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1. Introduction

Precision medicine, which is defined as treatments targeted to individual pa-
tients’ needs based on genetics, biomarker, phenotypic, or psychosocial charac-
teristics that distinguish a given patient from other patients with similar clinical
presentations [12], has generated tremendous interest in statistical research. Pre-
cision medicine based on individual’s health-related metrics and environmental
factors is used to discover individualized treatment regimes (ITRs); methodol-
ogy for such discovery is an expanding field of statistics.

Various methods have been proposed in the statistical literature to esti-
mate the optimal ITRs. Q-learning [39, 40, 21, 46, 4, 48, 25, 9, 32, 5] and
A-learning [20, 27, 1, 23, 10, 17, 29] are two backward induction methods for
deriving optimal dynamic treatment regimes. Other related approaches include
parametric methods [33, 34, 35], model-free or direct value search method by
maximizing a nonparametric estimator of value function [43, 42, 7, 49, 50, 30],
semiparametric methods [18, 38, 37, 19, 31, 14, 41, 16], studies in inference
[2, 3, 15], studies in high dimensional settings [36, 13], and machine learning
methods [47, 24, 45, 44, 22]. [47] proposed outcome weighted learning, which
can be viewed as a weighted classification problem using the covariate informa-
tion weighted by the individual response to maximize the overall outcome, and
[16], a generalization of [31], where single index in the treatment effect can be
replaced by multiple indices and the function form is less restrictive. [5] pro-
posed a robust Q-learning approach for a two-stage dynamic binary treatment
regime by adapting the Robinson’s transformation [28]. Their estimators are
robust to the misspecification of conditional mean outcome models given that
the probability of treatment assignment models are consistently estimated at a
sufficiently fast rate. [22] proposed a quasi-oracle estimator of heterogeous treat-
ment effect by using penalized kernel regression to minimize the loss function
based on Robinson’s transformation [28] and named it R-learning, where both
the propensity score and the conditional mean outcome are estimated via ma-
chine learning methods. In contrast, we consider the case where the probability
of treatment assignment is known. Instead of considering the conditional mean
outcome models, we directly estimate the treatment effect function. Further,
we formulated the treatment effect function by single index model. Finally, our
proposed method is easily extended to continuous treatment assignment, which
is discussed in Section 4.

The rules based on parametric models of clinical outcomes given treatment
and other covariates are simple, yet can be incorrect when parametric models
are misspecified in the wide class of rules that can include forms out of the para-
metric family. The rules based on machine learning techniques to determine the
relationship between clinical outcomes and treatment plus covariates, such as in
Zhao et al. (2009, 2011), are nonparametric and flexible but are often complex
and may have large variability. Existing semiparametric methodologies, such as
[20] and [31], flexibly incorporate the relationship between the covariates and
the response variables, but are not efficient due to the challenges in estimat-
ing the decision rules. Moreover, to the best of our knowledge, these existing
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semiparametric models do not allow covariate adjusted randomization, where
a patient is randomized to one of the treatment arms based on the patient’s
covariate and a predetermined randomization scheme. Therefore we are moti-
vated to derive semiparametric efficient estimators for flexible models that allow
covariate adjusted randomization.

Let Xi be the p-dimensional covariate vector, Zi be the treatment indicator,
and Yi be the response, and assume (Xi, Zi, Yi)’s are independent and iden-
tically distributed (iid) for i = 1, . . . , n. Here, the treatment indicator Zi is
often categorical (i.e. when several treatment arms are considered) but can also
be continuous (i.e. when a continuous of dosage range is considered). In the
simplest case when Zi is binary, we denote Zi = 1 if the ith patient is random-
ized to treatment and Zi = 0 to placebo. When the randomization is covariate
adjusted, the probability distribution of Zi depends on Xi. Our goal is to ana-
lyze the data (Xi, Zi, Yi) for i = 1, . . . , n, so that we can develop a treatment
rule that is best for each new individual. Without loss of generality, we assume
larger value of Y0 indicates better outcome. Equivalently, we want to identify
a deterministic decision rule, d(x), which takes as input a given value x of X0
and outputs a treatment choice of Z0 that will maximize the potential treat-
ment result Y0. Here X0 denotes the covariate of the new individual, Z0 the
treatment decision and Y0 the potential treatment result given Z0. Let P d be
the distribution of (X0, Z0, Y0) and Ed be the expectation with respect to this
distribution. The value function is defined as V (d) = Ed(Y0). An optimal in-
dividualized treatment rule d0 maximizes V (d) over all decision rules. That is,
d0 = argmaxdV (d) = argmaxdEX0 [E{Y0|Z0 = d(X0),X0}]. Furthermore, we
refer to maxd V (d) as the optimal value function. It is important to recognize
the difference between the clinical trial data (Xi, Zi, Yi), i = 1, . . . , n and the
potential data associated with the new individual (X0, Z0, Y0).

In the covariate adjusted randomization, let the probability of assigning to the
treatment or placebo arm be a known function fZ|X(x, z). Here and throughout,
we omit the subindex i when describing the data from a randomized clinical trial
as long as it does not cause confusion. We model the treatment effect using a
single index model of the covariates, while leaving the baseline response, f(X),
unspecified. This yields the model

Y = f(X) + Zg(βTX) + ε. (1)

We assume the regression error ε is independent of the covariates X and the
treatment indicator Z, and ε ∼ N(0, σ2). We do not assume Z and X to be
independent, hence allow the covariate adjusted randomization procedure. Nat-
urally from (1), g(βTx) is the treatment effect as a function of the covariate
value x. We assume g to be a smooth function. We can easily see that different
treatment described by Z causes different result, with the difference is reflected
in g(βTx). Hence, under model (1), to compare treatment outcome difference
and find the optimal individualized treatment rule, we only need to estimate
g(·) and β. In other words, our goal is to estimate β and g(·), hence to esti-
mate the treatment effect given any covariate x. To retain the identifiability of
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g(·) and β, we fix the first component of β to be 1. Then we denote the lower
(p− 1)-dimensional vector by βL, after dividing it by β1.

The contribution of our proposed method beyond existing literature can be
summarized in the following five folds. First, we propose an estimator and show
that it is locally semiparametric efficient. Second, our method allows random-
ization to depend on patients’ covariates, which significantly generalizes the
practicality of the semiparametric methodology in real studies. Third, although
illustrated for binary treatment selection, the proposed method does not re-
strict to the binary treatment case and is directly applicable even when Z is
categorical or continuous. Thus, the method applies to slope estimation while
the intercept, i.e. f(X) in (1), is unspecified and inestimable due to the curse of
dimensionality caused by the multi-dimension of X. Fourth, different from [31]
where B-spline expansion were used, we employ kernel smoothing techniques
into the estimation and inference for optimal treatment regimes. Furthermore,
in our proposed method we do not need to assume monotonicity of the treat-
ment effect model g(·) as in [31]. Fifth, our method is more flexible in terms of
model assumptions compared to [50].

