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Abstract: In this paper, we aim to test the overall significance of regres-
sion coefficients in high-dimensional single-index models. We first reformu-
late the hypothesis testing problem under elliptical distributions for pre-
dictors. Applying distribution-based transformation, we introduce a high-
dimensional score-type test statistic. Notably, no moment condition for the
error term is required. Our introduced procedures are thus robust with re-
spect to outliers in response. Moreover our procedure is free of variance es-
timation of the error term. We establish the test statistic’s asymptotic nor-
mality under null hypothesis. Power analysis is also investigated. To further
improve computational efficiency and enhance empirical powers, we also
introduce a two-stage test procedure under ultrahigh-dimensional settings
based on random data splitting. To eliminate the additional randomness in-
duced by data splitting, we further develop a powerful ensemble algorithm
based on multiple data splitting. We show that the ensemble algorithm can
control the type I error rate at a given significance level. Extension to partial
significance testing problem is also investigated. Lastly, numerical studies
and real data analysis are conducted to compare with existing approaches
and to illustrate the robustness and validity of our proposed test procedures.
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1. Introduction

With the rapid development of information technology, high-dimensional data
are now frequently collected in various areas, including biomedical engineering,
microarray analysis, and finance. In these areas, a critical question is whether
predictors X = (X1, · · · , Xp)T ∈ Rp as a whole contribute to an interested
response Y ∈ R or not. The main challenge is that the dimension p is usually
very large, even much larger than the sample size n. The high-dimensional nature
leads classical procedures, such as F-test, fail.

Recently, many efforts have been devoted to solve this problem for high-
dimensional data. [13] proposed an empirical Bayes test. [30] illustrated the fail-
ure of F-test for high-dimensional data, introduced a novel test statistic based on
a U-statistic, and established its asymptotic distribution. [11] proposed a rank-
based score test for high-dimensional linear model. [4] employed a U-statistic
of order two and enhanced the power using refitted cross-validation variance
estimation. For other recent developments, see also [21] and [22].

However, these test procedures are limited to linear models, which are often
restrictive for high-dimensional data modeling. In this paper, we consider high-
dimensional single-index model, that is,

Y = g(βTX, ε) with ε⊥⊥X. (1.1)

Here β = (β1, · · · , βp)T is a p-dimensional unknown parametric vector, the link
function g(·, ·) is unknown and ⊥⊥ means independence. Compared with linear
model, model (1.1) is very general. Actually, it includes linear models, general-
ized linear models and transformed models [12]. In model (1.1), Y⊥⊥X|βTX,
which means that the response Y is independent of the predictors X given the
index variable βTX.
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We mainly concern about whether the predictors X are significant for the
response. This leads to a global hypothesis testing problem for the index pa-
rameter β

H0 : β = 0, versus H1 : β �= 0. (1.2)

Recently, [6] developed test procedures for an individual regression coefficient
of interest in high-dimensional single-index model, while we aim to test the
overall significance of predictors in this paper. Besides we want to introduce
robust procedures. The existence of the unknown link function g(·, ·) makes the
above inference problem difficult. A key observation is that when the predictors
follow elliptical distributions, the general single-index model can be recast into
pseudo-linear models with transformed response [31, 28]. Thus estimation of the
unknown link function g(·, ·) can be avoided. For robustness consideration, we
adopt the distribution-based transformation. Based on this transformation, we
construct a high-dimensional score-type test procedure. Notably, moment con-
dition for the error term ε is totally avoided for our procedure. Our introduced
procedures are thus robust with respect to outliers in response. As noted by [4],
empirical performances of many existing procedures are adversely affected by
the overestimation of the variance. While our procedure is free of error variance
estimation.

We establish the asymptotic normality under the null hypothesis. Power anal-
ysis is also investigated under local alternative hypotheses. Different from [1],
[30], and [11], the asymptotic distributions in our paper are not derived under
the pseudo-independence assumption under which the predictors X are gener-
ated by larger dimensional factors. Instead we assume that the predictors follow
the elliptical distribution, which is very general and includes multivariate nor-
mal distribution and multivariate t distribution. We note that [4] and [22] also
made elliptical distribution assumption in high-dimensional inference for linear
model.

When the dimension p is much larger than the sample size n in ultrahigh-
dimensional data, the aforementioned score test might perform unsatisfactorily.
Indeed even though the response Y depends on the predictors X, usually only
a small subset of predictors are significant to the response. This then motivates
us to introduce a two-stage test procedure based on random data splitting. The
idea of data splitting has been used successfully in various statistical problems.
In fact, [29] and [24] adopted the data splitting strategy to conduct variable
selection with error rate control. [8] used the data splitting idea to estimate the
error variance in an ultrahigh-dimensional linear model. The basic idea here is
to use one part of the data to detect potentially significant variables and re-
duce dimensionality. Then we apply the proposed high-dimensional score test
procedure to the other part of the data and the reduced predictors to further
determine their overall significance. We should emphasize that the potentially
significant variables detected in the first step may include many noise predic-
tors. Actually, all variables are inactive under the null hypothesis. Thus their
significance should be checked. By exploiting the sparsity information, the two-
stage procedure can enhance the detection power. To reduce the additional
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randomness induced by data splitting, we further develop a powerful ensem-
ble algorithm based on a multiple data splitting strategy. We show that the
ensemble algorithm can control the type I error rate.

Besides global testing, testing the significance of a part β is also of great
importance. Many authors have investigated this important problem for linear or
generalized linear regression models. See for instance [18], [14], and more recently
[15]. Inspired by these works, we then further investigate partial significance
testing problem in high-dimensional single-index model. Suitable test statistic
is introduced and its asymptotic normality is also established.

The paper is organized as follows. In Section 2, we develop the high-dimensional
score test and study its asymptotic distributions. We introduce the two-stage
procedure in Section 3. Section 4 discusses the extension to partial significance
testing problem. Section 5 examines the finite-sample performance of the pro-
posed procedures using Monte Carlo simulations and a real-data example. Sec-
tion 6 concludes the paper and all the technical proofs are provided in Appendix.

2. Test statistic construction and its asymptotic distributions

2.1. Reformulation of the hypothesis

Without loss of generality, we assume that E(X) = 0 and Σ = E(XXT ) > 0
throughout this paper. In high-dimensional inference literature, the pseudo-
independence assumption is commonly imposed. The pseudo-independence as-
sumption resembles a factor model structure where the p-dimensional random
vector X is generated linearly by a larger dimensional factor vector Z. Though
it is assumed in [1], [30], and [11], it may be difficult to validate in practice and
excludes some multivariate distributions such as multivariate t-distribution.

In this paper, we instead consider that the random vector X follows a p-
dimensional elliptical distribution. The elliptical distribution is often assumed
in multivariate analysis [10]. It contains a large family of multivariate distribu-
tions, such as multivariate normal distribution, multivariate t-distribution, and
multivariate logistic distribution.

Now we present the definition of elliptical distributions.

Definition 1. (The elliptical distribution assumption) A random vector X
follows an elliptical distribution if and only if X has the following explicit ex-
pression

X = R× ΓU .

Here Γ is a p×p matrix; U is a random vector uniformly distributed on the unit
sphere in Rp, and the generating variate R is a nonnegative random variable,
satisfying E(R2) = p, Var(R2) = O(p), and also independent with U . Note that
the calculation rule between Γ and U is matrix multiplication, and × denotes
scalar multiplication.
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In high-dimensional inference for linear model, [4] and [22] also made the
elliptical distribution assumption. In practice, we may adopt existing tests for
elliptical distributions (see for instance [17] and [5]) based on several principal
components of X. Alternatively, we may apply coordinatewise gaussianization
to transform predictors into normal distributions, i.e. X̃ij = Φ−1

(
n

n+1 F̂j(Xij)
)
,

where Φ(·) is the cumulative distribution function of the standard normal ran-
dom variable and F̂j is the empirical cumulative distribution function of the j-th
component of X. See [23] for more details of coordinatewise gaussianization. In
this paper, the elliptical distribution assumption is imposed for theoretical de-
velopments.

With the elliptical distribution assumption, we can recast the single-index
model into pseudo-linear models with transformed response. We state this result
in the following lemma.

Lemma 1. Assume that X follows an elliptical distribution. Then for any given
transformation function h(·) of the response Y , under model (1.1), there exists
some constant κ depending on function h(·) such that

βh =: Σ−1Cov(X, h(Y )) = κ× β.

The above lemma follows directly from Proposition 1 in [12]. See also [31]
and [28]. Throughout the paper, we assume that κ �= 0. When h(·) is monotone
and g(·, ·) is monotone with respect to the first argument, this assumption is
satisfied. See [12] for more discussions.

Lemma 1 tells us that we can use linear regression structure to recover the
unknown index parameter β in model (1.1). To be more specific, applying a
given transformation function h(Y ), we obtain a transformed linear model

h(Y ) = βT
hX + e. (2.1)

By the definition of βh, it is clear that the predictors X and the error term
e = h(Y )−βT

hX are uncorrelated. That is, E(Xe) = E[X(h(Y )−XTβh)] = 0.
Since βh is proportional to β, Lemma 1 provides us an opportunity to convert
the hypothesis (1.2) to the following equivalent one

H0 : βh = 0, versus H1 : βh �= 0. (2.2)

For the choice of the transformation function, in this paper we specially focus
on the function h(Y ) = F (Y )− 1/2, where F (Y ) is the cumulative distribution
function of Y . This choice makes our procedure be robust with respect to outliers
in response. A brief discussion with another simple choice h(Y ) = Y is made in
Remark 1 later.

