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Abstract: Estimation of the mixing distribution under a general mixture
model is a very difficult problem, especially when the mixing distribution
is assumed to have a density. Predictive recursion (PR) is a fast, recursive
algorithm for nonparametric estimation of a mixing distribution/density
in general mixture models. However, the existing PR consistency results
make rather strong assumptions, some of which fail for practically relevant
mixture models. In this paper, we first develop new consistency results for
PR under weaker conditions and then we apply this theory in the important
case of mixtures of scaled uniform kernels.
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1. Introduction

Mixture models are widely used in statistics and machine learning, often for
density estimation and clustering. Here we will be considering a general version
of the mixture model, where the mixture density is given by

mP (x) =
∫
U

k(x | u)P (du), (1)

where k is a known kernel, i.e., where x �→ k(x | u) is a density for each u ∈ U,
and P is the unknown mixing distribution on (the Borel σ-algebra of) U. An
advantage to this general form is its flexibility: depending on the kernel, the mix-
ture density mP can take virtually any shape (e.g., DasGupta, 2008, p. 572),
making such mixtures a powerful modeling tool for robust, nonparametric den-
sity estimation. Here we will assume that we have independent and identically
distributed observations from a density m—which may or may not have the
form (1)—and our primary goal is to estimate the mixing distribution P ; this,
in turn, will also give an estimate of the density m.
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An alternative perspective on the mixture model formulation considers a
hierarchical formulation, where the first layer has iid U-valued random variables,
U1, . . . , Un, from P , and then the second layer has

(Xi | Ui) ∼ k(x | Ui), independent, i = 1, . . . , n.

The idea is that the Ui’s are latent/unobservable variables and the Xi’s are the
observable data. It is easy to check that, marginally, the Xi’s are iid with density
mP as in (1). The classical deconvolution problem (e.g., Fan, 1991; Stefanski
and Carroll, 1990) is a special case where k(x | u) is such that the second layer
above could be described as “Xi = Ui + noise.” This hierarchical formulation
sheds light on the difficulties of the problem we are considering; that is, our goal
is to estimate the distribution P of the latent variables U1, . . . , Un based only
on the corrupted observations X1, . . . , Xn.

For fitting the general mixture model (1), a number of different strategies are
available. A natural approach is to use the nonparametric maximum likelihood
estimator (MLE) of P (Chen, 2017; Eggermont and LaRiccia, 1995; Lindsay,
1995) and the corresponding plug-in estimate of the mixture density mP . An
important feature of the nonparametric MLE of P is that it is almost surely
a discrete distribution (e.g., Lindsay, 1995). Another approach is to assume
discreteness of P with a fixed number of components and the component pa-
rameters are estimated via EM (Dempster, Laird and Rubin, 1977; McLachlan
and Peel, 2000; Teel, Park and Sampson, 2015). Bayesian approaches have also
been explored in this context; either by having a prior on P like in Van Dyk and
Meng (2001), or a prior on the number of components of P like in Richardson
and Green (1997). Nonparametric Bayes methods is an option too (e.g., Nguyen,
2013) but, the posterior for P is supported on discrete distributions, so these
methods also are not suited for estimating a smooth mixing density.

An alternative to the likelihood-based frameworks mentioned above, Newton,
Quintana and Zhang (1998) proposed a recursive algorithm for nonparametric
estimation of P , originally designed to serve as an approximation of the pos-
terior mean under the Dirichlet process mixture formulation; see, also, Newton
and Zhang (1999). The so-called predictive recursion (PR) algorithm estimates
the mixing distribution recursively, starting with an initial guess P0 and applies
a simple update (Pi−1, Xi) �→ Pi, for each i = 1, . . . , n, resulting in an estimate
Pn of P and a corresponding estimate mn = mPn of m. One advantage of the PR
estimator is its computational simplicity and speed. The other is that, unlike the
likelihood-based methods above whose estimators are effectively discrete, PR is
able to estimate a mixing distribution that has a smooth density with respect to
any user-specified dominating measure. To our knowledge, PR is the only gen-
eral method for estimating mixing distributions that has this property. Further
details about the PR algorithm and its properties are discussed in Section 2.

Not being likelihood-based has its advantages when it comes to the smooth-
ness of the estimates, but it also creates challenges when it comes to PR’s
theoretical justification. It was not until Newton (2002) that a first theoretical
convergence analysis of PR was presented, establishing the asymptotic consis-
tency of the PR estimator Pn as n → ∞. These first results, along with those in
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Ghosh and Tokdar (2006) and Martin and Ghosh (2008), focus primarily on the
case where U is a known finite set. Tokdar, Martin and Ghosh (2009) extended
the results to compact U, which was further extended by Martin and Tokdar
(2009) who covered the case of model misspecification, where the true density
m need not have exactly the form (1), and bounded the rate of convergence.

Even the latter PR consistency results are based on conditions that can be
too restrictive in applications. For example, Williamson (1956) showed that
monotone densities are characterized as mixtures of the form (1) where U =
[0,∞) and k(x | u) = u−11[0,u](x) is the uniform kernel, Unif(x | 0, u), with
1A(x) being the indicator function of a set A. But for this particular kernel, it
is not possible to check the sufficient conditions required in, e.g., Theorem 4.5
of Martin and Tokdar (2009). Similar issues would arise in other mixture model
applications. Motivated by this deficiency in the state of the art, the focus of
the present paper is to establish new asymptotic consistency properties for the
PR estimator under weaker and more easily verified conditions.

Following a brief review of the existing theory for PR in Section 2, we estab-
lish convergence properties of the PR estimator—of both the mixture and the
mixing distribution—under weaker conditions in Section 3. We then apply these
new results in Section 4 to our motivating example, namely, monotone density
estimation via mixtures of uniform kernels. There we first give a characteriza-
tion of the best mixing distribution and mixture density within a special class
of uniform mixtures. This characterization suggests a particular formulation of
the PR algorithm and we use the general results presented in Section 3 to prove
that PR consistently estimates this best mixture. Our choice to focus on a spe-
cial class of uniform mixtures generally introduces some model misspecification
bias, but we show that this bias is a vanishing function of two user-specified
parameters. Therefore, the bias has no practical impact on PR’s performance,
as our numerical examples confirm. Finally, some concluding remarks are given
in Section 5. Technical details and proofs are presented in the Appendix.

2. Background on PR

As mentioned briefly above, PR is a recursive algorithm designed for fast, non-
parametric estimation of mixing distributions. The algorithm’s inputs include
the kernel k, an initial guess P0 of the mixing distribution, supported on U,
a rule for defining a sequence of weights i �→ wi ∈ (0, 1), and a sequence of
data points X1, X2, . . .. Then the recursive updates first presented in Newton,
Quintana and Zhang (1998) define the PR algorithm:

Pi(du) = (1 − wi)Pi−1(du) + wi
k(Xi | u)Pi−1(du)∫
U
k(Xi | v)Pi−1(dv)

, u ∈ U, i ≥ 1. (2)

After n data points have been observed, the mixing distribution estimator is
Pn, and the corresponding mixture density estimator is mn = mPn defined
according to (1). To understand the motivation behind PR, observe that the ith

PR update is just a weighted average of Pi−1(du) and the posterior for U with
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prior Pi−1(du) and likelihood k(Xi | u). The initial guess P0 is chosen such that
it covers U in an uninformative manner, for example, a uniform distribution over
U. The weights, wi, need to be decreasing in i but not too quickly, specifically,

wi ∈ (0, 1),
∞∑
i=1

wi = ∞, and
∞∑
i=1

w2
i < ∞. (3)

These conditions on the weights are common in the literature on stochastic
approximation (e.g., Kushner and Yin, 2003; Lai, 2003; Martin and Ghosh,
2008), the precursor to the modern developments in stochastic gradient descent.
A standard class of weights that satisfies (3) is wi = a(i + 1)−b for b ∈ (0.5, 1]
and a < 2b. Some recent and novel applications of PR can be found in Scott
et al. (2015), Tansey et al. (2018), and Woody, Padilla and Scott (2022).

The general algorithm above deals with general probability measures and is
probably too abstract for practical applications. Typically, the user would have
a specific dominating measure μ on U in mind, and then he/she can incorporate
that information into the algorithm. In that case, the updates in (2) can be
expressed in terms of the density or Radon–Nikodym derivative pi = dPi/dμ as

pi(u) = (1 − wi) pi−1(u) + wi
k(Xi | u) pi−1(u)∫

U
k(Xi | v) pi−1(v)μ(dv)

, u ∈ U, i ≥ 1,

where p0 = dP0/dμ is the initial guess. Therefore, PR can be used to esti-
mate a mixing density, compared to the nonparametric MLE which is almost
surely discrete. Moreover, when the densities are evaluated on a fixed grid in
U, and the normalizing constant in the denominator is evaluated using quadra-
ture, computation of the PR estimate, Pn, is fast and simple—done in O(n)
operations—compared to the nonparametric MLE or a Bayesian estimate based
on Markov chain Monte Carlo (MCMC).

