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Abstract: In this work we consider the problem of estimating function-
on-scalar regression models when the functions are observed over multi-
dimensional or manifold domains and with potentially multivariate output.
We establish the minimax rates of convergence and present an estimator
based on reproducing kernel Hilbert spaces that achieves the minimax rate.
To better interpret the derived rates, we extend well-known links between
RKHS and Sobolev spaces to the case where the domain is a compact Rie-
mannian manifold. This is accomplished using an interesting connection to
Weyl’s Law from partial differential equations. We conclude with a numer-
ical study and an application to 3D facial imaging.

Keywords and phrases: Functional data analysis, reproducing kernel
Hilbert space, functional regression, optimal regression, Weyl’s law.

Received November 2021.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
2 Background and modeling assumptions . . . . . . . . . . . . . . . . . 159

2.1 Reproducing kernel Hilbert spaces . . . . . . . . . . . . . . . . 159
2.2 Modeling assumptions . . . . . . . . . . . . . . . . . . . . . . . 161

3 Estimation methodology . . . . . . . . . . . . . . . . . . . . . . . . . 162
4 Theoretical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

4.1 Lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
4.2 Upper bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
4.3 Interpreting the rate . . . . . . . . . . . . . . . . . . . . . . . . 165

5 Numerical illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . 167
5.1 Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
5.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
5.3 3D facial data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
∗M. Reimherr was supported by NSF grant SES 1853209. B. Sriperumbudur was supported

by NSF grant DMS 1945396.

156

https://imstat.org/journals-and-publications/electronic-journal-of-statistics/
https://doi.org/10.1214/22-EJS2096
mailto:mreimherr@psu.edu
mailto:bks18@psu.edu
mailto:h.kang@wmich.edu


Optimal function-on-scalar regression 157

A Proof of lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
B Proof of upper bound . . . . . . . . . . . . . . . . . . . . . . . . . . 182
C Further on simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 190

C.1 Parabola and swiss roll generation and geodesic distance . . . . 190
C.2 More simulation results . . . . . . . . . . . . . . . . . . . . . . 192

D Estimation results of 3D facial data . . . . . . . . . . . . . . . . . . 194
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

1. Introduction

Functional data analysis has seen a precipitous development in recent decades,
in terms of methodology, theory, and applications. As with classical statistics,
functional linear regression models are used extensively in practice. In recent
years, there has also been a surge in the development of so-called next genera-
tion functional data analysis, which involves functional data with highly complex
structures. Much of this development has been spurred by advances in biomedi-
cal imaging, where dense measurements are taken over various tissues, including
the brain, arteries, eyes, and faces (e.g., Ettinger et al., 2016, Lila et al., 2016,
Kang et al., 2017, Choe et al., 2017, Lee et al., 2018). In each of these exam-
ples, the measurements are taken over complex spatial domains such as R

3 or
two-dimensional manifolds.

Establishing the optimality of parameter estimates in FDA remains an im-
portant topic given the complexity of the data and models involved. Indeed,
depending on the problem, one can see a wide variety of convergence rates. For
example, in univariate mean estimation it was shown that the rates depend on
the smoothness of the underlying parameter as well as the sampling frequency
of the data; depending on how often the functions are sampled, one can obtain a
parametric convergence rate or nonparametric convergence rate (Cai and Yuan,
2011, Li et al., 2010, Zhang et al., 2016). In scalar-on-function regression, the
rates relate both to the smoothness of the slope function and the regularity of
the predictor function; these rates have been extended to nonlinear models as
well (Hall et al., 2007, Cai and Yuan, 2012, Wang and Ruppert, 2015, Reimherr
et al., 2017, Sun et al., 2018). In high-dimensional function-on-scalar regres-
sion models it was shown that the convergence rates match the classic scalar
outcome setting as long as the sampling is dense enough (Barber et al., 2017,
Fan and Reimherr, 2017). In principal component estimation, one obtains rates
that reflect how deep into the spectrum one wishes to estimate as well as how
spread out the eigenvalues are (Dauxois et al., 1982, Jirak, 2016, Petrovich and
Reimherr, 2017). In each of these cases, different rates can be obtained depend-
ing on the regularity of the problem. However, optimality of function-on-scalar
regression, especially with more complex domains and sampling schemes, has
not yet been established. This problem is most similar to the mean estimation
since the predictors are scalars, though the estimation error depends on the
number of predictors. Such results are critical given the recent developments
of functional data methods involving manifolds (Kang et al., 2017, Dai et al.,
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2018, Lin and Yao, 2018). In this work we address this issue by: (1) estab-
lishing minimax lower bounds on the estimation rate (2) providing a minimax
optimal estimator whose upper bounds match the developed lower bounds and
(3) interpreting the rate via a new connection to Sobolev spaces over manifold
domains.

We develop our theory under a fairly general structure:

Yij� = Yi�(uij) + δij� =
P∑

p=1
Xipβ�p(uij) + εi�(uij) + δij�, (1.1)

for i = 1, . . . , n, j = 1, . . . ,mi, and � = 1, . . . , L. Here i indexes the subject, j
the observed domain point, and � the coordinates of the functional outcomes.
Intuitively, this means that for each subject we have L functional outcomes,
Yi�(u) ∈ R, that are only observed at domain points uij ∈ U , and P scalar
predictors, Xip. The random component is decomposed into a smooth subject
specific error, εi� and a noise, δij�, both of which are assumed to be independent
across i and j, though potentially dependent across �. The domain U is most
commonly the interval [0, 1], but it may also be a more complex manifold, both
of which are included in our theory. For example, in Ettinger et al. (2016) Yijl

represents the thickness of the internal carotid artery, meaning that U is a two
dimensional manifold representing the artery and sits in a three dimensional
space with L = 1 (since only the thickness is measured); predictors, Xip, of in-
terest include age, weight, smoking status, etc. The εi� represents the individual
level variation that is not accounted for by the predictors, while δij� represents
measurement noise. In Kang et al. (2017) they consider the shape of human faces
and Yij� represents the position of the face in 3D space. In their framework U is
taken as a common reference face resulting in U being a two dimensional mani-
fold while L = 3 since the face is measured in three dimensions. The predictors
in their application include age, weight, and genetic measurements.

This paper is concerned with optimal estimation rates of the unknown param-
eter functions, β�p : M → R. The intrinsic dimension of U plays a critical role in
determining the phase transition of the minimax estimation rates (that is, the
point where one reaches a parametric rate) for β�k(u), while, interestingly, the
values L and P do not. In addition, it was previously thought that, in simpler
settings, such as mean estimation, it was necessary to control the smoothness of
the underlying functions Yi�(u) (Cai and Yuan, 2011), or equivalently the errors
εij(u), however, we show that this is actually unnecessary and establish all of
our results under the mild assumption that supu∈U Var(εi�(u)) < ∞, that is,
the point-wise variance of the errors is bounded.

We assume that β�p (for all �, p) lie in a reproducing kernel Hilbert space
(RKHS), and establish our rates relative to the rate of decay of the eigenvalues of
the kernel defining the RKHS. In contrast, Cai and Yuan (2011) develop theory
for one dimensional mean estimation assuming the parameters lie in a particular
Sobolev space, which will be included in our theory as a special example. Under
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mild assumptions, we will show that the optimal rate of convergence is given by

OP

(
LP

[
(nm)−

2h
2h+1 + n−1

])
,

where h is related to the kernel of the RKHS, n is the sample size, and m is
the harmonic mean of the mi. In Section 4.3, we consider the case where U is a
compact d-dimensional Riemannian manifold. When the parameters β�k posses
r derivatives, we use a connection with Weyl’s law to show that h = r/d, which
extends well known results for Sobolev spaces on R

d (Edmunds and Triebel,
1996) resulting in the rate

OP

(
LP

[
(nm)−

2r
2r+d + n−1

])
,

which clearly shows the effect of the intrinsic dimension of U on the convergence
rates of our estimators, with higher dimensions leading to slower rates. This
further highlights the utility in exploiting manifold structures that may reside
in higher dimensional spaces; the convergence rate is tied only to the intrinsic
dimension of the manifold and not to that of the ambient space.

The remainder of the paper is organized as follows. In Section 2 we provide
an overview of the modeling assumptions and necessary mathematical tools. In
Section 3 we define our estimation procedure and provide a formulation useful
for establishing mathematical properties. In Section 4 we collect our theoretical
contributions, which constitute the primary novel contributions of the paper.
There we provide a general lower bound on the minimax rate, followed by a
theorem showing that our proposed estimator achieves the optimal rate. We
conclude the section with discussion on the derived rate. We provide a new con-
nection between the eigenvalues of an RKHS and Sobolev spaces over manifold
domains, which allow us to interpret our results in terms of the dimension of
the domain and the smoothness of the parameters being estimated. We conclude
the paper with numerical work in Section 5, where we provide simulations that
further articulate the rates seen in Section 4. We also provide an application
to 3D facial imaging from anthropology, highlighting the utility of such tools in
biomedical imaging.

2. Background and modeling assumptions

Here we provide the necessary background as well as a clear outline of our
modeling assumptions.

2.1. Reproducing kernel Hilbert spaces

RKHSs provide a variety of benefits for functional data analysis. The first is that
the kernel can be tailored to reflect certain beliefs or assumptions about the pa-
rameters, e.g., smoothness or periodicity. The second is that the eigenfunctions
of the kernel can be used as a basis for approximating functional observations
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and/or parameter estimates, though the reproducing property can also be used
to obtain parameter estimates. Lastly, commonly used spaces, such as Sobolev
spaces, as well as estimation techniques such as smoothing splines can naturally
be viewed in an RKHS framework (Wahba, 1990, Berlinet and Thomas-Agnan,
2011).

We assume throughout that U is a compact d-dimensional manifold with
d < ∞, i.e., U is a second countable compact Hausdorff space such that each
point u ∈ U is contained in an open set that is homeomorphic to an open set in
R

d. We assume that U is equipped with a countably additive measure, μ, with
respect to the Borel σ-algebra, whose support is U and satisfies μ(U) = 1. This
means that we can define integrals over U and the space, L2(U , μ), of square
integrable functions over U is equipped with the inner product

〈f, g〉 =
∫
U
f(u)g(u) dμ(u).

