∣∣ S(n)
]
. (11)

If the collection {cθ : θ ∈ Θ} satisfies Assumption 3.1, we simply write, for any
n ∈ N+,

JGn(θ0) := JGn,1(θ0),

for the random Jacobi-matrix of θ �→ Gn,1(θ) evaluated at θ0.

Theorem 5.4. Let
(
θ̂n(c̃)

)
n∈N+ be an sequence of truncated-ML estimators

for θ0 based on
{
(c̃m,θ) : θ ∈ Θ

}
. Suppose that {cθ : θ ∈ Θ} satisfies Assump-

tions 3.1, 5.1 and 5.2. Suppose further that
{
(c̃m,θ) : θ ∈ Θ

}
satisfies Assump-

tion 3.2. Then, we have that

n1/2(θ̂n(c̃) − θ0
) d−−−−→

n→∞
N (0,Λ−1), (12)

where Sp×p � Λ � 0 is deterministic and such that

1
2JGn(θ0)

P−−−−→
n→∞

Λ P←−−−−
n→∞

1
2JG̃n,N

(θ0),

with N ∈ N+ as in Proposition 5.1.

Corollary 5.5. Suppose that {cθ : θ ∈ Θ} satisfies Assumptions 3.1, 5.1 and
5.2. Then, we can conclude that a sequence of ML estimators

(
θ̂n(c)

)
n∈N+ for

θ0 is such that

n1/2(θ̂n(c) − θ0)
d−−−−→

n→∞
N (0,Λ−1),

with Λ as in Theorem 5.4.

Remark 5.3. Under Assumptions 3.1, for any K ∈ N+, E
[
∇ln,K(θ) | S(n)

]
= 0

with P probability one. However, even if {cθ : θ ∈ Θ} is under Assumptions 3.1
and

{
(c̃m,θ) : θ ∈ Θ

}
is under Assumptions 3.2, it is not in general true that

P a.s. E
[
∇l̃n,N (θ) | S(n)

]
= 0, where N is as in Proposition 5.1. Notice further

that under Assumptions 3.1, for ω ∈ Ω, −(n/2)JGn(θ0)(ω) represents the second
derivative of the log-likelihood θ �→ −(n/2)ln(θ)(ω) based on {cθ : θ ∈ Θ}.
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6. Example of application: generalized Wendland functions

In this section we work in the same setting as in Section 2.2, but we additionally
assume that Z is isotropic. Explicitly, for the given family of covariance functions
{cθ : θ ∈ Θ}, we assume that there exists a parametric family {ϕθ : θ ∈ Θ} such
that for any θ ∈ Θ, s ∈ R

d, cθ(s) = ϕθ(‖s‖). The family {ϕθ : θ ∈ Θ} is called the
radial version of {cθ : θ ∈ Θ}. We can recycle the notation of Section 3 and easily
translate Assumptions 3.1 and 3.2 by considering families of approximations{
(ϕ̃m,θ) : θ ∈ Θ

}
for {ϕθ : θ ∈ Θ} on R+. This allows us to readily recover the

results of Sections 4 and 5 for isotropic random fields. For the details we refer
to Assumptions A.1 and A.2, as well as Theorems A.1 and A.2 in Appendix A.

In terms of an explicit family of radial covariance functions, we reconsider the
generalized Wendland covariance function which we have already introduced in
(1) of Section 1.3. Let Θ � θ := (σ2, β), where Θ := [σ2

min, σ
2
max] × [βmin, βmax],

with 0 < σ2
min < σ2

max < ∞ and 1−2τ < βmin < βmax < ∞. We assume that the
covariance function of the random field Z is given by φθ0(‖s‖), s ∈ R

d, θ0 ∈ Θ,
where φθ0 belongs to the family {φθ : θ ∈ Θ} which is defined by

φθ(t) := σ2φν,κ

(
t

β

)
, t ∈ [0,∞), (13)

where

φν,κ(r) :=
{

1
B(2κ,ν+1)

∫ 1
r
u(u2 − r2)κ−1(1 − u)νdu, r ∈ [0, 1),

0, r ∈ [1,∞),

compare to (1) of Section 1.3. We treat κ and ν as given but such that κ > 0
and ν ≥ (d + 1)/2 + κ. Notice that the latter restriction on κ and ν makes
sure that for any θ ∈ Θ, φθ belongs to the class Φd, the class of real valued and
continuous functions, defined on R+, which are strictly positive at the origin and
such that for any finite collection of points in R

d, evaluation at the Euclidean
norm of pairwise differences between points of the collection results in a non-
negative definite matrix (see for example [21]). Actually, in the latter reference
it is argued that for κ > 0, φν,κ ∈ Φd if and only if ν ≥ (d + 1)/2 + κ. For the
respective family defined on R

d, we use the notation wθ(s) := φθ(‖s‖).
Remark 6.1. The restriction βmin > 1 − 2τ is imposed to proof that the family
{wθ : θ ∈ Θ} satisfies Assumptions 5.1 and 5.2 (see the proof of Propositions 6.2).
This is not surprising, as 1 − 2τ defines the minimal spacing between pairs of
distinct observation points of the randomly perturbed regular grid, defined in
(2) of Section 2.2. Further, as we have noted that φν,κ ∈ Φd if and only if
ν ≥ (d+1)/2+κ, the two smoothness parameters ν and κ can not be estimated
without further constraints.

Proposition 6.1. Let κ > 4. Then, the family {φθ : θ ∈ Θ} satisfies Assump-
tion A.1, where for any θ ∈ Θ and for any q = 1, 2, 3, i1, . . . , iq ∈ {1, . . . , p},
the functions t �→ φθ(t) and t �→ ∂qφθ

∂θi1 ···∂θiq
(t) are continuous on R+.
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Proposition 6.2. Let κ > 2. Then, the family {wθ : θ ∈ Θ} satisfies Assump-
tions 5.1 and 5.2.

Using Propositions 6.1 and 6.2, under application of Theorems A.1 and A.2
(recall also Corollaries 5.3 and 5.5), we obtain the following result:

Proposition 6.3. Let κ > 4. A sequence
(
θ̂n(φ)

)
n∈N+ of ML estimators for θ0

based on {φθ : θ ∈ Θ} is consistent. Further there exists a non-random symmet-
ric p× p matrix Λ � 0 such that

n1/2(θ̂n(φ) − θ0
) d−−−−→

n→∞
N (0,Λ−1).

Remark 6.2. It is worth to note that the restriction κ > 4 is only needed for the
asymptotic distribution of ML estimators, respectively truncated-ML estima-
tors. In particular, in Proposition 6.1, if one only demands conditions involving
first order partial derivatives of φθ, with respect to θ, κ > 2 is sufficient. With
regard to consistency of the estimator

(
θ̂n(φ)

)
n∈N+ in Proposition 6.3, κ > 2 is

sufficient as well. The same applies for the truncated-ML estimators considered
in Examples 6.1, 6.2, 6.3 and 6.4. Keeping in mind the differentiability condi-
tions imposed in Assumption A.1, the given restrictions on κ are not surprising
(compare also to [9], within the infill-domain asymptotic framework).

We discuss four examples of generalized Wendland approximations.
Example 6.1 (Truncation of φθ). Let {φθ : θ ∈ Θ} be as in Proposition 6.1. Let{
(Tm,θ) : θ ∈ Θ

}
be defined as follows: For θ ∈ Θ and m ∈ N+, we set,

Tm,θ(t) := φθ1[0,Cm](t), t ∈ R+, Cm −→ ∞ as m −→ ∞.

Proposition 6.4. A sequence
(
θ̂n(T)

)
n∈N+ of truncated-ML estimators for θ0

based on
{
(Tm,θ) : θ ∈ Θ

}
is consistent and we have that

n1/2(θ̂n(T) − θ0
) d−−−−→

n→∞
N (0,Λ−1),

where Λ is defined as in Proposition 6.3.

In the following we let M < ∞ denote a real constant, which is independent
of β ∈ [βmin, βmax] such that βmax ≤ M .
Example 6.2 (Trimmed Bernstein polynomials). Let {φθ : θ ∈ Θ} be as in Propo-
sition 6.1. We consider a family

{
(Pm,θ) : θ ∈ Θ

}
defined as follows: For θ ∈ Θ

and m ∈ N+, we set for t ∈ R+,

Pm,θ(t) :=
{
Bm,θ(t; bm), t ≤ M,

0, t > M,

with

Bm,θ(t; bm) =
m∑

k=0
φθ

(
bm

k

m

)(
m

k

)(
t

bm

)k(
1 − t

bm

)m−k

,
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the Bernstein polynomial of the function φθ on [0, bm), where bm
m→∞−−−−→ ∞ and

we assume that bm = o(m). Thus, for any 0 ≤ k ≤ m,

bm
k + 1
m

− bm
k

m

m→∞−−−−→ 0,

the distance between adjacent points converge to zero as m approaches infin-
ity. See also [12] for an introduction of Bernstein polynomials on unbounded
intervals.

Proposition 6.5. The family
{
(Pm,θ) : θ ∈ Θ

}
satisfies Assumption A.2.

Using Propositions 6.1, 6.2 and 6.5, under application of Theorems A.1 and
A.2, we have proven the following result:

Proposition 6.6. A sequence
(
θ̂n(P)

)
n∈N+ of truncated-ML estimators for θ0

based on
{
(Pm,θ) : θ ∈ Θ

}
is consistent and we have that

n1/2(θ̂n(P) − θ0
) d−−−−→

n→∞
N (0,Λ−1),

where Λ is defined as in Proposition 6.3.

Example 6.3 (Linear interpolation). Let {φθ : θ ∈ Θ} be as in Proposition 6.1.
For a given m ∈ N+, we consider a partition of the interval [0,M ], 0 = t0 ≤ t1 ≤
· · · ≤ tNm = M , where Nm

m→∞−−−−→ ∞ and for 0 ≤ k ≤ Nm, tmk+1 − tmk
m→∞−−−−→ 0.

Then, we define the family
{
(Lm,θ) : θ ∈ Θ

}
as follows: For θ ∈ Θ and m ∈ N+,

we set for t ∈ R+,

Lm,θ(t) :=
{
Im,θ(t;Nm), t ≤ M,

0, t > M,

where

Im,θ(t;Nm) =
{
φθ(tmk ) + φθ(tmk+1)−φθ(tmk )

tmk+1−tmk
(t− tmk ), t ∈ [tmk , tmk+1],

0, t �∈ [tmk , tmk+1].

Thus, for a given m ∈ N+, Lm,θ represents a linear interpolation of the function
φθ on the interval [0,M ].

Proposition 6.7. The family
{
(Lm,θ) : θ ∈ Θ

}
satisfies Assumption A.2.

Using Propositions 6.1, 6.2 and 6.7, under application of Theorems A.1 and
A.2, we have further proven the following result:

Proposition 6.8. A sequence
(
θ̂n(L)

)
n∈N+ of truncated-ML estimators for θ0

based on
{
(Lm,θ) : θ ∈ Θ

}
is consistent and we have that

n1/2(θ̂n(L) − θ0
) d−−−−→

n→∞
N (0,Λ−1),

where Λ is defined as in Proposition 6.3.
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Example 6.4 (Vanishing nugget effect). Let {φθ : θ ∈ Θ} be as in Proposition 6.1
and consider a family

{(
φ̃m,θ

)
: θ ∈ Θ

}
that satisfies Assumption A.2. Then,

define for any θ ∈ Θ and m ∈ N+, the function

Sm,θ(t) :=
{
φ̃m,θ(t) + δ(m), t = 0,
φ̃m,θ(t), t �= 0,

(14)

where (δ(m))m∈N+ is independent of θ ∈ Θ and t ∈ R+ and such that δ(m) −→ 0,
as m −→ ∞. Note that since the family {φθ : θ ∈ Θ} satisfies Assumption A.2,
we could also choose φ̃m,θ ≡ φθ in (14).

Proposition 6.9. A sequence
(
θ̂n

(
S
))

n∈N+ of truncated-ML estimators for θ0
based on

{(
Sm,θ

)
: θ ∈ Θ

}
is consistent and we have that

n1/2(θ̂n(S) − θ0
) d−−−−→

n→∞
N (0,Λ−1),

where Λ is defined as in Proposition 6.3.

Remark 6.3. As it was already mentioned in the introduction, computing (13)
is costly. However, if κ is a positive integer, closed form solutions of (13) exist.
More specifically, if κ = k ∈ N+, then

φν,k(r) = Aν+k(r)Pk(r),

where Pk is a polynomial of order k and Aν+k the Askey function ([3]) of order
ν + k,

Aν+k(r) =
{

(1 − r)ν+k, 0 ≤ r < 1,
0, r ≥ 1.

In addition, if κ ∈ (N+ − 1/2), a positive half-integer, it is shown in [28] that
further closed form solutions of (13), involving polynomial, logarithmic and
square root terms, exist. Thus, in the specific example of generalized Wendland
covariance functions, covariance approximations will facilitate computing (13)
when κ /∈ N+ ∪ (N+ − 1/2).