The rest of the article is organized as the following. In Section 2, we devise
a class of estimators for β and g(·) while bypassing the estimation of f(·). We
study the large sample properties of the estimators and carry out inference to
detect effective treatment region in Section 3. We also derived a class of esti-
mators for β and g(·) for continuous and categorical treatment indicators along
with their asymptotic properties in Sections 4 and 5, respectively. Simulation
experiments are carried out in Section 6, and the method is implemented on a
clinical trial data in Section 7. We conclude the article with a discussion in Sec-
tion 8 and collect all the technical derivations and proofs in the Supplementary
Material.

2. Estimation of β and g(·)

2.1. Basic estimation

The estimation of β and g(·) is complicated by the presence of the intercept term
f(X). When X is of high or even moderate dimension, f(X) is challenging to
estimate due to the well known curse of dimensionality. Thus, a simple treatment
is to eliminate the effect of f(X). Following this approach, multiplying Z and
E(Z | X) on (1), we have

ZY = Z2g(βTX) + Zf(X) + Zε,

and E(Z | X)Y = ZE(Z | X)g(βTX) + E(Z | X)f(X) + E(Z | X)ε.

Taking difference of the above two equations yields {Z −E(Z | X)}Y = {Z2 −
ZE(Z | X)}g(βTX) + {Z − E(Z | X)}{f(X) + ε}. Note that E[{Z − E(Z |
X)}{f(X) + ε} | X] = E{Z −E(Z | X) | X}f(X) + 0 = 0 and E[{Z2 −ZE(Z |
X)}g(βTX) | X] = var(Z | X)g(βTX). So we obtain E[{Z − E(Z | X)}Y |
X] = var(Z | X)g(βTX). This indicates that if we write Ỹ ≡ {Z − E(Z |
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X)}Y {var(Z | X)}−1, then E(Ỹ | X) = g(βTX). Viewing X and Ỹ as the
covariate and response respectively, this is a classical single index model, and we
can estimate β and g using standard methods [11]. Considering that var(Z | X)
might be close to zero, one may want to avoid taking its inverse. In this case, a
more stable estimator would be to minimize

n∑
j=1

n∑
i=1

wij [{zi −E(Zi | xi)}yi − var(Zi | xi){aj + bjβ
T(xi − xj)}]2

with respect to a1, · · · , an, b1, · · · , bn and parameters in β, where

wij = Kh{βT(xi − xj)}∑n
i=1 Kh{βT(xi − xj)}

,

Kh(·) = h−1K(·/h), h is a bandwidth and K(·) is a kernel function. At a
fixed β value, the minimization with respect to (aj , bj) does not rely on other
(ak, bk) values for k �= j, hence can be done separately, while the optimization
with respect to β involves all the terms. The resulting β̂ estimates β and the
resulting âj estimates g(βTxj). We show the consistency of β̂ in Section A.4 of
the supplement. We can further estimate g(βTx0) by â0 which is obtained by

(â0, b̂0)=arg min
a0,b0

n∑
i=1

wi0[{zi − E(Zi | xi)}yi−var(Zi | xi){a0 + b0β̂
T
(xi−x0)}]2.

2.2. Proposed estimator

Although the above procedure provides one way of estimating β and g(·), it is
somewhat ad hoc, and it is unclear if other estimators exist to achieve similar
or better estimation. To investigate the problem more thoroughly and system-
atically, we start with the likelihood function of a single observation (x, z, y),

fX,Z,Y (x, z, y,β, σ, g, f, η) = η(x)fZ|X(x, z)σ−1φ[σ−1{y − f(x) − zg(βTx)}]. (2)

Here η(x) is the marginal probability density or mass function (pdf or pmf) of X,
and φ(·) is the standard normal pdf. We first focus our attention on estimating
β alone, thus we view g together with f , η and σ as nuisance parameters. In this
case, (2) is a semiparametric model, thus we derive the estimators for β through
deriving its influence functions and constructing estimating equations. It is easy
to obtain the score function with respect to β through taking partial deriva-
tive of the loglikelihood function with respect to the parameter. In Supplemen-
tary Material A.1, we further project the score functions Sβ(x, z, y,β, g, f, σ)
onto the nuisance tangent space, a space spanned by the nuisance score func-
tions, and obtain the efficient score function Seff(x, z, y,β, g, f, σ) = σ−2ε{z −
E(Z | x)}g′(βTx){xL − u(βTx)}, where g′(·) is the first derivative of g(·),
xL is the lower (p − 1)-dimensional sub-vector of x, ε ≡ y − f(x) − zg(βTx)
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and u(βTx) ≡ E
{

var(Z | X)XL | βTx
}
/E

{
var(Z | X) | βTx

}
. Further de-

note S∗
eff(x, z, y,β, g, f, σ) = σ−2{y − f∗(x)− zg(βTx)}{z −E(Z | x)}h∗(βTx)

{xL −u(βTx)}, where the working models for f(x) and g′(βTx) are f∗(x) and
h∗(βTx), respectively. Even under these working models f∗(x) and h∗(βTx),
we can verify that E{S∗

eff(x, z, y,β, g, f, σ)} = 0, which implies that we still get
consistent estimator for β. Inspired by the form of the efficient score function,
we propose a general class of consistent estimating equations for β as
n∑

i=1
{yi − f∗(xi) − zig

∗(βTxi)}{zi − E(Zi | xi)}h∗(βTxi){xLi − u∗(βTxi)} = 0,

where f∗ is an arbitrary function of x and h∗ is an arbitrary function of βTx.
Regarding g∗ and u∗, we have the freedom of estimating one of the two functions
and replacing the other with an arbitrary function of βTx, or estimating both.

To explore the various flexibilities suggested above, let f∗(x) be an arbi-
trary predecided function. For example, f∗(x) = 0. We first examine the choice
of approximating both u(·) and g(·). As a by-product of local linear estima-
tion, we also approximate g′(·). Let û(βTx) be a nonparametric estimation of
u(βTx). Note that û(βTx) involves only univariate nonparametric regression.
Specifically, using kernel method,

û(βTx) =
∑n

i=1 Kh{βT(xi − x)}var(Z | xi)xLi∑n
i=1 Kh{βT(xi − x)}var(Z | xi)

. (3)

Let α = (αc, α1)T and for j = 1, . . . , n, let α̂(β, j) solve the estimating equation
w.r.t. αc and α1 for given β and xj

n∑
i=1

wij [yi − f∗(xi)−zi{αc+α1β
T(xi−xj)}]{zi − E(Z | xi)}

{
1,βT(xi − xj)

}T

= 0. (4)

Specifically, let v0j =
∑n

i=1 wijzi{zi − E(Z | xi)}, v1j =
∑n

i=1 wijzi{zi − E(Z |
xi)}βT(xi − xj), v2j =

∑n
i=1 wijzi{zi −E(Z | xi)}{βT(xi − xj)}2, then

α̂(β, j)

=
[(

v0jv2j−v2
1j
)−1∑n

i=1 wij{yi − f∗(xi)}{zi−E(Z |xi)}{v2j−v1jβ
T(xi−xj)}(

v0jv2j−v2
1j
)−1∑n

i=1 wij{yi−f∗(xi)}{zi−E(Z | xi)}{v0jβ
T(xi−xj)−v1j}

]
.