The above algorithm is described for the case when data points are arriving
one at a time, but, of course, the same procedure can be carried out when the
data X1, . . . , Xn comes in a batch. When data are both batched and iid, as we
consider here, one might be troubled by the fact that Pn depends on the order
in which the data are processed. In particular, while there are some potential
advantages to PR’s order-dependence (Dixit and Martin, 2019), it implies that
Pn is not a function of a minimal sufficient statistic. To overcome this, Newton
(2002) suggested that one could evaluate the estimator Pn separately on several
random permutations of the data sequence and then take averages over permu-
tations. This can be seen as a Monte Carlo estimate of the Rao–Blackwellized
estimator, the average over all permutations. It has been shown empirically
(e.g., Martin and Tokdar, 2012) that it only takes a few random permutations
to remove the order-dependence, so, with the inherent computational efficiency
of PR, the permutation-averaged version is still much faster than, say, MCMC.

Not being likelihood-based, it is not immediately obvious that the PR es-
timates would have any desirable statistical properties. It has, however, been
shown that, under certain conditions, both Pn and mn are consistent estimators.
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Before stating these sufficient conditions for consistency, we need to describe
what the PR estimates are estimating in general.

Suppose the true density of the iid data X1, . . . , Xn is m�. Of course, there
is generally no way to know if m� can be expressed as a mixture model of
the form (1) for a particular kernel, k. When the mixture model is incorrectly
specified, there is no “P �” for the PR estimator Pn to converge to, and we
cannot expect mn to be a consistent estimator of m�. Instead, there may be a
mixture density, m†(x) =

∫
k(x | u)P †(du), that is “closest” to m�, and that Pn

and mn would converge to P † and m†, respectively. Proximity here is measured
in terms of the Kullback–Leibler divergence,

K(m�,m) =
∫

log{m�(x)/m(x)}m�(x) dx.

More precisely, let P denote (a possibly proper subset of) the collection of
probability distributions P on U, and define the corresponding set of mixtures
of the form (1) for a given kernel k,

M = M (k,P) = {mP : P ∈ P},

where P is the closure of P with respect to the weak topology, i.e., P plus all
possible limits of weakly convergent sequences in P. To avoid vaccuous cases, we
will assume that K(m�,m) is finite for at least one m ∈ M . This is not a trivial
assumption, however; see Section 4. In this case, the “best approximation” of
m� in M is the Kullback–Leibler minimizer, m†, that satisfies

K(m�,m†) = inf{K(m�,m) : m ∈ M } (4)

A relevant question is whether such a minimizer exists and if it is unique. As-
suming that K(m�,m) is finite for at least one m ∈ M and given that it is a
convex function, we can expect that a minimizer m† exists and is unique. Exis-
tence of a P † corresponding to m† is guaranteed by assuming certain conditions
on k and U; see Conditions A1 and A2 in Martin and Tokdar (2009) and, more
generally, Liese and Vajda (1987, Ch. 8). However, uniqueness of P † requires
identifiability of the mixture model (1) in P .

In Tokdar, Martin and Ghosh (2009), consistency of the PR estimators was
established in the case where the mixture model was correctly specified, i.e.,
when m� ∈ M , so that there exists a true P � ∈ P. That is, under certain
conditions, they showed K(m�,mn) → 0 almost surely and that Pn → P �

weakly almost surely. Martin and Tokdar (2009) extended these consistency
results to the case where the mixture model is not necessarily correctly specified,
i.e., where possibly m� 	∈ M . This extension is a practically important one, as
it provides a theoretical basis for the PR-based marginal likelihood estimation
framework developed in Martin and Tokdar (2011) and later applied in, e.g.,
Martin and Han (2016), Dixit and Martin (2022). Under conditions slightly
stronger than those given in Tokdar, Martin and Ghosh (2009) for the correctly
specified case, they showed that K(m�,mn) → K(m�,m†) and Pn → P † weakly,
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both almost surely. This implies, for example, that the PR estimates do the best
they could, asymptotically, relative to the specified model. Moreover, it means
that the PR estimator can be understood as (asymptotically) trying to minimize
the function P �→

∫
log{mP (x)}m�(x) dx, similar to what the nonparametric

MLE aims to achieve. It turns out, however, that the sufficient conditions for
consistency stated in Martin and Tokdar (2009), very similar to those in Tokdar,
Martin and Ghosh (2009), are rather restrictive. The most problematic of those
assumptions is the following:

sup
u1,u2∈U

∫ {k(x | u1)
k(x | u2)

}2
m�(x) dx < ∞. (5)

For nice kernels like k(x | u) = N(x | u, σ2) for a fixed σ2 > 0, if U is compact
and m� has Gaussian-like tails, then (5) can be satisfied. However, if m� is
heavier-tailed, then (5) could easily fail. More concerning is if we are considering
a not-so-nice kernel, such as uniform: k(x | u) = Unif(x | 0, u), for x > 0 and
u > 0. The u-dependent support implies that the ratio in the above display
is infinite on an open interval and, hence, (5) obviously fails. The difficulty in
verifying condition (5) in several practical applications is what motivated our
present investigation into potentially weaker sufficient conditions.

3. New consistency results

3.1. Conditions

The goal is to develop a new set of sufficient conditions for PR consistency that
are weak enough that they can be checked in the applications we mentioned
above, in particular, the case of uniform kernels for monotone density estimation.
First we make clear the setup/conditions, and then we present the main results.
Condition 1. The PR algorithm’s weights satisfy wi = a(i + 1)−1, for a < 2

9 .
Condition 2. The mixing distribution support, U, is compact.
Condition 3. The kernel, the initial guess P0, with corresponding m0 = mP0 ,
and the true m� satisfy the following integrability property:

sup
u∈U

∫ {k(x | u)
m0(x)

}2
m�(x) dx < ∞. (6)

Of course, the specific weights in Condition 1—which are of the same form
as the weights used in Hahn, Martin and Walker (2018)—satisfy the basic con-
ditions (3) on the wi’s, but others do too. The reason we adopt this specific
choice is that it allows us to replace (5) with the weaker bound (6) discussed
more below. And since the choice of weights is entirely in the hands of the user,
while the choice of kernel may be determined by the context of the problem and
m� is a choice made by “Nature” and hidden from the user, it is best to sacrifice
on generality in directions the user can control. In our experience, the empirical
performance is not sensitive to the choice of a > 0 in Condition 1; and since
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we do not claim that this condition is necessary for PR consistency, in practice
we take wi = (i + 1)−1. Weight sequences that vanish more slowly than these
have some appeal, the theoretical results that we are aware of in the stochastic
approximation literature (e.g., Dvoretzky, 1956; Mokkadem and Pelletier, 2007;
Sacks, 1958) suggest that wi = O(i−1) are “optimal” in a certain sense.

Condition 2 assumes that the mixing distribution support is compact, but
this is typically not a severe practical restriction in practice. Compactness of U
is not strictly needed for the results presented below, but (a) some more com-
plicated notion of compactness is needed, as we briefly discuss in the paragraph
leading up to Corollary 2, and (b) Condition 3 might be difficult to check with-
out U being compact. For these reasons, we opt for the simpler but slightly more
restrictive compactness condition listed above. Compactness is also a standard
assumption in the literature on the analysis of likelihood-based mixing distri-
bution estimation, e.g., Chen (2017) and Nguyen (2013).

Finally, the most complicated is Condition 3. Intuitively, one cannot expect
that an arbitrary pair of inputs (k, P0) can produce a consistent estimate of any
true density m�, and Condition 3 describes a connection between these pieces
that is sufficient for consistent estimation. Of course, like any assumptions about
the true/unknown m�, Condition 3 cannot be “checked”. This condition deter-
mines which m�’s the PR algorithm, initialized with (k, P0), can consistently
estimate. The user can identify assumptions about m� that they are willing to
make and, from there, attempt to check Condition 3. For example, under mild
assumptions on m�, we show in Section 4 below that (6) can be checked for
uniform kernels while the condition (5) in Martin and Tokdar (2009) cannot.

To better understand the actual assumption being made in Condition 3, it
may help to re-express the integrand in (6) as

k(x | u)
m0(x) · m

�(x)
m0(x) · k(x | u).

First, if the PR prior guess P0 is not too tightly concentrated, then the mixture
m0 would be heavier-tailed than any individual kernel k(· | u). In that case, the
first ratio in the above display would be bounded, or at least would not increase
too rapidly. Second, we cannot expect PR, or any mixture model-based method
for that matter, to be able to do a good job of estimating m� if a mixture with a
relatively diffuse mixing distribution cannot adequately cover the support of m�.
So the heart of Condition 3 is an assumption that the posited mixture model
can adequately cover the support of m�, in the sense that the second ratio in
the above display is not blowing up too rapidly. Finally, if the two ratios are
well controlled, then the integral with respect to k(· | u) should be bounded
uniformly in u.