Different form the classical linear model, the predictors X and the error
term e now may not be independent in the transformed linear model. While the
existing works in linear models greatly rely on the independence between the
predictors and the random error term. Further the transformed response F (Y )
is unknown and has to be estimated. These points bring many difficulties in
methodological and theoretical developments in our model setting.
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2.2. High-dimensional score test

In this subsection, we propose a score-type test statistic for hypothesis (2.2)
when the dimension p diverges to infinity. Suppose that (Xi, Yi)ni=1 is a random
sample from the population (X, Y ). Note that X is uncorrelated with F (Y ) −
1/2 under H0. Thus a natural measurement of the closeness between βh and
0 is the L2 norm E ‖X(F (Y ) − 1/2)‖2. One may consider to use the sample
version to estimate E ‖X(F (Y ) − 1/2)‖2 as follows:

1
n2

n∑
i=1

n∑
j=1

XT
i Xj

(
Fn(Yi) −

1
2

)(
Fn(Yj) −

1
2

)
.

Here, Fn(Yi) is the empirical distribution function

Fn(Yi) = 1
n

n∑
j=1

I(Yj ≤ Yi).

However, the diagonal elements add some technical difficulty. To this end, we
remove the unwanted diagonal elements and consider the following U-statistic
with kernel XT

i Xj(Fn(Yi) − 1/2)(Fn(Yj) − 1/2)

Sn = 12
n(n− 1)

∑
i �=j

XT
i Xj

(
Fn(Yi) −

1
2

)(
Fn(Yj) −

1
2

)
. (2.3)

The number 12 in Sn is to normalize the variance of the term Fn(Yi) − 1/2.
Note that

∑n
j=1 I(Yj ≤ Yi) is the rank of Yi. Since statistics with ranks are

well-known to be robust, this then intuitively explains why our procedures are
robust with respect to outliers in response.

To derive the asymptotic properties of Sn, we need to claim some mild condi-
tions. We first present the condition to regulate the diverging dimension p and
the sample size n.

Σ > 0 and tr(Σ4) = o(tr2(Σ2)) p → ∞ as n → ∞. (C1)

This mild condition frequently appeared in the literature [30, 4]. The positive
definiteness of the covariance matrix Σ ensures the identification of the parame-
ter βh in model (2.1). We also allow the eigenvalues of Σ diverge to infinity when
p → ∞. Note that if all the eigenvalues are bounded, then tr(Σ4) = o(tr2(Σ2))
holds trivially.

Next, we define the following local alternative hypotheses for the local power
analysis.

βT
hΣβh = o (1) , βT

hΣ2βh = o

(√
tr(Σ2)

n

)
, βT

hΣ3βh = o

(
tr(Σ2)

n

)
.

Similar conditions were also considered in [30] and [11]. The above local alter-
native hypotheses H1n obviously describe a small discrepancy between βh and
0. The following theorem shows the asymptotic behavior of the test statistic Sn

under H0.
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Theorem 1. Assume the condition (C1) holds and assume that X follows an
elliptical distribution, under H0, as n → ∞ and p → ∞, then

n√
2tr(Σ2)

Sn
d→ N(0, 1).

Remark 1. From Lemma 1, we may also consider another simple and nat-
ural choice of h(Y ) = Y . With this choice, the corresponding test statistic
is S′

n = 1
n(n−1)

∑
i �=j X

T
i XjYiYj and under null hypothesis, we would have

n√
2tr(Σ2)σ2S

′
n

d→ N(0, 1). Here σ2 = Var(e) denotes the variance of the error
term. Hence, it would generally fail when the stochastic error is heavy-tailed or
there exist outliers. Notably, our procedure with h(Y ) = F (Y ) − 1/2 does not
need to estimate the variance of the error term, which brings large convenience
and simplifies computation. Further no moment condition for the error term is
required. Thus our procedures are robust with respect to outliers in response.

To establish the score test based on Theorem 1, we now need to estimate
tr(Σ2). Following [30], we use the ratio consistent estimator of tr(Σ2) below.

t̂r(Σ2) = 1
2
(
n
4
) ∑

i1<i2<i3<i4

(Xi1 −Xi2)T (Xi3 −Xi4)(Xi2 −Xi3)T (Xi4 −Xi1).

Combining Theorem 1 and the Slutsky Theorem, our proposed score test
rejects H0 at a significance level α if

nSn ≥
√

2t̂r(Σ2)zα.

Here zα is the upper-α quantile of standard normal distributions.
Due to the nonlinear dependence between the predictors X and the error term

e, it is hard to calculate the theoretical distribution under local alternatives.
Provided that Sn diverges to infinity under local alternatives, our proposed test
procedure is consistent, which means the power tends to 1 as n → ∞. We present
the following theorem for power analysis.

Theorem 2. Suppose that there exist a sufficiently small positive number δ
and a positive constant C such that βT

hΣ2βh ≥ Cn−1+δ
√
tr(Σ2). Under the

conditions in Theorem 1 and the local alternatives, as n → ∞ and p → ∞, then
n√

2tr(Σ2)
Sn → ∞.

Remark 2. Regard βT
hΣ2βh as the signal strength. The condition βT

hΣ2βh ≥
Cn−1+δ

√
tr(Σ2) ensures that the signal can be well detected and then the pro-

posed test is consistent.

3. Ultrahigh-dimensional test with screening

Although the above score test procedure performs well for large dimensional
data, it does not give a satisfying solution for ultrahigh-dimensional data due to
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power loss and computation limit. Actually even though the response Y depends
on the predictors X, usually only a small subset of predictors contribute to the
response. This motivates us to propose a two-stage test procedure based on
random data splitting.

We randomly split the data into two subsets D1 and D2. Let n1 and n2 be
the sample sizes of D1 and D2, respectively. Here, the balanced data splitting is
adopted, namely n1 = [n/2]. The sparsity assumption often holds in ultrahigh-
dimensional setting, which means only quite a small subset of the predictors
are significant to the response variable even under alternative hypotheses. We
denote the small subset of predictors as M = {k : βhk

�= 0}. If we can first
reduce the dimensionality from ultra-high level to a moderate-high level, we can
then increase the detection power. This goal is achieved by data splitting. In the
first step, we adopt some feature screening procedure to the subset D1 to screen
out noise predictors and retain potentially significant variables. In the second
step, we then apply the high-dimensional score test in subsection 2.2 on the
other data subset D2 and reduced predictors to further check their significance.
Data splitting is crucial to eliminate the effect of spurious correlations due to
ultrahigh dimensionality, and to avoid an inflation of the type-I error. This point
is illustrated in Section 4.

Since the seminal work of [9], there are many proposals for feature screening.
Considering the robustness of screening procedures, here we adopt the robust
rank correlation based screening in [19]. To be more specific, we consider the
Kendall’s τ rank correlation coefficient of each predictor Xk with the response
Y . Denote

ω̂k = 1
n1(n1 − 1)

n1∑
i �=j

sgn(Xki −Xkj)sgn(Yi − Yj), k = 1, · · · , p.

We select a set of important predictors with large ω̂k. That is, we define

M̂ = {1 ≤ k ≤ p : |ω̂k| is among the first dn largest ones},

where dn is a pre-specified threshold value. Under some regularity conditions, it
has been demonstrated in [19] that the following sure screening property holds.

Pr(M ⊆ M̂) p→ 1.

With the sure screening property, the hypothesis (2.2) is asymptotically
equivalent to the following hypothesis:

H0 : β
hM̂ = 0, versus H1 : β

hM̂ �= 0,

where β
hM̂ = {βhk

: k ∈ M̂}. As a result, the screening procedure in the
first step helps us to transform the ultrahigh-dimensional testing problem to a
moderate high-dimensional testing problem. The benefit of screening is further
illustrated in Section 4.

In the second step, we adopt the high-dimensional score test in subsection 2.2
to test β

hM̂ based on the other subset D2. While data splitting plays an essential
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role in dimension reduction and power enhancement, it only uses half of the data
to make inference. As suggested by an anonymous reviewer, we can adopt cross-
fitting method to achieve further improvement. See for instance [3] and [6].
Actually we can reverse the data set for screening and the data set for testing,
obtain two corresponding screening sets M̂1 and M̂2, and construct two test
statistics Sn1 and Sn2, respectively. From Theorem 1, we have

S∗
n =: 1√

2
×

⎡⎢⎢⎣ nSn1

2
√

2 ̂tr(Σ2
M̂1

)
+ nSn2

2
√

2 ̂tr(Σ2
M̂2

)

⎤⎥⎥⎦ d→ N(0, 1). (3.1)

Here n is the total sample size.
We present the whole test procedure in Algorithm 1.

Algorithm 1 Test with screening based on single data splitting
Step 1. Randomly split the data into two subsets, denoted by D1 and D2, respectively. Let
n1 = |D1| and n2 = |D2|. We use n1 = [n/2].
Step 2. For the subset D1 = (X(1),Y(1)), where X(1) is the n1 × p design matrix and Y(1)

is the n1 × 1 response vector, calculate

ω̂k =
1

n1(n1 − 1)

n1∑
i�=j

sgn(Xki −Xkj)sgn(Yi − Yj), k = 1, 2, · · · , p

and define a submodel

M̂ = {1 ≤ k ≤ p : |ωk| is among the first dn largest ones}

Following [9], we recommend to set dn = [n1/ log(n1)].
Step 3. For the subset D2, calculate the test statistic Sn1 according to (2.3).
Step 4. Exchange the role of two subsets. Repeat Step 2 and Step 3 to obtain the test
statistic S∗

n and output the p-value based on (3.1).

Although the test with screening based on single data splitting can enhance
the empirical power, its performance in practice might be affected by additional
randomness induced by data splitting. In fact, some significant predictors could
be missed at the sample level due to randomness and the sample reduction.
This would inflate the empirical size of the test or reduce the empirical testing
power. Therefore, following [24], we introduce an ensemble algorithm based on
multiple data splitting.

Now we repeat Algorithm 1 B times and get the p-values denoted as
{pb, b = 1, 2, · · · , B}. For any γ ∈ (γmin, 1), where γmin is a predetermined
value, such as 0.05 or 1/B, define

Q(γ) = min
{

1, qγ
(
pb
γ

; b = 1, 2, · · · , B
)}

.

