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Abstract: Because it determines a center-outward ordering of observa-
tions in Rd with d ≥ 2, the concept of statistical depth permits to define
quantiles and ranks for multivariate data and use them for various statisti-
cal tasks (e.g. inference, hypothesis testing). Whereas many depth functions
have been proposed ad-hoc in the literature since the seminal contribution
of [50], not all of them possess the properties desirable to emulate the notion
of quantile function for univariate probability distributions. In this paper,
we propose an extension of the integrated rank-weighted statistical depth
(IRW depth in abbreviated form) originally introduced in [40], modified
in order to satisfy the property of affine invariance, fulfilling thus all the
four key axioms listed in the nomenclature elaborated by [59]. The vari-
ant we propose, referred to as the affine invariant IRW depth (AI-IRW in
short), involves the precision matrix of the (supposedly square integrable)
d-dimensional random vector X under study, in order to take into account
the directions along which X is most variable to assign a depth value to any
point x ∈ Rd. The accuracy of the sampling version of the AI-IRW depth is
investigated from a non-asymptotic perspective. Namely, a concentration
result for the statistical counterpart of the AI-IRW depth is proved. Beyond
the theoretical analysis carried out, applications to anomaly detection are
considered and numerical results are displayed, providing strong empirical
evidence of the relevance of the depth function we propose here.
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1. Introduction

Since its introduction in [50], the concept of statistical depth has become in-
creasingly popular in multivariate data analysis. For a distribution P on R

d with
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d > 1, by transferring the natural order on the real line to R
d, a depth function

D(., P ) : Rd → R+ provides a center-outward ordering of points in the support
of P and can be straightforwardly used to extend the notions of (signed) rank or
order statistics to multivariate data. It finds numerous applications in Statistics
and Machine Learning such as robust inference [28], hypothesis testing [15] or
novelty/anomaly detection [48], to name a few, see [34] and [35] for further exam-
ples. Numerous definitions have been proposed, as alternatives to the earliest
proposal, the halfspace depth introduced in [50]: with simplicial [29], projec-
tion [30], majority [31], Oja [37], zonoid [23], spatial ([5] or [51]) and Monge-
Kantorovich [8] depths being common examples, among many others. In order
to compare systematically their merits and drawbacks, [59] have developed an
axiomatic nomenclature of statistical depths, listing key properties that should
be (ideally) satisfied by a ‘proper’ depth function. Roughly, as depth functions
serve to define center-outward orderings, if a distribution P on R

d has a unique
center θ ∈ R

d (i.e., a symmetry center in a defined sense, see [59] for details),
the latter should be the deepest point. Further, for any deepest point, depth
function should decrease along any fixed ray starting from it. One also expects
that a depth function vanishes at infinity and does not depend on the coordinate
system chosen. This latter property is usually formulated as affine invariance.
(Section 2 below provides a thorough formulation of these four properties.) Be-
yond verifying these properties, the pros and cons of any data depth should be
considered regarding the possible existence of algorithms for computation in the
case of empirical distributions. In this respect, the extension of Tukey’s halfs-
pace depth recently introduced in [40] and referred to as the integrated rank-
weighted (further IRW for shortness) depth offers many advantages. Rather than
computing—for any point x ∈ R

d—the minimum of the mass P (H), H ∈ Hx

taken over all closed halfspaces Hx = {x′ ∈ R
d : 〈x′ − x, u〉 ≤ 0, u ∈ S

d−1}
with unit normal vector u and containing x, it is proposed to replace the in-
fimum by the integral taken with respect to (w.r.t.) all possible directions u
uniformly distributed on the unit sphere S

d−1 (following the footsteps of the
general integrated dual depth approach developed in [10]). For an empirical or
discrete distribution, IRW depth thus admits a weighted average representation.
It can be easily approximated using Monte-Carlo methods in contrast to many
other depth functions, whose values are defined as solutions to optimization
problems, possibly complex ones in a high dimension. Beyond these compu-
tational aspects, it is shown in [40] that the IRW data depth satisfies several
desirable properties (see Theorem 2 therein). Unfortunately, it does not fulfill
the affine invariance property, crucial to the multivariate analysis of commensu-
rable variables. Indeed, the values taken by the IRW depth may highly depend
on the chosen coordinate system to represent available statistical information,
ruining their interpretability, as will be shown on illustrative examples of Sec-
tion 2. It is the main purpose of this paper to overcome—in a systemic way—the
lack of affine invariance property in the definition of IRW depth by proposing
a modified version of it, named AI-IRW. It consists in the IRW depth of the
(square-integrable) random vector X with distribution P under study expressed
in an orthogonal coordinate system such that its components are linearly uncor-
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related. That is, such components are the principal components of X obtained
by eigenvalue decomposition of its covariance matrix Σ. Under the assumption
that Σ is positive-definite, the affine invariant version of IRW depth of X is
the IRW depth of WX, denoting by W any whitening matrix (i.e. any square
matrix W such that W�W = Σ−1). In the case if Σ is not positive-definite, the
proposed methodology should be naturally applied after a dimensionality reduc-
tion step, i.e. on an appropriate orthogonal projection of the original random
vector X.

In this article, we show that the affine invariant version of IRW depth, further
on referred to as the AI-IRW depth, is independent of the whitening matrix
chosen, inherits all the properties and computational advantages of the IRW
depth and aditionally satisfies the affine invariance property. Since its statistical
counterpart based on a sample composed of independent copies of the random
variable X is a complex function of the data which involves empirical version
of an orthonormal transform of Σ−1/2 (i.e., the square root of the precision
matrix), a finite-sample analysis is carried out here. Precisely, a concentration
result for the sampling version of the AI-IRW depth is established. Beyond this
theoretical outcome, the relevance of this depth notion is also supported by
experimental results. When applied in various statistical tasks such as anomaly
detection, it demonstrates superiority over the IRW and other existing depth
measures, making it a strong contender in the field.

The article is structured as follows. In Section 2, the concept of data depth is
briefly reviewed, and in particular the integrated rank-weighted depth [40], to-
gether with the axiomatic approach developed by [59] and illustrating examples;
particular attention is paid to the affine invariance property. In Section 3, the
AI-IRW depth is introduced, its properties are studied, and questions of approx-
imation and estimation are discussed at length. The accuracy of the empirical
version is investigated in Section 4 from a non-asymptotic perspective. Section 5
describes experimental results that empirically illustrate the advantages of the
AI-IRW depth. Finally, concluding remarks are collected in Section 6. Proofs,
additional technical details, and numerical results are deferred to the Appendix.

2. Background and motivations

The concept of depth function is motivated by necessity to extend the very useful
notions of order and (signed) rank statistics in univariate statistical analysis to
multivariate settings through depth-induced contours. Indeed, such statistics
perform a wide variety of tasks, ranging from robust statistical inference to
efficient statistical hypothesis testing. The earliest proposal is the halfspace
depth developed in [50]. For any probability measure P1 on R, the univariate
halfspace depth is defined by: ∀ t ∈ R,

DH,1(t, P1) = min {P1 (] −∞, t]) , P1 ([t,+∞[)} .

Considering a multivariate r.v. X with probability distribution P on R
d with

d > 1, its halfspace depth at x ∈ R
d is then defined as the infimum of the
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probability mass taken over all possible closed halfspaces containing x:

DH(x, P ) = inf
u∈Sd−1

P (〈u,X〉 ≤ 〈u, x〉) , (1)

denoting by 〈·, ·〉 and || · || the usual Euclidean inner product and norm on R
d,

and by S
d−1 = {z ∈ R

d : ||z|| = +1} the unit sphere of Rd w.r.t. the Euclidean
norm. Because of its appealing properties, halfspace depth (1) is undeniably
the most documented notion of depth function in the statistical literature. It
has been proved to fully characterize empirical and finitely discrete distribu-
tions in [49, 24]. Asymptotic properties such as consistency or asymptotic nor-
mality of its sampling version based on independent copies X1, . . . , Xn of the
generic r.v. X, obtained by replacing P in (1) with the empirical distribution
P̂ = (1/n)

∑n
i=1 δXi , where δx means the Dirac mass at any point x, are estab-

lished in, e.g., [43, 12, 59]. Multivariate location estimators based on halfspace
depth have been investigated in [13], and it has been shown to possess attrac-
tive robustness properties. For instance, the asymptotic breakdown point of the
Tukey median, i.e., the barycenter of the deepest locations in the sense of (1), is
equal to 1/3 for absolutely continuous centrosymmetric distributions, see [13].
Computational issues have also been extensively studied, see [33] or [32] for in-
stance. However, as recalled in the introduction, many other notions of depth
have been proposed during the last decades, far too numerous to be listed in
an exhaustive manner here. We refer the reader to [34] or the Chapter 2 of [47]
for excellent accounts of the statistical depth theory. A depth function has two
arguments, it is a function D : Rd×P → R+, where P is some set of probability
distributions on R

d, which not necessarily contains all probability distributions
on R

d; see, e.g., [35]. In order to guarantee the “center-outward-ordering” inter-
pretation of D, four key properties have been listed by [59], see also [14] and
[34] for their different formulation. These are recalled below.

D1 (Affine invariance) Denoting by PX the distribution of a r.v. X taking
its values in R

d, we have

∀x ∈ R
d, D(Ax + b, PAX+b) = D(x, PX),

for any d-dimensional r.v. X, any d × d nonsingular matrix A with real
entries and any vector b in R

d.
D2 (Maximality at center) For any probability distribution P on R

d that
possesses a symmetry center xP (in a sense to be specified below), the
depth function D(·, P ) takes its maximum value at it:

D(xP , P ) = sup
x∈Rd

D(x, P ).