7. Covariance taper approximations: beyond compactly supported
covariance functions

Asymptotic properties of (regular) tapered-ML estimators were addressed in
both the infill- and increasing-domain asymptotic framework (see [23, 14, 30]
and [16]). The direct functional approximation approach studied here can be
combined with covariance tapering. Given observations of S, it is known that
under weak assumptions on the presumed covariance function, ML estimators
based on tapered covariance functions (tapered-ML estimators) preserve consis-
tency (see [16], in particular Corollary 2 in the increasing-domain framework).
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However, this is the case for covariance tapers that have a compact support
which is not fixed, but rather grows to the entire R

d as the number of ob-
servations from S increases. Within an increasing-domain asymptotic frame-
work, given a fixed compact support of the covariance taper, one can in general
not expect tapered-ML estimators to be consistent. Still, under suitable con-
ditions, tapered-ML estimators asymptotically minimize the Kullback-Leibler
divergence (see for instance Theorem 3.3 in [5]). Given the theory developed
here, we can readily recover the same result for truncated-tapered ML estima-
tors, ML estimators based on tapered covariance function, where the covariance
taper is replaced with a functional approximation of it. To be more formal, let
us remain in the setting of Section 2, but assume that Z has true and unknown
covariance function kθ0 , θ0 ∈ Θ, which belongs to a family {kθ : θ ∈ Θ} which
satisfies:

• For any s ∈ R
d, θ �→ kθ(s) is continuously differentiable

• There exist constants A < ∞ and α > 0 such that for all i = 1, . . . , p,
for all s ∈ R

d and for all θ ∈ Θ, |kθ(s)| ≤ A/(1 + ‖s‖d+α) and
∣∣∂kθ

∂θi
(s)

∣∣ ≤
A/(1 + ‖s‖d+α)

• {kθ : θ ∈ Θ} satisfies (3) of Assumption 3.1.

The given assumptions are very weak and satisfied for instance for the Matérn
family (see also Condition 2.1 in [4] or Remark 3.1). Then, we consider a fixed
covariance taper s �→ tθ′

0
(s), θ′0 ∈ Θ′, Θ′ ⊂ R

l, compact and convex. We assume
that tθ′

0
belongs to a family of tapers {tθ′ : θ′ ∈ Θ′} that satisfies Assumption 3.1

(regarding (2), q = 1 and the continuity of first order partial derivatives is
sufficient). As we have seen in Section 6 (Proposition 6.1), we may choose, with
θ′0 = (β0, 1), κ > 2, ν ≥ (d + 1)/2 + κ, a generalized Wendland taper (see also
Remark 6.2). In the given context it is more convenient to write tβ0 := tθ′

0
,

where β0 is the taper range, that is tβ0(s) = 0 for ‖s‖ ≥ β0. Based on a finite
collection S(n) of S, on (Ω,F ,P), we then define the tapered n × n covariance
matrix Rn,θi,j

:= kθ(Si−Sj)tβ0(Si−Sj), 1 ≤ i, j ≤ n. Additionally, we consider
a covariance matrix approximation

R̃n,θi,j
= kθ(Si − Sj)t̃r(n),θ′

0
(Si − Sj), 1 ≤ i, j ≤ n, r(n) −→ ∞ as n −→ ∞,

of Rn,θ, where (t̃m,θ′
0
) is a sequence of functions that belongs to a family of taper

approximations {(t̃m,θ′) : θ′ ∈ Θ′}, for which Assumption 3.2 applies. Again,
we write t̃m,θ′

0
:= t̃m,β0 , m ∈ N+, to highlight the fixed range parameter. We

note that the results of Lemma 4.1 and Proposition 5.1 remain true with Σn,θ

and Σ̃n,θ replaced with Rn,θ and R̃n,θ, respectively. We know (see Remark 2.1)
that the conditional distribution of Z(n) given S(n) is given by the random
variable ω �→ N (0,Kn,θ0(ω)). On the other hand, we can assume a misspecified
distribution ω �→ N (0, Rn,θ(ω)), where the true covariance matrix is replaced
with the tapered covariance matrix Rn,θ(ω), θ ∈ Θ. Then, we define the scaled
(see [5]) conditional Kullback-Leibler divergence of N (0, Rn,θ) from N (0,Kn,θ0),

dn,θ := 1
n

log
(
det(Rn,θK

−1
n,θ0

)
)

+ 1
n

tr(Kn,θ0R
−1
n,θ) − 1.
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The distribution N (0, Rn,θ) shall be called a regular taper miss-specified dis-
tribution. If we choose n ≥ N (N as in Proposition 5.1), we can even further
misspecify the distribution of Z(n) given S(n) by replacing Rn,θ with R̃n,θ in
N (0, Rn,θ). This gives rise to the scaled conditional Kullback-Leibler divergence
of N (0, R̃n,θ) from N (0,Kn,θ0),

d̃n,θ := 1
n

log
(
det(R̃n,θK

−1
n,θ0

)
)

+ 1
n

tr(Kn,θ0R̃
−1
n,θ) − 1.

We use the notation
(
θ̂n(kt)

)
n∈N+ and

(
θ̂n(kt̃)

)
n∈N+ for ML and truncated-

ML estimators for θ0 with respect to {kθtβ0 : θ ∈ Θ} and {(kθ t̃m,β0) : θ ∈ Θ},
respectively. In accordance with the literature about tapered-ML estimators,
the estimators

(
θ̂n(kt)

)
n∈N+ and

(
θ̂n(kt̃)

)
n∈N+ are then further referred to as

tapered-ML estimators and truncated-tapered ML estimators, respectively. We
can now state the following theorem:

Theorem 7.1. We have that P a.s.

sup
θ∈Θ

∣∣dn,θ − d̃n,θ
∣∣ n→∞−−−−→ 0, (15)

and as n −→ ∞,
dn,θ̂n(kt̃) = inf

θ∈Θ
dn,θ + δn, (16)

where δn
P−−−−→

n→∞
0.

Therefore, in the given scenario, truncated-tapered ML estimators asymptoti-
cally minimize the conditional Kullback-Leibler divergence of taper misspecified
distributions from the true distribution (compare also to Theorem 3.3 in [5]).
Thus, in terms of Kullback-Leibler divergence, truncated-tapered ML estimators
and tapered-ML estimators perform asymptotically equally well.

8. Discussion and outlook

With the introduction of truncated-likelihood functions, we allow for more far-
reaching forms of covariance approximations, such as linear interpolations or
polynomial approximations. Our approximation approach relates directly to the
presumed covariance function. Thus, combinations with existing approximation
methods such as low-rank or covariance tapering approaches are well possible.
We studied the quality of truncated-ML estimators from an asymptotic point of
view. For compactly supported covariance functions, the conditions imposed in
Sections 3 and 5 permit us to obtain truncated-ML estimators that are asymp-
totically well-behaving. That is, we obtain estimators that are consistent and
asymptotically normal. Our proof strategies were strongly influenced by [4]. We
have provided a comprehensive analysis for the family of generalized Wendland
covariance functions. That is, we give precise conditions on smoothness, variance
and range parameters, under which ML estimators for variance and range pa-
rameters are consistent and asymptotically normal. To our knowledge, this does
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not exists in the literature so far (compare also to [9], within the infill-domain
asymptotic context). Further, we gave four examples of generalized Wendland
approximations, for which truncated-ML estimators preserve consistency and
asymptotic normality.

We now discuss some open questions. Our results on consistency and asymp-
totic normality depend on the condition that correlations vanish beyond a cer-
tain distance. It would be of interest to recover the consistency and asymptotic
normality results for truncated-ML estimators, where the assumption of a com-
pact support is dropped. To this end, we recall that the imposed conditions
on covariance functions and approximations resulted in the uniform asymptotic
equivalence of covariance matrices and approximations. Using this, we estab-
lished the existence of a positive integer N , after which covariance matrix ap-
proximations remain positive-definite. Expanding to non-compactly supported
covariance function, this result remains unchanged, as long as covariance matri-
ces and approximations are uniformly asymptotically equivalent (uniformly on
the parameter and sample space). Thus, in this case, consistency and asymp-
totic normality can be recovered, even when presumed covariance functions are
no longer compactly supported. However, as a mere condition, the asymptotic
equivalence of covariance matrices and approximations is of little practical im-
portance. Thus, the case of non-compactly supported covariance functions de-
serves further attention.

From a more applied point of view, our results provide a strong theoretical
basis for further research. It remains to test and extend the given examples
of covariance approximations. The four examples of generalized Wendland ap-
proximations and their effect on parameter estimations were discussed from a
theoretical point of view. An important next step is to provide numerical im-
plementations and practical comparisons.

In conclusion, for large datasets built upon correlated data, the present work
provides an essential missing piece in the area of covariance approximations.

Appendix A: Covariance approximations for isotropic random fields

We consider families of approximations
{
(ϕ̃m,θ) : θ ∈ Θ

}
for {ϕθ : θ ∈ Θ} on R+

and translate (recycling the notation of Section 3) Assumptions 3.1 and 3.2 as
follows:
Assumption A.1 (Regularity conditions on ϕθ).

(1) There exist real constants C, L < ∞, which are independent of θ ∈ Θ,
such that ϕθ ∈ BC(R+;Sθ), with Sθ ⊂ [0, C] and ‖ϕθ‖∞ ≤ L.

(2) For any t ∈ R+, the first, second and third order partial derivatives of
θ �→ ϕθ(t) exist. In addition, for any q = 1, 2, 3, i1, . . . , iq ∈ {1, . . . , p},

∂qϕθ

∂θi1 ···∂θiq
∈ BC(R+;Sθ(i1, . . . , iq)), where there exist constants C ′, L′ <

∞, which are independent of θ ∈ Θ, such that Sθ(i1, . . . , iq) ⊂ [0, C ′] and∥∥ ∂qϕθ

∂θi1 ···∂θiq

∥∥
∞ ≤ L′.
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(3) Fourier inversion holds, that is for any θ ∈ Θ,

ϕθ(‖s‖) =
∫
Rd

ĉθ(f) ei〈f,s〉 df,

where Θ × R
d � (θ, f) �→ ĉθ(f) is continuous and strictly positive.

Assumption A.2 (Regularity conditions on ϕ̃m,θ).
(1) For any θ ∈ Θ, for any m ∈ N+, the function ϕ̃m,θ : (R+,B(R+)) →

(R,B(R)) is measurable.
(2) For any m ∈ N+, ϕ̃m,θ satisfies (1) of Assumption A.1, where respective

constants C̃ and L̃ can be further chosen independently of m ∈ N+.
(3) supθ∈Θ ‖ϕ̃m,θ − ϕθ‖∞

m→∞−−−−→ 0.
(4) For any m ∈ N+, ϕ̃m,θ satisfies (2) of Assumption A.1, where respective

constants C̃ ′ and L̃′ can be further chosen independently of m ∈ N+.
(5) For any q = 1, 2, 3, i1, . . . , iq ∈ {1, . . . , p}, we have that

sup
θ∈Θ

∥∥∥∥ ∂qϕ̃m,θ

∂θi1 · · · ∂θiq
− ∂qϕθ

∂θi1 · · · ∂θiq

∥∥∥∥
∞

m→∞−−−−→ 0.

Note that the family {ϕθ : θ ∈ Θ} satisfies Assumption A.1 if and only if
{cθ : θ ∈ Θ} satisfies Assumption 3.1. Further, for any n ∈ N+ and θ ∈ Θ, we
have that

Σn,θ =
[
ϕθ(‖Si − Sj‖)

]
1≤i,j≤n

,

on (Ω,F ,P). Thus, a sequence of truncated-ML estimators for θ0 based on
{cθ : θ ∈ Θ} is a sequence of truncated-ML estimators for θ0 based on {ϕθ : θ ∈
Θ}. If we define a sequence of truncated-ML estimators

(
θ̂n(ϕ̃)

)
n∈N+ for θ0

based on a given
{
(ϕ̃m,θ) : θ ∈ Θ

}
upon replacing Σ̃n,θ in (7) with the random

n×n matrix
[
ϕ̃r(n),θ(‖Si − Sj‖)

]
1≤i,j≤n

, we can recover the results of Sections 4
and 5:
Theorem A.1. Let

(
θ̂n(ϕ̃)

)
n∈N+ be a sequence of truncated-ML estimators

for θ0 based on
{
(ϕ̃m,θ) : θ ∈ Θ

}
. Assume that {ϕθ : θ ∈ Θ} satisfies Assump-

tion A.1 (regarding (2), q = 1 and the continuity of first order partial deriva-
tives is sufficient) and {cθ : θ ∈ Θ} satisfies Assumption 5.1. Suppose further
that

{
(ϕ̃m,θ) : θ ∈ Θ

}
satisfies Assumption A.2 (regarding (4) and (5), q = 1

and the continuity of first order partial derivatives is sufficient). Then,

θ̂n(ϕ̃) P−−−−→
n→∞

θ0.