Here qγ(A) represents the lower-γ quantile of the number set A. Further let

Q∗ = min
{

1, (1 − log γmin) inf
γ∈(γmin,1)

Q(γ)
}
.
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The above Q∗ is the final adjusted p-value for the testing procedure. The en-
semble test algorithm is presented in Algorithm 2.

The following theorem shows that the type I error rate can be controlled at
α level.

Theorem 3. Given any significance level α and any γmin > 0, the type I error
rate is asymptotically controlled at α. That is, under H0,

lim sup
n→∞

Pr(Q∗ ≤ α) ≤ α.

Actually, for any fixed γ ∈ (0, 1), Q(γ) is an asymptotically correct p-value.
However, a proper choice of γ may be difficult. Hence, we use Q∗ to give a
final version of the adjusted p-value, which is an adaptive method to select a
suitable value of γ. Here, γmin is a lower bound for γ. Then, the correction factor
1− log γmin is upper bounded. For more discussions about Q(γ) and Q∗, kindly
see [24].

Algorithm 2 Test with screening based on multiple data splitting
Step 1. Apply Algorithm 1 to the original data and get the output p-value, denoted as
p1.
Step 2. Repeat Step 1 B times. Obtain the set of p-values {p1, p2, · · · , pB}. Recommend
B = 10 or 20.
Step 3. Calculate the adjusted p-value

Q∗ = min
{

1, (1 − log γmin) inf
γ∈(γmin,1)

Q(γ)
}
,

where γmin is a predetermined value, such as 0.05 or 1/B,

Q(γ) = min
{

1, qγ
(
pb

γ
; b = 1, 2, · · · , B

)}
,

and qγ(A) represents the lower-γ quantile of the number set A.
Step 4. Reject H0 at a significance level α when Q∗ < α.

4. Extension to partial significance test

In this section, we further investigate how to construct partial significance tests
for single-index models. Suppose that Xi = (XT

ia,X
T
ib)T , where Xia ∈ Rq and

Xib ∈ Rp−q. Then, we rewrite model (1.1) as follows,

Yi = g(XT
iaβa + XT

ibβb, εi), i = 1, 2, · · · , n. (4.1)

The dimension of the interested parameter βb could be higher than the sample
size n, while the dimension of the nuisance parameter βa could also diverge to
infinity. Consider the following null hypothesis

H̃0 : βb = 0, H̃1 : βb �= 0. (4.2)

This problem is very vital. It aims to assert that given Xa ∈ Rq, whether Xb ∈
Rp−q brings additional information for the response Y . Since the dimension



Tests for high-dimensional single-index models 439

p and q diverge, classical F-test also fails. In practice, Xa usually comes from
some preliminary results and often includes a few but quite important variables.
Instead, Xb usually includes much more predictors that remain to be explored.

Applying the distribution transformation we discussed in subsection 2.1, we
could recast model (4.1) as follows,

F (Yi) −
1
2 = XT

i βh + ei = XT
iaβa + XT

ibβb + ei.

Then, we convert the hypothesis (4.2) to the following equivalent one

H̃ ′
0 : βhb = 0, H̃ ′

1 : βhb �= 0.

Let X = (Xa,Xb) denote the matrix form of sample data. Define the condi-
tional predictor X∗

ib := Xib−Cov(Xib,Xia)Var(Xia)−1Xia and the projection
matrix Pa := Xa(XT

aXa)−1XT
a . Since Xi follows elliptical distributions, the lin-

ear combination X∗
ib also follows elliptical distributions. Let Y and e be the

vector forms of sample data.
We first give some mild conditions.

(C2) The covariance matrix Σ > 0. The dimension p → ∞ and q → ∞, when
n → ∞. Assume that p

1
2 qn−1 → 0, qn− 1

4 → 0 and qp−
1
4 → 0.

(C3) Suppose that E(ei|Xi) = 0, E(e2
i |Xi) = σ2, and E(e4

i |Xi) < ∞.
(C4) Assume that Xi follows the elliptical distribution and the corresponding

generating variate R∗
i of X∗

ib satisfies E(R∗8
i ) = (1 + o(1))p4.

(C5) There exist positive constants τ1 and τ2 such that

τ1 < λmin(Σb|a) ≤ λmax(Σb|a) < τ2.

where λmin(A) and λmax(A) represent the smallest and largest eigenval-
ues of a semipositive definite matrix A, respectively. Further Σb|a is the
conditional covariance matrix as follows,

Σb|a = E(Cov(Xib|Xia)) = (σ∗
j1j2).

The above conditions are mild and widely imposed. Condition (C2) controls
the diverging number of predictors. Condition (C3) is a conditional moment
assumption for e, which is common in the literature, such as [14] and [30]. How-
ever, we should recognize that the assumption E(ei|Xi) = 0 and E(e2

i |Xi) = σ2

may not hold in general, since in the transformed linear model e is only un-
correlated with X. This assumption is imposed to establish the asymptotic
normality. Under Condition (C4), X∗

ib also follows the elliptical distribution.
Besides, E(R∗8

i ) = (1 + o(1))p4 is imposed for theoretical derivation and simi-
lar conditions are assumed in [18]. Condition (C5) has been widely used in the
literature; see for instance [7], [18], [27] and many others.

Notice that E[(F (Y) − 1/2 − Xaβa)TXb] = E(XT
b e) = 0 holds under H̃ ′

0.
Hence, it naturally leads to the following plug-in test statistic Ln,

Ln = 1
n
êTXbX

T
b ê,
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where ê is the residual, that is

ê = (I− Pa)
(
Fn(Y) − 1

2

)
= (I− Pa)e + (I− Pa)(Fn(Y) − F (Y)).

In order to eliminate bias, we consider the following test statistic Tn,

Tn = 1
n
êTXbX

T
b ê− σ̂2

n
tr((I− Pa)XbX

T
b ),

where σ̂2 := (n− q)−1êT ê.

Theorem 4. Suppose Conditions (C2)-(C5) hold. Under the null H̃ ′
0, when

n → ∞ and p → ∞, we have

Tn√
2σ4tr(Σ2

b|a)
d→ N(0, 1).

In order to construct score tests based on Theorem 4, we need to obtain
consistent estimators of σ2 and tr(Σ2

b|a). For σ2, we use σ̂2 = (n − q)−1êT ê.
Following [26], we employ the following consistent estimator of tr(Σ2

b|a),

̂tr(Σ2
b|a) = n2

(n + 1 − q)(n− q)

(
tr(Σ̂2

b|a) − (n− q)−1tr2(Σ̂b|a)
)
,

where Σ̂b|a = n−1XT
b (I− Pa)Xb. Based on Theorem 4 and the Slusky Theorem,

our proposed test procedure rejects H̃ ′
0 or equivalently H̃0 at a significant level

α if

Tn ≥
√

2σ̂4 ̂tr(Σ2
b|a)zα.

Here zα is the upper-α quantile of standard normal distributions.

5. Numerical studies

5.1. Simulation studies

In this section, we present three simulation examples to evaluate the finite sam-
ple performance of our proposed tests.

Study 1. The first set of numerical simulations are carried out to evaluate
the performance of the score test for high-dimensional data. Considering the
following two models:

Yi = a×XT
i β + εi, (Model 1)

Yi = 5
√
|a×XT

i β + 10| + 4 + εi. (Model 2)
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The predictors Xi = (Xi1, Xi2, · · · , Xip)T are generated from a multivari-
ate normal distribution N(0,Σ1) with Σ1 = {0.2|i−j|}p×p or a multivariate
t-distribution

√
3/5t5(0,Σ1) with 5 degrees of freedom, respectively. For the

high-dimensional setting, a nonsparse case and a sparse case are taken into ac-
count. The so-called nonsprase case means that the first half elements of the
parametric vector β are nonzeros with equal magnitude, while for the sparse
case, only the first five elements of β are nonzeros with equal magnitude. The
two cases above both satisfy that ‖β‖ = 1. The tuning parameter a is selected
to be 0, 0.3, · · · , 1.5, where a = 0 represents the null hypothesis H0. There are
two cases of error distributions Case(1): standard normal distribution N(0, 1);
and Case(2): Cauchy distribution or equivalently Student’s t-distribution with
1 degree of freedom t(1).

We also compare the proposed score test with the test in [30] (denoted by ZC)
and the test in [4] (denoted by CGZ). The corresponding numerical results of
Study 1 are respectively reported in Tables 1-2 for nonsparse case and Tables 3-4
for sparse case under two different dimensions p = 75, 150 and fixed sample size
n = 50 at the significance level α = 0.05. For each setting, 500 realizations are
conducted to get the empirical powers or sizes.

From Tables 1-4, we have the following findings. Firstly, the empirical sizes
of all three tests under each setting are closely around the predetermined sig-
nificance level 0.05. Secondly, the simulation results in Case(2) provide a strong
evidence that our proposed test procedure is sufficiently robust and hardly af-
fected by the heavy-tailed error terms in both linear and nonlinear models, while
the other two existing methods lose much effectiveness. In fact, their empirical
powers can be as low as the nominal level. Thirdly, it is also noted that the em-
pirical powers of the proposed test increase quickly as the level of signal strength
a increases. However, when the dimension rises from 75 to 150, the empirical
powers decrease slightly in different cases.

Table 1

Comparison of empirical sizes and powers for nonsparse case in Study 1 at the significance
level α = 0.05. X ∼ N(0,Σ1). Sn: the proposed test; ZC: test in [30]; CGZ: test in [4].

