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Abstract: Estimating the proportion of signals hidden in a large number
of noise variables is a pervasive objective in scientific research. In this paper,
we consider realistic, yet theoretically challenging scenarios with arbitrary
covariance dependencies between variables. We quantify the overall level of
covariance dependence using mean absolute correlation (MAC), and investi-
gate the performance of a family of estimators across the full range of MAC
values. We explore the joint effect of MAC dependence, signal sparsity, and
signal intensity on estimator performance, and find that no single estimator
in the family performs optimally across all MAC dependence levels. Based
on this theoretical insight, we propose a new estimator that is better suited
to arbitrary covariance dependencies. Our method compares favorably to
several existing methods in a variety of finite-sample settings, including
those with strong or weak covariance dependencies and real dependence
structures from genetic association studies.
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1. Introduction

We consider the problem of estimating the proportion of information-bearing
signals that are sparsely located within a large number of noise variables. This
problem is of interest in many scientific inquiries. For example, estimation of the
signal proportion is required by multiple testing methods to calculate the local
false discovery rate [10], to derive q-values [27], and to improve power [26, 12].
Furthermore, in many multi-stage studies, estimation of the signal proportion
can assist in efficient pre-screening and sample size calculation [6]. A recent line
of research, which focuses on retaining a high proportion of signals through effi-
cient false negative control, also relies on the estimation of the signal proportion
as a benchmark for signal inclusion [16, 18, 17].

Although the estimation of the signal proportion is in high demand, method-
ology development has encountered two major challenges. First, signals with
different sparsity levels often require different estimation methods, while the
sparsity levels of signals are unknown a priori. Secondly, the large set of vari-
ables under investigation may have complex dependence structures. There are a
number of rigorously developed methods, however, most of them assume inde-
pendence between variables [13, 24, 20] and sparsity levels within a certain range
[7, 19]. An extensive review of the existing methods can be found in [8]. More
recent developments extend the study to consider specific dependence struc-
tures. For example, [18] studies the problem assuming block-diagonal covariance
structures for the variables; [15] considers the problem in linear regression and
imposes certain dependence and sparsity conditions to facilitate accurate preci-
sion matrix estimation and bias mitigation. However, there is a lack of methods
to consistently estimate the signal proportion under arbitrary covariance depen-
dence when the signal sparsity is unknown and possibly falls in a wide range.
Such an estimator could have far-reaching impact in real-world applications.

In this paper, we focus on the family of estimators introduced in [24], which
covers several existing estimators in the literature. Members in the family have
a desirable lower bound property that applies regardless of the characteristics
of the signals being studied. In other words, estimators in the family provide
conservative estimates for the signal proportion, regardless of how sparse or
how weak the signals are. By analyzing the limiting distributions of empirical
processes of the p-values, the most powerful estimator in the family has been
discovered under independence.

Here, we consider variables that may be correlated in complex ways, and for
which the limiting distribution of the empirical process of p-values is unknown
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and cannot be expressed analytically. The impact of dependence on the family
members also depends on the level of signal sparsity, which is unknown. These
complexities greatly complicate the problem and require new approaches to be
developed.

In this paper, we present a novel strategy to quantify the degree of covari-
ance dependence using mean absolute correlation (MAC), and investigate the
performance of the family of estimators across the full range of MAC depen-
dence levels and the full range of signal sparsiy. We find that the most powerful
estimator under independence is no longer the optimal choice under arbitrary
covariance dependence. Moreover, our study reveals that no single member in
the family is most powerful under various MAC dependence levels.

Based on the theoretical insight, we propose a new estimator in an omnibus
form that borrows power from different members in the family. In order to
identify the most promising candidates among the infinitely many members of
the family, we investigate two general scenarios classified by the joint effect of
MAC dependence and signal sparsity, and study both the efficiency and power
limits of the members. As a result, our new estimator has a surprisingly simple
form that involves only two members of the family. This new estimator is proven
to be more powerful than any other member of the family under almost arbitrary
covariance dependence.

The new estimator is compared with several existing estimators in a variety
of simulation settings, including those with strong or weak covariance depen-
dencies and real dependence structures from genetic association studies. The
existing estimators include members in the original family of [24], consistent
estimators developed for independent variables and less sparse signals [13, 20],
and lower bound estimators constructed based on recent developments in post
hoc confidence bounds in multiple testing [2]. The results demonstrate that,
while the winner among existing methods changes in different settings, the new
estimator consistently outperforms or is comparable to the winner in most cases.
Furthermore, the new estimator appears to be the most stable one over different
levels of dependence and sparsity.

We apply the new estimator in two real-data analyses. The first dataset is
from an expression quantitative trait loci (eQTL) study with 8637 candidate
single-nucleotide polymorphisms (SNPs) that possess weak overall dependence
in terms of the MAC level. The second dataset is from a classical association
study, in which the microarray data of 4088 candidate genes possess strong over-
all dependence, as indicated by a high MAC level. These two real dependence
structures have been investigated in simulation studies, and results in the real
data analyses seem to be consistent with the patterns observed in the simulation,
which supports the effectiveness of the new estimator in real-world applications.

2. Method and theory

Denote I0 and I1 as the sets of indices for noise and signal variables, respectively.
We consider the marginal distribution of m variables as
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Xj ∼ F0 · 1{j ∈ I0} + F1 · 1{j ∈ I1}, j = 1, . . . ,m, (1)

where F0 and F1 are the marginal null and signal distribution, respectively. We
assume that F0 is continuous and that the joint null distribution of (X1, . . . , Xm)
is known a priori, i.e., when |I1| = ∅, (X1, . . . , Xm) follows a known joint distri-
bution. Define the signal proportion

π = |I1|/m. (2)

Our goal is to estimate the signal proportion π without needing to specify F1.
Note that the variables may be arbitrarily dependent on each other.

In this section, we first present a family of estimators originally introduced
in [24] for independent variables. The original family was built upon the empir-
ical processes of p-values and analyzed under independence. When variables are
arbitrarily dependent, much of the original analysis cannot be applied. As the
family of estimators is indexed by the choice of a bounding function, we first
derive a general result on the effect of bounding functions under arbitrary depen-
dence and sparsity levels. Then, we quantify the overall covariance dependence
of the variables by the MAC level and derive new concentration inequalities to
characterize the empirical processes of the variables across the full range of the
MAC level. As a result, we are able to explicate the joint effect of MAC level
and signal sparsity, and obtain valuable insight on the efficiency of different
members in the family. These analyses eventually motivate us to come up with
a new more powerful estimator under arbitrary covariance dependence.

2.1. A family of estimators

For presentation purposes, we perform inverse normal transformation as Zj =
Φ−1(F0(Xj)), where Φ−1 is the inverse of the cumulative distribution function
of N(0, 1). After the transformation, we have

Zj ∼ Φ · 1{j ∈ I0} + G · 1{j ∈ I1}, j = 1, . . . ,m, (3)

where G denotes the signal distribution after the transformation, which remains
unknown.

The family of estimators introduced in [24] is indexed by a strictly positive
function, which is called a bounding function and denoted as δ(t). Given a
bounding function δ(t), define

π̂(δ) = sup
t>0

F̄m(t) − 2Φ̄(t) − cm(δ;α)δ(t)
1 − 2Φ̄(t)

, (4)

where

F̄m(t) = m−1
m∑
j=1

1{|Zj | > t},
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Φ̄(t) = 1 − Φ(t), and cm(δ;α) is the so-called bounding sequence, whose value
is determined as follows. Let

W̄m(t) = m−1
m∑
j=1

1{|Wj | > t},

where (W1, . . . ,Wm) are generated from the joint null distribution of (Z1, . . . , Zm),
which is known a priori. Define

Vm(δ) = sup
t>0

|W̄m(t) − 2Φ̄(t)|
δ (t) . (5)

For a given α > 0, define the bounding sequence cm(δ;α) as a quantity that
satisfies the following properties:

(a) mcm(δ;α) > m0cm0(δ;α), where m0 = |I0|, and
(b) P (Vm(δ) > cm(δ;α)) < α for all m.