D3 (Monotonicity relative to deepest point) Let P ∈ P, and xP be
a deepest point of P . Then the depth function decreases on any ray that
begins at xP , i.e., for any x ∈ R

d and α ≥ 0

D(xP , P ) ≥ D(xP + α(x− xP ), P ).
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D4 (Vanishing at infinity) For any probability distribution P on R
d, the

depth function D vanishes at infinity:

D(x, P ) → 0, as ||x|| → ∞.

It is worth mentioning that the most general notion of symmetry when analyz-
ing data depth is the halfspace symmetry and shall be the one used throughout
this article. Precisely, the probability distribution P is halfspace symmetric at
xP if P (HxP

) ≥ 1/2 for any closed halfspace HxP
passing through xP . Various

works have examined which of the properties, among those listed above, are
satisfied by specific notions of depth introduced in the literature, see [59]. Some
of them are constructed as an infimum—over projections on the unit sphere—of
a univariate non-parametric statistics such as the projection depth proposed by
[30] or those introduced in [56] or [58]. From a practical perspective, computing
these projection-based depths involves using tools such as manifold optimization
algorithms, facing various numerical difficulties as the dimension d increases, see
[16]. In addition, the halfspace depth suffers from two major problems: (i) for
each data point x, taking the direction achieving the minimum to assign a score
to x possibly creates a significant sensitivity to noisy directions and (ii) the null
score assigned to each new data point outside of the convex hull of the support
of the distribution P makes the score of such points indistinguishable. A rem-
edy based on Extreme Value Theory has been proposed in [17], which consists
in smoothing the halfspace depth beyond the convex hull of the data. However,
this variant relies on rather rigid parametric assumptions, is only approximately
affine invariant and is confronted with the aforementioned limitation regarding
the non-smoothed part of the data. Recently, alternative depth functions have
been proposed, obtained by replacing the infimum over all possible directions
with an integral, see [10]. In [40], a new data depth, referred to as the Inte-
grated Rank-Weighted depth, is defined by substituting an integral over the
sphere S

d−1 for the infimum in (1). Here and throughout, the indicator function
of any event E is denoted by I{E}, the spherical probability measure on S

d−1

by ωd−1, the d× d identity matrix by Id.
Definition 1 ([40]). The Integrated Rank-Weighted (IRW) depth of x ∈ R

d

w.r.t. a probability distribution P on R
d is defined as follows:

DIRW(x, P ) =
∫
Sd−1

DH,1(〈u, x〉, Pu) ωd−1(du) (2)

= E [DH,1(〈U, x〉, PU )] ,

where Pu is the pushforward distribution of P defined by the projection x ∈
R

d 
→ 〈u, x〉 and U is a r.v. uniformly distributed on the hypersphere S
d−1.

As explained at length in [40], the name of the data depth (2) originates
from the fact that it can be represented as a weighted average of a finite set
of normalized center-outward ranks. It has many advantages over the original
halfspace depth (1). First, by construction, it is robust to noisy directions, and
sensitive to new data points outside of the convex hull of the training dataset
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simultaneously, fixing the two problems mentioned above. Moreover, concerning
numerical feasibility, the computation of the IRW depth does not require im-
plementing any manifold optimization algorithm. It can be approximated using
basic Monte Carlo techniques, providing confidence intervals as a by-product,
see Remark 1 below. Its contours {DIRW(x, P ) = α}, α ∈ [0, 1], also exhibit
a higher degree of smoothness in general (the depth function (2) is continuous
at any point x ∈ R

d that is not an atom for P , cf. Proposition 1 in [40]) and
properties D2, D3 and D4 have been proved to be satisfied by (2) under mild
assumptions, see Theorem 2 in [40].

Remark 1 (Monte Carlo approximation). Recall that a r.v. uniformly dis-
tributed on the hypersphere S

d−1 can be generated from a d-dimensional cen-
tered Gaussian random vector Z with the identity Id as covariance matrix: if
Z ∼ N (0, Id), then Z/||Z|| ∼ ωd−1, see [25]. Hence, a basic Monte-Carlo method
to approximate (2) would consist in generating m ≥ 1 independent realizations
Z1, . . . , Zm of N (0, Id) and compute

1
m

m∑
j=1

DH,1(〈Zj/||Zj ||, x〉, PZj/||Zj ||), (3)

refer to, e.g., [21] for an account of Monte Carlo integration methods.

However, it does not satisfy the crucial property D1 (affine invariance) in
general, as illustrated in the two following examples (see also the next section
and Section C.2 for additional numerical illustrations).

Example 1. Here we provide an example of discrete distribution where IRW
does not satisfy the affine-invariance property. Consider the discrete proba-
bility measure P assigning the weight 1/3 to the bivariate points in D3 =
{(−1, 2), (3, 3), (2, 1)} and let us compute the IRW depth of x = (0, 1) and y =
(3, 2) relative to P . It is easy to see that the mappings u ∈ S

1 
→ DH,1(〈u, x〉, Pu)
and u ∈ S

1 
→ DH,1(〈u, y〉, Pu) take only two values, 0 or 1/3. Identify-
ing S

1 as [0, 2π[, the univariate halfspace depth of x relative to P is then
null for any u ∈ [π/4, π/2] ∪ [5π/4, 3π/2] and equal to 1/3 if u belongs to
the complementary set. In addition, DH,1(〈u, y〉, Pu) is equal to 0 for any
u ∈ [3π/4, π] ∪ [7π/4, 2π] and equal to 1/3 on the complementary set. One may
easily check that DIRW(x, P ) = DIRW(y, P ) = 0.25 and the same rank would
be then assigned to each point by the IRW depth. Now, multiplying all ordinate
values by 2, which is an affine transformation, the univariate halfspace depth
of x̃ = (0, 2) is null for all u in [π/8, π/2] ∪ [9π/8, 3π/2]. At the same time, it
remains equal to 1/3 on the complementary set of this region. The depth of x̃ is
thus lower than 0.25. On the other hand, the univariate depth of ỹ = (3, 4) is now
null on [7π/8, π]∪[15π/8, 2π] while it remains equal to 1/3 on the complementary
set of this interval. It follows that DIRW(x̃) = 5/24 < 0.25 < 7/24 = DIRW(ỹ).

Example 2. This second example is illustrated numerically with a Gaussian
distribution. To that end, we draw a sample Z with 1000 instances from a two-
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dimensional standard Gaussian distribution. We then apply a linear transfor-
mation of Z by the matrix

A =
[
2 3
1 8

]
and define a second sample AZ. These two samples Z and AZ are depicted in
Fig. 1 (top). We compute the approximation of the IRW depth, given in (2), on
Z and AZ (for m = 106 to reduce the approximation error). The rank induced
by the IRW depth is displayed through a color bar from yellow to dark blue (the
darker it is, the higher the depth is). In addition, we depict the sorted depth
values for the IRW depth computed on Z (red) and the corresponding IRW depth
value for the same indices but computed on AZ (magenta). As we can see, the
value of the IRW depth varies significantly between the sample and its linear
transformation.

Fig 1. Illustration of the non-affine-invariance of the IRW depth. The depth-induced ranks
are highlighted by a color scale (the darker it is, the deeper it is) on the sample Z and its
linear transformation AZ (top). The according to Z IRW-depth-sorted values are depicted for
both samples (bottom).

The property of affine invariance, i.e. insensitivity (in a proper sense) to linear
transforms applied to both P and x refers to fundamental ideas of multivari-
ate analysis and is important once linear combinations of different variables are
considered. Although, generally speaking, expediency of commensurability can
depend on a practical situation at hand, e.g., only orthogonal transforms can
be applicable to certain types of data, such as real-world objects’ coordinates,
handling weighted sums of observations’ variables is commonly used in statistics
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since at least a century with linear discriminant analysis [19], principal compo-
nent analysis [38], perceptron classifier [41] as well as logistic regression and a
single neuron of an artificial neural network or support vector machine [9] being
only very few examples. The fact that IRW depth is affected by non-uniform
scaling is very problematic in practice regarding its interpretability in particular
or its use for anomaly detection tasks, for instance, see Section 5 and is the main
flaw of this approach as pointed out in [10, 40].

3. Affine invariant IRW depth – definition and properties

Here we propose to modify the depth function (2) in order to ensure that prop-
erty D1 is always satisfied when the random vector X with distribution P under
study is assumed to be square integrable with positive definite covariance ma-
trix Σ. Precisely, rather than taking the expectation w.r.t. a random direction
U uniformly distributed on S

d−1 (i.e. integrating over all possible directions
u ∈ S

d−1), one considers the random projections defined by the eigenfunc-
tions of the matrix Σ, i.e. the principal components of the r.v. X. In other
words, the expectation is taken w.r.t. the distribution of the random vector
V = W�U/||W�U || valued in S

d−1, where W is any whitening matrix, as for-
mulated in the definition below.

Proposition 2 (Affine invariant IRW depth). Let X be a square integrable ran-
dom vector with probability distribution P on R

d and positive definite covariance
matrix Σ. Consider the function

x ∈ R
d 
→ E [DH,1(〈V, x〉, PV )] , (4)

where V = W�U/||W�U ||, U being uniformly distributed on the hypersphere
S
d−1 and W a whitening matrix (i.e. a matrix W of the form QΣ−1/2 with

Q�Q = Id). Then, the function (4) is independent from the whitening matrix
W chosen. It is denoted by DAI-IRW(·, P ) and referred to as the affine invariant
Integrated Rank-Weighted (AI-IRW) depth w.r.t. X.