Throughout, for notational simplicity, we will often write L2 for L2(U , μ). A
kernel function, K : U × U → R

+, is a bivariate function that is symmetric,
positive definite, and continuous (though this can be relaxed). There is a one-
to-one correspondence between RKHSs and kernel functions. One can generate
the RKHS from K in at least one of two ways, though for our purposes one in
particular is especially useful (Berlinet and Thomas-Agnan, 2011, Section 3.2).
Note that any norm ‖ · ‖ or inner product 〈·, ·〉 written without subscript is
understood to be with respect to L2. By Mercer’s theorem we can write

K(u, s) =
∞∑
k=1

τkvk(u)vk(s),

where vk ∈ L2 are orthonormal and {τk} is a positive, non-increasing, summable
sequence, with the convergence holding in an absolute and uniform sense. One
can then obtain K as the subset

K =
{
f ∈ L2 :

∞∑
k=1

〈f, vk〉2
τk

< ∞
}
.

Then K is an RKHS when equipped with the inner product 〈f, g〉K =
∑

k τ
−1
k

〈f, vk〉〈g, vk〉. On a technical note, since L2 is a set of equivalence classes one is
implicitly taking f ∈ K to be the unique member of each class that is continuous.
This view is especially useful as it emphasizes how quickly the coordinates of f
must decay when expressed in the {vj} basis, which is critical for understanding
and developing minimax rates.

In general, constructing RKHS kernels (which must be positive definite) over
manifolds is a nontrivial task. In particular, simply replacing a Euclidean dis-
tance within a kernel with a Riemannian distance will not, in general, result in
a valid RKHS kernel (Jayasumana et al., 2013). In our applications we consider
manifolds that can be covered by a single chart, which makes the problem sim-
pler as we can map the problem to Euclidean space to build valid kernels, as
illustrated in Section 5.
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2.2. Modeling assumptions

We now state our modeling assumptions. We provide a summary at the end of
this section for ease of reference. The model in (1.1) assumes that the underly-
ing trajectories are assumed at a small number of points and with error. The
parameters, β�k are assumed to lie within K. Regularity assumptions about β�k

are introduced by making assumptions about K, especially the rate at which
the eigenvalues of K converge to zero.

Unlike in Cai and Yuan (2011), we make only minimal assumptions about
the regularity of εi�(u). In particular, we establish our minimax rates under
the mild assumption that the point-wise variance of the errors is bounded,
supu∈U Var(εi�(u)) < ∞, which implies (and is only slightly stronger than)
E ‖εi�‖2 < ∞. In Cai and Yuan (2011) the much stronger assumption that the
errors are in the RKHS, E ‖εi�‖2

K
< ∞, was made, which, by the reproducing

property implies our assumption. While seemingly innocent, this is an incredibly
strong assumption that would actually preclude achieving optimal convergence
rates in most settings. Practically, the data is usually much rougher than the un-
derlying mean parameters. However, requiring that they reside in the same space
implies that the β�p can only be smoothed up to the smoothness of the data. For
example, if U = [0, 1] and β�p possessed two derivatives, while εi� only possessed
one, then the rate given by Cai and Yuan (2011) would be (nm)−2/3 + n−1,
however, as we will show, this rate can be improved to (nm)−4/5 + n−1. Fur-
thermore, in settings such as finance or geosciences, εi� might not possess any
derivatives or be part of any RKHS (e.g. Brownian motion or the Ornstein-
Uhlenbeck process).

We treat the predictors, Xij , as deterministic. The observed points uij will
be assumed to be iid draws from U , with density (w.r.t. μ) that is bounded away
from 0 and ∞. We also assume that the functional outcome is observed with
error, namely Yij� = Yi�(uij)+δij�. The errors δij� are assumed to be iid across i
and j, though they can be dependent in �. We assume these errors are centered
and have finite variance. We now summarize all of the assumptions introduced
in this section.

Assumption 2.1. We make the following modeling assumptions.

1. The observed data are {Yij�, uij , Xi1, . . . , XiP } for i = 1, . . . , n, j = 1, . . . ,
mi, and � = 1, . . . , L, with Yij� ∈ R and Xip ∈ R.

2. The observed domain locations, uij, are iid elements of U , a compact d-
dimensionl manifold. The space U is equipped with a countably additive
measure μ (over the Borel σ-field) with μ(U) = 1. The random elements
uij are assumed to have a density (w.r.t. μ) which is bounded above and
below (from 0).

3. The observed data satisfy the linear model

Yij� =
P∑

p=1
Xipβ�p(uij) + εi�(uij) + δij�.
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4. The mean parameters reside within the RKHS, i.e., β�p ∈ K, with contin-
uous kernel K(u, s). The eigenvalues of K satisfy τk 	 k−2h for h ≥ 1.

5. The sequences εi� ∈ L2, uij ∈ U , and δij� are random and independent of
each other.

6. The covariates Xip are deterministic. Define ΣX = n−1 ∑XiX�
i , where

Xi = (Xi1, . . . , XiP ), and assume that smallest and largest eigenvalues are
bounded away from 0 for all large n: 0 < ν−1 ≤ σmin(ΣX) ≤ σmax(ΣX) ≤
ν < ∞.

7. Assume that the norm of the predictors are bounded |Xi|2 ≤ ζ < ∞.
8. The δij� represent the measurement error and are iid across i and j, though

potentially dependent across �. They have mean zero and finite variance,
Var(δij�) ≤ Mδ < ∞, for some fixed Mδ ∈ R.

9. The stochastic processes εi� are iid across i, though potentially dependent
across �. They are assumed to have mean zero and to satisfy
supu∈U Var(εi�(u)) ≤ Mε < ∞, for some fixed Mε ∈ R.

3. Estimation methodology

We assemble an estimate of each � coordinate separately. Define the �th target
function as

L�
mn(b) = 1

n

n∑
i=1

1
mi

mi∑
j=1

(Yijl − X�
i b(uij))2 + λ

p∑
k=1

‖bk‖2
K

= 1
n

n∑
i=1

1
mi

mi∑
j=1

(Yijl − 〈X�
i b,Kuij 〉K)2 + λ‖b‖2

K
,

where bk ∈ K and b = (b1, . . . , bP ) are the generic arguments of the target
function and Xi = (Xi1, . . . , XiP ) are the covariates for the ith unit. While
increased performance can be gained by considering the L coordinates jointly,
it will not impact the minimax rates. The minimizer β̂�, can be obtained in a
closed form using operator notation (as opposed to the representer theorem).
We can take the derivative with respect to b (in the K topology) as

DL�
mn(b) = 1

n

n∑
i=1

1
mi

mi∑
j=1

−2(Yij� − 〈Kuij ,X�
i b〉K)KuijXi + 2λb,

where Kuij (u) := K(uij , u). Define hnm� ∈ K
p as

hnm� = 1
n

n∑
i=1

1
mi

mi∑
j=1

Yij�KuijXi, (3.1)

and the linear operator Tnm : Kp → K
p as

Tnm(f) = 1
n

n∑
i=1

1
mi

mi∑
j=1

XiX�
i f(uij)Kuij = 1

n

n∑
i=1

1
mi

mi∑
j=1

〈X�
i f ,Kuij 〉KKuijXi.

(3.2)
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Setting the derivative equal to zero we get the operator form for the estimator

DL�
mn(b) = −2hnm� + 2Tmnb + 2λb = 0 =⇒ β̂� = (Tnm + λI)−1hnm�.

This operator form for β̂� is convenient for asymptotic theory. In Section 5.1
we will discuss an efficient computational approximation to β̂l. Using the repre-
senter theorem for RKHS, it is also possible to obtain an alternative equivalent
formulation for β̂l that can be computed exactly, but requires solving large
systems of linear equations that can make it impractical for larger datasets.

4. Theoretical results

We now provide our key theoretical results. The first is a lower bound on the
best possible estimation rate. This bound is obtained using an application of
Fano’s lemma. Second, we provide an estimator whose upper bound matches the
lower bound, implying that it is optimal in a minimax sense. Lastly, we provide
an interpretation of the resulting rate by making a connection to Sobolev spaces
with domains consisting of compact Riemannian manifolds.

4.1. Lower bound

Recall that when referring to a minimax rate, we have to specify the loss function
as well as the class of models we are considering. Here, our loss is based on the
L2(U , μ) norm, and we consider all models as outlined in Assumption 2.1. A more
delicate point is that we should also specify which quantities in the problem are
“fixed”, that is, which quantities should be treated as fixed when constructing
the scenario that achieves the desired lower bound. This is important since our
problem is regression and we are treating the predictors as fixed. So consider
M to be the collection of all possible distributions for {Yij�} for a fixed set of
predictors {Xik} and fixed mi (though the mi are still allowed to vary with n)
satisfying Assumption 2.1. We also assume that the parameters of interest lie in
a closed bounded ball of K: ‖β�p‖K ≤ M0, which will be denoted as BK. So each
M ∈ M indicates the distributions for (εi�, δij�, uij) and specifies the values of
β�p. Define the estimation error:

Rn =
P∑

p=1

L∑
�=1

‖β̂�p − β�p‖2.

We say that the rate of convergence of β̂ is an if Rn = OP (an). The minimax
estimation risk is then defined as the optimal rate of convergence (i.e., the
smallest an), across all possible estimators, in the worst case modeling scenario.

Theorem 4.1. Let M, as described above, be the collection of probability models
satisfying Assumption 2.1 with ‖β�p‖K ≤ M0 < ∞ for all �, p. Then for any β̂
which is a function of the data, the estimation error satisfies

lim sup
n→∞

sup
M∈M

P (Rn ≤ εLP ((nm)−2h/(2h+1) + n−1)) → 0 as ε → 0,
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if the arithmetic and harmonic means of the mi are asymptotically equivalent
and the eigenvalues, τk, of K, decay as τk 	 k−2h.