It can be seen that cm(δ;α) is an upper bound of Vm(δ) at the level of 1 − α,
and Vm(δ) relies on the joint null distribution of (Z1, . . . , Zm) and the choice
of the bounding function δ(t). We modified the original construction in [24]
by adding the absolute sign in the numerator of (5) to stabilize Vm(δ) under
dependence. To implement the π̂(δ) estimators in real practice, cm(δ;α) can
be numerically simulated as the (1 − α)-quantile of Vm(δ). More details of the
implementation are provided at the end of Section 2.3. This version of π̂(δ) is
for signals of two-sided effects. Minor changes to accommodate one-sided signal
effect is straightforward.

Intuitively speaking, for a given δ(t), cm(δ;α) indicates a normal range of
[F̄m(t)−2Φ̄(t)]/δ(t) when all variables are noise. Therefore, value of the observed
F̄m(t) that exceeds the normal range presents evidence for the existence of
signals. Further, the property in (b) implies that F̄m(t)−2Φ̄(t)− cm(δ;α)δ(t) is
a lower bound estimate for π for any t > 0. Therefore, a more efficient estimator
can be constructed by taking the supremum of F̄m(t)−2Φ̄(t)−cm(δ;α)δ(t) over
t > 0. The denominator 1− 2Φ̄(t) is a term appeared in refined analysis, which
can further improve the efficiency of the estimator.

The π̂(δ) family covers a wide range of candidates depending on what the
bounding function is. These candidates can perform very differently and excel
in different settings. It has been shown that for independent variables, perfor-
mances of the candidates would depend on the sparsity level of signals. Specif-
ically, the signal proportion can be re-parameterized as π = m−γ , γ ∈ (0, 1),
with γ ∈ (0, 1/2) representing the relatively dense case and γ ∈ [1/2, 1) repre-
senting the more sparse case. Consistency of different members in the original
family has been studied for γ ∈ (0, 1/2) and γ ∈ [1/2, 1), separately [24].

Here, we consider the estimation problem in the more general and realistic
setting with arbitrary dependence and signal sparsity. When the joint null dis-
tribution of (Z1, . . . , Zm) has an arbitrary dependence structure, the limiting
distribution of Vm(δ) in (5) is generally unknown and may not even have an an-
alytic expression. This imposes the major challenge in analyzing the π̂(δ) family
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under dependence. Our strategy to tackle the problem is to first derive a gen-
eral result showing the effects of the bounding function and bounding sequence
in providing lower bound and upper bound estimates of the signal proportion
in Section 2.1. Then, we explicate the joint effects of dependence and signal
sparsity under different choices of bounding function in Section 2.2.

Theorem 2.1 Consider model (3). For a given bounding function δ(t), if a
bounding sequence cm(δ;α) satisfying the properties in (a) and (b) is imple-
mented in (4), then

P (π̂(δ) < π) ≥ 1 − α. (6)

On the other hand, if δ(t) is non-increasing with respect to t, and G = Gm

such that Gm(τm) → 0 or Gm(−τm) → 1 for some τm such that τm � 1 and
δ(τm) � π/cm(δ;α), then

P (π̂(δ) > (1 − ε)π) → 1 (7)

for any constant ε > 0.

The expression a � b (or a � b) means that a/b = o(1) (or b/a = o(1)). The
above theorem says that π̂(δ) is a lower bound of π at 1 − α level, as shown
in (6), if a bounding sequence cm(δ;α) satisfying (a) and (b) is implemented.
On the other hand, as shown in (7), π̂(δ) is an upper bound of (1− ε)π for any
ε > 0 under certain conditions on the signal distribution G, which essentially
says that the signal effect, either positive (G < Φ) or negative (G > Φ), is strong
enough, and the required magnitude depends on the bounding function δ(t), the
bounding sequence cm(δ;α), and the true signal sparsity π.

If both the lower bound (with α = αm → 0) and the upper bound results
hold for a given δ(t), then π̂(δ) consistently estimates the true signal proportion,
i.e., for any constant ε > 0,

P ((1 − ε)π ≤ π̂(δ) < π) → 1. (8)

This general result holds for signals of arbitrary sparsity levels under general
dependence.

2.2. Joint effect of dependence and sparsity on the π̂(δ) family

As individual estimators in the π̂(δ) family hinge on the choice of the bounding
function, we further study their consistency with specific δ(t) functions. We
focus on δ(t) of the form δ(t) = [Φ̄(t)]θ, θ ∈ [0, 1], as their effects on π̂(δ)
have been studied under independence [24]. Valuable insight can be obtained by
comparing the estimators’ performances under independence and dependence,
which eventually helps us construct a new and more powerful estimator for
dependent variables.

In order to explicate the effect of dependence on π̂(δ), we assume that

(Z1, . . . , Zm) ∼ Nm(μ,Σ), (9)
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where μ is a m-dimensional sparse vector with μj = Aj · 1{j ∈ I1}, Aj > 0,
and Σ is an arbitrary correlation matrix, known a priori. The condition that all
Aj > 0 is for presentation simplicity and can be easily relaxed to |Aj | > 0.

Different from the existing analyses on π̂(δ) under independence, where the
limiting distributions of Vm(δ) with different δ(t) functions have readily appli-
cable forms, theoretical study under arbitrary covariance dependence is more
challenging as the limiting distributions of Vm(δ) are generally unknown. To pro-
ceed with the analysis, we calibrate covariance dependence through the measure
of Mean Absolute Correlation (MAC) and derive new concentration inequalities
to reflect the effects MAC dependence, signal sparsity, and signal intensity levels
on the limiting behaviors of Vm(δ). The MAC measure is defines as

ρ̄Σ =
m∑
i=1

m∑
j=1

|Σij |/m2. (10)

A larger value of ρ̄Σ indicates stronger overall dependence. Specifically, ρ̄Σ =
1/m corresponds to the independent case, and ρ̄Σ = O(1) occurs when, e.g., each
variable is correlated with all the other variables at non-degenerating levels. The
ρ̄Σ measure has been discussed in the literature on multiple testing, as shown
in, e.g., [25] and [9].

We also employ a discretization technique from [1] and [15] as follows. Define
T = [

√
log logm,

√
5 logm] ∩ N and the discretized version of Vm(δ) as

V ∗
m(δ) = max

t∈T

|W̄m(t) − 2Φ̄(t)|
δ(t) . (11)

Denote c∗m(δ;α) as the bounding sequence for V ∗
m(δ), and define the correspond-

ing proportion estimator as

π̂∗(δ) = max
t∈T

F̄m(t) − 2Φ̄(t) − c∗m(δ;α)δ(t)
1 − 2Φ̄(t)

. (12)

Next, we explicates how the MAC dependence interacts with signal sparsity
and signal intensity to influence the consistency of π̂∗(δ) with δ(t) = [Φ̄(t)]θ and
reveals very different results for θ ∈ [0, 1/2] and θ ∈ (1/2, 1].

Theorem 2.2 Consider model (9). Let δ(t) = [Φ̄(t)]θ with θ ∈ [0, 1/2]. Then,
there exists a sequence c∗m(δ;α) = Cα

√
ρ̄Σ(logm)θ+1/2, where Cα > 0 is a large

enough constant depending on α, that satisfies properties (a) and (b); and the
corresponding estimator π̂∗(δ) satisfies P (π̂∗(δ) < π) ≥ 1 − α.

On the other hand, if Am(= minj∈I1 Aj) satisfies Am � 1 and

Am − Φ̄−1

(
π1/θ

ρ̄
1/(2θ)
Σ (logm)(θ+1/2)/(2θ)

)
� 1, (13)

then P (π̂∗(δ) > (1 − ε)π) → 1 for any constant ε > 0.
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The above theorem says that for δ(t) = [Φ̄(t)]θ with θ ∈ [0, 1/2], one can find a
bounding sequence c∗m(δ;α) = Cα

√
ρ̄Σ(logm)θ+1/2 to construct a lower bound

estimator of π (P (π̂∗(δ) < π) ≥ 1−α). On the other hand, for the upper bound
result (P (π̂∗(δ) > (1 − ε)π) → 1), effect of the constant Cα is asymptotically
negligible and only the order of c∗m(δ;α) is used to derive condition (11) on signal
intensity. Note that such a c∗m(δ;α) sequence may not be unique depending
on the value of the constant Cα, and a smaller value of c∗m(δ;α) is preferred
as indicated in Theorem 2.1. In the numerical implementation, we choose the
bounding sequence as the (1−α)-quantile of the empirical distribution of Vm(δ)
as shown at the end of Section 2.3.