The fact that (4) is independent from the whitening matrix W chosen (or,
equivalently, from the orthonormal matrix Q = WΣ1/2) results from a straight-
forward change of variable, details are left to the reader. Hence, any whitening
matrix may be used to define the AI-IRW depth. For instance, a whitening ma-
trix W can be obtained either by singular value decomposition or by Cholesky
decomposition. Of course, in the case where the covariance matrix Σ of the
supposedly square integrable r.v. X is not invertible, the AI-IRW depth notion
should be applied to an orthogonal projection, after an appropriate dimensional-
ity reduction step. From a computational perspective, the AI-IRW depth can be
approximated by Monte Carlo methods in the same way as (2), see Remark 1.
As revealed by the proposition stated below, the depth function (4) inherits
all the properties of (2) under similar assumptions and is remarkably invariant
under any affine transformation in addition.
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Proposition 3 (Properties of the AI-IRW depth). The assertions below hold
true for any probability distribution P of a square integrable r.v. X valued in R

d

with positive definite covariance matrix.

(i) The AI-IRW depth satisfies the properties D1 and D4. In addition, the
properties D2 and D3 are fulfilled for all halfspace symmetric distributions.

(ii) The AI-IRW depth function is continuous at each point x that is not an
atom for P .

The proof is detailed in Section B.1 of the Appendix. It is known that for ellip-
tical distributions, affine invariant data depth level sets are concentric ellipsoids
with the same center and orientation as the density level sets [31]. Therefore, the
ordering returned by affine invariant data depths should be equal to that of the
density function. Thus, in order to highlight the discrepancy between AI-IRW
and IRW w.r.t. affine invariance, we propose to compare the ordering returned
by AI-IRW and IRW to that of the density function on the Gaussian distribu-
tion (which belongs to the family of elliptical distributions). As illustrated by
the Rank-Rank plots in Fig. 2, the ordering defined by the (empirical) AI-IRW
depth is generally much closer to that induced by the underlying density than
the order defined by the original (IRW depth) version.

Fig 2. Rank-Rank plots comparing the ranks of 1000 points sampled from a 10-d (anisotropic)
Gaussian distribution with covariance matrix drawn at random from a Wishart distribution
(with parameters (d, Id)) induced by the empirical depth (AI-IRW on the left, IRW on the
right) and those induced by the Gaussian density.

Sampling versions In practice, the distribution P is generally unknown as
well as the covariance matrix Σ and only a sample Dn = {X1, . . . , Xn} composed
of n ≥ 1 independent realizations of the distribution P is available. A statistical
counterpart of the AI-IRW depth can be obtained by replacing P with the
empirical measure P̂ = (1/n)

∑n
i=1 δXi and the whitening matrix W with a

non-singular estimator Ŵ based on Dn and plugging them next into formula
(4), yielding: ∀x ∈ R

d,

D̂AI-IRW(x) = E

[
DH,1(〈V̂ , x〉, P̂V̂ ) | Dn

]
, (5)
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where V̂ = Ŵ�U/||Ŵ�U || and U is a r.v. uniformly distributed on S
d−1 inde-

pendent from the Xi’s. From a practical perspective, the (conditional) expec-
tation (5) can also be approximated by means of a basic Monte Carlo scheme,
generating m ≥ 1 i.i.d. random directions U1, . . . , Um, copies of the generic r.v.
U and independent from the original data Dn: ∀x ∈ R

d,

D̃MC
AI-IRW(x) = 1

m

m∑
j=1

min
{
F̂V̂j

(
〈V̂j , x〉

)
, 1 − F̂V̂j

(
〈V̂j , x〉

)}
, (6)

where, for all j ∈ {1, . . . ,m} and t ∈ R, we set

V̂j = Ŵ�Uj/||Ŵ�Uj ||, and F̂V̂j
(t) = 1

n

n∑
i=1

I{〈V̂j ,Xi〉≤t
}.

Putting aside temporarily the issue of estimating a whitening matrix W (dis-
cussed below), attention should be paid to the fact that the approximate sample
version (6) is very easy to compute (see Algorithm 1 for the computation of
D̃MC

AI-IRW(Xi) for all i ≤ n) and involves no optimization procedure, in contrast
to many other notions of depth function.

Algorithm 1 Approximation of the AI-IRW depth
Initialization: the number of projections m.

1: Construct U ∈ Rd×m by sampling uniformly m vectors U1, . . . , Um in Sd−1

2: Compute a non-singular estimator Σ̂ of the covariance
3: Apply a whitening procedure (e.g. Cholesky decomposition or SVD) to Σ̂, yielding Ŵ

4: Compute V = Ŵ�U/||Ŵ�U||
5: Compute M = XV
6: Compute the rank value σ(i, j), the rank of index i in M:,j for every i ≤ n and j ≤ m

7: Set D̃MC
AI-IRW(Xi) = 1

m

∑m
j=1 σ(i, j) for every i ≤ n

Output: D̃MC
AI-IRW(Xi), i ≤ n

On estimating a whitening matrix Consider the d × n matrix Xn =
(X1, . . . , Xn) with the Xi’s as columns. The simplest way of building an es-
timate Ŵ consists in computing the empirical version Σ̂ = (1/n)XnX�

n of the
covariance matrix, which is a natural and nearly unbiased estimator, and apply-
ing next any whitening method (e.g. ZCA, PCA or Cholesky whitening) to it,
when the latter is positive definite, producing a matrix of the form Ŵ = QΣ̂−1/2,
where Q is a d× d orthonormal matrix. When the empirical covariance matrix
(1/n)XnX�

n is not invertible, whitening is applied to a regularized, non-singular,
version Σ̂ of it using e.g. Tikhonov regularization method. For simplicity, the
estimator Σ̂ of Σ considered in the finite-sample study presented in the next
section is the possibly regularized empirical covariance. However, alternative
estimation techniques can be used, yielding possibly more efficient estimators
under specific assumptions, in high-dimension especially. Shrinkage procedures
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for covariance estimation under sparsity conditions have been investigated in
e.g. [26, 7, 45], while a lasso method for direct estimation of the precision ma-
trix, avoiding matrix inversion, is proposed in [20]. Robust covariance estimation
techniques, tailored to situations where the data are possibly contaminated or
heavy-tailed, have also been documented in the literature, see e.g. [42] and [44].
For the the sake of simplicity as well, empirical Cholesky whitening is con-
sidered to define and analyze the sampling version of the AI-IRW depth, but
it is straightforward to see that the results hold true for any other whitening
transformation of Σ̂.

Due to the presence of Ŵ in (5) (respectively, in (6)), it is far from straight-
forward to assess the accuracy of the estimators of the AI-IRW depth proposed
above. It is the purpose of the next section to study the uniform deviations
between (4) and its empirical versions from a non-asymptotic perspective.

4. Finite-sample analysis – concentration bounds

We now investigate the accuracy of the sample version, as well as that of its
Monte Carlo approximation, of the AI-IRW depth function introduced in the
previous section in a non-asymptotic fashion. Keeping both the sample size n
and the number of m of MC directions fixed, we establish a concentration bound
for the maximal deviations between the true and estimated AI-IRW depth val-
ues, at some point x that holds with a probability 1−δ. To that end, we assume
here that the estimator Σ̂ of the covariance Σ is the empirical covariance, if the
latter is definite positive, and of any definite positive regularized version (e.g.
Tikhonov) of the latter otherwise. The empirical whitening matrix W is the
transpose of a Cholesky decomposition L of Σ̂−1: W = L�, where L is a real
lower triangular matrix with positive diagonal entries. The subsequent analy-
sis requires additional hypotheses, listed below. The first assumption, classical
when estimating a whitening matrix (see e.g. [4] or [18]), stipulates that the
eigenvalues σ1, . . . , σd of the covariance matrix Σ of the square integrable ran-
dom vector X considered are bounded away from zero.

Assumption 1. Assume that the smallest eigenvalue, ε = min
k

σk, is positive.

The second assumption is technical, see [11]. It stipulates that Σ’s eigenvalues
are all of multiplicity 1 and that Σ’s minimum eigengap is bounded away from
zero.

Assumption 2. Assume that all Σ’s eigenvalues are different and their smallest
difference, γ, is positive.

We point out that, just like when Σ is not invertible, one always may bring
back the analysis to a situation where Assumption 2 is fulfilled by means of a
preliminary dimensionality reduction step. Notice incidentally that, when Σ =
σId, with σ > 0, the AI-IRW reduces to IRW. The other assumptions correspond
to smoothness conditions of Lipschitz type for the function φ : (u, x) ∈ S

d−1 ×
R

d 
→ P {〈u,X〉 ≤ 〈u, x〉}.
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Assumption 3 (Uniform Lipschitz condition in projection). For all (x, y) ∈
R

d × R
d, there exists Lp < +∞ such that

sup
u∈Sd−1

|φ(u, x) − φ(u, y)| ≤ Lp||x− y||.

Assumption 4 (Uniform radial Lipschitz condition). For all (u, v) ∈ S
d−1 ×

S
d−1, there exists LR < +∞ such that

sup
x∈Rd

|φ(u, x) − φ(v, x)| ≤ LR||u− v||.

Notice that the same assumptions are involved in the non-asymptotic rate
bound analysis carried out for the halfspace depth estimator in [2] and are used
to establish limit results related to its approximation in [36]. The Lipschitz
conditions are satisfied by a large class of probability distributions, for which
Lipschitz constants LR and Lp can be both explicitly derived. For instance,
assume that the distribution P of X has compact support included in the ball
B(0, r) = {x ∈ R

d : ||x|| ≤ r} relative to the Euclidean norm || · || with
r > 0 and is absolutely continuous w.r.t. the Lebesgue measure with a density
bounded by M > 0. Thus, the uniform Lipschitz conditions are then fulfilled
with LR = MVd,r and Lp = MVd−1,r, where Vd,r = πd/2rd/Γ(d/2 + 1) is the
volume of the ball B(0, r) and z ≥ 0 
→ Γ(z) =

∫∞
0 tz−1e−tdt means the Gamma

function. We refer the reader to the Appendix section for further details, see
Lemmas 10 and 11 therein, and to [2] for additional examples. In contrast, a
necessary condition for Assumption 3 to be satisfied is the absolute continuity
of the measure P w.r.t. the Lebesgue measure, see Section 4 in [36]. The bounds
stated in the theorem below reveal the accuracy of the statistical estimates (5)
and (6) and highlight their behavior through explicit constants.