In (4), we can replace wij with Kh{βT(xi − xj)} and the resulting estimating
equation is identical. Note that the above procedure enables us to obtain α̂c(β, j)
as an approximation of g(βTxj) and α̂1(β, j) as an approximation of g′(βTxj).
We then plug in the estimated û, ĝ and ĝ′ and solve
n∑

i=1
{yi − f∗(xi) − ziα̂c(β, i)}{zi −E(Z | xi)}α̂1(β, i){xLi − û(βTxi)} = 0 (5)
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to obtain β̂. It is easily seen that the procedure we described above is a type
of profiling estimator, where we estimate g(·), g′(·), u(·) as functions of a given
β, and then estimate β. The idea behind the construction of (4) is similar to
the consideration of the efficient score function, and we describe the detailed
derivation in Supplementary Material A.2. The estimator based on solving (5)
is guaranteed to be consistent, and has the potential to be efficient. In fact, it
will be efficient if f∗(·) happens to be the true f(·) function. Of course, this
is not very likely to happen in practice. However, this is still the estimator we
propose, because f(·) is formidable to estimate for large or even moderate p.
Compared to all other estimators that rely on the same f∗(·), the estimator
proposed here yields the smallest estimation variability and is the most stable,
as we will demonstrate in Section 3. The explicit algorithm of estimating β and
g is described below.

1. Select a candidate function f∗(x).
2. Solve the estimating equation (5) to obtain β̂, where α̂c(β, i) and α̂1(β, i)

are solutions given right below (4) and û(βTxi) is given in (3).
3. Solve (4) once more at xj = x0 while fix β at β̂ to obtain ĝ(βTx0) =

α̂c(β̂, 0).

Remark 1. We left out the details on how to select the bandwidths in the
algorithm. In Section 3, we will show that a large range of bandwidth will yield
the same asymptotic results and no under-smoothing is required. In other words,
when the sample size is sufficiently large, the estimator of β is very insensitive
to the bandwidth. However, for small or moderate sample size and when the
estimation of the functional form g is of interest, then different bandwidths may
yield different results. In this case, a careful bandwidth selection procedure such
as leave-one-out cross-validation needs to be implemented.

2.3. Alternative simpler estimators

In Sections 2.1 and 2.2, we have derived an ad hoc estimator and the locally
semiparametric efficient estimator. They can be used to estimate both β and
g(·). If we are interested only in consistent estimator of β, then we can use
the working model for either u(·) or g(·), which simplifies (5). We can see that
all these methods yield consistent estimators, while the method in Section 2.2
also yields local efficiency. Here, to estimate β, instead of estimating both u(·)
and g(·), we can estimate only u(·), as we now investigate. The basic idea is
to replace g and g′ using arbitrary functions, say g∗ and h∗ respectively in the
efficient score function construction, and solve
n∑

i=1
{yi − f∗(xi) − zig

∗(βTxi)}{zi −E(Z | xi)}h∗(βTxi){xLi − û(βTxi)} = 0 (6)

to obtain an estimator for β. The simplest choice will be to set f∗ = g∗ =
0, h∗ = 1. Denote the estimator β̃. To further estimate the function g(·), we can
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use a simple local constant estimator via solving

n∑
i=1

Kh{β̃
T
(xi − x0)}{yi − f∗(xi) − ziαc}{zi −E(Z | xi)} = 0.

The resulting solution α̂c(β̃, 0) is then our estimate of g at βTx0, i.e. ĝ(βTx0) =
α̂c(β̃, 0).

Likewise, we can also opt to estimate g(·) instead of u(·). We can choose
either to estimate g′(·) or to make a subjective choice for it. When we estimate
g′(·) along with g(·), the procedure is the following. Solve (4) to obtain α̂(β, j)
for j = 1, . . . , n. Then solve

n∑
i=1

{yi − f∗(xi) − ziα̂c(β, i)}{zi − E(Z | xi)}α̂1(β, i){xLi − u∗(βTxi)} = 0 (7)

to obtain β̂. Here u∗ is an arbitrarily chosen function, for example, the simplest
is to set u∗ = 0.

Because the procedures involved in these two simpler estimators are similar
and are both simpler compared with the estimator described in Section 2.2, we
omit the details on the computational algorithms.

3. Large sample property and inference

Theorem 3.1. Assume the regularity conditions listed in Supplementary Mate-
rial A.3 hold. When n → ∞, the estimator obtained by solving (5) satisfies β̂L−
βL = Op(h2 + n−1/2h−1/2). Furthermore,

√
n(β̂L −βL) → N(0,A−1

1 B1A−1
1

T)
in distribution when n → ∞, where

A1 = E
[
var(Z | X)g′ 2(βTX){XL − u(βTX)}⊗2

]
,

B1 = σ2E[var(Z | X)g′ 2(βTX){XL − u(βTX)}⊗2]
+E[{f(X) − f∗(X)}2var(Z | X)g′ 2(βTX){XL − u(βTX)}⊗2].

Here and throughout the text, a⊗2 ≡ aaT for a generic vector or matrix a. When
f∗(X) = f(X), the estimator obtains the optimal efficiency bound.

Remark 2. From Theorem 3.1, we can see that the efficiency loss by us-
ing misspecified f∗(X) is A−1

1 E[{f(X) − f∗(X)}2var(Z | X)g′ 2(βTX){XL −
u(βTX)}⊗2]A−1

1
T.

Remark 3. In estimation, we successfully avoided estimating the baseline re-
sponse f(X) to avoid the curse of dimensionality. However, the matrix B1 con-
tains f(X) which brings difficulties in using it for inference. Thus, we propose
to use bootstrap method to estimate the asymptotic variance in practice.
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Theorem 3.2. Assume the regularity conditions listed in Supplementary Ma-
terial A.3 hold. Let g2(·) be the second order derivative of g(·). Then the local
linear estimator for g(βTx) in (4) satisfies

bias{ĝ(β̂
T
x)} = h2 g2(βTx)

2

∫
u2K(u)du + o(h2),

var{ĝ(β̂
T
x)} = σ2

nhE{var(Zi | Xi) | βTx}f1(βTx)

∫
K2(u)du

+
E
[
{f(Xi)−f∗(Xi)}2var(Zi | Xi) | βTx

]
nh

[
E{var(Zi | Xi) | βTx}

]2
f1(βTx)

∫
K2(u)du+O(n−1).