Theorem A.2. Let
(
θ̂n(ϕ̃)

)
n∈N+ be an sequence of truncated-ML estimators

for θ0 based on
{
(ϕ̃m,θ) : θ ∈ Θ

}
. Suppose that {ϕθ : θ ∈ Θ} satisfies Assump-

tion A.1 and {cθ : θ ∈ Θ} satisfies Assumptions 5.1 and 5.2. Assume further
that

{
(ϕ̃m,θ) : θ ∈ Θ

}
satisfies Assumption A.2. Then, we have that

n1/2(θ̂n(ϕ̃) − θ0
) d−−−−→

n→∞
N (0,Λ−1),

with Λ as in Theorem 5.4.
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Appendix B: Supporting results

Let r : N+ → N+ be such that r(n) −→ ∞ as n −→ ∞. For the families {cθ : θ ∈ Θ}
and

{
(c̃m,θ) : θ ∈ Θ

}
, we introduce, for any n ∈ N+ and θ ∈ Θ, for an arbitrary

s(n) ∈ Gn, for any q = 1, 2, 3, i1, . . . , iq ∈ {1, . . . , p}, the non-random n × n
matrices

∂qΣθ(s(n))
∂θi1 · · · ∂θiq

:=
[

∂qcθ
∂θi1 · · · ∂θiq

(si − sj)
]
1≤i,j≤n

,

and

∂qΣ̃θ(s(n))
∂θi1 · · · ∂θiq

:=
[

∂q c̃r(n),θ

∂θi1 · · · ∂θiq
(si − sj)

]
1≤i,j≤n

,

whenever the above partial derivatives with respect to θ exist. Further, for Borel
measurable sequences of functions

{
(c̃m,θ) : θ ∈ Θ

}
, we introduce, on (Ω,F ,P),

the n× n random matrices

ω �→ ∂qΣn,θ

∂θi1 · · · ∂θiq
(ω) :=

∂qΣθ(S(n)(ω))
∂θi1 · · · ∂θiq

,

and

ω �→ ∂qΣ̃n,θ

∂θi1 · · · ∂θiq
(ω) :=

∂qΣ̃θ(S(n)(ω))
∂θi1 · · · ∂θiq

,

whenever the above partial derivatives with respect to θ exist.

Lemma B.1. Let C, L < ∞ be some real constants. Consider g : Rd → R+
such that g ∈ BC(Rd;S), with S ⊂ B[0;C] and ‖g‖∞ ≤ L. Then, for any i ∈ N+,
for any sequence (sj)j∈N+ ∈ G,∑

j∈N+

g(si − sj) ≤ LR(d,C, τ), (17)

where R(d,C, τ) := (22ddCd−1)/Δd
τ , with Δτ = 1 − 2τ . Further, we also have

that ∑
j∈N+

|vi−vj |∞≥C+1

g(si − sj) = 0. (18)

Remark B.1. We would like to point out that Lemma B.1 resembles Lemmas
D.1 and D.3 of [4], where f : Rd → R+, which is such that f(s) ≤ 1/(1+ |s|d+1

∞ ),
is replaced with a compactly supported function g, defined as in Lemma B.1.

Lemma B.2. Let C̃, L̃ < ∞ be some real constants. Consider a sequence
of functions (gm)m∈N+ , with values in R+, where for any m ∈ N+, gm ∈
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BC(Rd; S̃m), with S̃m ⊂ B
[
0; C̃

]
and ‖gm‖∞ ≤ L̃. Then, for any i ∈ N+, for

any sequence (sj)j∈N+ ∈ G,

sup
m∈N+

∑
j∈N+

gm(si − sj) ≤ L̃R(d, C̃, τ), (19)

where R(d, C̃, τ) := (22ddC̃d−1)/Δd
τ , with Δτ = 1 − 2τ . Further we also have

that
sup

m∈N+

∑
j∈N+

|vi−vj |∞≥C̃+1

gm(si − sj) = 0. (20)

Lemma B.3. Assume that {cθ : θ ∈ Θ} satisfies (1) and (3) of Assumption 3.1.
Consider

{
(c̃m,θ) : θ ∈ Θ

}
that satisfies (1), (2) and (3) of Assumption 3.2.

Then, we have that

sup
n∈N+

sup
s(n)∈Gn

sup
θ∈Θ

∥∥Σθ(s(n))
∥∥

2 < ∞, sup
n∈N+

sup
s(n)∈Gn

sup
θ∈Θ

∥∥Σ̃θ(s(n))
∥∥

2 < ∞, (21)

and in particular

sup
s(n)∈Gn

sup
θ∈Θ

∥∥Σθ(s(n)) − Σ̃θ(s(n))
∥∥

2
n→∞−−−−→ 0. (22)

Further, we have that

inf
n∈N+

inf
s(n)∈Gn

inf
θ∈Θ

λn

(
Σθ(s(n))

)
> 0, (23)

and there exists N ∈ N+ such that

inf
n≥N

inf
s(n)∈Gn

inf
θ∈Θ

λn

(
Σ̃θ(s(n))

)
> 0. (24)

Corollary B.4. Let {cθ : θ ∈ Θ},
{
(c̃m,θ) : θ ∈ Θ

}
and N be as in Lemma B.3.

Then, we have that

sup
n∈N+

sup
s(n)∈Gn

sup
θ∈Θ

∥∥Σθ(s(n))−1∥∥
2 < ∞, sup

n≥N
sup

s(n)∈Gn

sup
θ∈Θ

∥∥Σ̃θ(s(n))−1∥∥
2 < ∞.

In addition we can conclude that

sup
s(n)∈Gn

sup
θ∈Θ

∥∥Σθ(s(n))+ − Σ̃θ(s(n))+
∥∥

2
n→∞−−−−→ 0.

In particular we have that P a.s.

sup
n∈N+

sup
θ∈Θ

∥∥Σ−1
n,θ

∥∥
2, sup

n≥N
sup
θ∈Θ

∥∥Σ̃−1
n,θ

∥∥
2 < ∞ and sup

θ∈Θ

∥∥Σ+
n,θ − Σ̃+

n,θ

∥∥
2

n→∞−−−−→ 0.
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Lemma B.5. Suppose that {cθ : θ ∈ Θ} satisfies (2) of Assumption 3.1. Con-
sider

{
(c̃m,θ) : θ ∈ Θ

}
that satisfies (1), (4) and (5) of Assumption 3.2. Then,

for any q = 1, 2, 3, i1, . . . , iq ∈ {1, . . . , p}, we have that (21) and (22) of
Lemma B.3 are satisfied with Σθ(s(n)) and Σ̃θ(s(n)) replaced with the respective
partial derivatives ∂qΣθ(s(n))

∂θi1 ···∂θiq
and ∂qΣ̃θ(s(n))

∂θi1 ···∂θiq
. In particular, for any q = 1, 2, 3,

i1, . . . , iq ∈ {1, . . . , p}, we have that P a.s.

sup
n∈N+

sup
θ∈Θ

∥∥∥∥ ∂qΣn,θ

∂θi1 · · · ∂θiq

∥∥∥∥
2
< ∞, sup

n∈N+

sup
θ∈Θ

∥∥∥∥ ∂qΣ̃n,θ

∂θi1 · · · ∂θiq

∥∥∥∥
2
< ∞,

and in addition it is true that for any q = 1, 2, 3, i1, . . . , iq ∈ {1, . . . , p}, P a.s.

sup
θ∈Θ

∥∥∥∥ ∂qΣn,θ

∂θi1 · · · ∂θiq
− ∂qΣ̃n,θ

∂θi1 · · · ∂θiq

∥∥∥∥
2

n→∞−−−−→ 0.

Lemma B.6. Let I ∈ N+ be fixed. On (Ω,F ,P), for k = 1, . . . , I, we con-
sider a sequence of n × n random symmetric matrices

(
Ãk,n,θ

)
n∈N+ , θ ∈ Θ,

such that P a.s., for any k = 1, . . . , I, supn∈N+
supθ∈Θ

∥∥Ãk,n,θ

∥∥ < ∞. Fur-
ther we assume that there exists N ∈ N+ such that P a.s., for k = 1, . . . , I,
infn≥N infθ∈Θ λn

(
Ãk,n,θ

)
> 0. Let

(
Ak,n,θ

)
n∈N+ , θ ∈ Θ, k = 1, . . . , I, be another

sequence of n× n random symmetric matrices, defined on the same probability
space, which is such that P a.s., for k = 1, . . . , I,

sup
n∈N+

sup
θ∈Θ

‖Ak,n,θ‖2 < ∞ and inf
n≥N

inf
θ∈Θ

λn(Ak,n,θ) > 0.

Finally we also assume that P a.s., for any k = 1, . . . , I,

sup
θ∈Θ

∥∥Ãk,n,θ −Ak,n,θ

∥∥
2

n→∞−−−−→ 0.

Then, we have that P a.s.

sup
θ∈Θ

∣∣∣∣∣ 1n log
(

det+
( I∏

k=1

Ak,n,θ

))
− 1

n
log

(
det+

( I∏
k=1

Ãk,n,θ

))∣∣∣∣∣ n→∞−−−−→ 0.

Lemma B.7. On (Ω,F ,P), consider two sequences of n× n random matrices(
An,θ

)
n∈N+ and

(
Ãn,θ

)
n∈N+ , θ ∈ Θ, such that P a.s.

sup
θ∈Θ

∥∥An,θ − Ãn,θ

∥∥
2

n→∞−−−−→ 0.

Then, we have that

sup
θ∈Θ

1
n

∣∣〈Z(n), An,θZ(n)〉 − 〈Z(n), Ãn,θZ(n)〉
∣∣ P−−−−→

n→∞
0. (25)



Asymptotic properties of truncated-ML estimators 3075

Lemma B.8. Suppose that {cθ : θ ∈ Θ} satisfies Assumption 3.1 and 5.2 (regu-
larity conditions for partial derivatives up to order q = 2 are sufficient). Suppose
further that

{
(c̃m,θ) : θ ∈ Θ

}
satisfies Assumption 3.2 (regularity conditions for

partial derivatives up to order q = 2 are sufficient). Let N be as in Proposi-
tion 5.1 and define

{
(Gn,N (θ))n∈N+ : θ ∈ Θ

}
and

{(
G̃n,N (θ)

)
n∈N+ : θ ∈ Θ

}
as

in (10) and (11), respectively. We then have that∥∥JG̃n,N
(θ0) − JGn,N

(θ0)
∥∥

2
P−−−−→

n→∞
0. (26)

Further, we conclude that the random p×p matrix JG̃n,N
(θ0) converges in prob-

ability P to a non-random matrix 2Λ, where Sp×p � Λ � 0.

Appendix C: Proofs

C.1. Proof of results in Appendix B

Proof of Lemma B.1. Let (sj)j∈N+
∈ G. For j ∈ N+ such that |vi − vj |∞ ≥ C+1

we have that |si − sj |∞ ≥ C and thus ‖si − sj‖ ≥ C as well (since |w|∞ ≤ ‖w‖
for any w ∈ R

d). Therefore, (18) follows since we have assumed that g has
compact support S ⊂ B [0;C]. The proof of (17) depends on the fact that there
exists a minimal spacing Δτ > 0 between any two distinct observation points
(see (4)). This allows us to show that for some arbitrary i ∈ N+, if Nsi,C denotes
the cardinality of the set {j ∈ N+ : ‖sj − si‖ ≤ C} ⊂ {j ∈ N+ : |sj − si|∞ ≤
C}, we have that Nsi,C ≤ R (d,C, τ). For a complete argument one could for
example consider the proof of Lemma 4 in [16]. Using this we can estimate,∑

j∈N+

g (si − sj) =
∑
j∈N+

g (si − sj)1[0,C] (‖si − sj‖)

≤ L
∑
j∈N+

1[0,C+1] (‖si − sj‖)

≤ LR (d,C, τ) ,

and thus also (17) is proven.

Proof of Lemma B.2. The proof is similar to the proof of Lemma B.1 and hence
we consider the lemma as proven.

Proof of Lemma B.3. Let C, L and C̃, L̃ be defined as in (1) of Assumption 3.1
and (2) of Assumption 3.2, respectively. We use Lemma B.1 to show that there
exists a real constant M > 0, which does not depend on n ∈ N+, s(n) ∈ Gn and
θ ∈ Θ such that for any n ∈ N+, s(n) ∈ Gn,

max
{∥∥Σθ(s(n))

∥∥
2,
∥∥Σ̃θ(s(n))

∥∥
2

}
≤ M. (27)

To see this, let C∗ := max{C, C̃} and L∗ := max{L, L̃}. Using (1) of Assump-
tion 3.1, we have that for any θ ∈ Θ, cθ ∈ BC(Rd;Sθ), where now Sθ ⊂ B [0;C∗]
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and ‖cθ‖∞ ≤ L∗, with C∗ and L∗ finite constants that are independent of
n ∈ N+ and θ ∈ Θ. Thus we can write, for any n ∈ N+, s(n) ∈ Gn and θ ∈ Θ,
by Gershgorin circle theorem,

∥∥Σθ(s(n))
∥∥

2 ≤ max
i=1,...,n

n∑
j=1

|cθ (si − sj)|

≤ sup
i∈N+

∑
j∈N+

|cθ (si − sj)| ≤ L∗R (d,C∗, τ) =: M,

under application of Lemma B.1, with R (d,C∗, τ) = (22ddCd−1
∗ )/Δd

τ , where
Δτ = 1 − 2τ . Note that M is independent of n ∈ N+, s(n) ∈ Gn and θ ∈ Θ.
Similarly, by (2) of Assumption 3.2 we then use Lemma B.2, together with
Gershgorin circle theorem, to show that for any n ∈ N+, s(n) ∈ Gn and θ ∈ Θ,
‖Σ̃θ(s(n))‖2 ≤ M as well. This shows (27). Thus, we have established that

sup
n∈N+

sup
s(n)∈Gn

sup
θ∈Θ

∥∥∥Σ̃θ(s(n))
∥∥∥

2
≤ M,

and

sup
n∈N+

sup
s(n)∈Gn

sup
θ∈Θ

∥∥Σθ(s(n))
∥∥

2 ≤ M,

and therefore (21) of Lemma B.3 is verified. It is shown in [4] (Proposition D.4)
that because of the increasing-domain setting, where there exists a minimal
distance between any two observation points (see (4)), and since (3) of Assump-
tion 3.1 is satisfied,

inf
n∈N+

inf
x(n)∈Qn

inf
θ∈Θ

λn

(
Σθ(s(n))

)
> 0.