Theorem 4. Suppose that the distribution P of the r.v. X is τ sub-Gaussian
and satisfies Assumptions 1, 2, 3 and 4. The following assertions hold true.

(i) For any δ ∈
(
max{Θ, 12.9d} e−

n
2 min

{
α,α2,αΔ/8

}
, 1

)
, we have with proba-

bility at least 1 − δ:

sup
x∈Rd

∣∣∣D̂AI-IRW(x) −DAI-IRW(x, P )
∣∣∣ ≤ Δ max

s=1,2

(
d + log(2/δ)

n

)1/s

+
√

8 log(Θ/δ)
n

,

where Δ = 512LRτ
2 max{1/(ξε), 2

√
2d/(γε)} with ξ ∈ (0, ε), α = (ε −

ξ)/(32τ2) and Θ = 12(2n)d+1/(d + 1)!.
(ii) Let r > 0. For any δ ∈

(
max{Θ, 12.9d} e−nmin

{
α,α2,αΔ/8

}
, 1

)
, we have

with probability at least 1 − δ:

sup
x∈Br

∣∣∣D̃MC
AI-IRW(x) −DAI-IRW(x, P )

∣∣∣ ≤ √
128 log(3Θ/2δ)

9n
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+ 2
√

d log (3rm) + log(6/δ)
18m + 4Lp

3m + 8Δ
3 max

s=1,2

(
d + log(2/δ)

n

)1/s

,

where the constants Θ, Δ, α and the parameter ξ ∈ (0, ε) are the same as
those involved in (i).

The upper confidence bound in assertion (i) is decomposed into two terms.
The first term, of order O(n−1/2), owes its presence to the replacement of W�

by its estimator. The second term, of order O(
√

log(n)/n) and exhibiting a
sublinear dependence in the dimension d, corresponds to the bound that would
be obtained if W� were known (it is then derived by means of the arguments
used to study the concentration properties of the empirical halfspace depth,
see chapter 26 in [46]). The upper confidence bound in assertion (ii) differs
from that in assertion (i) in two respects. First, the additional terms clearly
show the effect of the Monte Carlo approximation, which is negligible when
n � m. Second, the maximal deviation is taken over a compact subset of Rd.
Furthermore, our theoretical analysis can be easily extended to the deviations
of the sample version of IRW by simply omitting the term involving the square
root of the precision matrix corresponding to the first term of (i) and the last
term of (ii) leading to faster rates (see Section B.4 in the Appendix section).

Range of the confidence level The proof of the assertion (i) relies on con-
trolling the deviations between the eigenvectors (resp., the inverses of the square-
root eigenvalues) of Σ̂ and those of the true covariance matrix. The lower bound
of the δ-range results from this control and is not limiting in practice since it
decreases exponentially fast when the sample size increases.

About the constants Both upper bounds are provided with explicit con-
stants. The explicit linear dependence on the dimension d is due to the operator
norm that appears in the proof when controlling the eigenvectors of Σ̂ − Σ. It
implies an additional square root of d in the constant Δ following the classical
inequality ||A||op ≤

√
d||A||1 for any matrix A ∈ R

d×d of full rank d. How-
ever, Lipschitz constants Lp and LR, that are mandatory in order to derive
bounds uniformly on R

d (or Br), appear to exhibit an implicit dependence on
the dimension d. Indeed, these constants can be derived for r.v. valued in a
compact support with bounded density exhibiting an exponential dependence
on d. Unfortunately, this concern cannot be avoided unless removing the supre-
mum involved in (i) and (ii). While the depth value at a single point x ∈ R

d

is usually of limited importance, t is often more relevant in practice that an
ensemble of depth values, i.e. the set {D(x, P ), x ∈ R

d}, are simultaneously
well approximated by their empirical versions for comparison purposes. This
implies estimation guarantees for the ranks induced by the depth function when
computed on the whole sample X1, . . . , Xn, on which several applications such
as anomaly detection fully rely on. The eigengap γ appears in the denominator
due to the use of a variant of the Davis-Kahan theorem [11], so as to control
the deviations between the eigenvectors of Σ̂ and those of Σ, and can not be



3868 S. Clémençon et al.

avoided. Observe that both upper-bounds explode as γ or ε vanish. These con-
stants, related to the covariance matrix estimation, are often small in practice
(see Section 5 where they are computed on real-world benchmarked datasets).
However, they are often negligible w.r.t. the Lipschitz constant in the numerator
that is O(ed) as mentioned above and is thus not limiting.

On optimality In absence of lower bound (and to the best of our knowledge,
no such result is documented in the statistical depth literature yet), the opti-
mality of the bounds above cannot be claimed of course. However, the proof
partly consists in bounding the risk of the estimator of the covariance matrix
Σ and involves the estimation rates given in Lemma 9 in the Appendix, which
are known to be optimal for sub-Gaussian distributions [52]. It has been shown
that faster rates for the estimation of the inverse of the covariance matrix can
be established under additional sparsity assumptions (see e.g. Theorem 5 in [3]).

Choosing m The difficulty of approximating an integral over Rd by means of
Monte-Carlo techniques grows with d. Our theoretical results, such as the upper
bound in (ii), shed light on the behavior of m w.r.t. the dimension d. Indeed,
focusing on the term 4Lp/(3m), Lp can be made explicit for density bounded
distributions involving the volume of the unit sphere S

d−1 that depends expo-
nentially on d (see the paragraph above Theorem 4). Thus, m should be higher
than O(ed) to yield a good statistical approximation. However, in practice, since
computation times depend on m, a trade-off between statistical accuracy (the
higher m, the better) and computational burden (the higher m, the heavier)
must be found in practice, see Section 5. Regarding the terms in the upper-
bound of (ii), if the dimension is high in comparison to the number of MC
projections m, then 4Lp/(3m) will be the predominant term and the statistical
error will be negligible compared to the approximation one, which may appear
in practice. In contrast, if m is high enough compared to d, then the statis-
tical and approximation errors will be close. Indeed, the constant in the first
and second-term numerators behave similarly since d log(m) ≈ log(Θ). The last
term tends to be negligible compared to the previous two.

Remark 2 (Related work). We point out that non-asymptotic results about the
accuracy of sample versions of statistical depths, such as those stated above,
are seldom in the literature. To the best of our knowledge, rate bounds have
only been derived in the halfspace depth case before. The first result (see [46]
chapter 26), where uniform rates of the sample version are provided, uses the
fact that the set of halfspaces in R

d is of finite VC dimension. Recently, this
result has been refined under the Assumptions 3 and 4 in [2]. The convergence
rate of the Tukey depth corresponds to that of the AI-IRW regarding the sample
size. Asymptotic rates of convergence for the Monte Carlo approximation of the
halfspace depth, i.e., when the minimum over the unit hypersphere is approxi-
mated from a finite number of directions, have been recently established in [36].
In contrast to the finite-sample framework, uniform asymptotic rates have been
proved in several settings. Unfortunately, approximating a minimum over the
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unit sphere S
d−1 using a Monte Carlo scheme is not optimal. Indeed when the

distribution is assumed to belong to a bounded subset of Rd with bounded den-
sity, the authors obtain slow rates of order O((log(m)/m)1/(d−1)) suffering from
the curse of dimensionality. Futhermore, they show that obtaining uniform rates
of the halfspace depth approximation is not possible in absence of the bounded
density assumption, see Section 4.2 in [36].

5. Numerical experiments

The advantages of the novel notion of depth introduced in Section 3 are sup-
ported by various experimental results in this part. First, we explore empir-
ically the behavior of the returned ranks as the number m of sampled pro-
jections increases. A robust estimator of the AI-IRW is also introduced using
the well-known Minimum Covariance Determinant (MCD) estimator [42] of the
covariance matrix (used in the third line of the Approximation Algorithm 1).
Second, the application of the AI-IRW depth to anomaly detection is considered,
illustrating clearly the improvement on the performance attained.

5.1. On approximating the AI-IRW depth

The accuracy of Monte Carlo approximation is assessed for the empirical ver-
sions of the AI-IRW depth. In addition, robustness and computation time (see
Section C.1) of the proposed approximations are investigated.

5.1.1. Accuracy of the AI-IRW approximation

The accuracy of Monte Carlo approximation, depending on the number m of
random directions uniformly sampled, is evaluated for the empirical versions of
the AI-IRW depth. The experiment is based on samples of size n = 1000 drawn
from a centered Gaussian distribution with an identity covariance matrix and
one sampled from a Wishart distribution (with parameters (d, Id)), where the
dimension d varies in the range {2, 5, 10, 15, 20, 30, 40, 50}. We compute D̃MC

AI-IRW
and D̃MC

IRW on these samples by varying the number of projections m between 100
and 7000. Note that for an affine-invariant depth function, the depth contours of
an elliptical distribution equal its density contours. As none of AI-IRW and IRW
can be expressed by means of a closed analytical form, we propose to evaluate
the quality of the returned ranks considering those of the density of sampled
distribution as the “true” depth.