3.2. Main results

Our primary goal is to show, under roughly the conditions stated above, that the
PR estimator Pn of the mixing distribution is consistent. A direct proof of this
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result is currently out of reach, but it can be established indirectly by considering
the mixture density estimator. In particular, we show below that the PR esti-
mator, mn = mPn , of the density m� is consistent in the sense that K(m�,mn)
converges almost surely to infm∈M K(m�,m), the minimum Kullback–Leibler
divergence over the posited mixture model class M . In the special case where
m� ∈ M , this implies consistency in the usual sense: K(m�,mn) → 0 almost
surely. In either case, it says that the PR estimator, mn, is close to the best
possible mixture approximation of m�, at least asymptotically. From this we
will deduce consistency of the mixing distribution Pn; see Corollary 2 below.

Theorem 1. Under Conditions 1–3, the PR estimator, mn, of the density m�

satisfies K(m�,mn) → infm∈M K(m�,m) almost surely. In particular, if m� ∈
M , then K(m�,mn) → 0 almost surely.

Proof. See Appendix A.1.

Here we give a very rough sketch of the proof strategy. Start by writing Kn =
K(m�,mn)− infm∈M K(m�,m), and let Ai denote the σ-algebra generated by
the observations X1, . . . , Xi, for i = 1, 2, . . .. We show in the proof that

E(Kn | An−1) = Kn−1 − wnT (Pn−1) + w2
nE(Zn | An−1), n ≥ 1,

where
T (P ) =

∫
U

{∫
X

m(x)
mP (x) k(x | u) dx

}2
P (du) − 1, (7)

and Zn is a “remainder” term defined in the appendix. It follows from Jensen’s
inequality that T (P ) ≥ 0, with equality if and only if P = P †, the Kullback–
Leibler minimizer. If we could ignore the remainder term, then Kn would be
a non-negative supermartingale and, therefore, would converge almost surely
to some K∞. Of course, the remainder term cannot be ignored, so we will
use the “almost supermartingale” results in Robbins and Siegmund (1971) to
accommodate this. Moreover, to show that K∞ is 0 almost surely, we will use
some new and useful properties of the function T in (7) which were overlooked
in the analysis presented in Martin and Tokdar (2009).

When the mixture model is correctly specified, so that m† = m�, it fol-
lows from Theorem 1 and the familiar properties of Kullback–Leibler divergence
that mn → m� almost surely in Hellinger or total variation distance, i.e., that∫

(m1/2
n − m�1/2)2 dx and

∫
|mn − m�| dx both go to 0 almost surely. In the

general case where the mixture model is misspecified, Theorem 1 still strongly
suggests that mn → m†, but some effort is required to connect the Kullback–
Leibler difference to a distance between mn and m†. Towards this, define the
Hellinger contrast ρ(m1,m2) = ρm�(m1,m2), which is given by

ρ2(m1,m2) =
∫

(m1/2
1 −m

1/2
2 )2(m�/m†) dx.

This is just a weighted version of the ordinary Hellinger distance—with weight
function m�/m†—so it is a proper metric. Clearly, if the mixture model is cor-
rectly specified, so that m† = m�, then ρ is exactly the Hellinger distance. See
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Patilea (2001) and Kleijn and van der Vaart (2006) for further details on the
Hellinger contrast. The following result establishes that ρ(m†,mn) → 0 almost
surely, which implies that the limit m∞ of mn satisfies m∞ = m� almost ev-
erywhere with respect to the measure with Lebesgue density m�. Under some
additional conditions, namely, that m† is suitably close to m�, the PR estimator
mn is shown to converge to m† in total variation distance, which implies the
limit is equal to m† almost everywhere with respect to Lebesgue measure.

Corollary 1. Under the conditions of Theorem 1, ρ(m†,mn) → 0 almost surely.
Moreover, if m†/m� ∈ L∞(m�), then mn → m† almost surely in total variation.

Proof. See the proof of Corollary 4.10 in Martin and Tokdar (2009).

Finally, what can be said about the convergence of the mixing distribution
estimator, Pn? Again, Theorem 1 strongly suggests that Pn is converging to
P † in some sense, but we cannot make that leap immediately. In particular,
without additional assumptions, there is no guarantee that P † is unique or even
that Pn converges at all. For this, we will need identifiability of the mixture
model (1) and tightness of (Pn). Under Condition 2, as we assume here, tightness
of Pn follows from Prokhorov’s theorem. If compactness of U is not a feasible
assumption, then one can instead verify the more general sufficient condition,
namely, Condition A6 in Martin and Tokdar (2009), for tightness of Pn.

We will also require the following condition on the kernel density k, expressed
in terms of a general sequence of mixing distributions (Qt) on U:

Qt → Q∞ weakly implies mQt(x) → mQ∞(x) for almost all x. (8)

In words, (8) states that the kernel is such that weak convergence of mixing
distributions implies almost everywhere pointwise convergence of mixture den-
sities. This is a key assumption in the available consistency results for the non-
parametric MLE; see Condition (KW2) in Chen (2017). Condition (8) holds if
u �→ k(x | u) is bounded and continuous for almost all x, as was assumed in
Martin and Tokdar (2009) and elsewhere. However, in some examples, like in
Section 4, continuity of the kernel fails, but condition (8) can be verified.

Corollary 2. In addition to the conditions of Theorem 1, assume that

• the mixture model (1) is identifiable, i.e., mP = mP ′ almost everywhere
implies P = P ′,

• the kernel is such that (8) holds,
• and m†/m� ∈ L∞(m�).

Then the Kullback–Leibler minimizer P † is unique and Pn → P † weakly almost
surely.

Proof. Since Pn is tight, there exists a subsequence Pn(t) such that Pn(t) → P∞
weakly, for some P∞. By (8), we have pointwise convergence of the mixture
densities, i.e., mn(t)(x) → m∞(x) for almost all x, and then mn(t) → m∞ in total
variation distance thanks to Scheffé’s theorem. But Corollary 1 already gives us
mn → m† almost surely in total variation distance on the full/original sequence.
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Therefore, it must be that m∞ = m† almost surely and, by identifiability, that
P∞ = P †. Since any such convergent subsequence of Pn would have the same
almost weak limit, P †, it must be that Pn itself converges weakly almost surely
to P †, as claimed.

Identifiability of the mixture model mP in P is non-trivial. Additively-closed
one-parameter families of distributions were proved to be identifiable in Teicher
(1961). Identifiability of finite mixtures of gamma and of Gaussian distributions
was proved in Teicher (1963). Scale mixtures of uniform distributions, like we
discuss in Section 4 below, were shown to be identifiable in Williamson (1956).
More generally, identifiability of mixture models needs to be checked on a case-
by-case basis. The boundedness assumption on m†/m�, as in Corollary 1, is
needed simply to convert convergence of mn to m† in the Hellinger contrast to
convergence in total variation. This conversion would not be necessary if (8)
implied convergence in Hellinger contrast, but showing this would require some
knowledge of the relationship between m� and m†; whether there is condition
weaker than “m†/m� ∈ L∞(m�)” remains an open question. The reason this
condition is needed at all is because we allow for the possibility that the mixture
model is misspecified—the condition completely disappears when the model
is correctly specified, since m† = m�. If no such conditions appear in other
literature on mixing distribution estimation (e.g., Chen, 2017), then it is because
they are assuming the model is correctly specified.

4. Application: Mixtures of beta kernels

4.1. Background

A density m supported on X = [0,∞) is called monotone (or 1-monotone)
if it is non-increasing, 2-monotone if it is non-increasing and convex, and s-
monotone (s ≥ 3) if (−1)tm(t) is non-negative, non-increasing, and convex for
t = 0, 1, . . . , s−2. Models that involve s-monotone densities are common in, say,
the time-to-event literature; for details about this and other shape-constrained
problems, see Groeneboom and Jongbloed (2014). What makes these type of
models relevant to our investigation here is the beautiful mixture representation
of Williamson (1956), which states that for any s-monotone density m on X,
there exists a mixing distribution P , supported on U = [0,∞), such that,

m(x) =
∫ ∞

0
ks(x | u)P (du), (9)

where the kernel ks is a scaled beta density, i.e.,

ks(x | u) = su−s(u− x)s−1 1[0,u](x), x ∈ X, u ∈ U.

So, in applications where the underlying density on X is believed to have certain
monotonicity properties, a mixture model would be a completely natural way to
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move forward. Then questions about estimation of the underlying mixing distri-
bution might be relevant, and the PR algorithm would be an obvious candidate
for answering those questions.

Our primary focus in what follows is the case where s = 1, so that the kernel
k1(x | u) = u−1 1[0,u](x) is the Unif(0, u) density. This corresponds to a model
that simply assumes the true density is non-increasing on X. Most of the key
results below hold for general s. There are, however, some important practical
details that we can provide in the s = 1 case that are still out of reach in the
general-s case, so it makes sense to focus our attention on the former. We explain
the specifics in Remark 1 below.