This shows (23) of Lemma B.3. Using this result, we can fix some δ > 0 (small
enough, independent of n ∈ N+, s(n) ∈ Gn and θ ∈ Θ), such that for any
s(n) ∈ Gn,

0 < ε := δ

R (d,C∗, τ) < min
‖a‖=1

〈a,Σθ(s(n))a〉.

For the above δ > 0, we can then find N ∈ N+ such that,

sup
n≥N

sup
s(n)∈Gn

sup
θ∈Θ

∥∥∥Σθ(s(n)) − Σ̃θ(s(n))
∥∥∥

2
≤ δ. (28)

This is valid since for the given ε > 0, by the uniform convergence of (c̃r(n),θ)
to cθ (see (3) of Assumption 3.2), we find N ∈ N+ such that for any n ≥ N , for
any s(n) ∈ Gn and 1 ≤ i, j ≤ n,

sup
θ∈Θ

∣∣∣∣[Σθ(s(n))
]
i,j

−
[
Σ̃θ(s(n))

]
i,j

∣∣∣∣ < ε.
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Then, if we define

R
d � s �→ gr(n)(s) := sup

θ∈Θ

∣∣(cθ − c̃r(n),θ
)
(s)

∣∣ , n ≥ N,

since we have assumed that the families {cθ : θ ∈ Θ} and
{
(c̃m,θ) : θ ∈ Θ

}
have compact supports, which belong to B [0;C∗], we have that gr(n)(s) = 0 for
‖s‖ ≥ C∗. Thus, by Gershgorin circle theorem, under application of Lemma B.2,
for n ≥ N and s(n) ∈ Gn,∥∥∥Σ̃θ(s(n)) − Σθ(s(n))

∥∥∥
2
≤ max

i=1,...,n

n∑
j=1

gr(n) (si − sj)

≤ sup
i∈N+

∑
j∈N+

gr(n) (si − sj) ≤ εR (d,C∗, τ) .

Since εR (d,C∗, τ) is independent of n ∈ N+, s(n) ∈ Gn and θ ∈ Θ, we can
conclude that (28) must be satisfied. Using (28), we have, for n ≥ N , s(n) ∈ Gn

and θ ∈ Θ, and for vectors a such that ‖a‖ = 1, that∣∣∣〈a,Σθ(s(n))a〉 − 〈a, Σ̃θ(s(n))a〉
∣∣∣ =

∣∣∣〈a, (Σθ(s(n)) − Σ̃θ(s(n))
)
a〉
∣∣∣

≤
∥∥∥Σθ(s(n)) − Σ̃θ(s(n))

∥∥∥
2
≤ δ,

under application of the Cauchy–Schwarz inequality. In conclusion we have for
vectors a such that ‖a‖ = 1, for n ≥ N , s(n) ∈ Gn and θ ∈ Θ,

min
‖a‖=1

〈a,Σθ(s(n))a〉 − δ ≤ min
‖a‖=1

〈a, Σ̃θ(s(n))a〉.

But we know that infn≥N infs(n)∈Gn infθ∈Θ min‖a‖=1〈a,Σθ(s(n))a〉 > 0 and δ > 0
was chosen small enough (but otherwise arbitrary). Thus, we have also proven
(24) of Lemma B.3. Notice that (22) is proven with (28), hence the proof of
Lemma B.3 is complete.

Proof of Corollary B.4. This follows from Lemma B.3.

Proof of Lemma B.5. We omit a formal argument and argue that one can proof
Lemma B.5 using the same way of reasoning as in the proof of Lemma B.3.

Proof of Lemma B.6. For n ≥ N (N as in the statement) and θ ∈ Θ, we can
write P a.s.

det+
( I∏

k=1

Ãk,n,θ

)
= det

(
Ã

1/2
I,n,θ · · · Ã

1/2
2,n,θÃ1,n,θÃ

1/2
2,n,θ · · · Ã

1/2
I,n,θ︸ ︷︷ ︸

=:B̃n,θ

)
,

and

det+
( I∏

k=1

Ak,n,θ

)
= det

(
A

1/2
I,n,θ · · ·A

1/2
2,n,θA1,n,θA

1/2
2,n,θ · · ·A

1/2
I,n,θ︸ ︷︷ ︸

=:Bn,θ

)
.
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Note that B̃n,θ and Bn,θ are random symmetric matrices. Further, for each of
the random symmetric matrices

Ã
1/2
I,n,θ, . . . , Ã

1/2
2,n,θ, Ã1,n,θ, A

1/2
I,n,θ, . . . , A

1/2
2,n,θ, A1,n,θ,

the smallest eigenvalue is strictly greater that zero, P a.s., uniformly in n ≥ N
and θ ∈ Θ and hence we have that

inf
n≥N

inf
θ∈Θ

λn (Bn,θ) > 0 and inf
n≥N

inf
θ∈Θ

λn

(
B̃n,θ

)
> 0, P a.s. (29)

In addition, since P a.s. for k = 1, . . . , I, by assumption

sup
n≥N

sup
θ∈Θ

∥∥∥Ãk,n,θ

∥∥∥
2
, sup

n≥N
sup
θ∈Θ

∥∥∥Ãk,n,θ

∥∥∥
2
< ∞,

and

sup
θ∈Θ

∥∥∥Ãk,n,θ −Ak,n,θ

∥∥∥
2

n→∞−−−−→ 0,

we also have that

sup
n≥N

sup
θ∈Θ

∥∥∥B̃n,θ

∥∥∥
2
, sup

n≥N
sup
θ∈Θ

‖Bn,θ‖2 < ∞, (30)

and
sup
θ∈Θ

∥∥∥Bn,θ − B̃n,θ

∥∥∥
2

n→∞−−−−→ 0. (31)

Using (29), (30) and (31), we pick δ > 0 arbitrary and define

0 < ε := δ

supn≥N supθ∈Θ ‖Bn,θ‖2

such that for some given integer N∗ ≥ N , P a.s.,

sup
n≥N∗

sup
θ∈Θ

∥∥∥B̃−1
n,θ −B−1

n,θ

∥∥∥
2
< ε.

Now write

1
n

log
(

det(
∏I

k=1 Ak,n,θ)
det(

∏I
k=1 Ãk,n,θ)

)
= 1

n
log

(
det

(
Bn,θB̃

−1
n,θ

))
= 1

n
tr

(
log

(
Bn,θB̃

−1
n,θ

))
= 1

n

n∑
i=1

log
(
λi

(
Bn,θB̃

−1
n,θ

))
. (32)

We can then estimate (32) from above and below as

log
(
λn

(
Bn,θB̃

−1
n,θ

))
≤ 1

n

n∑
i=1

log
(
λi

(
Bn,θB̃

−1
n,θ

))
≤ log

(
λ1

(
Bn,θB̃

−1
n,θ

))
.
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But for the given ε > 0, for n ≥ N∗, we have that P a.s.

λ1

(
Bn,θB̃

−1
n,θ

)
≤ λ1 (Bn,θ)λ1

(
B̃−1

n,θ

)
=

∥∥Bn,θ

∥∥
2

∥∥B̃−1
n,θ

∥∥
2

≤
∥∥Bn,θ

∥∥
2

∥∥B̃−1
n,θ −B−1

n,θ

∥∥
2 +

∥∥Bn,θ

∥∥
2

∥∥B−1
n,θ

∥∥
2

≤ 1 + δ.

On the other hand, by (31), we also have that for n ≥ N∗, P a.s.

λn

(
Bn,θB̃

−1
n,θ

)
≥ λn (Bn,θ)λn

(
B̃−1

n,θ

)
=

(
min

{a : ‖a‖=1}
〈a,Bn,θa〉

)(
min

{a : ‖a‖=1}

〈
a, B̃−1

n,θa
〉)

≥
(

min
{a : ‖a‖=1}

〈a,Bn,θa〉
)(

min
{a : ‖a‖=1}

〈
a,B−1

n,θa
〉
− ε

)
≥ 1 − δ.

Since δ > 0 was arbitrary and independent of θ ∈ Θ, the lemma is proven.

Proof of Lemma B.7. First, using the Cauchy–Schwarz inequality and the com-
patibility of the spectral norm with the Euclidean norm, we can estimate P a.s.

1
n

∣∣∣〈Z(n), An,θZ(n)〉 − 〈Z(n), Ãn,θZ(n)〉
∣∣∣ ≤ sup

θ∈Θ

∥∥∥An,θ − Ãn,θ

∥∥∥
2

∥∥Z(n)
∥∥2

n

Let us fix some arbitrary ε > 0 such that for n large enough we have that P a.s.,

sup
θ∈Θ

∥∥∥An,θ − Ãn,θ

∥∥∥
2
< ε.

Then, let δ > 0 be arbitrary and notice that

P

(
εn−1 ∥∥Z(n)

∥∥2
> δ

∣∣∣ S(n) = s(n)

)
= P

(
εn−1

∥∥∥Σθ0(s(n))1/2Vn

∥∥∥2
> δ

)
,

where Vn is a Gauss vector, defined on (Ω,F ,P), with zero-mean vector and
identity covariance matrix. Then, we use Markov’s inequality to estimate

P

(
εn−1

∥∥∥Σθ0(s(n))1/2Vn

∥∥∥2
> δ

)
≤ εn−1δ−1

E

[∥∥∥Σθ0(s(n))1/2Vn

∥∥∥2
]

≤ εδ−1
∥∥∥Σθ0(s(n))1/2

∥∥∥2

2
,

where the latter term is bounded uniformly in s(n) ∈ Gn and n ∈ N+ (see
Lemma B.3). Thus we conclude that

sup
s(n)∈Gn

P

(
sup
θ∈θ

∥∥∥An,θ − Ãn,θ

∥∥∥
2

∥∥Z(n)
∥∥2

n
> δ

∣∣∣∣∣ S(n) = s(n)

)
n→∞−−−−→ 0,
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which shows that

sup
θ∈θ

∥∥∥An,θ − Ãn,θ

∥∥∥
2

∥∥Z(n)
∥∥2

n

P−−−−→
n→∞

0,

and thus the proof is complete.

Proof of Lemma B.8. For n ∈ N+, let h(n) = n+N − 1. Then, for k = 1, . . . , p,
we have that P a.s.

∂l̃n,N
∂θk

(θ0) = 1
h(n)

(
tr

(
Σ̃−1

h(n),θ0
∂Σ̃h(n),θ0

∂θk

)
− 〈Z(h(n)), Σ̃−1

h(n),θ0
∂Σ̃h(n),θ0

∂θk
Σ̃−1

h(n),θ0Z(h(n))〉
)
,

and

E

[
∂l̃n,N
∂θk

(θ0)
∣∣∣∣ S(h(n))

]
= 1

h(n)

(
tr

(
Σ̃−1

h(n),θ0
∂Σ̃h(n),θ0

∂θk

)
− tr

(
Σ̃−1

h(n),θ0
∂Σ̃h(n),θ0

∂θk
Σ̃−1

h(n),θ0Σh(n),θ0

))
.

Similar expressions can then be calculated for ln,N based on Σh(n),θ0 . We can
further calculate, for n ∈ N+, for 1 ≤ k, l ≤ p, P a.s.,

∂2 l̃n,N
∂θk∂θl

(θ0) = 1
h(n) tr

(
Ãkl

1,h(n),θ0

)
+ 1

h(n) 〈Z(h(n)), Ã
kl
2,h(n),θ0Z(h(n))〉,

where

Ãkl
1,h(n),θ0 := −Σ̃−1

h(n),θ0
∂Σ̃h(n),θ0

∂θk
Σ̃−1

h(n),θ0
∂Σ̃h(n),θ0

∂θl
+ Σ̃−1

h(n),θ0
∂2Σ̃h(n),θ0
∂θk∂θl

, (33)

and

Ãkl
2,h(n),θ0 := 2Σ̃−1

h(n),θ0
∂Σ̃h(n),θ0

∂θk
Σ̃−1

h(n),θ0
∂Σ̃h(n),θ0

∂θl
Σ̃−1

h(n),θ0

− Σ̃−1
h(n),θ0

∂2Σ̃h(n),θ0
∂θk∂θl

Σ̃−1
h(n),θ0 .

(34)

In addition, for n ∈ N+, we also have that P a.s.,

∂
(
E

[
∂l̃n,N

∂θl
(θ0)

∣∣∣ S(h(n))

])
∂θk

= 1
h(n)

(
tr

(
Ãkl

1,h(n),θ0

)
+ tr

(
Ãkl

2,h(n),θ0Σh(n),θ0

))
.

