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Abstract: Multiple heterogeneous data sources are becoming increasingly
available for statistical analyses in the era of big data. As an important
example in finite-population inference, we develop a unified framework of
the test-and-pool approach to general parameter estimation by combining
gold-standard probability and non-probability samples. We focus on the
case when the study variable is observed in both datasets for estimating
the target parameters, and each contains other auxiliary variables. Utilizing
the probability design, we conduct a pretest procedure to determine the
comparability of the non-probability data with the probability data and
decide whether or not to leverage the non-probability data in a pooled
analysis. When the probability and non-probability data are comparable,
our approach combines both data for efficient estimation. Otherwise, we
retain only the probability data for estimation. We also characterize the
asymptotic distribution of the proposed test-and-pool estimator under a
local alternative and provide a data-adaptive procedure to select the critical
tuning parameters that target the smallest mean square error of the test-
and-pool estimator. Lastly, to deal with the non-regularity of the test-and-
pool estimator, we construct a robust confidence interval that has a good
finite-sample coverage property.
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1. Introduction

It has been widely accepted that probability sampling, where each selected sam-
ple is treated as a representative sample to the target population, is the best
vehicle for finite-population inference. Since the sampling mechanism is known
based on survey design, each weight-calibrated sample can be used to obtain
consistent estimators for the target population; see [53], [15] and [24] for text-
book discussions. However, complex and ambitious surveys are facing more and
more hurdles and concerns recently, such as costly intervention strategies and
lower participation rates. [2] address some of the current challenges in using
probability samples for finite-population inference. On the other hand, higher
demands of small area estimation and other more factors have led researchers
to seek out alternative data collection with less program budget [69, 28]. In
particular, lots of attention has been drawn to the studies of non-probability
samples.

Non-probability samples are sets of selected objects where the sampling mech-
anism is unknown. First of all, non-probability samples are readily available from
many data sources, such as satellite information [36], mobile sensor data [40],
and web survey panels [62]. In addition, these non-representative samples are
far more cost-effective compared to probability samples and have the potential
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of providing estimates in near real-time, unlike the traditional inferences derived
from probability samples [42]. Based on these big and easy-accessible data, a
wealth of literature has been proposed which enunciates the bright future while
properly utilizing such amount of data (e.g., 18, 14, 61, and 41).

However, the naive use of such data cannot ensure the statistical validity of
the resulting estimators because such non-probability samples are often selected
without sophisticated supervision. Therefore, the acquisition of large whereas
highly unrepresentative data is likely to produce erroneous conclusions. [17] and
[23] present more recent examples where non-probability samples can often lead
to estimates with significant selection biases. To overcome these challenges, it is
essential to establish appropriate statistical tools to draw valid inferences when
integrating data from the probability and non-probability samples. Various data
integration methods have been proposed in the literature to leverage the unique
strengths of the probability and non-probability samples; see [73] for a review,
and the existing methods for data integration can be categorized into three types
including the inverse propensity score adjustment [50, 22], calibration weighting
[19, 31], and mass imputation [46, 30, 74, 11].

But most of the works assume that the non-probability sample is comparable
to the probability sample in terms of estimating the finite-population param-
eters, which may not be satisfied in many applications due to the unknown
sampling mechanism of the non-probability samples. Thus, the non-probability
samples with unknown sampling mechanisms may bias the estimators for the
target parameters. To resolve this issue, [47] propose a pretest to gauge the sta-
tistical adequacy of integrating the probability and non-probability samples in
an application. The pretesting procedure has been broadly practiced in econo-
metrics and medicine, and its implications are of considerable interests (e.g.,
[68, 63, 3, 72]). Essentially, the final value of the estimator depends on the out-
come of a random testing event and therefore is a stochastic mixture of two dif-
ferent estimators. Despite the long history of the application of the pretest, few
literature investigates the theoretical properties of the underlying non-smooth
distribution for the pretest estimators.

In this paper, we establish a general statistical framework for the test-and-
pool analysis of the probability and non-probability samples by constructing a
test to gauge the comparability of the non-probability data and decide whether
or not to use non-probability data in a pooled analysis. In addition, we con-
sider the null, fixed, and local alternative hypotheses for the pre-testing, rep-
resenting different levels of comparability of the non-probability data with the
probability data. In particular, the non-probability sample is perfectly compa-
rable under the null hypothesis, whereas it is starkly incomparable under the
fixed alternative. Therefore, the fixed alternative cannot adequately capture the
finite-sample behavior of the pre-testing estimator, under which the test statis-
tic will diverge to infinity as the sample size increases. Toward this end, we
establish the asymptotic distribution of the proposed estimator under local al-
ternatives, which provides a better approximation of the finite-sample behavior
of the pretest estimator when the idealistic assumption required for the non-
probability data is weakly violated. Also, we provide a data-adaptive procedure
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to select the optimal values of the tuning parameters achieving the smallest
mean square error of the pretest estimator. Lastly, we construct a robust con-
fidence interval accounting for the non-regularity of the estimator, which has a
valid coverage property.

The rest of the paper is organized as follows. Section 2 lays out the basic setup
and presents an efficient estimator for combing the non-probability sample and
the probability sample. Section 3 proposes a test statistic and the test-and-
pool estimator. In Section 4, we present the asymptotic properties of the test-
and-pool estimator, an adaptive inference procedure, and lastly a data-adaptive
selection scheme of the tuning parameters. Section 5 presents a simulation study
to evaluate the performance of our test-and-pool estimator. Section 6 provides
a real-data illustration. All proofs are given in the Appendix.

2. Basic setup

2.1. Notation: two data sources

Let FN = {Vi = (Xᵀ
i , Yi)ᵀ : i ∈ U} with U = {1, . . . , N} denote a finite

population of size N , where Xi is a vector of covariates and Yi is the study
variable. We assume that FN is a random sample from a superpopulation model
ζ and our objective is to estimate the finite-population parameter μg ∈ R

l,
defined as the solution to

1
N

N∑
i=1

S(Vi;μ) = 0, (2.1)

where S(Vi;μ) is a l-dimensional estimating function. The class of parameters is
fairly general. For example, if S(V ;μ) = Y −μ, μg = Y N = N−1∑N

i=1 Yi is the
population mean of Yi. If S(V ;μ) = 1(Y < c)−μ for some constant c, where 1(·)
is an indicator function, μg = N−1∑N

i=1 1(Yi < c) is the population proportion
of Yi less than c. If S(V ;μ) = X(Y −Xᵀμ), μg = (

∑N
i=1 XiX

ᵀ
i )−1(

∑N
i=1 XiYi)

is the coefficient of the finite-population regression projection of Yi onto Xi.
Suppose that there are two data sources, one from a probability sample,

referred to as Sample A, and the other from a non-probability sample, referred to
as Sample B. Assume Sample A to be independent of Sample B, and the observed
units can be envisioned as being generated through two phases of sampling [12].
Firstly, a superpopulation model ζ generates the finite population FN . Then, the
probability (or non-probability) sample is selected from it using some known (or
unknown) sampling schemes. Hence, the considered total variance of estimators
is based on the randomness induced by both the superpopulation model and
the sampling mechanisms; see Table 1 for the notations of probability order,
expectation and (co-)variance. For example, Ep(· | FN ) is the average over all
possible samples under the probability design for particular finite population
FN , and E(·) is the average over all possible samples from all possible finite
populations.
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Table 1

Notation and definitions.

Randomness order notation expectation (co-)variance

probability design op(1), Op(1) Ep (· | FN ) varp (· | FN ) , covp (· | FN )
non-probability design onp(1), Onp(1) Enp (· | FN ) varnp (· | FN ) , covnp (· | FN )
ζ model oζ(1), Oζ(1) Eζ (·) varζ (·) , covζ (·)
total variance oζ-p-np(1), Oζ-p-np(1) E (·) var (·) , cov (·)

Thus far, our focus has been on the setting where the covariates X and
the study variable Y are available in both the probability and non-probability
samples, which has also been considered in [21] and [20]. The sampling indicators
are denoted by δA,i and δB,i, respectively; e.g., δA,i = 1 if unit i is selected into
Sample A and zero otherwise. Sample A contains observations OA = {(di =
π−1
A,i, Xi, Yi) : i ∈ A} with sample size nA, where πA,i is the known first-order

inclusion probability for Sample A, and Sample B contains observations OB =
{(Xi, Yi) : i ∈ B} with sample size nB . The unknown propensity score for being
selected into Sample B is denoted by πB,i. Here, A and B denote the indexes
of units in Samples A and B with total sample size n = nA + nB and negligible
sampling fractions, i.e., n/N = o(1). Let the limits of the fractions of Sample A
and B be fA = limn→∞ nA/n and fB = limn→∞ nB/n with 0 < fA, fB < 1.

2.2. Assumptions and separate estimators

As observing (Xi, Yi) for all units i in U is usually not feasible in practice, we
can estimate the population estimating equation (2.1) by the design-weighted
sample analog under the probability sampling design

1
N

N∑
i=1

δA,i

πA,i
S(Vi;μ) = 0, (2.2)

yielding a design-weighted Z-estimator μ̂A [65]. When S(V ;μ) is a score function,
the resulting estimator will be a pseudo maximum likelihood estimator [58]. For
example, for estimating Y N , we have S(V ;μ) = Y − μ, which leads to μ̂A =
(
∑N

i=1 δA,iπ
−1
A,i)−1∑N

i=1 δA,iπ
−1
A,iYi. We now make the following assumption for

the design-weighted Z-estimator.

Assumption 2.1 (Design consistency and central limit theorem). Let μ̂A be the
corresponding design-weighted Z-estimator of μg, which satisfies that varp(μ̂A |
FN ) = Oζ(n−1

A ) and {varp(μ̂A)}−1/2×(μ̂A−μg) | FN → N (0, 1) in distribution
as nA → ∞.

Under the typical regularity conditions [24], Assumption 2.1 holds for many
common sampling designs such as probability proportional to size and stratified
simple random sampling. Under Assumption 2.1, μ̂A is design-consistent and
does not rely on any modeling assumptions. This explains why the probability
sampling has been the gold standard approach for finite-population inference,
and we make this assumption throughout this article.
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Let f(Y | X) be the conditional density function of Y given X in the super-
population model ζ, and let f(X) and f(X | δB = 1) be the density function
of X in the finite population and the non-probability sample, respectively. To
correct for the selection bias of the non-probability sample, most of the existing
literature considers the following assumptions [e.g., 46, 66, 12].
Assumption 2.2 (Common support and ignorability of sampling). (i) The vec-
tor of covariates X has a compact and convex support, with its density bounded
and bounded away from zero. Also, there exist positive constants Cl and Cu such
that Cl ≤ f(X)/f(X | δB = 1) ≤ Cu almost surely. (ii) Conditional on X, the
density of Y in the non-probability sample follows the superpopulation model;
i.e., f(Y | X, δB = 1) = f(Y | X). (iii) The sample inclusion indicator δB,i and
δB,j are independent given Xi and Xj for i �= j.

Assumption 2.2 (i) and (ii) constitute the strong sampling ignorability condi-
tion [50]. Assumption 2.2 (i) implies that the support of X in the non-probability
sample is the same as that in the finite population, and it can also be formulated
as a positivity assumption that P(δB = 1 | X) > 0 for all X. This assumption
does not hold if certain units would never be included in the non-probability
sample. Assumption 2.2 (ii) is equivalent to the ignorability of the sampling
mechanism for the non-probability sample conditional on the covariates X, i.e.,
P(δB = 1 | X,Y ) = P(δB = 1 | X) [34]. This assumption holds if the set of
covariates contain all the outcome predictors that affect the possibility of be-
ing selected into the non-probability sample. Assumption 2.2 (iii) is a critical
condition to employ the weak law of large numbers under the non-probability
sampling design [12]. Under Assumption 2.2, the non-probability sample can be
used to produce consistent estimators. However, this assumption may be unre-
alistic if the non-probability data collection suffers from uncontrolled selection
biases [6], measurement errors [17], or other error-prone issues. Thus, we con-
sider Assumption 2.2 as an idealistic assumption, which may be violated and
require pretesting.

Under Assumptions 2.1 and 2.2, let ΦA(V, δA;μ) and ΦB(V, δA, δB ;μ) be
two l-dimensional estimating functions for the target parameter μg when us-
ing the probability sample and the combined samples, respectively. In prac-
tice, ΦA(·) and ΦB(·) may depend on unknown nuisance functions, and solving
E{ΦA(V, δA;μ)} = 0 and E{ΦB(V, δA, δB ;μ)} = 0 is not feasible. By replacing
the nuisance functions with their estimated counterparts, and the expectations
with the empirical averages, we obtain μ̂A and μ̂B by solving

1
N

N∑
i=1

Φ̂A(Vi, δA,i;μ) = 0, 1
N

N∑
i=1

Φ̂B(Vi, δA,i, δB,i;μ) = 0, (2.3)

respectively, where {Φ̂A(·), Φ̂B(·)} are the estimated version of {ΦA(·), ΦB(·)}.
Remark 2.1. For estimating the finite population means, that is, μg = Y N ,
ΦA(·) and ΦB(·) are commonly chosen as

ΦA(V, δA;μ) = δA
πA

(Y − μ), (2.4)
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ΦB(V, δA, δB ;μ) = δB
πB (X) {Y −m (X)} + δA

πA
m (X) − μ, (2.5)

where πB(X) = P(δB = 1 | X) and m(X) = E(Y | X, δB = 1). To obtain the
estimators μ̂A and μ̂B, parametric models πB(X;α) and m(X;β) can be posited
for the nuisance functions πB(X) and m(X), respectively.

In addition, researchers might be interested in estimating the individual-level
outcomes rather than the population-level outcomes. In this case, ΦA(·) and
ΦB(·) can be specified for estimating the outcome model m(X;β) as:

ΦA(V, δA;β) = δA
πA

∂m(X;β)
∂β

{Y −m(X;β)}

ΦB(V, δA, δB ;β) =
(
δA
πA

+ δB
πB(X)

)
∂m(X;β)

∂β
{Y −m(X;β)}.

Next, we adopt the model-design-based framework for inference, which in-
corporates the randomness over the two phases of sampling [27, 37, 7, 70]. The
asymptotic properties for μ̂A and μ̂B can be derived using the standard M-
estimation theory under suitable moment conditions.

Lemma 2.1. Suppose Assumptions 2.1, 2.2 and additional regularity condi-
tions A.1 hold. Then, we have

n1/2
(

μ̂A − μg

μ̂B − μg

)
→N

{(
0l×1
0l×1

)
,

(
VA Γ
Γᵀ VB

)}
, (2.6)

where VA, VB, and Γ are defined explicitly in the Appendix.

In Lemma 2.1, we extend the conditional normality to unconditional as in
[55], which implies that the asymptotic (co-)variances terms VA, VB and Γ refer
to all the sources of uncertainty over the two phases.

2.3. Efficient estimator

Under Assumptions 2.1 and 2.2, both μ̂A and μ̂B are consistent, and it is ap-
pealing to combine μ̂A with μ̂B to achieve efficient estimation. We consider a
class of linear combinations of the functions in (2.3):

N∑
i=1

{Φ̂A(Vi, δA,i;μ) + ΛΦ̂B(Vi, δA,i, δB,i;μ)} = 0, (2.7)

where Λ is the linear coefficient that gauges how much information of the non-
probability sample should be integrated with the probability sample. Equation
(2.7) leads to a class of composite estimators which is a weighted average of
μ̂A and μ̂B with Λ-indexed weight ωA and ωB . When Λ = 0, (2.7) provides
the design-consistent estimator μ̂A. The optimal choice Λeff can be empirically
tuned to minimize the asymptotic variance of the composite estimator, leading
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to the efficient estimator μ̂eff. However, the major concern for μ̂eff is the possible
bias due to the violation of Assumption 2.2 (ii) for the non-probability sample.
When it is violated, it is reasonable to choose Λ = 0 and prevent any bias
associated with the non-probability sample.

3. Test-and-pool estimator

Motivated by the above reasoning, we develop a strategy that pretests the com-
parability of the non-probability sample with the probability sample first and
then decides whether or not we should combine them for efficient estimation.
We formulate the hypothesis test in Section 3.1, and construct the test-and-pool
estimator in Section 3.2.

3.1. Hypothesis and test

We formalize the null hypothesis H0 when Assumption 2.2 holds, and the fixed
and local alternatives Ha and Ha,n when Assumption 2.2 is violated. To be
specific, we consider

H0 : E{ΦB(V, δA, δB ;μg,0)} = 0, (3.1)
Ha : E{ΦB(V, δA, δB ;μg,0)} = ηfix, (3.2)

Ha,n : E{ΦB(V, δA, δB;μg,0)} = n
−1/2
B η, (3.3)

where μg,0 = Eζ(μg), μg = μg,0 + Oζ(N−1/2), and ηfix, η are two fixed pa-
rameters. The fixed alternative Ha is commonly considered in the standard
hypothesis testing framework. However, it enforces the bias of the estimating
function ΦB(·) to be fixed and indicates a strong violation of Assumption 2.2,
under which the test statistic T will diverge to infinity with the sample size.
Moreover, the inference under the fixed alternative can not capture the finite-
sample behavior of the test well and lacks uniform validity. On the contrary, the
local alternative provides a useful tool to study the finite-sample distribution of
non-regular estimators when the signal of violation is weak, i.e., in the n

−1/2
B

neighborhood of zero. In such cases, we allow the existence of a set of unmea-
sured covariates whose association with either the possibility of being selected
into Sample B or the outcome is small. Also, the local alternative Ha,n is more
general in the sense that it reduces to Ha with η = ±∞, and has been widely
employed to illustrate the non-regularity settings, such as weak instrumental
variables regression [59], regression estimators of weakly identified parameters
[13] and test errors in classification [33]. We will mainly exploit the local alter-
native to show the inherent non-regularity of the pretest estimator.