Remark 4. From Theorem 3.2, we can see that the efficiency loss by using the

working model f∗(X) is
(
nh

[
E{var(Zi | Xi) | βTx}

]2
f1(βTx)

)−1

E [{f(Xi)−

f∗(Xi)}2var(Zi | Xi) | βTx
] ∫

K2(u)du.

We also have similar large sample properties for the two alternative estimators
given in Section 2.3, stated in the following Theorems 3.3 and 3.4. The proofs
of Theorems 3.1, 3.3 and 3.4 are given in the Supplementary Material.

Theorem 3.3. Assume the regularity conditions listed in Supplementary Ma-
terial A.3 hold. When n → ∞, the estimator obtained from solving (6) satisfies
β̂L−βL=Op(h2+n−1/2h−1/2). Furthermore,

√
n(β̂L−βL)→N(0,A−1

2 B2A−1
2

T)
in distribution when n → ∞, where

A2 = E
[
var(Z | X)h∗(βTX)g′ ∗(βTX){XL − u(βTX)}⊗2

]
−E

[
var(Z | X){g(βTX) − g∗(βTX)}∂h

∗(βTX){XL − u(βTX)}
∂βT

L

]
,

B2 = σ2E

[
var(Z | X)h∗2(βTX)

{
XL − u(βTX)

}⊗2
]

+ E

[
{f(X) − f∗(X)}2var(Z | X)h∗2(βTX)

{
XL − u(βTX)

}⊗2
]

+ E

[
Z2{Z − E(Z | X)}2{g(βTX)

− g∗(βTX)}2h∗2(βTX)
{
XL − u(βTX)

}⊗2
]

+ E

⎛⎜⎝{var(Z | X)}2{XL − u(βTX)}⊗2[
E
{
var(Z | X) | βTX

}]2
⎞⎟⎠
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+ 2E
[
Z{Z − E(Z | X)}2{f(X) − f∗(X)}{g(βTX) − g∗(βTX)}

× h∗2(βTX)
{
XL − u(βTX)

}⊗2
]

− 2E

⎡⎢⎣{var(Z | X)}2{g(βTX) − g∗(βTX)}h∗(βTX)
{
XL − u(βTX)

}⊗2

E
{
var(Z | X) | βTX

}
⎤⎥⎦.

(8)

Here, g′ ∗(·) is the first derivative of g∗(·).

Interestingly, even when f∗(X) = f(X), g∗(βTX) = g(βTX) and h∗(βTX) =
g′(βTX), the estimator still does not achieve the optimal efficiency bound. This
is in stark contrast with the proposed estimator, which is optimal as long as
f∗(X) = f(X).

Theorem 3.4. Assume the regularity conditions listed in Supplementary Ma-
terial A.3 hold. When n → ∞, the estimator obtained from solving (7) satisfies
β̂L−βL=Op(h2+n−1/2h−1/2). Furthermore,

√
n(β̂L−βL)→N(0,A−1

3 B3A−1
3

T)
in distribution when n → ∞, where

A3 = E
[
var(Z | X)g′ 2(βTX){XL − u∗(βTX)}XT

L

]
,

B3 = σ2E
[
var(Z | X)g′ 2(βTX){XL − u(βTX)}⊗2

]
+E

[
{f(X) − f∗(X)}2var(Z | X)g′ 2(βTX){XL − u(βTX)}⊗2

]
.(9)

When f∗(X) = f(X) and u∗(βTX) = u(βTX), the estimator is efficient.

4. Estimation and Inference when Z is continuous

When Z is continuous, typically representing the dosage, the treatment effect
of the form Zg(βTX) may not be adequate. The only conclusion that can be
drawn from such a model is that if g(βTX) is positive, the largest dosage Z
should be selected and when it is negative, the smallest dosage should be taken.
More useful models in this case include a quadratic treatment effect Zg1(βTX)+
Z2g2(βTX), a cubic model Zg1(βTX)+Z2g2(βTX)+Z3g3(βTX), or some other
nonlinear model of Z which does not have to limit to polynomials. For example, if
the quadratic model is used, a new patient with covariate X0 and g2(βTX0) < 0
would have the best treatment result if Z0 = −g1(βTX0)/{2g2(βTX0)}. In this
paper, we consider a general polynomial model of the form

Y = f(X) +
K∑

k=1
Zkgk(βTX) + ε, (10)
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while keep all other aspects of the model assumption identical to that of (1).
Similar to (2), the pdf in this case is

fX,Z,Y (x, z, y,β, σ, g, f, η)

= η(x)fZ|X(x, z)σ−1φ[σ−1{y − f(x) −
K∑

k=1

zkgk(βTx)}], (11)

and it has efficient score Seff(x, z, y,β, g, f, σ) = σ−2ε
{
u −

∑K
r=1 WrE(

WrU | βTx
)}

, where U =
∑K

k=1 gk1(βTx)
{
Zk −E(Zk | X)

}
xL. Here gk1(·)

is the first derivative of gk(·) for k = 1, . . . ,K, ε ≡ y− f(x)−
∑K

k=1 z
kgk(βTx).

Furthermore, W1, . . . ,WK are linear transformations of Z−E(Z | X), . . . , ZK−
E(ZK | X), i.e. A(βTX)(W1, . . . ,WK)T = {Z − E(Z | X), . . . ZK − E(ZK |
X)}T, such that E(WjWk | βTX) = I(j = k), i.e. they form a set of orthonor-
mal bases. Supplementary Material A.9 provides the detailed construction of
Wk’s and the derivation of the efficient score function. Naturally, based on the
form of the efficient score function and our experience in the binary Z case, we
propose a general class of consistent estimating equations for β as

n∑
i=1

{yi − f∗(xi) −
K∑

k=1
zki ĝk(β

Txi)}{ûi −
K∑
r=1

wriÊ(WrÛ | βTxi)} = 0, (12)

where Û =
∑K

k=1 ĝk1(βTx){Zk − E(Zk | X)}xL, f∗ is an arbitrary function
of x. Here at any x0 = x1, . . . ,xn and any β, ĝk(βTx0,β), ĝk1(βTx0,β) are
nonparametric profiling estimators obtained from

n∑
i=1

wi0[yi − f∗(xi) −
K∑

k=1
zki {αkc + αk1β

T(xi − x0)}]vi = 0, (13)

where V =
[
{Z−E(Z | X)} (1,βTX−βTx0), . . . ,

{
ZK−E(ZK | X)

}
(1,βTX−

βTx0)
]T

.
Similar to the binary Z case, we also have the standard

√
n consistency and

local efficiency of β̂ for continuous Z. We state the results in Theorem 4.1 while
skipping the proof because it is almost identical to that of Theorems 3.1.