The proof of Theorem 4.1 is given in the appendix. It shows that no estimator
can achieve a “worst case” rate faster than LP [(nm)−2h/(2h+1) + n−1]; we will
show in the next section that this bound is tight by giving an estimator that
achieves the lower bound. The proof is based on an application of Fano’s lemma.
We show that a sequence of parameters within the ball BK can be selected which
are sufficiently far apart with respect to the K-norm. We then prove a bound
on the Kullback-Leibler divergence between any pair of probability measures
induced by this collection of parameters. Combining these two bounds, we are
able to apply Fano’s lemma to obtain the desired result.

One interesting caveat to Theorem 4.1 is the requirement that the arithmetic
and harmonic means of the mi be asymptotically equivalent. This is due to
the arguments of the upper bound being in terms of the harmonic mean and
the lower bound arguments in term of the arithmetic mean; this is not simply
a theoretical convenience as a case where this doesn’t hold becomes surpris-
ingly delicate. For example, suppose that one of the mi was essentially infinite
(implying the entire curve is observed). Then the arithmetic mean would be
infinite, but the convergence rate need not be parametric. Alternatively, if even
of a small fraction of the mi were infinite (or very large), then the rate would
become parametric, however the harmonic mean need not be infinite especially
if the remaining mi are small. If one were to let the fraction of mi being infinite
(or very large) change with n, then one could obtain basically any convergence
rate desired (between nonparametric and parametric), all while maintaining a
bounded harmonic mean and an infinite arithmetic mean. To avoid this, the
lower bound given in Cai and Yuan (2011) was also taken over all mi that
satisfy a specific harmonic mean, however this is somewhat strange since the
mi are actually observed in a given problem. Recently Zhang and Wang (2018)
discussed optimal weighting as a function of the mi in the context of mean and
covariance function estimation. However, the weights were chosen to optimize
the asymptotic upper bound of a local linear smoother and depended on the
choice of the smoothing parameter.

4.2. Upper bound

Recall that our proposed estimator is given by

β̂� = (Tnm + λI)−1hnm�. (4.1)

We first give a more general result that provides a deeper understanding of the
components of the convergence rate.
Theorem 4.2. Assume that Assumption 2.1 holds and that β̂ is as given
in (4.1). If λ is such that nmλδ+1/2h → ∞ for some δ > 1/2h, then the es-
timation error satisfies

Rn = OP (1)LP
[
λ + 1

λ1/2hnm
+ 1

n

]
.
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Here we see three core components driving the statistical properties of β̂. As
is common in nonparametric smoothing, the bias is given by λ. The stochas-
tic error is driven by two components. The first is driven by the total number
of observed values and takes a familiar “nonparametric rate.” The last compo-
nent is a parametric rate, but only decreases with n, reflecting that there is
a bounded amount of information that can be extracted from a single func-
tion/unit. Balancing the bias and stochastic error, we arrive at the optimal rate
of convergence.

Theorem 4.3. Assume that Assumption 2.1 holds and that β̂ is as given
in (4.1). If λ 	 (nm)−2h/(1+2h) then the estimation error satisfies

lim sup
n→∞

sup
β�k∈B

K

P (Rn ≥ ε−1LP ((nm)−2h/(2h+1) + n−1)) → 0 as ε → 0.

Combining Theorems 4.1 and 4.3 we get that the minimax rate of conver-
gence is (nm)−2h/(2h+1)+n−1. Furthermore, this rate holds quite broadly across
different K. The phase-transition occurs when the rate becomes parametric, i.e.,
n−1. Clearly this occurs if

(nm)−2h/(2h+1)  n−1 ⇐⇒ m � n1/2h.

In other words, the rate becomes parametric if the (harmonic) average number
of points per curve is more than n1/2h. If m is less, then the rate is slower than
parametric. In the worst case, when m is bounded, the rate becomes the classic
nonparametric rate n−2h/(2h+1).

4.3. Interpreting the rate

In our theory, h is only tied to the rate of decay of the eigenvalues of the repro-
ducing kernel. However, there are settings where this rate can be made more
interpretable. In the remainder of this section, we state the following theorem for
Riemannian manifolds, which ties together several classic results from nonlin-
ear analysis, and extends well-known connections between RKHS and Sobolev
spaces for Euclidean spaces. As the proof uses a number of results that might
be of interest to readers, we state it here instead of in the appendix.

Theorem 4.4. Let U be a compact d-dimensional Riemannian manifold. Let
Hr(U) denote the Sobolev space of real valued functions whose first r weak
derivatives are in L2(U) and assume 2r > d. Then Hr(U) is a reproducing
kernel Hilbert space and the eigenvalues of the reproducing kernel decay like
τk 	 k−2r/d.

Proof. The Sobolev space, Hr := Hr(U), of real functions over U with r weak
derivatives in L2(U) can be continuously embedded into the space of continuous
functions, C(U), if 2r > d (Hebey, 2000, Section 2.3). This means that we can
identify each f ∈ Hr as the unique continuous representative of its corresponding
equivalence class. This also implies that ‖f‖C(U) ≤ M‖f‖Hr , for some M > 0
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(across all f). Since f(x) ≤ ‖f‖C(U) this means point-wise evaluation would be a
continuous linear functional on Hr and by the Riesz representation theorem, the
space must also be an RKHS (recall a Hilbert space where point-wise evaluations
are continuous is necessarily an RKHS).

One can construct a kernel function that gives rise to Hr using the Laplace-
Beltrami operator (i.e. the Laplacian for manifolds) acting over the space of
infinitely differentiable functions, Δ : C∞(U) → C∞(U). This operator has
eigenvalues tending to infinity, which we will label 0 ≤ ξ1 ≤ ξ2 ≤ . . . (and
can be zero), and corresponding eigenfunctions v1, v2, . . . , which, while infinitely
differentiable, can be taken to be an orthonormal basis of L2(U) (Canzani, 2013,
Section 7.1). The Sobolev space Hr can be identified as

Hr =
{
f ∈ L2(U) :

∞∑
k=1

ξrk〈vk, f〉2 < ∞
}
,

see, e.g., Chapter 3 of Craioveanu et al. (2013). Note that the first eigenvalue,
ξ1 is usually zero, meaning we do not restrict a function f in that direction. We
can equip Hr with a norm equivalent to the Sobolev norm as

‖f‖2
Hr :=

∑
k≤k0

〈f, vk〉2 +
∑
k>k0

ξrk〈f, vk〉2,

where k0 is any integer satisfying ξk > 0 for k > k0, thus avoiding the zero
eigenvalue (taking k0 = 0 would only result in a semi-norm, not a norm).

Weyl’s law for compact Riemannian manifolds (Canzani, 2013, Section 7.8)
implies that ξk 	 k2/d. Now define the linear operator

K :=
∑
k≤k0

vk ⊗ vk +
∑
k>k0

ξ−r
k vk ⊗ vk,

where the role of τk is now taken by either 1 or ξ−r
k . Since 2r/d > 1, it implies

that K is actually a Hilbert-Schmidt operator acting on L2(U) (in fact it is trace
class) and thus it must also be an integral operator and we can use its kernel as
the reproducing kernel of the space.

According to Theorem 4.4, we have that h = r/d for Sobolev spaces over
domains represented as compact Riemannian manifolds (this connection was
already known for Euclidean spaces). The minimax rate and phase transition
become

(nm)
−2r
2r+d + n−1 and m 	 nd/2r.

We can see the effect of the dimension of the domain on the rates. As we move
to higher dimensions the rates get worse, while they improve if the parameters
have more derivatives. However, the key point to note is that the rate depends
only on the intrinsic dimension of the manifold and not on the dimension of any
ambient space. The point where one hits a parametric rate, which is commonly
used to distinguish between dense and sparse functional data (Zhang et al.,
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2016), is much higher for more complex domains. For example, it is common to
assume r = 2 derivatives in practice. For one dimensional domains, the phase
transition would then occur at m 	 n1/4, which is a relatively easy threshold to
meet, while for two dimensions it becomes n1/2 and over three it becomes n3/4,
meaning that one needs nearly as many points per curve as one has subjects,
which is a much more stringent threshold.

5. Numerical illustrations

In this section we provide a simulation study to numerically explore the esti-
mation error and also provide an application to 3D facial imaging data. Before
providing the simulation results and data application, we briefly describe how
our estimators are computed.

5.1. Computation

Using the representer theorem one can obtain an exact expression for the estima-
tor. However, this turns out to be very inefficient computationally as it involves
solving for

∑
i mi parameters. Instead, we will approximate the estimator for

βp using the first k0 eigenfunctions of K(u, u′):

βpk0(u) =
k0∑
k=1

bpkvk(u).

We provide an exact form for the coefficients {bpk}. As long as k0 is chosen large
enough, then the truncation error will be of a lower order than the convergence
rate. If β all lie in a K ball then the truncation error is of the order

‖βp − βpk0‖2 =
∞∑

k=k0+1

b2pk =
∞∑

k=k0+1

τk
b2pk
τk

≤ τk0‖βp‖2
K
	 k−2h

0 .

We see that as long as k0 � n1/2h and k0 � (nm)1/(2h+1) then the truncation
error will be asymptotically negligible. Of course, in practice, one can take k0
much larger as long as the computational resources allow.

For simplicity, we assume that mi ≡ m, but the general case can be handled
by reweighting the Xip and Yij and using m̄ = 1

n

∑n
i=1 mi in place of m. Let

b = {bpk} ∈ R
P×k0 . The target function is now given by

�nm,λ(b) = 1
nm

n∑
i=1

m∑
j=1

(
Yij −

P∑
p=1

k0∑
k=1

Xipbpkvk(uij)
)2

+ λ

P∑
p=1

k0∑
k=1

b2pk
τk

. (5.1)

We will rewrite this expression using vector/matrix notation. First, let bv =
vec(b), where vec denote stacking the columns into a single vector. Properties
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of the vec operation imply that
k0∑
k=1

Xipbpkvk(uij) = X�
i bVij = (V �

ij ⊗ X�
i )bv

where Vij = (v1(uij), . . . , vk0(uij))�. Define

Yv = vec(Y),

A =
{

(V11 ⊗ X1), (V21 ⊗ X2), · · · , (Vn1 ⊗ Xn),

(V12 ⊗ X1), (V22 ⊗ X2), · · · , (Vn2 ⊗ Xn),
· · · ,

(V1m ⊗ X1), (V2m ⊗ X2), · · · , (Vnm ⊗ Xn)
}�

∈ R
(nm)×(k0p)

and let T be a diagonal matrix with its diagonals corresponding to {τk}, k =
1, . . . , k0. Then the target function becomes

1
nm

(Yv − Abv)�(Yv − Abv) + b�v (T−1 ⊗ λIP )bv.