Again, similar expressions can be obtained for ln,N based on Σh(n),θ0 , where for
n ∈ N+, 1 ≤ k, l ≤ p, the respective terms Akl

1,h(n),θ0 and Akl
2,h(n),θ0 are defined
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as in (33) and (34), respectively, but Σ̃h(n),θ0 is replaced with Σh(n),θ0 . Then,
we have for n ∈ N+, for k, l = 1, . . . , p, P a.s.,∣∣∣∣ ∂2 l̃n,N

∂θk∂θl
(θ0) −

∂2ln,N
∂θk∂θl

(θ0)
∣∣∣∣ ≤ 1

h(n)

∣∣∣tr(Ãkl
1,h(n),θ0 −Akl

1,h(n),θ0

)∣∣∣
+ 1

h(n)

∣∣∣〈Z(h(n)), Ã
kl
2,h(n),θ0 −Akl

2,h(n),θ0Z(h(n))〉
∣∣∣

≤ 1
h(n)

∣∣∣tr(Ãkl
1,h(n),θ0 −Akl

1,h(n),θ0

)∣∣∣
+

∥∥∥Ãkl
2,h(n),θ0 −Akl

2,h(n),θ0

∥∥∥
2

∥∥Z(h(n))
∥∥2

h(n) .

We can apply Lemma B.7 to the sequence of random matrices
(
Ãkl

2,h(n),θ0

)
n∈N+

and
(
Akl

2,h(n),θ0

)
n∈N+ to conclude under application of Lemma 4.1 (see also

Corollary B.4 and Lemma B.5) that

∥∥∥Ãkl
2,h(n),θ0 −Akl

2,h(n),θ0

∥∥∥
2

∥∥Z(h(n))
∥∥2

h(n)
P−−−−→

n→∞
0.

We also have P a.s.
1
n

∣∣∣tr(Ãkl
1,h(n),θ0 −Akl

1,h(n),θ0

)∣∣∣ n→∞−−−−→ 0,

using the triangular inequality, von Neumann’s trace inequality and Lemma 4.1
(see also Corollary B.4 and Lemma B.5). Hence, we have shown that for any
k, l = 1, . . . , p ∣∣∣∣ ∂2 l̃n,N

∂θk∂θl
(θ0) −

∂2ln,N
∂θk∂θl

(θ0)
∣∣∣∣ P−−−−→

n→∞
0.

In addition, we have that for any k, l = 1, . . . , p, P a.s., the expression∣∣∣∣∣∣∂
(
E
[∂l̃n,N

∂θl
(θ0)

∣∣ S(h(n))
])

∂θk
−

∂
(
E
[∂ln,N

∂θl
(θ0)

∣∣ S(h(n))
])

∂θk

∣∣∣∣∣∣
is bounded from above by∣∣ tr (Ãkl

1,h(n),θ0 −Akl
1,h(n),θ0

)∣∣ +
∣∣ tr ((Ãkl

2,h(n),θ0 −Akl
2,h(n),θ0

)
Σh(n),θ0

)∣∣
h(n) ,

which again, under application of the triangular inequality, von Neumann’s trace
inequality and Lemma 4.1 (see also Corollary B.4 and Lemma B.5), converges
to zero P a.s. Hence, we have shown that for any k, l = 1, . . . , p,∣∣∣(JG̃n,N

(θ0)
)
kl
−

(
JGn,N

(θ0)
)
kl

∣∣∣ P−−−−→
n→∞

0,
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which concludes the proof of (26). Now it is shown in [4] (see Propositions
D.7 and D.8 and also consider the proofs of Propositions 3.2 and 3.3), under
application of Lemmas B.1, B.2, 4.1, B.5 and Corollary B.4, that

JGn,N
(θ0)

P−−−−→
n→∞

2Λ,

where Λ is the P a.s. limit of a sequence of p × p matrices
(
Hh(n)(θ0)

)
n∈N+

defined as{[
1

2h(n) tr
(

Σ−1
h(n),θ0

∂Σh(n),θ0
∂θk

Σ−1
h(n),θ0

∂Σh(n),θ0
∂θl

)]
1≤k,l≤p

: n ∈ N+

}
.

Further, by Assumption 5.2, it is concluded that the limit Λ is such that Λ � 0.
But then, we use (26) to show that

JG̃n,N
(θ0)

P−−−−→
n→∞

2Λ,

as well, which concludes the proof of Lemma B.8.

C.2. Proof of results in Section 4

Proof of Lemma 4.1. We rely on Lemma B.3 and a proof is evident.

C.3. Proof of results in Section 5

To simplify the notation, we write
(
θ̃n

)
n∈N+ :=

(
θ̂n(c̃)

)
n∈N+ .

Proof of Proposition 5.1. The statement is verified as a consequence of Lem-
mas 4.1, B.6 and B.7.

Proof of Theorem 5.2. Let N ∈ N+ be as in Lemma 4.1 (or Proposition 5.1) and
define, for any ω ∈ Ω, the sequence

(
l̃n,N (θ) (ω)

)
n∈N+ as in (9) of Section 5.1.

We note that, under the given assumptions of Theorem 5.2, the first order partial
derivatives with respect to θ exist for the sequence

(
l̃n,N (θ) (ω)

)
n∈N+ . Then, we

define the sequence of estimators
(
θ̃n,N

)
n∈N+ :=

(
θ̃n+N−1

)
n∈N+ . Therefore θ̃n,N

minimizes l̃n,N (θ) P a.s. for any n ∈ N+. To prove that

θ̃n
P−−−−→

n→∞
θ0,

it is sufficient to show that
θ̃n,N

P−−−−→
n→∞

θ0. (35)

We consider a similar approach as given in [4]. As N is fixed, we write for
n ∈ N+, h(n) = n+N − 1. Under the assumptions of the theorem we have that
P a.s.

Var
(
l̃n,N (θ) | S(h(n))

) n→∞−−−−→ 0, (36)
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and
max

k=1,...,p
sup
θ∈Θ

∣∣∣∣ ∂

∂θk
l̃n,N (θ)

∣∣∣∣ = OP(1) as n → ∞. (37)

To see it, we remark that P a.s. (using Proposition 5.1),

Var
(
l̃n,N (θ) | S(h(n))

)
= 2

h(n)2 tr
(

Σ̃−1
h(n),θΣh(n),θ0Σ̃

−1
h(n),θΣh(n),θ0︸ ︷︷ ︸

=:Ãh(n),θ

)
.

From here, we can use von Neumann’s trace inequality to show that P a.s.∣∣∣tr(Ãh(n),θ

)∣∣∣ ≤ h(n)
∥∥∥∥Σ̃−1

h(n),θ

∥∥∥∥2

2

∥∥∥∥Σh(n),θ0

∥∥∥∥2

2
.

Now, by Lemma 4.1 (and Corollary B.4) we can conclude that there exists a
real constant M0 > 0, such that for any n ∈ N+, P a.s., Var

(
l̃n,N (θ) | S(h(n))

)
≤

M0/h(n), which proofs (36). For (37), we first notice that by Lemma B.5, there
exist constants M1, M2 > 0 (which are independent of n ∈ N+, s(n) ∈ Gn and
θ ∈ Θ) such that P a.s.

sup
θ∈Θ

∥∥∥Σ̃−1
n,θ

∥∥∥
2
< M1 and max

k=1,...,p
sup
θ∈Θ

∥∥∥∥ ∂

∂θk
Σ̃n,θ

∥∥∥∥
2
≤ M2.

Using this result have that P a.s.

max
k=1,...,p

sup
θ∈Θ

∣∣∣∣ ∂

∂θk
l̃n,N (θ)

∣∣∣∣ = max
k=1,...,p

sup
θ∈Θ

∣∣∣∣ 1
h(n) tr

(
Σ̃−1

h(n),θ
∂

∂θk
Σ̃h(n),θ

)
− 1

h(n) 〈Z(h(n)), Σ̃−1
h(n),θ

∂

∂θk
Σ̃h(n),θΣ̃−1

h(n),θZ(h(n))〉
∣∣∣∣

≤ M1M2 + M2
1M2

∥∥Z(h(n))
∥∥2

h(n) .

(38)

Let Vh(n) be a Gauss vector on (Ω,F ,P), with zero-mean vector and h(n)×h(n)
identity covariance matrix. Then (see also Remark 2.1), for any finite M > 0,
we have that the probability

P
(
M1M2 + M2

1M2h(n)−1 ∥∥Z(h(n))
∥∥2

> M | S(h(n)) = s(h(n))
)

is bounded from above by

P
(
M1M2

(
1 + h(n)−1‖Vh(n)‖2) > M

)
.

Therefore, P a.s.,

P
(
M1M2 + M2

1M2h(n)−1 ∥∥Z(h(n))
∥∥2

> M | S(h(n))
)
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is bounded from above by P
(
M1M2

(
1 + h(n)−1‖Vh(n)‖2) > M

)
as well. Since

M1M2
(
1 + h(n)−1‖Vh(n)‖2) = OP(1) as n → ∞, (37) is shown.

Notice further that Θ is convex, θ �→ l̃n,N (θ) is continuously differentiable
and by (38)

sup
n∈N+

E

[
max

k=1,...,p
sup
θ∈Θ

∣∣∣∣ ∂

∂θk
l̃n,N (θ)

∣∣∣∣ ] < ∞.

Thus, under application of Corollary 2.2 of [27], with (36) and (37), we can
conclude that

sup
θ∈Θ

∣∣l̃n,N (θ) − E
[
l̃n,N (θ) | S(h(n))

]∣∣ P−−−−→
n→∞

0. (39)

To continue, we define the sequences of random variables(
Dh(n),θ,θ0

)
n∈N+

:=
(
E
[
ln,N (θ) | S(h(n))

]
− E

[
ln,N (θ0) | S(h(n))

])
n∈N+

,(
D̃h(n),θ,θ0

)
n∈N+

:=
(
E
[
l̃n,N (θ) | S(h(n))

]
− E

[
l̃n,N (θ0) | S(h(n))

])
n∈N+

.

For any n ∈ N+, we have that P a.s.,

Dh(n),θ,θ0 = 1
h(n) log

(
det

(
Σh(n),θ

))
+ 1

h(n) tr
(
Σ−1

h(n),θΣh(n),θ0

)
− 1

h(n) log
(
det

(
Σh(n),θ0

))
− 1

h(n) tr
(
Σ−1

h(n),θ0Σh(n),θ0

)
.

Similarly, For any n ∈ N+, we have that P a.s.

D̃h(n),θ,θ0 = 1
h(n) log

(
det

(
Σ̃h(n),θ

))
+ 1

h(n) tr
(
Σ̃−1

h(n),θΣh(n),θ0

)
− 1

h(n) log
(
det

(
Σ̃h(n),θ0

))
− 1

h(n) tr
(
Σ̃−1

h(n),θ0Σh(n),θ0

)
.

Notice that because of (39) we have that

sup
θ∈Θ

∣∣∣(l̃n,N (θ) − l̃n,N (θ0)
)
− D̃h(n),θ,θ0

∣∣∣ P−−−−→
n→∞

0.

Further, it is shown in [4] (see the proof of Proposition 3.1) that under applica-
tion of Lemma B.3 there exists some constant B > 0 (which does not depend
on n ∈ N+) such that P a.s.

Dh(n),θ,θ0 ≥ B
1

h(n)

h(n)∑
i,j=1

(
cθ(Si − Sj) − cθ0(Si − Sj)

)2

︸ ︷︷ ︸
=:D2,h(n),θ,θ0

.
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Under application of Lemmas B.1, B.2, B.3 and Corollary B.4, it is then shown
in the proof of Proposition 3.1 of [4] that either, if τ = 0, D2,h(n),θ,θ0 is deter-
ministic and we have that

sup
θ∈Θ

∣∣D2,h(n),θ,θ0 −D∞,θ,θ0

∣∣ n→∞−−−−→ 0,

where the limit is given by D∞,θ,θ0 =
∑

z∈Zd

(
cθ(z) − cθ0(z)

)2. Or τ > 0 and it
is concluded that

sup
θ∈Θ

∣∣D2,h(n),θ,θ0 −D∞,θ,θ0

∣∣ P−−−−→
n→∞

0,

where in this case

D∞,θ,θ0 =
∫
Dτ

(
cθ(s) − cθ0(s)

)2
f(s)ds +

(
cθ(0) − cθ0(0)

)2
.