It can be seen that condition (13) becomes more stringent with sparser signals
(smaller π) or stronger MAC dependence (larger ρ̄Σ). For the special case with
independent variables, ρ̄Σ = 1/m and (13) degenerates to

Am − Φ̄−1
(
π1/θm1/2θ/(logm)(θ+1/2)/(2θ)

)
→ ∞,

which agrees with the sufficient and necessary condition for the consistency
of π̂(δ) under independence for relatively sparse signals. The comparison
can be made by adopting the same parameterization as in Theorem 3 of
[24] with π = m−γ , γ ∈ [1/2, 1), ν = θ, and κ = 2. Note that Φ̄−1(π1/θ/

(ρ̄1/(2θ)
Σ (logm)(θ+1/2)/(2θ))) is well-defined only for π <

√
ρ̄Σ(logm)θ+1/2. In

the case π ≥
√

ρ̄Σ(logm)θ+1/2, condition (13) is simply Am � 1.
Results in Theorem 2.2 indicate how the performance of π̂∗(δ) with δ(t) =

[Φ̄(t)]θ, θ ∈ [0, 1/2], deteriorates as the MAC dependence gets stronger. These
results, however, cannot be extended to π̂∗(δ) with θ ∈ (1/2, 1]. For the latter,
we present the following theorem that applies to the full range of θ ∈ [0, 1].

Theorem 2.3 Consider model (9). Let δ(t) = [Φ̄(t)]θ with θ ∈ [0, 1]. Then,
there exists a bounding sequence c∗m(δ;α) = C ′

α

√
logm, where C ′

α > 0 is a large
enough constant depending on α, that satisfies properties (a) and (b); and the
corresponding estimator π̂∗(δ) satisfies P (π̂∗(δ) < π) ≥ 1 − α.

On the other hand, if Am(= minj∈I1 Aj) satisfies

Am − Φ̄−1
(

π1/θ

(logm)1/(2θ)

)
� 1, (14)

then P (π̂∗(δ) > (1 − ε)π) → 1 for any constant ε > 0.

This theorem shows that for bounding function δ(t) = [Φ̄(t)]θ with θ ∈ [0, 1],
one can find a bounding sequence c∗m(δ;α) = C ′

α

√
logm, whose order does

not involve the MAC dependence level ρ̄Σ. Consequently, the condition in (14)
for signal intensity only depends on the signal sparsity level (π). Results in
Theorem 2.3 implies that π̂∗(δ) with θ ∈ [0, 1] is consistent under (14), no
matter how strong the MAC dependence is.
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2.3. A new estimator for dependent variables

For independent variables, [24] shows that when δ(t) = [Φ̄(t)]θ, the most power-
ful estimator in the π̂(δ) class has θ = 1/2, meaning that this single estimator is
consistent under the most relaxed conditions compared to the other members in
the class. This powerful estimator under independence, however, can be strongly
affected by the MAC dependence as shown in Theorem 2.2. On the other hand,
Theorem 2.3 indicates that candidates with θ ∈ (1/2, 1], which are not as pow-
erful under independence, may outperform candidates with θ ∈ [0, 1/2] under
strong MAC dependence. However it seems that no single candidate from the
class is most powerful under arbitrary covariance dependence. Motivated by
the theoretical insight, we propose to construct a new estimator of the form
π̂adap = max{π̂(δ), δ ∈ Δ}, where Δ is the set of δ(t) functions that render the
most powerful estimators in different dependence scenarios.

The power of π̂adap depends on the δ(t) functions in Δ. However, even with
the specific form δ(t) = [Φ̄(t)]θ, θ ∈ [0, 1], there are infinitely many candidates
to choose from. Denote π̂θ as π̂(δ) with δ = [Φ̄(t)]θ. In order to find the most
promising candidates in this class, we investigate efficiency as well as power
limits of all the π̂θ members in two general scenarios classified by the joint
effect of MAC dependence and signal sparsity. As a result, we identify two most
promising candidates, π̂0.5 and π̂1, and construct the new estimator as

π̂adap = max{π̂0.5, π̂1}. (15)

The consistency of π̂adap is directly implied by the consistency of π̂0.5 and π̂1
with a degenerating α = αm → 0. Despite the surprisingly simple form, the
new estimator has significant power gain over any member in the π̂θ class under
arbitrary MAC dependence. To provide more insight on this, we explicitly study
the discretized version π̂∗

adap = max{π̂∗
0.5, π̂

∗
1}. The following theorem is based on

the monotonicity of π̂∗
θ with respect to θ, the sufficient conditions in Theorem 2.2

and Theorem 2.3, and an almost necessary condition in Lemma A.3 for the
consistency of π̂∗

θ members.

Theorem 2.4 Consider model (9). Let δ(t) = [Φ̄(t)]θ with θ ∈ [0, 1]. If

Φ̄−1
(

π2

ρ̄Σ logm

)
� Φ̄−1

(
π√

logm

)
, (16)

then π̂∗
0.5 is the most powerful estimator in {π̂∗

θ : θ ∈ [0, 1]}, and we have
P (π̂∗

adap = π̂∗
0.5) → 1. On the other hand, if

Φ̄−1
(

π2

ρ̄Σ logm

)
� Φ̄−1

(
π√

logm

)
, (17)

then π̂∗
1 is the most powerful estimator in {π̂∗

θ : θ ∈ [0, 1]}, and we have
P (π̂∗

adap = π̂∗
1) → 1.
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Conditions (16) and (17) are almost complementary to each other and corre-
spond to relatively weak and strong covariance dependence, respectively. For
example, when variables are generated from an AR(1) model, ρ̄Σ = O(m−1)
and condition (16) holds for signals of almost all the sparsity levels. Consider
another example where variables are equally correlated, we have ρ̄Σ = O(1)
and (17) is easily satisfied. In less extreme cases, the levels of ρ̄Σ and π jointly
affect the difficulty of estimation, and the proposed π̂∗

adap matches the winner
in the π̂∗

θ class with high probability. The theoretical analyses in Section 2.2
and Section 2.3, although derived for the discretized version of π̂(δ) and π̂adap,
provide important insights on their properties under dependence, which are
supported by extensive simulation studies in Section 3.2.

Numerical Implementation. We provide additional descriptions on the nu-
merical implementation of π̂adap. Specifically, we need to generate (W1, . . . ,Wm)
following the joint null distribution of Zj . There are application scenarios where
the joint null distribution is available. For example, in genome-wide association
studies (GWAS), summary statistics for all the genetic variants are obtained
based on marginal linear regression. The joint null distribution of the summary
statistics follows N(0,Σ), where Σ is the sample correlation matrix of the genetic
variants that is often observable [3, 11].

In some application scenarios where the joint null distribution is unknown,
(W1, . . . ,Wm) may be simulated non-parametrically. For example, when the
test statistics are derived from a method of association that does not render
an observable null distribution, one can simulate (W1, . . . ,Wm) by randomly
shuffling the observations of the response variable to break the relationship
between the response and the predictors. More details for such permutation
approaches can be found in [28].

Based on the simulated (W1, . . . ,Wm), we follow (5) to simulate Vm,0.5 and
Vm,1 corresponding to θ = 1/2 and 1. The maximums are taken over t =
w1, . . . , wm. Consequently, we set α = 0.1 and generate cm,0.5 and cm,1 as the
(1−α)-quantile of N replicates of Vm,0.5 and Vm,1, respectively. In our numeri-
cal studies, N is set to be 1000. The simulated cm,0.5 and cm,1 are implemented
to calculate π̂0.5 and π̂1 as in (4) by taking the maximums over t = z1, . . . zm.
Finally, the new estimator π̂adap is calculated by (15).

2.4. Other existing lower bound estimators

Theorem 2.2–Theorem 2.4 imply that P (π̂∗
adap < π) ≥ 1 − α + o(1) under con-

dition (16) or (17), and the two conditions are almost complementary to each
other. This result indicates that the new estimator is likely to be an asymptotic
lower bound of π at 1 − α level. We note that other lower bound estimators
can be readily constructed utilizing recent developments in post hoc confidence
bounds in multiple testing (see e.g. [2], [22], and [14]). Specifically, for the can-
didate set that include all the variables, a confidence bound on false positives
at 1 − α level provides a lower bound of true positives in the full set at 1 − α
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level. Such a lower bound, divided by m, results in a lower bound of the signal
proportion at 1 − α level. Investigating the consistency of these lower bound
estimators under different dependence structures would be an interesting topic
for future research.