The coherence between ranks is assessed using the popular Kendall tau corre-
lation coefficient, see [22]. The procedure is repeated ten times, and the averaged
results are reported in Fig. 3. As expected, the approximation quality increases
with m and decreases with d. Sharp approximations are obtained with far less
than O(ed) projections for the three cases in the example involving a standard
Gaussian distribution. We can notice that estimating the covariance matrix and



3870 S. Clémençon et al.

Fig 3. Kendall correlation between population density ranks and the approximated ranks of
AI-IRW using SC (top), MCD estimates (middle) and those of IRW (bottom), depending
on the number of approximating projections m and the dimension d, for standard (left) and
correlated (right) Gaussian distribution.

inverting it numerically reduces slightly the convergence speed of the ranks as
the dimension increases. Furthermore, sharp approximations are obtained with
far less than O(ed) projections, also in the case of correlated Gaussian data.
Indeed, in the worst case, i.e. when d = 50, a correlation of 0.93 is attained for
AI-IRW, using both sample covariance (SC) and MCD (with support fraction
set to (n+d+1)/2) estimators, with only 5500 directions which is roughly 100×d
while e50 ≈ 1021. In low dimension, few projections are needed to obtain a corre-



Affine invariant IRW depth 3871

lation higher than 0.98. Kendall correlations of IRW are close to those of AI-IRW
with a slight advantage to the IRW depth as expected due to the presence of
an additional covariance estimate term. In view of these results and because
of the computation time of the approximations (documented in Section C.1 of
the Appendix), choosing m = 100 × d appears as a good compromise between
statistical accuracy and computation time, as done in the next experiments. All
the computations are performed using a computer with 3.2 GHz Intel processor
and 32 GB of RAM.

5.1.2. Robustness as the proportion of outliers increases

In this part, we examine the robustness of the ordering produced. It is based
on the construction of two contaminated datasets from samples of size n =
1000 drawn from the multivariate standard Gaussian distribution (standard, so
that affine non-invariant depths are not disadvantaged) in dimension d = 2.
To build corrupted dataset, the two following contaminated models are used.
The first is based on adding “isolated outliers” where each of them is defined
as (0, a) where a is sampled uniformly between [4, 8]. The second is based on
adding “aggregated outliers” by randomly and uniformly drawing a location b in
[4, 8] and then drawing anomalies following the Gaussian distribution N (b, I2)
where b is the vector (b, b). Therefore, each dataset is constructed as follows:
a proportion of outliers α ∈ [0, 0.15] is added to the normal data, represented
by the standard Gaussian distribution, following one of the two aforementioned
contamination models and thus yields two settings. The AI-IRW depth using
SC and MCD estimators as well as the IRW depth are computed on these
contaminated datasets, all with the number of Monte Carlo projections set to
m = 1000. The Kendall tau distance is used to measure the deviation between
the “true” ranks that are computed on samples without corruption and those
computed on samples with corruption w.r.t. a proportion of anomalies α. The
averaged Kendall tau’s (over 100 runs) are displayed in Fig. 4.

As expected, results show that the MCD estimator provides robustness to
the AI-IRW depth while the sample covariance estimator breaks down after
only 1% of anomalies. Interestingly, the MCD estimator does not bring more
robustness than the underlying robustness of the IRW depth. It highlights some-
how a “worst case” robustness between the estimator of the covariance matrix
and the underlying IRW depth which is reached by the latter. Therefore, we
emphasize that AI-IRW, despite introducing affine invariance to IRW depth,
does not enhance its robustness.

5.2. Application to anomaly detection

In this section, we study the performance of the proposed depth when dedicated
to the anomaly detection task. First, we show that the affine invariance increases
the ability to of AI-IRW to detect anomalies over IRW through a synthetic
experiment. Second, we benchmark AI-IRW with on various real-world datasets.
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Fig 4. Coherence of the returned rank measured by Kendall tau depending on outliers pro-
portion for Gaussian distribution with isolated outliers (left) and aggregated outliers (right)
for AI-IRW (using SC and MCD estimates) and IRW.

5.2.1. Anomaly detection: a comparison on a toy dataset

This part compares the AI-IRW depth using the sample covariance estimator
and the IRW depth regarding their performance for anomaly detection on a
simulated dataset. To conduct this experiment, we build a toy-contaminated
dataset (see Fig. 5, top) where five aggregated outliers (crossed points) and
five isolated outliers (triangles) are added to 1000 points stemming from a 2-
dimensional standard Gaussian distribution transformed adding the vector u =
(15, 55) and multiplying by the linear transformation described by matrix A =[
2 3
1 8

]
. Further, we compute AI-IRW (SC) and IRW depths on this dataset with

m = 105 to reduce the depth approximation by Monte Carlo. The scores for the
two benchmarked data depths, w.r.t. the index associated with the data, are
depicted in Fig. 5 (bottom). Outliers are indexed from 1000 to 1010. Two dotted
lines represent the lowest scores assigned by depth functions to normal data. The
figure shows that while IRW fails to give the lowest score to these anomalies
(most of the triangles and crosses are below the lowest normal score), AI-IRW
succeeds in assigning the ten lowest scores to the ten anomalies (triangles and
crosses are all below the lowest normal score). AI-IRW can assign the lowest
depth to these anomalies, while IRW fails to identify them. Thus, the affine
invariance strengthens the robustness and ability to detect anomalies even when
using a non-robust covariance matrix estimator. It is worth noting that contrary
to the experiment in Section 5.1.2, outliers are not that far from the normal
distribution and thus do not deteriorate the estimation of Σ̂.

5.2.2. Benchmarking AI-IRW using real-world datasets

To illustrate the performance improvement due to introduction of affine invari-
ance to the IRW, we conduct a comprehensive comparative study of anomaly
detection on 10 widely used datasets in the literature1: Mulcross, Shuttle, Thy-

1http://odds.cs.stonybrook.edu/

http://odds.cs.stonybrook.edu/
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Fig 5. Toy dataset (top) with aggregated outliers (crosses) and isolated outliers (triangles)
and the associated AI-IRW (SC) and IRW depth values (bottom). Values are plotted according
to their index in the data. The dotted line represents the lowest assigned score to normal data.

Table 1

Information on datasets considered for the performance comparison: the number n of
instances, the number d of attributes, γ̂ and ε̂ the eigengap and the smallest eigenvalue of

the SC estimator respectively.

n d % of anomaly γ̂ (×0.01) ε̂ (×0.01)

Ecoli 195 5 26 0.3 0.2
Shuttle 49097 9 7 9 5.7

Mulcross 262144 4 10 100 10-10

Thyroid 3772 6 2.5 0.01 0.1
Wine 129 13 7.7 0.9 0.9
Http 567479 3 0.4 19 2.9
Smtp 95156 3 0.03 3.9 36

Breastw 683 9 35 80 20
Musk 3062 166 3.2 9.4 6

Satimage 5803 36 1.2 283 2.6

roid, Wine, Http, Smtp, Ecoli, Breastw, Musk and Satimage varying in size and
dimension. Information of the benchmarked datasets such as the size, their per-
centage of anomalies and their estimated eigengap and smallest eigenvalues are
given in Table 1. We place ourselves in the unsupervised setting. We train all
methods on unlabeled data, and we use labels only to assess the performance
of the methods by Area Under the Receiver Operation Characteristic curve
(AUROC). We contrast the proposed approach with the affine non-invariant
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version, the original halfspace depth (T), halfspace mass depth (HM; [6]), the
AutoEncoder (AE; [1]) where the reconstruction error is used as anomaly score
and one of the most used multivariate anomaly detection algorithms: Isolation
Forest (IF; [27]). The related hyperparameters are set by default for simplicity.
Based on the previous experiment, AI-IRW, IRW, and halfspace depths are cal-
ibrated with m = 100 × d. From Table 2 one observes that AI-IRW uniformly
and significantly in many cases improves on standard IRW. This is rather com-
parable with Isolation Forest and the halfspace mass depth. AI-IRW, IRW, HM
and Tukey are implemented from scratch in python using numpy python library.
Isolation Forest is implementated using scikit-learn python library [39] while
the AutoEncoder implementation is based onpyod python library [57]. All the
computations are made by means of a computer with 3.2 GHz Intel proces-
sor and 32 GB of RAM. The computation time used to perform the anomaly
detection benchmark is displayed in Table 3.

Table 2

AUROCs of benchmarked anomaly detection methods.

AI-IRW IRW HM Tukey IF AE
Ecoli 0.85 0.83 0.88 0.68 0.77 0.64

Shuttle 0.99 0.99 0.99 0.86 0.99 0.99
Mulcross 1 0.98 1 0.87 0.96 1

Thyroid 0.98 0.80 0.84 0.92 0.97 0.97
Wine 0.96 0.96 0.99 0.71 0.8 0.72
Http 1 0.95 0.97 0.99 1 1

Smtp 0.96 0.77 0.74 0.85 0.90 0.82
Breastw 0.97 0.97 0.99 0.84 0.99 0.91
Musk 1 0.84 0.97 0.77 1 1

Satimage 0.99 0.96 0.98 0.95 0.99 0.98

Table 3

Computation time of benchmarked anomaly detection methods in seconds.