Non-sparse Error terms

Normal t(1) Normal t(1)

Model a Sn ZC CGZ Sn ZC CGZ Sn ZC CGZ Sn ZC CGZ

(n, p) = (50, 75) (n, p) = (50, 150)
Model 1 0.0 0.062 0.076 0.070 0.044 0.012 0.006 0.060 0.066 0.054 0.060 0.024 0.022

0.3 0.198 0.208 0.192 0.096 0.040 0.028 0.108 0.130 0.110 0.078 0.020 0.020
0.6 0.542 0.546 0.560 0.178 0.030 0.028 0.348 0.356 0.346 0.148 0.056 0.048
0.9 0.834 0.846 0.854 0.316 0.048 0.044 0.588 0.594 0.632 0.232 0.068 0.058
1.2 0.926 0.940 0.944 0.452 0.066 0.056 0.760 0.768 0.784 0.304 0.066 0.062
1.5 0.954 0.960 0.970 0.520 0.110 0.100 0.814 0.818 0.834 0.368 0.106 0.098

Model 2 0.0 0.064 0.068 0.056 0.062 0.024 0.026 0.046 0.056 0.044 0.040 0.022 0.020
0.3 0.340 0.336 0.310 0.124 0.026 0.018 0.230 0.232 0.226 0.094 0.046 0.032
0.6 0.540 0.544 0.528 0.196 0.020 0.024 0.390 0.388 0.398 0.130 0.030 0.030
0.9 0.690 0.706 0.698 0.242 0.034 0.030 0.524 0.522 0.526 0.144 0.058 0.052
1.2 0.790 0.796 0.800 0.334 0.032 0.040 0.626 0.602 0.610 0.196 0.056 0.044
1.5 0.864 0.860 0.874 0.330 0.090 0.090 0.650 0.634 0.644 0.214 0.046 0.038

Study 2. In the second set of numerical simulations, we investigate the perfor-
mance of the two-stage test procedures for ultrahigh dimension, based on single
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Table 2

Comparison of empirical sizes and powers for nonsparse case in Study 1 at the significance
level α = 0.05. X ∼

√
3/5t5(0,Σ1). Sn: the proposed test; ZC: test in [30]; CGZ: test in [4].

Non-sparse Error terms

Normal t(1) Normal t(1)

Model a Sn ZC CGZ Sn ZC CGZ Sn ZC CGZ Sn ZC CGZ

(n, p) = (50, 75) (n, p) = (50, 150)
Model 1 0.0 0.060 0.064 0.060 0.044 0.028 0.026 0.038 0.058 0.040 0.058 0.018 0.018

0.3 0.208 0.218 0.200 0.092 0.026 0.022 0.148 0.158 0.140 0.110 0.030 0.026
0.6 0.578 0.598 0.582 0.170 0.026 0.024 0.398 0.420 0.408 0.124 0.036 0.032
0.9 0.842 0.842 0.860 0.338 0.042 0.036 0.590 0.588 0.612 0.226 0.040 0.034
1.2 0.894 0.906 0.902 0.414 0.096 0.084 0.762 0.774 0.788 0.340 0.088 0.068
1.5 0.960 0.964 0.968 0.546 0.128 0.138 0.856 0.854 0.864 0.356 0.096 0.092

Model 2 0.0 0.058 0.064 0.060 0.054 0.028 0.026 0.038 0.058 0.040 0.058 0.018 0.018
0.3 0.406 0.410 0.402 0.156 0.028 0.020 0.238 0.270 0.244 0.114 0.032 0.028
0.6 0.610 0.610 0.600 0.206 0.026 0.024 0.424 0.446 0.426 0.132 0.038 0.032
0.9 0.762 0.766 0.770 0.284 0.032 0.026 0.476 0.476 0.500 0.176 0.034 0.028
1.2 0.786 0.788 0.800 0.294 0.064 0.060 0.602 0.606 0.612 0.216 0.062 0.048
1.5 0.834 0.862 0.864 0.376 0.076 0.078 0.680 0.710 0.716 0.256 0.062 0.058

Table 3

Comparison of empirical sizes and powers for sparse case in Study 1 at the significance level
α = 0.05. X ∼ N(0,Σ1). Sn: the proposed test; ZC: test in [30]; CGZ: test in [4].

Sparse Error terms

Normal t(1) Normal t(1)

Model a Sn ZC CGZ Sn ZC CGZ Sn ZC CGZ Sn ZC CGZ

(n, p) = (50, 75) (n, p) = (50, 150)
Model 1 0.0 0.062 0.076 0.070 0.046 0.032 0.024 0.066 0.068 0.062 0.054 0.030 0.014

0.3 0.192 0.212 0.186 0.104 0.022 0.026 0.090 0.126 0.110 0.052 0.018 0.018
0.6 0.478 0.530 0.522 0.170 0.028 0.020 0.358 0.374 0.372 0.120 0.046 0.030
0.9 0.804 0.818 0.826 0.278 0.066 0.056 0.522 0.558 0.556 0.210 0.036 0.036
1.2 0.886 0.896 0.908 0.420 0.092 0.076 0.698 0.732 0.726 0.296 0.050 0.038
1.5 0.952 0.962 0.972 0.502 0.116 0.124 0.786 0.808 0.814 0.352 0.080 0.082

Model 2 0.0 0.064 0.068 0.056 0.062 0.024 0.026 0.048 0.056 0.044 0.064 0.022 0.020
0.3 0.322 0.324 0.288 0.130 0.022 0.018 0.238 0.236 0.228 0.124 0.046 0.040
0.6 0.534 0.518 0.532 0.190 0.018 0.018 0.354 0.338 0.324 0.160 0.030 0.034
0.9 0.688 0.678 0.690 0.232 0.042 0.038 0.496 0.480 0.476 0.210 0.058 0.052
1.2 0.782 0.768 0.780 0.300 0.048 0.046 0.600 0.586 0.596 0.224 0.038 0.032
1.5 0.832 0.822 0.832 0.314 0.080 0.074 0.652 0.628 0.642 0.246 0.038 0.040

Table 4

Comparison of empirical sizes and powers for sparse case in Study 1 at the significance level
α = 0.05. X ∼

√
3/5t5(0,Σ1). Sn: the proposed test; ZC: test in [30]; CGZ: test in [4].

Sparse Error terms

Normal t(1) Normal t(1)

Model a Sn ZC CGZ Sn ZC CGZ Sn ZC CGZ Sn ZC CGZ

(n, p) = (50, 75) (n, p) = (50, 150)
Model 1 0.0 0.060 0.064 0.060 0.046 0.028 0.030 0.052 0.058 0.050 0.038 0.030 0.026

0.3 0.144 0.154 0.166 0.102 0.032 0.030 0.126 0.148 0.122 0.102 0.026 0.018
0.6 0.480 0.496 0.506 0.154 0.038 0.032 0.330 0.350 0.328 0.126 0.032 0.024
0.9 0.712 0.732 0.742 0.264 0.054 0.050 0.532 0.548 0.546 0.216 0.054 0.046
1.2 0.850 0.878 0.882 0.344 0.074 0.070 0.706 0.720 0.712 0.258 0.062 0.060
1.5 0.934 0.936 0.936 0.456 0.104 0.090 0.754 0.762 0.776 0.308 0.066 0.052

Model 2 0.0 0.058 0.064 0.060 0.054 0.028 0.026 0.050 0.058 0.040 0.076 0.018 0.018
0.3 0.340 0.352 0.328 0.136 0.036 0.024 0.218 0.228 0.212 0.108 0.032 0.026
0.6 0.540 0.558 0.550 0.146 0.026 0.022 0.402 0.374 0.366 0.128 0.036 0.034
0.9 0.692 0.674 0.688 0.230 0.026 0.028 0.468 0.456 0.466 0.140 0.040 0.028
1.2 0.772 0.758 0.770 0.262 0.054 0.054 0.554 0.564 0.566 0.222 0.052 0.044
1.5 0.786 0.790 0.786 0.356 0.072 0.080 0.616 0.594 0.590 0.252 0.064 0.056
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data splitting and multiple data splitting. We call them SST (Single Splitting
Test) and MST (Multiple Splitting Test) for short respectively. We introduce
the following models for illustration.

Yi = a×XT
i β + εi, (Model 1)

Yi = 30
1 + 30 exp(−a×XT

i β)
+ 8 + εi. (Model 3)

We set βj = 1/
√

5 for j = 1, · · · , 5 while the other components are zeros.
The tuning parameter a is set to be 0, 0.5, · · · , 2.5, in which a = 0 represents
the null H0. The predictors Xi = (Xi1, Xi2, · · · , Xip)T are generated from a
multivariate normal distribution N(0,Σ2) with Σ2 = {0.2|i−j|}p×p. The two
error distributions in Study 1 are also considered here. For MST, we set B = 10
and γmin = 0.05. We set the sample size n = 100 and the dimension p = 5000.
And 500 realizations are repeated for each setting.

By displaying the empirical size and power curves with different values of a,
the corresponding numerical results of Study 2 are illustrated in Figure 1. We
also consider two naive procedures, that is, the high-dimensional test procedure
without screening, and a procedure which screens and tests without data split-
ting. From Figure 1, we can see that the proposed two-stage test procedures
control the empirical sizes well and the empirical powers increase as the signal
strength a increases. Besides, it is observed that the powers of the MST are
apparently higher than SST. It also indicates that the two-stage test procedures
with screening are much more efficient and sensitive to the signal than the high-
dimensional test procedure without screening when the dimension p is rather
large. Moreover, as shown in Figure 1, the procedure which screens and tests
without data splitting cannot control the type-I error. In fact, screening and
testing based on the same data would be misled by the spurious correlations in
such ultrahigh-dimensional data.

Study 3. In the last set of numerical simulations, we assess the performance
of the high-dimensional partial test procedure. The following models are intro-
duced for illustration

Yi = c×XT
i β + εi, (Model 1)

Yi = 0.3c× (XT
i β)3 + 0.3c×XT

i β + εi. (Model 4)
The predictors Xi = (XT

ia,X
T
ib)T = (Xi1, Xi2, · · · , Xip)T are generated from

a multivariate normal distribution N(0,Σ3) with Σ3 = {0.2|i−j|}p×p. A non-
sparse case and a sparse case are also taken into account. The nonsprase case:
the first half elements of the parametric vector βb are nonzeros with equal
magnitude, and the sparse case: only the first five elements of βb are nonzeros
with equal magnitude. The two cases above both satisfy that ‖βb‖ = 1. We set
βa = (1, 1, · · · , 1)T . The value of c is selected to be 0, 0.4, · · · , 2.0, where c = 0
represents the null hypothesis H̃0. Two cases of error distributions are the same
with those in Study 1.
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Fig 1. The empirical size and power curves with n = 100 and p = 5000 at the significance
level α = 0.05, which is highlighted by the solid lines. In four pictures above, the twodash
lines with circles: SST; the twodash lines with triangles: MST; the dash lines with squares:
test without screening; the dash lines with crosses: test and screen without data splitting.