Theorem 4.1. Assume the regularity conditions listed in Supplementary Ma-
terial A.3 hold. When n → ∞, the estimator obtained by solving (12) satisfies
β̂L − βL = Op(h2 + n−1/2h−1/2). Furthermore, the estimator described in (12)
and (13) satisfies the property that

√
n(β̂L − βL) → N(0,A−1

4 B4A−1
4 ) in dis-

tribution as n → ∞, where

A4 = σ2E

[
{U −

K∑
r=1

WrE(WrU | βTX)}⊗2

]
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B4 = E

(
[σ2 + {f(X) − f∗(X)}2]{U−

K∑
r=1

WrE(WrU | βTX)}⊗2

)
.

Additionally, when f∗(X) = f(X), the estimator obtains the optimal efficiency
bound.

5. Estimation and Inference when Z is categorical

To make the analysis complete, we now consider the case where Z is categorical.
This arises naturally in practice when several different treatment arms are com-
pared. Assume we consider K treatment arms in addition to the control arm.
Thus, we have K binary variables, Z1, . . . , ZK , each takes value 0 or 1. Note
that at most one of the Zk, k = 1, . . . ,K values can be 1 in each observation. A
sensible model in this scenario is

Y = f(X) +
K∑

k=1

Zkgk(βTX) + ε, (14)

and the pdf is

fX,Z,Y (x, z, y,β, σ, g, f, η)

= η(x)fZ|X(x, z)σ−1φ[σ−1{y − f(x) −
K∑

k=1

zkgk(βTx)}], (15)

where Z = (Z1, . . . , Zk)T. The corresponding efficient score is Seff(x, z, y,β, g, f,
σ) = σ−2ε

{
u −

∑K
r=1 WrE

(
WrU | βTx

)}
, where U =

∑K
k=1 gk1(βTx)

{Zk − E(Zk | X)}xL. Here gk1(·) is the first derivative of gk(·) for k = 1, . . . ,K,
ε ≡ y − f(x)−

∑K
k=1 zkgk(β

Tx). Furthermore, W1, . . . ,WK are linear transfor-
mations of Z1 −E(Z1 | X), . . . ZK −E(ZK | X), i.e. A(βTX)(W1, . . . ,WK)T =
{Z − E(Z | X), . . . ZK − E(ZK | X)}T, such that E(WjWk | βTX) = I(j = k),
i.e. they form a set of orthonormal bases. We can see that the efficient score has
much resemblance with the case for the continuous Z case, except that we are
now treating a multivariate Z. We show the derivation of the efficient score in
Supplementary Material A.10, where the detailed construction of Wk’s are also
given. Similar to the continuous univariate Z case, we propose a general class
of consistent estimating equations for β as

n∑
i=1

{yi − f∗(xi) −
K∑

k=1

zkiĝk(βTxi)}{ûi −
K∑
r=1

wriÊ(WrÛ | βTxi)} = 0, (16)

where Û =
∑K

k=1 ĝk1(βTx){Zk − E(Zk | X)}xL, f∗ is an arbitrary function
of x. Here at any x0 = x1, . . . ,xn and any β, ĝk(βTx0,β), ĝk1(βTx0,β) are
nonparametric profiling estimators obtained from

n∑
i=1

wi0[yi − f∗(xi) −
K∑

k=1
zki{αkc + αk1β

T(xi − x0)}]vi = 0, (17)
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where V=
[
{Z1−E(Z1 | X)} (1,βTX−βTx0), . . . , {ZK−E(ZK | X)} (1,βTX−

βTx0)
]T

. Similarly, we summarize the asymptotic properties of β̂ in Theo-
rem 5.1 and skip the proof because of its similarity to that of Theorems 3.1.

Theorem 5.1. Assume the regularity conditions listed in Supplementary Ma-
terial A.3 hold. When n → ∞, the estimator obtained by solving (16) satisfies
β̂L − βL = Op(h2 + n−1/2h−1/2). Furthermore, the estimator described in (16)
and (17) satisfies the property that

√
n(β̂L −βL) → N(0,A−1

5 B5A−1
5

T) in dis-
tribution as n → ∞, where

A5 = σ2E

[
{U −

K∑
r=1

WrE(WrU | βTX)}⊗2

]

B5 = E

(
[σ2 + {f(X) − f∗(X)}2]{U−

K∑
r=1

WrE(WrU | βTX)}⊗2

)
.

Additionally, when f∗(X) = f(X), the estimator obtains the optimal efficiency
bound.

6. Simulation studies

We conduct five sets of simulation experiments, covering all the scenarios dis-
cussed so far, to investigate the finite sample performance of the methods pro-
posed in Section 2. The results under various scenarios reflect the superior per-
formance of Method I given in (5) and show reasonably accurate inference results
as well. We also compute the percentage of making correct decisions based on
g(·) functions. In most of the scenarios, we are able to make correct decisions
more than 90% of the times. In each experiment, we simulate 500 data sets.

6.1. Simulation 1

In the first experiment, we consider a relatively simple setting. Specifically, the
covariate Xi = (Xi1, Xi2)T is generated from bivariate normal distribution with
zero mean and identity covariance matrix. We set f(Xi) = 0.05(Xi1 +Xi2) and
g(βTXi) = 2βTXi, where β = (1,−1)T. Note that the function g is mono-
tone. We generate the model error εi from a centered normal distribution with
standard error 0.3, and generate the treatment indicator Zi from a Bernoulli
distribution with probability 0.5.

We implement four methods for estimating the unknown parameter β for
comparison. Method I is the one given in (5). While implementing Method I, we
consider f∗ = 0 to avoid estimating f(X) due to curse of dimensionality. Method
II is the alternative method proposed in (6), where we let f∗ = g∗ = 0, h∗ = 1.
Method III corresponds to (7) and Method IV refers to the method proposed
in Section 2.1. To ensure identifiability, we fix the first component of β to be 1.
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From the results reported in Table 1, we can observe that while all the es-
timation methods have very small biases and standard deviations, Method I
performs significantly better than all other methods in terms of both estimation
bias and the standard errors. This is within our expectation because Method
I is a locally efficient estimator. In addition, in our experience, the computa-
tion time for all four methods are also comparable. Thus we recommend using
Method I due to its superior performance. Consequently, we focus on Method I
to proceed with the inference of β and the estimation and inference of g(·).

Although Theorem 3.1 provides an explicit form of the asymptotic variance,
the resulting form contains f(X), whose estimation is subject to the curse of
dimensionality and we have successfully avoided so far. Thus, to proceed with
inference on β, we evaluate the coverage probabilities of the 95% confidence
regions for β resorting to the bootstrap method. The coverage probabilities for
β2 are reported in the upper part of Table 2 under Method I. All results are
reasonably close to the nominal level. To evaluate the accuracy of the subsequent
treatment assignment rule based on sign{ĝ(β̂

T
X)}, we calculate the percentage

of making correct decisions, defined as PCD = 1 − n−1∑n
i=1 |I{ĝ(β̂

T
Xi) >

0} − I{g(βTXi) > 0}|. We also evaluate the optimal value function via

V̂F = 1
n

n∑
i=1

YiI[Zi = I{ĝ(β̂
T
Xi) > 0}]

pr[Zi = I{ĝ(β̂
T
Xi) > 0}|Xi]

.