Under the null hypothesis (3.1), μ̂B is consistent, and hence, it is reasonable to
combine μ̂A and μ̂B for efficient estimation. However, when the null hypothesis
is violated as in (3.3), the efficient estimator is biased. Lemma 3.1 presents the
asymptotic properties of the separate and efficient estimators under Ha,n.
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Lemma 3.1. Suppose Assumptions 2.1, 2.2 (i) and (iii), and all the regular-
ity conditions in Lemma 2.1 hold. Then, under the local alternative Ha,n, the
asymptotic distributions for μ̂A and μ̂B are

n1/2
(

μ̂A − μg

μ̂B − μg

)
→N

{(
0l×1

−f
−1/2
B E {∂ΦB(V, δA, δB ;μg,0)/∂μ}−1

η

)
,

(
VA Γ
Γᵀ VB

)}
.

(3.4)

The asymptotic distribution of the efficient estimator μ̂eff is

n1/2(μ̂eff − μg)→N {beff(η), Veff} ,

where beff(η) = −f
−1/2
B ωB(Λeff)E {∂ΦB(V, δA, δB ;μg,0)/∂μ}−1

η. The exact form
of ωB(Λeff) and Veff are presented in Lemma A.3.

By Lemma 3.1, among the three estimators μ̂A, μ̂B and μ̂eff , when H0 holds,
μ̂eff is optimal because it is consistent and the most efficient; while when H0 is
violated, μ̂A is optimal because it is consistent but the other two estimators are
not.

We now use pretesting to guide choosing the estimators. To test H0, the key
insight is that μ̂A is always consistent for μg by Assumption 2.1, and if H0 holds,
Φ̂B,n(μ̂A) = n

1/2
B N−1∑N

i=1 Φ̂B(Vi, δA,i, δB,i; μ̂A) should behave as a mean-zero
random vector asymptotically. Thus, we construct the test statistic T as

T =
{

Φ̂B,n(μ̂A)
}ᵀ

Σ̂−1
T

{
Φ̂B,n(μ̂A)

}
, (3.5)

where ΣT is the asymptotic variance of ΦB,n(μ̂A, τ̂), and Σ̂T is a consistent
estimator of ΣT . The exact form of ΣT in (A.15) involves VA, VB , and Γ. Thus,
Σ̂T can be obtained by replacing the unknown components in the expression of
ΣT with their estimated counterparts, and the expectations with the empirical
averages. In addition, we can consider the replication-based method for variance
estimation in Algorithm B.1 adapted from [35].

Lemma 3.2 serves as the foundation for our data-driven pooling step in Sec-
tion 3.2.

Lemma 3.2. Suppose Assumptions 2.1, 2.2 (i) and (iii), and all the regularity
conditions in Lemma 2.1 hold. Under H0, the test statistic T→χ2

l , i.e., a chi-
square distribution with degree of freedom l. Under Ha,n, T→χ2

l (ηᵀΣ−1
T η/2) with

non-central parameter ηᵀΣ−1
T η/2 as n → ∞.

3.2. Data-driven pooling

If T is large, it indicates that H0 may be violated and thus it is desirable to retain
only the probability sample for estimation. If T is small, it indicates that H0 may
be accepted and suggests combining the probability and non-probability samples



Test-and-pool estimator 1501

for efficient estimation. This strategy leads to the test-and-pool estimator μ̂tap
as the solution to

N∑
i=1

{Φ̂A(Vi, δA,i;μ) + 1(T < cγ)ΛΦ̂B(Vi, δA,i, δB,i;μ)} = 0, (3.6)

where cγ is the (1 − γ) critical value of χ2
l . In (3.6), we can fix Λ to be the

optimal form Λeff leading to an efficient estimator under H0 in Section 2.3.
Alternatively, we view cγ and Λ jointly as tuning parameters that determine how
much information from the non-probability sample can be borrowed in pooling.
Larger cγ and Λ borrow more information from the non-probability sample,
leading to more efficient but more error-prone estimators, and vice versa. We
will use a data-adaptive rule to select (Λ, cγ) that minimizes the mean squared
error of μ̂tap.

Remark 3.1. Compare to the t-test-based pooling estimator in [38], our pro-
posed method is more general in the sense that (a) the auxiliary covariates are
used to provide a more informative model of μg; (b) our test statistic T is mo-
tivated by the estimating function, which can be more robust to model misspec-
ification, and (c) a data-adaptive selection of (Λ, cγ) is adopted for minimizing
the post-integration mean squared error.

4. Asymptotic properties of the test-and-pool estimator

In this section, we characterize the asymptotic properties of μ̂tap. Before pro-
ceeding further, we introduce more notations. Let Il×l be a l× l identify matrix,
Fl(·; η) be the cumulative distribution function for χ2

l with non-central param-
eter η, and Fl(·) = Fl(·; 0). Denote VA-eff = VA − Veff and VB-eff = VB − Veff ,
which are both positive-definite.

4.1. Asymptotic distribution

By construction, the estimator μ̂tap is a pretest estimator that first constructs T
for pretesting H0 and then forms the test-based weights for combining μ̂A and
μ̂B . It is challenging to derive the asymptotic distribution of μ̂tap because it is
involved with the test statistic T and two asymptotically dependent components
μ̂A and μ̂B . In order to formally characterize the asymptotic distribution of
μ̂tap, we decompose the asymptotic representation of μ̂tap by two orthogonal
components, one is affected by the testing and the other is not.

First, by Lemma 3.1, let n1/2(μ̂A − μg)→Z1 and n1/2(μ̂B − μg)→Z2, where
Z1 and Z2 are multivariate normal random vectors as in (3.4).

Second, by Lemma 3.2, asymptotically, we write T as a quadratic form WT
2 W2

with W2 = −f
1/2
B Σ−1/2

T E {∂ΦB(μg,0, τ0)/∂μ}−1 (Z1 − Z2). We then find an-
other standardized l-variate normal vector W1 = f

1/2
B Σ−1/2

S {(Γᵀ − VB)(Γ −
VA)−1Z1 + Z2} that is orthogonal to W2, where cov(W1,W2) = 0l×l, E(W1) =
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μ1, var(W1) = Il×l and E(W2) = μ2, var(W2) = Il×l, ΣS is introduced for the
purpose of standardization.

Third, μ̂tap can be asymptotically represented by two components involving
W1 and W2, respectively, one component is affected by the test constraint and
the other component is not. Following the above steps, Theorem 4.1 character-
izes the asymptotic distribution of μ̂tap.

Theorem 4.1. Suppose the assumptions in Lemma 3.1 hold except that As-
sumption 2.2 (ii) may be violated as dictated by Ha,n in (3.3). Let W1 and W2
to be independent normal random vectors with mean μ1 and μ2 (given below,
which vary by hypothesis) and variance matrices Il×l. The test-and-pool estima-
tor μ̂tap follows the following asymptotic distribution

n1/2(μ̂tap − μg)→
{
−V

1/2
eff W1 + (ωAV

1/2
A−eff − ωBV

1/2
B−eff)W t

[0,cγ ] w.p. ξ,

−V
1/2
eff W1 + V

1/2
A−effW

t
[cγ ,∞] w.p. 1 − ξ,

where W t
[a,b] is the truncated normal distribution W2 | (a ≤ W ᵀ

2 W2 ≤ b) and
ξ = Fl(cγ ;μᵀ

2μ2/2).
(a) Under H0, μ1 = μ2 = 0, ξ = Fl(cγ ; 0) = γ.
(b) Under Ha,n, μ1 = −Σ−1/2

S E {∂ΦB(μg,0, τ0)/∂μ}−1
η, μ2 = −Σ−1/2

T η and
ξ = F1(cγ ;μT

2 μ2/2).

Theorem 4.1 reveals that the asymptotic distribution of μ̂tap depends on
the local parameter η and thus characterizes the non-regularity of the pretest
estimator. When H0 is violated weakly (a small perturbation in the true data
generating model), the asymptotic distribution of μ̂tap can change abruptly
depending on η. The non-regularity of μ̂tap also poses challenges for inference
as shown in Section 4.3. Based on Theorem 4.1, we derive the asymptotic biases
and mean squared errors of μ̂tap under H0 and Ha,n, which serve as the stepping
stone to a data-driven procedure to select the tuning parameters Λ and cγ .

4.2. Asymptotic bias and mean squared error

Based on the Theorem 4.1, the asymptotic distribution of μ̂tap involves elliptical
truncated normal distributions [60, 4]. To understand the asymptotic behavior
of our proposed estimator, it is crucial to comprehend the essential properties
of elliptical truncated multivariate normal distributions. We derive the moment
generating function and subsequently the mean square error of the estimator
μ̂tap. The exact form of mean squared error given by mse(Λ, cγ ; η) in (B.13),
albeit complicated, reveals that the amount of information borrowed from the
non-probability sample (controlled by Λ and cγ) should tailor to the strength
of violation of H0 (dictated by local parameter η). For illustration, we consider
a toy example in the supplemental material.

We search for the optimal values (Λ∗, c∗γ) that minimize mse(Λ, cγ ; η̂) using
standard numerical optimization algorithm [39], where η̂ = ΦB,n(μ̂A, τ̂). Note
that the decision of rejecting H0 or not is subject to the hypothesis testing
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errors, namely the Type I error and Type II error. That is, the test statistic
T can be larger than cγ even when H0 holds; similarly, it can be small when
Ha,n holds. However, the data-adaptive tuning procedure aims at minimizing
the mean squared error of the estimator μ̂tap, which implicitly restricts these
two testing errors to be small.

4.3. Adaptive inference

Standard approaches to inference, e.g., the nonparametric bootstrap, require the
estimators to be regular [56]. In non-regular settings, researchers have proposed
alternative approaches such as the m-out-n bootstrap or subsampling. However,
these approaches critically rely on a proper choice of m or the subsample size;
otherwise, the small sample performances can be poor. The non-regularity is
induced because the asymptotic distribution of the estimator μ̂tap depends on
the local parameter, thus, it does not converge uniformly over the parameter
space. [33] propose adaptive confidence intervals for test errors in the classifi-
cation problems. Following this idea, we construct the bound-based adaptive
confidence interval (BACI) for the estimator μ̂tap that guarantees good cover-
age properties. To avoid the non-regularity, our general strategy is to derive
two smooth functionals that bound the estimator μ̂tap. Because these two func-
tionals are regular, standard approaches to inference can be adopted and valid
confidence intervals follow.

To be concrete, we construct a bound-based adaptive confidence interval
for aᵀμg, where a ∈ R

l is fixed. By Theorem 4.1, we can reparametrize the
asymptotic distribution of aᵀn1/2(μ̂tap − μg) as

aᵀn1/2(μ̂tap − μg)→Rn + aᵀωB(V 1/2
B-eff + V

1/2
A-eff)Un, (4.1)

where

Rn = −aᵀV 1/2
eff W1 + aᵀ(ωAV

1/2
A-eff − ωBV

1/2
B-eff)W2 + aᵀωB(V 1/2

B-eff + V
1/2
A-eff)μt

[cγ ,∞),

Un = W t
[cγ ,∞) − μt

[cγ ,∞),

and μt
[cγ ,∞) = μ21μᵀ

2μ2>cγ . By construction, Rn is regular and asymptotically
normal, but Un is nonsmooth. Nonsmoothness and nonregularity are interre-
lated. To illustrate, if μ2 = 0, Un follows a standard truncated normal distribu-
tion with truncated probability P(W ᵀ

2 W2 ≤ cγ | μ2 = 0); whereas, if |μ2| → ∞,
P(W ᵀ

2 W2 ≤ cγ | μ2) diminishes to zero, implying that Un follows a standard
normal distribution. Thus, the limiting distribution of aᵀn1/2(μ̂tap − μg) is not
uniform over local parameter μ2 (or equivalently η).

Our goal is to form the least conservative smooth upper and lower bounds.
An important observation is that if |μ2| is sufficiently large, we may treat
Un as regular. Thus, we define B as the nonregular zone for μᵀ

2μ2 such that
maxμᵀ

2μ2∈B P(W ᵀ
2 W2 ≥ cγ | μ2) ≤ 1 − ε for small ε > 0 and B

� the regular
zone. When μᵀ

2μ2 ∈ B
�, standard inference can apply, and bounds are only
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Fig 1. Illustration of the nonregular zone B (shaded) and two power functions: the solid and
dash lines are P(W ᵀ

2 W2 > cγ | μᵀ
2μ2) and P(T ≥ vn | μᵀ

2μ2) as functions of μᵀ
2μ2, respectively.

needed when μᵀ
2μ2 ∈ B to avoid the inference procedure to be overly con-

servative. We then require another test procedure to test μᵀ
2μ2 ∈ B against

μᵀ
2μ2 ∈ B

�. Toward this end, we use T ≥ vn, where vn is chosen such that
maxμᵀ

2μ2∈B P(T ≥ vn | μ2) = α̃ for a pre-specified α̃. Figure 1 illustrates the
regular and nonregular zones and the test. If T ≥ νn, we conclude the regularity
of the estimator μ̂tap and construct a normal confidence interval, but if T < νn,
we construct the least favorable confidence interval by taking the union for all
μ2 ∈ R

l. In practice, vn can be determined by the double bootstrapping sat-
isfying the regularity condition that limn→∞ vn/n = 0; see Section B.4 of the
supplemental material for more details.

Accordingly, Un can be decomposed into two components Un = (W t
[cγ ,∞) −

μt
[cγ ,∞))1T≥υn + (W t

[cγ ,∞) − μt
[cγ ,∞))1T<vn and only regularize (i.e., deriving

bounds for) the latter component. Continuing with (4.1), we can take the supre-
mum over all μ2 in the nonregular zone to construct the upper bound U(a),

U(a) =Rn + aᵀωB(V 1/2
B-eff + V

1/2
A-eff)(W t

[cγ ,∞) − μt
[cγ ,∞))1T≥υn

+ sup
μ2∈Rl

{
aᵀωB(V 1/2

B-eff + V
1/2
A-eff)(W t

[cγ ,∞) − μt
[cγ ,∞))

}
1T<vn

(4.2)

The lower bound L(a) for aᵀn1/2(μ̂tap − μg) can be computed in an analogous
way by replacing sup with inf in (4.2). Taking the supremum and the infimum
of μ2 over R

l renders the two bounds U(a) and L(a) smooth and regular. The
limiting distribution of U(a) is

U(a)→R + aᵀωB(V 1/2
B-eff + V

1/2
A-eff)(W t

[cγ ,∞) − μt
[cγ ,∞))1μᵀ

2μ2∈B�
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+ sup
μ2∈Rl

{
aᵀωB(V 1/2

B-eff + V
1/2
A-eff)(W t

[cγ ,∞) − μt
[cγ ,∞))

}
1μᵀ

2μ2∈B. (4.3)

Similarly, the limiting distribution of L(a) is (4.3) by replacing sup with inf.
Based on the limiting distribution of U(a) and L(a), if P(μᵀ

2μ2 ∈ B) = 0, U(a)
and L(a) have approximately the same limiting distributions as aᵀn1/2(μ̂tap −
μg). However, if P(μᵀ

2μ2 ∈ B) �= 0, U(a) is stochastically larger and L(a) is
stochastically smaller than aᵀn1/2(μ̂tap − μg).

Based on the regular bounds U(a) and L(a), we construct the (1−α)×100%
bound-based adaptive confidence interval of aᵀμg as

C
BACI
μg,1−α(a) =

[
aᵀμ̂tap − Û1−α/2(a)/

√
n, aᵀμ̂tap − L̂α/2(a)/

√
n
]
, (4.4)

where Ûd(a) and L̂d(a) approximate the d-th quantiles of the distribution of U(a)
and L(a), respectively, which can be obtained by the nonparametric bootstrap
method.

Theorem 4.2. Assume the conditions in Theorem 4.1 hold true. Furthermore,
assume matrices ΣT , ΣS in Lemma 3.1 and their consistent estimates Σ̂T , Σ̂S

are strictly positive-definite, and the sequence vn satisfies vn → ∞ and vn/n → 0
with probability one. The asymptotic coverage rate of (4.4) satisfies

P

{
aᵀμg ∈ C

BACI
μg,1−α(a)

}
≥ 1 − α. (4.5)

In particular, if Assumption 2.2 is strongly violated with P(μᵀ
2μ2 ∈ B

�) = 1, the
inequality in (4.5) becomes equality.

Remark 4.1. We discuss an alternative approach to construct valid confidence
intervals for the non-regular estimators using projection sets [48] (referred to as
projection-based adaptive confidence intervals (PACI), C

PACI
μg,1−α(a)). The basic

idea is as follows. For a given μ2, the limiting distribution of μ̂tap is known and
a regular (1 − α̃1) × 100% confidence interval Cμg,1−α̃1(a;μ2) of aᵀμg can be
formed through the standard procedure. Since μ2 is unknown, a (1 − α) × 100%
projection confidence interval of μg can be conservatively constructed as the
union of all Cμg,1−α̃1(a;μ2) over μ2 in its (1 − α̃2) × 100% confidence region,
where α = α̃1+α̃2. Such strategy may be overly conservative, and in that way, the
projection-based adaptive confidence interval then introduces a pretest in order to
mitigate the conservatism. If the pretest rejects H0 : μᵀ

2μ2 ∈ B, Cμg,1−α̃1(a; μ̂2)
is used; otherwise, the union of Cμg,1−α̃1(a;μ2) is used. The technical details
for the C

PACI
μg,1−α(a) are presented in the supplemental material. Our simulation

study later shows that the C
PACI
μg,1−α(a) is more conservative than the proposed

C
BACI
μg,1−α(a).