We also compare the proposed partial test with the test in [18] (denoted by
LWT). The corresponding numerical results of Study 3 are respectively reported
in Table 5 for nonsparse case and Table 6 for sparse case under different dimen-
sions and sample sizes n = 50, p = 100, q = 5 and n = 100, p = 200, q = 10 at
the significance level α = 0.05. For each setting, 500 realizations are conducted
to get the empirical powers or sizes.

From Tables 5-6, we find that the empirical sizes of both two tests under each
setting are closely around the predetermined significance level 0.05. Secondly,
the simulation results corresponding to t(1) error show that our proposed test
procedure is relatively robust in both linear and nonlinear models, while the
procedure in [18] lose much power. Furthermore, it could be observed that the
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Table 5

Comparison of empirical sizes and powers for nonsparse case in Study 3 at the significance
level α = 0.05. X ∼ N(0,Σ3). Tn: the proposed partial test; LWT: test in [18].

Nonsparse Error terms

Normal t(1) Normal t(1)

Model c Tn LWT Tn LWT Tn LWT Tn LWT

(n, p, q) = (50, 100, 5) (n, p, q) = (100, 200, 10)
Model 1 0.0 0.044 0.038 0.044 0.080 0.036 0.058 0.052 0.084

0.4 0.184 0.204 0.082 0.086 0.266 0.278 0.082 0.082
0.8 0.500 0.666 0.114 0.100 0.718 0.844 0.124 0.078
1.2 0.684 0.868 0.228 0.108 0.834 0.986 0.200 0.092
1.6 0.762 0.910 0.276 0.136 0.914 0.994 0.266 0.138
2.0 0.814 0.924 0.352 0.180 0.938 0.998 0.376 0.176

Model 4 0.0 0.046 0.050 0.048 0.056 0.048 0.044 0.044 0.050
0.4 0.512 0.332 0.196 0.138 0.788 0.222 0.384 0.148
0.8 0.708 0.340 0.348 0.208 0.870 0.292 0.534 0.190
1.2 0.804 0.352 0.420 0.234 0.934 0.264 0.660 0.214
1.6 0.814 0.360 0.526 0.268 0.950 0.318 0.718 0.210
2.0 0.820 0.362 0.546 0.270 0.954 0.266 0.758 0.194

Table 6

Comparison of empirical sizes and powers for sparse case in Study 3 at the significance level
α = 0.05. X ∼ N(0,Σ3). Tn: the proposed partial test; LWT: test in [18].

Sparse Error terms

Normal t(1) Normal t(1)

Model a Tn LWT Tn LWT Tn LWT Tn LWT

(n, p, q) = (50, 100, 5) (n, p, q) = (100, 200, 10)
Model 1 0.0 0.052 0.044 0.052 0.078 0.056 0.032 0.052 0.086

0.4 0.164 0.178 0.080 0.074 0.218 0.258 0.070 0.066
0.8 0.424 0.526 0.122 0.082 0.572 0.790 0.098 0.092
1.2 0.624 0.752 0.176 0.114 0.768 0.940 0.176 0.100
1.6 0.726 0.836 0.216 0.136 0.846 0.970 0.236 0.118
2.0 0.748 0.900 0.286 0.150 0.890 0.990 0.290 0.158

Model 4 0.0 0.050 0.050 0.048 0.060 0.040 0.044 0.046 0.050
0.4 0.448 0.344 0.198 0.132 0.728 0.226 0.316 0.114
0.8 0.638 0.332 0.296 0.194 0.858 0.232 0.476 0.152
1.2 0.748 0.318 0.386 0.252 0.898 0.234 0.544 0.214
1.6 0.758 0.324 0.472 0.192 0.916 0.218 0.622 0.174
2.0 0.810 0.336 0.518 0.226 0.924 0.196 0.700 0.176

empirical powers of the proposed test is higher than LWT in nonlinear mod-
els.

5.2. Real data analysis

In this subsection, we apply our methodology to a Cardiomyopathy microarray
data [25], which was once analyzed by [20], [11] and many others. This dataset
consists of a n × p matrix of gene expression values X = (Xij), where Xij is
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the expression level of the j-th gene for the i-th mouse. The response Y is
the G protein-coupled receptor Ro1 expression level, and the predictors X are
other potentially related gene expression levels. Here, the dimension of predictors
p = 6319 is much larger than the sample size n = 30. The goal is to identify
the influential genes for overexpression of the Ro1 in mice. A high-dimensional
single-index model is now considered for this data set. Before modeling, both
the response and predictors have been standardized to be zero mean and unit
variance.

Noticing the dimension p is very large compared with the sample size n, it
is then important to firstly check whether there exists any significant predictor
to affect the response. A global testing problem can be considered to tackle this
problem. If the null hypothesis (1.2) is not rejected, we do not need to pursue
further. We adopt the score test, SST and MST, respectively. Additionally, in
order to assess the robustness of our proposed methods, we add some random
outliers to the response variable. To be more specific, we randomly choose a
quarter of the sample and add the random noise which follows the cauchy dis-
tribution to the response. The results are presented in Table 7. From this table,
we can see clearly that there truly exists some significant predictors to affect
the response. Besides, since the results of the noised data are similar to those
of the original data, we are confident that our proposed procedures are robust
to the outlier in response.

We then consider to adopt the Kendall’s τ correlation based screening ap-
proach in [19] to select the influential genes. Eight important variables are se-
lected. It is then of interest to assert that given those eight chosen variables,
the other eliminated predictors by the screening procedure are indeed irrelevant
or not. This can be formulated as a partial significance testing problem. The
proposed partial test statistic Tn is then applied. From Table 7, we assert that
the eliminated predictors are conditionally uncorrelated with the response.

Table 7

The p-values of the test statistics for the real data analysis

Score test SST MST

Original
full sample 4e-9(5.77) 9e-11(6.37) 6e-13
eliminated 0.43(0.18) _ _

Noised
full sample 6e-6(4.37) 7e-7(4.82) 6e-8
eliminated 0.65(-0.38) _ _

The values of test statistics are given in parentheses.

6. Conclusions and discussions

In this paper, we investigate the overall significance testing problem of regres-
sion coefficients in high-dimensional single-index models. We tackle this problem
by exploiting the property of elliptical distributions. By adopting a transformed
linear model framework, we propose the high-dimensional score test. With the
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distribution function of the response, our procedure is robust with respect to
outliers in response. We show that the introduced score test statistic Sn asymp-
totically follows a normal distribution under null hypothesis and diverges under
local alternative hypotheses with some mild conditions.

To improve computational efficiency and enhance empirical powers, we also
discuss two test procedures, SST and MST, for ultrahigh-dimensional settings
based on random data splitting and feature screening. We control the type I
error rate by modifying the obtained p-values in MST. Additionally, we further
investigate how to construct partial significance tests in high-dimensional single-
index models. The asymptotic normality of the proposed test statistic Tn is
derived. And the validity of the procedures is also illustrated through simulations
and real data analysis.

Our proposed test statistic Tn does not allow the dimensions p and q be too
large for the partial significance testing problem. It would be very interesting
and challenging to test partial significance when both p and q are ultrahigh-
dimensional. It is beyond the scope of this paper. We aim to investigate this
issue in near future.

Appendix: technical proofs

Proofs for Theorem 1

To demonstrate the Theorems, we introduce some following lemmas.

Lemma 2. Suppose that U = (U1, U2, · · · , Up)T is a random vector uniformly
distributed on the unit sphere in Rp. Then Var(U) = p−1Ip, E(U4

j ) = 3p−1(p+
2)−1, E(U2

i U
2
j ) = p−1(p + 2)−1 i �= j.

See Theorem 2.8 in [10] for the proof of Lemma 2.

Lemma 3. Assume X = RΓU follows an elliptical distribution. Let Z denote
the random vector RU . For any symmetric matrix A = (aij) and B = (bij),
E(ZTAZ)(ZTBZ) = (1 + o(1))[tr(A)tr(B) + 2tr(AB)] holds.

Proof of Lemma 3. From the definition of elliptical distributions, we have E(R4) =
p2 + O(p). Note that

(ZTAZ)(ZTBZ) = R4
∑
i,j,k,l

aijbklUiUjUkUl

= R4

⎡⎣∑
i �=k

aiibkkU
2
i U

2
k +

∑
i �=j

aijbijU
2
i U

2
j +

∑
i �=j

aijbjiU
2
i U

2
j +

∑
i

aiibiiU
4
i

⎤⎦ .
It then follows that

E(ZTAZ)(ZTBZ) = E(R4)E(U2
1U

2
2 )
[
tr(A)tr(B) + 2tr(AB) − 3

∑
i

aiibii

]
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+ E(R4)E(U4
1 )
∑
i

aiibii.

Then from Lemma 2, we conclude that

E(ZTAZ)(ZTBZ) = E(R4)E(U2
1U

2
2 ) [tr(A)tr(B) + 2tr(AB)]

= (1 + o(1))[tr(A)tr(B) + 2tr(AB)].

Proof of Theorem 1. Note that Sn has the following decomposition

1
12Sn = 1

n(n− 1)
∑
i �=j

XT
i Xj

(
Fn(Yi) −

1
2

)(
(Fn(Yj) −

1
2

)

= 1
n(n− 1)

∑
i �=j

XT
i Xj

(
F (Yi) −

1
2

)(
F (Yj) −

1
2

)

+ 2
n(n− 1)

∑
i �=j

XT
i Xj (Fn(Yi) − F (Yi))

(
F (Yj) −

1
2

)
+ 1

n(n− 1)
∑
i �=j

XT
i Xj (Fn(Yi) − F (Yi)) (Fn(Yj) − F (Yj))

:= An1 + An2 + An3.