In Section 3.3, we compare our proposed estimator with two lower bound
estimators, π̂SM and π̂BL, in simulation. π̂SM and π̂BL are derived from the
post hoc confidence bounds in [2] as follows. Given the p-values p1, . . . , pm of
X1, . . . , Xm, let π̂SM = (m− VSM )/m, where VSM is called the Simes post hoc
bound and is defined as

VSM = min
k∈{1,...,m}

{
m∑
i=1

1{pi ≥ αk/m} + k − 1
}
.

VSM is derived based on the classical Simes inequality. It has been proved to
be a level 1 − α confidence bound for the number of false positives in the full
set of variables. Consequently, π̂SM is a level 1 − α lower bound of π, i.e.,
P (π̂SM < π) ≥ 1 − α.

The other lower bound estimator π̂BL can be derived in a similar way as
π̂BL = (m−VBL)/m, where VBL is an improved confidence bound and is defined
as

VBL = min
k∈{1,...,m}

{
m∑
i=1

1{pi ≥ F−1
k (λ(α))} + k − 1

}
.

F−1
k (λ(α)) is call a balanced template and is defined as the λ(α)-quantile of

Fk, where Fk is the cumulative distribution function of p0
(k), and p0

(k) is the kth
ordered p-values under the joint null distribution of p1, . . . , pm. Moreover, λ(α) is
the α-quantile of mink∈{1,...,m} Fk(p0

(k)). In our numerical examples, F−1
k (λ(α)),

k = 1, . . . ,m, are simulated based on the empirical distributions of Fk and
mink∈{1,...,m} Fk(p0

(k)), which are obtained from 1000 sets of p-values generated
under the joint null distribution.

3. Simulation study

In the following simulation examples, we consider six dependence structures:
cases (a)-(d) are commonly observed correlation structures in literature and
cases (e)-(f) are real correlation structures from genetic association studies. In
all the examples, Σii = 1, i = 1, . . . ,m.

(a) Autocorrelation. Σij = r|i−j| and r = 0.9.
(b) Equal correlation. Σij = 0.5 for i = j.
(c) Block dependence. Σ has square diagonal blocks. The off-diagonal ele-

ments in the blocks are 0.5, and the elements outside the blocks are zero.
(d) Sparse dependence. Σ has nonzero elements randomly located. The data

generation process is similar to Model 3 in [5]. Let Σ∗ = (σij), where σii = 1,
σij = 0.9∗ Bernoulli(1, 0.1) for i < j and σji = σij . Then Σ = I1/2(Σ∗ +
δI)/(1 + δ)I1/2, where δ = |λmin(Σ∗)| + 0.05.
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(e) SNP dependence. Σ is the sample correlation matrix of the real SNP
data on Chromosome 21 from 90 individuals in the International HapMap
project.

(f) Gene dependence. Σ is the sample correlation matrix of the real gene
expression data from 71 individuals in a riboflavin production study.

We generate test statistics Z1, . . . , Zm ∼ N((μ1, . . . , μm),Σ) and set m =
2000 for cases (a)-(d) above. Case (e) has m = 8657, which is the number of
SNPs in the dataset, and case (f) has m = 4088, which is the number of genes
in the dataset. Additional details of the datasets can be found in Section 4. The
block size in case (c) is set as 400 × 400. (μ1, . . . , μm) is a sparse vector with
randomly located non-zero elements. We consider both relatively sparse signals
with π = 0.02 and more dense signals with π = 0.1.

3.1. MAC dependence effect on bounding sequences

We first calculate the MAC levels as defined in (10) for the dependence struc-
tures in (a)-(f) above and report the values of cm,0.5 and cm,1, which are gen-
erated by the procedure described in Numerical Implementation in Section 2.3
under the joint null distribution N(0,Σ). Recall that a larger value of ρ̄Σ in-
dicates stronger overall covariance dependence. It can be seen in Table 1 that
ρ̄Σ is fairly small for cases (a) and (d), moderately small for cases (c) and (e),
and fairly large for cases (b) and (f). Moreover, cm,0.5 seems to vary positively
with ρ̄Σ, whereas cm,1 does not show such tendency. These patterns are demon-
strated more clearly in Figure 1, which seem to agree with the theoretical results
in Theorem 2.2 and Theorem 2.3 about the MAC dependence effect on cm,0.5
and cm,1.

Table 1

MAC levels and realized values of bounding sequences for different dependence structures.

(a) Auto (b) Equal (c) Block (d) Sparse (e) SNP (f) Gene
ρ̄Σ 0.0095 0.5003 0.1003 0.0042 0.0869 0.3353
cm,0.5 0.178 0.87 0.397 0.099 0.222 0.706
cm,1 8.46 4.39 5.58 6.79 13.6 6.42

3.2. Comparison with members in the π̂(δ) family

We first compare the new estimator π̂adap with members in the π̂(δ) family. Since
π̂0.5 and π̂1 are likely to outperform other π̂θ members with θ ∈ [0, 1/2) and
θ ∈ (1/2, 1), respectively, as indicated in Theorem 2.4, we specifically compare
π̂adap with π̂0.5 and π̂1. Note that π̂0.5 has been shown in [24] as the most
powerful estimator in the π̂θ class for independent variables. Besides various
dependence structures in (a)-(f), we consider sparse and relatively dense signals
with π = 0.02 and 0.1, respectively, and varying signal intensity with non-zero
μj = 3, 4, 5, 6.
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Fig 1. Trends of MAC levels and bounding sequences for different dependence structures.

Fig 2. Comparison under (a) autocorrelation. “est_0.05”, “est_1”, and “est_adapt” repre-
sent π̂0.5, π̂1, and π̂adap, respectively. The top row has π = 0.02, and the bottom row has
π = 0.1. The true π values are highlighted by the red horizontal lines.

Recall the theoretical results in Section 2.3 that π̂0.5 may outperform π̂1
when dependence is weak enough or signals are less sparse, and π̂1 may perform
better in the other scenarios. We observe such tendencies in Figure 2-Figure 7.
Specifically, the autocorrelation case (Figure 2) has small ρ̄Σ = 0.0095. It shows
that π̂0.5 has comparable results as those of π̂1 for small π = 0.02, and out-
performs π̂1 for larger π = 0.1. The equal correlation case (Figure 3) has the
largest ρ̄Σ = 0.5. It shows that π̂1 outperforms π̂0.5 for both π = 0.02 and 0.1.
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Fig 3. Comparison under (b) equal correlation. The top row has π = 0.02, and the bottom
row has π = 0.1. Notations and symbols are the same as in Figure 2.

Fig 4. Comparison under (c) block dependence. The top row has π = 0.02, and the bottom
row has π = 0.1. Notations and symbols are the same as in Figure 2.

The block diagonal case (Figure 4) has moderate ρ̄Σ = 0.1. It shows that π̂1
outperforms π̂0.5 for small π, and is comparable to π̂0.5 for larger π. The sparse
correlation case (Figure 5) has the smallest ρ̄Σ = 0.0042, we see that π̂0.5 out-
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Fig 5. Comparison under (d) sparse dependence. The top row has π = 0.02, and the bottom
row has π = 0.1. Notations and symbols are the same as in Figure 2.

Fig 6. Comparison under (e) SNP dependence. The top row has π = 0.02, and the bottom
row has π = 0.1. Notations and symbols are the same as in Figure 2.

performs π̂1 for both π = 0.02 and 0.1. The SNP correlation case (Figure 6)
has ρ̄Σ = 0.0869, which is moderately small. We see that π̂1 is slightly better
for small π, and π̂0.5 is better for larger π. The gene correlation case (Figure 7)
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Fig 7. Comparison under (f) gene dependence. The top row has π = 0.02, and the bottom
row has π = 0.1. Notations and symbols are the same as in Figure 2.

has ρ̄Σ = 0.3353, which is fairly large. It shows that π̂1 outperforms π̂0.5 for
both small and larger π. In all these examples, the new estimator π̂adap always
matches the winner of π̂0.5 and π̂1 and exhibits better adaptivity to different
dependence structures and signal sparsity levels.

3.3. Comparison with other existing estimators

In this section, we compare the proposed π̂adap with two existing consistent
estimators, π̂GW and π̂JC , which are developed for relatively dense signals un-
der independence [13, 21], and two lower bound estimators, π̂SM and π̂BL,
constructed based on the confidence bounds in multiple testing as described in
Section 2.4. We set α = 0.1 for π̂adap, π̂SM and π̂BL. Table 2 and Table 3 report
the summarized results of the five estimators from 100 replications.