Let X1, . . . , Xn be iid from a monotone (s = 1) density m�. One approach
to estimating m� is to calculate the nonparametric MLE, also known as the
Grenander estimator (Grenander, 1956), which is the left derivative of the
least concave majorant of the empirical distribution function. It is known that
Grenander’s is a consistent estimator of m�, with consistency results obtained
in Rao (1969) and Groeneboom (1985). However, as shown in, e.g., Woodroofe
and Sun (1993), the Grenander estimator tends to over-estimate near the origin
and, in particular, is inconsistent at the origin. The same authors proposed a
penalized likelihood estimator that penalizes the Grenander estimator at the
origin and is also consistent overall. Extensions of these results to the s = 2 and
s > 2 case have been made in, e.g., Groeneboom, Jongbloed and Wellner (2001)
and Balabdaoui and Wellner (2007), respectively.

Another approach is Bayesian, whereby a prior distribution on m is imposed
by using the mixture characterization in (9) along with a suitable prior on
the mixing distribution P . A natural choice is a Dirichlet process prior on P ,
leading to a Dirichlet process mixture of uniforms model, in the s = 1 case,
for the density m; see Bornkamp and Ickstadt (2009). Although this approach
seems straightforward, obtaining asymptotic consistency results for the pos-
terior distribution is made difficult by the uniform kernel’s varying support.
In particular, if the support for the mixing distribution is not suitably cho-
sen, then the Kullback–Leibler divergence of a posited mixture model from the
true density would be infinite, which creates problems for verifying the so-called
“Kullback–Leibler property” (Schwartz, 1965; Wu and Ghosal, 2008) in the clas-
sical Bayesian consistency theory. Some strategies have been suggested in, e.g.,
Salomond (2014), who showed that the Bayesian posterior distribution under
the Dirichlet process mixture prior has a near optimal concentration rate in
total variation. More recently, Martin (2019) proposed the use of an empirical,
or data-driven prior for which the prior support conditions required for asymp-
totic consistency are automatically satisfied, and showed that the corresponding
empirical Bayes posterior distribution concentrates around the true monotone
density at nearly optimal minimax rate. But the fully Bayesian solutions are
computationally non-trivial and somewhat time consuming; moreover, the esti-
mates tend to be relatively rough. The PR algorithm, which is computationally
fast and tends to produce smooth estimates, is a natural alternative to the
aforementioned likelihood-based methods.
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4.2. PR for uniform (and beta) mixtures

Suppose that the true density m� is a monotone density supported on [0,∞),
with s = 1; extensions to the general s case will be discussed in Remark 1
below. We know that m� can be written as a mixture in (9), so there exists a
mixing distribution P �, which is also supported on [0,∞). This point is relevant
because of the following unique feature of beta mixtures: if mP is a mixture
model as in (9) with P supported on [0, L), then mP (x) = 0 for all x > L
and, hence, if L < ∞, then K(m�,mP ) ≡ ∞. Therefore, the upper bound of U
being ∞ creates some serious challenges. For practical implementation of the PR
algorithm, and for the theory as discussed above, a compact mixing distribution
support is needed. This calls for a different approach.

For a fixed L ∈ (0,∞), define a new target, m�L, which is simply m� restricted
and renormalized to [0, L). That is, if M� denotes the distribution function
corresponding to the density m�, then

m�L(x) =
m�(x) 1[0,L](x)

M�(L) .

Alternatively, m�L can be viewed as the conditional density of X, given X ≤ L;
see below. The point of this adjustment is that m�L has a known and bounded
support, so a mixture model with mixing distribution supported on (a large
subset of) [0, L) can be fit with the PR algorithm to efficiently and accurately
estimate this new target m�L. Note that m�L can be made arbitrarily close
to m� by choosing L sufficiently large (see below), so this modification has no
practical consequences.

For technical and practical reasons, we cannot use the PR algorithm when the
support of the mixing distribution contains u = 0, so we introduce a new lower
bound � ∈ (0, L), which can be arbitrarily small. Then the proposed mixture
model to be fit by PR is

mP (x) =
∫
U

k1(x | u)P (du), x ∈ [0, L], U = [�, L]. (10)

While both mP above and the adjusted target m�L are supported on [0, L], the
model in (10) is still slightly misspecified through the introduction of the lower
bound � > 0 of the mixing distribution support. In particular, note that mP (x)
is constant for x ∈ [0, �]. But the fact that � can be taken arbitrarily small
means that there are no practical consequences to this misspecification. It does
complicate the convergence analysis, but, fortunately, the theory presented in
Section 3 above is general enough to handle this.

Given that the mixture model (10) is slightly misspecified, it is important
to know what we can expect the PR algorithm to do. Theorem 1 states that,
roughly, the PR estimator mn will converge to the Kullback–Leibler minimizer
m†. Since the supports of m�L and the model densities mP in (10) are the same,
we avoid the “K(m�L,mP ) ≡ ∞” problem so minimizing the Kullback–Leibler
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divergence is well-defined. To understand the bias coming from model misspec-
ification, it will be important to understand what m† looks like. Incidentally,
Williamson (1956) established that beta mixtures are identifiable, so there is a
unique mixing distribution, P †, supported on U, at which the Kullback–Leibler
divergence is attained. The following lemma gives the details.

Lemma 1. For the targeted monotone density m�L supported on [0, L], if the
proposed mixture model is as in (10), then the unique minimizer, P † = P †�,L,
of the Kullback–Leibler divergence P �→ K(m�L,mP ) is given by

P † = a� δ{�} + aU P �|U + aL δ{L}, (11)

where δ{t} is the Dirac point-mass at t, P �|U is P � restricted to U = [�, L], and
the coefficients are given by

a� = P �([0, �])
M�(L) , aU = P �([0, L])

M�(L) , aL = Lm�(L)
M�(L) ,

with M� the distribution function corresponding to m�. Then the best approxi-
mation of m�L under model (10) is m† = mP † , given by

m†(x) = a� k1(x | �) + aU

∫
U

k1(x | u)P �(du) + aL k1(x | L). (12)

Proof. See Appendix A.2.

The characterization result in Lemma 1 is intuitive. There is a true P � that
characterizes the true monotone mixture density m�, both generally supported
on [0,∞). Our proposed model restricts the mixing distribution’s support to
[�, L], so it makes sense that the best approximation would agree with P � on
[�, L] and then suitably allocate the remaining mass to the endpoints � and L.

From Section 2, recall that the implementation of the PR algorithm begins
with an initial guess P0, and that this effectively determines the dominating
measure with respect to which Pn has a density. PR’s ability to choose the
underlying dominating measure comes in handy in cases like this where we know
that the target mixing distribution, P †, has an “unusual” dominating measure.
From Lemma 1, we know that the best mixing distribution for fitting mixture
model (10) to m�L puts point masses at the endpoints, � and L, of U, and has a
density with respect to Lebesgue measure on the interior of U. So, naturally, we
can initialize the PR algorithm with a starting guess P0 that has a density with
respect to the dominating measure δ{�} +λU + δ{L}, where λU denotes Lebesgue
measure on U. Specifically, our proposal is to initialize the PR algorithm at

P0 = p0,� δ{�} + (1 − p0,� − p0,L)P0,U + p0,L δ{L},

where p0,� and p0,L are positive with sum strictly less than 1, and P0,U has a
density with respect to Lebesgue measure, e.g., P0,U could just be a uniform
distribution on U. Then the estimate, Pn, after the nth iteration will have the
same form

Pn = pn,� δ{�} + (1 − pn,� − pn,L)Pn,U + pn,L δ{L},
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and the corresponding mixture density estimate, mn, is obtained as usual by
integrating the kernel with respect to the mixing distribution Pn.

4.3. Theoretical results

Now that we know what PR ought to converge to, we are ready to state our
main result of this section. First, a word about the notation/terminology that
follows. In our previous results, when we wrote “almost surely,” this was referring
to the law that corresponds to iid sampling from m�. In the results below, m�L

is the target, so we will write “m�L-almost surely” to be clear that it is with
respect to the law corresponding to iid sampling from m�L. Recall that m�L

is the conditional density of X, given X ≤ L, so this modified law can be
interpreted as iid sampling from m�, but throwing away any data points that
exceed L. Again, since L can be taken arbitrarily large, there are no practical
consequences of this restriction. In fact, a bound on the bias induced by both
the L- and �-restrictions is given in Proposition 1 below.

Theorem 2. Consider the mixture model mP in (10) with compact mixing
distribution support U = [�, L], and let m�L denote the true m� restricted and
renormalized to [0, L]. If the PR algorithm is initialized at a P0 that includes a
point mass at L, then the PR estimator mn satisfies

K(m�L,mn) → K(m�L,m†), m�L-almost surely

where m† is as given in Lemma 1. Moreover, mn converges m�L-almost surely to
m† in total variation distance and the mixing distribution estimates Pn converges
weakly m�L-almost surely to P † in (11).

Proof. See Appendix A.3.