Notice that because of the assumption that (Xi)i∈N+ is independent with com-
mon law that has a strictly positive probability density function, the function
f is strictly positive almost everywhere with respect to the Lebesgue measure
on Dτ (see the end of the proof of Proposition 3.1 in [4]). In either case, we can
thus conclude that

sup
θ∈Θ

∣∣D2,h(n),θ,θ0 −D∞,θ,θ0

∣∣ P−−−−→
n→∞

0,

where for any α > 0, because of Assumption 5.1, infθ : |θ−θ0|≥α D∞,θ,θ0 > 0, and
the limit D∞,θ,θ0 is deterministic. We now want to show that there exists some
N2 ≥ N such that for any n ≥ N2, for any θ ∈ Θ, P a.s.,

D̃h(n),θ,θ0 ≥ BD2,h(n),θ,θ0 , (40)

as well. In this case, with D2,h(n),θ,θ0 a random function on Ω and D∞,θ,θ0 a
deterministic function of θ ∈ Θ, we would have for any fixed τ ≥ 0, and for any
given α > 0,

sup
θ∈Θ

∣∣D2,h(n),θ,θ0 −D∞,θ,θ0

∣∣ P−−−−→
n→∞

0,

inf
θ : |θ−θ0|≥α

D∞,θ,θ0 > D∞,θ0,θ0 = 0,

where the sequence of estimators
(
θ̃n,N

)
n∈N+ , is such that for n ≥ N2, P a.s.,

D2,h(n),θ̃n,N ,θ0

= D2,h(n),θ̃n,N ,θ0
− 1

B

(
l̃n,N

(
θ̃n,N

)
− l̃n,N

(
θ0
))

+ 1
B

(
l̃n,N

(
θ̃n,N

)
− l̃n,N

(
θ0
))

≤
D̃h(n),θ̃n,N ,θ0

B
− 1

B

(
l̃n,N

(
θ̃n,N

)
− l̃n,N

(
θ0
))

+ 1
B

(
l̃n,N

(
θ̃n,N

)
− l̃n,N

(
θ0
))
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≤ D2,h(n),θ0,θ0 + 1
B

sup
θ∈Θ

∣∣∣(l̃n,N (θ) − l̃n,N (θ0)
)
− D̃h(n),θ,θ0

∣∣∣︸ ︷︷ ︸
P−−−−→

n→∞
0

,

and we can conclude the proof of Theorem 5.2, using Theorem 5.7 of [31]. Hence,
it remains to show (40). We write P a.s.,∣∣∣D̃h(n),θ,θ0 −Dh(n),θ,θ0

∣∣∣ ≤ ∣∣∣Ã1,h(n),θ,θ0 −A1,h(n),θ,θ0

∣∣∣
+

∣∣∣Ã2,h(n),θ,θ0 −A2,h(n),θ,θ0

∣∣∣
+

∣∣∣Ã3,h(n),θ,θ0 −A3,h(n),θ,θ0

∣∣∣ ,
where

Ã1,h(n),θ,θ0 −A1,h(n),θ,θ0 = 1
h(n) log

(
det

(
Σh(n),θ0Σ

−1
h(n),θ

))
− 1

h(n) log
(
det

(
Σ̃h(n),θ0Σ̃

−1
h(n),θ

))
,

Ã2,h(n),θ,θ0 −A2,h(n),θ,θ0 = 1
h(n) tr

([
Σ̃−1

h(n),θ − Σ−1
h(n),θ

]
Σh(n),θ0

)
,

and

Ã3,h(n),θ,θ0 −A3,h(n),θ,θ0 = 1
h(n) tr

([
Σ̃−1

h(n),θ0 − Σ−1
h(n),θ0

]
Σh(n),θ0

)
.

By Lemma 4.1, Corollary B.4 and Lemma B.6, we already conclude that P a.s.∣∣∣Ã1,h(n),θ,θ0 −A1,h(n),θ,θ0

∣∣∣
converges to zero uniformly in θ ∈ Θ as n −→ ∞. Further, we can conclude that
P a.s. ∣∣Ã2,h(n),θ,θ0 −A2,h(n),θ,θ0

∣∣ ≤ ∥∥Σ̃−1
h(n),θ − Σ−1

h(n),θ
∥∥

2

∥∥Σh(n),θ0
∥∥

2,

and thus, since by Lemma 4.1 P a.s. ‖Σh(n),θ0‖2, ‖Σ̃h(n),θ‖2 and ‖Σh(n),θ‖2 are
finite, uniformly in n ∈ N+ and θ ∈ Θ, and P a.s.∥∥∥Σ̃−1

h(n),θ − Σ−1
h(n),θ

∥∥∥
2

n→∞−−−−→ 0,

uniformly in θ ∈ Θ, by application of Corollary B.4, we can also see that P a.s.∣∣∣Ã2,h(n),θ,θ0 −A2,h(n),θ,θ0

∣∣∣
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converges to zero as n −→ ∞, uniformly in θ ∈ Θ. Using a similar argument we
can also show that P a.s. the term

∣∣∣Ã3,h(n),θ,θ0 −A3,h(n),θ,θ0

∣∣∣ converges to zero
as n → ∞, uniformly in θ ∈ Θ. Hence, we have shown that P a.s.∣∣∣D̃h(n),θ,θ0 −Dh(n),θ,θ0

∣∣∣ n→∞−−−−→ 0,

uniformly in θ ∈ Θ and we can argue that P a.s. there exists some N2 ≥ N
such that for all n ≥ N2, D̃h(n),θ,θ0 ≥ BD2,h(n),θ,θ0 on Ω, which shows (40).
Therefore, we have that

θ̃n,N
P−−−−→

n→∞
θ0,

which concludes the proof.

Proof of Corollary 5.3. This follows from Theorem 5.2 when we define, for any
θ ∈ Θ and m ∈ N+, c̃m,θ(s) := cθ(s), for all s ∈ R

d.

Proof of Theorem 5.4. Let N ∈ N+ be as in Proposition 5.1 and define, for any
ω ∈ Ω, the sequences of functions

(
ln,N (θ) (ω)

)
n∈N+ and

(
l̃n,N (θ) (ω)

)
n∈N+ as

in (8) and (9) of Section 5.1, respectively. From the proof of Theorem 5.2 we
know that sequence of estimators

(
θ̃n,N

)
n∈N+ :=

(
θ̃n+N−1

)
n∈N+ , is such that

θ̃n,N
P−−−−→

n→∞
θ0.

Define
{
(Gn,N (θ))n∈N+ : θ ∈ Θ

}
and

{
(G̃n,N (θ))n∈N+ : θ ∈ Θ

}
as in (10) and

(11) respectively. For n ∈ N+ we set h(n) = n+N−1. We have for k = 1, . . . , p,
P a.s., for n ∈ N+,

c̃k,n,N (θ0) = ∂l̃n,N
∂θk

(θ) − E

[
∂l̃n,N
∂θk

(θ)
∣∣∣∣ S(h(n))

]
= 1

h(n) tr
(
Σ̃−1

h(n),θ0
∂Σ̃h(n),θ0

∂θk
Σ̃−1

h(n),θ0Σh(n),θ0︸ ︷︷ ︸
=:M̃k,h(n)

)

+ 1
h(n) 〈Z(h(n)),−Σ̃−1

h(n),θ0
∂Σ̃h(n),θ0

∂θk
Σ̃−1

h(n),θ0︸ ︷︷ ︸
=:Ñk,h(n)

Z(h(n))〉,

where, by Lemma 4.1 (see also Corollary B.4 and Lemma B.5) P a.s., for n ∈ N+,
‖M̃k,h(n)‖2 and ‖Ñk,h(n)‖2 are finite, uniformly in θ ∈ Θ. Further, notice that
P a.s.

tr
(
M̃k,h(n) + Ñk,h(n)Σh(n),θ0

)
= 0 ∀ k ∈ {1, . . . , p}.
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From the proof of Lemma B.8, we already know that P a.s., Hh(n)(θ0)
n→∞−−−−→ Λ,

where for any k, l = 1, . . . , p, for any n ∈ N+,

[
Hh(n)(θ0)

]
kl

= 1
2h(n) tr

(
Σ−1

h(n),θ0
∂Σh(n),θ0

∂θk
Σ−1

h(n),θ0
∂Σh(n),θ0

∂θl

)
.

Now, if we define, on (Ω,F ,P), the sequence of random p× p matrices{
1

2h(n)

[
tr

(
Ñk,h(n)Σh(n),θ0Ñ{l,h(n)}Σh(n),θ0

)]
{1≤k,l≤p}︸ ︷︷ ︸

=:H̃h(n)(θ0)

: n ∈ N+

}

we also have that, for any k, l = 1, . . . p, P a.s.,
∣∣[H̃h(n)(θ0)

]
kl
− Σkl

∣∣ n→∞−−−−→ 0.
This follows from the fact that for any k, l = 1, . . . p, we have that P a.s.∣∣∣[H̃h(n)(θ0)

]
kl
−

[
Hh(n)(θ0)

]
kl

∣∣∣ ≤ 1
2h(n)

∣∣∣tr(B̃kl
h(n) −Bkl

h(n)

)∣∣∣ ,
where

B̃kl
h(n) = Σ̃−1

h(n),θ0
∂Σ̃h(n),θ0

∂θk
Σ̃−1

h(n),θ0Σh(n),θ0Σ̃
−1
h(n),θ0

∂Σ̃h(n),θ0
∂θl

Σ̃−1
h(n),θ0Σh(n),θ0 ,

and

Bkl
h(n) = Σ−1

h(n),θ0
∂Σh(n),θ0

∂θk
Σ−1

h(n),θ0Σh(n),θ0Σ
−1
h(n),θ0

∂Σh(n),θ0
∂θl

Σ−1
h(n),θ0Σh(n),θ0 ,

and again, under application of the triangular inequality, von Neumann’s trace
inequality and Lemma 4.1 (see also Corollary B.4 and Lemma B.5) we thus
have that P a.s. ‖H̃h(n)(θ0) −Hh(n)(θ0)‖2

n→∞−−−−→ 0. But Λ is the P a.s. limit of{
Hh(n)(θ0) : n ∈ N+

}
and hence we conclude that Λ is also the P a.s. limit of{

H̃h(n)(θ0) : n ∈ N+
}
. Then, we can apply Proposition D.9 of [4] to conclude

that

h(n)1/2G̃n,N (θ0)
d−−−−→

n→∞
N (0, 4Λ) .

Notice that because the family
{
(c̃m,θ) : θ ∈ Θ

}
satisfies Assumption 3.2, we

have that for fixed ω ∈ Ω, θ �→ G̃n,N (ω, θ) is twice differentiable in θ and we
can argue exactly as in the proof of Theorem 5.2 to conclude that the sequence⎛⎝sup

θ∈Θ
max

{1≤k,l,m≤p}

∣∣∣∣∣∣
∂
(

∂G̃m,n,N

∂θl

)
∂θk

(θ)

∣∣∣∣∣∣
⎞⎠

n∈N+

,

is bounded in probability P. In addition, by Lemma B.8, we also have that∥∥∥JG̃n,N
(θ0) − JGn,N

(θ0)
∥∥∥

2

P−−−−→
n→∞

0.
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Finally, the sequence of estimators
(
θ̃n,N

)
n∈N+ is consistent and such that

P

(
G̃n,N

(
θ̃n,N

)
= 0

)
n→∞−−−−→ 1.

Thus we conclude, using for example Proposition D.10 in [4] that

h(n)1/2
(
θ̃n,N − θ0

) d−−−−→
n→∞

N (0,Λ−1).

Since N was fixed, we can conclude that

n1/2 (θ̃n − θ0
) d−−−−→

n→∞
N (0,Λ−1),

as well.

Proof of Corollary 5.5. The result follows from Theorem 5.4, a proof is evident
when we define the family

{(
c̃m,θ

)
: θ ∈ Θ

}
as in the proof of Corollary 5.3.

C.4. Proof of results in Appendix A

Proof of Theorem A.1. The proof is similar to the proof of Theorem 5.2.

Proof of Theorem A.2. The proof is similar to the proof of Theorem 5.4.

C.5. Proof of results in Section 6

Since ν and κ are assumed to be known, we put cν,κ := B(2κ, ν + 1). We define
the function fν,κ(r, u) := u(u2 − r2)κ−1(1− u)ν , (r, u) ∈ [0, 1]× [0, 1]. We recall
that for r = 0,

cν,κ =
∫ 1

0
fν,κ(0, u)du.

Proof of Proposition 6.1. We have already seen that for any θ ∈ Θ, given known
κ > 0 and ν ≥ (d+1)/2+κ, φθ is continuous on R+. Further, for any θ ∈ Θ, φθ

has compact support Sθ = [0, β] ⊂ [0, βmax] and since κ > 4, we can also see that
for any δ > 0, for any t ∈ R+, φθ(t + δ) ≤ φθ(t) and thus φθ(t) ≤ φθ(0) = σ2,
which implies that ‖φθ‖∞ ≤ σ2

max. Hence, with C := βmax and L := σ2
max,

C and L are independent of θ ∈ Θ and hence we can conclude that (1) of
Assumption A.1 is satisfied with BC(R+;Sθ) replaced with CC(R+;Sθ). It is now
sufficient to show that for any θ ∈ Θ, for any q = 1, 2, 3, i1, . . . , iq ∈ {1, . . . , p},
there exist constants Cθ(i1, . . . , iq), Lθ(i1, . . . , iq) < ∞, such that

∂qφθ

∂θi1 · · · ∂θiq
∈ CC(R+;Sθ(i1, . . . , iq)), (41)
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where

Sθ(i1, . . . , iq) ⊂ [0, Cθ(i1, . . . , iq)] ⊂ [0, C(i1, . . . , iq)] ,∥∥∥∥ ∂qφθ

∂θi1 · · · ∂θiq

∥∥∥∥
∞

≤ Lθ(i1, . . . , iq) ≤ L(i1, . . . , iq),
(42)

with C(i1, . . . , iq), L(i1, . . . , iq) < ∞, independent of θ ∈ Θ. This means that
in general we need to check the above condition for 2 + 22 + 23 = 14 partial
derivatives. Let us first focus on the partial derivatives with respect to the range
parameter β ∈ [βmin, βmax]. For r ∈ [0, 1] we write

φν,κ(r) = c−1
ν,κ

∫ b(r)

a(r)
fν,κ(r, u)du,

where [0, 1] � r �→ a(r) = r and [0, 1] � r �→ b(r) ≡ 1 are continuously differ-
entiable on [0, 1]. To simplify the notation we will put fν,κ := f . Then, since
f : [0, 1] × [0, 1] → R is continuous and for any u ∈ [0, 1], since κ > 2,

∂f

∂r
(r, u) = −2r(κ− 1)u

(
u2 − r2)κ−2 (1 − u)ν ,

exists and is continuous on the rectangle [0, 1] × [0, 1], we can conclude, using
the general Leibniz integral rule, that [0, 1] � r �→ dφν,κ

dr (r) is continuous and
given by

dφν,κ

dr
(r) = f(r, b(r))db

dr
(r)︸ ︷︷ ︸

=0

− f(r, a(r))da
dr

(r)︸ ︷︷ ︸
=0

− 2r(κ− 1)c−1
ν,κ

∫ b(r)

a(r)
u
(
u2 − r2)κ−2 (1 − u)νdu︸ ︷︷ ︸
=cν,κ−1φν,κ−1(r)

.