In this particular simulation, due to covariate-independent randomization, V̂F =
(2/n)

∑n
i=1 YiI[I{ĝ(β̂

T
Xi) > 0}]. The values of PCD and V̂F and their standard

errors are reported in the upper part of Table 2 under Method I.
For comparison, we consider the semiparametric single index model (SIM)

approach by [31] to estimate the optimal individualized treatment strategy. Re-
sults are provided in Table 2. We can clearly see that our proposed Method I
performs better in that it yields smaller bias in estimating parameter β2, PCD
and the optimal value function, compared to the SIM approach. The estima-
tion variability of our Method I is also less than SIM method. To further check
the performance, we plot the median, pointwise 95% confidence bands for the
estimation of g(·) in Figure 1 and the performance is satisfactory.

Table 1

Bias and standard deviation (SD) for the estimation of β2 in Simulation 1 at n = 600.

Methods Bias SD
I −0.0015 0.0177
II −0.0056 0.1046
III 0.0028 0.1340
IV 0.0214 0.1415
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Table 2

Estimation and inference results for β2 in Simulation 1 using Method I and SIM approach
[31] at n = 600. We report biases, empirical standard deviations (SD), mean estimated

standard errors (SE) and 95% confidence interval coverage of the single index coefficients,
and estimation results for PCD and the optimal value function over 500 replications with
their empirical standard deviations (SD). True optimal value function, i.e., maxd V (d), is

1.1306.

Methods Bias(β2) SD(β2) SE(β2) CP(β2) PCD SD(PCD) V̂F SD(V̂F)
I −0.0015 0.0177 0.0194 0.972 0.9953 0.0040 1.1264 0.1071

SIM −0.0046 0.0940 0.0867 0.93 0.9881 0.0108 0.7978 0.0665

Fig 1. Estimation of g(·), when g(x′β) = 2x′β in Simulation 1.

6.2. Simulation 2

In the second experiment, the covariate Xi=(Xi1, Xi2, Xi3)T, where Xi1, Xi2, Xi3
are independently generated from a uniform(0,1) distribution. We let f(Xi) =
0.05(Xi1 + Xi2 + Xi3), g(βTXi) = sin(πβTXi) with βT = (1,−1, 2). Thus, the
g function here is both nonlinear and non-monotone. The regression errors εi
and the treatment indicator Zi are generated identically as in Simulation 1.

Similar to Simulation 1, we implement the four methods to compare the es-
timation of unknown parameter β, while fixing the first component of β at 1.
The estimation bias and standard errors are reported in Table 3. From the re-
sults, we can again conclude that Method I performs significantly better than
all other methods, even though all methods have acceptable bias and standard
errors. We compute the coverage probabilities of the 95% bootstrapped confi-
dence regions for β for Method I. The results are reported in Table 4. All results
are reasonably close to the nominal level. We also report the mean and standard
deviations of V̂F and PCD in the lower part of Table 4 under Method I. We
can see that even though PCD by the proposed method is higher than the SIM
method, SIM estimated a larger optimal value function, much larger than the
true optimal value function. This shows the SIM estimate of the optimal value
function is severely biased. In contrast, the proposed method results in very
small bias in estimating the optimal value function. To further check the perfor-
mance, we plot the median, pointwise 95% confidence bands for the estimation
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Fig 2. Estimation of g(·), g(x′β) = sin(πx′β) in Simulation 2.

of g(·) in Figure 2 and the performance is satisfactory. We also report the re-
sults obtained by the SIM approach [31] in Table 4. As expected, our proposed
Method I performs better compared to SIM method, even when the treatment
effect function is not monotone. Our proposed Method I has smaller bias and
less estimation variability.

Table 3

Bias and standard deviation (SD) for the estimation of (β2, β3) in Simulation 2 at n = 600.

Methods Bias(β2) SD(β2) Bias(β3) SD(β3)
I −0.0048 0.0604 0.0059 0.0979
II −0.0276 0.1831 0.0796 0.2685
III −0.0413 0.0835 0.0886 0.1438
IV −0.0512 0.0906 0.0930 0.1442

Table 4

Estimation and inference results for β2 in Simulation 2 using SIM approach [31] at n = 600.
Other caption is same as Table 2. True optimal value function, i.e., maxd V (d), is 0.3937.

Methods Bias(β2) SD(β2) SE(β2) Bias(β3) SD(β3) SE(β3)
I −0.0048 0.0604 0.0971 0.0059 0.0979 0.1456
SIM −0.0016 0.2754 0.1565 0.0674 0.5060 0.4961
Methods CP(β2) CP(β3) PCD SD(PCD) V̂F SD(V̂F)
I 0.972 0.976 0.975 0.010 0.3964 0.0328
SIM 0.778 0.934 0.9554 0.0223 0.7215 0.0270

6.3. Simulation 3

In the third simulation, the covariate Xi = (Xi1, Xi2)T is generated the same
as in Simulation 1. We set g(βTXi) = 2βTXi + sin(2βTXi) with β = (1,−1)T.
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The regression errors εi and the baseline response model f(Xi) are generated
identically as in Simulation 1. We allow the distribution of treatment indicator
Zi to depend on the covariates. Specifically, Zi is generated from a Bernoulli
distribution with probability of success exp(γTXi)/{1 + exp(γTXi)}, where
γ = (0.3,−0.2)T. Note that here we consider covariate adjusted randomization.

From the results in Table 5, we can observe that all estimation methods have
acceptable biases and standard errors even in covariate adjusted randomization
setup. Method I performs significantly better compared to other methods, as
expected. In the upper part of Table 6, we summarize the coverage probability
of the 95% bootstrap confidence intervals of β, mean and standard deviations
for estimating V̂F and PCD for Method I. We also plot the pointwise 95%
confidence band and median for g(·) in Figure 3. From the results provided
in Table 6, we can clearly see that our proposed Method I performs better
in estimating parameter, β2, PCD and value function, compared to the SIM
approach. The estimation variability of our Method I is also less than SIM.

Table 5

Bias and standard deviation (SD) for the estimation of β2 in Simulation 3 at n = 600.

Methods Bias SD
I −0.0012 0.0294
II −0.0044 0.1365
III 0.0038 0.0981
IV 0.0153 0.1069

Table 6

Estimation and inference results for β2 in Simulation 3 using Method I and SIM approach
at n = 600. Other caption is same as Table 2. True optimal value function, i.e., maxd V (d),

is 0.9027.