5. Simulation study

In this section, we evaluate the finite-sample performances of the proposed esti-
mator μ̂tap and C

BACI
μg,1−α(a). First, we generate the finite population FN with size
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N = 105. For each subject i, generate Xi = (1, X1,i, X2,i)ᵀ, where X1,i ∼ N (0, 1)
and X2,i ∼ N (1, 1), and generate Yi by Yi = 1+X1,i +X2,i +ui +u2

i +εi, where
ui ∼ N (0, 1) and εi ∼ N (0, 1). Generate samples from the finite population FN

by Bernoulli sampling with specified inclusion probabilities

log
(

πA,i

1 − πA,i

)
| Xi = νA + .2X1,i + .1X2,i,

log
(

πB,i

1 − πB,i

)
| Xi = νB + .1X1,i + .2X2,i + .5n−1/2

B bui,

where νA and νB are adaptively chosen to ensure the target sample sizes nA ≈
600 and nB ≈ 5000. We assume that (Xi, Yi) are observed but ui is unobserved,
and we vary b in {0, 10, 100} to represent the scenarios where H0 holds, is slightly
violated or strongly violated, respectively.

We compare the estimator μ̂tap with other estimators: (a) μ̂A: the solu-
tion to

∑N
i=1 ΦA(Vi, δA,i;μ) = 0 with ΦA(Vi, δA,i;μ) defined in (2.4). (b) μB :

the naive sample mean μB = (
∑N

i=1 δB,i)−1∑N
i=1 δB,iYi. (c) μ̂dr: the solution

to
∑N

i=1 ΦB(Vi, δA,i, δB,i;μ, α, β) = 0 with ΦB(Vi, δA,i, δB,i;μ, α, β) defined in
(2.5), where (α, β) are estimated by using the maximum pseudo-likelihood es-
timator α̂ and the ordinary least square estimator β̂ [26]; see Equations (B.2)
and (B.4). (d) μ̂eff: the solution to (2.7) with the optimal choice Λeff speci-
fied in (A.11) and the consistent estimators (α̂, β̂) obtained from (c). (e) μ̂eff:B :
μ̂eff, where α is estimated in the same manner as (c) but β is estimated solely
based on the non-probability sample; see Equation (B.3). (f) μ̂eff:KH: μ̂eff, where
(α, β) are estimated simultaneously by adopting the methods proposed by [29];
see Equations (B.5) and (B.6). (g) μ̂tap, μ̂tap:B , μ̂tap:KH: the solution to (3.6),
where (Λ, cγ) are chosen by our data-adaptive procedure with (α̂, β̂) obtained
from (d), (e), (f), respectively. (h) μ̂Bayes:1, μ̂Bayes:2, μ̂Bayes:3: the Bayesian ap-
proaches for combining the non-probability sample with the probability sample
assuming different informative priors [52].

For all estimators, we specify the model πB(X;α) to be a logistic regression
model with Xi and the outcome mean model m(X;β) to be a linear regression
model with Xi. For non-regular estimators μ̂tap, μ̂tap:B and μ̂eff:KH, we con-
struct the C

BACI
μg,1−α(a) in (4.4) with a data-adaptiv choice of νn, the C

BACI
μg,1−α(a)

with a fixed vn = log logn{CBACI:F
μg,1−α(a)} (BACIF ), and the C

PACI
μg,1−α(a). For any

confidence intervals requiring the nonparametric bootstrap, the bootstrap size
is 2000. For the Bayesian estimators, the point estimates are obtained by the
Markov chain Monte Carlo sampling with size 2000 after additional 500 burn-in
samples.

Table 2 reports the bias, variance and mean squared error of each estimator
over 2000 simulated datasets. The benchmark estimators μ̂A have small biases
across all scenarios, guaranteed by the probability sampling design. On the other
hand, the non-probability-only estimators μB exhibit high biases in all cases,
mainly due to the effect of selection bias. When the impact of the unmeasured
confounder b increases, the pooled estimators μ̂eff, μ̂eff:B and μ̂eff:KH are be-



Test-and-pool estimator 1507

Table 2

Simulation results for bias (×10−3), variance (var) (×10−3) and mean squared error
(MSE) (×10−3) of μ̂A, μB , μ̂dr, μ̂eff, μ̂Bayes and μ̂tap when H0 holds, is slightly violated or

strongly violated.

H0 holds slightly violated strongly violated
bias var MSE bias var MSE bias var MSE

Regular μ̂A −4.1 10.4 10.4 −4.1 10.4 10.4 −4.1 10.4 10.4
μB 284.1 1.2 81.9 355.3 1.2 127.4 1318.8 2.0 1741.4
μ̂dr −0.4 4.2 4.2 71.0 4.3 9.3 1048.0 5.0 1103.2
μ̂eff −0.9 4.1 4.1 62.3 4.2 8.1 851.5 6.6 731.7
μ̂eff:B −0.9 4.1 4.1 62.3 4.2 8.1 851.7 6.6 732.1
μ̂eff:KH −0.9 4.1 4.1 62.3 4.2 8.1 851.5 6.7 731.7

Bayes μ̂Bayes:1 −3.7 14.1 14.1 1.0 14.0 14.0 −4.3 14.1 14.1
μ̂Bayes:2 −4.1 10.8 10.8 17.1 11.1 11.4 7.0 13.8 13.8
μ̂Bayes:3 −2.4 8.9 8.9 51.2 9.0 11.6 614.0 10.8 387.9

TAP μ̂tap −4.8 7.6 7.6 10.1 9.3 9.4 −4.1 10.4 10.4
μ̂tap:B −4.8 7.6 7.6 10.1 9.3 9.4 −4.1 10.4 10.4
μ̂tap:KH −4.8 7.6 7.6 10.1 9.3 9.4 −4.1 10.4 10.4

Table 3

Simulation results for coverage rates (CR) (×10−2) and widths (×10−3) for 95% confidence
intervals when H0 holds, is slightly violated or strongly violated.

H0 holds slightly violated strongly violated
CIs CR width CR width CR width

μ̂A Wald 95.2 404.1 95.3 404.1 95.2 404.0
μB 0.0 135.5 0.0 138.8 0.0 173.7
μ̂dr 95.9 262.8 81.8 264.4 0.0 282.4
μ̂eff 95.9 259.5 85.1 260.9 0.0 273.6

μ̂Bayes:1 hpdi 98.3 463.0 97.5 461.5 97.3 462.8
μ̂Bayes:2 97.8 404.2 97.4 409.8 97.5 458.3
μ̂Bayes:3 99.3 368.2 97.4 370.6 0.0 407.0

μ̂tap paci 98.4 558.7 98.4 535.7 99.2 541.0
baciF 94.7 399.1 95.9 402.3 94.7 402.6
baci 92.1 363.1 93.3 367.2 94.8 402.8

coming more biased. Additionally, the Bayesian methods, particularly μ̂Bayes:2,
perform reasonably well when H0 holds or is slightly violated, but it tends to
have large biases when H0 is strongly violated. Whereas the proposed estima-
tors μ̂tap, μ̂tap:B and μ̂tap:KH have small biases regardless of the strength of the
unmeasured confounder. When H0 is slightly violated, our proposed estimators
have slightly larger biases but smaller mean squared errors than μ̂A by inte-
grating the non-probability sample. When H0 is strongly violated, the proposed
estimators perform similarly to μ̂A with the protection of pretesting.

Table 3 reports the properties of 95% Wald confidence intervals for the regu-
lar estimators, the highest posterior density intervals (HPDIs) for the Bayesian
estimators, and various adaptive confidence intervals for the non-regular es-
timators μ̂tap, where the Wald confidence intervals are constructed, and the
Bayesian credible intervals are constructed based on the posterior samples after
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burn-in. Because the confidence intervals (and the point estimates; see Table 2)
are not sensitive to the methods of estimating the nuisance parameters (α, β),
we only present the confidence intervals for μ̂eff:KH and μ̂tap:KH for simplicity.
Based on Table 3, C

PACI
μg,1−α tend to overestimate the uncertainty, leading to

over-conservative confidence intervals. CBACI
μg,1−α and C

BACI:F
μg,1−α are less conserva-

tive and alleviate the over-coverage issues; thus, the empirical coverage rates are
close to the nominal level in all cases. Moreover, CBACI

μg,1−α have narrower inter-
vals than C

BACI:F
μg,1−α by using the double bootstrap procedure to select vn at the

expense of computational burden. When H0 holds, the C
BACI
μg,1−α are narrower

than the Wald for the probability-only estimator μ̂A, indicating the advantages
of implementing the test-and-pool strategy in these cases. When H0 is slightly
violated, the benefit in coverage rate is not significantly observed under similar
coverage rates. When H0 is strongly violated, the adaptive confidence interval
C

BACI
μg,1−α reduces to the Wald confidence intervals for μ̂A. Lastly, the credible in-

tervals for the Bayesian estimators do not have satisfactory coverage properties
as the model misspecification persists across scenarios, which is aligned with the
Bernstein-von Mises Theorem [65, Chapter 10.2].

6. A real-data illustration

To demonstrate the practical use, we apply the proposed method to a probability
sample from the 2015 Current Population Survey (CPS) and a non-probability
sample from the 2015 Behavioral Risk Factor Surveillance System (BRFSS)
survey. Note that the Behavioral Risk Factor Surveillance System survey itself
is a probability sample and we manually discard its sampling weights to recast
it as a non-probability sample for illustrating our proposed method.

To apply the proposed method, we use a two-phase sampling survey data with
sizes nA = 1000 and nB = 8459. We focus on two outcome variables of interest:
employment (percentages of working and retired) and educational attainment
(high school or less as h.s.o.l, and college or above as c.o.a.). Both datasets
provide measurements on the outcomes of interest and some common covariates
including age, sex (female or not), race (white and black), origin (Hispanic or
not), region (northeast, south, or west), and marital status (married or not).
To illustrate the heterogeneity in the study populations, Table 4 contrasts the
means of variables from the CPS sample (design-weighted averages) and the
BRFSS sample (simple averages). Based on Table 4, the BRFSS sample may
not be representative of the target population, and the pretesting procedures
before pooling should be expected.

Table 5 presents the results. For all estimators, we specify the propensity
score model to be a logistic regression model with the covariates (all variables
excluding the outcome variable) and the outcome mean model to be a logistic
regression model with the covariates. The efficient estimator μ̂eff gains efficiency
in all estimators compared to both μ̂A and μ̂dr; however, it may be subject to
biases if the non-probability sample does not satisfy the required assumptions. In
the test-and-pool analysis, the pretesting rejects the use of the non-probability
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Table 4

The covariate means by two samples: CPS sample (a probability sample) and BRFSS
sample (a hypothetical non-probability sample.)

Data source age %sex %white %black %hispanic %northeast %south

CPS 47.5 56.5 81.9 11.0 13.3 18.1 37.7
BRFSS 48.3 54.2 83.2 8.4 8.3 20.0 27.6

%west %married %working %retired %h.s.o.l. %c.o.a.

CPS 24.1 52.5 58.7 13.6 39.4 30.3
BRFSS 29.5 50.8 52.2 24.5 21.2 41.9

Table 5

Estimated population mean (EST), standard errors (SE) and confidence intervals of μg for
selected covariates when combining two datasets.

Outcome Y %working %retire %h.s.o.l. %c.o.a.

μ̂A est 58.7 13.6 39.4 30.3
se 1.51 1.17 1.60 1.59
Wald (54.8,62.3) (11.6,16.2) (35.7,43.0) (27.2,33.7)

μ̂dr est 56.5 20.0 25.8 32.3
se 1.03 1.24 0.93 1.20
Wald (54.2,58.8) (17.9,22.4) (234.0,27.5) (30.3,34.5)

μ̂eff:KH est 56.6 17.3 26.4 32.1
se 0.80 0.19 0.87 0.62
Wald (54.3,58.9) (15.4,19.6) (24.6,28.1) (30.1,34.3)

μ̂Bayes:1 est 59.8 14.1 40.5 30.7
se 1.97 1.37 2.00 1.84
hpdi (56.0, 63.6) (11.4,16.8) (36.6,44.4) (27.2,34.4)

μ̂Bayes:2 est 59.8 14.0 40.3 30.9
se 2.01 1.33 1.92 1.84
hpdi (56.1,63.9) (11.4,16.4) (36.4,44.0) (27.2,34.5)

μ̂Bayes:3 est 58.6 14.1 37.6 31.1
se 1.94 1.30 1.92 1.76
hpdi (54.7, 62.4) (11.6,16.7) (33.7,41.4) (27.7,34.7)

μ̂tap:KH est 58.7 13.6 39.0 31.7
se 1.51 1.17 1.55 0.64
baci (54.9,62.6) (11.6,15.8) (35.8,42.6) (31.0,33.6)

sample for the employment variables “working” and “retired” but accepts the use
of the non-probability sample for the education variables “high school or less”
and “college or above”. Thus, for the employment variables, μ̂tap = μ̂A, and for
the educational attainment variables, μ̂tap gains efficiency over μ̂A. The Bayesian
estimators with the informative priors 2 and 3 are more efficient than the prior
1. However, they still yield larger standard errors compared to the probability-
only estimator μ̂A perhaps because the non-probability-based informative priors
are biased for the model parameters for the probability sample. From the test-
and-pool analysis, the employment rate and the retirement rate are 58.7% and
13.6%, respectively, the percentage of the U.S. population with a high school
education or less is 39.0% and the percentage of the population with a college
education or above is 31.7% in 2015.
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7. Concluding remarks
When utilizing the non-probability samples, researchers often assume that the
observed covariates contain all the information needed for recovering the sam-
pling mechanism. However, this assumption may be violated, and hence the
integration of the probability and non-probability samples is subject to biases.
In this paper, we propose the test-and-pool estimator that firstly scrutinizes
the assumption required for combining by hypothesis testing and carefully com-
bines the probability and non-probability samples by a data-driven procedure to
achieve the minimum mean squared error. In theoretical development, we treat
(Λ, cγ) jointly as two tuning parameters and establish the asymptotic distribu-
tion of the pretesting estimator without taking their uncertainties into account.
The non-regularity of the pretest estimator invalidates the conventional method
for generating reliable inferences. To address this issue, the proposed adaptive
confidence interval has been designed to effectively handle the non-smoothness
of the pretest estimator and ensure uniform validity of inferences. It is important
to note, however, that this approach may result in a little gain in the precision
of the confidence interval, although the point estimator might have a signifi-
cant gain in the MSE compared to the estimator based only on the probability
sample. Further research is required to develop a valid post-testing confidence
interval that offers reduced conservatism.

Pretest estimation is the norm rather than the exception in applied research,
so the theories that we have established are highly relevant to researchers who
engage in applied work. The proposed framework can be extended in the fol-
lowing directions. First, in this work, we study the implications of pretesting
on estimation and inference under one single pretest. In practice, researchers
may engage in multiple presetting. For example, in the data integration con-
text, one can encounter multiple data sources [51, 71, 16], requiring pretesting
of the comparability of each data source and the benchmark. Multiple preset-
ting alters the current asymptotic results and is an important future research
topic. Second, our framework considers a fixed number of covariates; however,
in reality, practitioners often collect a rich set of auxiliary variables, rendering
variable selection imperative [75]. Developing a valid statistical framework to
deal with issues arising from selective inference is a challenging but important
topic for further investigation. Third, small area estimation has received a lot of
attention in the data integration context [44, 28, 25]. The typical estimator in
small area estimation is a weighted average of the design-based estimator and
a model-based synthetic estimator. [5] discussed the trade-off of the efficiency
gain from invoking model assumptions and the risk that these assumptions do
not hold. Thus, pretesting can be potentially useful for small-area estimation,
which we will investigate in the future.

Appendix A: Proofs
A.1. Regularity conditions
Let FN = {Vi = (Xᵀ

i , Yi)ᵀ : i ∈ U}, ΦA(V, δA;μ) and ΦB(V, δA, δB ;μ, τ) be
l-dimensional estimating functions for the parameter μg ∈ R

l when using the
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probability sample and the combined samples, respectively. Let Φτ (V, δA, δB ; τ)
be the k-dimensional estimating equations for the nuisance parameter τ0 ∈
Rk. Then, we construct one stacked estimating equation system Φ(V, δA, δB ; θ)
with θ = (μᵀ

A, μ
ᵀ
B , τ

ᵀ)ᵀ and dim(θ) = 2l + k. For establishing our stochastic
statements, we require the following regularity conditions.

Assumption A.1. The following regularity conditions hold.

a) The parameter θ = (μᵀ
A, μ

ᵀ
B , τ

ᵀ)ᵀ belongs to a compact parameter spaces
Θ in R

2l+k.
b) There exist a unique solution θ0 = (μᵀ

A,0, μ
ᵀ
B,0, τ

ᵀ
0 )ᵀ lying in the interior

of the compact space Θ such that

E{ΦA(V, δA; θ0)} = E{ΦB(V, δA, δB ; θ0)} = E{Φτ (V, δA, δB ; θ0)} = 0.

c) Φ(V, δA, δB ; θ) is integrable with respect to the joint distribution of (V , δA,
δB) for all θ in a neighborhood of θ0.

d) The first two partial derivatives of E{Φ(V, δA, δB ; θ)} and their empirical
estimators are invertible for all θ in a neighborhood of θ0.

e) For all j, k, l ∈ {1, · · · , 2l+k}, there is an integrable function B(V, δA, δB)
such that

|∂Φj(V, δA, δB ; θ)/∂θk∂θl| ≤ B(V, δA, δB), E {B(V, δA, δB)} < ∞,

for all θ in a neighborhood of θ0 almost surely.
f) {Vi : i ∈ U} are a set of i.i.d. random variables s.t. E{|Φ(V, δA, δB ; θ)|2+δ}

is uniformly bounded for θ in a neighborhood of θ0.
g) The sample sizes nA and nB are in the same order of magnitude, i.e., nA =

O(nB). The sampling fractions for both Sample A and B are negligible, i.e.,
n/N = o(1), where n = nA + nB.

h) There exist C1 and C2 such that 0 < C1 ≤ NπA,i/nA ≤ C2 and 0 < C1 ≤
NπB,i/nB ≤ C2 for all i ∈ U .