Table 2 is for the settings with relatively sparse signals (π = 0.02). It can
be seen that for the cases with relatively weak MAC dependence ((a), (d), and
(e)), π̂adap generally outperforms the other estimators, and the runner-up seems
to be π̂BL. In the cases with moderately strong MAC dependence ((c) and (f)),
π̂adap outperforms the others when signals are relatively weak (μ = 3 and 4)
but not as well as π̂SM and π̂BL when signals are very strong (μ = 6). In the
case with extremely strong MAC dependence ((b)), π̂BL performs the best. In
this set of examples, π̂GW and π̂JC are not competitive, which is not surprising
because they are not developed for very sparse signals.

Table 3 shows the comparison results for settings with relatively dense signals
(π = 0.1). In the cases with relatively weak MAC dependence ((a), (d), and (e)),
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Table 2

Mean values and standard deviations (in brackets) of different methods when signals are
relatively sparse (π = 0.02). For each scenario with a fixed dependence structure and a fixed

μ value, the mean value(s) that is closest to the true π is highlighted in bold.

Dependence Method μ = 3 μ = 4 μ = 5 μ = 6
(a) Auto π̂adap 0.008 (0.006) 0.014 (0.004) 0.019 (0.003) 0.020 (0.002)

π̂SM 0.004 (0.001) 0.011 (0.002) 0.017 (0.001) 0.020 (0.001)
π̂BL 0.005 (0.004) 0.012 (0.003) 0.016 (0.002) 0.019 (0.001)
π̂GW 0.014 (0.024) 0.014 (0.024) 0.015 (0.024) 0.014 (0.024)
π̂JC 0.048 (0.048) 0.049 (0.046) 0.050 (0.045) 0.051 (0.045)

(b) Equal π̂adap 0.031 (0.060) 0.039 (0.058) 0.042 (0.057) 0.043 (0.056)
π̂SM 0.005 (0.006) 0.012 (0.007) 0.017 (0.004) 0.020 (0.002)
π̂BL 0.010 (0.023) 0.017 (0.022) 0.022 (0.020) 0.024 (0.020)
π̂GW 0.193 (0.273) 0.194 (0.272) 0.193 (0.273) 0.194 (0.274)
π̂JC 0.295 (0.403) 0.296 (0.402) 0.295 (0.401) 0.297 (0.402)

(c) Block π̂adap 0.012 (0.019) 0.018 (0.017) 0.022 (0.016) 0.024 (0.016)
π̂SM 0.005 (0.005) 0.012 (0.005) 0.018 (0.004) 0.020 (0.004)
π̂BL 0.006 (0.012) 0.013 (0.011) 0.018 (0.010) 0.021 (0.010)
π̂GW 0.060 (0.091) 0.060 (0.091) 0.059 (0.091) 0.060 (0.091)
π̂JC 0.115 (0.143) 0.115 (0.142) 0.116 (0.141) 0.118 (0.140)

(d) Sparse π̂adap 0.009 (0.003) 0.015 (0.022) 0.018 (0.001) 0.020 (0.001)
π̂SM 0.004 (0.001) 0.011 (0.002) 0.017 (0.001) 0.019 (0.001)
π̂BL 0.010 (0.003) 0.015 (0.002) 0.018 (0.001) 0.019 (0.001)
π̂GW 0.003 (0.006) 0.003 (0.007) 0.003 (0.006) 0.003 (0.007)
π̂JC 0.030 (0.021) 0.031 (0.020) 0.032 (0.020) 0.033 (0.020)

(e) SNP π̂adap 0.006 (0.006) 0.013 (0.005) 0.018 (0.003) 0.020 (0.003)
π̂SM 0.003 (0.001) 0.011 (0.001) 0.017 (0.001) 0.019 (0.001)
π̂BL 0.004 (0.002) 0.012 (0.001) 0.017 (0.001) 0.019 (0.001)
π̂GW 0.034 (0.040) 0.034 (0.039) 0.035 (0.039) 0.035 (0.039)
π̂JC 0.061 (0.069) 0.063 (0.069) 0.064 (0.068) 0.064 (0.068)

(f) Gene π̂adap 0.012 (0.031) 0.020 (0.030) 0.025 (0.029) 0.026 (0.029)
π̂SM 0.003 (0.002) 0.011 (0.002) 0.017 (0.001) 0.019 (0.001)
π̂BL 0.004 (0.004) 0.012 (0.003) 0.017 (0.002) 0.019 (0.002)
π̂GW 0.088 (0.145) 0.089 (0.145) 0.089 (0.146) 0.089 (0.145)
π̂JC 0.151 (0.232) 0.151 (0.230) 0.152 (0.230) 0.154 (0.230)

all the methods perform quite well. In the cases with moderately strong MAC
dependence ((c) and (f)), π̂adap, π̂SM and π̂BL outperform π̂GW and π̂JC . In
the case with extremely strong MAC dependence ((b)), π̂adap outperforms the
others when signals are relatively weak (μ = 3 and 4) and performs comparably
to π̂SM and π̂BL when signals are strong (μ = 5 and 6). Overall, the performance
of π̂adap appears to be competitive and most stable across various dependence
structures and levels of sparsity.

4. Real application

We apply the proposed method to two real datasets. The first dataset is from an
eQTL study with the goal to identify SNPs that potentially govern the expres-
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Table 3

Mean values and standard deviations (in brackets) of different methods when signals are
relatively dense (π = 0.1). The mean value(s) that is closest to the true π for each scenario

is highlighted in bold.

Dependence Method μ = 3 μ = 4 μ = 5 μ = 6
(a) Auto π̂adap 0.06 (0.01) 0.08 (0.01) 0.09 (0.00) 0.10 (0.00)

π̂SM 0.03 (0.01) 0.07 (0.00) 0.09 (0.00) 0.10 (0.00)
π̂BL 0.06 (0.01) 0.08 (0.01) 0.09 (0.00) 0.10 (0.00)
π̂GW 0.08 (0.03) 0.09 (0.03) 0.09 (0.02) 0.09 (0.02)
π̂JC 0.12 (0.05) 0.12 (0.04) 0.13 (0.04) 0.13 (0.04)

(b) Equal π̂adap 0.07 (0.05) 0.10 (0.04) 0.11 (0.04) 0.11 (0.04)
π̂SM 0.03 (0.03) 0.07 (0.02) 0.09 (0.01) 0.10 (0.00)
π̂BL 0.04 (0.03) 0.08 (0.02) 0.10 (0.01) 0.10 (0.01)
π̂GW 0.23 (0.26) 0.25 (0.26) 0.25 (0.25) 0.25 (0.25)
π̂JC 0.33 (0.39) 0.33 (0.37) 0.34 (0.37) 0.34 (0.37)

(c) Block π̂adap 0.05 (0.03) 0.08 (0.02) 0.10 (0.01) 0.10 (0.01)
π̂SM 0.03 (0.01) 0.07 (0.01) 0.09 (0.01) 0.10 (0.00)
π̂BL 0.04 (0.02) 0.07 (0.01) 0.09 (0.01) 0.10 (0.01)
π̂GW 0.11 (0.09) 0.12 (0.08) 0.12 (0.08) 0.12 (0.08)
π̂JC 0.17 (0.14) 0.17 (0.13) 0.18 (0.13) 0.18 (0.13)

(d) Sparse π̂adap 0.07 (0.01) 0.09 (0.00) 0.10 (0.00) 0.10 (0.00)
π̂SM 0.03 (0.01) 0.07 (0.00) 0.09 (0.00) 0.10 (0.00)
π̂BL 0.07 (0.01) 0.09 (0.00) 0.09 (0.00) 0.10 (0.00)
π̂GW 0.07 (0.01) 0.07 (0.01) 0.08 (0.01) 0.08 (0.01)
π̂JC 0.10 (0.02) 0.11 (0.01) 0.11 (0.02) 0.11 (0.02)

(e) SNP π̂adap 0.06 (0.01) 0.08 (0.01) 0.09 (0.00) 0.10 (0.00)
π̂SM 0.03 (0.01) 0.07 (0.00) 0.09 (0.00) 0.10 (0.00)
π̂BL 0.05 (0.01) 0.07 (0.00) 0.09 (0.00) 0.10 (0.00)
π̂GW 0.10 (0.04) 0.11 (0.04) 0.11 (0.03) 0.11 (0.03)
π̂JC 0.13 (0.07) 0.13 (0.07) 0.14 (0.06) 0.14 (0.06)