For the first term An1, we rewrite it as follows

An1 = 1
n(n− 1)

∑
i �=j

XT
i XjX

T
i βhX

T
j βh + 2

n(n− 1)
∑
i �=j

XT
i XjX

T
i βhej

+ 1
n(n− 1)

∑
i �=j

XT
i Xjeiej

:= An11 + An12 + An13.

Step 1. We compute the expectations and variances of the terms An11 and
An12. Under H0 or the local alternatives, we have

E(e2
i ) = E

[(
F (Yi) −

1
2

)2
]

+ E[(XT
i βh)2] − 2E

[
(XT

i βh)
(
F (Yi) −

1
2

)]
= 1

12 + o(1).

For the expectations of An12 and An13, we have E(An12) = 0 and E(An13) = 0.
It is easy to show that E(An11) = βT

hΣ2βh. Next, we consider the variances of
An11 and An12. Applying Lemma 3, we have

Var(An11) = O(n−2)E
[
(XT

i Xj)2(XT
i βh)2(XT

j βh)2
]

+ O(n−1) (E(An11))2
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+ O(n−1)E
[
(XT

i Xj)(XT
i Xs)(XT

i βh)2(XT
j βh)(XT

s βh)
]

= o(n−2tr(Σ2)).

Actually, the following facts hold:

E
(
(XT

i Xj)2(XT
i βh)2(XT

j βh)2
)

= E
(
(XT

i βh)2E((XT
i Xj)2(XT

j βh)2|Xi)
)

≤ CE
(
(XT

i βh)2
(
βT
hΣβhX

T
i ΣXi + βT

hΣXiX
T
i Σβh

))
= O

(
(βT

hΣ3βh)(βT
hΣβh) + tr(Σ2)(βT

hΣβh)2 + (βT
hΣ2βh)2

)
= o(tr(Σ2)),

and

E
(
(XT

i Xj)(XT
i Xs)(XT

i βh)2(XT
j βh)(XT

s βh)
)

= E
(
(XT

i βh)2E
(
(XT

j Xi)(XT
j βh)(XT

s Xi)(βT
hXs)|Xi

))
= E

(
XT

i βhβ
T
hΣXi

)2

= O
(
(βT

hΣ2βh)2 + (βT
hΣ3βh)(βT

hΣβh)
)

= o
(
n−1tr(Σ2)

)
.

Further observe that

Var(An12) = O(n−1)E[(XT
i Xj)(XT

s Xj)(XT
i βh)(XT

s βh)e2
j ]

+ O(n−2)E[(XT
i Xj)2(XT

i βh)2e2
j ]

= o(n−2tr(Σ2)).

Therefore, An1 has the following form

An1 = 1
n(n− 1)

∑
i �=j

XT
i Xjeiej + op(

√
n−2tr(Σ2)) + βT

hΣ2βh.

Step 2. We establish the asymptotic distribution of An1 by martingale cen-
tral limit theorem [16].

In this step, our goal is to verify the following limit distribution under H0.

12
n(n− 1)

∑
j �=i

XT
i Xjeiej

d→ N

(
0, 2tr(Σ2)

n2

)
.

Define ηin = 12
√

2
n(n−1)

∑i−1
j=1 X

T
i Xjeiej . Let Skn =

∑k
i=2 ηin,

Fi = σ{(Xi, ei) i = 1, 2, · · · , n}. Obviously, we have E(ηin|Fi−1) = 0, which
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follows that (Skn,Fk) is a zero-mean martingale sequence. Define vin =
Var(ηin|Fi−1) and Vn =

∑n
i=2 vin. By martingale central limit theorem, it

is sufficient to show that the following two conditions hold under H0.

Vn

Var(Snn)
P→ 1, (A.1)

and
n∑

i=2
(tr(Σ2))−1E(η2

inI{|ηin|>ε
√

tr(Σ2)}|Fi−1)
P→ 0. (A.2)

Simple calculation leads to the following results

vin = 24
n(n− 1)

i−1∑
j=1

e2
jX

T
j ΣXj + 24

n(n− 1)
∑

1≤j �=k≤i−1

ejekX
T
j ΣXk.

and

Vn = 24
n(n− 1)

n∑
i=2

i−1∑
j=1

e2
jX

T
j ΣXj + 24

n(n− 1)

n∑
i=2

∑
1≤j �=k≤i−1

ejekX
T
j ΣXk.

Since Var(Snn) = tr(Σ2), then we write

Vn

Var(Snn) = 24
n(n− 1)tr(Σ2)

⎛⎝ n∑
i=2

i−1∑
j=1

e2
jX

T
j ΣXj +

n∑
i=2

∑
1≤j �=k≤i−1

ejekX
T
j ΣXk

⎞⎠
=: Gn1 + Gn2.

It can be shown that E(Gn1) = 1 and E(Gn2) = 0 under H0. Observe the fact
that

Var(Gn1) = O(n−4)tr−2(Σ2)
n−1∑
j=1

j2E
[
(XT

j ΣXj)2 − tr2(Σ2)
]
.

Condition (C1), Lemma 3 and algebra calculation imply that Var(Gn1) =
o(n−1). Similarly, we can also obtain that

Var(Gn2) = O(n−4)tr−2(Σ2)
∑

j1<k1

∑
j2<k2

(n− k1)(n− k2)

× E
[
ej1ej2ek1ek2X

T
j1ΣXk1X

T
j2ΣXk2

]
= O(n−4)

n∑
k=1

(n− k)2(k − 1) tr(Σ4)
tr2(Σ2) .

Thus Var(Gn2) = o(1). Markov inequality yields that Gn1
P→ 1 and Gn2

P→ 0.
Up to now, (A.1) has been verified.
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Observe that
n∑

i=2
E(η4

in) = O(n−4)
n∑

i=2
E

⎛⎝i−1∑
j=1

eiejX
T
i Xj

⎞⎠4

= O(n−4)
n∑

i=2

∑
s �=t

E(XT
i XsX

T
i XsX

T
i XtX

T
i Xt)

+ O(n−4)
n∑

i=2

i−1∑
j=1

E(XT
i Xj)4.

(A.3)

For the first term in (A.3), algebra calculation based on Lemma 3 shows that

O(n−4)
n∑

i=2

∑
s �=t

E(XT
i XsX

T
i XsX

T
i XtX

T
i Xt) = O(n−1tr2(Σ2)).

Define ΓTΓ = (vij). For the second term in (A.3), we have the following facts

O(n−4)
n∑

i=2

i−1∑
j=1

E(XT
i Xj)4 = O(n−4)

∑
i �=j

E

⎛⎝ p∑
k,l=1

vklZikZjl

⎞⎠4

= O(n−2)

⎛⎝ p∑
k,l=1

v4
klE(Z4

ik)E(Z4
jl) +

∑
k �=l

∑
s �=t

v2
klv

2
stE(Z2

ik)E(Z2
is)E(Z2

jl)E(Z2
jt)

+
∑
k �=l

∑
s �=t

vklvktvslvstE(Z2
ik)E(Z2

is)E(Z2
jl)E(Z2

jt)

+
∑
k=l

∑
s �=t

v2
ksv

2
klE(Z4

ik)E(Z2
js)E(Z2

jt)

⎞⎠ .

Note that the following inequalities holds

p∑
k,l=1

v4
kl ≤

⎛⎝ p∑
k,l

v2
kl

⎞⎠2

= (tr(Σ2))2,

∑
k=l

∑
s �=t

v2
ksv

2
kl ≤

⎛⎝ p∑
k,l

v2
kl

⎞⎠2

= (tr(Σ2))2,

∑
k �=l

∑
s �=t

vklvktvslvst ≤ tr(Σ4).

Combining condition (C1), we obtain
∑n

i=2 E(η4
in) = o((tr(Σ2))2). In other

words, for any ε > 0, we have

E

{
n∑

i=2

E(η4
in|Fi−1)

ε2(tr(Σ2))2

}
= o(1).
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Moreover, considering the following fact

E
(
η2
inI{|ηin|>ε

√
tr(Σ2)}|Fi−1

)
≤ ε−2tr(Σ2)−1E(η4

in|Fi−1),

then we can conclude (A.2) holds.

Step 3. It suffices to show that the variances of An3 and An2 are o(n−2tr(Σ2))
under H0 to complete the proof.

We note that X is uncorrelated with Y under H0. It follows that E(An2) =
E(An3) = 0 obviously. Besides,

E(A2
n2) = O(n−4)

∑
i �=j

∑
k �=l

E(XT
i XjX

T
kX l)E

[
(Fn(Yi) − F (Yi))(Fn(Yk) − F (Yk))

×
(
F (Yj) −

1
2

)(
F (Yl) −

1
2

)]
= O(n−4)

∑
i �=j

E(XT
i Xj)2E

[
(Fn(Yi) − F (Yi))2

(
F (Yj) −

1
2

)2]
= o(n−2tr(Σ2)),

and

E(A2
n3) = O(n−4)

∑
i �=j

∑
k �=l

E(XT
i XjX

T
kX l)E

[
(Fn(Yi) − F (Yi))(Fn(Yj) − F (Yj))

× (Fn(Yk) − F (Yk))(Fn(Yl) − F (Yl))
]

= O(n−4)
∑
i �=j

E(XT
i Xj)2E

[
(Fn(Yi) − F (Yi))2(Fn(Yj) − F (Yj))2

]
= o(n−2tr(Σ2)).

Summarizing the above results, we conclude that Theorem 1 holds.

Proofs for Theorem 2

According to the proof of Theorem 1, we have already demonstrated the fact
that

nSn

12
√
tr(Σ2)

= n√
tr(Σ2)

( 1
n(n− 1)

∑
i �=j

XT
i Xjeiej + op(

√
n−2tr(Σ2))

+ βT
hΣ2βh + An2 + An3

)
,

under H0 or the local alternatives.
To verify Sn tend to infinite as n → ∞, it suffices to show the orders of An2

and An3 are controlled by the term βT
hΣ2βh under the conditions of Theorem 2.
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Step 1 For the term An3, we have

|An3| ≤
1

n(n− 1)
∑
i �=j

∣∣∣XT
i Xj

∣∣∣ max
1≤i≤n

|Fn(Yi) − F (Yi)|2 .