Assumption A.1 a)-e) are typical finite moment conditions to ensure the
consistency of the solution to the estimating functions [49, Appendix B], [64,
Section 3.2], [9, page 293] and [67, Appendix C]. Assumption A.1 f) is required
for obtaining the asymptotic normality of μg under superpopulation. Assump-
tion A.1 g) states that the sampling fraction is negligible, which is helpful
for subsequent variance estimation, and we can use O(n−1/2

A ), O(n−1/2
B ) and

O(n−1/2) interchangeably. Assumption A.1 h) implies that the inclusion prob-
abilities for Samples A and B are in the order of n/N , which is necessary to
establish their root-n consistency.

It is noteworthy that in Assumption 2.1, the asymptotic normality is as-
certained for the design-weighted estimators given the finite population FN .
Hereby, we extend the conditional normality to the unconditional one, which
averages over all possible finite populations satisfying the Assumption A.1 (f).
The following lemma plays a key role to establish the stochastic statements [24,
Theorem 1.3.6.].
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Lemma A.1. Under Assumption 2.1 and Assumption A.1 (f), let {FN} be
a sequence of finite populations and AN be a sample selected from the N th
population by PR design with size nN . Assume that

lim
N→∞

nN = ∞, lim
N→∞

N − nN = ∞.

We know that the distribution of the design-weighted estimator μ̂g and finite-
population estimator μg are both asymptotically normal distributed such that

μ̂g | FN
·∼ N (μg, V1), μg

·∼ N (μg,0, V2),

where ·∼ denotes the asymptotic distribution. Then, μ̂g−μg is also asymptotically
normal.

By lemma A.1, the sampling fraction is negligible, and therefore the limiting
variance of limN→∞ n

1/2
N (μg − μg,0) is 0, indicating that the intermediate step

of producing the finite population is of little significance.

A.2. Proof of Lemmas 2.1 and 3.1

In the general case, we begin to investigate the statistical properties of

ΦA,n(μ̂A, τ̂) = n1/2N−1
N∑
i=1

ΦA(Vi, δA,i; μ̂A, τ̂)

and

ΦB,n(μ̂B , τ̂) = n1/2N−1
N∑
i=1

ΦB(Vi, δA,i, δB,i; μ̂B , τ̂).

First, to simplify our notations, let

Φ̇A(V, δA;μ, τ) = ∂ΦA(V, δA;μ, τ)/∂μ,
Φ̇B(V, δA, δB ;μ, τ) = ∂ΦB(V, δA, δB ;μ, τ)/∂μ,
φB,τ (V, δA, δB ;μ, τ) = ∂ΦB(V, δA, δB ;μ, τ)/∂τ,
φτ (V, δA, δB ; τ) = ∂Φτ (V, δA, δB ; τ)/∂τ.

By the Taylor expansion of ΦB,n(μ̂B , τ̂) at (μg, τ0), we have

0 = ΦB,n(μ̂B , τ̂)

= n1/2N−1
N∑
i=1

ΦB(Vi, δA,i, δB,i;μg, τ0)

+n1/2N−1
N∑
i=1

φB,τ (Vi, δA,i, δB,i; μ̂∗
B , τ̂

∗)(τ̂ − τ0)
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+n1/2N−1
N∑
i=1

Φ̇B(Vi, δA,i, δB,i; μ̂∗
B , τ̂

∗)(μ̂B − μg), (A.1)

for some (μ̂∗
B , τ̂

∗) lying between (μ̂B , τ̂) and (μg, τ0), which leads to

− n1/2N−1
N∑
i=1

Φ̇B(Vi; μ̂∗
B , τ̂

∗)(μ̂B − μg) (A.2)

= n1/2N−1
N∑
i=1

ΦB(Vi, δA,i, δB,i;μg, τ0)

+ n1/2N−1
N∑
i=1

φB,τ (Vi, δA,i, δB,i; μ̂∗
B , τ̂

∗)(τ̂ − τ0).

Also, under Assumption A.1 a), b) and c), by the Taylor expansion, we have

n1/2(τ̂ − τ0) = −
{

1
N

N∑
i=1

φτ (Vi; τ0)
}−1

×
{
n1/2N−1

N∑
i=1

Φτ (Vi, δA,i, δB,i; τ0)
}

+ oζ-p-np(1), (A.3)

as τ̂ → τ0. Also, under Assumption A.1 (e), we know that

N−1
N∑
i=1

Φ̇A(Vi; μ̂∗
A, τ̂

∗) → E{Φ̇A(V ;μg,0, τ0)},

N−1
N∑
i=1

φr(Vi; τ0) → E {φτ (V ; τ0)} ,

N−1
N∑
i=1

Φ̇B(Vi; μ̂∗
B , τ̂

∗) → E{Φ̇B(V ;μg,0, τ0)},

N−1
N∑
i=1

φB,τ (Vi; μ̂∗
B , τ̂

∗) → E {φB,τ (V ;μg,0, τ0)} ,

(A.4)

where the first two probability convergence can be straightforward to obtain by
Weak Law of Large Numbers under Assumption A.1 f) and continuous map-
ping theorem as μg → μg,0, (μ̂A, τ̂) → (μg,0, τ0) by design and (μ̂∗

A, τ̂
∗) is lying

between (μ̂A, τ̂) and (μg,0, τ0). As for the third and fourth probability conver-
gence, we first prove that μB,0 − μg,0 = onp-p-ζ(1) under the local alternative
E{ΦB(V, δA, δB ;μg,0, τ0)} = n

−1/2
B η in Lemma A.2.

Lemma A.2. Under Assumptions 2.1, 2.2 (iii) and suitable moments condi-
tions in Assumption A.1, we have μB,0 − μg,0 = Onp-p-ζ(n−1/2).
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Next, we have under Assumption A.1 e),

N−1
N∑
i=1

Φ̇B(Vi; μ̂∗
B , τ̂

∗)

∼= N−1
N∑
i=1

Φ̇B(Vi;μg,0, τ0) + N−1
N∑
i=1

∂2ΦB(Vi;μ#
B , τ0)

∂μ∂μᵀ (μ̂∗
B − μg,0)

∼= N−1
N∑
i=1

Φ̇B(Vi;μg,0, τ0) + Oζ-p-np{(μ̂∗
B − μB,0) + (μB,0 − μg,0)}

= E{Φ̇B(V ;μg,0, τ0)} + oζ-p-np(1),

(A.5)

where An
∼= Bn means that An = Bn + oζ-p-np(1) and μ#

B lies between μ̂∗
B and

μg,0. Since μ̂B → μB,0, μg → μg,0 and μ̂∗
B lies between μ̂B and μg, we establish

the second approximation in (A.5) as

(μ̂∗
B − μB,0) + (μB,0 − μg,0) = Onp(n−1/2

B ) + Oζ(N−1/2) = oζ-p-np(1),

since nB/N = o(1). The probability convergence of N−1∑N
i=1 φB,τ (Vi; μ̂∗

B , τ̂
∗)

can be established similarly and hence we obtain the last two parts of (A.4). By
plugging (A.3) and (A.4) into (A.2), we obtain the influence function for μ̂B as

n1/2(μ̂B − μg)

∼= −E
{
Φ̇B(V ;μg,0, τ0)

}−1 ×
[
n1/2N−1

N∑
i=1

ΦB(Vi, δA,i, δB,i;μg, τ0)

−E {φB,r(V ;μg,0, τ0)} · E {φτ (V ; τ0)}−1

{
n1/2N−1

N∑
i=1

Φτ (Vi, δA,i, δB,i; τ0)
}]

∼= n1/2N−1
N∑
i=1

ψB(Vi;μg, τ0), (A.6)

where ψB(Vi;μ, τ) is the influence function for estimation of μ̂B under H0. For
completeness, we define the influence function ψA(Vi;μ, τ) for estimator μ̂A in
an analogous way as

n1/2(μ̂A − μg) ∼= −n1/2N−1
N∑
i=1

{
N−1

N∑
i=1

Φ̇A(Vi, δA,i; μ̂∗
A, τ̂

∗)
}−1

× {ΦA(Vi, δA,i;μg, τ0) + φA,τ (Vi; μ̂∗
A, τ̂

∗) · (τ̂ − τ0)} (A.7)

∼= −E
{
Φ̇A(V ;μg,0, τ0)

}−1 ×
[
n1/2N−1

N∑
i=1

ΦA(Vi, δA,i;μg, τ0)

−E {φA,τ (V ;μg,0, τ0)} · E {φτ (V ; τ0)}−1

{
n1/2N−1

N∑
i=1

Φτ (Vi, δA,i, δB,i; τ0)
}]
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∼= n1/2N−1
N∑
i=1

ψA(Vi;μg, τ0), (A.8)

where φA,r(V ;μ, τ) = ∂ΦA(V, δA;μ, τ)/∂τ . By Lemma A.1, the joint asymptotic
distribution for n1/2(μ̂A − μg) and n1/2(μ̂B − μg) would be

n1/2
(

μ̂A − μg

μ̂B − μg

)
→

N
{(

0l×1

−f
−1/2
B [E {∂ΦB(Vi;μg,0, τ0)/∂μ}]−1

η

)
,

(
VA Γ
Γᵀ VB

)}
,

where VA,Γ and VB are the total (co-)variance of two-phase design averaging
over the finite populations:

VA = nN−2
Eζ

[
varp

{
N∑
i=1

ψA(Vi;μg, τ0) | FN

}]

+ nN−2varζ

[
Ep

{
N∑
i=1

ψA(Vi;μg, τ0) | FN

}]
,

VB = nN−2
Eζ

[
varp-np

{
N∑
i=1

ψB(Vi;μg, τ0) | FN

}]

+ nN−2varζ

[
Ep-np

{
N∑
i=1

ψB(Vi;μg, τ0) | FN

}]
,

Γ = nN−2
Eζ

[
covp-np

{
N∑
i=1

ψA(Vi;μg, τ0),
N∑
i=1

ψB(Vi;μg, τ0) | FN

}]
+ nN−2

× varζ

[
Ep

{
N∑
i=1

ψA(Vi;μg, τ0) | FN

}
,Ep-np

{
N∑
i=1

ψB(Vi;μg, τ0) | FN

}]
,

where the first term is attributed to the randomness of probability (and non-
probability) sample designs, and the second term is attributed to the random-
ness of the superpopulation model. The rest of the proof is summarized in
Lemma A.3.

Lemma A.3. Under the Assumption A.1 and the asymptotic joint distribution
for μ̂A and μ̂B in Lemma 3.1, the form of μ̂eff which maximizes the variance
reduction under H0 would be

n1/2(μ̂eff − μ0) ∼= n1/2{ωA(Λeff)(μ̂A − μg) + ωB(Λeff)(μ̂B − μg)},

where the weight functions are

ωA(Λ) = E
{
Φ̇A,B,n(Λ, μg,0, τ0)

}−1
E
{
Φ̇A(Vi, δA,i;μg,0, τ0)

}
, (A.9)
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ωB(Λ) = E
{
Φ̇A,B,n(Λ, μg,0, τ0)

}−1 ΛE
{
Φ̇B(Vi, δA,i, δB,i;μg,0, τ0)

}
, (A.10)

where Φ̇A,B,n(Λ, μg,0, τ0) = Φ̇A(Vi, δA,i;μg,0, τ0) + ΛΦ̇B(Vi, δA,i, δB,i;μg,0, τ0).
The most efficient estimator μ̂eff with

Λeff = E
{
Φ̇A(Vi;μg,0, τ0)

}
(VA − Γ)(VB − Γᵀ)−1

E
{
Φ̇B(Vi;μg,0, τ0)

}−1 (A.11)

has the asymptotic distribution under Ha,n as

n1/2(μ̂eff − μg) → N{beff(η), Veff},

where beff(η) = −f
−1/2
B ωB(Λeff) {E∂ΦB(μg,0, τ0)/∂μ}−1

η and

Veff =
(

ωᵀ
A(Λeff)

ωᵀ
B(Λeff)

)ᵀ(
VA Γ
Γᵀ VB

)(
ωA(Λeff)
ωB(Λeff)

)
.

When μA and μB are both scalar, Veff would reduce to

Veff = (VAVB − Γ2)(VA + VB − 2Γ)−1 = VA − VΔ,

where VΔ = (VA − Γ)2(VA + VB − 2Γ)−1.

A.3. Proof of Lemma 3.2

By applying the Taylor expansion with Lagrange forms of remainder to the
asymptotic distribution for n1/2

B N−1∑N
i=1 ΦB(Vi, δA,i, δB,i; μ̂A, τ̂) in (3.5) could

be shown as

n
1/2
B N−1

N∑
i=1

ΦB(Vi, δA,i, δB,i; μ̂A, τ̂) = n
1/2
B N−1

N∑
i=1

ΦB(Vi, δA,i, δB,i;μg, τ0)

+ n
1/2
B N−1

N∑
i=1

(
∂ΦB(Vi,δA,i,δB,i;μ̂∗

A,τ∗)
∂μ

∂ΦB(Vi,δA,i,δB,i;μ̂∗
A,τ∗)

∂τ

)(
μ̂A − μg

τ̂ − τ0

)
where (μ̂∗

A τ∗)ᵀ is the neighborhood of (μg,0, τ0)ᵀ as plimμ̂A = μg,0 and
plimτ̂ = τ0. Under the Assumption A.1 e), we have

n
1/2
B N−1

N∑
i=1

ΦB(Vi, δA,i, δB,i; μ̂A, τ̂)

= n
1/2
B N−1

N∑
i=1

ΦB(Vi, δA,i, δB,i;μg, τ0) (A.12)

+ n
1/2
B N−1

N∑
i=1

∂ΦB,j(Vi, δA,i, δB,i; μ̂∗
A, τ

∗)
∂μ

(μ̂A − μg)

+ n
1/2
B N−1

N∑
i=1

∂ΦB(Vi, δA,i, δB,i; μ̂∗
A, τ

∗)
∂τ

(τ̂ − τ0)
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= n
1/2
B N−1

N∑
i=1

ΦB(Vi, δA,i, δB,i;μg, τ0)

+ E

{
∂ΦB(V, δA, δB ;μg,0, τ0)

∂τ

}
n

1/2
B (τ̂ − τ0) (A.13)

+ E

{
∂ΦB(V, δA, δB ;μg,0, τ0)

∂μ

}
n

1/2
B (μ̂A − μg) + oζ-p-np(1).

Next, by replacing the first two term in Equation (A.13) with Equation (A.2),
we have

n
1/2
B N−1

N∑
i=1

ΦB(Vi, δA,i, δB,i; μ̂A, τ̂)

= −E

{
∂ΦB(V, δA, δB ;μg,0, τ0)

∂μ

}
n

1/2
B (μ̂B − μg)

+ E

{
∂ΦB(V, δA, δB ;μg,0, τ0)

∂μ

}
n

1/2
B (μ̂A − μg) + oζ-p-np(1)

= −(nB/n)1/2 · EΦ̇B(Vi;μg,0, τ0) · n1/2(μ̂B − μg)
+ (nB/n)1/2 · EΦ̇B(Vi;μg,0, τ0) · n1/2(μ̂A − μg) + oζ-p-np(1),

provided by WLLN under Assumptions 2.1, 2.2 (iii) and Assumption A.1. By
the joint distribution of μ̂A and μ̂B in Lemma 3.1, the variance of ΦB,n(μ̂A, τ̂)
would be

ΣT = fB
{
EΦ̇B(Vi;μg,0, τ)

}
(VA + VB − Γᵀ − Γ)

{
EΦ̇B(Vi;μg,0, τ)

}ᵀ
.

Thus, the asymptotic distribution for ΦB,n(Vi, δA,i, δB,i; μ̂A, τ̂) would be

n
1/2
B N−1

N∑
i=1

ΦB(Vi, δA,i, δB,i; μ̂A, τ̂)

→N
{
η, fB

{
EΦ̇B(Vi;μg,0, τ)

}
(VA + VB − Γᵀ − Γ)

{
EΦ̇B(Vi;μg,0, τ)

}ᵀ}
.

A.4. Proof of Theorem 4.1

From Lemma 2.1 and 3.1, we know that the asymptotic joint distribution for
μ̂A and μ̂B would be

n1/2
(

μ̂A − μg

μ̂B − μg

)
→N

{(
0l×1

−f
−1/2
B [E {∂ΦB(μg,0, τ0)/∂μ}]−1

η

)
,

(
VA Γ
Γᵀ VB

)}
.

For simplicity, we let n1/2(μ̂A − μg) and n1/2(μ̂B − μg) be asymptotically dis-
tributed as Z1 and Z2, respectively. Then, ΦB,n(Vi, δA,i, δB,i; μ̂A, τ̂) could be
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expressed as

n
1/2
B N−1

N∑
i=1

ΦB(Vi, δA,i, δB,i; μ̂A, τ̂)

∼= − n
1/2
B N−1

N∑
i=1

Φ̇B(Vi, δA,i, δB,i;μg,0, τ0)(μ̂B − μg)

+ n
1/2
B N−1

N∑
i=1

Φ̇B(Vi, δA,i, δB,i;μg,0, τ0)(μ̂A − μg)

→f
1/2
B

{
EΦ̇B(V, δA, δB ;μg,0, τ0)

}
(Z1 − Z2).