(f) Gene π̂adap 0.05 (0.03) 0.08 (0.03) 0.10 (0.02) 0.10 (0.02)
π̂SM 0.03 (0.01) 0.07 (0.01) 0.09 (0.00) 0.10 (0.00)
π̂BL 0.04 (0.01) 0.07 (0.01) 0.09 (0.01) 0.10 (0.00)
π̂GW 0.15 (0.14) 0.15 (0.13) 0.16 (0.13) 0.16 (0.13)
π̂JC 0.20 (0.23) 0.20 (0.22) 0.21 (0.22) 0.22 (0.21)

sion of gene CCT8 on chromosome 21. This gene has been found to be relevant to
Down Syndrome [3, 11]. We obtain the SNP data and the gene expression data of
90 unaffected subjects from the Asian population in the International HapMap
project (45 Japanese in Tokyo, Japan, and 45 Han Chinese in Beijing; http://
zzz.bwh.harvard.edu/plink/res.shtml#hapmap). After removing SNPs with
missing values, we have 8657 candidate SNPs left.

Test statistics for the associations between each SNP and the expression level
of CCT8 are derived by fitting marginal linear regressions as in [3] and [11].
Histogram of the test statistics is presented in the left panel of Figure 8, where
the long and thin right tail indicates possibly a small number of signals with
positive signal effects. The correlation matrix of the test statistics, which is the
same as the correlation matrix of the SNPs, has the MAC level of ρ̄Σ = 0.087.

http://zzz.bwh.harvard.edu/plink/res.shtml#hapmap
http://zzz.bwh.harvard.edu/plink/res.shtml#hapmap
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Fig 8. Histograms in two application examples. The left panel is for the test statistics in
an eQTL analysis. The right panel is for the test statistics in a gene expression association
analysis.

Fig 9. Heatmaps in two application examples. The left panel shows the absolute value of
correlations for 50 SNPs in the Hapmap data. The right panel shows the absolute value of
correlations for 50 gene expressions in the riboflavin production study.

Heatmap of the correlation matrix of the first 50 SNPs is illustrated in the left
panel of Figure 9.

We apply the proposed estimator π̂adap, two lower bound estimators (π̂SM

and π̂BL) and two existing consistent estimators (π̂GW and π̂JC) to the dataset.
The estimated proportion values for the eQTL study are presented in Table 4,
where it shows that π̂adap is larger than π̂SM and π̂BL, but smaller than π̂GW

and π̂JC . Note that this SNP correlation structure has been investigated in
simulation studies. Results of this real application seem to be consistent with
the findings in simulation, see, e.g. case (e) of Table 2, where it shows that π̂adap

could be closer to the true π under the SNP dependence structure when signals
are very sparse.

The second real application example has microarray data from a study on ri-
boflavin (vitamin B2) production in bacillus subtilis. This dataset is available at
https://www.annualreviews.org/doi/suppl/10.1146/annurev-statistics-
022513-115545 and has been studied in [4]. The dataset includes the expres-
sion levels of 4088 genes and the logarithm of riboflavin production rate of 71

https://www.annualreviews.org/doi/suppl/10.1146/annurev-statistics-022513-115545
https://www.annualreviews.org/doi/suppl/10.1146/annurev-statistics-022513-115545
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Table 4

Results of the real applications in eQTL study and gene expression association analysis.

ρ̄Σ π̂adap π̂SM π̂BL π̂GW π̂JC

eQTL 0.087 0.0016 0.0009 0.0009 0.0068 0.0186
Microarray 0.335 0.0638 0.0355 0.0443 0.2575 0.3742

individuals. Marginal regression coefficients are used as test statistics for associ-
ations between genes and riboflavin production. Histogram of the test statistics
is presented in the right panel of Figure 8, which suggests possibly a larger sig-
nal proportion than in the eQTL data example. The right panel of Figure 9
shows the heatmap of the correlation matrix of the first 50 genes, which indi-
cates a more complicated dependence structure. The MAC level of the genes is
ρ̄Σ = 0.335, which is fairly large.

For this example, the estimated proportion values are reported in the bottom
row of Table 4, where it shows that π̂adap is larger than π̂SM and π̂BL, yet
smaller than π̂GW and π̂JC . Recall that this gene dependence structure has been
investigated in simulation studies. Results of this application example seem to
be consistent with the simulation results reported in case (f) of Table 3, where
it shows that the new estimator π̂adap could be more accurate under the gene
dependence structure when signals are relatively dense.

5. Conclusion and discussion

Estimating the proportion of information-bearing signals is notoriously difficult
when dealing with large-scale datasets with complex dependence structures. In
this paper, we quantify arbitrary covariance dependence by the MAC level and
study the MAC dependence effect on a family of estimators that was originally
developed under independence.

Different from the analysis under independence, key components of the es-
timators do not have readily applicable limiting distributions under arbitrary
dependence. We develop new concentration inequalities to explicate the joint
effects of MAC dependence, signal sparsity and signal intensity. Different from
the previous conclusion that there exists a single member in the family that
is most powerful for signals of different sparsity levels under independence, we
find that no single estimator in the family is most powerful under different MAC
dependence levels. We identify candidate estimators that are most powerful in
different MAC dependence scenarios and develop a new estimator π̂adap that
better adapts to arbitrary covariance dependence.

The new estimator inherits the lower bound property of the family and pro-
vides a conservative estimate under very general conditions. This property is
valuable in real applications as it requires no conditions on the unknown sig-
nals. Moreover, the new estimator is more powerful than any member in the
family and compares favorably to other existing methods in extensive numeri-
cal examples considering weak to strong covariance dependence and real depen-
dence structures from genetic associations studies. As the estimation problem
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is frequently met in real applications with complex data structures and the
challenge to address arbitrary covariance dependence is at the frontier of high-
dimensional sparse inference, we expect the impact of the proposed research to
be far-reaching.

Appendix

This section presents proofs of the theoretical results appeared in Section 2.
The symbol C denotes a genetic, finite constant whose values can be different
at different occurrences.

A.1. Proof of Theorem 2.1

We first show P (π̂(δ) < π) ≥ 1 − α. Let Z0
j = Zj for j ∈ I0 and Z1

j = Zj for
j ∈ I1. Denote m0 = |I0| and s = |I1|. Then

F̄m(t) = m−1
∑
j∈I0

1{|Z0
j |>t} + m−1

∑
j∈I1

1{|Z1
j |>t} ≤ m−1

∑
j∈I0

1{|Z0
j |>t} + m−1s

= (1 − π)m−1
0

∑
j∈I0

1{|Z0
j |>t} + π.

Consequently,

P (π̂δ > π)

≤ P

⎛
⎝sup

t>0

⎧⎨
⎩

(1−π)
(
m−1

0
∑

j∈I0
1{|Z0

j |>t}−2Φ̄(t)
)
+π

(
1−2Φ̄(t)

)
−cm(δ;α)δ(t)

1−2Φ̄(t)

⎫⎬
⎭>π

⎞
⎠

≤ P

(
sup
t>0

{
(1−π)

(
m−1

0

∑
j∈I0

1{|Z0
j |>t}−2Φ̄(t)

)
−cm(δ;α)δ(t)

}
>0

)

≤ P

(
sup
t>0

{
m−1

0

∑
j∈I0

1{|Z0
j |>t}−2Φ̄(t)−cm0(δ;α)δ(t)

}
>0

)
≤ P (Vm0 >cm0,δ)=α,

where the second and last inequalities are by properties (a) and (b) of cm(δ;α),
respectively. The claim P (π̂(δ) < π) ≥ 1 − α follows.

Next, we show P (π̂(δ) > (1 − ε)π) → 1. Because π̂δ > F̄m(t) − 2Φ̄(t) −
cm(δ;α)δ (t) for any t > 0 and

F̄m(t) = 1 − π

m0

∑
j∈I0

1{|Z0
j |>t} + π

s

∑
j∈I1

1{|Z1
j |>t},

then

π̂δ

π
− 1 > − 1

π
cm(δ;α)δ(t) + 1 − π

π

(
m−1

0

∑
j∈I0

1{|Z0
j |>t} − 2Φ̄(t)

)
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+
(
s−1

∑
j∈I1

1{|Z1
j |>t} − 1

)
− 2Φ̄(t) (18)

for any t > 0. Now, set t in (18) at τm such that τm � 1 and δ(τm) � π/cm(δ;α).
We will show that each term on the right hand side of (18) at t = τm is of op(1).