Remark 1. The result in Theorem 2 is specifically for the ordinary monotone
case, s = 1, where the kernel k1 is a scaled uniform. For the general s case,
however, with a scaled beta kernel ks, some things can be said. Indeed, the
conditions of Theorem 1 can be established for general s (see Appendix A.6),
so consistency of PR’s mixture density estimator follows. What is currently
out of reach is a general-s characterization of the Kullback–Leibler minimizer
P † = P †�,L like we have for s = 1 in Lemma 1. We expect that a similar
characterization can be given in the general-s case—our conjecture is that P †

has the same form as above, i.e., agreeing with P � in the interior of [�, L] but
with point masses at the endpoints. If this conjecture is true, then consistency of
Pn as stated in Theorem 2 above and the follow-up results in Propositions 1–2
below would also hold for the general-s case.

Our choice to restrict the mixing distribution’s support to U = [�, L] intro-
duces some bias. That is, the limit m† of the sequence of PR estimators is the
Kullback–Leibler minimizer over all mixtures supported on U = [�, L], but it is
different from m�L, which is different from m�. Intuitively, if � ≈ 0 and L ≈ ∞,
then the bias ought to be negligible. The next result confirms this intuition by
bounding the bias as a function of (�, L).
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Proposition 1. The L1 distance between the monotone m� and the best ap-
proximation m† in (12) under the restricted model (10) is bounded as∫

|m†(x) −m�(x)| dx ≤ 2
{
1 −M�(L) + M�(L)−1P �([0, �])

}
. (13)

Proof. See Appendix A.4.

To make the bound in (13) more concrete, we consider a specific case. A com-
mon choice in the literature (e.g., Martin, 2019; Salomond, 2014) is to assume
m� has tails that vanish exponentially fast, so that m�(x) ≤ exp(−bxr), for all
large x and some positive constants b and r; the case r = ∞ corresponds to
m� having a bounded support. From this, and standard asymptotic bounds on
the incomplete gamma function, it follows that 1 − M�(L) � L−r exp(−bLr),
for large L. Furthermore, if, e.g., P � has a bounded density at 0, then we have
P �([0, �]) � �. Combining these two, we arrive at the following, more explicit
bound on the L1 bias as a function of (�, L):∫

|m�(x) −m†(x)| dx � L−re−bLr

+ �.

Clearly, by taking � small and L even just moderately large, the overall bias as
a result of restricting to U = [�, L] can be made negligibly small.

As a final technical detail in this section, we consider the problem of esti-
mating m�(0), the density at its mode, the origin. This is an interesting and
challenging problem, with a variety of applications; see, e.g., Vardi (1989). In
particular, Woodroofe and Sun (1993) highlight examples such as time between
breakdowns of a system and distribution of galaxies that require the estimation
of this modal m�(0). The PR algorithm gives an obvious estimator of m�(0), in
particular, mn(0). The following result gives a theoretical basis for using this
estimate and simulations in Section 4.4 show that the proposed estimate at 0
performs well when compared to existing methods.

Proposition 2. Under the assumptions of Theorem 2, mn(0) → m†(0) m�L-
almost surely. Furthermore, the bias is bounded as

m†(0) −m�(0) � 1 −M�(L) → 0, as L → ∞.

Proof. See Appendix A.5.

To be clear, no claim is being made that that the PR estimator mn(0) is
a consistent estimator of m�(0). Proposition 2 is simply saying that mn(0) →
m†(0) and that the difference between m†(0) and m�(0) can be made arbitrarily
small by picking L sufficiently large. There are technical challenges that arise
when considering a sort of sieve with support Un = [�n, Ln] that is expanding
as n → ∞ in conjunction with the recursive estimator. Some comments on this
are made in Section 5 below.
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4.4. Numerical illustrations

4.4.1. Monotone density estimation

In this section we compare different methods for monotone density estimation
to our PR-based method. The four methods we consider are the Grenander
estimate, a Bayesian approach using a Dirichlet process, Bayesian approach
using an empirical prior, and the method based on optimization of the penalized
likelihood. The Grenander estimate is based on the nonparametric MLE and
can be calculated easily using the R package fdrtool (Klaus and Strimmer,
2015). Settings for the Dirichlet process mixture and the empirical Bayes were
based on those suggested in Martin (2019) and we used his R codes.1 The
penalized likelihood maximization was based on Woodroofe and Sun (1993) and
we used one of the values recommended by those authors for their penalization
parameter, i.e., α = n−1 logn. For PR, we take the mixing distribution support
to be U = [�, L], with � = 10−5 and L = max(X). The initial guess P0 is taken
to be uniform on U. To reduce the dependence of the PR estimator on the data
order, we average the PR estimates over 25 random permutations of the data.
As for the weights, we (mostly) follow Condition 1 and take wi = (1 + i)−1.

First, we consider data coming from a study of suicide risks reported in
Silverman (1986), which consists of lengths of psychiatric treatment for n = 86
patients used as control. As per the detailed study of suicide risks in Copas and
Fryer (1980), there is a higher risk for suicide in the early stages of treatment,
so modeling these data with a monotone density is appropriate. Figure 1 shows
a comparison of the four monotone density estimation methods discussed above
with PR over a histogram of the data. PR gives a smooth estimate of the
monotone density in a very short amount of time, much faster than the Bayes
and empirical Bayes estimates that require Markov chain Monte Carlo. The
take-away message is that, PR’s misspecification bias—due to the choice of � and
L—can be easily controlled and that it gives a high-quality estimate compared
to the other four methods. In fact, the PR estimate in this case is smoother than
that of the other four methods, a desirable feature in applied data analysis.

Second, we consider two true monotone densities m�, namely, the half stan-
dard normal and a uniform mixture of a Beta(u | 2, 2) mixing density. We carry
out the simulation study over sample sizes of n = 50, 100, 200. For each n, we
generate 200 data sets of size n and produce the five different estimates on
each data set. As our metric of comparison, we use the total variation (or L1)
distance between the true density and the estimate. Additionally since inconsis-
tency of the Grenander estimate at the origin is a well-known complication we
also look at the ratio m̂(0)/m�(0) for each method. Boxplots summarizing both
the L1 distance and the at-the-origin ratio for the two simulations are shown
in Figures 2 and 3. Notably, performance of PR is better than the Grenander
estimator over all sample sizes. It is also faster and with slightly better perfor-
mance when compared to the two Bayesian estimates, and is comparable to the

1https://www4.stat.ncsu.edu/~rmartin/Codes/ebmono.R

https://www4.stat.ncsu.edu/~rmartin/Codes/ebmono.R
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Fig 1. A monotone density is fit to the suicide risk data from Silverman (1986) with the four
different methods: PR (red), Grenander (black), empirical Bayes (blue), Bayes (magenta),
and penalized likelihood (cyan).

penalized likelihood estimate. For estimating the density at 0, we compare PR
with only the best-performing methods, namely the penalized nonparametric
MLE near 0 and the DP mixture Bayes estimator. Even though PR is not tai-
lored specifically for estimation of m�(0), as the penalized nonparametric MLE
is, its performance is very competitive with these other methods.

Since the primary motivation for PR is estimation of a mixing distribution,
next we compare the estimates of P based on PR and the nonparametric MLE
in the example with P � = Beta(2, 2). To show a comparison of PR versus a
standard nonparametric MLE, we give the estimates of the distribution func-
tion corresponding to P � for both methods in Figure 4. Here PR’s advantage of
providing a smooth estimate is clear. The nonparametric MLE has no density,
but we can easily get PR’s mixing density estimate. Figure 5 shows the PR mix-
ing density estimates compared to the true density for P �. While the estimates
can be wiggly for a given data set—a result of there being limited information
about the distribution of the latent Ui’s in the data—the PR estimator is clearly
very accurate on average.

Finally, since the other methods, e.g., the nonparametric MLE, are tailored
more towards cases where the underlying mixing distribution is discrete, a re-
viewer asked how the PR estimator—which typically would not be aware of the
discreteness—might fare in such a case. To investigate this, we consider the case
where P � is a Bin(5, 1

2 ) distribution, shifted to be supported on U = {1, . . . , 6}.
Then the true density m� is the corresponding P �-mixture of uniform kernels,
which is piecewise constant. Figure 6 shows a plot of the PR and Grenander
mixture density estimates based on a sample of size n = 200 from this model.
The PR estimate is relatively smooth whereas the Grenander estimator is, of
course, piecewise constant, similar to the true m�. Surprisingly, having the piece-
wise constant structure correctly specified does not obviously lead to a better
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Fig 2. True monotone density is a Beta(u | 2, 2) mixture of uniform kernels.

estimator—Grenander seems to be over-selecting the number of constant inter-
vals, failing to capture the piecewise constant structure in m�. This observation
is not specific to this particular simulated data set: we repeated the above exper-
iment 200 times and found that the average Kullback–Leibler divergence from
m� was 0.015 for PR and 0.046 for Grenander.