Methods Bias(β2) SD(β2) SE(β2) CP(β2) PCD SD(PCD) V̂F SD(V̂F)
I −0.0012 0.0294 0.0296 0.946 0.9900 0.0064 0.8977 0.0775
SIM 0.0358 0.0997 0.0823 0.834 0.9857 0.0114 0.8555 0.0766

6.4. Simulation 4

In this simulation setting, we consider the categorical treatment indicator. Our
covariate Xi = (Xi1, Xi2, Xi3)T is generated from multivariate standard normal
distribution. We consider three levels for treatment indicator Zi, 0, 1 and 2
with probability 0.4, 0.4 and 0.2, respectively. Here, relative to the baseline
at Z = 0, g1(βTXi) = 0.5(βTXi)2 − 1 is the treatment effect, when Zi = 1
and g2(βTXi) = (βTXi) sin(βTXi) − 1 is the treatment effect for Zi = 2 with
β = (1,−1, 1)T. Here, f(Xi) = 0.5(Xi1 +Xi2 +Xi3) and the regression error εi
is generated identically as in Simulation 1.

As we have repeatedly observed in previous simulations that Method I is
superior to other three methods, we only consider Method I to estimate the
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Fig 3. Estimation of g(·), when g(x′β) = 2(x′β) + sin{2(x′β)} in Simulation 3.

unknown parameter β and to proceed with the inference of β and the estimation
and inference of g1(·) and g2(·). The results are summarized in the first parts
of Tables 7 and 8. In the second parts of the aforementioned tables, we have
provided the results obtained from SIM. From Table 7, we can see that using our
proposed Method I, estimation bias is acceptable and the coverage probability
obtained from bootstrap confidence interval is close to the nominal level of 0.95.
On the other hand, as expected, due to the non-monotone treatment effect
models g1(·) and g2(·), SIM yields large bias. Also, SIM performs poorly in
terms of inference of β. From Table 8, we can clearly observe that our proposed
Method I yields higher PCD values and also small bias in estimating the optimal
value function, compared to SIM. In Figure 4, we have computed pointwise 95%
confidence band and median for g1(·) and g2(·).

Table 7

Bias, standard deviation (SD) and coverage probabilities (CP) for the estimation of β2 and
β3 in Simulation 4 using proposed method and SIM method at n = 600.

β2 β3
Methods Bias SD SE CP Bias SD SE CP
I 0.0001 0.0859 0.1068 0.964 −0.0085 0.0983 0.1140 0.954
SIM 0.6166 2.3757 0.4028 0.200 −0.5619 1.5774 0.3716 0.400

Table 8

The percentage of correct decisions (PCDs) with standard errors, and the estimated optimal
value function (V̂F) with empirical standard deviations in Simulation 4, using proposed

method and SIM method at n = 600. Here, PCD1 and PCD2 are related to g1(·) and g2(·),
respectively. True optimal value function, i.e., maxd V (d), is 0.8056.

Methods PCD1 SD(PCD1) PCD2 SD(PCD2) V̂F SD(V̂F)
I 0.9455 0.0295 0.8821 0.0558 0.7884 0.1521
SIM 0.5175 0.0263 0.5000 0.0263 −0.2997 0.0958
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Fig 4. Estimation of g1(·) (left) and g2(·) (right), where g1(x′β) = 0.5(x′β)2−1 and g2(x′β) =
(x′β) sin(x′β) − 1 in Simulation 4.

6.5. Simulation 5

In the last setting, we consider continuous treatment indicator. We generate
covariate Xi as in Simulation 1, and consider a quadratic treatment effect
Zig1(βTXi) + Z2

i g2(βTXi). Here Zi follows the uniform distribution on [0, 1],
g1(βTXi) = (βTXi − 2)2 − 1 and g2(βTXi) = {0.1(βTXi/3)3 − 1}{(βTXi −
2)2 − 1} with β = (1,−1)T. We let f(Xi) = 0.5(Xi1 + Xi2) and generate the
regression error εi as in Simulation 1.

Similar to Simulation 4, we implement Method I to estimate the unknown
parameter β and proceed with the inference of β and the estimation of value
function and PCD for g1(·) and g2(·). The results are summarized in the up-
per parts of Tables 9 and 10. From the upper part of Table 9, we can see
that estimation bias is acceptable and the coverage probability obtained from
bootstrap confidence interval is close to the nominal level of 0.95 for our pro-
posed method. Also, value function obtained by proposed method is close to
true value. In Table 10, we have summarized the mean and standard devi-
ations for PCD for g1(·) and g2(·). In Figure 5, we also plot pointwise 95%
confidence band and median for g1(·) and g2(·). We also compare the perfor-
mance of our method with the existing kernel assisted learning (KAL) method
[50]. From the lower part of Table 9, we clearly see that the our method per-
forms better than KAL method. The estimators obtained by KAL method
yield large bias and standard deviation. Indeed, [50] consider the following
set up: E(Y | Z,X) = f(X) + Q{Z − g(β̃

T
X)}H(X), where Q(·) is a uni-

modal function which is maximized at 0 and H(X) is a non-negative function.
Then E(Y | Z,X) is maximized at Z = g(β̃

T
X), where g : R → A is a pre-

defined link function which ensures that the suggested dose falls within safe
dose range (A). On the other hand, we consider a general polynomial model,
E(Y | Z,X) = f(X) +

∑K
k=1 Z

kgk(βTX), where K is the degree of the poly-
nomial. In this particular simulation setting, we consider K=2. Thus, we try to
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re-write our model similar to their model so that we can easily implement their
method in our simulation study. After re-writing, we get

E(Y | Z,X) =
{
f(X) − g2

1(βTX)
4g2(βTX)

}
+

⎡⎣−{
Z − −g1(βTX)

2g2(βTX)

}2
⎤⎦ {−g2(βTX)}

and our model satisfies the conditions of KAL when βTX ≤ 1 or 3 ≤ βTX <
6.4633. Thus, we use the subset of simulated data that fits into the KAL model
requirement to to obtain the KAL estimate of β2 and the value function.

Remark 5. For illustration, we performed model selection, where we choose
K that minimizes n−1 ∑n

i=1{yi −
∑K

k=1 z
k
i ĝk(β̂

T
xi)}2 + 2K2

√
log(n)/n. The

method is able to select the correct K(= 2) 87.6% of the times at n = 600.
As the sample size n increases, the percentage of detecting the true K also
increases. For n = 800 and n = 1000, the detection rate are 91.6% and 96.6%,
respectively. Ideally, the consistency of the model selection procedure should be
established and post model selection inference issues need to be studied. These
are not straightforward and we leave them to future work.

Table 9

Estimation and inference results of β2 and estimation of the optimal value function using
our proposed method and KAL method [50] at n = 600 in Simulation 5. True optimal value

function, i.e., maxd V (d), is 0.3926.

Methods Bias(β2) SD(β2) SE(β2) CP(β2) V̂F SD(V̂F)
I −0.0399 0.1107 0.1361 0.942 0.3797 0.1497
KAL 0.2855 2.1624 2.7085 0.564 0.0397 13.5458

Table 10

The percentage of correct decisions (PCDs) with standard deviations obtained by proposed
method at n = 600 in Simulation 5. Here, PCD1 and PCD2 are related to g1(·) and g2(·),

respectively.