First, by the condition δ(τm) � π/cm(δ;α), we have the first term A1 =
−cm(δ;α)δ(τm)/π = o(1).

Consider the second term A2 = π−1(1−π)
(
m−1

0
∑

j∈I0
1{|Z0

j |>τm} − 2Φ̄(τm)
)

in (18). The following lemma is proved in Section A.2. Therefore A2 = op(1).

Lemma A.1 For any τm such that τm � 1 and δ(τm) � π/cm(δ;α), we have

π−1
(
m−1

0

∑
j∈I0

1{|Z0
j |>τm} − 2Φ̄(τm)

)
= op(1).

For the third term A3 = s−1 ∑
j∈I1

1{|Z1
j |>τm} − 1 in (18), we have

P (|A3| > a) = P (1 − s−1
∑

j∈I1
1{|Z1

j |>τm} > a)

≤ a−1(1 − P (|Z1
j | > τm))

= a−1 (G(τm) −G(−τm)) = o(1)

for any fixed a > 0, where the third step is by Z1
j ∼ G for j ∈ I1, and the last

the step is by the condition G(τm) → 0 or G(−τm) → 1.
Last but not least, the forth term in (18): A4 = −2Φ̄(τm) = o(1) given

τm � 1.
Summarizing the above gives the desired result P (π̂(δ)/π > 1 − ε) → 1.

A.2. Proof of Lemma A.1

Recall the definitions of Vm(δ) in (5) and

P

(
sup
t>0

|m−1 ∑m
j=1 1{|Wj |>t} − 2Φ̄(t)|

δ (t) > cm(δ;α)
)

< α.

where W1, . . . ,Wm ∼ Nm(0,Σ). Then, for t = τm,

P

(
|m−1 ∑m

j=1 1{|Wj |>τm} − 2Φ̄(τm)|
π

>
cm(δ;α)δ(τm)

π

)
< α.

Given cm,δδ(τm)/π = o(1), we have

|m−1 ∑m
j=1 1{|Wj |>τm} − 2Φ̄(τm)|

π
= op(1). (19)

Decompose the left hand side above as

π−1
∣∣∣m−1

∑m

j=1
1{|Wj |>τm} − 2Φ̄(τm)

∣∣∣
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≥ π−1
∣∣∣m−1

0

∑
j∈I0

1{|Wj |>τm} − 2Φ̄(τm)
∣∣∣

−π−1

∣∣∣∣∣∣m−1
m∑
j=1

1{|Wj |>τm} −m−1
0

∑
j∈I0

1{|Wj |>τm}

∣∣∣∣∣∣
For the second term on the right hand side,

π−1
∣∣∣m−1

∑m

j=1
1{|Wj |>τm} −m−1

0

∑
j∈I0

1{|Wj |>τm}

∣∣∣
= π−1

∣∣∣m−1
∑

j∈I1
1{|Wj |>τm} − πm−1

0

∑
j∈I0

1{|Wj |>τm}

∣∣∣
≤ s−1

∑
j∈I1

1{|Wj |>τm} + m−1
0

∑
j∈I0

1{|Wj |>τm}. (20)

Since τm � 1, both s−1 ∑
j∈I1

1{|Wj |>τm} = op(1) and m−1
0

∑
j∈I0

1{|Wj |>τm} =
op(1) by Markov’s inequality. Combining this with (19) and (20) implies that
the first term on the right hand side of (20) satisfies

π−1
∣∣∣m−1

0

∑
j∈I0

1{|Wj |>τm} − 2Φ̄(τm)
∣∣∣ = op(1).

Now, because the joint distribution of Z0
j , j ∈ I0, is the same as the joint distri-

bution of Wj , j ∈ I0, claim in Lemma A.1 follows.

A.3. Proof of Theorem 2.2

First, we show that the sequence c∗m(δ;α) = Cα

√
ρ̄Σ(logm)θ+1/2, with a large

enough constant Cα, satisfies properties (a) mc∗m(δ;α) > m0c
∗
m0,δ

and (b)
P (V ∗

m(δ) > c∗m(δ;α)) < α for all m.
Consider property (a). Define Σ0 as the covariance matrix of Wj , j ∈ I0 and

ρ̄Σ0 =
∑
i∈I0

∑
j∈I0

|Σij |/m2
0.

It can be shown that

ρ̄Σ >
1
m2

∑
i∈I0

∑
j∈I0

|Σij | = (1 − π)2

m2
0

∑
i∈I0

∑
j∈I0

|Σij | = (1 − π)2ρ̄Σ0 .

Then it follows that

c∗m(δ;α) > C(1 − π)
√

ρ̄Σ0(logm)θ+1/2 > (1 − π)c∗m0,δ = (m0/m)c∗m0,δ,

and property (a) is verified.
Next consider property (b). By Chebyshev’s inequality and direct calculation,

P (Vm(δ)∗ > c∗m(δ;α)) ≤ (c∗m(δ;α))−2 Var(Vm(δ)∗)
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≤ (c∗m(δ;α))−2
E([Vm(δ)∗]2)

= (c∗m(δ;α))−2
E

[
max
t∈T

(
|W̄m(t) − 2Φ̄(t)|

[Φ̄(t)]θ

)2]

Let A(t) = [Φ̄(t)]−2θ(W̄m(t) − 2Φ̄(t))2. It can be shown that

E

(
max
t∈T

A(t)
)

=
∫ ∞

0
P (max

t∈T

A(t) > c)dc ≤
∫ ∞

0

∑
t∈T

P (A(t) > c)dc

=
∑
t∈T

E[A(t)] ≤ C
√

logm · max
t∈T

E[A(t)]

= C
√

logm · max
t∈T

{
[Φ̄(t)]−2θVar

(
W̄m(t)

)}
The following lemma provides the order of Var(W̄m(t)).
Lemma A.2 For W1, . . . ,Wm ∼ Nm(0,Σ) and ρ̄Σ in (10),

Var
(
W̄m(t)

)
= O

(
ρ̄Σ · e−t2/2

)
. (21)

Therefore,

[Φ̄(t)]−2θ · Var
(
W̄m(t)

)
≤ C[Φ̄(t)]−2θ · ρ̄Σ · e−t2/2

≤ C

(
t

e−t2/2

)2θ

· ρ̄Σ · e−t2/2

≤ C(logm)θ · ρ̄Σ · e(θ−1/2)t2

≤ Cρ̄Σ · (logm)θ

where the first step above is by Lemma A.2, the second step is by Mill’s ratio,
the third step is by t ∈ T, and the last step is by θ ∈ [0, 1/2]. Combining the
above, we have

P (Vm(δ)∗ > c∗m(δ;α)) ≤ C (c∗m(δ;α))−2 · ρ̄Σ · (logm)θ+1/2,

and the above is bounded by α if c∗m(δ;α) = Cα

√
ρ̄Σ(logm)θ+1/2 for some large

enough constant Cα.
Next, we demonstrate the upper bound property of π̂(δ)∗. Denote

Bm = Φ̄−1

(
π1/θ

ρ̄
1/(2θ)
Σ (logm)(θ+1/2)/(2θ)

)
.

Let τm = (Am + Bm)/2. Then, Am � 1 and condition (13) imply that τm � 1
and τm −Bm → ∞, which further imply

[Φ̄(τm)]θ � π/c∗m(δ;α).

On the other hand,

Gm(τm) = Φ(τm −Am) = Φ(−(Am −Bm)/2) = o(1),

where the last step is by condition (13). The rest is straightforward by applying
Theorem 2.1.
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A.4. Proof of Lemma A.2

Var
(
W̄m(t)

)
= m−2

m∑
j=1

V ar(1{|Wj |>t}) + m−2
∑
i �=j

Cov(1{|Wi|>t}, 1{|Wj |>t}).

By Mill’s ratio,

m−2
m∑
j=1

V ar(1{|Wj |>t}) ≤ m−12Φ̄(t)(1 − 2Φ̄(t)) ≤ Cm−1e−t2/2.