Since E(XT
i Xj)2 = tr(Σ2), we show that An3 is of order Op(n−1 logn

√
tr(Σ2)).

Step 2 For the term An2, we rewrite it as below

1
2An2 = 1

n(n− 1)
∑
i �=j

XT
i Xj(Fn(Yi) − F (Yi))XT

j βh

+ 1
n(n− 1)

∑
i �=j

XT
i Xj(Fn(Yi) − F (Yi))ej

=: Dn1 + Dn2.

Note that

|Dn1| ≤ max
1≤i≤n

|Fn(Yi) − F (Yi)|
1

n(n− 1)
∑
i �=j

∣∣∣XT
i XjX

T
j βh

∣∣∣ ,
and

E
(
(XiXj)2(XT

j βh)2
)

= E
(
ZT

j ΓTβhZ
T
i ΓTΓZj

)2

= E
(

E
(
ZT

j ΓTβhZ
T
i ΓTΓZj

)2
|Zi

)
= O(1)E

(
tr(ΓTβhZ

T
i ΓTΓΓTβhZ

T
i ΓTΓ)

)
+ O(1)E

(
tr2(ΓTβhZ

T
i ΓTΓ)

)
= O(βT

hΣ3βh).

Therefore, we readily obtain Dn1 is op(n−1(logn)1/2
√
tr(Σ2)).

For Dn2, we write

Dn2 = 1
n2(n− 1)

∑
i �=j

n∑
k=1

XT
i Xjej

(
I{Yk≤Yi} − F (Yi)

)
= 1

n2(n− 1)
∑
i �=j

∑
k=i

XT
i Xjej

(
I{Yk≤Yi} − F (Yi)

)
+ 1

n2(n− 1)
∑
i �=j

∑
k=j

XT
i Xjej

(
I{Yk≤Yi} − F (Yi)

)
+ 1

n2(n− 1)
∑

i �=j �=k

XT
i Xjej

(
I{Yk≤Yi} − F (Yi)

)
= Dn21 + Dn22 + Dn23.
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By Cauchy-Schwarz inequality, we have

E |Dn21| ≤ Cn−1E
∣∣∣XT

i Xjej

∣∣∣
≤ Cn−1E1/2

(
XT

i XjX
T
j Xi

)
E1/2 (e2

j

)
= Cn−1

√
tr(Σ2),

which implies that Dn21 is of order Op(n−1
√
tr(Σ2)). Analogously, Dn22 is also

of order Op(n−1
√
tr(Σ2)). Since ej is bounded in probability under the local

alternative, we derive that

E(D2
n23) = 1

n4(n− 1)2
∑

i �=j �=k

∑
s �=t�=l

E
(
XT

i XjX
T
s Xt

(
I{Yk≤Yi} − F (Yi)

)
×
(
I{Yl≤Ys} − F (Ys)

)
ejet
)

= O(n−2)E
(
XT

i XjX
T
s Xje

2
j + (XT

i Xj)2e2
j

)
= O(n−2tr(Σ2)),

by noticing the fact that

E
(
XT

i Xj

(
I{Yk≤Yi} − F (Yi)

)
ej

)
= 0,

E
(
XT

i Xj

(
I{Yk≤Yi} − F (Yi)

)
ej |Xi, Yi,Xj , ej

)
= 0.

Hence, we verify that Dn2 is of order Op(n−1tr(Σ2)). Then we obtain An2 =
op(n−1(logn)1/2

√
tr(Σ2)).

So far, we conclude that |Ani|−1βT
hΣ2βh → ∞ i = 2, 3 holds under the

conditions that βT
hΣ2βh ≥ Cn−1+δ

√
tr(Σ2) for any small positive number δ.

Lastly, applying similar techniques to those used in the above proofs, we are
able to show n−1(n− 1)−1∑

i �=j X
T
i Xjeiej is Op(n−1tr(Σ2)), which completes

the proof.

Proofs for Theorem 3

According to [24], min{1, ·} can be ignored in the proof. Thus, it is sufficient to
show that

Pr((1 − log γmin) inf
γ∈(γmin,1)

Q(γ) ≤ α) ≤ α.

Define π(u) = B−1∑B
b=1 I{pb≤u}. Then the two events {Q(γ) ≤ α} and

{π(αγ) ≥ γ} are equivalent. In fact, pb follows a uniform distribution U(0, 1)
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under H0. Applying Markov inequality, we obtain that

Pr(Q(γ) ≤ α|H0) = Pr(π(αγ) ≥ γ|H0)

= Pr
(
B−1

B∑
b=1

I{pb≤αγ} ≥ γ|H0

)

≤ (γB)−1
B∑

b=1
Pr(pb ≤ αγ|H0)

= α.

Using Markov inequality again, we derive

Pr
(

inf
γ∈(γmin,1)

Q(γ) ≤ α

)
= E

(
inf

γ∈(γmin,1)
I{Q(γ)≤α}

)
= E

(
sup

γ∈(γmin,1)
I{π(αγ)≥γ}

)
= E

(
sup

γ∈(γmin,1)
I{B−1∑B

b=1 I{pb≤αγ}≥γ}

)

≤ E
(

sup
γ∈(γmin,1)

1
γ
B−1

B∑
b=1

I{pb≤αγ}

)

= E
(

sup
γ∈(γmin,1)

1
γ
I{pb≤αγ}

)
.

Consider the following fact,

sup
γ∈(γmin,1)

1
γ
I{pb≤αγ} =

⎧⎨⎩
0 pb ≥ α,

αp−1
b αγmin ≤ pb < α,

γ−1
min pb < αγmin.

Therefore, we can easily calculate the expectation under H0

E
(

sup
γ∈(γmin,1)

1
γ
I{pb≤αγ}

∣∣∣H0

)
=
∫ αγmin

0
γ−1
mindx +

∫ α

αγmin

α

x
dx

= α(1 − log(γmin)).

Summarizing the above results, Pr
(
infγ∈(γmin,1) Q(γ) ≤ α|H0

)
≤ α(1−log(γmin))

holds to complete the proof.

Proofs for Theorem 4

Without loss of generality, we assume that σ∗
jj = 1 for any j ∈ S := {q +

1, · · · , p}. To prove Theorem 4, we fist introduce the following lemma.
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Lemma 4. Suppose X∗
ib follows the elliptical distribution and Condition (C4)

holds, we have the following facts

E

⎛⎝∑
j∈S

(X∗2
ij − 1)

⎞⎠4

= O(tr2(Σ2
b|a)), (A.4)

E

⎛⎝∑
j∈S

X∗
i1jX

∗
i2j

⎞⎠4

= O(tr2(Σ2
b|a)). (A.5)

Proof of Lemma 4. Under Condition (C4), one directly proves (A.4) by some
algebras in [2] and thus omit here. Denote Σb|a :=

(
σ∗
ij

)
. By the definition of

elliptical distributions, we have

E(X∗
ij1X

∗
ij2X

∗
ij3X

∗
ij4) = σ∗

j1j2σ
∗
j3j4+σ∗

j1j3σ
∗
j2j4+σ∗

j1j4σ
∗
j2j3+C

∑
k∈S

σ∗
j1kσ

∗
j2kσ

∗
j3kσ

∗
j4k.

Thus, by Cauchy-Schwarz inequality,∑
j1j2j3j4∈S

(
E(X∗

ij1X
∗
ij2X

∗
ij3X

∗
ij4)
)2

≤ 2
∑

j1j2j3j4∈S

(
σ∗
j1j2σ

∗
j3j4 + σ∗

j1j3σ
∗
j2j4 + σ∗

j1j4σ
∗
j2j3

)2
+ 2C2

∑
j1j2j3j4∈S

(∑
k∈S

σ∗
j1kσ

∗
j2kσ

∗
j3kσ

∗
j4k

)2

= 2
(
3tr2(Σ2

b|a) + 4tr(Σ4
b|a)
)

+ 2C2
∑
k1,k2

⎛⎝∑
j

σ∗
jk1

σ∗
jk2

⎞⎠4

≤ 2
(
3tr2(Σ2

b|a) + 4tr(Σ4
b|a)
)

+ 2C2

⎛⎜⎝∑
k1,k2

⎛⎝∑
j

σ∗
jk1

σ∗
jk2

⎞⎠2
⎞⎟⎠

2

≤ 2
(
3tr2(Σ2

b|a) + 4tr(Σ4
b|a)
)

+ 2C2tr2(Σ2
b|a)

= O(tr2(Σ2
b|a)).

By noticing the following facts to complete the proof for (A.5),

E

⎛⎝∑
j∈S

X∗
i1jX

∗
i2j

⎞⎠4

=
∑

j1,j2,j3,j4

E2(X∗
i1j1X

∗
i1j2X

∗
i1j3X

∗
i1j4). (A.6)

Now we present the proof of Theorem 4.
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Step 1 We first define T̃n as follows,

T̃n = 1
n

(e + Fn(Y) − F (Y))TX∗
bX

∗T

b (e + Fn(Y) − F (Y))

− p− q

n
(e + Fn(Y) − F (Y))T (e + Fn(Y) − F (Y)).

Next, we would verify that p−
1
2 (Tn − T̃n) is op(1). Notice that

Tn − T̃n

=
{

1
n
êTXbX

T
b ê−

1
n

(e + Fn(Y) − F (Y))TX∗
bX

∗T

b (e + Fn(Y) − F (Y))

+p− q

n
(e + Fn(Y) − F (Y))TPa(e + Fn(Y) − F (Y))

}
−
{
σ̂2

n
tr(X∗

bX
∗T

b (I− Pa))

−p− q

n
(e + Fn(Y) − F (Y))T (I− Pa)(e + Fn(Y) − F (Y))

}
= Jn1 + Jn2.