The solution can then be expressed as

b̂v =
(
(nm)−1A�A + (T−1 ⊗ λIP )

)−1 (nm)−1A�Yv.

We choose the tuning parameter, λ, using generalized cross-validation. In the
application we allow each βk to have a separate tuning parameter. If λk is
the tuning parameter for βk, we can put Λ instead of λIP above where Λ is
a diagonal matrix with its diagonals corresponding to {λp}, p = 1, . . . , P . We
cycle several times through each predictor selecting the best value.

5.2. Simulation

In this section, we evaluate the numerical performance of our estimator. We
illustrate how the sample size n, the number of observations per sample m, and
different levels of smoothness of the underlying parameters affect the estimation
error. We also show that our method is robust against the choice of kernel by
examining the estimation error for both the Matérn and Rational Quadratic
kernel. Lastly, we highlight the importance of considering the manifold struc-
ture of the domain by comparing the estimation error when using the geodesic
distance across manifold to the error when using euclidean distance.

The data are generated as

Yijl =
P∑

p=1
Xipβlp(uij) + εil(uij) + δijl
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where i = 1, · · · , n, j = 1, · · · ,m, l = 1 · · · , L. The points uij are generated
uniformly from the domain.

The beta functions are generated using a basis expansion with the basis taken
as the eigenfunctions of a Matérn kernel. We use the Matérn kernel as it has
parameters that directly controls the smoothness and its resulting RKHS can
be tied to a particular Sobelev space (Aronszajn and Smith, 1961, Cho, 2017).
The Matérn kernel has the form

K(u,w) = 21−ν

Γ(ν)

√
2ν‖u− w‖2

ρ
Kν

(√
2ν‖u− w‖2

ρ

)

where Kv signifies the modified Bessel function of the second kind of order ν.
The smoothing parameter ν controls the smoothness of the resulting RKHS,
and the range parameter ρ scales the distance between u and s. Larger ν would
mean that the resulting RKHS will be smoother, and its eigenvalues will decay
faster.

We generate the beta function for the simulation setting as

βs
ks,νs

(u) =
ks∑
k=1

vk(u) +
∑
k>ks

τkvk(u)

where {vsk} are the eigenfunctions of Matérn kernel K with smoothness parame-
ter νs and range parameter ρ = 1. The number of leading eigenfunctions for the
beta is ks while the eigenvalues and eigenfunctions of the RKHS are estimated
using the algorithm of Pazouki and Schaback (2011). Our error function is also
generated using eigenfunctions as εil(uj) =

∑
eilkvk(uj) with eilk ∼ N(0, τ4

k )
for L = 1. For the case of L = 2, we make εi1(u) and εi2(u) correlated by
generating their coefficients for v1(u) with

(
ei11
ei21

)
∼ N

((
0
0
)
, τ4

1
(

1 0.3
0.3 1

))
. The

measurement error δij is generated from N(0, 0.1).
We consider several domains, U , including a line, a plane, a parabola, and a

swiss roll. Each setting is different in terms of the smoothness of RKHS where
the beta lies (νs) and the number of leading eigenfunctions (ks). The resulting
βs
ks,νs

functions are shown in Figures 1, 2, and 3. We conducted the combination
of setting as the following. Here, d represents the dimension of U , L represents
the dimension of the response, and P represents the number of the predictors.

1. A line U (d = 1)

Fig 1. The beta functions generated for the line domain.



170 M. Reimherr et al.

Fig 2. The beta functions generated for the plane domain.

Fig 3. The beta functions generated for the parabola and swiss roll domain.

(a) L = 1, P = 2: X1 = 1 (intercept) and X2 ∼ N(1, 1)
i. νs = 3/2: β1(u) = βs

8,3/2(u), β2(u) = βs
7,3/2(u)

ii. νs = 7/2: β1(u) = βs
5,7/2(u), β2(u) = βs

6,7/2(u)
iii. νs = 11/2: β1(u) = βs

4,11/2(u), β2(u) = βs
3,11/2(u)

(b) L = 2, P = 2: X1 = 1 (intercept) and X2 ∼ N(1, 1)
i. νs = 3/2: β11(u) = βs

8,3/2(u), β21(u) = βs
6,3/2(u), β12(u) =
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βs
9,3/2(u),

β22(u) = βs
7,3/2(u)

ii. νs = 7/2: β11(u) = βs
7,7/2(u), β21(u) = βs

5,7/2(u), β12(u) =
βs

6,7/2(u),
β22(u) = βs

4,7/2(u)
iii. νs = 11/2: β11(u) = βs

5,11/2(u), β21(u) = βs
3,11/2(u), β12(u) =

βs
4,11/2(u), β22(u) = βs

2,11/2(u)

(c) L = 1, P = 3: X1 = 1 (intercept), X2 ∼ N(1, 1), and X3 ∼ N(1, 1)
i. νs=3/2: β1(u) = βs

8,3/2(u), β2(u) = βs
7,3/2(u), β3(u)=βs

6,3/2(u)
ii. νs=7/2: β1(u) = βs

5,7/2(u), β2(u) = βs
6,7/2(u), β3(u)=βs

4,7/2(u)
iii. νs=11/2: β1(u)=βs

4,11/2(u),β2(u)=βs
3,11/2(u), β3(u)=βs

2,11/2(u)

(d) L = 1, P = 3: X1 ∼ N(1, 1), X2 ∼ N(1, 1), and X3 = X1 × X2
(interaction)

i. νs=3/2: β1(u)=βs
8,3/2(u), β2(u)=βs

7,3/2(u), β3(u)=βs
6,3/2(u)

ii. νs=7/2: β1(u)=βs
5,7/2(u), β2(u)=βs

6,7/2(u), β3(u)=βs
4,7/2(u)

iii. νs = 11/2: β1(u) = βs
4,11/2(u), β2(u) = βs

3,11/2(u), β3(u) =
βs

2,11/2(u)

2. A plane U (d = 2)
(a) L = 1, P = 2: X1 = 1 (intercept) and X2 ∼ N(1, 1)

i. νs = 11/2: β1(u) = βs
8,11/2(u), β2(u) = βs

7,11/2(u)
ii. νs = 15/2: β1(u) = βs

5,15/2(u), β2(u) = βs
6,15/2(u)

iii. νs = 19/2: β1(u) = βs
4,19/2(u), β2(u) = βs

3,19/2(u)

(b) L = 1, P = 3: X1 = 1 (intercept), X2 ∼ N(1, 1), and X3 ∼ N(1, 1)
i. νs = 11/2: β1(u) = βs

8,11/2(u), β2(u) = βs
7,11/2(u), β3(u) =

βs
6,11/2(u)

ii. νs = 15/2: β1(u) = βs
5,15/2(u), β2(u) = βs

6,15/2(u), β3(u) =
βs

4,15/2(u)
iii. νs = 19/2: β1(u) = βs

4,19/2(u), β2(u) = βs
3,19/2(u), β3(u) =

βs
2,19/2(u)

3. A parabola U (d = 1)
(a) L = 1, P = 2: X1 = 1 (intercept) and X2 ∼ N(1, 1)

i. νs = 3/2: β1(u) = βs
6,3/2, β2(u) = βs

8,3/2

ii. νs = 7/2: β1(u) = βs
4,7/2, β2(u) = βs

6,7/2

4. A swiss roll U (d = 2)
(a) L = 1, P = 2: X1 = 1 (intercept) and X2 ∼ N(1, 1)

i. νs = 11/2: β1(u) = βs
10,11/2, β2(u) = βs

14,11/2
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Fig 4. Examples of estimated beta functions for swiss roll domain for setting 1(d)ii with
n = 50, m = 50, and simulation run number of 318. The estimated betas with Matérn kernel
and the estimated betas with Rational Quadratic kernel are almost the same as the true betas.

ii. νs = 15/2: β1(u) = βs
6,15/2, β2(u) = βs

10,15/2

For each setting of the line U and the plane U , we tried all combinations of
n = 10, 20, 30, 40, 50 and m = 10, 20, 30, 40, 50 and for each setting of the
parabola U and the swiss roll U , we tried all combinations of n = 10, 20, 30,
40, 50, 60, 70, 80, 90, 100 and m = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100. And
we ran 1000 repetitions of each scenario and each combination. For estimation,
we use the Matérn kernel and Rational Quadratic kernel. Rational Quadratic
kernel has the form of

K(u,w) =
(

1 + ‖u− w‖2

αl2

)−α

.

The choice of parameters, such as the smoothness parameter ν and the range
parameter ρ for the Matérn RKHS, and the α and l of Rational Quadratic kernel
are done using the generalized cross validation (GCV). The choice of λ in (5.1)
is also done through GCV. Examples of estimated functional coefficients are
presented in Figure 4 (line) and Figure 5 (swiss roll).

We report the estimation error as Rs
n =

∑P
p=1

∑L
l=1 ‖β̂s

lp−βs
lp‖2 for each run

and the mean estimation error of 1000 simulation runs for each n and m are
shown in Figure 6, Figure 7, and Figure 8. For ease of exposition, we only show
the results for the line and swiss roll, but the results for the plane and parabola
can be found in the appendix. For each 5 × 5 heatmap in Figures 6 and 7, the
bottom leftmost presents the mean estimation error for n = 10 and m = 10; as
one moves right, n increases, and as one moves up, m increases. Therefore, the
top rightmost presents the estimation error for n = 50 and m = 50. For each 10
by 10 heatmap in Figure 8, the bottom leftmost represents n = 10 and m = 10
whereas the top rightmost represents n = 100 and m = 100.