For m−2 ∑
i �=j Cov(1{|Wi|>t}, 1{|Wj |>t}), we have

Cov(1{|Wi|>t}, 1{|Wj |>t}) = 4
∫ t

−∞

∫ t

−∞
f(x, y)dxdy − 4

∫ t

−∞
φ(x)dx

∫ t

−∞
φ(y)dy

≤ C|Σij |e−t2/2,

where the last step follows from Corollary 2.1 in [23]. Combining the above with
the definition of ρ̄Σ results in (21).

A.5. Proof of Theorem 2.3

First, it is easy to see that c∗m(δ;α)=C ′
α

√
logm satisfies property (a) mcm(δ;α)>

m0cm0(δ;α).
For property (b), by Markov’s inequality,

P (Vm(δ)∗ > c∗m(δ;α)) ≤ (c∗m(δ;α))−1 E
(

max
t∈T

|W̄m(t) − 2Φ̄(t)|
[Φ̄(t)]θ

)
.

Let B(t) = [Φ̄(t)]−θ|W̄m(t) − 2Φ̄(t)|, and by the similar arguments as in
Section A.3, we have

E[max
t∈T

B(t)] ≤ C
√

logm · max
t∈T

E[B(t)].

Further, E[B(t)] ≤ [Φ̄(t)]−θ(E[W̄m(t)]+2Φ̄(t)) = 4[Φ̄(t)]1−θ ≤ 4 for θ ∈ (1/2, 1].
Summing up the above, we have

P (Vm(δ)∗ > c∗m(δ;α)) ≤ C (c∗m(δ;α))−1 √logm < α,

where the last step is by c∗m(δ;α) = C ′
α

√
logm with a large enough constant

C ′
α.
Next, we demonstrate the upper bound property of π̂(δ)∗ with δ(t) = [Φ̄(t)]θ,

θ ∈ (1/2, 1]. Similar arguments as in the proof of Theorem 2.2 for the upper
bound can be applied with condition (13) replaced by condition (14). We omit
the details to save space.
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A.6. Proof of Theorem 2.4

Recall the definition of π̂∗
adap. It is enough to show the following four claims.

Claim 1: π̂∗
0.5 is more powerful than any π̂∗

θ with θ ∈ [0, 1/2).
Claim 2: π̂∗

1 is more powerful than any π̂∗
θ with θ ∈ (1/2, 1).

Claim 3: Under condition (16), π̂∗
0.5 is more powerful than π̂∗

1 .
Claim 4: Under condition (17), π̂∗

1 is more powerful than π̂∗
0.5.

Denote c∗θ as the bounding sequence c∗m(δ;α) with δ(t) = [Φ̄(t)]θ. It can seen
that c∗θ[Φ̄(t)]θ is strictly decreasing with respect to θ ∈ [0, 1/2] for t ∈ T as
shown in Theorem 2.2. Then π̂∗

θ is strictly increasing with respect to θ ∈ [0, 1/2]
and is most powerful when θ = 1/2. This implies Claim 1. Similar arguments
can be applied to prove Claim 2.

Claim 3 and 4 rely on the almost necessary condition on the consistency of
π̂∗
θ in the following lemma.

Lemma A.3 Consider model (9). Let δ(t) = [Φ̄(t)]θ with θ ∈ [0, 1] and con-
struct π̂∗

θ with a degenerating α = αm → 0. If Am satisfies Am � 1 and

Φ̄−1
(
(π/c∗θ)1/θ

)
−Am � 1,

then π̂∗
θ/π → 0 in probability.

For θ = 0.5, we have (π/c∗θ)1/θ = (π/c∗0.5)
2 = π2/(Cρ̄Σ logm). By Theorem 2.2

and Lemma A.3, the sufficient and almost necessary condition for the consis-
tency of π̂∗

0.5 is

Am − Φ̄−1
(

π2

Cρ̄Σ logm

)
� 1.

Similarly, for θ = 1, we have (π/c∗θ)1/θ = π/c∗1 = π/(C
√

logm). By Theorem 2.3
and Lemma A.3, the sufficient and almost necessary condition for the consis-
tency of π̂∗

1 is

Am − Φ̄−1
(

π

C
√

logm

)
� 1.

The above implies Claim 3 and 4. This concludes the proof of Theorem 2.4.

A.7. Proof of Lemma A.3

First, pick a τm = [Φ̄−1 ((π/c∗θ)1/θ)+ Am]/2. Then, we have

Φ̄(Am) � Φ̄(τm) � (π/c∗θ)1/θ and τm −Am � 1. (22)

Define
Dθ(t) = F̄m(t) − 2Φ̄(t) − c∗θ[Φ̄(t)]θ.

By definition of π̂∗
θ , for any ε > 0,

P

(
π̂∗
θ

π
> ε

)
= P

(
max
t∈T

Dθ(t)
1 − 2Φ̄(t)

> επ

)
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≤ P

(
max

t∈[1,τm]∩N

Dθ(t)
1 − 2Φ̄(t)

> επ

)

+P

(
max

t∈[τm,
√

5 logm]∩N

Dθ(t)
1 − 2Φ̄(t)

> επ

)

≤ P

(
max

t∈[1,τm]∩N

Dθ(t) > 0
)

+P

(
max

t∈[τm,
√

5 logm]∩N

Dθ(t) >
1
2επ

)
. (23)

Now, consider the first term in (23).

P

(
max

t∈[1,τm]∩N

Dθ(t)>0
)

= P

⎛
⎝ max

t∈[1,τm]∩N

⎧⎨
⎩(1 − π)[m−1

0

∑
j∈I0

1{|Z0
j |>t} − 2Φ̄(t)]

+π [s−1
∑
j∈I1

1{|Z1
j |>t} − 2Φ̄(t)] − c∗θ[Φ̄(t)]θ

⎫⎬
⎭>0

⎞
⎠

≤ P

⎛
⎝ max

t∈[1,τm]∩N

⎧⎨
⎩(1 − π)[m−1

0

∑
j∈I0

1{|Z0
j |>t} − 2Φ̄(t)] + π − c∗θ[Φ̄(t)]θ

⎫⎬
⎭>0

⎞
⎠

≤ P

⎛
⎝ max

t∈[1,τm]∩N

⎧⎨
⎩(1 − π)[m−1

0

∑
j∈I0

1{|Z0
j |>t} − 2Φ̄(t)] − 1

2c
∗
θ[Φ̄(t)]θ

⎫⎬
⎭>0

⎞
⎠ (24)

+P

(
max

t∈[1,τm]∩N

{
π − 1

2c
∗
θ[Φ̄(t)]θ

}
>0

)
, (25)

where (24) goes to 0 by similar arguments as in the proof of Theorem 2.1 that
rely on the bounding sequence property of c∗θ. On the other hand, because
Φ̄(τm) � (π/c∗θ)1/θ as in (22), (25) also goes to 0.

Next, consider the second term in (23).

P

(
max

t∈[τm,
√

5 logm]∩N

Dθ(t) >
1
2επ

)

≤ P

(
max

t∈[τm,
√

5 logm]∩N

{
(1 − π)[m−1

0

∑
j∈I0

1{|Z0
j |>t}

− 2Φ̄(t)] − c∗θ[Φ̄(t)]θ
}

>
1
4επ

)
(26)

+P

(
max

t∈[τm,
√

5 logm]∩N

{
π[s−1

∑
j∈I1

1{|Z1
j |>t} − 2Φ̄(t)]

}
>

1
4επ

)
, (27)
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where (26) goes to zero by the bounding sequence property of c∗θ. To investigate
(27), we have

P

⎛
⎝ max

t∈[τm,
√

5 logm]∩N

⎧⎨
⎩π[s−1

∑
j∈I1

1{|Z1
j |>t} − 2Φ̄(t)]

⎫⎬
⎭ >

1
4επ

⎞
⎠

≤ P

⎛
⎝ max

t∈[τm,
√

5 logm]∩N

⎧⎨
⎩s−1

∑
j∈I1

1{|Z1
j |>t}

⎫⎬
⎭ >

1
4ε

⎞
⎠

≤ P

⎛
⎝s−1

∑
j∈I1

1{|Z1
j |>τm} >

1
4ε

⎞
⎠ ≤ Cε−1E(s−1

∑
j∈I1

1{|Z1
j |>τm})

≤ CP (|Z1
j | > t) ≤ CΦ̄(τm −Am) → 0

where the last step is because τm−Am � 1 as in (22). This concludes the proof
of Lemma A.3.
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