Let U2 = f
1/2
B

{
EΦ̇B(V, δA, δB ;μg,0, τ0)

}
(Z1−Z2). Next step, we attempt to find

another linear combination of Z1 and Z2 which is orthogonal to U2. Observed
that when U1 = f

1/2
B {(Γᵀ −VB)(Γ−VA)−1Z1 +Z2}, it is easy to verify that the

covariance of U1 and U2 is zero under H0.

cov(U2, U1) = fB
{
EΦ̇B(V, δA, δB ;μg,0, τ0)

}
×
(

Il×l

−Il×l

)ᵀ
×
(

VA Γ
Γᵀ VB

)
×
(

(Γᵀ − VA)−1(Γ − VB)
Il×l

)
= fB

{
EΦ̇B(V, δA, δB ;μg,0, τ0)

}
× ( VA − Γᵀ Γ − VB ) ×

(
(Γᵀ − VA)−1(Γ − VB)

Il×l

)
= 0l×l.

Also, since U1 and U2 are both asymptotically normal distributions, which im-
plies that zero covariance leads to independency. After a few standardization
procedures, we have W1 and W2 as W1 = Σ−1/2

S U1, W2 = Σ−1/2
T U2 with ΣS

and ΣT defined as

ΣS = var(U1) = fBvar{(Γᵀ − VB)(Γ − VA)−1Z1 + Z2}, (A.14)
ΣT = fB

{
EΦ̇B(μg,0, τ0)

}
(VA + VB − Γᵀ − Γ)

{
EΦ̇B(μg,0, τ0)

}ᵀ
. (A.15)

Therefore, we have the form for the standardized random variables W1 and W2
as

W1 = Σ−1/2
S U1 = f

1/2
B Σ−1/2

S {(Γᵀ − VB)(Γ − VA)−1Z1 + Z2},
W2 = −Σ−1/2

T U2 = −(VA + VB − Γᵀ − Γ)−1/2(Z1 − Z2).

Here we use −Σ−1/2
T to standardize U2 for the sake of convenience later. There-

fore, under the local alternative Ha,n : E{ΦB(V, δA, δB ;μg,0, τ0)} = n
−1/2
B η,

we have that E(Z1) = 0,E(Z2) = −f
−1/2
B

{
EΦ̇B(μg,0, τ0)

}−1
η. Combining the

above leads to

W1 ∼ N(μ1, Il×l), W2 ∼ N(μ2, Il×l),
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where

μ1 = −Σ−1/2
S

{
EΦ̇B(μg,0, τ0)

}−1
η,

μ2 = −f
−1/2
B (VA + VB − Γᵀ − Γ)−1/2 {

EΦ̇B(μg,0, τ0)
}−1

η = −Σ−1/2
T η,

and since W1 ⊥ W2, we could project out TAP estimator μ̂tap with the opti-
mal tuning parameter (Λ∗, cγ∗) onto these two basis respectively. First, on the
condition that

T > cγ∗ = {ΦB,n(μ̂A, τ̂)}ᵀ Σ̂−1
T {ΦB,n(μ̂A, τ̂)} > cγ∗→W ᵀ

2 W2 > cγ∗ ,

we have

n1/2(μ̂tap − μg) | T > cγ∗ = n1/2(μ̂A − μg) | T > cγ∗

→Z1|W ᵀ
2 W2 > cγ∗

→− f
−1/2
B (Γ − VA)(VA + VB − Γᵀ − Γ)−1U1

+ f
−1/2
B (Γ − VA)(VA + VB − Γᵀ − Γ)−1 {

EΦ̇B(μg,0, τ0)
}−1

U2|W ᵀ
2 W2 > cγ∗

→− f
−1/2
B (VA + VB − Γᵀ − Γ)−1Σ1/2

S W1

+ (Γ − VA)(VA + VB − Γ − Γᵀ)−1/2W2|W ᵀ
2 W2 > cγ∗

→− V
1/2
eff W1 + V

1/2
A-effW2|W ᵀ

2 W2 > cγ∗ .

Next, on the condition T = W ᵀ
2 W2 ≤ cγ∗ , we have

n1/2(μ̂tap − μg)→ω∗
AZ1 + ω∗

BZ2|W ᵀ
2 W2 ≤ cγ∗

→− f
−1/2
B (Γ − VA)(VA + VB − Γᵀ − Γ)−1U1

+ f
−1/2
B ω∗

A(Γ − VA)(VA + VB − Γᵀ − Γ)−1

×
{
EΦ̇B(μg,0, τ0)

}−1
U2 | W ᵀ

2 W2 ≤ cγ∗

− f
−1/2
B ω∗

B(Γᵀ − VB)(VA + VB − Γᵀ − Γ)−1

×
{
EΦ̇B(μg,0, τ0)

}−1
U2 | W ᵀ

2 W2 ≤ cγ∗

→− f
−1/2
B (VA + VB − Γᵀ − Γ)−1Σ1/2

S W1

+ f
−1/2
B ω∗

A(Γ − VA)(VA + VB − Γ − Γᵀ)−1/2W2 | W ᵀ
2 W2 ≤ cγ∗

− f
−1/2
B ω∗

B(Γᵀ − VB)(VA + VB − Γᵀ − Γ)−1/2W2 | W ᵀ
2 W2 ≤ cγ∗

→− V
1/2
eff W1 + (ωAV

1/2
A-eff − ωBV

1/2
B-eff)W2|W ᵀ

2 W2 ≤ cγ∗ ,

where W t
2 = W2|W ᵀ

2 W2 ≤ cγ , and ω∗
A, ω

∗
B are the new tuned weighted functions

defined in (A.9) and (A.10) with Λ = Λ∗. In this way, we could fully characterize
the asymptotic distribution for the TAP estimator μ̂tap under the optimal tuning
parameter as,

n1/2(μ̂tap − μg)→
{
−V

1/2
eff W1 + (ωAV

1/2
A-eff − ωBV

1/2
B-eff)W t

[0,cγ ] w.p. ξ,

−V
1/2
eff W1 + V

1/2
A-effW

t
[cγ∗ ,∞] w.p. 1 − ξ,

where ξ = P(W ᵀ
2 W2 < cγ∗).
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A.5. Proof of the bias and mean squared error of n1/2(μ̂tap − μg)

For general case, given W2 ∼ Np(μ2, Ip×p), the MGF of truncated normal dis-
tribution W2|a ≤ W ᵀ

2 W2 ≤ b is [60]

αm(t) = E{exp(tᵀW2)}

= (2π)−p/2
∫
C

exp(tᵀW2) exp
{
−1

2(W2 − μ2)ᵀ(W2 − μ2)
}
dW2

= (2π)−p/2 exp(1
2 t

ᵀt + μᵀ
2t)

×
∫
C

exp
{
−1

2(W2 − μ2 − t)ᵀ(W2 − μ2 − t)
}
dW2

= exp(−1
2μ

ᵀ
2μ2)

∞∑
k=0

{Fp+2k(b) − Fp+2k(a)}{(μ2 + t)ᵀ(μ2 + t)/2}k/k!,

where α = Fp(b;μᵀ
2μ2/2) − Fp(a;μᵀ

2μ2/2) is the normalization constant and
Fp(a;μᵀ

2μ2/2) is CDF of chi-square distribution at value a with non-central
parameter μᵀ

2μ2/2. The second and the third equality above are justified by

(2π)−p/2
∫
C

exp
{
−1

2(W2 − μ2 − t)ᵀ(W2 − μ2 − t)
}

= P{a ≤ W ᵀ
2 W2 ≤ b | W2 ∼ N (μ2 + t, Ip×p)}

= F{b; k = p, λ = (μ2 + t)ᵀ(μ2 + t)} − F{a; k = p, λ = (μ2 + t)ᵀ(μ2 + t)}

= exp{−1
2(μ2 + t)ᵀ(μ2 + t)}

×
∞∑
k=0

{Fp+2k(b) − Fp+2k(a)}{(μ2 + t)ᵀ(μ2 + t)/2}k/k!.

To compute the first and second moment of this truncated normal distribution,
we take derivative of the MGF and evaluate the function at t = 0

α
dm(t)
dtᵀ

∣∣∣∣
t=0

= (μ2 + t) exp(−1
2μ

ᵀ
2μ2)

×
∞∑
k=0

{Fp+2k+2(b) − Fp+2k+2(a)}{(μ2 + t)ᵀ(μ2 + t)}/k!|t=0

= μ2 exp(−1
2μ

ᵀ
2μ2)

∞∑
k=0

{Fp+2k+2(b) − Fp+2k+2(a)}{μᵀ
2μ2/2}k/k!

= μ2 {Fp+2(b;μᵀ
2μ2/2) − Fp+2(a;μᵀ

2μ2/2)} .

By the nature of MGF, we obtain the expectation of the first moment of W2

E(W2|a ≤ W ᵀ
2 W2 ≤ b) = μ2 ·

Fp+2(b;μᵀ
2μ2/2) − Fp+2(a;μᵀ

2μ2/2)
Fp(b;μᵀ

2μ2/2) − Fp(a;μᵀ
2μ2/2) .
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Then, taking the second derivative of the MGF follows by

α
d2m(t)
dtdtᵀ

∣∣∣∣
t=0

= exp(−1
2μ

ᵀ
2μ2)

[ ∞∑
k=0

{Fp+2k+2(b) − Fp+2k+2(a)}{(μ2 + t)ᵀ(μ2 + t)/2}k/k!|t=0

+(μ2 + t)(μ2 + t)ᵀ

×
∞∑
k=0

{Fp+2k+4(b) − Fp+2k+4(a)}{(μ2 + t)ᵀ(μ2 + t)/2}k/k!|t=0

]

= exp(−1
2μ

ᵀ
2μ2)

[ ∞∑
k=0

{Fp+2k+2(b) − Fp+2k+2(a)}{μᵀ
2μ2/2}k/k!

+μ2μ
ᵀ
2

∞∑
k=0

{Fp+2k+4(b) − Fp+2k+4(a)}{μᵀ
2μ2/2}k/k!

]
= Ip×p(Fp+2(b;μᵀ

2μ2/2) − Fp+2(a;μᵀ
2μ2/2))

+ μ2μ
ᵀ
2(Fp+4(b;μᵀ

2μ2/2) − Fp+4(a;μᵀ
2μ2/2)),

which leads to

E(W2W
T
2 |a ≤ WT

2 W2 ≤ b) = Ip×p
Fp+2(b;μT

2 μ2/2) − Fp+2(a;μT
2 μ2/2)

Fp(b;μT
2 μ2/2) − Fp(a;μT

2 μ2/2)

+ μ2μ
ᵀ
2
Fp+4(b;μT

2 μ2/2) − Fp+4(a;μT
2 μ2/2)

Fp(b;μT
2 μ2/2) − Fp(a;μT

2 μ2/2)
.

In our case,

p = l, μ1 = −Σ−1/2
S [E {∂ΦB(μg,0, τ0)/∂μ}]−1

η, μ2 = −Σ−1/2
T η.

Recall, for T ≤ cγ , we have n1/2(μ̂tap−μg)→−V
1/2
eff W1+(ωAV

1/2
A-eff−ωBV

1/2
B-eff)W2

|W ᵀ
2 W2 ≤ cγ with probability ξ = Fl(cγ ;μᵀ

2μ2), the bias would be

bias(λ, cγ ; η)T≤cγ = −V
1/2
eff μ1 + (ωAV

1/2
A-eff − ωBV

1/2
B-eff) · E(W2|W ᵀ

2 W2 ≤ cγ)

= −V
1/2
eff μ1 + (ωAV

1/2
A-eff − ωBV

1/2
B-eff) · Fl+2(cγ ;μT

2 μ2/2)μ2

Fl(cγ ;μT
2 μ2/2)

.

The MSE can be derived based on the known formula mse(X + Y ) = var(X +
Y ) + {E(X + Y )}⊗2 = {var(X) + μ⊗2

X } + {var(Y ) + μ⊗2
Y } + 2μXμᵀ

Y

mse(λ, cγ ; η)T≤cγ = V
1/2
eff (μ1μ

ᵀ
1 + Il×l)V 1/2

eff + (ωAV
1/2
A-eff − ωBV

1/2
B-eff)

× E(W2W
T
2 |W ᵀ

2 W2 ≤ cγ)(ωAV
1/2
A-eff − ωBV

1/2
B-eff)

− 2V 1/2
eff μ1E(W ᵀ

2 |W
ᵀ
2 W2 ≤ cγ)(ωAV

1/2
A-eff − ωBV

1/2
B-eff)

= V
1/2
eff (μ1μ

ᵀ
1 + Il×l)V 1/2

eff + (ωAV
1/2
A-eff − ωBV

1/2
B-eff)
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×
{
Fl+2(cγ ;μT

2 μ2/2)
Fl(cγ ;μT

2 μ2/2)
Il×l + Fl+4(cγ ;μT

2 μ2/2)
Fl(cγ ;μT

2 μ2/2)
μ2μ

ᵀ
2

}
(ωAV

1/2
A-eff − ωBV

1/2
B-eff)

− 2Fl+2(cγ ;μT
2 μ2/2)

Fl(cγ ;μT
2 μ2/2)

V
1/2
eff μ1μ

ᵀ
2(ωAV

1/2
A-eff − ωBV

1/2
B-eff).

For T > cγ , we have n1/2(μ̂tap − μg)→− V
1/2
eff W1 + V

1/2
A-effW2|W ᵀ

2 W2 > cγ with
probability 1− ξ = 1−Fl(cγ ;μᵀ

2μ2), the corresponding bias and MSE would be

bias(λ, cγ ; η)T>cγ = −V
1/2
eff μ1 + V

1/2
A-eff · E(W2|W ᵀ

2 W2 > cγ)

= −V
1/2
eff μ1 + V

1/2
A-eff · 1 − Fl+2(cγ ;μT

2 μ2/2)μ2

1 − Fl(cγ ;μT
2 μ2/2)

,

and

mse(λ, cγ ; η)T>cγ = V
1/2
eff (μ1μ

ᵀ
1 + Il×l)V 1/2

eff

+ V
1/2
A-effE(W2W

T
2 |W ᵀ

2 W2 > cγ)V 1/2
A-eff

− 2V 1/2
eff μ1E(W ᵀ

2 |W
ᵀ
2 W2 > cγ)V 1/2

A-eff

= V
1/2
eff (μ1μ

ᵀ
1 + Il×l)V 1/2

eff + V
1/2
A-eff

×
{

1 − Fl+2(cγ ;μT
2 μ2/2)

1 − Fl(cγ ;μT
2 μ2/2)

Il×l + 1 − Fl+4(cγ ;μT
2 μ2/2)

1 − Fl(cγ ;μT
2 μ2/2)

μ2μ
ᵀ
2

}
V

1/2
A-eff

− 2
{

1 − F3(cγ ;μT
2 μ2/2)

1 − F1(cγ ;μT
2 μ2/2)

}
V

1/2
eff μ1μ

ᵀ
2V

1/2
A-eff.

Overall, the bias and mean squared error for n1/2(μ̂tap−μg) can be characterized
as

bias(λ, cγ ; η) = ξ · bias(λ, cγ ; η)T≤cγ + (1 − ξ) · bias(λ, cγ ; η)T>cγ ,

mse(λ, cγ ; η) = ξ · mse(λ, cγ ; η)T≤cγ + (1 − ξ) · mse(λ, cγ ; η)T>cγ .

A.6. Proof of the asymptotic distribution for U(a)

Throughout the proof, we assume that the regularity conditions in Lemma 2.1
and assumptions in Theorem 4.2 hold, we prove that the coverage probability
for the adaptive projection sets is guaranteed to be larger than 1 − α, which is

P

{
aᵀμg ∈ C

BACI
μg,1−α(a)

}
≥ 1 − α + o(1),

where CBACI
μg,1−α(a) =

[
aᵀμ̂tap − Û1−α/2(a)/

√
n, aᵀμ̂tap − L̂α/2(a)/

√
n
]
. As we al-

ready know that

aᵀn1/2(μ̂tap − μg) ≤ U(a), aᵀn1/2(μ̂tap − μg) ≥ L(a),

it is needed to show that Û(a) obtained by bootstrapping converges to the same
asymptotic distribution as U(a). Let Dp×p denotes the space of p×p symmetric
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positive-definite matrices equipped with the spectral norm. We can rewrite U(a)
as

U(a) = −aᵀV 1/2
eff W1{ΣS , n

1/2(μ̂A − μg), n1/2(μ̂B − μg), τ}
+ aᵀ(ωAV

1/2
A-eff − ωBV

1/2
B-eff)W2{ΣT , n

1/2(μ̂A − μg), n1/2(μ̂B − μg), τ}
+ aᵀωB(V 1/2

B-eff + V
1/2
A-eff)μt

[cγ ,∞)

+ aᵀωB(V 1/2
B-eff + V

1/2
A-eff)

×
[
W2{ΣT , n

1/2(μ̂A − μg), n1/2(μ̂B − μg), τ}[cγ ,∞) − μt
[cγ ,∞)

]
1T≥υn

+ aᵀωB(V 1/2
B-eff + V

1/2
A-eff)

× sup
μ2∈Rl

[
W2{ΣT , n

1/2(μ̂A − μg), n1/2(μ̂B − μg), τ}[cγ ,∞) − μt
[cγ ,∞)

]
1T<υn .