Hence, for t ∈ [0, β]

∂φθ

∂β
(t) = −σ2 t

β2
dφν,κ

dr

(
t

β

)
= 2t2(κ− 1)

β3
cν,κ−1

cν,κ
σ2φν,κ−1

(
t

β

)
, (43)

exists and is continuous as a function of t. But clearly, as for r ∈ [1,∞) φν,κ

is zero, we have that for t ∈ [β,∞), ∂φθ

∂β (t) exists as well and is continuous as
a function of t. Hence, for any t ∈ R+, ∂φθ

∂β (t) exists, is given by (43) and is
continuous as a function of t. Thus, by monotonicity of φν,κ−1 we define

Lθ(2) := 2β2(κ− 1)
β3

cν,κ−1

cν,κ
σ2 = 2(κ− 1)

β

cν,κ−1

cν,κ
σ2 and Cθ(2) := β,

and have that
∂φθ

∂β
∈ CC(R+; [0, Cθ(2)]),

∥∥∥∥∂φθ

∂β

∥∥∥∥
∞

≤ Lθ(2).



Asymptotic properties of truncated-ML estimators 3091

Further, we find

sup
θ∈Θ

Lθ(2) ≤ 2(κ− 1)
βmin

cν,κ−1

cν,κ
σ2

sup︸ ︷︷ ︸
=:L(2)

and sup
θ∈Θ

Cθ(2) ≤ βmax︸ ︷︷ ︸
=:C(2)

,

where L(2) and C(2) do not depend on θ ∈ Θ. Since we have assumed that
κ > 4, we can now repeat the arguments, which led to (43), for another two
times, and conclude that for any t ∈ R+, ∂2φθ

∂β2 (t), and ∂3φθ

∂β3 (t) exits as well, are
given by

∂2φθ

∂β2 (t) = q1(t), (44)

with

q1(t) = 4t4(κ− 1)(κ− 2)
β6

cν,κ−2

cν,κ
σ2φν,κ−2

(
t

β

)
− 6t2(κ− 1)

β4
cν,κ−1

cν,κ
σ2φν,κ−1

(
t

β

)
and ∂3φθ

∂β3 (t) = q2(t), with

q2(t) = 8t6(κ− 1)(κ− 2)(κ− 3)
β9

cν,κ−3

cν,κ
σ2φν,κ−3

(
t

β

)
+ 24t2(κ− 1)

β5
cν,κ−1

cν,κ
σ2φν,κ−1

(
t

β

)
− 36t4(κ− 1)(κ− 2)

β7
cν,κ−2

cν,κ
σ2φν,κ−2

(
t

β

)
,

and are both continuous as a function of t ∈ R+. Therefore, since φν,κ−1, φν,κ−2
and φν,κ−3 are non-negative and monotonously decreasing, we can define

Lθ(2, 2) := 4β4(κ− 1)(κ− 2)
β6

cν,κ−2

cν,κ
σ2,

and

Lθ(2, 2, 2) := 8β6(κ− 1)(κ− 2)(κ− 3)
β9

cν,κ−3

cν,κ
σ2 + 24β2(κ− 1)

β5
cν,κ−1

cν,κ
σ2,

as well as Cθ(2, 2) = Cθ(2, 2, 2) := β, and have that

∂2φθ

∂β2 ∈ CC(R+; [0, Cθ(2, 2)]),
∥∥∥∥∂2φθ

∂β2

∥∥∥∥
∞

≤ Lθ(2, 2),

∂3φθ

∂β3 ∈ CC(R+; [0, Cθ(2, 2, 2)]),
∥∥∥∥∂3φθ

∂β3

∥∥∥∥
∞

≤ Lθ(2, 2, 2).
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Then, we also find

sup
θ∈Θ

Lθ(2, 2) ≤ 4(κ− 1)(κ− 2)
β2

min

cν,κ−2

cν,κ
σ2

sup =: L(2, 2),

as well as

sup
θ∈Θ

Lθ(2, 2, 2) ≤ 8(κ− 1)
β3

min

σ2
sup

cν,κ
((κ− 2)(κ− 3)cν,κ−3 + 3cν,κ−1) =: L(2, 2, 2),

and C(2, 2) = C(2, 2, 2) := βmax = supθ∈Θ Cθ(2, 2) = supθ∈Θ Cθ(2, 2, 2), where
L(2, 2), L(2, 2, 2) and C(2, 2) and C(2, 2, 2) do not depend on θ ∈ Θ. This then
shows that the partial derivatives of φθ with respect to the range parameter β
exist up to order three and are continuous on R+ with uniform bounds that do
not depend on θ ∈ Θ and compact supports that are subsets of [0, βmax]. Let us
now focus on the partial derivatives with respect to σ2. We can readily see that
for t ∈ R+,

∂φθ

∂σ2 (t) = φν,κ

(
t

β

)
, (45)

and thus with Sθ(1) = [0, β] and Lθ(1) = 1 we can choose L(1) = 1 and
C(1) = βmax such that (41) and (42) are satisfied. Notice that for any t ∈ R+,
both ∂2φθ

∂(σ2)2 (t) and ∂3φθ

∂(σ2)3 (t) are zero. Thus, the existence of the desired constants

Lθ(2, 2), Cθ(2, 2) and L(2, 2), C(2, 2) for ∂2φθ

∂(σ2)2 (t) and Lθ(2, 2, 2), Cθ(2, 2, 2) and

L(2, 2, 2), C(2, 2, 2) for ∂3φθ

∂(σ2)3 , such that (41) and (42) is satisfied, is clear. Let
us now consider the mixed partial derivatives. Using (43) and (45), we have

∂2φθ

∂σ2∂β
(t) = ∂2φθ

∂β∂σ2 (t) = 2t2(κ− 1)
β3

cν,κ−1

cν,κ
φν,κ−1

(
t

β

)
,

and thus the existence of constants Lθ(1, 2) = Lθ(2, 1), Cθ(1, 2) = Cθ(2, 1) and
L(1, 2) = L(2, 1), C(1, 2) = C(2, 1) for ∂2φθ

∂σ2∂β (t) and ∂2φθ

∂β∂σ2 (t) such that (41)
and (42) is satisfied follows with

Lθ(1, 2) = 2(κ− 1)
β

cν,κ−1

cν,κ
, Cθ(1, 2) = β,

and

L(1, 2) = 2(κ− 1)
βmin

cν,κ−1

cν,κ
, C(1, 2) = βmax.

Using (43), (44) and (45) we further have that

∂3φθ

∂σ2∂β2 (t) = ∂3φθ

∂β∂σ2∂β
(t) = ∂3φθ

∂σ2∂β∂β
(t) = 1

σ2 q1(t),
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and thus
∂3φθ

∂σ2∂β2 ∈ CC(R+;Sθ(1, 2, 2)),
∥∥∥∥ ∂3φθ

∂σ2∂β2

∥∥∥∥
∞

≤ Lθ(1, 2, 2),

with Sθ(1, 2, 2) = Sθ(2, 2, 1) = Sθ(2, 1, 2) = [0, β], and

Lθ(1, 2, 2) = Lθ(2, 2, 1) = Lθ(2, 1, 2) = 4(κ− 1)(κ− 2)
β2

cν,κ−2

cν,κ
.

Further, (42) is satisfied with C(1, 2, 2) = C(2, 2, 1) = C(2, 1, 2) = βmax, and

L(1, 2, 2) = L(2, 2, 1) = L(2, 1, 2) = 4(κ− 1)(κ− 2)
β2

min

cν,κ−2

cν,κ
.

Finally we can notice that

∂3φθ

∂β∂ (σ2)2
(t) = ∂3φθ

∂σ2∂β∂σ2 (t) = ∂3φθ

∂σ2∂σ2∂β
(t) = 0,

and hence we can verify the existence of constants

Lθ(1, 1, 2) = Lθ(1, 2, 1) = Lθ(2, 1, 1), Cθ(1, 1, 2) = Cθ(1, 2, 1) = Cθ(2, 1, 1),

and

L(1, 1, 2) = L(1, 2, 1) = L(2, 1, 1), C(1, 1, 2) = C(1, 2, 1) = C(2, 1, 1),

for ∂3φθ

∂β∂(σ2)2 , ∂3φθ

∂σ2∂β∂σ2 , and ∂3φθ

∂σ2∂σ2∂β , such that (41) and (42) is satisfied. Thus,
we have shown that for κ > 4, {φθ : θ ∈ Θ} satisfies (2) of Assumption A.1, where
for any q = 1, 2, 3, i1, . . . , iq ∈ {1, . . . , p}, BC(R+;Sθ(i1, . . . , iq)) can be replaced
with CC(R+;Sθ(i1, . . . , iq)). It now remains to show that (3) of Assumption A.1
is satisfied. We already know, since φθ ∈ Φd, that wθ is continuous and non-
negative definite on R

d. We write L1 (R+) and L1
(
R

d
)

for the spaces of Lebesgue
integrable functions on R+ and R

d, respectively. Since t �→ td−1φθ(t) ∈ L1 (R+)
we have that wθ ∈ L1

(
R

d
)
. Thus we can conclude, using for example Theorems

5.26 and 6.18 in [33], that for any s ∈ R
d, ŵθ(s) = Fdφθ (‖s‖) > 0, where

Fdφθ (t) = t1−(d/2)
∫ ∞

0
φθ(u)ud/2J(d/2)−1(tu)du, t ∈ R+,

with J(d/2)−1 the Bessel function of order (d/2)− 1. This also shows s �→ ŵθ(s)
is uniformly continuous on R

d, a member of L1
(
R

d
)

and Fourier inversion holds
(see for example Theorem 1.1 and Corollary 1.26 in [29]). It remains to check
that Θ × R

d � (θ, s) �→ ŵθ(s) is continuous. In the present case, where κ > 0
and ν ≥ (d + 1)/2 + κ, one has actually already established a closed form
representation of ŵθ(s). We can refer to Theorem 2.1 in [11] (see also Theorem
1 in [9] for a nice summary and further results) and write for s ∈ R

d \ {0},

ŵθ(s)
(2π)d σ2Lζβd

= 1F2

(
d + 1

2 +κ; d + 1
2 +κ+ ν

2 ,
d + 1

2 +κ+ ν

2 + 1
2;− (‖s‖β)2

4

)
,
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where with ζ := (ν, κ, d), Lζ = KζΓ(κ)/21−κ B(2κ, ν + 1), with

Kζ = 2−κ−d+1π− d
2 Γ (ν + 1)Γ (2κ + d)

Γ
(
κ + d

2
)
Γ
(
ν + 2

(
d+1
2 + κ

)) ,

and for any z ∈ R,

1F2 (a; b, c; z) =
∞∑
k=0

(a)k zk

(b)k (c)k k! ,

a special case of the generalized hypergeometric functions 1F2 (see also [1]),
where for k ∈ N+, (q)k = Γ(q + k)/Γ(q) denotes the Pochhammer symbol.
Note that for z ∈ R, |z| ≥ 1 (z �= 1), 1F2 (a; b, c; z) is defined via its analytic
continuation. Since we know that s �→ ŵθ(s) is continuous on the entire R

d and

z �→ 1F2

(
d + 1

2 + κ; d + 1
2 + κ + ν

2 ,
d + 1

2 + κ + ν

2 + 1
2; z

)
,

is continuous in 0, we can further note that

ŵθ(0) = (2π)d σ2Lζβ
d
1F2

(
d + 1

2 + κ; d + 1
2 + κ + ν

2 ,
d + 1

2 + κ + ν

2 + 1
2; 0

)
= (2π)d σ2Lζβ

d.

This then shows that Θ × R
d � (θ, s) �→ ŵθ(s) is continuous as a composition

of continuous functions and hence the proposition is proven.

Proof of Proposition 6.2. We first show that Assumption 5.1 is satisfied. We
write θ1 =

(
σ2

1 , β1
)

and θ2 =
(
σ2

2 , β2
)

and show that θ1 �= θ2 implies that
φθ1(‖h‖) �= φθ2(‖h‖) for all h ∈ B (0; min {β1, β2}) \ {0}. Suppose first that
β1 = β2 but σ2

1 �= σ2
2 we then have that φθ1(‖h‖) �= φθ2(‖h‖) for all h ∈

B (0; min {β1, β2}), since for any h ∈ B (0; min {β1, β2}), ‖h‖ /β1 = ‖h‖ /β2 < 1
and thus φν,κ (‖h‖ /β1) = φν,κ (‖h‖ /β2) > 0. Suppose now that either σ2

1 �= σ2
2 ,

with σ2
2 < σ2

1 but β1 �= β2, or σ2
1 = σ2

2 = σ2 but β1 �= β2. Then, let us assume
that min {β1, β2} = β2. We have with ‖h‖ /β1 < ‖h‖ /β2, by monotonicity of
r �→ φν,κ(r), that either

φθ1(‖h‖) − φθ2(‖h‖) =
(
φν,κ

(
‖h‖
β1

)
− σ2

2
σ2

1
φν,κ

(
‖h‖
β2

))
> 0

for all h ∈ B (0; min {β1, β2}) \ {0} or

φθ1(‖h‖) − φθ2(‖h‖) = σ2
(
φν,κ

(
‖h‖
β1

)
− φν,κ

(
‖h‖
β2

))
> 0

for all h ∈ B (0; min {β1, β2})\{0}. When min {β1, β2} = β1, we will in either of
the above cases have φθ1(‖h‖)−φθ2(‖h‖) < 0 for all h ∈ B (0; min {β1, β2})\{0}.
Further, we can also use a similar argument for the case where either σ2

1 �= σ2
2 ,
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with σ2
2 > σ2

1 but β1 > β2 or β1 < β2, or σ2
1 = σ2

2 = σ2 but β1 > β2 or
β1 < β2. Thus we have shown that θ1 �= θ2 implies that φθ1(‖h‖) �= φθ2(‖h‖)
for all h ∈ B (0; min {β1, β2}) \ {0}. Then, for τ = 0, since min {β1, β2} >
1, B (0; min {β1, β2}) \ {0} at least contains integers z ∈

{
p ∈ Z

d : ‖p‖ = 1
}
.