Discussion: For all simulation settings, the mean squared estimation error
decreases as n and m increase, as indicated by the darker blue color in each
of the heatmaps in Figures 6, 7, and 8. There are a few anomalies presented;
for example, the top left plot in Figure 6 presents the estimation errors for the
setting 1(a)i (line U with P = 2, L = 1, and ν = 3/2). The top right corner
shows a little higher mean estimation errors, such as 0.081, 0.098, and 0.059,
but these are due to some outliers. The median estimation errors for the same
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Fig 5. Examples of estimated beta functions for swiss roll domain for setting 4(a)i (ν = 11/2)
with n = 50, m = 50, and simulation run number of 179. Both rolled version and unrolled
version are presented for comparison. The estimated betas using Geodesic distance (middle
row) are almost same as the true beta, but the estimated betas using Euclidean (bottom row)
are different from the true beta.

cells were 0.015, 0.013, and 0.012.
We can also see the effect of the phase-transition as n−1 becomes the dom-

inating component of the convergence rate for larger values of m, as the mean
squared estimation error does not change much when m is sufficiently large but
continues to decrease with increasing n. For example, when we check the top
middle plot in Figure 6 which presents the setting 1(a)ii, the estimation error
is 0.095 for n = 20 and m = 10, and this drops to 0.05 for n = 20 and m = 20
and stays as 0.045, 0.044, and 0.042 as m increases to 30, 40, and 50. However,
when we increase n, the estimation error keeps decreasing.

For the same n and m, the mean squared estimation error decreases as ν
increases, or the true beta lies in the smoother RKHS. For example, for n = 10
and m = 10, the estimation error for ν = 3/2 is 15.688, that for ν = 5/2 is
4.238, and that for ν = 7/2 is 0.211. But it has also been observed that with
high enough n and m, increasing ν does not really change the estimation error,
likely since n−1 becomes the dominating component of the convergence rate.

When we compare L = 1 cases and L = 2 cases in Figure 6, the mean
estimation error is larger with L = 2 as expected. When we compare P = 2
cases in Figure 6 to P = 3 cases in Figure 7, the mean estimation error is higher
with P = 3, also as expected. The performance of our estimator stays the same
when interaction term is included as in the bottom six heatmaps in Figure 7
which are for settings 1(d)i, 1(d)ii, and 1(d)iii.

When we compare the estimation using Matérn kernel and the estimation
using Rational Quadratic kernel, the latter shows a slightly higher estimation
error, but they are very similar. For example, the ratio of estimation error with
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Fig 6. The effects of n and m on the mean squared estimation errors for L = 1 and L = 2
case where domain is line and P = 2. For each heatmap, the bottom leftmost cell presents
the mean estimation error for n = 10, m = 10, and as it moves towards right, n increases,
whereas as it moves towards the top, m increases. Therefore, the top rightmost cell presents
the estimation error for n = 50, m = 50.

Matérn divided by the estimation error with Rational Quadratic has mean of
0.84 and median of 0.99 for the cases presented in Figure 8. Also Figure 4
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Fig 7. The effects of n and m on the mean squared estimation errors for line domain with
P = 2. On the top it shows the setting 1(c) with an intercept, and on bottom it shows the
setting 1(d) with an interaction term.

shows that the estimated beta with Matérn kernel and the estimated beta with
Rational Quadratic kernel are almost the same, and both are very close to the
true beta.

When we compare the estimation error using geodesic distance to the estima-
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Fig 8. The effects of n and m on the mean squared estimation errors for swiss roll domain.

tion error using Euclidean distance, it is clear that the estimation error found
with Euclidean distance is much larger than that with geodesic distance. On
average, the estimation error with geodesic distance was 42% lower and at max-
imum it was 88% lower for cases presented in Figure 8. Also Figure 5 shows that
the estimated beta using Geodesic distance is almost the same as the true beta,



Optimal function-on-scalar regression 177

whereas the estimated beta using Euclidean distance is different from the true
beta. This emphasizes the importance of considering the manifold structure and
using geodesic distance when we have manifold domain.

5.3. 3D facial data

We apply our optimal estimator to the facial data collected through the Penn
State ADAPT study (Claes et al., 2014a,b). Following the framework of Kang
et al. (2017) (who based their models on felsplines and FPCA), we fit a manifold-
on-scalar regression model with the dependent/outcome variable being a 3D
human facial face parametrized by a two-dimensional manifold U representing
a common template face (we use the average face), and the independent / ex-
planatory variables as sex, age, height, weight, and genetic ancestry. Genetic
ancestry is measured as the proportions from particular ethnic backgrounds:
Northern Europe, Southern Europe, East Asia, South Asia, Native America,
and West Africa. We also include interactions between sex and age, age and
weight, and height and weight.

The faces are densely measured with 7150 points in x, y, and z coordinates,
so Yijl in (1.1) will be the measurement of the j-th point of the i-th person’s
face in the l-th coordinate. The sample size is n = 3287, with m = 7150 and
L = 3. Since the template face, U , is two-dimensional manifold, d = 2. There
are in total P = 13 predictors including the intercept term. Prior to model
fitting all faces are scaled and aligned using generalized procrustes analysis.
The computation follows section 5.1, and the choices of λ, ν, and ρ are done
through GCV.

Four of the resulting β̂p’s, which are 3-dimensional functional objects, are
shown in Figure 9. We only present the key predictors here, but other β̂’s are
presented in the appendix. The middle plot in Figure 9 is the predicted face of
a Northern European male, aged 30, with height of 170cm and weight of 70kg.
In each corner we repeat the prediction, but with one covariate value changed.
On the top left is the predicted face of a Northern European female with the
same age, height, and weight. The red and blue plot in between is the visualized
estimated beta for sex. Red means there is a shift of the face outward, and blue
means inward. From male to female, the red on the cheek and the blue on the
chin show that the face becomes a bit rounder, and the red on the eyelids and
the blue on the eyebrow give less prominent eyebrows and rounder eyes. Also,
the slight hint of red around the nostrils show that female would also have a bit
rounder nose.

On the top right is the predicted face when changing the age from 30 to 60
years old. The red and blue plot in between is again the visualized estimated
beta for age. The red in the cheeks and jawline and the blue in between them
show that the skin hangs more loosely on the cheek and jawline area, which
(unfortunately) is a common aging effect. Another noticeable effect is on the
eyes; the loose skin on eyelids and the bags under eyes are also well-known
aging effects, and this is captured in the beta plot with the red on the eyelids
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Fig 9. The middle grey plot is the predicted face of a Northern European male with age
of 30, height of 170cm, and weight of 70kg. The four grey plots on the far sides are the
predicted faces with one predictor change from the middle plot. The red and blue plots are the
visualization of the effects of the corresponding estimated betas where the red means outward
effect and the blue means inward effect.

and under the eye, and with the blue in the middle and on the sides of the eyes.
On the bottom left is the corresponding predicted face for East Asian an-

cestry, and the corresponding colored plot shows how the predicted faces differ
between Northern Europeans and East Asians. The red on the cheek and the
blue on the chin shows that the predicted East Asian has a rounder face, and
the blue on the nose with a little red on the sides mean that the predicted East
Asian has a less prominent and slightly rounder nose than Northern European.
Also, the predicted East Asian has less prominent eyebrows and forehead as the
blue on those areas shows, and he has rounder eyes.

On the bottom right is the predicted face for South African ancestry. The
plots indicate that the nose of the predicted South African is flatter and wider
with the blue in the middle of nose and the red on the sides of nose. There seems
to be minor tear-through nasojugal grooves under the eyes and the nasolabial
folds below the nose in the predicted face of a South African, and these lines
are captured with the blue dots on the cheeks.

6. Conclusions

In this work we have presented new results concerning minimax rates for a
function-on-scalar regression when the domain of the functions is more complex
than just an interval. Assuming the parameters reside in an RKHS results in
the rates being closely tied to the decay of the eigenvalues. However, the rates
in such cases, and thus the difficulty of the problem, can be somewhat hidden
behind the eigenvalues. To add clarity to our results, we extend well known
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connections between RKHS and Sobolev spaces to the case where the domain
of the functions are compact Riemannian manifolds.

A great deal of biomedical imaging data is being collected and analyzed in
scientific studies. As our technologies progress, such statistical methods will
become increasingly important. This is especially critical if statistical tools are
to keep pace with more “black box” machine learning methods. Indeed, though
the data is complicated, a major selling point of our methodology (and most
statistical methods) is the ability to provide clear interpretations for the effects
in our model, which scientists and practitioners will find useful.

We provided a practical strategy for implementing our methods via a basis
representation based on the RKHS kernel being used, which avoids some of
the large matrix inversion problems inherent in using the representer theorem.
This approach scales nicely and provides a flexible tool that can be applied in
a variety of settings so long as the RKHS kernel can be defined and computed.
However, we don’t view this estimator as definitive and would be excited to
see what insights other researchers have when choosing kernels and modelling
strategies for different applications.

Appendix A: Proof of lower bound

In the following we give an adaptation of the proof in Cai and Yuan (2011)
for the case of general RKHS. Interestingly, the lower bound is only tight if
the harmonic and arithmetic mean are asymptotically equivalent, that is, they
grow at the same order with n. This stems from their upper bound being in
terms of the harmonic mean, but the arguments for the lower bound lead to the
arithmetic mean (if one does not assume the mi are identical). We also provide
some extra details for the interested reader. To prove the lower bound result,
we will employ Fano’s lemma and construct an example that achieves the worst
case rate.