Next, we adopt the notation for the bootstrapping to express the upper bound
Û(a) = U (b)(a) as

U (b)(a) = −aᵀV̂ 1/2
eff W1{Σ̂S , n

1/2(μ̂(b)
A − μ̂A), n1/2(μ̂(b)

B − μ̂A), τ̂}
+ aᵀ(ωAV̂

1/2
A-eff − ωBV̂

1/2
B-eff)W2{Σ̂T , n

1/2(μ̂(b)
A − μ̂A), n1/2(μ̂(b)

B − μ̂A), τ̂}
+ aᵀωB(V̂ 1/2

B-eff + V̂
1/2
A-eff)W̄ (b)

2 [cγ ,∞)

+ aᵀωB(V̂ 1/2
B-eff + V̂

1/2
A-eff)

×
[
W2{Σ̂T , n

1/2(μ̂(b)
A − μ̂A), n1/2(μ̂(b)

B − μ̂A), τ̂}[cγ ,∞) − W̄
(b)
2 [cγ ,∞)

]
1T≥υn

+ aᵀωB(V̂ 1/2
B-eff + V̂

1/2
A-eff)

× sup
μ2∈Rl

[
W2{Σ̂T , n

1/2(μ̂(b)
A − μ̂A), n1/2(μ̂(b)

B − μ̂A), τ̂}[cγ ,∞) − μt
[cγ ,∞)

]
1T<υn ,

where W̄ (b)
2 = (1/K)

∑K
b=1 W2{Σ̂T , n

1/2(μ̂(b)
A −μ̂A), n1/2(μ̂(b)

B −μ̂A), τ̂}. Next, we
define some functions to proceed our proof. w11 : Dl×l×Dl×l×R

l×R
l×R

d×R →
R, w12 : Dl×l×R

l×R
l×R

d×R
l → R and ρ : D2l×2l×Dl×l×R

l×R
l×R

d×R×R
l →

R are functions defined as below

w11(ΣT ,ΣS ,GA,GB , τ, μ2) = −aᵀV 1/2
eff W1(ΣS ,GA,GB , τ)

+ aᵀ(ωAV
1/2
A-eff − ωBV

1/2
B-eff)W2(ΣT ,GA,GB , τ)

+ aᵀωB(V 1/2
B-eff + V

1/2
A-eff)μt

[cγ ,∞)

+ aᵀωB(V 1/2
B-eff + V

1/2
A-eff)

×
{
W2(ΣT ,GA,GB , τ)[cγ ,∞) − μt

[cγ ,∞)

}
1μᵀ

2μ2∈B�,

w12(ΣT ,GA,GB , μ2) = aᵀωB(V 1/2
B-eff + V

1/2
A-eff)

×
{
W2(ΣT ,GA,GB , τ)[cγ ,∞) − μt

[cγ ,∞)

}
1μᵀ

2μ2∈B,

ρ11(ΣT ,GA,GB , μ2) = aᵀωB(V 1/2
B-eff + V

1/2
A-eff)
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×
{
W2(ΣT ,GA,GB , τ)[cγ ,∞) − μt

[cγ ,∞)

}
(1T≥υn − 1μᵀ

2μ2∈B�),

ρ12(ΣT ,GA,GB , μ2) = aᵀωB(V 1/2
B-eff + V

1/2
A-eff)

×
{
W2(ΣT ,GA,GB , τ)[cγ ,∞) − μt

[cγ ,∞)

}
(1T<υn − 1μᵀ

2μ2∈B),

where GA = n1/2(μ̂A − μg) and GB = n1/2(μ̂B − μg). Using the functions we
have defined, we could re-express the upper bound U(a) in terms of

U(a) = w11(ΣT ,ΣS ,GA,GB , τ, μ2) + ρ11(ΣT ,GA,GB , μ2)
+ sup

μ2∈Rl

{w12(ΣT ,GA,GB , μ2) + ρ12(ΣT ,GA,GB , μ2)} .

Assume the conditions in Theorem 4.2, we can show that

1. w11 is continuous at points in (ΣT ,ΣS ,R
l,Rl,Rd, μ2) and w12 is continuous

at points in (ΣT ,R
l,Rl, μ2) uniformly in μ2. That is, for any Σ̂T → ΣT ,

Σ̂S → ΣS , G(b)
A = n1/2(μ̂(b)

A − μ̂A) → Z1, G(b)
B = n1/2(μ̂(b)

B − μ̂A) → Z2 and
τ̂ → τ , we have

sup
μ2∈Rl

|w11(Σ̂T , Σ̂S ,G
(b)
A ,G

(b)
B , τ̂ , μ2) − w11(ΣT ,ΣS , Z1, Z2, τ, μ2)| → 0,

sup
μ2∈Rl

|w12(Σ̂T ,G
(b)
A ,G

(b)
B , μ2) − w12(ΣT , Z1, Z2, μ2)| → 0.

(A.16)
2. ρ11(Σ̂T ,G

(b)
A ,G

(b)
B , μ2) and ρ12(Σ̂T ,G

(b)
A ,G

(b)
B , μ2) converge to zeros with

probability one as n → ∞ uniformly in μ2. That is,

sup
μ2∈Rl

|ρ11(Σ̂T ,G
(b)
A ,G

(b)
B , μ2)| → 0, max

μ2∈Rl
|ρ12(Σ̂T ,G

(b)
A ,G

(b)
B , μ2)| → 0.

(A.17)
See Lemma B.9. and Lemma B.11. in [32] for details.

By far, combine (A.16) and (A.17), U(a) is guaranteed to be continuous, and
the continuity of L(a) can be derived in the same way. Based on continuous
mapping theorem and Theorem 4.2 in [32], we can state that

sup
M

|E{L(a), U(a)} − EM{L(b)(a), U (b)(a)}|

converges to zero in probability, where EM (·) denotes the expectation taken
with respect to the bootstrap weights.

A.7. Proof of Theorem 4.2

Based on the established consistency of the bootstrapping bounds in Section A.6,
the proof can be decomposed into two parts. One part is for

P{aᵀ√n(μ̂tap − μg) ≤ Û1−α/2(a)} ≥ P{U(a) ≤ Û1−α/2(a)}
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= GU{Û1−α/2(a)} − ĜU{Û1−α/2(a)}
+ ĜU{Û1−α/2(a)}
= o(1) + 1 − α/2,

where GU (·) is the cumulative distribution function for U(a). Let ĜU (·) be the
empirical cumulative distribution function Û(a) estimated by bootstrapping.
Similarly, we can show that the other part of our proof as

P{aᵀ√n(μ̂tap − μg) ≤ L̂α/2(a)} ≤ P{L(a) ≤ L̂α/2(a)}
= GL{L̂α/2(a)} − ĜL{L̂α/2(a)}
+ ĜL{L̂α/2(a)}
= o(1) + α/2,

where GL(·) is the cumulative distribution function for L(a). Combine the re-
sults we have above, we can obtain that

P(L̂α/2(a) ≤ aᵀ√n(μ̂tap − μg) ≤ Û1−α/2(a))

= P{aᵀ√n(μ̂tap − μg) ≤ Û1−α/2(a)}
− P{aᵀ√n(μ̂tap − μg) ≤ L̂α/2(a)}
≥ 1 − α/2 + o(1) − α/2 + o(1) = 1 − α.

Thus, the proof is completed.

A.8. Proof of Remark 4.1

In this section, we construct a data-adaptive confidence interval based on the
projection sets proposed in [48]. Starting from the common projection sets, we
re-express the test-and-pool estimator

aᵀn1/2(μ̂tap − μg) = −aᵀV 1/2
eff W1 + aᵀ(ωAV

1/2
A-eff − ωBV

1/2
B-eff)W2

+ aᵀωB(V 1/2
B-eff + V

1/2
A-eff)W t

[cγ ,∞).

For given μ2, we know that

n1/2{μ̂tap(μ2) − μg} = −aᵀV 1/2
eff W1 + aᵀ(ωAV

1/2
A-eff − ωBV

1/2
B-eff)W2(μ2)

+ aᵀωB(V 1/2
B-eff + V

1/2
A-eff)W t

[cγ ,∞)(μ2),

where the right hand side can be approximated by empirical sample distribu-
tion as Q̂n(μ; a) and we could construct a (1 − α̃1) × 100% confidence interval
Bμg,1−α̃1(a;μ2) of μg given μ2 by the empirical quantile confidence interval as

Bμg,1−α̃1(a;μ2)
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=
{
μg ∈ R

l : μ̂tap(μ2) −
Q̂−1

n (1 − α/2; a)√
n

≤ μg ≤ μ̂tap(μ2) −
Q̂−1

n (α/2; a)√
n

}
,

where Q̂−1
n (d; a) is the d-th sample quantiles based on our empirical distribution.

However, the value of μ2 is unknown, a useful approach is to form a (1 −
α̃2)×100% confidence region Bμ2,1−α̃2 for μ2, and thus the projection confidence
interval for μg is the union of Bμg,1−α̃1(a;μ2) over all μ2 ∈ Bμ2,1−α̃2 . Here, the
confidence bounds for μ2 can be constructed as Bμ21−α̃2 = μ̂2 ± Φ−1(1 − α̃2/2)
where

μ̂2 = n1/2f
1/2
B Σ−1/2

T

{
N−1

N∑
i=1

Φ̇B(Vi, δA,i, δB,i; μ̂A, τ̂)
}−1

(μ̂A − μ̂B),

Φ−1(·) is the inverse cdf for a standard normal distribution. Thus, let α = α̃1+α̃2
and the union would be the data-adaptive projection (1−α)× 100% confidence
interval for μg

C
PCI
μg,1−α(a) = ∪μ2∈Bμ2,1−α̃2

Bμg,1−α̃1(a;μ2). (A.18)

To limit conservatism, a pretest procedure is carried out while we construct
the projection adaptive confidence intervals C

PACI
μg,1−α(a), and we would use the

C
PCI
μg,1−α(a) if we cannot reject the H0 : μᵀμ ∈ B. To prove the coverage for the

projection adaptive confidence interval, denote for α ∈ (0, 1), we have that

P

(
aᵀμg /∈ C

PACI
μg,1−α(a)

)
= P

(
aᵀμg /∈ C

PACI
μg,1−α(a) | T ≤ vn

)
P(T ≤ vn)

+ P
{
aᵀμg /∈ Bμg,1−α(a; μ̂2)|T > vn

}
P(T > vn)

= P(aᵀμg /∈ C
PCI
μg,1−α(a), μ2 ∈ Bμ2,1−α̃2 | T ≤ vn)P(T ≤ vn)

+ P(aᵀμg /∈ C
PCI
μg,1−α(a), μ2 /∈ Bμ2,1−α̃2 | T ≤ vn)P(T ≤ vn)

+ {α̃1 + o(1)}P(T > vn)
≤ P{aᵀμg /∈ Bμg,1−α̃1(a;μ2), μ2 ∈ Bμ2,1−α̃2 | T ≤ vn}P(T ≤ vn)
+ P(μ2 /∈ Bμ2,1−α̃2 | T ≤ vn)P(T ≤ vn) + αP(T > vn)
≤ (α̃1 + α̃2)P(T ≤ vn) + αP(T > vn)
= α,

where we know that P{aᵀμg /∈ Bμg,1−α̃1(a;μ2), μ2 ∈ Bμ2,1−α̃2} ≤ α̃1 holds for
any value μ2.

A.9. Proof of Lemma A.1

Following the similar arguments in [55], let F (·) and G(·) be the cumulative
distribution function (c.d.f.) of N (μg, V1) and N (−μg,0, V2). Let Φ(t) be the
convolution of G(·) and F (·) as Φ(·) = (G ∗ F )(·), then we have

|P{(μ̂g − μg) ≤ t} − Φ(t)|
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≤
∣∣∣∣Eζ

{
sup
x

P(μ̂g ≤ x | FN ) − F (x)
}∣∣∣∣+ |Eζ {F (s) − Φ(t)} |,

where s = t + μg = t− (−μg). By Lemma 3.2 in [45], |P(μ̂g ≤ x | FN ) − F (x)|
converges to 0 uniformly in x. For the first term, we have

lim
N→∞

∣∣∣∣Eζ

{
sup
x

P(μ̂g ≤ x | FN ) − F (x)
}∣∣∣∣

≤ Eζ

{
lim

N→∞

∣∣∣∣sup
x

P(μ̂g ≤ x | FN ) − F (x)
∣∣∣∣}→ 0.

Since F (·) and G(·) are both bounded and continuous, by the dominated con-
vergence theorem, the second term is

lim
N→∞

Eζ{F(s)} − Φ(t) = Eζ

{
lim

N→∞
F(t− (−μg))

}
− Φ(t)

=
∫
x

G(x)F (t− x)dx− Φ(t),

which also converges to 0 [55, Lemma 1]. Hence, the asymptotic c.d.f of μ̂g−μg

is Φ(·) and the result follows as the convolution of Gaussians is still Gaussian
[1, 8].

A.10. Proof of Lemma A.2

Under Assumptions 2.1, 2.2 (iii) and Assumption A.1 f), we have

0 =N−1
N∑
i=1

Enp-p {ΦB(Vi, δA,i, δB,i;μB,0, τ0) | FN}

=N−1
N∑
i=1

Enp-p {ΦB(Vi, δA,i, δB,i;μg,0, τ0) | FN}

+ N−1
N∑
i=1

Enp-p
{
Φ̇B(Vi, δA,i, δB,i;μ∗

B , τ0) | FN

}
(μB,0 − μg,0)

=E{ΦB(Vi, δA,i, δB,i;μg,0, τ0)}
+ E

{
Φ̇B(Vi;μ∗

B , τ0)
}

(μB,0 − μg,0) + Onp-p-ζ(n−1/2),

for some μ∗
B between μB,0 and μg,0, where

N−1
N∑
i=1

Enp-p {ΦB(Vi, δA,i, δB,i;μg,0, τ0) | FN}

= Eζ [Enp-p {ΦB(Vi, δA,i, δB,i;μg, τ0) | FN}] + Onp-p-ζ(n−1/2) (A.19)
= E{ΦB(Vi, δA,i, δB,i;μg,0, τ0)} + Onp-p-ζ(N−1/2) + Onp-p-ζ(n−1/2), (A.20)
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where for (A.19), the first approximation Enp-p(· | FN ) is based on the design
consistency and the non-probability sample-based Weak Law of Large Numbers
under Assumption 2.2 (iii), and the second approximation Eζ(·) is justified un-
der Assumption A.1 f); For (A.20), it can be obtained by continuous mapping
theorem as μg = μg,0 + Oζ(N−1/2) under Assumption A.1 f). By rearranging
the terms under the local alternative, it follows that

μB,0 − μg,0

=
[
E
{
Φ̇B(V ;μ∗

B , τ0)
}]−1

E{ΦB(Vi, δA,i, δB,i;μg,0, τ0)} + Onp-p-ζ(n−1/2)

= O(1) × n
−1/2
B η + Onp-p-ζ(n−1/2) = onp-p-ζ(1).

A.11. Proof of Lemma A.3

First, we show that the composite estimator μ̂pool is essentially the solution to

N∑
i=1

{ΦA(Vi, δA,i;μ, τ) + ΛΦB(Vi, δA,i, δB,i;μ, τ)} = 0.

Next, under the Assumption A.1 a)-d), we apply the Taylor expansion at point
(μg, τ0) which leads to

0 =
N∑
i=1

{ΦA(Vi, δA,i; μ̂pool, τ̂) + ΛΦB(Vi, δA,i, δB,i; μ̂pool, τ̂)}

=
N∑
i=1

{ΦA(Vi, δA,i;μg, τ0) + ΛΦB(Vi, δA,i, δB,i;μg, τ0)}

+
N∑
i=1

{
∂ΦA(Vi, δA,i; μ̂∗

pool, τ̂
∗)

∂μ
+ Λ

∂ΦB(Vi, δA,i, δB,i; μ̂∗
pool, τ̂

∗)
∂μ

}
(μ̂pool − μg)

+
N∑
i=1

{
∂ΦA(Vi, δA,i; μ̂∗

pool, τ̂
∗)

∂τ
+ Λ

∂ΦB(Vi, δA,i, δB,i; μ̂∗
pool, τ̂

∗)
∂τ

}
(τ̂ − τ0),

for some (μ̂∗
pool, τ̂

∗) between (μ̂pool, τ̂) and (μg, τ0). Given the asymptotic joint
distribution for μ̂A and μ̂B in Lemma 3.1, we obtain

n1/2(μ̂pool − μg)

= −n1/2

[
N∑
i=1

{
Φ̇A(Vi, δA,i; μ̂∗

pool, τ̂
∗) + ΛΦ̇B(Vi, δA,i, δB,i; μ̂∗

pool, τ̂
∗)
}]−1

×
[

N∑
i=1

{ΦA(Vi, δA,i;μg, τ0) + ΛΦB(Vi, δA,i, δB,i;μg, τ0)}

+
N∑
i=1

(
∂ΦA(Vi, δA,i; μ̂∗

pool, τ̂
∗)/∂τ
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+Λ∂ΦB(Vi, δA,i, δB,i; μ̂∗
pool, τ̂

∗)/∂τ
)
(τ̂ − τ0)

]
∼= E

{
Φ̇A,B,n(Λ, μ∗

pool, τ0)
}−1

×
[
n1/2

E
{
Φ̇A(V ;μg,0, τ0)

}
(μ̂A − μg) + n1/2ΛE

{
Φ̇B(V ;μ∗

B , τ0)
}

(μ̂B − μg)
]
,

(A.21)

for some intermittent value μ∗
pool between plimμ̂pool and μg,0, where Equation

(A.21) is obtained by using Equation (A.7) and (A.2) collectively. By Assump-
tions 2.1, 2.2 (iii) and suitable moments condition in Assumption A.1, under
the local alternative, n1/2(μ̂pool−μg) would follow the normal distribution with
mean and variance as

E

{
n1/2(μ̂pool − μg)

}
= −f

−1/2
B E

{
Φ̇A,B,n(Λ, μg,0, τ0)

}−1 Λη,

var
{
n1/2(μ̂pool − μg)

}
= E

{
Φ̇A,B,n(Λ, μg,0, τ0)

}−1

×
{(

EΦ̇A(V ;μg,0, τ0)
ΛEΦ̇B(V ;μg,0, τ0)

)(
VA Γ
Γᵀ VB

)(
EΦ̇A(V ;μg,0, τ0)

ΛEΦ̇B(V ;μg,0, τ0)

)ᵀ}
×
[
E
{
Φ̇A,B,n(Λ, μg,0, τ0)

}−1]ᵀ
,

obtained by the similar arguments in (A.5). Plugging (A.11) into Equation
(A.21), the asymptotic distribution of the most efficient estimator μ̂eff follows

n1/2(μ̂eff − μg) ∼= E
{
Φ̇A,B,n(Λeff , μg,0, τ0)

}−1 ×{
EΦ̇A(V ;μg,0, τ0) · n1/2(μ̂A − μg) + ΛeffEΦ̇B(V ;μg,0, τ0) · n1/2(μ̂B − μg)

}
∼= n1/2 {ωA(Λeff)(μ̂A − μg) + ωB(Λeff)(μ̂B − μg)} .