PCD1 SD(PCD1) PCD2 SD(PCD2)
0.8957 0.0622 0.8953 0.0627

We have also considered the sample sizes, n = 800 and n = 1000 for each sim-
ulation study and summarized the results in Section A.11 in the supplementary
material. The conclusions are similar to that under the sample size n = 600.

7. Real data example

In this section, we demonstrate our proposed method using the Sequenced Treat-
ment Alternatives to Relieve Depression (STAR*D) study. The STAR*D study
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Fig 5. Estimation of g1(·) (left) and g2(·) (right), where g1(x′β) = (x′β − 2)2 − 1 and
g2(x′β) = {0.1(x′β/3)3 − 1}{(x′β − 2)2 − 1} in Simulation 5.

was a sequential, multiple-assignment, randomized trial (SMART, [21] and [26])
for patients with non-psychotic major depressive disorder. This study aimed
to determine what antidepressant medications should be given to patients to
yield the optimal treatment effect. For illustration purpose, we focused on a
subset of 319 participants who were given treatment bupropion (BUP) or ser-
traline (SER). Among these participants, 153 patients were randomly assigned
to the BUP treatment group and the rest of them were assigned to the SER
treatment group. The 16-item Quick Inventory of Depressive Symptomatology-
Self-Report scores (QIDS-SR(16)) were recorded at treatment visits for each
patient and considered as the outcome variable. We used R = −QIDS-SR(16)
as the reward to accommodate the assumption that the larger reward is more
desirable.

In the original data set, there are a large number of covariates that describe
participant features such as age, gender, socioeconomic status, and ethnicity.
However, many of them are not significantly related to the QIDS-SR(16). Ac-
cording to the study conducted by [6], we included five important covariates
into our study. These five covariates are “fatigue or loss of energy” in baseline
protocol eligibility (DSMLE, X1), patient’s age (Age, X2), “ringing in ears” in
patient rated inventory of side effects at Level 2 (EARNG-Level2, X3), “feel-
ing of worthlessness or guilt” in baseline protocol eligibility (DSMFW, X4) and
“hard to control worrying” in psychiatric diagnostic, screening questionnaire at
baseline (WYCRL, X5).

Let X = (X1, X2, X3, X4, X5)T and let Zi be the treatment indicator where
Zi = 1 means the participant was assigned to the BUP treatment, Zi = 0 repre-
sents the SER group. We fitted the model Yi = f(Xi) +Zig(XT

i β) + εi. We are
interested in finding the optimal treatment assignment to the patients. Since
treatment effects are described by g(XTβ), we first obtained the estimators for
β and the function g(·), using the proposed locally efficient estimator described
in Method I. In the analysis reported here, we did not attempt to approximate
f(X). We simply set f∗(X) = 0. In the supplementary file, we further con-
sidered a more complex working model f∗(X). The results are summarized in
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Fig 6. Box plots of the bootstrap estimators of the coefficients β2, . . . , β4.

Fig 7. ĝ(·) and upper 95% pointwise quantile curve based on 1000 permuted data.

Section A.15 of the supplementary file. We fixed the coefficient of X1 to be 1
and estimated the remaining four coefficients. The estimator for (β2, β3, β4, β5)T
was (2.59033,−3.31058, 1.49003, 3.64217)T. To check if these coefficients are sig-
nificant, we used bootstrap to obtain the estimation variance. We provide a
box plot of the bootstrap estimators of β in Figure 6. We also constructed
the confidence intervals for β2 to β5 respectively. We found that the effects of
β3 and β4 are significantly different from zero. The 95% confidence intervals
for β2, . . . , β5 are, respectively, (−2.001, 3.621), (−4.737,−0.299), (0.657, 4.920)
and (−4.207, 3.224).

We also estimated the function g(·) nonparametrically according to the method
introduced in the Section 2.2 to obtain ĝ, with its plot in Figure 7. To evaluate
the significance of the nonparametric function ĝ(·), we applied a permutation
test. Specifically, we randomly permute the treatment label Zi’s and estimate
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g(·) based on each permuted data. If the true g(·) function is zero, then the
permutation should not alter the true function g(·) and the function estimated
from the original real data, i.e. ĝ, is not likely to be an extreme case among
all the estimated g(·) functions based on the permuted data sets. We plot the
pointwise upper 95% quantile curve based on 1000 permuted data sets in Fig-
ure 7. It is clear that there is one region where the estimated curve ĝ is above
the 95% quantile curve. Therefore, in this region, we have a significantly positive
treatment effect using BUP.

Finally, we compare the optimal treatment assignment with the real treat-
ment assignment in this experiment. Under the estimated optimal ITR, we as-
sign the participants according to their corresponding estimation of g(·), i.e. the
ith participant is assigned to the treatment BUP if ĝ(XT

i β̂) > 0 and is assigned
to SER if ĝ(XT

i β̂) ≤ 0. Then we classified the patients according to the op-
timal treatment assignments and the real treatment assignments. The results
are displayed in Table 11. We can see that a total of 179 participants were not
assigned to their corresponding optimal treatment group. Therefore, the pro-
posed method could have been used for improving the patient satisfaction in
this example.

Table 11

Real treatment assignments versus the optimal treatment assignments.

Optimal Assignment
Real Assignment BUP SER

BUP 80 73
SER 106 60

8. Conclusion

In our work, we have assumed the regression error ε to be normal for the sim-
plicity. When the regression error is not normal, our estimation procedure can
be viewed as least square based instead of likelihood based, hence all the estima-
tors are still consistent. However, the efficiency statements derived in Section 3
do not hold anymore.

Instead of using f∗(x) = 0, one can certainly strive to get a better assessment
of f(x) and use it as f∗(x), in the hope of gaining efficiency. To this end, based
on the fact that f(x) = E(Y | Z = 0,x) = f(x) and the subset of data
with Zi = 0, we can use linear model, additive model, single index model, or
in fact any parametric or semipametric model that is estimable to get f∗(x)
as an approximation to f(x). If the adopted model is correct or close to be
correct, the resulting f∗(x) may be close to f(x) and may subsequently lead to
improved efficiency. Similarly, one can choose to use any nonparametric method
to estimate the working model for g′(βTx). For example, we used the local linear
kernel method to obtain the working model h∗(βTx) to estimate βL by solving
(7). We denote this estimated working model in (7) by α̂1(β, i).
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We also note that in the derivations of the proposed estimator, we did not
use the fact that Z2 = Z in the binary data. In fact, the estimation procedure,
asymptotic theory and implementation details are directly applicable even when
Z is categorical or continuous. A categorical Z corresponds to the case of com-
paring multiple treatments, while a continuous Z could be used when a range
of dosage levels are under examination.

In many clinical studies, the covariate is often of very high dimension. To
develop optimal individualized treatment rules in this case, it will be impor-
tant to develop simultaneous variable selection and estimation of individualized
rules. It is also of great interest to extend the current approach to multi-stage
randomized clinical studies.
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