AI-IRW IRW HM T IF AE
Ecoli 0.04 0.005 0.02 0.005 0.13 9

Shuttle 20 6.8 1.5 6.8 1.4 469
Mulcross 75 27 6.2 27 5.9 2383
Thyroid 1 0.21 0.2 0.2 0.18 42
Wine 0.05 0.01 0.06 0.008 0.12 8.1
Http 97 45 11 45 11 5197
Smtp 22 4.5 1 4.5 1.88 903

Breastw 0.46 0.04 0.06 0.04 0.14 17.2
Musk 20.5 5.23 2.5 5.2 0.43 103

Satimage 6.3 2.63 0.9 2.6 0.31 76
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6. Conclusion

In this paper, we have introduced a novel notion of statistical depth (AI-IRW),
modifying the original Integrated Rank-Weighted (IRW) depth proposed in [40].
It has been shown that the AI-IRW depth does not only inherit all the com-
pelling features of the IRW depth, its theoretical properties and its computa-
tional advantages (no optimization problem solving is required to compute it),
but also fulfills in addition the affine invariance property, crucial regarding in-
terpretability issues. The natural idea at work consists in averaging univariate
Tukey halfspace depths computed from random projections of the data onto
(nearly) uncorrelated lines, defined by the (empirical) covariance structure of
the data, rather than projections onto lines fully generated at random. Though
the AI-IRW sample version exhibits a complex probabilistic structure, an esti-
mator of the precision matrix being involved in its definition, a non-asymptotic
analysis has been carried out here, revealing its good concentration properties
around the true AI-IRW depth. The merits of the AI-IRW depth have been illus-
trated by encouraging numerical experiments, for anomaly detection in partic-
ular, offering the perspective of a widespread use for various statistical learning
tasks.

This Appendix is organized as follows.

• Useful preliminary results are stated and proved in Appendix A.
• The proofs of the results stated in the paper are given in Appendix B.
• Additional experiments are displayed in Appendix C.

Appendix A: Preliminary results

First, we recall some lemmas on linear algebra, halfspace depth and covariance
matrix estimation, used in the subsequent proofs.

A.1. Basics of linear algebra

Here useful results of linear algebra are recalled for clarity.

Lemma 5 ([53], Theorem 4.1). Let A and B be two invertible matrices of size
d× d and ||A||op be the operator norm of matrix A. Then it holds:

||A−1 −B−1||op ≤ ||A−1||op||B−1||op||A−B||op. (7)

Lemma 6 ([52], Lemma 2.2). Let A be a matrix of size d × d and Nρ be an
ρ-net of Sd−1. Then it holds:

||A||op ≤ 1
1 − 2ρ max

v∈Nρ

|v�Av|.
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Lemma 7. Let A1 and A2 be two real symmetric and invertible matrices of
dimension d × d with O1D1O

�
1 and O2D2O

�
2 their eigenvalues decomposition

in orthornormal bases. Denotes W1 = D
−1/2
1 O�

1 and W2 = D
−1/2
2 O�

2 . Then it
holds:

||W1 −W2||op ≤ ||D−1/2
2 ||op

(
||D1/2

1 −D
1/2
2 ||op ||D−1/2

1 ||op + ||O1 −O2||op
)
.

Proof.

||W1 −W2||op ≤ ||O1||op ||D−1/2
1 −D

−1/2
2 ||op + ||O1 −O2||op ||D−1/2

2 ||op
≤ ||D−1/2

1 −D
−1/2
2 ||op + ||D−1/2

2 ||op||O1 −O2||op
(i)
≤ ||D−1/2

2 ||op
(
||D1/2

1 −D
1/2
2 ||op ||D−1/2

1 ||op + ||O1 −O2||op
)
,

where (i) holds due to Lemma 5.

A.2. Non-asymptotic rates on halfspace depth and sample
covariance matrix

We now recall useful results on maximum deviations of the halfspace depth
estimator as well as the sample covariance matrix.

Lemma 8 ([46], Chapter 26). Let P ∈ P(Rd). Let X1, . . . , Xn a sample from
P with empirical measure P̂ = (1/n)

∑n
i=1 δXi . Denote by Fu and F̂u the cdf of

Pu and P̂u respectively. Then, for any t > 0, it holds:

P

⎛⎜⎝ sup
x∈R

d

u∈S
d−1

∣∣∣F̂u(u�x) − Fu(u�x)
∣∣∣ > t

⎞⎟⎠ ≤ 6(2n)d+1

(d + 1)! exp(−nt2/8).

Lemma 9 (Variant of [52], Proposition 2.1). Let Σ be the covariance matrix of
a τ sub-Gaussian random variables X that takes its values in R

d. Let X1 . . . , Xn

be a sample from X and denote by Σ̂ = 1
n

∑n
i=1 XiX

�
i the SC estimator of Σ.

Then it holds:

P

(
||Σ̂ − Σ||op > t

)
≤ 2 × 9d exp

{
−n

2 min
{

t2

(32τ2)2 ,
t

32τ2

}}
.

Let σd > · · · > σ1 and σ̂d > · · · > σ1 be respectively the ordered eigenvalues of
Σ and Σ̂. Using Weyl’s Theoreom [54], it holds:

P

(
max

1≤k≤d
|σ̂k − σk| > t

)
≤ 2 × 9d exp

{
−n

2 min
{

t2

(32τ2)2 ,
t

32τ2

}}
.

Proof. Let Nρ be an ρ-net of the sphere S
d−1. Applying Lemma 6 on Σ̂−Σ, for

any t, ρ > 0, we have

P

(
||Σ̂ − Σ||op > t

)
≤ P

(
1

1 − 2ρ max
v∈Nρ

|v�(Σ̂ − Σ)v| > t

)
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≤ |Nρ| P
(
|v�(Σ̂ − Σ)v| > (1 − 2ρ) t

)
,

where |Nρ| stands for the cardinal of the set Nρ. Noticing that Σ̂ = 1
n

∑n
i=1 XiX

�
i

is a sum of independent matrices we have

v�(Σ̂ − Σ)v = 1
n

n∑
i=1

Zi − EZi,

where Zi = (v�Xi)2 for every 1 ≤ i ≤ n and Zi−EZi are i.i.d random variables
that are ((16τ)2, 16τ2) sub-exponential.

Choosing ρ = 1/4, noticing that N1/4 ≤ 9d and applying the sub-exponential
tail bound lead to the desired result.

Appendix B: Technical proofs of the main results

We now prove the main results stated in the paper.

B.1. Proof of Proposition 3

B.1.1. Affine invariance

Let A ∈ R
d×d be a non-singular matrix and b ∈ R

d. Let ΣX and ΣAX the
covariance matrix of X and AX respectively. Define the Cholesky decomposition
as ΣX = ΛXΛ�

X and ΣAX = AΛXΛ�
XA

� = ΛAXΛ�
AX . It holds:

DAI-IRW(Ax + b, AX + b)

= 1
Vd

∫
Sd−1

DH,1(〈
Λ−�

AX+bu

||Λ−�
AX+bu||

, Ax + b〉, 〈 Λ−�
AX+bu

||Λ−�
AX+bu||

, AX + b〉) du

= 1
Vd

∫
Sd−1

DH,1(〈Λ−�
AX+bu,Ax + b〉, 〈Λ−�

AX+bu,AX + b〉) du

= 1
Vd

∫
Sd−1

DH,1(〈Λ−�
AXu,Ax〉, 〈Λ−�

AXu,AX〉) du

= 1
Vd

∫
Sd−1

DH,1(〈u,Λ−1
X x〉, 〈u,Λ−1

X X〉) du

= 1
Vd

∫
Sd−1

DH,1(〈
Λ−�

X u

||Λ−�
X u|| , x〉, 〈

Λ−�
X u

||Λ−�
X u|| , X〉) du

= DAI-IRW(x, P ).

The same reasoning applies for any whitening matrices.

B.1.2. Proving maximality at the center

Assume that P is halfspace symmetric about a unique β, i.e., P (X ∈ Hβ) ≥ 1
2

for every closed halfspace Hβ such that β ∈ ∂H with ∂H the boundary of H.
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Thus, it is easy to see that DAI-IRW(β, P ) ≥ 1
2 . The uniqueness of β and the fact

that DAI-IRW is lower than 1/2 for any element in R
d by definition imply that

β = argsup
x∈Rd

DAI-IRW(x, P ).

B.1.3. Vanishing at infinity

The proof is a particular case of the proof of theorem 1 in [10]. We detail it for the
sake of clarity. Let U be a random variable following ωd−1, the uniform measure
on the unit sphere S

d−1. Defines V = W�U/||W�U || and νd−1 its probability
distribution. Let θ > 0 and x ∈ R

d, then r(θ) := νd−1{v : |〈v,x〉|
||x|| ≤ θ} goes to

zero when θ → 0. For any x ∈ R
d\{0}, we have

DAI-IRW(x, P ) =
∫
Rd

min
{
Fv(v�x), 1 − Fv(v�x)

}
dνd−1(v)

≤
∫
Rd

I

{
v : |〈v, x〉|

||x|| ≤ θ

}
dνd−1(v)

+
∫
Rd

Fv(v�x) I
{
v : |〈v, x〉|

||x|| > θ, 〈v, x〉 ≤ 0
}

dνd−1(v)

+
∫
Rd

(1 − Fv(v�x)) I
{
v : |〈v, x〉|

||x|| > θ, 〈v, x〉 > 0
}

dνd−1(v)

≤ r(θ) +
∫
Rd

Fv(−θ||x||) I
{
v : |〈v, x〉|

||x|| > θ, 〈v, x〉 ≤ 0
}

dνd−1(v)

+
∫
Rd

(1 − Fv(θ||x||)) I
{
v : |〈v, x〉|

||x|| > θ, 〈v, x〉 > 0
}

dνd−1(v).

Now, when ||x|| → ∞, the dominated convergence theorem ensures that

lim sup
||x||→∞

DAI-IRW(x, P ) ≤ r(θ) →
θ→0

0.

B.1.4. Decreasing along rays

The proof is a slight modification of the proof of Assertion (iii) of Theorem 2 in
[40]. Details are left to the reader.

B.1.5. Continuity

For any P ∈ P(Rd), the continuity of the inner product and the cdf ensure
continuity of DH,1(v�x, v�X) for any v ∈ S

d−1. Therefore, the continuity of
x 
→ DAI-IRW(x, P ) follows from dominated convergence.