It yields a similar efficient estimator as derived in [71]

n1/2(μ̂eff − μg) ∼= n1/2 {ωA(Λeff)μ̂A + ωB(Λeff)μ̂B − μg} , (A.22)

with

ωA(Λ) = E
{
Φ̇A,B,n(Λ, μg,0, τ0)

}−1
E
{
Φ̇A(Vi, δA,i;μg,0, τ0)

}
,

ωB(Λ) = E
{
Φ̇A,B,n(Λ, μg,0, τ0)

}−1 ΛE
{
Φ̇B(Vi, δA,i, δB,i;μg,0, τ0)

}
,

where it is easy to show that ωA + ωB = Il×l. So that the asymptotic variance
Veff of this efficient estimator will become

Veff =
(

ωᵀ
A(Λeff)

ωᵀ
B(Λeff)

)ᵀ(
VA Γ
Γᵀ VB

)(
ωA(Λeff)
ωB(Λeff)

)
.

The expression of Veff can be complicated when the dimension of the parameters
of interest is greater than 1. Here, we provide the form of Veff when estimating
equations are (2.4) and (2.5):

ωA(Λeff) = E
{
Φ̇A,B,n(Λeff , μg,0, τ0)

}−1
E
{
Φ̇A(V, δA;μg,0, τ0)

}
,
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= {Il×l + (VA − Γ)(VB − Γᵀ)−1}−1

= (VB − Γᵀ)(VA + VB − Γ − Γᵀ)−1,

ωB(Λeff) = E
{
Φ̇A,B,n(Λeff , μg,0, τ0)

}−1 ΛeffE
{
Φ̇B(V, δA, δB;μg,0, τ0)

}
,

= {Il×l + (VA − Γ)(VB − Γᵀ)−1}−1(VA − Γ)(VB − Γᵀ)−1

= (VB − Γᵀ)(VA + VB − Γ − Γᵀ)−1(VA − Γ)(VB − Γᵀ)−1,

and

Veff =
{(

1
−1

)(
VA Γ
Γᵀ VB

)(
1
−1

)}−2

×
(

VB − Γᵀ

VA − Γ

)ᵀ(
VA Γ
Γᵀ VB

)(
VB − Γᵀ

VA − Γ

)
= (VA + VB − Γᵀ − Γ)−2{(VB − Γᵀ)2VA + (VA − Γ)2VB

+ Γ(VB − Γᵀ)(VA − Γᵀ) + Γᵀ(VA − Γ)(VB − Γ)}
= (VAVB − Γ2)(VA + VB − 2Γ)−1

= VA − VΔ,

with VΔ = (VA − Γ)2(VA + VB − 2Γ)−1 guaranteed to be non-negative definite,
i.e., non-negative quantity. By Cauchy-Schwarz inequality, we have

√
E{(μ̂A − μg)2} × E{(μ̂B − μg)2} ≥ E{(μ̂A − μg)(μ̂B − μg)},

which leads to
√
VAVB ≥ Γ, and therefore

VA + VB − 2Γ ≥ 2{|VAVB |1/2 − Γ} ≥ 0,

where the two sides are equal if and only if VA = VB = Γ. The asymptotic vari-
ance of the efficient estimator for other multi-dimensional estimating equations
can be obtained in an analogous way but with much heavier notations.

Appendix B: Simulation

B.1. A detailed illustration of simulation

Here, we will provide detailed proof for estimating the finite-population param-
eter μy = μg = N−1∑N

i=1 Yi and μ0 = Eζ(Y ). First, we know the following
expectation that

Enp(δB,i | Xi, Yi) = πB(Xi, Yi), Enp(Yi | Xi) = m(Xi).

To obtain the asymptotic joint distribution μ̂A and μ̂B , the stacked estimating
equation system Φ(V, δA, δB ; θ) is constructed with θ = (μᵀ

A, μ
ᵀ
B , τ

ᵀ)ᵀ where

Φ(V, δA, δB ; θ) = {ΦA(V, δA; θ)ᵀ,ΦB(V, δA, δB ; θ)ᵀ,Φτ (V, δA, δB ; θ)ᵀ}ᵀ
, (B.1)
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where we use μA and μB to distinguish between estimators yielded by ΦA(V, δA;
μA) and ΦB(V, δA, δB ;μB , τ). By positing a logistic regression model πB(Xi;α) =
exp(Xᵀ

i α)/{1 + exp(Xᵀ
i α)} and a linear model m(Xi;β) = Xᵀ

i β, one common
choices for ΦA(V, δA;μA) and ΦB(V, δA, δB ;μB , τ) are

ΦA(V, δA;μA) = δAπ
−1
A (Y − μA),

ΦB(V, δA, δB ;μB , τ) = δB
πB (X;α) {Y −m (X;β)} + δA

πA
m (X;β) − μB ,

where τ = (α, β) and πA is the known sample weights under probability samples
accounting for sample design. There are various ways to construct the estimating
functions Φτ (Vi;α, β) for (α, β). One standard approach is to use the pseudo
maximum likelihood estimator α̂ and the ordinary least square estimator β̂
[54, 26]. In usual, the maximum likelihood estimator of α can be computed by
maximizing the log-likelihood function l(α)

α̂ = arg max
α

N∑
i=1

[δB,i log πB(Xi;α) + (1 − δB,i) log{1 − πB(Xi;α)}]

= arg max
α

N∑
i=1

δB,i log
{

πB(Xi;α)
1 − πB(Xi;α)

}
+

N∑
i=1

log{1 − πB(Xi;α)}.

Since we do not have the Xi for all units in the finite population, we then instead
construct the following pseudo log-likelihood function l∗(α)

l∗(α) =
N∑
i=1

δB,i log
{

πB(Xi;α)
1 − πB(Xi;α)

}
+

N∑
i=1

δA,iπ
−1
A,i log{1 − πB(Xi;α)}

=
N∑
i=1

[
δB,iX

ᵀ
i α− δA,iπ

−1
A,i log{1 + exp(Xᵀ

i α)}
]
,

where the second equality is derived under the logistic regression model for
πB(Xi;α). By taking derivative of l∗(α) with respect to α, the estimating func-
tions for (α, β) can be constructed as follows:

Φτ,1(V, δA, δB ;α, β) = δBX − δAπ
−1
A πB(X;α)X, (B.2)

Φτ,2(V, δA, δB ;α, β) = δBX{Y −m(X;β)}, (B.3)

with Φτ (V, δA, δB ;α, β) = (Φτ,1(V, δA, δB ;α, β)ᵀ Φτ,2(V, δA, δB ;α, β)ᵀ)ᵀ. Un-
der our setup, both Sample A and Sample B provide information on X and
Y , thus we can also consider the estimating equation based on the combined
samples for β:

Φτ,1(V, δA, δB ;α, β) = δBX − δAπ
−1
A πB(X;α)X,

Φ∗
τ,2(V, δA, δB ;α, β) = (δA + δB)X{Y −m(X;β)}. (B.4)
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In addition, [29] propose a new set of estimating functions, in which (α̂, β̂) are
obtained by jointly solve the following estimating functions:

ΦKH
τ,1 (V, δA, δB;α, β) =

{
δBπ

−1
B (X;α) − δAπ

−1
A

}
X, (B.5)

ΦKH
τ,2 (V, δA, δB;α, β) = δB{π−1

B (X;α) − 1}X{Y −m(X;β)}. (B.6)

Denote the solution to
∑N

i=1 Φ(Vi, δA,i, δB,i; θ) = 0 as θ̂ = (μ̂A, μ̂B , τ̂
ᵀ)ᵀ. Under

Assumption A.1 a)-e), we could apply the Taylor expansion to around θy =
(μy, μy, τ

ᵀ
0 )ᵀ and obtain

0 =
N∑
i=1

Φ(Vi, δA,i, δB,i; θ̂)

=
N∑
i=1

Φ(Vi, δA,i, δB,i; θy) +
{

N∑
i=1

∂Φ(Vi, δA,i, δB,i; θ̂∗)
∂θᵀ

}
(θ̂ − θy), (B.7)

for some θ̂∗ = (μ̂∗
A, μ̂

∗
B , τ̂

∗ᵀ)ᵀ lying between θ̂ and θy. Under Assumption 2.1,
the consistency of μ̂A for μy can be established, i.e., μ̂A = μy + Op(n−1/2).
Moreover, under Assumption A.1 f), we have μy = μ0 + Oζ(N−1/2) and hence
plimμ̂∗

A = μ0, i.e., μ̂∗
A converges to μ0 in probability. Under Assumption A.1

b), μ̂B is consistent to μB,0, and μB,0 = μ0 + Oζ-p-np(n−1/2) under the local
alternative. Denote θ0 = (μ0, μ0, τ

ᵀ
0 )ᵀ, and the following uniform convergence

can be established under Assumption A.1 (a)-(c) and (e)

N−1
N∑
i=1

∂Φ(Vi, δA,i, δB,i; θ̂∗)
∂θᵀ

= E

{
∂Φ(Vi, δA,i, δB,i; θ0)

∂θᵀ

}
+ Oζ-p-np(n−1/2) + Oζ(N−1/2),

and by Assumption A.1 (d), we have{
N−1

N∑
i=1

∂Φ(Vi, δA,i, δB,i; θ̂∗)
∂θᵀ

}−1

=
[
E

{
∂Φ(Vi, δA,i, δB,i; θ0)

∂θᵀ

}]
+ oζ-p-np(1).

Rearrange the terms of (B.7), we then have

n1/2(θ̂ − θy)

=
{
−N−1

N∑
i=1

φ(θ̂∗)
}−1{

n1/2N−1
N∑
i=1

Φ(Vi, δA,i, δB,i; θy)
}

+ oζ-p-np(1)

= −{Eφ(θ0)}−1

{
n1/2N−1

N∑
i=1

Φ(Vi, δA,i, δB,i; θy)
}

+ oζ-p-np(1),
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where φ(θ) = ∂Φ(V, δA, δB; θ)/∂θᵀ. For the simplicity of notation, we denote
πB(Xi;α) = πB,i,m(Xi;β) = mi, ṁi = ∂m (Xi;β) /∂β, and its expectation is
given by

E {φ(θ)}
= −diag

[
1 1 πB(Xi;α){1 − πB(Xi;α)}XiX

ᵀ
i (π∗

B,i + Ωd−1
i )XiX

ᵀ
i

]
,

(B.8)

where Ω = 0 if Φτ (V, δA, δB ;α, β) is constructed by (B.2) and (B.3), and Ω = 1
if Φτ (V, δA, δB ;α, β) is constructed by (B.2) and (B.4); π∗

B,i = P(δB,i = 1 | Xi)
is the true probability. In addition, if (B.5) and (B.6) are used to estimate τ , it
gives us

E {φKH(θ)}

= −

⎛⎜⎜⎜⎜⎝
E(δA,idi) 0 0 0

0 1 0 0
0 0 E

{
δB,i(1−πB,i)XiX

ᵀ
i

πB,i

}
0

0 0 E

{
δB,i(1−πB,i)(Yi−mi)XiX

ᵀ
i

πB,i

}
E

{
δB,i(1−πB,i)XiX

ᵀ
i

πB,i

}
⎞⎟⎟⎟⎟⎠

= −diag
{
1 1 (1 − π∗

B,i)XiX
ᵀ
i (1 − π∗

B,i)XiX
ᵀ
i

}
. (B.9)

Below, we focus on the asymptotic properties of n1/2(θ̂ − θy) under (B.8), and
the asymptotics under under (B.9) can be obtained in an analogous way. First,
the inverse of E {φ(θ)} is

[E {φ(θ)}]−1

= −diag
[
1 1 πB(Xi;α){1 − πB(Xi;α)}XiX

ᵀ
i (π∗

B,i + Ωd−1
i )XiX

ᵀ
i

]−1
.

As shown in [12] under Assumption A.1 g), the asymptotic variance of μ̂B

will not be affected by the estimated β̂. Let πB,i,0 = πB(Xi;α0) and mi,0 =
m(Xi;β0) be the correct working model evaluated the true parameter value
(α0, β0). Therefore, the

∑N
i=1 Φ(Vi, δA,i, δB,i; θy) can be found by using the de-

composition
N∑
i=1

Φ(Vi, δA,i, δB,i; θy)

=

⎛⎜⎜⎜⎝
0

N (hN − μy) +
∑N

i=1 δB,i

{
π−1
B,i,0 (Yi −mi,0 − hN ) − bᵀXi

}
∑N

i=1 δB,iXi −
∑N

i=1 πB,i,0Xi∑N
i=1 δB,i(Yi −Xᵀ

i β0)Xi

⎞⎟⎟⎟⎠

+

⎛⎜⎜⎝
∑N

i=1 δA,idi(Yi − μy)∑N
i=1 δA,iditi∑N

i=1 πB,i,0Xi −
∑N

i=1 δA,idiπB,i,0Xi

0

⎞⎟⎟⎠ ,
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where

hN = N−1
N∑
i=1

(Yi −mi,0) ,

bᵀ = [(1 − πB,i,0){Yi −mi,0 − hN}Xᵀ
i ] {N−1

N∑
i=1

πB,i,0(1 − πB,i,0)XiX
ᵀ
i }−1,

ti = πA,iX
ᵀ
i b + mi,0 −N−1

N∑
i=1

mi,0.

Since the probability sample is assumed to be independent of the non-probability
sample [12], we could express the variance for

∑N
i=1 Φ(Vi, δA,i, δB,i; θy) as two

components V1 and V2 under Assumption 2.1 and 2.2 (iii)

var
{
n1/2N−1

N∑
i=1

Φ(Vi, δA,i, δB,i; θy)
}

= V1 + V2

= nN−2
N∑
i=1

πB,i,0(1 − πB,i,0)

× Eζ

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

0 0 0 0
0 Δ2 ΔXᵀ

i ΔYiX
ᵀ
i

0 ΔXi XiX
ᵀ
i YiXiX

ᵀ
i

0 ΔYiXi YiXiX
ᵀ
i (Yi −Xᵀ

i β0)2XiX
ᵀ
i

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ (B.10)

+ nN−2
Eζ

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

D11 D12 D13 0
Dᵀ

12 D22 D23 0
Dᵀ

13 Dᵀ
23 D33 0

0 0 0 0

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭+ o(1), (B.11)

where

V1 = varζ-np

{
N∑
i=1

Φ(Vi, δA,i, δB,i; θy)
}
,

V2 = varζ-p

{
N∑
i=1

Φ(Vi, δA,i, δB,i; θy)
}

and
Δ = π−1

B,i,0 {yi −mi,0 − hN} − bᵀxi.

By the law of total variance, we have

varζ-np

{
N∑
i=1

Φ(Vi, δA,i, δB,i; θy)
}

= Eζ

[
varnp

{
N∑
i=1

Φ(Vi, δA,i, δB,i; θy) | FN

}]

+ varζ

[
Enp

{
N∑
i=1

Φ(Vi, δA,i, δB,i; θy) | FN

}]
,
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Algorithm B.1: Replication-based method for estimating variance of
μ̂A and μ̂B

Input: the probability sample {(Vi, δA,i) : i ∈ A}, the non-probability sample
{(Vi, δB,i) : i ∈ B} and the number of bootstrap K.

for b = 1, · · · ,K do
Sample nA units from the probability sample with replacement as A(b).
Sample nB units from the non-probability sample with replacement as B(b).
Compute the bootstrap replicates μ̂

(b)
A and μ̂

(b)
B by solving∑

i∈A(b)

ΦA(Vi, δA,i;μ) = 0,
∑

i∈A(b)∪B(b)

ΦB(Vi, δA,i, δB,i;μ, τ̂) = 0.

Calculate the variance estimator V̂A, Γ̂ and V̂B

Γ̂ = n(K − 1)−1
K∑
b=1

(μ̂(b)
A − μ̂A)(μ̂(b)

B − μ̂B)ᵀ,

V̂D = n(K − 1)−1
K∑
b=1

(μ̂(b)
D − μ̂D)(μ̂(b)

D − μ̂D)ᵀ, D = A,B,

where μ̂D = K−1∑K
b=1 μ̂

(b)
D for D = A,B.

where the second term will be negligible under Assumption A.1 g) and h).
Similar arguments hold for varζ-p

{∑N
i=1 Φ(Vi, δA,i, δB,i; θy)

}
, therefore, (B.10)

and (B.11) follow. The sub-matrices Dkl, k = 1, · · · , 3, l = 1, · · · , 3 are all design-
based variance-covariance matrices under the probability sampling design, and
can be obtained using standard plug-in approach.

Alternatively, a with-replacement bootstrap variance estimation can also be
used here [43]. To illustrate, we consider a single-stage probability proportional
to size sampling with negligible sampling ratios. Following [57], the bootstrap
procedures in Algorithm B.1 are conducted.