Recall that for lower bounds, we need only find one model M ∈ M, that
achieves the desired rate. We can thus make any assumptions we like as long as
it remains a valid model. Therefore, assume that the εi� and δij� are iid across
i, j and �. We do not assume that Xi ≡ 1, since nowhere did we say that the
intercept is always included in the model. The parameter, β = {β�,p}, we view
as a vector of LP functions, and thus an element of KLP . Let BK be the unit
ball in K. In this case the model is given by

Yij� = X�
i β�(uij) + εi�(uij) + δij�,

and we assume that each β�p ∈ BK. Assume that the distribution of the observed
locations uij has a uniform density with respect to the base measure μ. Assume
that εi� are iid mean zero Gaussian processes with covariance function, C, and
that the δij� are iid mean zero normals with variance 1. Consider M different
parameters that we will define more explicitly later, β1, . . . ,βM ∈ K

LP and
their induced probability measures P1, . . . , PM for the {Yij�}. Fano’s lemma
tells us the following.
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Lemma A.1 (Fano’s Lemma). Let P1, . . . , PM be probability measures over a
measurable space (Ω,F), such that

KL(Pk||Pk′) ≤ α, k �= k′,

then for any test function ψ : Ω → {1, . . . ,M} we have

Pk(ψ = k) ≤ α + log 2
log(M − 1) or Pk(ψ �= k) ≥ 1 − α + log 2

log(M − 1) .

In other words, Fano’s lemma gives us an upper bound on the estimation
accuracy for any possible test we could construct to select the true β from
among the β1, . . . ,βM . Any estimator, β̂, we could construct in this setting
would be equivalent to choosing one of the β1, . . . ,βM . Thus, in this case the
estimation error must be at least

EPk
‖β̂ − βk‖2 ≥ Pk(β̂ �= βk)min

k,k′
‖βk − βk′

‖2

≥
(

1 − α + log 2
log(M − 1)

)
min
k,k′

‖βk − βk′
‖2

for any estimator. So, applying Fano’s lemma becomes a matter of selecting
β1, . . . ,βM that are well separated while properly balancing the KL divergence.

To compute the KL divergence, we first condition on the domain points, uij ,
as then the Yi�j are all Gaussian. We can then take an expectation with respect
to the uij to complete the computation. Recall that between two Gaussian
random vectors, N(μ1,Σ) and N(μ2,Σ), it is given by (1/2)(μ1−μ2)TΣ−1(μ1−
μ2). Each Pk, which is the distribution of {Yi�j : i = 1, . . . , n; � = 1, . . . , L; j =
1, . . . ,mi}, is composed of nL independent Gaussian measures (conditioned on
the uij), over which the KL divergence is additive. Let ui ∼ (ui1, . . . , uimi) and
Σ(ui) := {C(uij , uij′)+1j=j′}, then Pi is composed of n blocks of size L that all
of the same conditional covariance Σ(ui). Since Σ(ui) is the sum of two positive
definite matrices, one being the identity, we have that Σ(ui) � Imi as positive
definite matrices. This also implies that Σ(ui)−1 � Imi . Define the P × mk

matrix βk
� (ui) = {βk

�p(uij) : p = 1, . . . , P ; j = 1, . . . ,mk}, then Pik, conditioned
on uk, is Gaussian with mean βi

�(uk)�Xi and covariance Σ(uk). To bound the
KL divergence we first need to compute, for each � = 1, . . . , L and i = 1, . . . , n

E[(X�
i β

k
� (ui) − X�

i β
k′

� (ui))Σ(ui)−1(X�
i β

k
� (ui) − X�

i β
k′

� (ui))�]

≤ E[X�
i (βk

� (ui) − βk′

� (ui))Imi(βk
� (ui) − βk′

� (ui))�Xi]

= E
[∣∣∣(βk

� (ui) − βk′

� (ui))�Xi

∣∣∣2]

=
mi∑
r=1

E[(X�
i β

k
� (ukr) − X�

i β
k′

� (ukr))2] = mi‖X�
i β

k
� − X�

i β
k′

� ‖2,

since ukj is uniform over U . Since the KL diveregence, conditioned on the ui

is addittive, we simply need to added up the above quantity over i and �, then
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divide by two to get the following bound:

KL(Pk||Pk′) ≤ 1
2

n∑
i=1

mi

L∑
�=1

‖X�
i β

k
� − X�

i β
k′

� ‖2

≤ ζnma maxkk′ ‖βk − βk′
‖2

2

where ma is the arithmetic mean and from Assumption 2.1, ζ bounds |Xk|2 for
all k. Our estimation error is then bounded from below by(

1 − (ζ2/2)nma maxkk′ ‖βk − βk′
‖2 + log(2)

log(M − 1)

)
min
kk′

‖βk − βk′
‖2.

We want to make this error as large as possible (since that would produce the
tightest lower bound), under the constraint that each of the LP parameters lie in
the unit ball in K, i.e. βk

�p ∈ BK, for � = 1, . . . , L amd p = 1, . . . , P . To construct
a viable sequence, we consider the Varshamov-Gilbert bound (Varshamov, 1957,
Duchi, 2016).

Lemma A.2 (Varshamov-Gilbert). For N ≥ 1 there exists at least M =
exp(NLP/8) NLP -dimensional vectors, b1, . . . , bM , with entries bkj ∈ {0, 1}
such that

NLP∑
j=1

1{bkj �= bk′j} ≥ NLP/4, for k �= k′.

This is a commonly used lemma for constructing collections of parameters for
minimax results as they take a very simple form. We rearrange the vectors bk
into arrays bk of dimension N ×L×P . We can use these sequences to construct
elements of L2(U) in the vk basis. Define

βk
�,p := N−1/2

2N∑
j=N+1

τ
1/2
i bkj−N,�,pvi k = 1, . . . ,M.

Recall that for any norm we have ‖βk‖2 =
∑

�,p ‖βk
�p‖2. Then we have the

following properties, for k �= k′, through a direct verification

‖βk‖2
K
≤ LP, ‖βk − βk′

‖2 ≥ LPτ2N/4, ‖βk − βk′
‖2 ≤ LPτN .

Using this sequence, the lower bound becomes(
1 − (ζ2/2)nmaLPτN + log(2)

NLP/8

)
LPτ2N/4

	
(

1 − 4ζ2nmaLPN−2h + 8 log(2)
NLP

)
LPN−2h.
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Taking N = (8ζ2nma)1/(1+2h), which implies N → ∞, would produce(
1
2 − 8 log(2)

NLP

)
LP (2N)−2h 	 LP (nma)−2h/(1+2h),

which is the desired bound as long as ma 	 m. This bound (as we will see)
matches the upper bound in the case where m 	 ma and m  n1/2h or is of the
same order, giving a tight rate. However, in the case where m � n1/2h, then
the bound is loose.

To obtain a bound that works when m � n1/2h we can make the problem
even simpler. Assume that βk

�p(u) ≡ ak�p ∈ R and that C(u, u′) ≡ 1, meaning
that there are no dynamics in time (one just has a repeated measures problem).
Let ak

� := {ak�p} be the P -dimensional vector of slope coefficients. A simple
verification shows that the vector of all ones is an eigenvector of Σ(ui) = Imi +
1mi1�

mi
with eigenvalue mi +1 and 1mi is an mi dimensional vector of all ones.

Furthermore, we have the simplification βk
� (ui) = ak

lp1�
mi

. This implies that the
KL divergence is now bounded by

KL(Pk||Pk′)

= 1
2

n∑
i=1

L∑
�=1

(X�
i ak

� 1�
mi

− X�
i ak′

� 1�
mi

)Σ(ui)−1(X�
i ak

� 1�
mi

− X�
i ak′

� 1�
mi

)�

= 1
2

L∑
�=1

n∑
i=1

(mi + 1)−1(X�
i ak

� 1�
mi

− X�
i ak′

� 1�
mi

)(X�
i ak

� 1�
mi

− X�
i ak′

� 1�
mi

)�

= 1
2

L∑
�=1

n∑
i=1

mi

mi + 1(X�
i ak

� − X�
i ak′

� )2

≤
L∑

�=1

nζ2|ak
� − ak′

� |2
2 = nζ2|ak − ak′ |2

2 .

To construct our sequence, recall that the unit ball in R
L×P has a 1/2 pack-

ing number greater than 2LP , meaning, we can find at least 2LP matrices,
b1,b2, . . . , within the unit ball that are at least 1/2 units apart (Duchi, 2016).
Set ak = δbk, which we will specify in a moment. Then clearly |ak − ak′ | ≤ 2δ
and |ak − ak′ | ≥ δ/2, for k �= k′. This implies a lower bound of(

1 − 2ζnδ2 + log(2)
LP log(2)

)
δ2.

Now, simply set δ2 	 LP/n to obtain the desired result.

Appendix B: Proof of upper bound

Since each coordinate of the response can be estimated separately, we will as-
sume wlog that L = 1 in our proof. We also assume, wlog, that uij have a
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density identically equal to 1, meaning their law is given by μ. We assume the
kernel K(u, s) is continuous over U , which means it is also bounded since U is
compact. Using Mercer’s theorem it admits the spectral decomposition

K(u, s) =
∞∑
k=1

τkvk(u)vk(s). (B.1)

We assume that eigenvalues decay as

τk 	 k−2h,

for some h ≥ 1. Recall that, by Mercer’s theorem, the convergence above occurs
uniformly and absolutely in u and s. We therefore have the following lemma,
which will be used throughout.

Lemma B.1. If K(u, s) is a continuous, positive definite, and symmetric kernel
then it admits the eigen-decomposition (B.1), which satisfies

sup
t,s

τk|vk(u)vk(s)| → 0 as k → ∞.

The use of this Lemma B.1 is what allows us to relax the assumptions on
the error process as compared to Cai and Yuan (2011), as it allows us to avoid
certain Cauchy-Schwarz inequalities involving the errors (note it also fixes one
misapplication of the Cauchy-Schwarz they had in their proofs). The functions
vk(u) are normalized to have L2(U) norm one (from here on we notationally
drop the domain U), which also means they have K norm τ

−1/2
k . Recall that the

K inner product can be expressed as

〈g, f〉K =
∞∑
k=1

〈f, vk〉〈g, vk〉
τk

,

where norms and inner products without subscripts will always denote the L2

norm.
We now define the biased population parameter that will act as an intermedi-

ate value in our asymptotic derivation. First, define the population counterpart
to Tnm from Section 4.2 as

[Tf ](u) := E[Ku11(u)ΣXf(u11)] =
∫

K(u, s)ΣXf(s) dμ(s)

and h = T(β0). We then define

βλ = (T + λI)−1h = (T + λI)−1Tβ0. (B.2)

We now define a final intermediate value as

β̃λ = βλ + (T + λI)−1(hnm − Tnm(βλ) − λβλ). (B.3)
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To establish our convergence rates we break up the problem into three pieces:

β̂ − β0 = (βλ − β0) + (β̃λ − βλ) + (β̂ − β̃λ).