Affine invariant IRW depth 3879

B.2. Proof of Theorem 4

We now prove the main results of the paper. Defines the following SVD decom-
position of the covariance matrix Σ = ODO�. To derive our results, we set our
whitening matrix as W = D−1/2O�. Our results holds true for any whitening
matrix.

B.2.1. Assertion (i)

Introducing terms, using the fact that z 
→ min(z, 1−z) is 1-Lipschitz and using
triangle inequality, it holds:

sup
x∈Rd

∣∣∣D̂AI-IRW(x) −DAI-IRW(x, P )
∣∣∣ ≤ sup

x∈Rd

E

∣∣∣F̂V̂ (V̂ �x) − FV̂ (V̂ �x)
∣∣∣︸ ︷︷ ︸

(1)

+ sup
x∈Rd

E

∣∣∣FV̂ (V̂ �x) − FV (V �x)
∣∣∣︸ ︷︷ ︸

(2)

.

Now, the first term (1) can be controlled using the bound for the deviations
of halfspace depth deferred in Lemma 8. Thus, for any t > 0 it holds:

P

(
sup
x∈Rd

E

∣∣∣F̂V̂ (V̂ �x) − FV̂ (V̂ �x)
∣∣∣ > t/2

)
≤ P

(
sup
y∈R

d

u∈S
d−1

∣∣∣F̂u(u�y) − Fu(u�y)
∣∣∣ > t/2

)

≤ 6(2n)d+1

(d + 1)! exp(−nt2/32). (8)

The second term (2) relies on the influence of the deviations of the sample
covariance matrix. First remark that:

sup
x∈Rd

E

∣∣∣FV̂ (V̂ �x) − FV (V �x)
∣∣∣ ≤ sup

x∈R
d

u∈S
d−1

∣∣∣P(〈
Ŵ�u

||Ŵ�u||
, X − x

〉
≤ 0

∣∣∣ Sn

)

− P

(〈
W�u

||W�u|| , X − x

〉
≤ 0

) ∣∣∣.
Now, since X is radially Lipschitz continuous, we have:∣∣∣∣∣P

(〈
Ŵ�u

||Ŵ�u||
, X − x

〉
≤ 0

∣∣∣ Sn

)
− P

(〈
W�u

||W�u|| , X − x

〉
≤ 0

) ∣∣∣∣∣
≤ LR

∣∣∣∣∣
∣∣∣∣∣ Ŵ�u

||Ŵ�u||
− W�u

||W�u||

∣∣∣∣∣
∣∣∣∣∣ .
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Introducing terms and using triangle inequality leads to:∣∣∣∣∣
∣∣∣∣∣ Ŵ�u

||Ŵ�u||
− W�u

||W�u||

∣∣∣∣∣
∣∣∣∣∣ ≤ ||Ŵ −W ||op

||Wu|| + ||Ŵu||
(

1
||Ŵu||

− 1
||Wu||

)

≤ 2||Ŵ −W ||op
||Wu|| ,

yielding:

sup
x∈Rd

E

∣∣∣FV̂ (V̂ �x) − FV (V �x)
∣∣∣ ≤ 2LR√

ε
||Ŵ −W ||op. (9)

Assume that ODO� and ÔD̂Ô� are the eigenvalues decomposition of Σ and
Σ̂ in orthonormal bases. Thus, thanks to Lemma 7, we have:

||Ŵ −W ||op ≤ ||D−1/2||op
(
||D̂1/2 −D1/2||op ||D̂−1/2||op + ||Ô −O||op

)
.

Now, since min
k≤d

√
σ̂k ≥ √

ε − max
k≤d

|
√
σ̂k − √

σk| and max
k≤d

|
√
σ̂k − √

σk| ≤
1√
ε

max
1≤k≤d

|σ̂k − σk|, using Weyl’s inequality leads to:

sup
x∈Rd

E

∣∣∣FV̂ (V̂ �x) − FV (V �x)
∣∣∣ ≤ 2LR

ε

(
||Σ̂ − Σ||op

ε− ||Σ̂ − Σ||op
+ ||Ô −O||op

)
.

Let Aξ =
{
||Σ̂ − Σ||op < ε− ξ

}
for any ξ ∈ [0, ε). Using union bound and

combining (9) with the previous equation, for any t > 0 and ξ ∈ (0, ε) it holds:

P

(
sup
x∈Rd

E

∣∣∣FV̂ (V̂ �x) − FV (V �x)
∣∣∣ > t/2

)
≤ P

(
2LR

ξε
||Σ̂ − Σ||op > t/4

)
+ P

(
2LR

ε
||Ô −O||op > t/4

)
+ P

(
Ac

ξ

)
,

where Ac
ξ stands for the complementary event of Aξ. Applying Lemma 9 gives:

P

(
||Σ̂ − Σ||op >

ξεt

8LR

)
≤ 2 × 9d exp

{
−n

2 min
{

(ξεt)2

(256LRτ2)2 ,
ξεt

256LRτ2

}}
,

(10)
and

P
(
Ac

ξ

)
≤ 2 × 9d exp

{
−n

2 min
{

(ε− ξ)2

(32τ2)2 ,
ε− ξ

32τ2

}}
. (11)

Furthermore, it is easy to see that ||Ô−O||op ≤
√
d max

k≤d
||Ôk−Ok|| where Ok

is the k-th column of the matrix O. Let γ be the minimum eigengap, following
a variant of the Davis-Kahan theorem [11] (see Corollary 1 in [55]), it holds:

||Ô −O||op ≤ 2
√

2d||Σ̂ − Σ||op
γ

.
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Using Lemma 9 again leads to:

P

(
4LR

√
2d||Σ̂ − Σ||op
γε

> t/4
)

≤ 2 × 9d exp
{
−n

2 min
{

(γεt)2

(512LR

√
2dτ2)2

,
γεt

512LR

√
2dτ2

}}
. (12)

Combining (10), (11) and (12) it holds:

P

(
sup
x∈Rd

E

∣∣∣FV̂ (V̂ �x) − FV (V �x)
∣∣∣ > t/2

)
≤ 6×9d exp

(
−n

2 min
{

(βt)2 , βt
})

,

for any t ≤ (ε − ξ)/(32τ2β) where β = ε
256LRτ2 (ξ ∧ γ

2
√

2d ). Finally, for any
t ≤ (ε− ξ)/(32τ2β) it holds:

P

(
sup
x∈Rd

∣∣∣D̂AI-IRW(x) −DAI-IRW(x, P )
∣∣∣ > t

)
≤ 6.9d exp

(
−n

2 min
{

(βt)2 , βt
})

+ 6(2n)d+1

(d + 1)! exp(−nt2/32). (13)

Bounding each term in the right side by δ/2 and reverting the equation lead to
the desired result.

B.2.2. Assertion (ii)

Let Br a centered ball of R
d with radius r > 0 and assume that X satisfies

assumption 2 for any x ∈ Br. Introducing terms and using triangle inequality,
it holds:

sup
x∈Br

∣∣∣D̃MC
AI-IRW(x) −DAI-IRW(x, P )

∣∣∣ ≤ sup
x∈Rd

∣∣∣D̂AI-IRW(x) −DAI-IRW(x, P )
∣∣∣︸ ︷︷ ︸

(1)

+ sup
x∈Br

∣∣∣DMC
AI-IRW(x, P ) −DAI-IRW(x, P )

∣∣∣︸ ︷︷ ︸
(2)

.

The first term (1) can be bounded using assertion (i) while controlling the
approximation term (2) relies on classical chaining arguments. As the function
z 
→ min(z, 1− z) is 1-Lipschitz for any z ∈ (0, 1) and by triangle inequality, for
any y in Br we have:∣∣∣DMC

AI-IRW(y, P ) −DAI-IRW(y, P )
∣∣∣ ≤ 1

m

m∑
j=1

∣∣∣P{
〈Vj , X − y〉 ≤ 0

∣∣ Vj

}
−

E [P {〈Vj , X − y〉 ≤ 0}]
∣∣∣.
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Since it is an average of bounded and i.i.d random variables, combining Ho-
effding inequality and union bound, for any t > 0 and any y in Br it holds:

P

(∣∣∣DMC
AI-IRW(y, P ) −DAI-IRW(y, P )

∣∣∣ > t/2
)
≤ 2 exp

(
−mt2/2

)
. (14)

As X is uniformly continuous Lipschitz in projection for any u ∈ S
d−1, ob-

serving that ∀(x, y) ∈ B2
r , it holds:∣∣∣DMC

AI-IRW(x, P ) −DAI-IRW(x, P )
∣∣∣ ≤ ∣∣∣DMC

AI-IRW(x, P ) −DMC
AI-IRW(y, P )

∣∣∣
+

∣∣∣DMC
AI-IRW(y, P ) −DAI-IRW(y, P )

∣∣∣
+

∣∣∣DAI-IRW(x, P ) −DAI-IRW(y, P )
∣∣∣

≤ 2Lp ||x− y|| +
∣∣∣DMC

AI-IRW(y, P ) −DAI-IRW(y, P )
∣∣∣.

(15)

Now let ζ > 0 and y1, . . . , yN (ζ,Br,||.||2) be a ζ-coverage of Br with respect to
||.||2. We have:

log (N (ζ,Br, ||.||2)) ≤ d log (3r/ζ) . (16)

Set N = N (ζ,Br, ||.||2)) for simplicity. There exists � ≤ N such that ||x −
y�||2 ≤ ζ. Thus, (15) leads to∣∣∣DMC

AI-IRW(x, P ) −DAI-IRW(x, P )
∣∣∣ ≤ 2Lp ζ +

∣∣∣DMC
AI-IRW(y�, P ) −DAI-IRW(y�, P )

∣∣∣.
Applying (14) to every y� and the union bound, for any t > 0, we get:

P

(
sup
�≤N

∣∣∣DMC
AI-IRW(y�, P ) −DAI-IRW(y�, P )

∣∣∣ > t/2
)

≤ 2N exp
(
−mt2/2

)
,

yielding:

P

(
sup
x∈Br

∣∣∣DMC
AI-IRW(x, P ) −DAI-IRW(x, P )

∣∣∣ > t/2
)
≤2N exp

(
−2m (t/2 − 2Lpζ)2

)
.