Under Assumptions 2.1 and A.1, θ̂− θy | FN and θy are both approximately
normal, which leads to the asymptotic normality of the unconditional distribu-
tion over all the finite populations by Lemma A.1:

n1/2(θ̂ − θy) →

N
(
θ∗, {Eφ(θ0)}−1 var

{
n1/2N−1

N∑
i=1

Φ(Vi, δA,i, δB,i; θy)
}
{Eφ(θ0)ᵀ}−1

)
,

where θ∗ = (0 − f
−1/2
B [E{∂ΦB(μ0, τ0)/∂μ}]−1

η 0)ᵀ. Thus, the asymptotic
variance for the joint distribution n1/2(μ̂A−μy, μ̂B −μy)ᵀ is obtain by the 2×2
submatrix corresponding as

var{n1/2(μ̂A − μy, μ̂B − μy)ᵀ}

= nN−2
( D11 D12

D21
∑N

i=1(1 − πB,i,0)πB,i,0Δ2 + D22

)
+ o(1)
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=
(

VA Γ
Γᵀ VB

)
+ o(1),

and

n1/2
(

μ̂A − μy

μ̂B − μy

)
→ N

{(
0

−f
−1/2
B [E{∂ΦB(μ0, τ0)/∂μ}]−1

η

)
,

(
VA Γ
Γᵀ VB

)}
→ N

{(
0

f
−1/2
B η

)
,

(
VA Γ
Γᵀ VB

)}
,

where E{∂ΦB(μ0, τ0)/∂μ} = −1.

B.2. A detailed illustration of bias and mean squared error

Here, we take ΦA(V, δA;μ) as Equation (2.4) and ΦB(V, δA, δB ;μ, τ) as Equation
(2.5) for an illustration. For T ≤ cγ , we have

n1/2(μ̂tap − μg)

= −
(

VAVB − Γ2

VA + VB − 2Γ

)1/2

W1 + (Γ − VA) − λ(Γ − VB)
(1 + λ)(VA + VB − 2Γ)1/2

W2|W 2
2 ≤ cγ ,

with probability ξ = F1(cγ ;μ2
2), which leads to

bias(λ, cγ ; η)T≤cγ = −
(

VAVB − Γ2

VA + VB − 2Γ

)1/2

μ1

+ (Γ − VA) − λ(Γ − VB)
(1 + λ)(VA + VB − 2Γ)1/2

· E(W2|W 2
2 ≤ cγ)

= −
(

VAVB − Γ2

VA + VB − 2Γ

)1/2

μ1

+ (Γ − VA) − λ(Γ − VB)
(1 + λ)(VA + VB − 2Γ)1/2

· μ2
F3(cγ ;μT

2 μ2/2)
F1(cγ ;μT

2 μ2/2)

= −ηf
−1/2
B (Γ − VA)

VA + VB − 2Γ + ηf
−1/2
B {(Γ − VA) − λ(Γ − VB)}

(1 + λ)(VA + VB − 2Γ)
F3(cγ ;μT

2 μ2/2)
F1(cγ ;μT

2 μ2/2)
,

and

mse(λ, cγ ; η)T≤cγ = VAVB − Γ2

VA + VB − 2Γ · (μ2
1 + 1) +

{
(Γ − VA) − λ(Γ − VB)

(1 + λ)(VA + VB − 2Γ)1/2

}2

×E(W 2
2 |W 2

2 ≤ cγ)

− 2
(
VAVB − Γ2)1/2 {(Γ − VA) − λ(Γ − VB)}

(1 + λ)(VA + VB − 2Γ) μ1 · μ2
F3(cγ ;μT

2 μ2/2)
F1(cγ ;μT

2 μ2/2)
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= VAVB − Γ2

VA + VB − 2Γ · (μ2
1 + 1) +

{
λ(Γ − VB) − (Γ − VA)

(1 + λ)(VA + VB − 2Γ)1/2

}2

×
{
F3(cγ ;μ2

2/2)
F1(cγ ;μ2

2/2) + μ2
2
F5(cγ ;μ2

2/2)
F1(cγ ;μ2

2/2)

}

− 2
(
VAVB − Γ2)1/2 {(Γ − VA) − λ(Γ − VB)}

(1 + λ)(VA + VB − 2Γ) μ1 · μ2
F3(cγ ;μT

2 μ2/2)
F1(cγ ;μT

2 μ2/2)
.

For T > cγ , we have

n1/2(μ̂tap−μg) = −
(

VAVB − Γ2

VA + VB − 2Γ

)1/2

W1 + −(Γ − VA)
(VA + VB − 2Γ)1/2

W2|W 2
2 > cγ ,

with probability 1−ξ = 1−F1(cγ ;μ2
2), the corresponding bias and mean squared

error would be

bias(λ, cγ ; η)T>cγ = −
(

VAVB − Γ2

VA + VB − 2Γ

)1/2

μ1

+ (Γ − VA)
(VA + VB − 2Γ)1/2

· μ2
1 − F3(cγ ;μT

2 μ2/2)
1 − F1(cγ ;μT

2 μ2/2)

=−ηf
−1/2
B (Γ − VA)

VA + VB − 2Γ + ηf
−1/2
B (Γ − VA)

VA + VB − 2Γ
1 − F3(cγ ;μT

2 μ2/2)
1 − F1(cγ ;μT

2 μ2/2)
,

and

mse(λ, cγ ; η)T>cγ = VAVB − Γ2

VA + VB − 2Γ · (μ2
1 + 1) + (Γ − VA)2

VA + VB − 2Γ
×E(W 2

2 |W 2
2 > cγ)

− 2
(
VAVB − Γ2)1/2 (Γ − VA)

VA + VB − 2Γ μ1 · μ2
1 − F3(cγ ;μT

2 μ2/2)
1 − F1(cγ ;μT

2 μ2/2)

= VAVB − Γ2

VA + VB − 2Γ + (Γ − VA)2

V + VB − 2Γ

×
{

1 − F3(cγ ;μ2
2/2)

1 − F1(cγ ;μ2
2/2) + μ2

2
1 − F5(cγ ;μ2

2/2)
1 − F1(cγ ;μ2

2/2)

}

− 2
(
VAVB − Γ2)1/2 (Γ − VA)

VA + VB − 2Γ μ1 · μ2
1 − F3(cγ ;μT

2 μ2/2)
1 − F1(cγ ;μT

2 μ2/2)
.

Then, the bias and mean squared error for n1/2(μ̂tap − μg) would be

bias(λ, cγ ; η) = bias(λ, cγ ; η)T≤cγ · ξ + bias(λ, cγ ; η)T>cγ · (1 − ξ)

= −ηf
−1/2
B (Γ − VA)

VA + VB − 2Γ + ηf
−1/2
B {−λ(Γ − VB) + (Γ − VA)}

(1 + λ)(VA + VB − 2Γ) F3(cγ ;μT
2 μ2/2)

+ ηf
−1/2
B (Γ − VA)

VA + VB − 2Γ
{
1 − F3(cγ ;μT

2 μ2/2)
}
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= −ληf
−1/2
B

1 + λ

(
Γ − VB

VA + VB − 2Γ + Γ − VA

VA + VB − 2Γ

)
F3(cγ ;μT

2 μ2/2)

= ηd0, (B.12)

with
d0 = −λf

−1/2
B (1 + λ)−1(ωA + ωB)F3(cγ ;μT

2 μ2/2),

and

mse(λ, cγ ; η) = VAVB − Γ2

VA + VB − 2Γ · (μ2
1 + 1)

+ {λ(Γ − VB) − (Γ − VA)}2

(1 + λ)2(VA + VB − 2Γ) ×
{
F3(cγ ;μ2

2/2) + μ2
2F5(cγ ;μ2

2/2)
}

+ (Γ − VA)2

VA + VB − 2Γ ×
{
1 − F3(cγ ;μ2

2/2) + μ2
2 − μ2

2F5(cγ ;μ2
2/2)

}
− 2
(
VAVB − Γ2)1/2 (Γ − VA)

VA + VB − 2Γ
{
1 − F3(cγ ;μT

2 μ2/2)
}
μ1μ2

− 2
(
VAVB − Γ2)1/2 {(Γ − VA) − λ(Γ − VB)}

(1 + λ)(VA + VB − 2Γ) F3(cγ ;μT
2 μ2/2)μ1μ2

= Veffd1 + VB-effd2 + VA-effd3 + V
1/2
eff (V 1/2

B-effd4 + V
1/2
A-effd5), (B.13)

with

d1 = μ2
1 + 1,

d2 = λ(1 + λ)−2 {F3(cγ ;μ2
2/2) + μ2

2F5(cγ ;μ2
2/2)

}
{λ− 2ωB/ωA} ,

d3 = 1 − F3(cγ ;μ2
2/2) + μ2

2
{
1 − F5(cγ ;μ2

2/2)
}

+(1 + λ)−2 {F3(cγ ;μ2
2/2) + μ2

2F5(cγ ;μ2
2/2)

}
,

d4 = 2λ(1 + λ)−1μ1μ2F3(cγ ;μ2
2/2),

d5 = −2μ1μ2
{
1 − F3(cγ ;μ2

2/2) + F3(cγ ;μ2
2/2)(1 + λ)−1} .

Let VA = 2, VB = 1,Γ = 0.5, and η = 0, 0.5 and 1.5 (encoding zero, weak,
and strong violation of H0) in (B.12) and (B.13). Figure B.1 shows three mean
squared error surfaces as functions of (Λ, cγ) with three values of η.

a) In the leftmost plot, where H0 holds, for a given Λ, the mean squared
error decreases drastically and then flattens out as cγ increases. Moreover,
for a given cγ , there exists a minimizer Λ∗ such that the mean squared
error achieves the minimum. These observations justify our strategy by
viewing Λ and cγ jointly as tuning parameters since both of them are
playing important roles when searching for the minimum value of mean
squared error.

b) In the middle plot, where H0 is weakly violated, the pattern of the mean
squared error retains the similar features for cγ as shown in (A). In addi-
tion, the optimal choice Λ∗ leads to a sharp decline of the mean squared
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Fig B.1. The plots for the mean squared errors in a synthetic example. Leftmost (A) plots
the mean square error mse(Λ, cγ ; η) of n1/2(μ̂tap −μg) as function of Λ and cγ when the null
hypothesis H0 holds true (η = 0); Middle (B) plots mse(Λ, cγ ; η) when the null hypothesis H0
is weakly violated (η = 0.5); Rightmost (C) plots mse(Λ, cγ ; η) when the null hypothesis H0
is strongly violated (η = 1.5).

error compared to other choices of Λ. These findings imply that despite the
bias due to accepting the non-probability sample, the impact would be less
compared to the increased variance due to rejecting the non-probability
sample. But care is needed to determine the amount of information bor-
rowed from the non-probability sample since a small deviation from the
optimal value Λ∗ can lead to a non-ignorable increase of the mean squared
error. Once the optimal mean squared error is reached at (Λ∗, c∗γ), the fur-
ther increment of cγ will not be influential.

c) In the rightmost plot, where H0 is strongly violated, the mean squared
error behaves differently as in (A) and (B). It is advisable to choose both Λ
and cγ close to zero (the low probability of combining the non-probability
sample with the probability sample) to minimize the mean squared error.
As above, keeping increasing cγ after the mean squared error flattens out
is of no importance.

B.3. Additional simulation results

Table B.1 provides the Monte Carlo averages and standard errors of the data-
adaptive tuned parameters (Λ, cγ) and the Monte Carlo proportion of combining
the probability and non-probability samples. Figure B.2 presents the plots of
Monte Carlo biases, variances and mean squared errors of the μ̂A, μ̂dr, μ̂eff , μ̂tap
and μ̂tap:fix based on 2000 replicated datasets. For the fixed threshold strategy
μ̂tap:fix, the threshold cγ is held fixed to be the 95th quantile of a χ2

1 distribution
(i.e., 3.84) and the tuning parameter Λ is selected by minimizing the asymptotic
mean square error at the fixed cγ .

In Table B.1, we find that the adaptive procedure tends to select smaller
values of Λ and cγ as b increases. As a result, the Monte Carlo proportions of
combining the probability and non-probability samples together are decreasing,
which is desired for down-weighting the biased non-probability sample. More-
over, we compare the adaptive tuning strategy of cγ with a fixed thresholding
strategy, and Figure B.2 shows that the strategy with pre-defined cutoff cannot
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Table B.1

Simulation results of Monte Carlo averages of the tuning parameters (Λ, cγ) and the
proportion P(comb) of combining the probability and non-probability samples.

H0 Λ cγ P(comb)
est se est se est se

holds μ̂tap 3.02 4.26 35.06 9.45 0.95 0.22
μ̂tap:B 3.05 4.62 35.06 9.44 0.95 0.22
μ̂tap:KH 3.06 4.66 35.06 9.44 0.95 0.22

slightly violated μ̂tap 2.21 3.39 31.60 13.76 0.86 0.35
μ̂tap:B 2.22 3.47 31.60 13.75 0.86 0.35
μ̂tap:KH 2.23 3.60 31.60 13.75 0.86 0.35

strongly violated μ̂tap 0.16 0.28 1.40 1.97 0.00 0.06
μ̂tap:B 0.16 0.28 1.40 1.97 0.00 0.06
μ̂tap:KH 0.16 0.28 1.40 1.98 0.00 0.06

Fig B.2. Summary statistics plots of estimators of μy with respect to the strength of violation,
labeled by b. Each column of the plots corresponds to a different metric: “bias” for bias, “var”
for variance, “MSE” for mean square error.

satisfactorily control the mean squared error when H0 is slightly or strongly
violated.

B.4. Double-bootstrap procedure for vn selection

Following the algorithm mentioned by [10], where optimal vn is selected to en-
sure the coverage probability, we need to retain the K bootstrapped samples,
called V (1), V (2), · · · , V (K) where V (b) = {Vi = (X(b)ᵀ

i , Y
(b)
i )ᵀ : i ∈ 1, · · · , n}, b =

1, · · · ,K with n = nA+nB . The reason it is called double bootstrap is that each
bootstrap sample spawns itself to a set of K ′ second-order bootstrap samples.
Next, we set up the candidates for vn. Under the assumption (A2), we let vn
be the form of κ log logn with κ ∈ {2, 4, 10, 20, 30}, and construct the bound-
based adaptive confidence intervals for each given κ at 1 − α confidence level,
denoted as C

PACI,κ
μg,1−α(a). Given each κ, we compute the coverage probability for

the associated adaptive confidence intervals regarding these K ′ second-ordered
simulated datasets. Then, choose the smallest κ that ensures the actual cov-
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erage probability larger than 1 − α. Specifically, we use the estimator μ̂
(b)
A for

μA in each bootstrapped dataset as the ground truth and count the number of
datasets in which the adaptive confidence interval covers the ground truth, say
c(κ) =

∑K′

b=1 1{μ̂(b)
A ∈ C

PACI,κ,(b)
μg,1−α (a)} and therefore the vn can be determined

by using vn = inf{κ : c(κ)/K ′ > 1 − α} × log logn. In our simulation, K ′ is set
to be 100.

B.5. Details of the Bayesian method

In this section, we provide the details of the Bayesian approaches proposed by
[52] to combine the probability and non-probability samples as follows.

1. Solve the score function for β by using the non-probability sample:

β̂NPR = arg min
β

N∑
i=1

δB,iXi(Yi −Xᵀ
i β) = 0.

2. Construct the informative prior with three choices:
Prior 1: Choose a weakly informative parameterization of the prior as

β ∼ N (0, 106),

which can be treated as a reference for comparison.
Prior 2: Let β̂PR be the solution to the score function based on the probability

sample

β̂PR = arg min
β

N∑
i=1

δA,iXi(Yi −Xᵀ
i β) = 0.

Then consider the squared Euclidean distance between β̂PR and β̂NPR
as the hyper-parameter σ2

β for the variance of β:

β ∼ N
{
β̂NPR,diag(‖β̂PR − β̂NPR‖2

2)
}
.

Prior 3: In lieu of using the squared distance to extract information on σ2
β ,

a nonparametric with-replacement bootstrap procedure can be im-
plemented (B = 1000). After estimating the coefficient in each of
them, denoted by β̂

(i)
NPR, one replication-based variance estimator can

be obtained, σ̂2
βNPR

=
∑B

i=1(β̂
(i)
NPR − ¯̂

βNPR)2/(B − 1) with ¯̂
βNPR =

1/B
∑B

i=1 β̂
(i)
NPR. Then, the informative prior can be constructed

β ∼ N (β̂NPR, Ip×p · σ̂2
βNPR

).

3. Assume that the model for the observed probability sample is

Yi | δA,i = 1 ∼ N (Xᵀ
i β, σ

2).
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By imposing an informative non-probability-based prior, the resulting pos-
terior estimates are expected to be more efficient. Specifically, these priors
are:

β ∼ N (β0, σ
2
β), σ−2 ∼ Γ(r,m), r = m = 10−3,

where

Prior 1: β0 = 0, σ2
β = 106,

Prior 2: β0 = β̂NPR, σ2
β = diag(‖β̂PR − β̂NPR‖2

2),

Prior 3: β0 = β̂NPR, σ2
β = Ip×p · σ̂2

βNPR
.

The posterior Markov chain Monte Carlo (MCMC) samples of β and Yi are ob-
tained by drawing 2000 samples from the posterior distributions and discarding
the first 500 samples as the burn-in procedures. The Bayesian estimator is

μ̂Bayes = 1/N̂
nA∑
i=1

diȲi with N̂ =
nA∑
i=1

di,

where Ȳi is the posterior mean calculated by Ȳi = 1/(2000 − 500)
∑2000

k=501 Yi,k.
Borrowed from Bayes’ Theorem, its variance and 95% highest posterior density
intervals can be estimated via the MCMC posterior samples. Denote μ̂Bayes,k =
1/N̂

∑nA

i=1 diYi,k, k = 501, · · · , 2000. Then, we have

var(μ̂Bayes) = 1
2000 − 500 − 1

2000∑
k=501

(μ̂Bayes,k − μ̂Bayes)2,

HPDI = {Q(μ̂Bayes,k;α/2), Q(μ̂Bayes,k; 1 − α/2)} ,

where Q(μ̂Bayes,k;α0) represents the α0-th sample quantile of the posterior sam-
ples μ̂Bayes,k, k = 501, · · · , 2000 after burn-in.
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