4.4.2. Multiple testing problem with p-values

Consider the large-scale significance testing problem like those that first at-
tracted attention in Efron (2004, 2008). These are common in genomics ap-
plications where the goal is to determine, among a large collection of n many
genes, which ones are “interesting” in the sense of, say, having non-negligible
association with a particular observable phenotype. Since the number of genes
is very large, and it is believed that a relatively small number of those genes are
actually “interesting,” it is of practical importance to quickly screen the data to
identify a relatively small set of genes that deserve more careful investigation.
This determines a large-scale significance testing problem, where the goal is to
test the sequence of null hypotheses,

H0i : gene i is uninteresting i = 1, . . . , n

Let Xi denote the p-value associated with an individual test of H0i. We can
treat the collection of p-values X1, . . . , Xn as the data available for the large-
scale significance test. Following Genovese and Wasserman (2002) and others,
it makes sense to model the p-values as a two-groups mixture

m(x) = π k1(x | 1) + (1 − π)
∫

k1(x | u)Pnon-null(du).
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Fig 3. True monotone density is half standard normal.

The intuition is that the uninteresting, null genes have p-values distributed as
Unif(0, 1), whereas the interesting, non-null genes will have p-values stochasti-
cally smaller than Unif(0, 1) with a non-increasing density.

Fitting this mixture model can proceed in one of several different ways, but
this is non-trivial. The reason is that one does not have access to the only-
non-null data that carries direct information about the non-null component.
With PR, this is straightforward to address because we can simply choose the
underlying dominating measure for the mixture to be Lebesgue measure on
[0, 1] plus a point mass at the endpoint 1. Then the right-hand side of the above
display is just a version of (1) with mixing distribution P being absolutely
continuous with respect to Leb[0,1]+δ{1}. The PR solution can easily handle this
and it produces an estimate πn of the null proportion, the density pnon-null(u) =
dPnon-null/du, and of course the overall mixture density mn(x).

For an illustration of this idea, consider the famous hereditary breast cancer
study by Hedenfalk et al. (2001). A histogram of the p-values associated with
the n = 3226 genes under investigation is shown in Figure 7, where the two-
groups mixture model structure is apparent. We fit the above mixture model to
these data using PR—with P0 initialized as a mass π0 = 0.8 at 1 plus 0.2 times
Unif(0, 1) distribution—and it returns the estimates as overlaid in Figure 7. In
particular, PR estimates the null weight as πn = 0.920 and it is clear that the
mixture is able to capture the spike in p-values at the origin corresponding to
the non-null cases. For a PR-driven rule to select interesting genes, we can apply
the local false discovery rate thresholding procedure advocated for by Efron and
others. Indeed, the PR estimate of the local false discovery rate is

l̂fdr(x) = πn

mn(x) .
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Fig 4. Plots of the mixing distribution function estimates (gray) using PR and the nonpara-
metric MLE over 100 data sets of size n = 200, where the true mixing distribution function
(black) corresponds to P � = Beta(2, 2).

The genes that are “interesting” ought to have small local false discovery rate
values, so a decision rule would announce gene i as interesting if l̂fdr(xi) ≤ r for
a suitable threshold r. A plot of the estimated local false discovery rate curve
is shown on the negative axis in Figure 7. If we choose a threshold of r = 0.15,
then we flag 222 genes as interesting, which includes 26 out of the 27 cases
identified in Lee et al. (2003) based on known biological connections to breast
cancer mutations.

5. Conclusion

Estimation of mixing distributions in mixture models is a challenging problem,
one for which there are very few satisfactory methods available. To our knowl-
edge, the PR algorithm is the one general method available that is both fast and
capable of nonparametrically estimating a mixing distribution having a density
with respect to any user-specified dominating measure. Despite the simple and
fast implementation of the PR algorithm, and the strong empirical performance
observed in numerous applications, its theoretical analysis and justification is
non-trivial because of the recursive structure. Previous work has established
consistency of the PR estimates under relatively strong conditions. Most con-
cerning is that there are known examples, such as monotone density estimation
using uniform mixtures, for which the sufficient conditions in previous work do
not hold. The main focus of the present paper was to weaken those overly-strong
conditions in order to broaden the range of problems in which PR can be ap-
plied. In particular, the new sufficient conditions can be checked for mixtures of
uniform kernels, which puts PR in a position to solve the non-trivial problem
of monotone density estimation on [0,∞).

There are a number of possible extensions and/or open problems that could
be considered. First, from a practical or methodological point of view, there is
a natural extension of the motivating monotone density estimation application.
That is, what can be done if the location of the mode itself is unknown? This
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Fig 5. Plot of the PR mixing density estimates pn (gray) over 100 datasets, average pn over
the 100 datasets (dashed) against the true density p (black) when n = 200 observations are
drawn from a uniform mixture of p.

Fig 6. A piecewise constant mixture density m� (black) with the Grenander estimate (blue)
and the PR estimate (red).
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Fig 7. Histogram of the hereditary breast cancer study dataset with the fitted mn (blue),
estimated m0 (black) and m1 (red). The negative axis shows ˆlfdr(x) with a threshold at
r = 0.15 identifying the interesting cases.

is a non-trivial problem and has been investigated by a number of researchers,
including Liu and Ghosh (2020). In the PR framework, the natural approach
would be to treat the mode as an unknown, non-mixing parameter contained in
the kernel, and apply the PR marginal likelihood strategy in Martin and Tokdar
(2011) to estimate both the mode and the mode-specific mixing distribution.
How this proposal compares to existing methods remains to be investigated.

Second, from a theoretical point of view, it may be undesirable to work with
a fixed and compact mixing distribution support U. A natural extension would
be to introduce a type of sieve, to allow the support to depend on the sample
size, i.e., U = Un. The use of a n-dependent support Un, however, is difficult
and awkward in the context of PR. First, unlike usual likelihood-based methods
that assume all the data to be available at once, PR is technically meant to be
used for recursive estimation with online data. In that case, having a sample size
dependent support is unnatural since the sample size is not set in advance. But
even if we ignore PR’s recursive structure and treat it as being applied to batch
data, the analysis is based on martingales that do implicitly treat the data points
one by one in a sequence, so having any n-specific components in the algorithm
itself is awkward. Beyond awkwardness, there is a specific technical obstacle.
Much of the analysis depends on properties of the functional T defined in (7).
This functional depends on U and so, if U is made to depend on n, then we end
up with a sequence, Tn, of functionals that are applied to the PR sequence of
estimates, Pn, so new techniques would be needed in order to analyze a sequence
of random variables like Tn(Pn−1).
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One more remark concerning future PR-related research directions is worth
making here. It concerns PR’s rate of convergence. Certain “worst-case” rate
results are available in Martin and Tokdar (2009), and these can surely be ex-
tended to the broader context considered here, but key insights are still lacking.
In particular, it is not clear how the PR results can incorporate the smooth-
ness assumptions about P � or m� necessary to improve on the “worst-case”
rates available. For example, in the monotone density estimation case, it is well-
known that the optimal L1 rate for estimation of m� is n−1/3, but this assumes
that m� is differentiable (e.g., Kim and Pollard, 1990, Example 6.5). Without
that assumption, the optimal rate is slower, and it is this slower rate that the
existing PR rate results can be compared to. To be clear, it is not that PR
actually converges at such a slow rate, it is that the currently available proof
techniques are lacking.

Appendix A: Proofs

A.1. Proof of Theorem 1

We start by reviewing some details from the analysis in Martin and Tokdar
(2009). From the recursive form of the PR estimate of the mixing distribution,
and the linearity of the mixture model, clearly a similar recursive form holds
for the mixture. That is,

mn(x) = (1 − wn)mn−1(x) + wn hn,Xn(x),

where
hn,y(x) =

∫
k(x | u) k(y | u)Pn−1(du)

mn−1(y)
, x, y ∈ X.

For later, define the function Hn,y(x) as

Hn,y(x) = hn,y(x)
mn−1(x) − 1, x, y ∈ X.

By Taylor’s theorem, we can write

log(1 + x) = x− x2R(x), x > −1,

where the remainder term R satisfies 0 ≤ R(x) ≤ max{1, (1 + x)−2}. This
remainder bound will be important later.

Let Kn = K(m�,mn). Then from that recursive form of the mixture density
updates above, and this Taylor approximation, it can be shown that

Kn = Kn−1 − wn

∫
Hn,Xn(x)m�(x) dx

+ w2
n

∫
H2

n,Xn
(x)R(wnHn,Xn(x))m�(x) dx.
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Next, let Ar denote the σ-algebra generated by data X1, . . . , Xr, for r ≥ 1. Now
take conditional expectation of the above display, given An−1, to get

E(Kn | An−1) = Kn−1 − wnT (Pn−1) + w2
nE(Zn | An−1), (14)

where

T (Φ) =
∫
U

{∫
X

m�(x)
mΦ(x)k(x | u) dx

}2
Φ(du) − 1

Zn =
∫
X

H2
n,Xn

(x)R(wnHn,Xn(x))m�(x) dx.