Using (13), the union bound and (16), we obtain:

P

(
sup
x∈Br

∣∣∣D̃MC
AI-IRW(x) −DAI-IRW(x, P )

∣∣∣ > t

)
≤ P

(
sup
x∈Br

∣∣∣D̂AI-IRW(x) −DAI-IRW(x, P )
∣∣∣ > t/2

)
+ P

(
sup
x∈Br

∣∣∣DMC
AI-IRW(x, P ) −DAI-IRW(x, P )

∣∣∣ > t/2
)

≤ 6.9d exp
(
−n

2 min
{

(βt/2)2 , βt/2
})

+ 6(2n)d+1

(d + 1)! exp(−nt2/128)
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+ 2
(

3r
ζ

)d

exp
(
−2m (t/2 − 2Lpζ)2

)
.

Choosing ζ ∼ m−1, bounding each term on the right-hand side by δ/3 and
reverting the previous equation lead to the desired result.

B.3. Geometrical results on the Lipschitz constants involved in
Assumptions 3 and 4

Lemma 10. Let r > 0 and denote by Vd,r the volume of the d-ball B(0, r).
Assume that X takes its values in B(0, r) and has an M - bounded density w.r.t.
the Lebesgue measure λ. The r.v. X is uniformly Radially Lipschitz Con-

tinuous with constant LR = MVd,r.

Proof. Let x ∈ R
d. By ||.||g it means the geodesic norm on the unit sphere of

R
d. It holds:

|φ(u, x) − φ(v, x)|
≤ P {X ∈ B(0, r) : 〈u,X − x〉 and 〈v,X − x〉 are of opposite sign}
≤ M λ {z ∈ B(−x, r) : 〈u, z〉 and 〈v, z〉 are of opposite sign}
(i)
≤ M Vd,r ×

2
π

arccos (〈u, v〉)

= M Vd,r ×
2
π

||u− v||g
≤ M Vd,r ||u− v||,

where (i) arises from the fact that the volume of Eu,x,y = {z ∈ B(−x, r) :
〈u, z〉 and 〈v, z〉 are of opposite sign} is the volume of two cones of angle ||u −
v||g, as depicted in Fig. 6.

Lemma 11. Let r > 0 and assume that X takes its values in B(0, r) and has M -
bounded density w.r.t. the Lebesgue measure λ. Thus X is uniformly Lipschitz

continuous in projection with constant Lp = MVd−1,r.

Proof. Let u ∈ S
d−1. By ||.||g it means the geodesic norm on the unit sphere of

R
d. It holds:

|φ(u, x) − φ(u, y)|
≤ P {X ∈ B(0, r) : 〈u,X − x〉 and 〈u,X − y〉 are of opposite sign}
≤ M λ {z ∈ B(0, r) : 〈u, z − x〉 and 〈u, z − y〉 are of opposite sign}
(i)
≤ M Vd−1,r × |〈u, x〉 − 〈u, y〉|
≤ M Vd−1,r ||x− y||,

where (i) arises from the fact that we encompass Fu,x,y by an hyper-cylinder
of length |〈u, x〉 − 〈u, y〉| where Fu,x,y = {z ∈ B(0, r) : 〈u, z − x〉 and 〈u, z −
y〉 are of opposite sign}, as illustrated in Fig. 7.
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Fig 6. Illustration of the set Eu,x,y in R2. It corresponds to the portion of B(−x, r) hatched
in red.

Fig 7. Illustration of the set Fu,x,y in R2. It corresponds to the portion of B(0, r) hatched in
red.

B.4. Finite-sample analysis of the IRW depth

A finite sample analysis on IRW can be derived from our results on AI-IRW as
it is described in the next corollary.

Corollary 12. Suppose that the distribution P of the r.v. X satisfies Assump-
tions 3 and 4. Then, for any δ ∈ (0, 1), it holds:

sup
x∈Br

∣∣∣D̂MC
IRW (x)−DIRW(x, P )

∣∣∣≤√
8 log(Θ/δ)

n
+ 2

√
d log (3rm) + log(6/δ)

8m + 2Lp

m
,
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where Θ = 12(2n)d+1/(d + 1)!.

Proof. First notice that:

sup
x∈Br

∣∣∣D̂MC
IRW(x) −DIRW(x, P )

∣∣∣ ≤ sup
x∈Rd

∣∣∣D̂IRW(x) −DIRW(x, P )
∣∣∣︸ ︷︷ ︸

(1)

+ sup
x∈Br

∣∣∣DMC
IRW(x, P ) −DIRW(x, P )

∣∣∣︸ ︷︷ ︸
(2)

.

Now, the first term (1) can be controlled using the bound for the deviations of
Halfspace Depth deferred in Lemma 8. Thus, for any t > 0, it holds:

P

(
sup
x∈Rd

∣∣∣D̂IRW(x) −DIRW(x, P )
∣∣∣ > t/2

)
≤ 6(2n)d+1

(d + 1)! exp(−nt2/32). (17)

The second term can be bounded following the same reasoning than for the
Monte-Carlo approximated term of AI-IRW described in Section B.2.2. Thus,
with the same notations, for any t > 0, we have:

P

(
sup
x∈Br

∣∣∣DMC
IRW(x, P ) −DIRW(x, P )

∣∣∣ > t/2
)

≤ 2N exp
(
−2m (t/2 − 2Lpζ)2

)
.

(18)

Using (17) and (18), one gets:

P

(
sup
x∈Br

∣∣∣D̂MC
IRW(x) −DIRW(x, P )

∣∣∣ > t

)
≤ P

(
sup
x∈Br

∣∣∣D̂IRW(x) −DIRW(x, P )
∣∣∣ > t/2

)
+ P

(
sup
x∈Br

∣∣∣DMC
IRW(x, P ) −DIRW(x, P )

∣∣∣ > t/2
)

≤ 6(2n)d+1

(d + 1)! exp(−nt2/32) + 2
(

3r
ζ

)d

exp
(
−2m (t/2 − 2Lpζ)2

)
.

Choosing ζ ∼ m−1, bounding each term on the right-hand side by δ/2 and
reverting the previous equation lead to the desired result.

Appendix C: Additional experiments

C.1. Computation time of the AI-IRW depth using both SC and
MCD estimators

Computation times related to the first experiment of Section 5.1 are displayed
in Fig. 8 for the AI-IRW depth using both SC and MCD estimators as well as
the IRW depth.
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Fig 8. Computation time of the AI-IRW depth using both SC and MCD estimators and the
IRW depth depending on the number of projections for various dimensions. AI-IRW and IRW
have the same computation time since the computation of the sample covariance matrix is
negligible w.r.t. the computation of the IRW depth.
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C.2. Illustration of affine (non-)invariance

Fig. 9 illustrates the affine non-invariance of the IRW and the affine invariance
of the AI-IRW. To that end, we simulate 10000 points stemming from a 2-
dimensional centred Gaussian distribution with a covariance matrix drawn from
a Wishart distribution. Further, we compute the AI-IRW depth with the sample
covariance estimator and the IRW depth. In Fig. 9, we display the data with
the score returned by the two depth functions such that the lighter it is, the
farther from the centre it is. We can see that the score returned by the IRW
and its contours are spherical, while those returned by the AI-IRW depth are
ellipsoidal like those of the true underlying distribution.

Fig 9. The IRW depth (left) and the AI-IRW (right) depth on a Gaussian distribution. The
darker the point, the higher the depth.

C.3. Variance of the AI-IRW score

C.3.1. Variance with respect to sample realizations

We compare the stability of the approximation estimator AI-IRW measuring its
variance. For 100 points stemming from a 10-dimensional Gaussian distribution
with zero mean and covariance matrix drawn from the Wishart distribution
(with parameters (d, Id)) on the space of definite matrices, the variance of the
returned score is computed on two points, denoted by x1 and x2, drawn ran-
domly from the 100 points previous points. The score is computed for AI-IRW,
IRW, halfspace mass and halfspace depths each approximated using m = 1000
directions. Fig. 10 illustrates that (i) no additional variance is introduced by the
affine invariant version. It further shows (ii) closeness of the three scores (due
to absence of correlation) as well as (iii) their higher concentrations compared
to halfspace mass and halfspace depth.

C.3.2. Variance w.r.t. noisy directions

The experiment in Section C.3.1 is repeated with different level of Gaussian noise
that are added to sampled directions, i.e. U = Z+εN (0,Id)

||Z+εN (0,Id|| . This experiment is
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Fig 10. Variance of the score of x1, x2 (from left to right) over 1000 repetitions for the
AI-IRW, IRW, halfspace mass (HM) and halfspace (Tukey) depths.

conducted with AI-IRW, IRW, HM and halfspace depth using m = 1000 sampled
directions. The root mean square variance (over 100 repetitions) between the
returned score and the original score (without noise) are computed for x1, x2
(same as those in Section C.3.1), see Fig. 11. Results show that AI-IRW (using
the SC estimator) shares very few differences with IRW while the superiority
of AI-IRW (and IRW) over the existing methods depth such as haflspace and
halfspace mass is highlighted.

Fig 11. Variance of the score of x1, x2 (from left to right) over the noise level induced in
sampled directions with 1000 repetitions for the AI-IRW, IRW, Tukey depth.
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