In order to establish bounds for the third term above, it will be necessary to
bound the second term in terms of the norm ‖f‖α = 〈K−α/2f,K−α/2f〉. When
α = 0 this is the L2 norm, when α = 1 it is the K norm, but we allow interme-
diate values α ∈ [0, 1].

Step 1: βλ − β0

Using (B.2) we have

βλ − β0 = [(T + λI)−1T − I]β0 = −λ(T + λI)−1β0.

We want to compute the norm of this quantity in the product space (L2)P ,
which, equivalently, can be thought of as the tensor product space R

P ⊗ L2.
We can make this calculation cleaner by using an appropriate basis. In partic-
ular, recall that vk are the eigenfunctions of K, and we can add to them the
eigenvectors of ΣX , denoted as up, we can then construct a basis for the space
as

{up ⊗ vk : p = 1, . . . , P k = 1, . . . ,∞}.
If we let ηp denote eigenvalues of ΣX , then the eigenvalues of (T + λI) are
ηpτk +λ and the eigenfunctions are up ⊗ vk. Applying Parceval’s identity yields

‖βλ − β0‖2 =
P∑

p=1

∞∑
k=1

〈λ(T + λI)−1β0,up ⊗ vk〉2

= λ2
∑
p

∑
k

1
(ηpτk + λ)2 〈β0,up ⊗ vk〉2

= λ2
∑
p

∑
k

τk
(ηpτk + λ)2

〈β0,up ⊗ vk〉2
τk

≤ λ2‖β0‖2
K

sup
p,k

τk
(ηpτk + λ)2 ≤ λ2ν‖β0‖2

K
sup
p,k

ηpτk
(ηpτk + λ)2 .

To bound the sup consider the function f(x) = xγ(x+λ)−2, over x ≥ 0 and for
some fixed γ > 0 (this level of generality will be useful later on). Notice that
this function will attain its maximum at a finite value of x if and only if γ < 2,
for γ ≥ 2 the maximum is attained at infinity. The derivative is given by

γxγ−1(x + λ)−2 − 2xγ(λ + x)−3.

Setting equal to zero we have

γ(λ + x) − 2x = 0 =⇒ x = γ

2 − γ
λ.
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So we have

sup (ηpτk)γ

(ηpτk + λ)2 ≤ c0λ
γ−2. (B.4)

Note that throughout we take c0, c1, etc, to denote generic constants whose
exact values may change depending on the context. Taking γ = 1 we conclude
that

‖βλ − β0‖2 ≤ c0λν‖β0‖2. (B.5)

Step 2: β̃λ − βλ

In this part we will bound the difference more generally using the α norm for
α < 1 − 1/2h. First, recall that, by definition of βλ we have

Tβλ + λβλ = h =⇒ λβλ = h − Tβλ = T(β0 − βλ).

Plugging this into (B.3), the expression for β̃λ, we obtain

β̃λ − βλ = (T + λI)−1 [hnm − Tnmβλ − (Tβ0 − Tβλ)] .

This quantity has mean zero since, using (3.1) we have

E[hnm](u) = 1
n

∑
i

1
mi

∑
j

XiX�
i E[β(uij)Kuij (u)] = (Tβ0)(u).

and using (3.2) we have

E[Tnmβλ](u) = (Tβλ)(u).

Using Parceval’s identity we can express the expected difference in the α norm
as

E ‖β̃λ − βλ‖2
α =

∑
p

∑
k

1
ταk (ηpτk + λ)2 Var(〈hnm − Tnmβλ,up ⊗ vk〉).

Using the assumed independence across i and the definitions (3.1) and (3.2) we
have

Var(〈hnm − Tnmβλ,up ⊗ vk〉)

= 1
n2

∑
i

1
m2

i

Var
(∑

�

(Yi� − X�
i βλ(ui�))〈Kui�

, vk〉X�
i uj

)
.

Using the reproducing property and that the vk are the eigenfunctions of K, we
can express 〈Kuij , vk〉 = τk〈Kuij , vk〉K = τkvk(uij). So the above is bounded by

τ2
k

n2

∑
i

(X�
i uj)2

m2
i

Var
(∑

�

(Yi� − X�
i βλ(ui�))vk(ui�)

)
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≤ τ2
kPζ2

n2

∑
i

1
m2

i

Var
(∑

�

(Yi� − X�
i βλ(ui�))vk(ui�)

)
.

Conditioning on the sigma algebra generated by the locations, F = σ{uij},
we get

Var

⎛
⎝∑

j

(Yij −X�
i βλ(uij))vk(uij)

⎞
⎠

= Var

⎛
⎝E

⎡
⎣∑

j

(Yij − X�
i βλ(uij))vk(uij)

∣∣∣∣F
⎤
⎦
⎞
⎠

+ E

⎡
⎣Var

⎛
⎝∑

j

(Yij − X�
i βλ(uij))vk(uij)

∣∣∣∣F
⎞
⎠
⎤
⎦ .

The first term is given by

Var

⎛
⎝∑

j

X�
i (β0(uij) − βλ(uij))vk(uij)

⎞
⎠

= mi Var(X�
i (β0(u11) − βλ(u11))vk(u11))

≤ mi E(X�
i (β0(u11) − βλ(u11))vk(u11))2

= mi

∫
[X�

i (β0(u) − βλ(u))]2vk(u)2 dμ(u)

≤ mi|Xi|2‖β0 − βλ‖2 sup
u

vk(u)2

≤ c0Pζ2miτ
−1
k λ‖β0‖2

K
.

Note the last line follows from Lemma B.1 and equation (B.5).
Turning to the second term, we have

Var

⎛
⎝∑

j

(Yij − X�
i βλ(uij))vk(uij)

∣∣∣∣F
⎞
⎠

=
∑
j�

Cov(Yij , Yi�|F)vk(uij)vk(ui�)

=
∑
j�

(C(uij , ui�) + σ21j=�)vk(uij)vk(ui�).

When j = � we use the assumed bounded variance and the orthonormality of
the vk to obtain

E[(C(uij , uij) + σ2)vk(uij)2] =
∫

C(u, u)vk(u)2 du + σ2 ≤ c0.
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When j �= � we use the definition of the covariance to obtain

E[(C(uij , ui�)vk(uij)vk(ui�)] =
∫ ∫

vk(u)C(u, s)vk(s) dsdu

= 〈vk, Cvk〉 = E〈ε, vk〉2.

Using generic {ci} for the constants and recalling that m is the harmonic
mean of the mi we get the bound

E ‖β̃λ − βλ‖2
α

≤
∑
p

∑
k

τ2−α
k

(ηpτk + λ)2
1
n2

n∑
i=1

1
m2

i

[
c0miλ

τk
+ mic1 + m2

i E〈ε, vk〉2
]

=
∑
p

∑
k

τ2−α
k

(ηpτk + λ)2
1
n

[
λ

mτk
c0 + 1

m
c1 + E〈ε, vk〉2

]
. (B.6)

We bound each term in the summand separately. If τk 	 k−2h then so is ηpτk,
since 1 ≤ p ≤ P . For an arbitrary γ > 1/2h we have

∞∑
k=1

τγk
(ηpτk + λ)2 	

∫ ∞

0

x−2hγ

(λ + x−2h)2 dx =
∫

x2h(2−γ)

(λx2h + 1)2 dx.

Let y = λx2h then x = λ−1/2hy1/2h and dx = λ−1/2h(1/2h)y1/2h−1dy. Then the
above becomes∫

λ−(2−γ)y2−γ

(y + 1)2 λ−1/2h(1/2h)y1/2h−1dy = λ−(2−γ+1/2h)

2h

∫
y1−γ+1/2h

(y + 1)2 dy.

Notice the integral is finite since γ > 1/2h. We therefore have that, for any
γ > 1/2h and p = 1, . . . , P ,

∞∑
k=1

τγk
(ηpτk + λ)2 	 λ−(2−γ+1/2h). (B.7)

Taking γ = 1 − α and applying (B.7), which is greater than 1/2h as long as
α < 1 − 1/2h, the first term in (B.6) is given by

P∑
p=1

∞∑
k=1

τ1−α
k

(ηpτk + λ)2
λc0
nm

= O(λ−α−1/2h(nm)−1).

Turning to the second term in (B.6), take γ = 2 − α we have by the same
arguments

c2
nm

∑
p

∑
k

τ2−α
k

(ηpτk + λ)2 	 (nm)−1λ−α−1/2h.
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Turning to the last term in (B.6) we can use that E ‖ε‖2 < ∞ to obtain

∑
p

∞∑
k=1

τ2−α
k

(ηpτk + λ)2
1
n

E〈ε, vk〉2 ≤ E ‖ε‖2n−1ν2−α max
k

(ηpτk)2−α

(τk + λ)2 .

Applying (B.4) with γ = 2 − α we have that the above is equivalent to

E ‖ε‖2n−1c0λ
−α,

We thus conclude that

‖β̃λ − βλ‖2
α = OP

(
(nm)−1λ−α−1/2h + n−1λ−α

)
.

There will be two values of α that are especially important. The first is when
α = 0, which we use to bound the L2 norm, while the second is for an arbitrary
α that satisfies 1/2h < α < 1−1/2h, as this will be used to bound the last term
in the next subsection.