If we let K�
n = Kn − K(m�,m†), then the same relationship as in (14) holds,

i.e.,
E(K�

n | An−1) = K�
n−1 − wnT (Pn−1) + w2

nE(Zn | An−1). (15)

Surprisingly, this form is nice—it is an almost supermartingale like those studied
by Robbins and Siegmund (1971). Below we restate (a simple version of) Robbins
and Siegmund’s main theorem for the reader’s convenience.

Robbins–Siegmund Theorem. Consider a sequence of non-negative random
variables (Mn, ζn, ξn), where (Mn) is adapted to a filtration (An). If

E(Mn | An−1) ≤ Mn−1 − ζn−1 + ξn−1 (16)∑
n ξn < ∞ almost surely,

then Mn converges and
∑

n ζn < ∞ almost surely.

The equation in (15) satisfies the criterion in (16), where ζn−1 = wnT (Pn−1)
and ξn−1 = w2

nE(Zn | An−1). We need to check that
∑

n w
2
nE(Zn | An−1) is

finite almost surely, which amounts to getting a suitable upper bound on Zn

and its conditional expectation. Here is where our analysis starts to differ from
that in Martin and Tokdar (2009).

The most complicated part of Zn is its dependence on the Taylor approxi-
mation remainder described above. Recalling that upper bound, we have

R(wnHn,Xn(x)) ≤ max[1, {1 + wnHn,Xn(x)}−2].

But since hn,Xn and mn−1 are density functions, their ratio is non-negative, so

wnHn,Xn(x) = wn

(hn,Xn(x)
mn−1(x) − 1

)
≥ −wn > −w1.

Therefore, R(wnHn,Xn(x)) ≤ max{1, (1 − w1)−2}, a constant, so

Zn �
∫

H2
n,Xn

(x)m�(x) dx ≤ 1 +
∫ (hn,Xn(x)

mn−1(x)

)2
m�(x) dx.

Since we only need to get an upper bound up to a multiplicative constant, we
will ignore that constant lumped inside of “�” in what follows; we will also
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ignore the leading “1+” since the bound will ultimately get multiplies by w2
n,

which itself is summable by assumption. From this bound, plug in the definition
of hn,Xn to get

Zn ≤
∫ {∫

k(x | u) k(Xn | u)Pn−1(du)
mn−1(x)mn−1(Xn)

}2
m�(x) dx

≤
∫ ∫

k2(x | u) k2(Xn | u)Pn−1(du)
m2

n−1(x)m2
n−1(Xn) m�(x) dx,

where the second inequality is by Cauchy–Schwarz. Next, we focus on one of
the terms in the denominator, say, mn−1(x). From that recursive form for the
mixture density updates, we immediately see that

mn−1(x) ≥ (1 − wn−1)mn−2(x) ≥ · · · ≥ m0(x)
n−1∏
i=1

(1 − wi), any x.

Plug in this lower bound for both terms in the denominator of the bound for
Zn to get

Zn ≤
n−1∏
i=1

(1 − wi)−4
∫ ∫

k2(x | u) k2(Xn | u)Pn−1(du)
m2

0(x)m2
0(Xn) m�(x) dx.

Now take conditional expectation with respect to An−1 and interchange the
order of integration (which is allowed since the integrand is non-negative) to get

E(Zn | An−1) ≤
n−1∏
i=1

(1 − wi)−4
∫ {∫ k2(x | u)

m2
0(x) m�(x) dx

}2
Pn−1(du).

By Condition 3, we have that the expression inside curly braces above is bounded,
uniformly in u, by a constant. Therefore,

E(Zn | An−1) �
n−1∏
i=1

(1 − wi)−4.

Next we used the assumed form of the weight sequence, in Condition 1, to bound
the above product. In general, we have

log
n−1∏
i=1

(1 − wi)−4 = −4
n−1∑
i=1

log(1 − wi).

Using the standard bound, − log(1 − w) ≥ w(1 − w)−1, and the fact that the
wi’s are decreasing, we have

log
n−1∏
i=1

(1 − wi)−4 = −4
n−1∑
i=1

log(1 − wi) ≤
4

1 − w1

n−1∑
i=1

wi.
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According to Condition 1, wi = a(i+ 1)−1, the summation in the above expres-
sion is of the order logn, which implies

n−1∏
i=1

(1 − wi)−4 ≤ n8a/(2−a).

Putting everything together, we get

w2
nE(Zn | An−1) � n−2+8a/(2−a).

Since a < 2
9 , the exponent is less than −1, hence the upper bound is summable

almost surely, thus verifying the hypothesis of the Robbins–Siegmund theorem.
Consequently, we can conclude that

K�
n → K�

∞ and
∑
n

wnT (Pn−1) < ∞, almost surely.

It remains to show that the limit, K�
∞ is 0 almost surely.

The key to proving this last claim is a special property of the T function. For
a generic mixing distribution P , supported on U, rewrite T as

T (P ) =
∫

(gP − 1)2 dP,

where
gP (u) =

∫
k(x | u)
mP (x) m�(x) dx.

For any bounded and continuous function h : U → R, it follows from the stan-
dard bound |

∫
· · · du| ≤

∫
| · · · | du and Cauchy–Schwartz that∣∣∣∫ (gP − 1)h dP
∣∣∣2 ≤

{∫
|gP − 1| |h| dP

}2
≤ T (P )

∫
h2 dP. (17)

This implies the lower bound

T (P ) ≥ sup
h:
∫
h2 dP=1

{∫
(gP − 1)h dP

}2
,

where the supremum is over all bounded and continuous functions h with∫
h2 dP = 1. For an alternative look at the integral in the curly braces above, de-

fine the operator φ that maps a probability measure P on U to a new probability
measure, φ(P ), on U according to the formula

φ(P )(A) =
∫
A

gP (u)P (du), A ⊆ U, measurable.

Then that expression in curly braces is simply∫
h dφ(P ) −

∫
h dP.
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A consequence of the Robbins–Siegmund theorem is that
∑

n wnT (Pn−1) < ∞
almost surely. Since wn itself is vanishing too slowly to be summable, it must
be that there exists a subsequence Pn(t) such that T (Pn(t)) → 0 almost surely.
Therefore,

sup
h:
∫
h2 dPn(t)=1

{∫
h dφ(Pn(t)) −

∫
h dPn(t)

}2
→ 0, almost surely.

Since the original sequence Pn is tight, there is a sub-subsequence Pn(ts) with
a weak limit, and the above result implies that the limit is a fixed point of φ.
However, the only fixed points of this mapping are Kullback–Leibler minimizers,
say, P †; see, for example, Lemma 3.4 in Shyamalkumar (1996). This implies
K�

n(ts) is vanishing almost surely. However, by the Robbins–Siegmund theorem,
we have that the original sequence K�

n converges almost surely to some K�
∞.

But if the original sequence has a limit and the limit is 0 on a subsequence, then
it must be that K�

∞ = 0 almost surely. Putting everything together, we have
shown that K�

n = K(m�,mn) − K(m�,m†) → 0 almost surely, which implies
K(m�,mn) → K(m�,m†), and completes the proof.

A.2. Proof of Lemma 1

The proof proceeds in two steps. First we express the modified target m�L as
a uniform mixture and identify the corresponding mixing distribution, denoted
by P �L. Then we solve the optimization problem that consists of identifying
the mixing distribution, P † = P †�,L, supported on U = [�, L], that minimizes
P �→ K(m�L,mP ).

First, recall the definition of m�L,

m�L(x) =
m�(x) 1[0,L](x)

M�(L) , x ∈ [0,∞),

where M� is the distribution function corresponding to the density m�. By
direct calculation, for the denominator we have

M�(L) = P �([0, L]) + Lm�(L).

The numerator can also be rewritten as

m�(x) 1[0,L](x) =
∫ L

0
k1(x | u)P �(du) + m�(L)

After a bit of algebra to simplify the ratio of the sums in the previous two
displays, we are able to write m�L as a mixture

m�L(x) =
∫

k1(x | u)P �L(du), (18)

where
P �L = π P̃ �L + (1 − π) δ{L}, (19)
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with π and P̃ �L defined as

π = P �([0, L])
P �([0, L]) + Lm�(L) and P̃ �L(du) =

P �(du)1[0,L](u)
P �([0, L]) .

That is, m�L is a uniform mixture, where the mixing distribution P �L is a
convex combination P � renormalized to [0, L] and a point mass at L.

For step 2, we want to find the minimizer of P �→ κ(P ) := K(m�L,mP ), over
all mixing distributions supported on U = [�, L], where m�L has the mixture
form presented above. Using the above notation, the lemma’s claim is that the
minimizer is

P † = ω δ{�} + P �L|U,

where P �L|U is P �L restricted (but not renormalized) from [0, L] to U = [�, L],
and ω = P �L([0, �]). If we can show that the Gateaux derivative of κ, evaluated
at P †, in the direction of any other distribution H on U, is vanishing, then
we will have proved the claim. The Gateaux derivative at a generic P , in the
direction of H, is

d

dt
κ((1 − t)P + tH)

∣∣∣
t=0

=
∫ L

0

{
1 − mH(x)

mP (x)

}
m�L(x) dx.