Therefore θ1 �= θ2 implies φθ1(z) �= φθ2(z) on
{
p ∈ Z

d : ‖p‖ = 1
}
. If τ ∈ (0, 1/2),

since min {β1, β2} > 0, B (0; min {β1, β2})∩Dτ has non zero Lebesgue measure.
We have thus shown that Assumption 5.1 is satisfied. Let us now show that
{wθ : θ ∈ Θ} also satisfies Assumptions 5.2. To do so, fix some interval I =
(0, b] ⊂ R+, where 1−2τ < b < β. We will show that for any θ ∈ Θ, there exists
t0 ∈ I such that

W

(
∂φθ

∂σ2 ,
∂φθ

∂β

)
(t0) = det

⎛⎝⎛⎝ ∂φθ

∂σ2 (t0) ∂φθ

∂β (t0)
d

∂φθ
∂σ2
dt (t0)

d
∂φθ
∂β

dt (t0)

⎞⎠⎞⎠ �= 0, (46)

where W
(
∂φθ

∂σ2 ,
∂φθ

∂β

)
(t0) is called the Wronskian of t �→ ∂φθ

∂σ2 (t) and t �→ ∂φθ

∂β (t)
at t0 ∈ I. This then shows that the functions t �→ ∂φθ

∂σ2 (t) and t �→ ∂φθ

∂β (t) are
linearly independent on the entire interval I, more explicitly, for any t ∈ I,

α1
∂φθ

∂σ2 (t) + α2
∂φθ

∂β
(t) = 0

will imply that α1 = α2 = 0. This then shows that there does not exist (α1, α2) ∈
R

2 \ {0}, such that for any θ ∈ Θ,

h �→ α1
∂φθ

∂σ2 (‖h‖) + α2
∂φθ

∂β
(‖h‖) = 0,

a.e. with respect to the Lebesgue measure on on B [0; b]\{0}. This then justifies,
for both cases, either τ = 0, or τ > 0, that also Assumption 5.2 must be satisfied.
Hence, let us show (46). We can calculate, using arguments from the proof of
Proposition 6.1, that for t ∈ I,

∂φθ

∂σ2 (t) = φν,κ

(
t

β

)
,

∂φθ

∂β
(t) = 2t2(κ− 1)

β3
cν,κ−1

cν,κ
σ2φν,κ−1

(
t

β

)
,

d∂φθ

∂σ2

dt
(t) = −2t(κ− 1)

β

cν,κ−1

cν,κ
φν,κ−1

(
t

β

)
,

and

d∂φθ

∂β

dt
(t) = 4t(κ− 1)

β3
σ2

cν,κ

(
cν,κ−1φν,κ−1

(
t

β

)
− t2(κ− 2)

β
cν,κ−2φν,κ−2

(
t

β

))
.
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Therefore we have that for t ∈ I, W
(
∂φθ

∂σ2 ,
∂φθ

∂β

)
(t) is given by

φν,κ

(
t

β

)
4t(κ− 1)

β3
σ2

cν,κ

(
cν,κ−1φν,κ−1

(
t

β

)
− t2(κ− 2)

β
cν,κ−2φν,κ−2

(
t

β

))
+4t3(κ− 1)2

β4 σ2
(
cν,κ−1

cν,κ
φν,κ−1

(
t

β

))2
.

But the latter expression is not equal to zero on the entire I. To see it, assume
by contradiction that indeed W

(
∂φθ

∂σ2 ,
∂φθ

∂β

)
(t) = 0 for all t ∈ I. Using standard

algebraic manipulations one can show that this is equivalent to assume that the
function

g(t) := f1(t)
f2(t)

,

with

f1(t) := (κ− 2)cν,κφν,κ

(
t

β

)
cν,κ−2φν,κ−2

(
t

β

)
− (κ− 1)

(
cν,κ−1φν,κ−1

(
t

β

))2

and

f2(t) := cν,κcν,κ−1φν,κ

(
t

β

)
φν,κ−1

(
t

β

)
,

is constant equal to β on I. But this makes no sense and thus we arrive at a
contradiction. Hence, there exists t0 ∈ I such that (46) is satisfied, which shows
that Assumption 5.2 is satisfied and thus concludes the proof of Proposition 6.2.

Proof of Proposition 6.4. The goal is to check that
{
(Tm,θ) : θ ∈ Θ

}
satisfies

Assumption A.2, then we conclude using Propositions 6.1 and 6.2, as well as
Theorems A.1 and A.2. We first notice that for any θ ∈ Θ, m ∈ N+ and any q =
1, 2, 3, i1, . . . , iq ∈ {1, . . . , p}, Tm,θ and ∂q

Tm,θ

∂θi1 ···∂θiq
are Borel measurable functions

on R+. In addition, for any θ ∈ Θ and m ∈ N+, Tm,θ has support [0, Uθ,m], with
Uθ,m = min {Cm, β} that satisfies supm∈N+

supθ∈Θ Uθ,m = βmax. Further, one
can verify that the family

{
(Tm,θ) : θ ∈ Θ

}
is also uniformly bounded by σ2

max
on R+ and it converges uniformly to φθ on R+, independent of θ ∈ Θ, that is
supθ∈Θ‖Tm,θ − φθ‖∞ m→∞−−−−→ 0. Thus (1), (2) and (3) of Assumption A.2 are
satisfied. To verify the remaining assumptions, we view Tm,θ(t) as the result of
a truncation operator g �→ Tm(g) = g1[0,Cm] evaluated at t. That is, Tm,θ(t) =
Tm(φθ)(t). Then, we remark that for any q = 1, 2, 3, i1, . . . , iq ∈ {1, . . . , p}, for
any θ ∈ Θ,

∂qTm,θ

∂θi1 · · · ∂θiq
(t) = Tm

(
∂qφθ

∂θi1 · · · ∂θiq

)
(t).

Thus, by Proposition 6.1, also (4) and (5) of Assumption A.2 are satisfied.
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Proof of Proposition 6.5. For any m ∈ N+, for any θ ∈ Θ, Bm,θ(t; bm) is con-
tinuous on [0,M ] and it is also continuous as a function of θ ∈ Θ (see also
the proof of Proposition 6.1). Further, it converges uniformly to φθ on [0,M ],
independent of θ ∈ Θ. That is

sup
θ∈Θ

sup
t∈[0,M ]

|Pm,θ(t) − φθ(t)| m→∞−−−−→ 0.

To see this we can rely, for example, on the proof of Theorem 2.3.1 in [24].
There, it is shown that for any t ∈ [0,M ] and θ ∈ Θ, for any ε > 0, there exists
δ(t) > 0 such that

|Bm,θ(t; bm) − φθ(t)| ≤ ε + 2σ2
max

bmt

mδ(t)2 ,

for m large enough. Since [0,M ] is compact and φθ is continuous, we can choose
δ∗ ≡ δ(t), independent of t ∈ [0,M ] and θ ∈ Θ, such that the above inequality
is satisfied for arbitrary ε > 0, with δ(t) replaced with δ∗. Then, we conclude
by taking the supremum on the left and right over [0,M ] and θ ∈ Θ. For any
m ∈ N+, for any θ ∈ Θ, we can write

|Pm,θ(t) − φθ(t)| = |Pm,θ(t) − φθ(t)|1[0,M ](t) + |Pm,θ(t) − φθ(t)|1(M,∞)(t).

Notice that because M ≥ βmax, the latter term is actually zero independent of
θ ∈ Θ and thus we have that (Pm,θ)m∈N+

converges uniformly to φθ on the entire
R+, independent of θ ∈ Θ. Thus, we have that supθ∈Θ‖Pm,θ − φθ‖∞ m→∞−−−−→ 0.
Note also that the convergence (in the uniform norm) of Pm,θ to φθ in particular
implies that the sequence of functions (Pm,θ)m∈N+ is bounded on R+ for any
θ ∈ Θ. Therefore we can use that

sup
m∈N+

sup
t∈R+

sup
θ∈Θ

Pm,θ(t) = sup
m∈N+

sup
t∈[0,M ]

sup
θ∈Θ

Pm,θ(t),

to find C̃ := M and L̃ := supm∈N+
supt∈[0,M ] supθ∈Θ Pm,θ(t), two constants,

which are independent of m ∈ N+ and θ ∈ Θ (recall that Θ is compact), such
that (2) of Assumption A.2 is satisfied. Clearly, for any θ ∈ Θ and for any m ∈
N+, the function Pm,θ : (R+,B(R+)) → (R,B(R)) is measurable. In conclusion
we have shown that (1), (2) and (3) of Assumption A.2 are satisfied. In the
proof of Proposition 6.1 we have shown that for any θ ∈ Θ, for any q = 1, 2, 3,
i1, . . . , iq ∈ {1, . . . , p}, there exist constants Cθ(i1, . . . , iq), Lθ(i1, . . . , iq) < ∞,
such that

∂qφθ

∂θi1 · · · ∂θiq
∈ CC(R+; [0, Cθ(i1, . . . , iq)]),

∥∥∥∥ ∂qφθ

∂θi1 · · · ∂θiq

∥∥∥∥
∞

≤ Lθ(i1, . . . , iq),

where for any q = 1, 2, 3, i1, . . . , iq ∈ {1, . . . , p}, supθ∈Θ Cθ(i1, . . . , iq) ≤ βmax.
In addition, we notice that for any q = 1, 2, 3, i1, . . . , iq ∈ {1, . . . , p}, for any
θ ∈ Θ,

∂qPm,θ

∂θi1 · · · ∂θiq
(t) = Pm

(
∂qφθ

∂θi1 · · · ∂θiq

)
(t),
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where g �→ Pm(g) is the Bernstein polynomial operator for a function g with
support included [0,M ]:

Pm(g)(t) =
m∑

k=0

g

(
bm

k

m

)(
m

k

)(
t

bm

)k(
1 − t

bm

)m−k

,

for t ≤ M and zero otherwise. Therefore, we can rely on the same arguments
that we have used to show that (2) and (3) of Assumption A.2 are satisfied,
to show that also (4) and (5) of Assumption A.2 must be satisfied. This then
concludes the proof of Proposition 6.5.

Proof of Proposition 6.7. The proof follows the same reasoning as the proof of
Proposition 6.5.

Proof of Proposition 6.9. Since (δ(m))m∈N+ does not depend on θ ∈ Θ and
t ∈ R+, and is such that δ(m) −→ 0, as m −→ ∞ we can see that

{
(Sm,θ) : θ ∈ Θ

}
satisfies Assumption A.2. Thus, using Propositions 6.1 and 6.2, under applica-
tion of Theorems A.1 and A.2, the proposition is proven.

C.6. Proof of results in Section 7

Proof of Theorem 7.1. Given a collection S(n) of S, let Kn,θi,j = kθ(Si − Sj),
1 ≤ i, j ≤ n, denote the n×n covariance matrix based on the family {kθ : θ ∈ Θ}.
We first note that under the given assumptions on the family {kθ : θ ∈ Θ}, we
have that

sup
n∈N+

sup
θ∈Θ

∥∥Kn,θ

∥∥
2 < ∞ and inf

n∈N+
inf
θ∈Θ

λn(Kn,θ) > 0,

with P probability one. This can be seen from Proposition D.4 and Lemma D.5
in [4]. Using this, the proof of (15) is immediate, it follows from Lemmas 4.1
and B.6.

If we proof
dn,θ̂n(kt) = inf

θ∈Θ
dn,θ + δ′n, as n −→ ∞, (47)

where δ′n
P−−−−→

n→∞
0, (16) follows from (15), and we are done. We note that (47)

is established if we prove

sup
θ∈Θ

∣∣ln,t-ML(θ) − E
[
ln,t-ML(θ) | S(n)

]∣∣ P−−−−→
n→∞

0, (48)

where

ln,t-ML(θ) := 1
n

log (det (Rn,θ)) + 1
n

〈
Z(n), R

−1
n,θZ(n)

〉
,

the random version of the modified log-likelihood function based on the ta-
pered covariance function. This is seen from the proof of Theorem 3.3 in [5].
But under the given assumptions, the family {kθtβ0 : θ ∈ Θ} satisfies Assump-
tion 3.1 (regarding (2), up to q = 1 and the continuity of first order partial
derivatives). Thus (48) can be shown as it was shown (see (39)) in the proof of
Theorem 5.2.
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