Step 3: β̂ − β̃

Recall that β̂ = (Tnm +λI)−1hnm and β̃ = βλ +(T+λI)−1(hnm−Tnm(βλ)−
λβλ). Note that this also implies that hnm = (Tnm + λI)β̂. So write

β̂ − β̃ = β̂ − βλ − (T + λI)−1(hnm − Tnm(βλ) − λβλ)

= (T + λI)−1
(
(T + λI)(β̂ − βλ) − (hnm − (λI + Tnm)βλ))

)
= (T + λI)−1

(
(T + λI)(β̂ − βλ) − (Tnm + λI)(β̂ − βλ)

)
.

Computing the α norm we can apply Parseval’s and the definition of Tnm to
obtain

‖β̂ − β̃‖2
α

=
∑
p

∑
k

τ−α
k

(ηpτk + λ)2
[
(τk + λ)〈β̂ − βλ,up ⊗ vk〉 − 〈(Tnm + λI)(β̂ − βλ),up ⊗ vk〉

]2

=
∑
p

∑
k

τ2−α
k

(ηpτk + λ)2

⎡
⎣〈β̂ − βλ,up ⊗ vk〉 −

1
n

n∑
i=1

1
mi

mi∑
j=1

u�
p (β̂(uij) − βλ(uij))vk(uij)

⎤
⎦

2

.

Notice that we can write β̂(u) − βλ(u) =
∑∞

�=1 h�v�(u) where h�p = 〈ĝp −
gλ,p, v�〉. We can then write

u�
p (β̂(uij) − βλ(uij))vk(uij) =

∞∑
�=1

u�
p h�v�(uij)vk(uij).

So the difference is given by

〈β̂ − βλ,up ⊗ vk〉 −
1
n

n∑
i=1

1
mi

mi∑
j=1

u�
p (β̂(uij) − βλ(uij))vk(uij)
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= u�
p hk − 1

n

n∑
i=1

1
mi

mi∑
j=1

∞∑
�=1

u�
p h�v�(uij)vk(uij)

=
∞∑
�=1

u�
p h�

⎡
⎣〈vk, v�〉 − 1

n

n∑
i=1

1
mi

mi∑
j=1

v�(uij)vk(uij)

⎤
⎦ .

Let δ ∈ [0, 1] be another constant similar, but potentially different from α. We
can then apply CS to bound the above by

|〈β̂ − βλ,up ⊗ vk〉|

≤
( ∞∑

�=1

(u�
p h�)2

τ δ�

) ∞∑
�=1

τ δ�

⎡
⎣〈vk, v�〉 − 1

n

n∑
i=1

1
mi

mi∑
j=1

v�(uij)vk(uij)

⎤
⎦

2

= ‖u�
p (β̂ − βλ)‖2

δ

∞∑
�=1

τ δ�

⎡
⎣〈vk, v�〉 − 1

n

n∑
i=1

1
mi

mi∑
j=1

v�(uij)vk(uij)

⎤
⎦

2

.

To get the asymptotic order of the summation term above, by Markov’s inequal-
ity, it is enough to bound its expected value (since it is positive). Taking the
expected value of the summation we get that

∞∑
�=1

τ δ� E

⎡
⎣〈vk, v�〉 − 1

n

n∑
i=1

1
mi

mi∑
j=1

v�(uij)vk(uij)

⎤
⎦

2

=
∞∑
�=1

τ δ�
nm

Var(v�(u11)vk(u11))

≤
∞∑
�=1

τ δ�
nm

∫
v�(u)2vk(u)2 dμ(u)

≤
∞∑
�=1

τ δ�
nm

sup
u

vk(u)2
∫

v�(u)2 du

≤
∞∑
�=1

c0τ
δ
�

nmτk
.

Recall that τ� 	 �−2h, so the above sum is finite as long as δ > 1/2h. Putting
everything together and applying (B.4) we have the bound

‖β̂ − β̃‖2
α ≤ OP (1)‖β̂ − βλ‖2

δ

c0
nm

∑
k

τ1−α
k

(τk + λ)2

	 OP (1)‖β̂ − βλ‖2
δ(nm)−1λ−α−1/2h,

which holds for any 0 ≤ α < 1 − 1/2h and any δ > 1/2h.
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Assume that λ is such that (nm)−1λ−α−1/2h → 0, then it follows that ‖β̂ −
β̃‖2

α = oP (‖β̂ − βλ‖2
δ). A triangle inequality gives

‖β̃ − βλ‖δ ≥ ‖β̂ − βλ‖δ − ‖β̂ − β̃‖δ = (1 + oP (1))‖β̂ − βλ‖δ.

This implies that
‖β̂ − βλ‖δ = OP (‖β̃ − βλ‖δ).

Finally, take α = 0 and δ > 1/2h then we have that

‖β̂ − β̃‖2 = OP (1)(nm)−1λ−1/2h‖β̃ − βλ‖2
δ

= OP (1)(nm)−1λ−1/2h[(nm)−1λ−δ−1/2h + n−1λ−δ].

If we assume that λ is such that (nm)−1λ−δ−1/2h → 0 then the above simplifies
to

oP (1)λδ[(nm)−1λ−δ−1/2h + n−1λ−δ] = oP (1)[(nm)−1λ−1/2h + n−1],

as desired.
Note that in the last paragraph, we made a more explicit assumption about

how quickly λ tends to zero. Note that the optimal rate is λ = (nm)2h/(1+2h).
For this value of λ we have that (nm)−1λ−α−1/2h → 0 for any value of α < 1
since 1 + 1/2h = (2h + 1)/2h.

Appendix C: Further on simulation

We discuss how we created the parabola domain and swiss roll domain for our
simulation.

C.1. Parabola and swiss roll generation and geodesic distance

Parabola

Domain is created using t → (x1, x2) = (t, t2). For our simulation, I have used
t ∈ [−1, 1] so that x1 ∈ [−1, 1] and x2 ∈ [0, 1].

For finding the geodesic distance in parabola, the usual way is to use arc
length.

L(t1, t2) =
∫ t2

t1

∥∥∥∥∥
(
dx1

dt

)2

+
(
dx2

dt

)2
∥∥∥∥∥ dt

=
∫ t2

t1

√
1 + 4t2dt

=
[
1
4 sinh−1(2t) + 1

2 t
√

1 + 4t2
]t=t2

t=t1

.
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However, we did something special here. We have warped the time using the
additional term (1 + 4t2)3/2 and changed the distance measure into the below.

L2(t1, t2) =
∫ t2

t1

(1 + 4t2)3/2
∥∥∥∥∥
(
dx1

dt

)2

+
(
dx2

dt

)2
∥∥∥∥∥ dt

=
∫ t2

t1

(1 + 4t2)3/2
√

1 + 4t2dt

=
[
16
5 t5 + 8

3 t
3
]t=t2

t=t1

.

Therefore, if it is around t = 0, then it would not be changed much, but when
it’s moving away from t = 0, then the time warping will take effect and extends
the distance much more than the regular arc length.

Swiss roll

The usual swiss roll can be created using (t, s) → (x1, x2, x3) = (t · cos(t), s, t ·
sin(t)). Since I have used (t, s) ∈ [4, 16] × [4, 16] to make a nice shape of swiss
roll, I have scaled it using

(t, s) → (x1, x2, x3) = 1
15(t · cos(t), s, t · sin(t))

to make x1 ∈ (−1.1, 1), x2 ∈ (0.25, 1.1), and x3 ∈ (−1, 1).
Now let’s find the geodesic distance in swiss roll. We know that swiss roll is

basically a plane rolled in, and we will use this information. First we find the
distance over (x1, x3).

Lt(t1, t2) =
∫ t2

t1

∥∥∥∥∥
(
dx1

dt

)2

+
(
dx3

dt

)2
∥∥∥∥∥ dt

=
∫ t2

t1

(
1
15

)√
(cos(t) − t sin(t))2 + (sin(t) + x cos(t))2dt

= 1
15

∫ t2

t1

√
t2 + 1dt

= 1
15

[
1
2 sinh−1(t) + 1

2 t
√

1 + t2
]t=t2

t=t1

.

Now we have Lt, we will use this to find the geodesic distance on swiss roll.

dS ((t1, s1), (t2, s2)) =
√
Lt(t1, t2)2 + (s2 − s1)2/152.
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Fig 10. The effects of n and m on the mean squared estimation errors for plane domain with
P = 2 and P = 3 cases.

C.2. More simulation results

The estimation errors for plane U is presented in Figure 10, and the estimation
errors for parabola U is presented in Figure 11. These show similar trends as
discussed in the main manuscript. The estimation errors drop as n increases
and m increases, but at some point of m, they do not change as much because
n dominates the rate. For example, in the setting b1C (plane domain, P = 2,
and ν = 11/2), the estimation errors drop from 5.107 to 0.137 as m in increases
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Fig 11. The effects of n and m on the mean squared estimation errors for parabola domain
with using geodesic distance and with using Euclidean distance.

from 10 to 20 and n = 30, but as m increases from 20 to 30, the estimation
error change from 0.137 to 0.127.

It is clearly shown that the estimation really fails using Euclidean distance
for parabola U . When we used geodesic distance, the estimation errors using
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Fig 12. The estimated beta plots for 3D facial data. The red means outward effect and the
blue means inward effect.

Matérn kernel and the estimation errors using rational quadratic kernel have
similar values and show similar trends, but when we used Euclidean distance,
the estimation error using Matérn kernel especially show failure.

Appendix D: Estimation results of 3D facial data

In Figure 12, we have plotted the 13 estimated beta plots for ADAPT 3D facial
data. The red shows outward effect and the blue shows inward effect. The effect
of sex, the effect of age, the effect of Eastern Asian, and the effect of Southern
African are discussed in the main manuscript. The parameter for height shows
that as a person gets taller, the cheek areas would decrease whereas the chin will
be outer, showing overall longer face. For the parameter for weight, the outer
effect in the middle of nose with inward effect on the top and on the bottom
of the nose show rounder nose as weight increases, and the inward effect below
the lip shows more labiomental groove, and the outward effect on the chin can
mean more fat on the jaw.

One thing to note is that our model is a linear model, and the effects captured
here are linear. However, some of the effects of the predictors, for example age,
can be nonlinearlly affecting the shape of face, and our current model does not
capture that. We plan on capturing such nonlinear effects in the future study.
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