(A.7)

We now calculate the order of the maximum eigenvalue of matrix H :=
X∗

bX
∗T
b − (p− q)I = (hij).

Note that

E(tr(H4)) = E

⎛⎝ ∑
i1,i2,i3,i4

hi1i2hi2i3hi3i4hi4i1

⎞⎠ .

Further note that

E

⎛⎝ ∑
i1 �=i2 �=i3 �=i4

hi1i2hi2i3hi3i4hi4i1

⎞⎠
= E

⎛⎝ ∑
i1 �=i2 �=i3 �=i4

∑
j1∈S

X∗
i1j1X

∗
i2j1

∑
j2∈S

X∗
i2j2X

∗
i3j2

∑
j3∈S

X∗
i3j3X

∗
i4j3

∑
j4∈S

X∗
i4j4X

∗
i1j4

⎞⎠
=

∑
i1 �=i2 �=i3 �=i4

∑
j1j2j3j4∈S

σ∗
j1j2σ

∗
j2j3σ

∗
j3j4σ

∗
j4j1

= O(n4tr(Σ4
b|a)).

Denote Λ as the complement set of {i1 �= i2 �= i3 �= i4}. Using Cauchy-
Schwarz inequality, we get

E
(∑

Λ

hi1i2hi2i3hi3i4hi4i1

)

≤ 1
4n

3 [E(h4
i1i2) + E(h4

i2i3) + E(h4
i3i4) + E(h4

i4i1)
]
.
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According to (A.6), when i1 �= i2, we have

E(h4
i1i2) =

∑
j1j2j3j4∈S

E(X∗
i1j1X

∗
i1j2X

∗
i1j3X

∗
i1j4X

∗
i2j1X

∗
i2j2X

∗
i2j3X

∗
i2j4)

=
∑

j1j2j3j4∈S

E2(X∗
i1j1X

∗
i1j2X

∗
i1j3X

∗
i1j4)

= O(tr2(Σ2
b|a)).

According to (A.4), when i1 = i2, we have

E(h4
i1i1) = E

⎛⎝∑
j1∈S

X∗2
i1j1 − (p− q)

⎞⎠4

= O(tr2(Σ2
b|a)).

Therefore, λmax(H) = Op(n
3
4 p

1
2 + np

1
4 ), which is implied by λ4

max(H) ≤ tr(H4).
For the first term on the right hand side of (A.7), we have

Jn1 = n−1(e + Fn(Y) − F (Y))T (I− Pa)X∗
bX

∗T

b (I− Pa)(e + Fn(Y) − F (Y))

− n−1(e + Fn(Y) − F (Y))TX∗
bX

∗T

b (e + Fn(Y) − F (Y))
+ n−1(p− q)(e + Fn(Y) − F (Y))TPa(e + Fn(Y) − F (Y))

= n−1(e + Fn(Y) − F (Y))TPaHPa(e + Fn(Y) − F (Y))
− 2n−1(e + Fn(Y) − F (Y))TPaH(e + Fn(Y) − F (Y)).

Denote Pa =: (pij). Under Condition (C3), we have

E
(
eTPae

)
= E

⎛⎝∑
i,j

pijeiej

⎞⎠ = E

⎛⎝E

⎛⎝∑
i,j

pijeiej |X

⎞⎠⎞⎠
= σ2E (tr(Pa)) = O(q).

Considering the fact that eTPaHPae ≤ λmax(H)eTPae, then

eTPaHPae = Op

(
n

3
4 qp

1
2 + nqp

1
4

)
.

Similarly, we could also obtain eTPaHe = Op

(
n

3
4 qp

1
2 + nqp

1
4

)
.

We write

(Fn(Y) − F (Y))T (Fn(Y) − F (Y)) =
n∑

i=1
(Fn(Yi) − F (Yi))2

= 1
n2

∑
i,j,k

(
I{Yj≤Yi} − F (Yi)

) (
I{Yk≤Yi} − F (Yi)

)
.
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Simple algebra leads to E(Fn(Y) − F (Y))T (Fn(Y) − F (Y)) = O(1), which is
followed by (Fn(Y) − F (Y))T (Fn(Y) − F (Y)) = Op(1). Further observe that

(Fn(Y) − F (Y))TPaHPa(Fn(Y) − F (Y))
≤ (Fn(Y) − F (Y))T (Fn(Y) − F (Y))λmax(H)

= Op

(
n

3
4 p

1
2 + np

1
4

)
.

Analogously, we derive the order of (Fn(Y) − F (Y))TPaH(Fn(Y) − F (Y)) is
also Op

(
n

3
4 p

1
2 + np

1
4

)
. By Cauchy-Schwarz inequality,∣∣eTPaHPa(Fn(Y) − F (Y))

∣∣
≤
(
eTPaHPae

)1/2 ((Fn(Y) − F (Y))TPaHPa(Fn(Y) − F (Y))
)1/2

= Op

(
n

3
4 q

1
2 p

1
2 + nq

1
2 p

1
4

)
.

Other cross terms can be similarly controlled. Thus, when Condition (C2) holds,
the order of Jn1 is op(p1/2).

For the second term on the right hand side of (A.7), we have

Jn2 = (e + Fn(Y) − F (Y))T (I− Pa)(e + Fn(Y) − F (Y))
n(n− q) tr(X∗

bX
∗T

b (I− Pa))

− p− q

n
(e + Fn(Y) − F (Y))T (I− Pa)(e + Fn(Y) − F (Y))

= (e + Fn(Y) − F (Y))T (I− Pa)(e + Fn(Y) − F (Y))
n− q

(p− q)

×
(

1
n(p− q) tr(X

∗
bX

∗T
b ) − n− q

n

)
− (e + Fn(Y) − F (Y))T (I− Pa)(e + Fn(Y) − F (Y))

n(n− q) tr(X∗
bX

∗T
b Pa)

= Jn21 + Jn22.

According to Lemma 3, one easily shows that

1
n(p− q) tr(X

∗
bX

∗T
b ) − 1 = 1

n(p− q)

n∑
i=1

(
X∗T

ib X∗
ib − (p− q)

)
= Op(n−1/2p−1/2).

Notice that

(Fn(Y) − F (Y))T (I− Pa)(Fn(Y) − F (Y))
n− q

≤ (Fn(Y) − F (Y))T (Fn(Y) − F (Y))
n− q

λmax(I− Pa)
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= Op(n−1);
eT (I− Pa)e

n− q
≤ eTe

n− q
λmax(I− Pa) = Op(1).

Then, Cauchy-Schwarz inequality imples that n−1eT (I−Pa)(Fn(Y)−F (Y)) is
of order Op(n−1/2). Hence, we verify that Jn21 = op(p1/2). Further observe that
tr(X∗

bX
∗T
b Pa) ≤ λmax(X∗

bX
∗T
b )tr(Pa), then we could derive that Jn22 = op(p1/2),

since p1/2qn−1 → 0.
Up to now, we have verified that

Tn − T̃n

(2σ4tr(Σ2
b|a))

1
2

P→ 0.

Step 2 Then, it suffices to show

T̃n

(2σ4tr(Σ2
b|a))

1
2

d→ N(0, 1). (A.8)

For T̃n, we have

T̃n = 1
n
eTHe+ 1

n
(Fn(Y)−F (Y))TH(Fn(Y)−F (Y))+ 2

n
eTH(Fn(Y)−F (Y))

= Kn1+Kn2+Kn3.

where

Kn1 = 1
n
eTX∗

bX
∗T

b e− p− q

n
eTe

= 1
n

∑
i1 �=i2

∑
j∈S

ei1ei2X
∗
i1jX

∗
i2j + 1

n

n∑
i=1

∑
j∈S

e2
i (X∗2

ij − 1)

= Kn11 + Kn12.

It is clear that E(Kn12) = 0. Recall that E(e2
i |Xi) = σ2 and E(e4

i |Xi) < ∞.
Applying Cauchy-Schwarz inequality and Lemma 3,

n2Var(Kn12) =
∑
i1,i2

∑
j1,j2∈S

E
(
e2
i1e

2
i2(X

∗2
i1j1 − 1)(X∗2

i2j2 − 1)
)

=
∑
i1 �=i2

∑
j1,j2∈S

σ4E(X∗2
i1j1 − 1)E(X∗2

i2j2 − 1))

+
n∑

i=1

∑
j1,j2∈S

E(e4
i (X∗2

ij1 − 1)(X∗2
ij2 − 1))

≤ C

n∑
i=1

E
(
X∗T

ib Xib − E(X∗T
ib Xib)

)2
= O(np).
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Thus, Var(Kn12) = O(pn−1) = o(p), which is followed by

Kn12

(2σ4tr(Σ2
b|a))

1
2

P→ 0.

For Kn11, it is easy to see that E(Kn11) = 0. Furthermore,

n2Var(Kn11) =
∑
i1 �=i2

∑
i3 �=i4

∑
j1,j2∈S

E(ei1ei2ei3ei4X∗
i1j1X

∗
i2j1X

∗
i3j2X

∗
i4j2)

= 2
∑
i1 �=i2

∑
j1,j2∈S

E(e2
i1e

2
i2X

∗
i1j1X

∗
i2j1X

∗
i1j2X

∗
i2j2)

= 2n(n− 1)σ4tr(Σ2
b|a),

which shows Var(Kn11) = 2σ4tr(Σ2
b|a)(1 + o(1)).

In order to verify (A.8), it suffices to show

Kn11

Var(Kn11)
1
2

d→ N(0, 1).

Following the techniques used in the proof of Theorem 1, we could obtain the
asymptotic normality above by the martingale central limit theorem.

Finally, note that

(Fn(Y)−F (Y))TH(Fn(Y)−F (Y)) ≤ λmax(H)(Fn(Y)−F (Y))T (Fn(Y)−F (Y)),

thus we obtain the order of Kn2 is op(p1/2). Cauchy-Schwarz inequality shows
that Kn3 is also op(p1/2), which completes the whole proof.
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