Let m† = mP † , which has the form

m†(x) = ω k1(x | �) +
∫ L

�

k1(x | u)P �L(du).

Then the goal is to show that
∫ L

0

{
1 − mH(x)

m†(x)

}
m�L(x) dx = 0 for all H supported on U,

or, equivalently, to show that

1 −
∫ �

0

mH(x)
m†(x) m�L(x) dx−

∫ L

�

mH(x)
m†(x) m�L(x) dx = 0 (20)

On the interval x ∈ (�, L], it is clear that m†(x) = m�L(x), so
∫ L

�

mH(x)
m†(x) m�L(x) dx =

∫ L

�

mH(x) dx. (21)

Next, since both P † and H are supported on U = [�, L], the two mixture densities
m† and mH are constant on the interval x ∈ [0, �]. This implies

∫ �

0

mH(x)
m†(x) m�L(x) dx−

∫ �

0
mH(x) dx = mH(0)

m†(0)

∫ �

0
{m�L(x) −m†(x)} dx.
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We claim that the integral on the right-hand side is 0. To see this, first integrate
m†: ∫ �

0
m†(x) dx = ω +

∫ �

0

∫ L

�

k1(x | u)P �L(du) dx

= ω + �m�L(�)

= P �([0, L]) + �m�(�)
M�(L) .

Similarly, integrate m�L:∫ �

0
m�L(x)dx = 1

M�(L)

∫ �

0

{∫ L

0
k1(x | u)P �(du) + m�(L)

}
dx

= 1
M�(L)

{∫ L

�

(�/u)P �(du) +
∫ �

0
P �(du) + �m�(L)

}
= 1

M�(L)
{
�m�(�) − �m�(L) + P �([0, �]) + �m�(L)

}
= P �([0, �]) + �m�(�)

M�(L) .

Clearly the two integrals above are the same, which implies that∫ �

0
{m�L(x) −m†(x)} dx = 0,

and, consequently, that∫ �

0

mH(x)
m†(x) m�L(x) dx =

∫ �

0
mH(x) dx. (22)

Plugging the relations (21) and (22) into the left-hand side of (20) proves the
claim, i.e., that the Gateaux derivative of κ at P † vanishes in all directions H,
which implies that P † is the minimizer of the Kullback–Leibler divergence.

A.3. Proof of Theorem 2

To prove K(m�L,mn) → K(m�L,m†), we apply Theorem 1. Condition 1 is in
the user’s control and, hence, is easy to satisfy. Condition 2 requires the support
of the mixing distribution to be compact, which is clearly satisfied by U = [�, L].
Condition 3 is the only non-trivial condition, and it requires

sup
u∈[�,L]

∫ L

0

{k1(x | u)
m0(x)

}2
m�L(x) dx < ∞,

where m0 is the mixture density corresponding to the initial guess, P0, which
contains point masses. The key point is, thanks to the point mass at L,
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m0(x) ≥ p0,L k1(x | L) = p0,L L−1, x ∈ [0, L].

Since the denominator above is uniformly bounded away from 0, and, similarly,
the numerator is uniformly bounded by �−1, Condition 3 clearly holds.

Next, the claim about convergence of mn to m† in total variation follows
immediately from Corollary 1 and the fact that m�L is bounded away from 0.
Finally, for the claim about weak convergence of Pn to P †, we apply Corollary 2.
We have already stated that m†/m�L ∈ L∞ since m�L is bounded away from
0. So all that remains is to check that the uniform kernel satisfies the abstract
condition (8), which we do next.

Imagine a generic sequence of mixing distributions Qt supported on U =
[�, L] and assume they converge weakly to Q∞. The condition (8) concerns the
behavior of the mixture density mQt(x). Note that the uniform kernel is not a
continuous function in u for a given x, but it is upper-semicontinuous. Recall
that the mixture densities are constant for x ∈ [0, �]. This means that the value
of the mixture density on a set of positive measure is determined by its value at
x = �, so some care will be needed below; in particular, we’ll have to deal with
the cases x ∈ [0, �] and x ∈ (�, L] separately.

Start with the case x ∈ (�, L]. The kernel u �→ k1(x | u) is bounded and
continuous except for the jump discontinuity at u = x. It is possible that the
limit Q∞ of the sequence Qt of mixing distributions puts positive mass at u = x,
i.e., that x is a discontinuity point of Q∞. In such cases, mQt(x) may not
converge or, even if it does converge, the limit may not equal mQ∞(x). However,
Q∞’s set of discontinuity points has Lebesgue measure 0. For any x ∈ (�, L]
that is not a discontinuity point of Q∞, the kernel is effectively bounded and
continuous, so Qt → Q∞ weakly implies mQt(x) → mQ∞(x). This verifies (8)
for the range x ∈ (�, L].

For the case x ∈ [0, �], again, we know that the mixture density is constant
in x. Therefore, if there is an issue with convergence of the mixture density at
x = �, then that implies an issue on a set of positive Lebesgue measure, hence (8)
fails. However, while the kernel is only upper-semicontinuous in general, u �→
k1(� | u) is bounded and continuous on the support of the Qt sequence, so we
get mQt(�) → mQ∞(�) automatically from the definition of weak convergence.
This implies the same for all x ∈ [0, �], so (8) holds there too.

A.4. Proof of Proposition 1

By the triangle inequality, we have∫
|m† −m�| dx ≤

∫
|m† −m�L| dx +

∫
|m�L −m�| dx. (23)

Now we consider each term in the upper bound (23) separately. Start with the
second term, splitting up the range of integration, we immediately get∫

|m�L −m�| dx =
∫ L

0

∣∣∣ m�

M�(L) −m�
∣∣∣ dx + 1 −M�(L)
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= 1
M�(L) |1 −M�(L)|

∫ L

0
m� dx + 1 −M�(L)

= 2{1 −M�(L)}.

For the first term in (23), we borrow the calculations in the proof of Lemma 1
above. In particular, on the interval x ∈ [�, L], the two densities are the same, but
on the interval x ∈ [0, �), the absolute difference between densities is bounded
by

|m�L(x) −m†(x)| ≤ ωk1(x | �) +
∫ �

0
k1(x | u)P �L(du), x ∈ [0, �).

Now integrate to get∫
|m† −m�L| dx =

∫ �

0
|m† −m�L| dx

≤ ω + P �L([0, �])

= 2 · P
�([0, �])
M�(L) .

Combining the two bounds proves the claim.

A.5. Proof of Proposition 2

As shown in the proof of Theorem 2, mn(�) → m†(�) almost surely with respect
to m�L. Since mn(0) = mn(�) and m†(0) = m†(�) by Equation (10), the proof
of the first claim is complete. To bound the bias, i.e., the difference between the
quantity being estimated, m†(0), and and the true density at the origin, m�(0),
we proceed as follows.

m†(0) −m�(0) = a��
−1 + aU

∫
U

u−1 P �(du) + aLL
−1 −

∫ ∞

0
u−1P �(du)

=
{
a��

−1 −
∫ �

0
u−1P �(du)

}
+

{
(aU − 1)

∫
U

u−1 P �(du)
}

+
{
aLL

−1 −
∫ ∞

L

u−1P �(du)
}
.

Using the definitions of a�, aU, and aL, the bound P �([0, �]) � �, and the fact
that

∫
U
u−1 P �(du) = O(1) as a function of (�, L), it is easy to check that each

of the three terms on the right-hand side above can be bounded by 1−M�(L).
That is,

a��
−1 −

∫ �

0
u−1 P �(du) � M�(L)−1 − 1 � 1 −M�(L)

(aU − 1)
∫
U

u−1 P �(du) � 1 −M�(L)
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aLL
−1 −

∫ ∞

L

u−1 P �(du) � 1 −M�(L),

which completes the proof of the claim.

A.6. Support for the claim in Remark 1

The claim is that the conditions of Theorem 1 can be checked for the scaled
beta kernel

ks(x | u) = su−s(u− x)s−1 1[0,u](x), x ∈ X, u ∈ U.

The weights are in the user’s control and the support U = [�, L] is compact, so
we only need to verify Condition 3. The PR is assumed to be initialized at P0
having a point mass at L, i.e.,

P0 = (1 − p0,L)P0,cont + p0,L δ{L},

where p0,L ∈ (0, 1) is fixed by the user. Then it is easy to see that

m0(x) =
∫

ks(x | u)P0(du) ≥ p0,L ks(x | L).

Condition 3 concerns the ratio ks(x | u)/m0(x) which, in the present case, for
x ∈ [0, L] and u ∈ [�, L], can be upper-bounded as

ks(x | u)
m0(x) ≤ ks(x | u)

p0,L ks(x | L) ≤ Ls

�s
.

The above ratio is uniformly bounded by a constant, so we immediately get

sup
u∈[�,L]

∫ L

0

{ks(x | u)
m0(x)

}2
m�L(x) dx < ∞.

Since all the conditions of Theorem 1 have been verified, it follows that

K(m�L,mn) −K(m�L,m†) → 0, m�L-almost surely.
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